ΕΠΙΔΡΑΣΗ ΤΗΣ ΜΟΡΦΟΛΟΓΙΑΣ ΤΟΥ ΦΟΡΕΑ (NANO-CeO₂) ΣΤΑ ΦΥΣΙΚΟΧΗΜΙΚΑ ΚΑΙ ΚΑΤΑΛΥΤΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΥΠΟΣΤΗΡΙΓΜΕΝΩΝ ΜΕΤΑΛΛΩΝ ΜΕΤΑΠΤΩΣΗΣ MO_x/CeO₂ (M: Ni, Co, Fe)

Μ. Λυκάκη¹, Σ. Στέφα¹, Β. Μπίνας², S.A.C. Carabineiro³, Π. Πανδής⁴, Β. Σταθόπουλος⁴, <u>Μ. Κονσολάκης^{1,*}</u>

¹Σχολή Μηχανικών Παραγωγής και Διοίκησης, Πολυτεχνείο Κρήτης, Χανιά, Ελλάδα ²Ιδρυμα Τεχνολογίας και Έρευνας, Ινστιτούτο Ηλεκτρονικής Δομής και Λέιζερ (ΙΤΕ-ΙΗΔΛ), Βασιλικά Βουτών, Ηράκλειο, Ελλάδα

³Faculdade de Engenharia, Universidade do Porto, Porto, Portugal ⁴Γενικό Τμήμα, Σχολή Θετικών Επιστημών, Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών,

Ελλάδα

(*<u>mkonsol@pem.tuc.gr</u>)

ΠΕΡΙΛΗΨΗ

Το οξείδιο του δημητρίου ή δημητρία (CeO₂) έχει προσελκύσει ιδιαίτερο ερευνητικό ενδιαφέρον κι έχει χρησιμοποιηθεί σε πλήθος καταλυτικών αντιδράσεων λόγω των μοναδικών οξειδοαναγωγικών του ιδιοτήτων. Ειδικότερα, η σύνθεση υλικών δημητρίας σε επίπεδο νανοκλίμακας καθορισμένης αρχιτεκτονικής και μορφολογίας μπορεί να οδηγήσει σε σημαντικές μεταβολές στις δομικές, επιφανειακές και οξειδοαναγωγικές ιδιότητες. Επιπλέον, ιδιαίτερα σημαντική κρίνεται η ανάπτυξη μικτών οξειδίων βασισμένων στο CeO₂, τα οποία θα χαρακτηρίζονται από υψηλή δραστικότητα και χαμηλό κόστος και τα οποία θα είναι απαλλαγμένα από ευγενή μέταλλα. Στην παρούσα εργασία μελετήθηκε η επίδραση της νανοδομής του φορέα CeO₂ στα φυσικοχημικά χαρακτηριστικά και την καταλυτική συμπεριφορά υποστηριγμένων μετάλλων μετάπτωσης, ήτοι MO_x/CeO₂ (M: Ni, Co, Fe). Ως φορέας χρησιμοποιήθηκε σε όλες τις περιπτώσεις νανο-CeO₂ διαφορετικής μορφολογίας, η οποία παρασκευάστηκε με την υδροθερμική μέθοδο. Ο χαρακτηρισμός των υλικών πραγματοποιήθηκε κατά την αντίδραση οξείδωσης του CO.

ΕΙΣΑΓΩΓΗ

Η δημητρία έχει χρησιμοποιηθεί ευρέως στον τομέα της ετερογενούς κατάλυσης είτε ως καταλύτης αυτός καθαυτός είτε ως υπόστρωμα, λόγω των μοναδικών οξειδοαναγωγικών της ιδιοτήτων που σχετίζονται με την υψηλή ικανότητα αποθήκευσης και κινητικότητας οξυγόνου^[1]. Πέρα από τις μοναδικές ιδιότητες της δημητρίας, ο συνδυασμός της με μέταλλα μετάπτωσης οδηγεί σε σημαντική βελτίωση της καταλυτικής δραστικότητας λόγω των συνεργιστικών αλληλεπιδράσεων μετάλλου-φορέα^[2]. Επιπρόσθετα, τα υλικά, σε επίπεδο νανο-κλίμακας, παρουσιάζουν αφθονία σε επιφανειακά άτομα και δομικές ατέλειες (π.χ. κενές θέσεις οξυγόνου), γεγονός που επηρεάζει σημαντικά τη καταλυτική δραστικότητα λόγω των ηλεκτρονιακών διαταραχών που αναπτύσσονται ανάμεσα στα νανο-σωματίδια του μετάλλου και του φορέα^[2, 3]. Προς την κατεύθυνση αυτή οι ερευνητικές προσπάθειες έχουν επικεντρωθεί στον ορθολογικό σχεδιασμό υλικών μέσω της κατάλληλης τροποποίησης του μεγέθους ή/και του σχήματος των νανο-σωματιδίων, καθώς και μέσω της τροποποίησης των δομικών, ηλεκτρονιακών και επιφανειακών τους ιδιοτήτων, προκειμένου να αναπτυχθούν υψηλής απόδοσης και χαμηλού κόστους καταλυτικά υλικά.

