NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

BSc THESIS

Development of machine learning software for the recognition
of modifications in Greek legislation

Christos D. Skoulikas-Androutsos
Viktor T. Tsakalakis

Supervisor: Manolis Koubarakis, Professor

ATHENS

JUNE 2020



EONIKO KAI KAMOAIZTPIAKO NMANEMIZTHMIO A©GHNQN

2XOAH OETIKQN EMIZTHMQN
TMHMA NMAHPO®OPIKHZ KAI THAEMIKOINQNIQN

MNTYXIAKH EPIrAzIA

AVATITUEN AOYIGHIKOU UNXOVIKAG HABNONC Yio avayvwplion
TPOTIOTIOINCEWV GTNV EAANVIKA VOUOOETia

Xprjotog A. ZKOUAiKaG-AvdpoUToog
Biktwp ©. TOAKOAGKNG

ETupAémtwv: MavoAng Kouvpttapdkng, Kabnyntrg

AOGHNA

IOYNIOZ 2020



BSc THESIS

Development of machine learning software for the recognition of modifications in Greek
legislation

Christos D. Skoulikas-Androutsos
S.N.: 1115201200164
Viktor T. Tsakalakis

S.N.: 1115201200182

SUPERVISOR: Manolis Koubarakis, Professor



MNTYXIAKH EPIrAzIA

AvATITuEn AOYIOUIKOD PNXOVIKAE HABNoNC yia avayvwpion TPOTIOTIOINCEWY GTNV EAANVIKA
vopoBeaia

XpnRotog A. ZKOULAIKaG-AvdpoUTcog
A.M.: 1115201200164
Biktwp ©. TOOKOAAKNG
A.M.: 1115201200182

ENIBAEMNONTEZ: MavoAng Kouvpttapdkng, Kabnyntg



ABSTRACT

The NOMOGEZI@ projects aims to convert Greek legislation into a machine readable and
gueryable format. One important aspect that it is currently missing is the identification of
legislative modifications and their semantic components. In this disseration we present an
automated solution based on deep learning, in particular the BILSTM architecture. Our

model demonstrates remarkably good results, with a prediction accuracy reaching over
98% per lexical token.

SUBJECT AREA: Natural Language Processing
KEYWORDS: deep learning, neural networks, legislative modifications



NEPIAHWYH

To mipoypapua NOMOOEZI@ oTto0KOTIEI OTNV UETATPOTIN TNC EAANVIKNC VopoBeaiag o€
MNXAVIKA OVAYyVWOIPN HOP@r) TIOL ETIOEXETOI EPWTNOEIC. Mia onUAVTIKY) AEITOLPYIO TTOV
O0ev ueioTatal OKOPN Eival n TALTOTIOINON TWV VOUOBETIKWY TPOTIOTIOINCEWY KAl TWV
ONUOCIOKWY TOU MPEPWV. Z€ QUT TNV TITLUXIOKN E€pyacia TapPouCIAlovphE  pia
autogatoTtoinuévn Avan Baciopévn otnv Babid pabnaor, CUYKEKPIYEVO TNV OPXITEKTOVIKN
BIiLSTM. Acixvel a&loonueiwTa KAAG OTIOTEAECHOTA, PE aKpPIBEla TIPORBAEWEWVY VO QTAVEI TO
98% ava AEKTIKN Jovada.

OEMATIKH MEPIOXH: Enteéepyaaia duaoikng Mwoaoag
AEZEIZ KAEIAIA: BaBid pabnan, veupwviKa SiKTLd, VOUOBETIKEG TPOTIOTIOINTEIG
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Development of machine learning software for the recognition of modifications in Greek legislation

1. INTRODUCTION

The NOMOGEZI@ * platform is an initiative by a research team of the Department of
Informatics and Telecommunications of the National and Kapodistrian University of
Athens [1].The project aims to convert the issues of the Government Gazette of Greece
(POMa E@nuepidag tng KuBepvroewe, ®EK) into a machine-readable format and to
publish them to a website, allowing semantic queries over the body of law of the
Hellenic Republic. In this thesis we focus on modifications of laws in particular, and we
use modern machine learning technologies to automate their recognition, categorisation
and the annotation of their component parts [2] [3].
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lllustration 1: Screenshot of the Nomothesi@ website

The necessity of encoding a nation’s body of law is urgent in this day and age. Making
legislation directly available and accessible to all citizens facilitates their interactions
with the state and their employers, encourages their participation in public affairs and
reinforces the institution of democracy. Furthermore, having this legal information
encoded in such a way as to be accessible through standardised APIs creates new
options in the field of informatics in allowing for the development of applications and
other tools based on an existing platform. Such apps can be fitted to any public need
and cover each specific use case, compounding on the utility of the original platform. As
an example, there are already several applications on the market which can offer
automated legal aid to citizens and corporations of the United States of America.? ®*

1 http://legislation.di.uoa.qgr/

2 https://www.lawbot.info/

3 https://donotpay.com/

4  https://rossintelligence.com/
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DoNotPay Learning Center Contact Download Now
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Robot Lawyer

The DoNotPay app is the home of the world's first
robot lawyer. Fight corporations, beat bureaucracy
and sue anyone at the press of a button.

THINGS YOU CAN DO WITH DONOTPAY
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lllustration 2: Screenshot of the DoNotPay website, ‘the world’s first robot lawyer’

The European Union, in recognition of this rising need, has created the European
Legislation Identifier (ELI) ° , a system for digital distribution of European legislation in a
standardised format so that they can be accessed, exchanged and reused within all
member nations. NOMOOEZI@ inherits from the ontology developed for ELI and
endeavors to bring the same benefits to Greek law as well [4].
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lllustration 3: Screenshot of the Eur-Lex website

5 https://eur-lex.europa.eu/eli-register/about.html?locale=el
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Every system of law which is in active use has to evolve over time to keep up with
changes in the goals, social norms or material conditions of the society it is written for.
As such, the capability to modify established laws is required. In the greek legislative
system, as well as in many other republics, there is no specific defined process to allow
that. Instead, the sole mechanism for modification is the introduction of new legislation
which dictates the way in which an existing law is changed. This makes the automatic
recognition of legislative modifications a non-trivial problem, and necessitates the
development of specialised software.

It is our goal in this dissertation to present one such automated system which can
recognise and annotate salient component parts of modifications with a sufficiently large
success rate for useful application. Our implementation is based on the machine
learning method known as deep learning.

