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Actuation of droplets and manipulation of their mobility on surfaces is very crucial for a wide range of 

applications related to interfacial phenomena1-15. In treating such challenges various methods have been 

proposed and demonstrated using respective trigger signals to interact with the liquid phase, the solid 

phase or the ambient, including electrical magnetic, thermal, acoustical or combinations. For porous 

hydrophobic surfaces in particular droplet actuation may be enabled also by gas perfusion through the 

porous body. This was mainly achieved by applying the adequate gas flow rate in order to depin the 

initially quiescent droplet from the porous surface resting on the solid faction (partially wetting, Cassie-

Baxter state), to a fully levitated state on which the droplet move frictionless (non-wetting, Leidenfrost-

like state). This actuation required high flow rates and therefore high amount of energy. In this work we 

explore the states in-between these two extremes and prove that actuation and mobility manipulation 

may be delivered at ultra-low gas flow rates, corresponding to pressures up to few mbar and accordingly 

to ultra-low energy consumption. The actuation mechanism was followed employing the continuity 

equation and the equations of momentum transfer that are coupled with the Volume of Fluid (VOF) 

method, to track the shape of the droplet in both 2D and 3D calculations. Applications for water droplets 

on plane surfaces, confined surfaces (fluidics) as well as for viscous fluids will be provided. 
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