Η ανάπτυξη υλικών βασισμένων στο CeO₂, απαλλαγμένων ευγενών μετάλλων, με προκαθορισμένα μορφολογικά/δομικά χαρακτηριστικά είναι ιδιαίτερης σημασίας, καθώς η έκθεση συγκεκριμένων κρυσταλλογραφικών επιπέδων οδηγεί σε διαφορετική κινητικότητα και ικανότητα αποθήκευσης οξυγόνου ^[1, 4]. Προς την κατεύθυνση αυτή, στη παρούσα εργασία,

χρησιμοποιήθηκε η υδροθερμική μέθοδος προκειμένου να παρασκευαστούν υποστρώματα νανοδημητρίας διαφορετικής μορφολογίας (ράβδοι, πολύεδρα, κύβοι). Τα διαφορετικά νανοσωματίδια δημητρίας χρησιμοποιήθηκαν στη συνέχεια ως φορείς για τρία μέταλλα μετάπτωσης (Ni, Co, Fe). Τα προς ανάπτυξη υλικά χαρακτηρίστηκαν μέσω των τεχνικών BET, XRD, TEM, TPR και η καταλυτική τους συμπεριφορά μελετήθηκε κατά την αντίδραση οξείδωσης του CO, προκειμένου να διερευνηθεί η επίδραση της μορφολογίας του φορέα CeO₂ στα φυσικοχημικά και κατ' επέκταση στα καταλυτικά χαρακτηριστικά των μικτών οξειδίων.

ΠΕΙΡΑΜΑΤΙΚΟ ΜΕΡΟΣ

Παρασκευάστηκαν καταλυτικά συστήματα της μορφής M/CeO₂-NX (M: Ni, Co, Fe, NX: NP – νανοπολύεδρα, NR – νανο-ράβδοι, NC – νανο-κύβοι) με ατομική φόρτιση σε μέταλλο [ατομικός λόγος M/(M+Ce)] ίση με 0.2. Σε κάθε περίπτωση, αρχικά πραγματοποιήθηκε η σύνθεση του υποστρώματος δημητρίας μέσω της υδροθερμικής μεθόδου και στη συνέχεια, ο εμποτισμός του νικελίου, του κοβαλτίου ή του σιδήρου στο υπόστρωμα με τη μέθοδο του υγρού εμποτισμός του νικελίου, του κοβαλτίου ή του σιδήρου στο υπόστρωμα με τη μέθοδο του υγρού εμποτισμού. Κατόπιν, πραγματοποιήθηκε ξήρανση στους 90°C για 12 ώρες και στη συνέχεια πύρωση στους 500°C για 2 ώρες υπό ροή αέρα (ρυθμός ανόδου θερμοκρασίας 5°C/min). Η ακριβής διαδικασία σύνθεσης των υποστρωμάτων διαφορετικής μορφολογίας περιγράφεται αναλυτικά σε προηγούμενο άρθρο^[5]. Τα πειράματα καταλυτικής αξιολόγησης πραγματοποιήθηκαν σε αντιδραστήρα σταθερής κλίνης υπό τις εξής συνθήκες αντίδρασης: 2000 ppm CO, 1 vol.% O₂, GHSV=40,000 h^{-1 [6]}.

ΑΠΟΤΕΛΕΣΜΑΤΑ ΚΑΙ ΣΥΖΗΤΗΣΗ

Τα κύρια χαρακτηριστικά υφής και δομής τόσο των φορέων δημητρίας όσο και των μικτών οξειδίων παρουσιάζονται στον Πίνακα 1. Οι φορείς δημητρίας παρουσιάζουν μεγαλύτερη επιφάνεια BET σε σχέση με τα μικτά οξείδια, ακολουθώντας τη σειρά: CeO₂-NP (87.9 m²/g) > CeO₂-NR (79.3 m²/g) > CeO₂-NC (37.3 m²/g). Η προσθήκη μετάλλου οδηγεί σε μικρή μείωση της επιφάνειας BET, χωρίς ωστόσο να επηρεάζεται σημαντικά η προαναφερθείσα σειρά.