In this chapter we have explained the problem we are trying to solve and why a solution
would be valuable. In the next chapter we shall define some fundamental concepts,
summarise the work which has taken place in the field of computer science in solving
similar problems and describe the technological framework on which our project will be
based.

C.Skoulikas-Androutsos, V.Tsakalakis 14
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2. PRIOR WORK

2.1. Background

2.1.1. NLP

Our problem belongs to the general category of Natural Language Processing (NLP).
NLP is the field concerning the interpretation of human speech and written text through
mechanical means. Until the 1980s the methods used were based on sets of rules
composed by human experts in linguistics, or statistical analysis. Following
technological developments during that decade, the field of machine learning began to
blossom and found broad application in NLP with great success.

2.1.2. Machine Learning

Machine learning is a subfield of artificial intelligence. The term refers to the
development of systems capable of analysing data and solving problems without the
need of predetermined algorithms leading to the solution. Based on the type of
feedback that is supplied the learning process can be unsupervised, reinforced or
supervised.

In unsupervised learning the system learns patterns in the input even though no explicit
feedback is supplied. The most common unsupervised learning task is clustering:
detecting potentially useful clusters of input examples.

In reinforcement learning the system learns from a series of reinforcements-rewards or
punishments. For example the two points for a win at the end of a chess game tell the
system that it did something right. But it is up to it to decide which actions prior to the
reinforcement were most responsible for it.

In supervised learning the system is presented with some example input-output pairs
and learns a function that maps from input to output. A common supervised learning
task is classification e.g. classifying if an e-mail is spam or not.

2.1.3. Neural Networks

Neural Networks are a machine learning technology based on the structure of the
artificial neuron, an abstract mathematical representation meant to broadly approximate
the function of the biological neurons found in living beings. An artificial neuron has one
or more weighted arithmetic inputs, on the combination of which it then applies an
arbitrary activation function.

C.Skoulikas-Androutsos, V.Tsakalakis 15



Development of machine learning software for the recognition of modifications in Greek legislation

weights

activation

functon
X, @ net input
net.
J 0.
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x3 >
transfer
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6.
threshold

lllustration 4: An artificial neuron by the user Chrislb through Wikimedia Commons {CC BY-SA
(http:/icreativecommons.orgllicenses/by-sal3.0/)}

The result of the activation function is the neuron’s output, which can then be multiplied
by a corresponding weight and propagated as input into one or several other neurons.
By stacking several layers of such artificial neurons into a network and manipulating the
weight of each input through a training process we can create autonomous systems
which can be used in a large range of problems.

2.1.4. Deep Neural Networks

In recent years, the increase in computing power has allowed for the development of
large, complex and multilayered neural networks offering a qualitative shift in their
potential and range of applications. These have come to be known as Deep Neural
Networks (DNNSs). In addition, the vast volume of data collected and disseminated
through the internet which is now available has been a factor complementing the
effectiveness of these networks, and has further contributed to the expansion of
relevant areas of research. The two most commonplace types of deep neural networks
are Convolutional Neural Networks (CNNs), which are mainly used in image processing,
and Recursive Neural Networks (RNNs), which are particularly suited for processing
discrete time signals such as natural language texts.

C.Skoulikas-Androutsos, V.Tsakalakis 16
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Recurrent Neural Network structure

Recurrent Neural Network Feed-Forward Meural Network

lllustration 5: A schematic of a recurrent neural network compared to a feed-forward
neural network

2.2. Neural Network Concepts

2.2.1. LSTM

Long Short-Term Memory [5] is an RNN architecture that elegantly addresses the
vanishing gradients problem, in which low gradient values prevent the information from
flowing backwards and thus one or more neurons form training properly, by using
“memory units”. These linear units have a self-connection of strength 1 and a pair of
auxiliary “gating units” that control the flow of information to and from the unit. When the
gating units are shut, the gradients can flow through the memory unit without alteration
for an indefinite amount of time, thus overcoming the vanishing gradients problem.
While the gates never isolate the memory unit in practice, this reasoning shows that the
LSTM addresses the vanishing gradients problem in at least some situations, and
indeed, the LSTM easily solves a number of synthetic problems with pathological long-
range temporal dependencies that were previously believed to be unsolvable by
standard RNNs [6]. LSTMs were also successfully applied to speech and handwritten
text recognition [7].

C.Skoulikas-Androutsos, V.Tsakalakis 17
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lllustration 6: A more detailed look into the structure of an LSTM-cell
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2.2.2. BiLSTM

A bidirectional LSTM (BILSTM) network is in practice composed of two different layers
of LSTM units, each processing the input signal in a direction opposite to the other.

The BILSTM architecture has had demonstrated success in tasks related to labelling
sequences such as natural language text and are currently widely considered to be
state of the art in the field [8] [9].

In this thesis, we will construct a BILSTM-based deep neural network to fulfill our task,
the annotation of the structural elements of Greek law modifications which we will
specify in the following chapter.

Embedding |

L b

lllustration 7: An artificial neural network utilizing a BiLSTM layer

(HQCIO)
(I CHO)
9,010, 0
IO
GG

O HO)
OO
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Q)
O

OO

(@) (b)

lllustration 8: (a) A unidirectional RNN (b) A bidirectional RNN
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2.2.3. Loss Functions

Loss function is a type of objective function that is used during the training process to
show the difference between the network's output and the desired one's. Typically a
loss function acts as a distance function that compares the output of the network to the
correct output which has been annotated earlier during the creation of the training set.
Through the optimization algorithm the weights of the neural network are properly
adjusted so that this distance is minimized.

2.2.4. Optimizers

Optimization algorithms (optimizers) help us minimize (or maximize) an objective
function which is a function dependent on the various trainable parameters of the
model. Such parameters are the weights associated with the neurons’ connections, the
biases, the learning rate and the batch size. The way these parameters are changing
differs for each optimization method. Gradient descent is a key element of this process.
Three very important optimization algorithms are stochastic gradient descent [10], which
is the one most commonly used, adam [11], which is an adaptive learning rate
optimization algorithm that's been designed specifically for training deep neural
networks, and RMSprop, which is an unpublished optimization algorithm designed for
neural networks, first proposed by Geoff Hinton [12].

2.2.5. Gradient descent

Gradient descent is one of the most popular algorithms to perform optimization and by
far the most common way to optimize neural networks. At the same time, every state of
the art Deep Learning library contains implementations of various algorithms to optimize
gradient descent (e.g. lasagne’s ° , caffe’s 7 , and keras’ ® documentation). Gradient
descent is a way to minimize an objective function parameterized by a model’s variables
by updating those variables in the opposite direction of the gradient of the objective
function. The learning rate determines the size of the steps we take in order to reach a
(local) minimum.