Δείγμα		Ανάλυση XRD					
	Επιφάνεια BET (m²/g)	Όγκος πόρων (cm³/g)	Μέση διάμετρος πόρων (nm) [—]	Μέση διάμετρος κρυσταλλίτη, D _{xrd} (nm)			
				CeO ₂	NiO	Co ₃ O ₄	Fe ₂ O ₃
CeO ₂ -NC	37.3	0.26	27.4	27.0	-	-	-
CeO ₂ -NR	79.3	0.48	24.2	15.0	-	-	-
CeO ₂ -NP	87.9	0.17	7.9	11.0	-	-	-
Ni/CeO ₂ -NC	-	-	-	22.0	16.5	-	-
Ni/CeO ₂ -NR	-	-	-	14.0	23.0	-	-
Ni/CeO ₂ -NP	-	-	-	12.0 23.0		-	-
Co/CeO ₂ -NC	27.9	0.15	22.6	24.0	-	19.0	-
Co/CeO ₂ -NR	71.8	0.31	17.4	14.0 - 16		16.0	-
Co/CeO ₂ -NP	70.5	0.17	9.8	11.0 - 15		15.0	-
Fe/CeO ₂ -NC	32.2	0.19	23.3	16.8	-	-	52.3
Fe/CeO ₂ -NR	68.6	0.19	11.3	9.7	-	-	7.2
Fe/CeO ₂ -NP	64.2	0.12	7.6	8.5	-	-	16.5

Πίνακας 1. Χαρακτηριστικά υφής και δομής των δειγμάτων CeO₂, Ni/CeO₂, Co/CeO₂ και Fe/CeO₂.

Τα ακτινογραφήματα XRD των δειγμάτων CeO₂, Ni/CeO₂, Co/CeO₂ και Fe/CeO₂ παρουσιάζονται στο Σχήμα 1. Οι κύριες κορυφές που αντιστοιχούν στα επίπεδα (111), (200), (220), (311), (222), (400), (331), (420), (422), (333) και (440), αποδίδονται στην εδροκεντρωμένη κυβική δομή φθορίτη της δημητρίας ^[7]. Τα δείγματα Ni/CeO₂ εμφανίζουν κορυφές XRD σε τιμές 2θ 37.2, 43.3

και 62.9° που υποδηλώνουν την ύπαρξη της φάσης NiO και οι οποίες αντιστοιχούν στα επίπεδα (111), (200) και (220) ^[8]. Όσον αφορά τα δείγματα Co/CeO₂, υπάρχουν τρεις μικρές κορυφές σε τιμές 2θ ~36, 44 και 64° που είναι χαρακτηριστικές της φάσης Co₃O₄ και αντιστοιχούν στα επίπεδα (311), (400) και (440) ^[9]. Τα δείγματα Fe/CeO₂ εμφανίζουν κορυφές XRD σε τιμές 2θ ~35.96, 41.03 και 54.26° που υποδηλώνουν την ύπαρξη της φάσης του αιματίτη α-Fe₂O₃ ^[10]. Όπως φαίνεται απ' τον Πίνακα 1, η μέση διάμετρος των κρυσταλλιτών CeO₂ ακολουθεί την ίδια σειρά τόσο στα καθαρά όσο και στα μικτά οξείδια, δηλ. NC > NR > NP.

Σχήμα 1. Ακτινογραφήματα XRD των δειγμάτων CeO₂, Ni/CeO₂, Co/CeO₂ και Fe/CeO₂.

Στο Σχήμα 2 παρουσιάζεται η μορφολογία των νανο-σωματιδίων CeO₂, Ni/CeO₂, Co/CeO₂ και Fe/CeO₂. Είναι εμφανής η παρουσία νανο-ράβδων, νανο-κύβων και νανο-πολύεδρων CeO₂ ανάλογα με τις συνθήκες που ακολουθούνται κατά την υδροθερμική μέθοδο^[5]. Να σημειωθεί ότι η προσθήκη του εκάστοτε μετάλλου μετάπτωσης στο πλέγμα της δημητρίας δεν επηρεάζει τα μορφολογικά και δομικά χαρακτηριστικά του φορέα, σε συμφωνία με τα αποτελέσματα του Πίνακα 1.