There are three variants of gradient descent, which differ in how much data we use to
compute the gradient of the objective function. Depending on the amount of data, we
make a trade-off between the accuracy of the parameter update and the time it takes to
perform an update [13] [14].

2.2.6. Batch gradient descent

The first variant, batch gradient descent (BGD), also known as vanilla gradient descent,
computes the gradient of the cost function with respect to the parameters for the entire
dataset. As we need to calculate the gradients for the whole dataset to perform just one

6 https://lasagne.readthedocs.io/en/latest/modules/updates.html
7 http://caffe.berkeleyvision.org/tutorial/solver.html
8  https://keras.io/api/optimizers/

C.Skoulikas-Androutsos, V.Tsakalakis 20
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update, batch gradient descent can be very slow and is intractable for datasets that do
not fit in memory.

2.2.7. Stochastic gradient descent

Next is stochastic gradient descent (SGD), which in contrast to BGD, performs a
parameter update for each training example. Batch gradient descent performs
redundant computations for large datasets, as it recomputes gradients for similar
examples before each parameter update. SGD does away with this redundancy by
performing one update at a time. It is therefore usually much faster but because it
performs frequent updates with a high variance the objective function fluctuates heavily.
While batch gradient descent converges to the minimum of the basin the parameters
are placed in, SGD’s fluctuation, on the one hand, enables it to jump to new and
potentially better local minima. On the other hand, this ultimately complicates
convergence to the exact minimum, as SGD will keep overshooting. Still, it has been
shown that when we slowly decrease the learning rate, SGD shows the same
convergence behaviour as batch gradient descent, almost certainly converging to a
local or the global minimum for non-convex and convex optimization respectively.

2.2.8. Mini-batch gradient descent

Last is mini-batch gradient descent (MGD) that takes the best of both worlds and
performs an update for every mini-batch of a number of training examples. This way, it
reduces the variance of the parameter updates, which can lead to more stable
convergence; and can make use of highly optimized matrix optimizations common to
state-of-the-art deep learning libraries that make computing the gradient with respect to
a mini-batch very efficient. Common mini-batch sizes range between 32 and 256, but
can vary for different applications. We used mini-batch gradient descent in training our
model.

C.Skoulikas-Androutsos, V.Tsakalakis 21
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2.2.9. Backpropagation

Backpropagation is a very popular neural network learning algorithm because it is
conceptually simple and computationally efficient. The simplest form of multilayer
learning machine trained with gradient-based learning is simply a stack of modules,
each of which implements a function X ,=F,(W,, X,_,), where X is a vector representing

the output of the module,W , is the vector of tunable parameters in the module (a subset
of W), and X _,is the module’s input vector (as well as the previous module’s output
vector). The input X to the first module is the input pattern Z”. If the partial derivative of
E"with respect to X is known, then the partial derivatives of E’with respect to W and
X ,_,can be computed using the backward recurrence

0E" OF OE"
awn_aw(w”’X”*l)aX,,
0E” _OF OE®
axn,l_aX(W”’X”‘l)aXn

where %(Wn’Xn1> Is the Jacobian of F with respect to W evaluated at the point

(W,,X,_,), and g—f{(wn,Xn_l) is the Jacobian of Fwith respect to X.

The Jacobian of a vector function is a matrix containing the partial derivatives of all the
outputs with respect to all the inputs. When the above equations are applied to the
modules in reverse order, from layer N to layer 1, all the partial derivatives of the cost
function with respect to all the parameters can be computed. The way of computing

gradients is known as back-propagation [15].
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2.2.10. Evaluation metrics

When developing a neural network model one very important task is the process of
evaluation. There are different kinds of metrics that can be utilized to evaluate a model.
In order for this evaluation to be proper and unbiased the correct metrics must be
chosen.

One such metric is called Precision, also known as PPV (Positive Predicted Value) and
is defined as the fraction of relevant instances among the retrieved instances.

ppy=12-_TIP
P~ TP+FP

Intuitively it shows the ratio of correctly predicted positive observations (True Positives)
to the total predicted positive observations. High precision value relates to the low false
positive rate.

The next metric that we will utilize is called Recall also known as Sensitivity or TPR
(True Positive Rate) and is defined as the fraction of relevant elements retrieved over
the total amount of relevant elements.

TPR=_ 1P
TP+FN

Intuitively it shows the ratio of the correctly predicted positive observations (True

Positives) to the total relevant observations.

Another metric that combines the aforementioned is called F-measure or F1-score and
is defined as a harmonic mean of precision and recall.

precision*recall _ 2xTP
precision+recall 2xTP+FN+FP

F1:2*
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relevant elements

false negatives true negatives

° o ® O

How many selected How many rel
items are relevant? items are sele

true positives

false positives

Precision = ——— Recall =

selected elements

lllustration 9: A schematic depiction of precision and recall by the user Walber through
Wikimedia Commons {CC BY-SA (https://creativecommons.org/licenses/by-sal4.0)}
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2.3. Pre-processing

2.3.1. Tokenization

Tokenization [16],in the context of NLP, is the process of separating a string of text into
tokens in order to enable the processing of that text by other software, such as a neural
network. The exact rules according to which the tokenization is done depends on the
relevant task as well as the input data. They might include rules such as disregarding
punctuation, normalising all letters to lowercase and substituting words which appear as
different variants into one standard spelling.

An example of tokenization is the following:

Input: “The urge to destroy is also a creative urge.”

Output: the urge to destroy is also a creative urge

2.3.2. Word embeddings

A word embedding can be any representation of words which is designed so that words
with similar meaning should also have similar representations. An algorithm to create
word embeddings aims to achieve as compact of a representation as possible while the
maximum amount of semantic information is carried through. Words are typically
converted into vectors within a multidimensional space to be fed as matrices of floating
point numbers, also known as tensors, to a DNN.

2.3.3. Word2Vec

One such algorithm which is commonly used is Word2Vec, developed by researchers
for Google in 2013 [17] [18].