Σχήμα 2. Εικόνες ΤΕΜ των δειγμάτων: (α) CeO₂-NR, (β) CeO₂-NP, (γ) CeO₂-NC, (δ) Ni/CeO₂-NR, (ε) Ni/CeO₂-NP, (στ) Ni/CeO₂-NC, (ζ) Co/CeO₂-NR, (η) Co/CeO₂-NP, (θ) Co/CeO₂-NC, (ι) Fe/CeO₂-NR, (ια) Fe/CeO₂-NP, (ιβ) Fe/CeO₂-NC.

Στο Σχήμα 3α παρουσιάζονται τα αναγωγικά προφίλ των δειγμάτων CeO₂, τα οποία αποτελούνται από δύο ευρείες κορυφές ευρισκόμενες στους 526-551 °C και 789-813 °C. Οι κορυφές αυτές αποδίδονται στην αναγωγή του επιφανειακού (O_s) και εσωτερικού-μη επιφανειακού (bulk) οξυγόνου (O_b) της δημητρίας, αντίστοιχα ^[9]. Στον Πίνακα 2 παρουσιάζεται ο λόγος O_s/O_b για τα δείγματα CeO₂ διαφορετικής μορφολογίας. Το δείγμα CeO₂-NR εμφανίζει το μεγαλύτερο λόγο (1.13), ακολουθούμενο από τα δείγματα CeO₂-NP (0.94) και CeO₂-NC (0.71). Τα αποτελέσματα αυτά υποδεικνύουν μεγαλύτερη ποσότητα ευκόλως αναγωγίσιμων επιφανειακών ειδών οξυγόνου στο δείγμα της νανο-ραβδοειδούς μορφολογίας.

	Κατανάλωση Η₂ (mmol H₂ g ⁻¹)			0./0	Θερμοκρασία κορυφής (°C)			
Δείγμα	Κορυφή	Κορυφή	0).wá	- O _s /O _b	Κορυφή	Κορυφή		
	Os	Ob	ΟΛΙΚΟ	ratio	Os	Ob		
CeO ₂ -NP	0.48	0.51	0.99	0.94	555	804		
CeO ₂ -NR	0.59	0.52	1.11	1.13	545	788		
CeO ₂ -NC	0.41	0.58	0.99	0.71	589	809		
	Κορυφές	Κορυφή	Ολικό		Κοουφάα	Κορμφά β	Koondá CeO	
	(α+β)	CeO ₂	ΟΛΙΚΟ		κορυφη α	κοροφηρ	κοροφ	
Ni/CeO ₂ -NP	1.03	0.36	1.39		284	349		
Ni/CeO ₂ -NR	1.50	0.46	1.96		289	354	749	
Ni/CeO ₂ -NC	1.11	0.41	1.52		273	335		
	Κορυφές	Κορυφή	Oluró		Κορυφή	Κορυφή	Κορυφή CeO₂	
	(α'+β')	CeO ₂	ΟΛΙΚΟ		α'	β'		
Co/CeO ₂ -NP	2.40	0.61	3.01		333	388		
Co/CeO ₂ -NR	2.37	0.62	2.99		318	388	795	
Co/CeO ₂ -NC	2.05	0.32	2.37		335	405		
		Ολικό			Κορυφή	Κορυφή b	Κορυφή	Κορυφή
					а		С	CeO ₂
Fe/CeO ₂ -NP		2.93			384	-	581	
Fe/CeO_2 -NR		3.42			390	465	588	759
Fe/CeO ₂ -NC		2.47			377	469	599	

Πίνακας 2. Οξειδοαναγωγικά χαρακτηριστικά των δειγμάτων CeO₂, Ni/CeO₂, Co/CeO₂ και Fe/CeO₂.