It uses shallow neural networks, usually three layers deep, which are trained on a large
volume of natural language texts. The first layer, the input, is fed with a simple
representation of each word in the text. Desired network output is a neighboring
keyword (or more). This is achieved by tweaking the weights of the hidden level during
the training process. Finally, we keep the hidden level that represents a vector space
within which words with greater conceptual affinity are closer.
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INPUT PROJECTION ouTPUT
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lllustration 10: The word2vec (skip-gram) architecture

with window size n=2
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lllustration 11: Country and Capital Vectors projected by PCA

In this chapter we have introduced some concepts and used them to describe the prior
work done in the area concerning our problem, on which we will be basing our own
work. In the following chapter we begin to present our work, starting with the exact

definition of our task.
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3. TASK DEFINITION

The first step in solving the problem was to define a conceptual model for the
modifications. We studied a large volume of Government Gazettes (issues A) in terms
of their structure and content. The aim was to collect examples of legislative
modifications and to define a categorization of them. We came up with the following
categories:

Addition: a law is amended by introducing a new text, without otherwise altering the
existing text.

Deletion: a law is amended by removing part of the existing text.

Replacement: a law is amended by removing part of the existing text and
simultaneously inserting a new text.

Renumbering: a law is amended by changing the numbering of its parts.

In addition, we identified some structural elements that were common to many of the
examples and contained information that we wanted to encode. In each one we will
assign a label, and these are the ones that our neural network will be trained to
recognize.

One of the observations we made while studying the examples was that any
modification would necessarily be made on a single law, the Government Gazette of
which may or may not be explicitly referred to the text of the modification. The division
of a law is typically applied in articles at the first level, and then in paragraphs, but it
shows great variability and does not seem to follow universal rules. For this reason, we
came up with two specific labels that note the law and the Government Gazette number
(target law and target gazette). Any other information on the part of the law to which
the modification applies (e.g. article, paragraph, case, phrase) is included in a third
label, target fragment.

In cases where the modification introduces a new part to the structure of the law
(addition, renumbering) this is noted as new fragment. When a new text is added
(addition, replacement) it is marked as modification body.

Finally, we defined the modification type label, which will mark the words in the text of
the modification that indicate in which category it belongs to. Although it appears as one
label in our conceptual model and at the annotation phase we used it as such in the
next stage of processing our data we replaced it with five separate labels stating the five
modifications categories (addition, deletion, replacement, renumbering, date change).
We did this aiming at the additional useful value of automatic category recognition, and
considering that this expansion would have little impact on our neural network.
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To mark the individual details of the modifications that we want our neural network to
recognize, we defined the following labels:

. labels the Government Gazette in which the law to be modified was
published.

 labels the law to be modified

: labels the structural part of the law that is modified

- labels a new part of the law introduced by the modification

: labels the category of the modification

: labels the new text introduced by the modification

Moving on to the next phase of our work we set some rules for the annotation process.

- For the target gazette label, we do not annotate the parentheses that usually
enclose it.

- We do not annotate grammatical articles unless they appear in the middle of a
label and the words to the left and right of the article must be annotated (e.g. in
QRS SRR RTTEPITITWON 13 TN TTOpayPo .7, "nNg” is annotated but “H”
IS not).

- We do not include punctuation marks when they appear at the end of a label,
except in cases such as quotation marks in replacements, which are part of the
structure of the modification.

3.1. Examples

To better demonstrate the labels and the way we applied them to the text we now cite
some annotated examples of each modification category. Because the text we worked
on is written in Greek language the examples are cited in Greek.

3.1.1. Addition

Paragraph addition
http://leqislation.di.uoa.qgr/eli/law/2011/3986/article/17/paragraph/2

onusiOvovVTIal OTO0  TIEPIBWPIO TwV  OIKEIWV

Al0IKNTIKOU ZUUBOUAIOU NG ETaIpEIac.
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Case addition
http://legislation.di.uoa.gr/eli/law/2012/4052/article/49/paragraph/1

>10 Té)\oc m¢_napa pdpouv 2 tou GpBpou ZJRINy. 3996/2011 A" 170N
| e edric:

Passage addition
http://leqislation.di.uoa.qgr/eli/law/2011/3986/article/9/paragraph/3

b2(ed )\ 0C TNC TTOP. 4 TOU deou 5AREIV. 3049/2002 arné T16Te 1ov ioXUoE

ov. 3965/ 2011 (A 113) wC ERC:

artopaon e A.E.AA..

3.1.2. Replacement

Title replacement

http: //Iegislation di.uoa. gr/eIi/Iaw/2015/4324/articIelllparagraph/
1. O (TIy. 4173/201 M) w¢ e&ric:

Article replacement

http://legislation.di.uoa.gr/eli/law/2015/4346/article/2/paragraph/1
To ol¥| V. 4342/20150(A" 143) WG EENG;

1. To dpBpo 26 tou N. 4174/2013 (A" 170) avukaBiotatal w¢ €&rj¢: «ApBpo 26 ...»

Paragraph replacement

http://legislation.di.uoa.gr/eli/law/2010/3863/article/8/paragraph/1
OplorlKorroinon ouvtaéng avarmnpia¢ Twv acpaAiouévwy amo 1.1. 1993 IZlT0pdypago

3 70U dpBpou 25 rrap. SRLelyv. 2084/1992(®EK 165 A’ WG aKvouewc
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mTevie (5) ETWV TUVEXWC, KATA TN OIAPKEIQ TwV OTT0IwV UTTOBANOBNKE g€ dUO TOUAdY

eEETATEIC ATIO TIC OIKEIEC VYEIOVOUIKEC ETTITPOTIEC.

Case replacement

http://legislation.di.uoa.gr/eli/law/2011/3986/article/17/paragraph/3

H T0U A" 15) als

&&n¢:
a. H KupIiotnta &1l TTEPIOVTIAKWY aToIXEiwV Tou E.O.T. duvartal va uetaBiBalstal
otV ETaipEia pe TV EMwvuuia «EAANVIKA ToupioTika Akivnta A.E.» 1 o€
Buyatpike¢ NG etaipeieg, pe Mpaén tou Ymoupyikou ZuuBouliou, UaTEPa QTto
aitioAoynuévn €lonynan tou YroupyoU [loArtiopol kai Toupiouou, n oroid
dnuoaievetal atnv Epnuepida t¢ KuBepvrioswe. H amoeaaon autr amoteAEl T0
ETAYPATTTED TITAO, OTAV ATTAITETAI UETAYPAPN Yia TN UeTaBiBaan, n o€ uetaypagn
TNC OTA OIKEIN UTTOBNKOQUAGKEIQ 1) KTNUATOAOYIKG ypa@eia armaAAdgosTal aro
KaOe re/\oc n 61Kalwua unep Tou Anuoolou O.T.A., N.ILA.A.

pUCIKOU 1] VOUIKOU TTPOCTIOU.

Subcase replacement
http'//legislation di.uoa. gr/eIi/Iaw/2012/4052/artic|e/93/paragraph/?

ao@aAionc, KaBwe Kal TTpovoIac, 0 aagPaAIoTEOC OO

Passage replacement
http://leqislation.di.uoa.qgr/eli/law/2010/3863/article/5/paragraph/2

I[ell<oGpio B ¢ mmapaypdeou 4 tou apBpou 1R(elIMy. 3232/2004@(PEK 48 A’
WG AKOAOUOWC:

4. To QVWTEPW TUNUATIKO TTO00 dUvATal KAT' ETTIAOYI) TOU QO@AAIGLEVOU VA KATaBANOEI

TOUTOXPOVA LIE QUTO TOU QTTOVEUOVIA, MEIWUEVO Katd 1/200 yia KABe unva 1mou

http.//legislation.di.uoa.gr/eli/law/2010/3863/article/10/paragraph/1
1. Ta T0U
), 6riew iaxvouy, WG €&N¢:

6000 ETOUC TNEC NAIKIOG.»
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Phrase replacement
http://legislation.di.uoa.gr/eli/law/2015/4346/article/5/paragraph/15
b3 100Gy pagpo 6 Tou GpBpou 6 fon «10 Taueio Tapdoxe» UE

pdon|Kio TaUEIOTIOPEXED

3.1.3. Deletion

Case deletion
http://leqislation.di.uoa.qgr/eli/law/2014/4305/article/33/paragraph/2

S0 RMAYY, IMEYE) «Opyavioudc tou Ymoupyeiou Yyeiac» emépxovial ol
OKOAOUBEC TPOTTOTTOINTEIC:

IZliTepiTTTOOON V' TNC TTapaypd@ou 3 Tou apBpou 24diaypapETail

Subcase deletion

http://legislation.di.uoa.gr/eli/law/2014/4305/article/8/paragraph/32
lurtortepinttwon ¢ MEPITTTWonC Y’ pdgpou 3 Tou dpBpou 37)dlaypdpetall

Case and articles deletion
http://leqgislation.di.uoa.gr/eli/law/2014/4305/article/33/paragraph/3
210 E¥Z) «Opyavioudc tou Ymoupyegiov AypoTikric AVATTuénc Kot
Tpoiuwv» eépxovtal oI AKOAOUBEC TPOTTOTIOINOEIC:

a)n Siaypdpetal

B) Ta Siaypdgovial

Passage deletion
http://leqislation.di.uoa.qgr/eli/la/2015/2015-10-08/article/6/paragraph/5

[lellT00T0 £0d@Io ¢ mepimt. B ¢ map. 2 Tou GpBpou IREIAN. 4009/201 1Ay
oy’ (LMK aTOPVES

Phrase deletion

http://leqislation.di.uoa.qgr/eli/law/2015/4346/article/5/paragraph/14

A VRTTapaypapo 4 ToU GpBpou GRdIaYPAPOVIIlTA EI0AYWYIKA « » QTTO TIC AEEEIC]
guu@wVIag-tAaialog

3.1.4. Renumbering

http://leqislation.di.uoa.qgr/eli/law/2014/4281/article/194/paragraph/2

@l iapdypapor 7, 8, 9, 10, 11 kai 12 Tou dpBpou 28kielv. 4070/201 o€
Ypouc 8, 9, 10, 11, 12 ka1 13Me(iilexfel) (o8
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http://legislation.di.uoa.gr/eli/law/2014/4305/article/33/paragraph/3
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3.1.5. Combinations

Finally, we cite some examples containing several modification categories:

http://leqislation.di.uoa.qgr/eli/pd/2014/166/article/2/paragraph/1

ilrtepiTttooan a ¢ Tapaypdeou 1IRreleyielielliile (AR lete (o) MyBUTTOTIEPITIT(WON {{
diaypapetai [ Waluronspintwon nn favapiBusiaftia '}

httn //Iecuslatlon di.uoa. qr/eI|/Iaw/2014/4305/art|cIe/9/Daraqraph/15

6laypaqoera1 Rlurtortepiniwon 38° ¢ l5lGC nepintwonclavapiBueitor [Mle

http://leqislation.di.uoa.qgr/eli/law/2015/4346/article/1/paragraph/2

Metd v map. 1 TtoU deou % ov 4174/201 apdypagoc 2
avapiBouLiéva RIBgeiuevov Tiapaypdgw EASEYIS

aTO TTAQICI0 TWV apuodIoTNTwV ¢ ENA.STAT. Kai alu@wva uE TG JIaTAéelC NG TTap.

TOU GpBpou 8 tou N. 3832/2010, OTTWC ITXVEL.

In this chapter we have defined our conceptual model and the entities we want our
neural network to recognize. In the next chapter we will describe the methodology we
followed in its implementation.
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4. METHODOLOGY

The process of preparing our neural network comes in two parts, the first being the
preprocessing of the data in order for them to be in the appropriate format and the
second the development of the neural network model.

4.1. Pre-processing

The dataset we began with was a list of documents, each one consisting of a passage
from a law containing one or more modifications.

4.1.1. Labeling

The first step was to collect examples of modifications from the corpus that would be
necessary in the next phase of the training. As a background for our work we used the
Government Gazettes, available as pdf files in the National Printing House’s website ° ,
which have been converted for the NopoBsoi@ platform through optical character
recognition (OCR) into text file format. In an effort to filter this huge amount of data, we
also used a script made by the NOMOOGEZI@ team to recognize modifications by
keywords found through regular expressions. Thus we singled out a set of laws that
were quite likely to contain at least one modification.

To mark the annotations we used doccano, an open source tool *°.

@ doccano Projects  Logout

target gazette [ targettaw [ target fragment [l new fragment | [date ] modificationtype |}

ApBpo 32 H mapypagog 1 1ou dpBpov 3 ov a.v.
1712/ (PEK..

0 48 1. T10 TEAOC TG TMap. 1 Tou pBpov 18 T0U V.

ApBpo 48 1. 10 oV ) TipocTiBeTal x [
827
=TT

e eic:

< Prev Next >

lllustration 12: Screenshot of the Doccano workspace

o http://www.et.gr/index.php/f-e-k/diathesi-fek
10 https://doccano.herokuapp.com/
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As our goal was to annotate a large number of modification examples while working
independently of each other, and these examples had to be consistent in their method
of labeling for a smooth training of the neural network, we first set some labeling rules
and annotated a few example documents. We repeated this process, adjusting the
rules, until the identification of the labels we noted reached a satisfactory percentage
(less than one discrepancy in twenty documents). Some of these rules are listed in
Chapter 2.