Τα αναγωγικά προφίλ των μικτών οξειδίων M/CeO₂ (M: Ni, Co, Fe) παρουσιάζονται στο Σχήμα 3β. Τα μικτά οξείδια Ni/CeO₂ παρουσιάζουν δύο κύριες κορυφές· η κορυφή α αποδίδεται στην αναγωγή των ειδών οξυγόνου που προέρχονται από τον σχηματισμό των δομών Ni-O-Ce και η κορυφή β σχετίζεται με την αναγωγή της καλά διασπαρμένης φάσης ΝΙΟ που αλληλεπιδρά ισχυρά με το υπόστρωμα CeO₂^[8]. Τα δείγματα Co/CeO₂ παρουσιάζουν δύο κύριες κορυφές σε εύρος θερμοκρασιών 318-335 °C (κορυφή α') και 388-405 °C (κορυφή β'), οι οποίες αποδίδονται στην αναγωγή Co^{3+} σε Co^{2+} και Co^{2+} σε Co^{0} , αντίστοιχα^[9]. Επιπρόσθετα, όσον αφορά τα δείγματα Fe/CeO₂, η κορυφή b οφείλεται στην αναγωγή του επιφανειακού οξυγόνου της δημητρίας, ενώ οι κορυφές a και c αποδίδονται στην αναγωγή των ειδών σιδήρου, δηλαδή $Fe_2O_3 \rightarrow Fe_3O_4$ και Fe_3O_4 \rightarrow Fe⁰, αντίστοιχα ^[10, 11]. Η υψηλής θερμοκρασίας κορυφή αναγωγής (>740 °C) που εμφανίζεται σε όλα τα μικτά οξείδια αντιστοιχεί στην αναγωγή του μη επιφανειακού (bulk) οξυγόνου της δημητρίας ^[10] και παραμένει ανεπηρέαστη από την προσθήκη του εκάστοτε μετάλλου (Ni, Co, Fe). Όπως φαίνεται απ' τον Πίνακα 2, τα δείγματα της νανο-ραβδοειδούς μορφολογίας (NR) παρουσιάζουν τη μέγιστη κατανάλωση H₂, υποδηλώνοντας την υψηλή αναγωγισιμότητα αυτών έναντι των δειγμάτων διαφορετικής μορφολογίας. Συγκρίνοντας τα αναγωγικά προφίλ των δειγμάτων CeO2 και των μικτών οξειδίων M/CeO2 (Μ: Ni, Co, Fe), είναι εμφανής η μετατόπιση των κορυφών σε χαμηλότερες θερμοκρασίες μετά τη προσθήκη του εκάστοτε μετάλλου στους φορείς δημητρίας λόγω των συνεργιστικών αλληλεπιδράσεων μετάλλου-φορέα.

Σχήμα 3. Προφίλ θερμο-προγραμματιζόμενης αναγωγής των δειγμάτων: (α) CeO₂ και (β) Ni/CeO₂, Co/CeO₂ και Fe/CeO₂.

ΚΑΤΑΛΥΤΙΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ

Tóσo τα καθαρά υποστρώματα CeO₂ όσο και τα μικτά οξείδια M/CeO₂ μελετήθηκαν ως προς την οξείδωση του CO προκειμένου να διασαφηνιστεί η επίδραση της μορφολογίας του φορέα δημητρίας στη καταλυτική τους συμπεριφορά. Στο σχήμα 4 φαίνεται η μετατροπή του CO ως συνάρτηση της θερμοκρασίας για τα δείγματα CeO₂ και Fe/CeO₂. Ανάλογα αποτελέσματα έχουν ληφθεί και για τα υπόλοιπα μικτά οξείδια. Ειδικότερα, σε όρους θερμοκρασίας ημίσειας μετατροπής (T₅₀), η σειρά που ακολουθείται για τα καθαρά υποστρώματα δημητρίας, είναι η εξής: CeO₂-NR (307 °C) > CeO₂-NP (323 °C) > CeO₂-NC (369 °C). Η ενσωμάτωση του σιδήρου στο πλέγμα της δημητρίας βελτιώνει σε σημαντικό βαθμό τη καταλυτική δραστικότητα, χωρίς ωστόσο να επηρεάζει καθόλου τη σειρά δραστικότητας των καθαρών φορέων: Fe/CeO₂-NR (166 °C) > Fe/CeO₂-NC (219 °C), υποδηλώνοντας την σημαντική επίδραση της μορφολογίας του φορέα στην καταλυτική συμπεριφορά.

Σχήμα 4. Μετατροπή του CO ως συνάρτηση της θερμοκρασίας για τα δείγματα CeO₂ και Fe/CeO₂.

Επί τη βάσει των παρόντων αποτελεσμάτων η ανωτερότητα των μικτών οξειδίων νανοραβδοειδούς μορφολογίας θα πρέπει να αποδοθεί στην υψηλή δραστικότητα των εκτιθέμενων κρυσταλλογραφικών επιπέδων και στη βελτιωμένη αναγωγική τους ικανότητα παρά στα χαρακτηριστικά υφής και δομής^[5].