When we had collected a sufficient volume of recorded data (533 laws, containing 1548
modifications and 6929 labels in total) we proceeded to the next stage.

4.1.2. Tokenization

The next step was to convert the dataset from string sequences to word sequences,
translating accordingly all the label information we added during the annotation. This
process is called tokenization. We used the tokenizer which was developed for the
NOMOGEZI@ project [19], including lists of word abbreviations corresponding to the
same token. In addition, we used the open source library spacy''. For better
homogenization, all letters were converted to uppercase without intonation and all digits
were replaced with a special placeholder symbol. Words with non-Greek characters are
also represented by a common token. Each punctuation mark corresponds to a different
token, unless they are part of an abbreviation.

4.1.3. Vectorization

As the last step of the pre-processing stage we converted the documents into
sequences of vectors, using the word2vec algorithm. Here again we relied on the
valuable work of NOMOGEZI@ team, using a pre-trained model in the same corpus,
that is Greek legislative text from Government Gazettes.

1 https://spacy.io/
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4.2. Model Development

We decided to develop our model through the popular Keras API, using the Tensorflow
framework [20] as a backend. The development environment was Ubuntu 18.04, with all
code written and run on a Jupyter notebook running on a Docker container. The version
of Tensorflow used throughout the project was 2.1.0.

As explained in previous chapters, the main architecture we wanted to use was
BiLSTM, a kind of RNN which is considered state of the art for sequence labeling
problems. The exact structure we eventually used is as follows:
e First, an Input layer,
e a Masking layer which is used to mark the padding put at the end of shorter
documents so that it can be ignored by following layers,
two BILSTM layers,
a Dropout layer and, finally,
a Dense layer with Softmax as its activation function, meant to format the output
into probability values for each of our ten classes.

The loss function the network would be trained with is categorical cross-entropy. The
hyperparameters we would keep as variables to fine-tune in order to create the most
suitable model are:

The number of epochs the model will train for,

the batch size,

the initial weight values,

the weight constraint function,

the number of recurrent neurons per layer,

the dropout rate value, and

the optimization algorithm.

In this chapter, we have explained the development of our neural network model. Next
we will present the results of our experiments using different hyperparameter values.
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5. EXPERIMENTS

In order to reduce the dimensionality of the combination space we split the
hyperparameters in smaller groups [21]. We ran a k-fold cross validation with a fold
parameter of five for each group. Following are the tables with the metrics for each
experiment, with the values having been the averaged values over the five runs of the
cross validation. Highlighted are the parameter value combinations we chose to use in
the final model.

5.1. Batch size and number of epochs.

Table 1: Results for different number of epochs and batch sizes

epochs batch_size loss accuracy precision
10 0.1987394532  0.943038824 0.9479698
10 16 0.1724772134  0.957107678 0.9588619
10 32 0.1749375622  0.950657132 0.95379968
10 64 0.1720855257 0.948168126  0.952315588
10 128  0.251519454  0.914983488  0.923575112
50 0.243524125  0.953504466  0.954498992
50 16 0.2778220906 0.9517598  0.952588928
50 32 0.1990034085 0.961398032 0.962673718
50 64 0.2148139398  0.957540398  0.958530606
50 128 0.1870346848  0.955092786 0.95709626
100 0.2475726526  0.958659274  0.959218004
100 16 0.2775270908  0.959608218 0.96000182
100 32 0.2197551827  0.964737088  0.965227258
100 64  0.218872849 0.95967064  0.960209684
100 128 0.2305038312  0.952585268  0.953699648

We chose a batch size of 32 as it has the better metrics. We elected to set the number
of epochs equal to 50, as it gave only marginally worse results than a value of 100 while

running in half the time.
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5.2. Optimizer

Table 2: Results for different optimization algorithms

optimizer accuracy precision

adadelta 0.494156864 0
sgd 0.742685762  0.802297688
adam 0.95656944  0.958524184
nadam 0.959250688 0.9607998
adagrad 0.674079952 0.76296502
adamax 0.94622862  0.950959378
rmsprop 0.961767394 0.96244512

While the Adam optimizer and its derivatives are largely considered to be the best in
related tasks, the RMSProp algorithm proved to deliver the best results with Nadam
coming in as a close second.

5.3. Initial weight values, weight constraints

Table 3: Results for different neuron initialization values and weight constraint functions

weight

init mode constraint accuracy precision recall

glorot normal 0.95880122  0.959382032  0.958348536
glorot normal  min max norm 0.961783186 0.96275384  0.961153058
glorot normal  non neg 0.9537656  0.955271936 0.95268564
glorot normal  unit norm 0.955074632  0.956146308  0.954244148
glorot uniform 0.95691177 0.9583567 0.95653057
glorot uniform  min max norm 0.96129592 0.96236995 0.96053341
glorot uniform  non neg 0.9483329 0.95076452  0.947506875
glorot uniform  unit norm 0.956402185  0.957153675  0.955449025
ones 0.78200577 0.81429215  0.738280875
ones min max norm 0.949856  0.952658815  0.948775735
ones non neg 0.784618775 0.81714163 0.73848058
ones unit norm 0.93842015 0.94201845  0.935814915
zeros 0.6395238 0.70121545 0.55118862
zeros min max norm 0.644610945 0.71175505 0.5328278
zeros non neg 0.60680965 0.64215928 0.536129
zeros unit norm 0.64175068  0.712149075 0.5420998

A min-max normalising weight constraint function seems to have the best results, with

glorot normal and glorot uniform being equivalent.
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5.4. Number of neurons and dropout rate

Table 4: Results for different number of input neurons and dropout rate

neurons dropout
50 0.001
50 0.01
50 0.2
50 0.5
100 0.001
100 0.01
100 0.2
100 0.5
150 0.001
150 0.01
150 0.2
150 0.5

We see that 100 neurons in each layer are enough, with the performance even falling
when the neurons reach 150. A dropout rate of 0.01 also gives the best results.

C.Skoulikas-Androutsos, V.Tsakalakis

accuracy

0.95212414

0.94949617
0.959749912
0.948093366
0.944646852
0.962315488
0.961676144
0.960138338
0.960264442
0.960632272
0.960756108
0.961348662

precision

0.953508866
0.951421902
0.961502078
0.953285278

0.94559018
0.963295404
0.962650604
0.962061272
0.960730022
0.961246994

0.96145671
0.962831152

recall

0.95135214
0.948164888
0.958120596

0.94390384
0.944218086
0.961684152
0.961223864
0.958663954
0.959887386
0.960360164
0.960156526
0.960492698
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5.5. Final results

In the end, we used the hyperparameters we arrived at through the tuning process to
create one final model, trained on the full training and validation dataset, and used it to
predict the labels of the documents in the test set. The following table is a classification
report produced by the scikit-learn module, giving precision, recall and fl-score per
label, as well as overall averages.

Table 5: Test results with evaluation metrics per class

precision recall fl-score support

e 1] oo oss| a9

accuracy 0.99 30000
macro avg 0.98 0.82 0.88 30000
weighted avg 0.99 0.99 0.99 30000
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5.6. Examples

And here are a few examples of the output the neural network produced when tasked
with identifying that same test dataset:

Example 1:

Yl ol W MBNIL IV 1APATPADO d TOY APOPOY d [feXIN . dddd/dddd , [fe]
TEAEYTAIO EAA®IO THZ MEPINTQSHS [ YIOMEPINTQSH Il AIATPADETAI . /Ml
[TAP . d TOY APOPOY d lfe)IN . dddd/dddd ANTIKAGISTATAI le3a==zia

> TI> MEPINTQSEI> >T  EQS KAI IE" THX [MAP . d TOY APOPQOY d TOY NMAPONTOZ]

ddldlcl/cicicicl = GAPIIENE1AP . d TOY APOPOY d LieMIN . ddda/dddd , [
IAIES » ANTIKAOISTATAL Zlylelays]
[APATPA®OY dTO>O HIAIAS LM 1AP . d TOY APOPOY d [Hedg\ . dddd/dddd
ANTIKAOISTATAI b= bag
AHAQSH KPIOEI EINKPINHE , SYNTASSETAI 5TO SQMA THS [MPAZH TO
EMIKPATEIAS 5TO EAECKTIKO SYNEAPIO . AN _ANAKYMTEl [MEPIATQS
AIEPEYNHSHS — ©OEMATQN _ [10Y _ EMIIITOYN _ STHN __ APMOAIOTHTA
LAY TAP . d TOY APOPOY d LISMN . dddd/dddd ANTIKAISTATAI eba=Erehad.

™M
M

KATA TH AIAPKEIA TOY EAETXOY , H EIMITPOINH THX NAPAIPA®OY d, AIA TO

In this example we can see that the model succesfully identifies all the labels despite
the text containing many different modifications in the same article.
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Example 2:

APOPO dd TO LICIORes[sRTOY [INiWNels[e/lo[s[s[sBMO1Q5> EXEI TPOINOIMNOIHOEI ME
TIZ AIATAZEI>X TOY APOPOY dd TOY I.A. ddd/dddd ( A" ddd ) , ANEELECACIPRRANRA

(0> )« APOPO dddTEAQNEIA d. >TO NOMO MPEBEZAS Ol APMOAIOTHTE.
TOY APOPQOY d ASKOYNTAI A0 TO TEAQNEIO MPEBEZAZ> KAl TO TO[lIKO
TEAQNEIAKO NPA®EIO MAPIrA> . d. TO TEAQNEIO MNPEBEZA> EINAI A" TAZHX |

EXEI EAPA THN lNPEBEZA KAI AIAPOPQNETAI 2TA lNAPAKATQ TMHMATA , 10
EXOYN Q> E=H> : A ) TMHMA AIOIKHTIKH2 YINOZTHPI=H> KAl AIKAZTIKOY B

MEPINAMBANETAI : |') H TEPIOXH OANOKAHPOY TOY OMQNYMOY NOMOY KAI

[TAP . dd EA . d N . dddd/dddd — ®EK ddd A" ) YITATOMENO >TO TEAQNEIO

[IPEBEZAZ . »

M

~<

~<

Here we can see that the model correctly identifies the law under modification and
correctly does not label the other article mentioned.
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Example 3:

APOPO d d. H [l Io> Ry O @ VOl O NG TOY [\ie(ofo[o/fs[s[ss{BAPIOMEITAI QX
[TAPAIPAD®OS d [IEPHIOMTENOS AYTH> [IPOZTIOETAL [NEPINTQIH Z ' (03
AV ool dCloomd« 7 ) TH ZYMITPA=H Al1O KOINOY ME TA lNANETIIZTHMIA , I'IA TH

AIOPI'ANQZH TIPOIPAMMATOQN METAIMTYXIAKQN ZMNOYAQN ( [1.M.52. ) KAl TH|

AIEZAITQIH EPEYNAZ SE TOMEIZ ENAIAGEPONTOZ TH> ENNHNIKH.

EMIAOPIKHS NAYTIAIAS > . /Rbu1e} A\ POPO d [e}q
XTSI HN 10y EXEI Q5 AKOAOYOQS !

EITOYPIOYN , NA ZYIXQNEYONTAI , NA METONOMAZONTAI H NA

KATAPIOYNTAI [I.M.2. 2E [NQZTIKA ANTIKEIMENA Z2XETIKA ME TI
EKIIAIAEYTIKEZ , EPEYNHTIKEZ KAl AEITOYPIIKEZ ANAITKEZ TH2 EMIOPIKHZ]
NAYTINIAZ . TA INIPOIPAMMATA AYTA OPIFTANQNONTAI AlO TA MNMANETIZTHMIA

SE ZSYNEPFAZIA ME TI> AEN . THN APMOAIOTHTA XOPHIHZH.
METAMTYXIAKQN TITAQN ZINOYAQN EXOYN TA INMANETIIZTHMIA . » .

This final example showcases one of the mistakes in the results. Despite the overall
high success rate, here the model fails to identify one of the two modifications that take
place. Specifically, while it identifies the addition (“MPOZTIOETAI") it misses the
renumbering (“APIOMEITALI").

In this chapter we have presented the results of our experiments both in tuning our
different hyperparameters as well as those produced by our optimal model in a test
dataset. Finally, we will comment on those results and present our conclusions.
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6. CONCLUSION

With a medium-sized dataset of approximately 7000 annotations our model had an
accuracy of 99%, a precision of 98%, a recall of 82% and an fl-score of 88% over all
labels.

As we can see from the metrics and from the examples, it is possible to create a neural
network with a very high degree of success in labeling the text of Greek legislative
modifications. We believe that the results are sufficient to find practical application in
automating the bulk of that task.

Should our model be integrated into the NOMOOEZI@ platform, a possible next step
would be the parsing of the law label and automatic linking of the modification to the law
it modifies. With some more effort, we believe it might be viable to develop a neural
network-based solution to apply the changes to the original law.