ΣΥΜΠΕΡΑΣΜΑΤΑ

Στην παρούσα εργασία μελετήθηκε η επίδραση της μορφολογίας του φορέα στα φυσικοχημικά και καταλυτικά χαρακτηριστικά των καθαρών υποστρωμάτων CeO₂, καθώς και των μικτών οξειδίων Ni/CeO₂, Co/CeO₂ και Fe/CeO₂. Συμπερασματικά, η υδροθερμική σύνθεση οδηγεί σε νανο-σωματίδια δημητρίας διαφορετικής μορφολογίας, με τις νανο-ράβδους (CeO₂-NR) να παρουσιάζουν τα βέλτιστα αναγωγικά και καταλυτικά χαρακτηριστικά. Η προσθήκη μετάλλου δρα συνεργιστικά βελτιώνοντας σημαντικά τη καταλυτική συμπεριφορά, χωρίς ωστόσο να επηρεάζει τη σειρά δραστικότητας των καθαρών οξειδίων. Τα παρόντα αποτελέσματα, υποδεικνύουν το σημαντικό ρόλο που μπορεί να διαδραματίσει η μορφολογία του φορέα, προς την κατεύθυνση της ανάπτυξης οικονομικών και συνάμα αποτελεσματικών καταλυτικών συστημάτων απαλλαγμένων ευγενών μετάλλων.

ΕΥΧΑΡΙΣΤΙΕΣ

Η εργασία υλοποιήθηκε στο πλαίσιο της Δράσης ΕΡΕΥΝΩ – ΔΗΜΙΟΥΡΓΩ - ΚΑΙΝΟΤΟΜΩ και συγχρηματοδοτήθηκε από την Ευρωπαϊκή Ένωση και εθνικούς πόρους μέσω του Ε.Π. Ανταγωνιστικότητα, Επιχειρηματικότητα & Καινοτομία (ΕΠΑνΕΚ) (κωδικός έργου: Τ1ΕΔΚ-00094).

Ευρωπαϊκή Ένωση Ευρωπαϊκό Ταμείο Περιφερειακής Ανάπτυξης

Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης

ΒΙΒΛΙΟΓΡΑΦΙΑ

- [1] M. Melchionna, P. Fornasiero. Mater. Today 17 (2014) 349–357.
- [2] M. Konsolakis. Appl. Catal. B Environ. 198 (2016) 49–66.
- [3] M. Cargnello, V.V.T. Doan-Nguyen, T.R. Gordon, R.E. Diaz, E.A. Stach, R.J. Gorte, P. Fornasiero, C.B. Murray. Science 341 (2013) 771–3.
- [4] X. Yao, C. Tang, F. Gao, L. Dong. Catal. Sci. Technol. 4 (2014) 2814–2829.
- [5] M. Lykaki, E. Pachatouridou, S.A.C. Carabineiro, E. Iliopoulou, C. Andriopoulou, N. Kallithrakas-Kontos, S. Boghosian, M. Konsolakis. Appl. Catal. B Environ. 230 (2018) 18–28.
- [6] P.K. Pandis, D.E. Perros, V.N. Stathopoulos. Catal. Commun. 114 (2018) 98–103.
- [7] T.R. Sahoo, M. Armandi, R. Arletti, M. Piumetti, S. Bensaid, M. Manzoli, S.R. Panda, B. Bonelli. Appl. Catal. B Environ. 211 (2017) 31–45.
- [8] P. Zhao, F. Qin, Z. Huang, C. Sun, W. Shen, H. Xu. Catal. Sci. Technol. 8 (2018) 276–288.
- [9] J.-Y. Luo, M. Meng, X. Li, X.-G. Li, Y.-Q. Zha, T.-D. Hu, Y.-N. Xie, J. Zhang. J. Catal. 254 (2008) 310–324.
- [10] P. Sudarsanam, B. Hillary, M.H. Amin, N. Rockstroh, U. Bentrup, A. Brückner, S.K. Bhargava. Langmuir 34 (2018) 2663–2673.
- [11] A.S. Reddy, C.-Y. Chen, C.-C. Chen, S.-H. Chien, C.-J. Lin, K.-H. Lin, C.-L. Chen, S.-C. Chang. J. Mol. Catal. A Chem. 318 (2010) 60–67.