As a final note, even though the results are good, the annotation still takes many hours
of work and, as is obvious, no automated system could reach an accuracy of 100% with
current technology. Given that there are already widely used formalised frameworks of
version control (e.g. git) seeing great success in a variety of applications, we believe the
benefits of using such a protocol make it the preferable infrastructure for legislative
systems as well. We hope that the Greek government will soon recognise the
advantages of semantic technologies in the organisation of our societies. With the
necessary changes to its current, long outdated procedures it would be possible to have
useful metainformation annotated during the inception of a law, rather than left as an
afterthought requiring third-party development.
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ABBREVIATIONS-ACRONYMS

®EK dOANO E@nuepidag ¢ KuBEpvuaong
API Application Programming Interface
ELI European Legislation Identifier

NLP Natural Language Processing

DNN Deep Neural Network

CNN Convolutional Neural Network

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

BILSTM Bidirectional Long Short-Term Memory
BGD Batch Gradient Descent

SGD Stochastic Gradient Descent

MGD Mini-batch Gradient Descent

PPV Positive Predicted Value

TPR True Positive Rate

OCR Optical Character Recognition

C.Skoulikas-Androutsos, V.Tsakalakis

44




Development of machine learning software for the recognition of modifications in Greek legislation

REFERENCES
[1] I. Angelidis, I. Chalkidis, C. Nikolaou, P. Soursos, and M. Koubarakis, “Nomothesia: A Linked
Data Platform for Greek Legislation,” p. 13.
[2] T. Beris et al., “Towards a Decentralized, Trusted, Intelligent and Linked Public Sector: A Report

from the Greek Trenches,” in Companion Proceedings of The 2019 World Wide Web Conference, San
Francisco, USA, May 2019, pp. 840-849, doi: 10.1145/3308560.3317077.

[3] I. Angelidis, I. Chalkidis, and M. Koubarakis, “Named Entity Recognition, Linking and Generation
for Greek Legislation,” p. 10, 2018.
[4] I. Chalkidis, C. Nikolaou, P. Soursos, and M. Koubarakis, “Modeling and Querying Greek

Legislation Using Semantic Web Technologies,” in The Semantic Web, vol. 10249, E. Blomgqyvist, D.
Maynard, A. Gangemi, R. Hoekstra, P. Hitzler, and O. Hartig, Eds. Cham: Springer International
Publishing, 2017, pp. 591-606.

[5] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9, no. 8, pp.
1735-1780, Nov. 1997, doi: 10.1162/neco.1997.9.8.1735.

[6] I. Sutskever, Training recurrent neural networks. University of Toronto Toronto, Canada, 2013.

[7] A. Graves and J. Schmidhuber, “Offline Handwriting Recognition with Multidimensional Recurrent
Neural Networks,” in Advances in Neural Information Processing Systems 21, D. Koller, D. Schuurmans,
Y. Bengio, and L. Bottou, Eds. Curran Associates, Inc., 2009, pp. 545-552.

[8] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer, “Neural architectures for
named entity recognition,” ArXiv Prepr. ArXiv160301360, 2016.

[9] T. Wang and K. Cho, “Larger-context language modelling,” ArXiv Prepr. ArXiv151103729, 2015.
[10] J. Kiefer and J. Wolfowitz, “Stochastic Estimation of the Maximum of a Regression Function,”
Ann Math Stat., vol. 23, no. 3, pp. 462—-466, Sep. 1952, doi: 10.1214/aoms/1177729392.

[11] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” ArXiv14126980 Cs, Jan.
2017, Accessed: Jun. 21, 2020. [Online]. Available: http://arxiv.org/abs/1412.6980.

[12] “lecture_slides_lec6.pdf.” Accessed: Jun. 21, 2020. [Online]. Available: http://www.cs.toronto.edu/
~tijmen/csc321/slides/lecture_slides_lec6.pdf.

[13] S. Ruder, “An overview of gradient descent optimization algorithms,” ArXiv160904747 Cs, Jun.
2017, Accessed: Jun. 21, 2020. [Online]. Available: http://arxiv.org/abs/1609.04747.

[14] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[15] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Miuiller, “Efficient BackProp,” in Neural Networks:
Tricks of the Trade: Second Edition, G. Montavon, G. B. Orr, and K.-R. Mdller, Eds. Berlin, Heidelberg:
Springer, 2012, pp. 9-48.

[16] C. D. Manning, P. Raghavan, and H. Schitze, “Introduction to Information Retrieval,” p. 569,
20009.

[17] T. Mikolov, “Computing numeric representations of words in a high-dimensional space,”
US9740680B1, Aug. 22, 2017.

[18] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word Representations in
Vector Space,” ArXiv13013781 Cs, Sep. 2013, Accessed: Jun. 21, 2020. [Online]. Available:
http://arxiv.org/abs/1301.3781.

[19] I. Angelidis, “Named Entity Recognition and Linking in Greek Legislation,” EBvIKO Kail
Karmodiotplako Maverotiuio ABnvav, 2018.

[20] M. Abadi et al., “TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed
Systems,” ArXiv160304467 Cs, Mar. 2016, Accessed: Jun. 21, 2020. [Online]. Available:
http://arxiv.org/abs/1603.04467.

[21] N. Reimers and I. Gurevych, “Optimal Hyperparameters for Deep LSTM-Networks for Sequence
Labeling Tasks,” ArXivi70706799 Cs, Aug. 2017, Accessed: Jun. 21, 2020. [Online]. Available:
http://arxiv.org/abs/1707.06799.

C.Skoulikas-Androutsos, V.Tsakalakis 45



	1. INTRODUCTION
	2. PRIOR WORK
	2.1. Background
	2.1.1. NLP
	2.1.2. Machine Learning
	2.1.3. Neural Networks
	2.1.4. Deep Neural Networks

	2.2. Neural Network Concepts
	2.2.1. LSTM
	2.2.2. BiLSTM
	2.2.3. Loss Functions
	2.2.4. Optimizers
	2.2.5. Gradient descent
	2.2.6. Batch gradient descent
	2.2.7. Stochastic gradient descent
	2.2.8. Mini-batch gradient descent
	2.2.9. Backpropagation
	2.2.10. Evaluation metrics

	2.3. Pre-processing
	2.3.1. Tokenization
	2.3.2. Word embeddings
	2.3.3. Word2Vec


	3. TASK DEFINITION
	3.1. Examples
	3.1.1. Addition
	3.1.2. Replacement
	3.1.3. Deletion
	3.1.4. Renumbering
	3.1.5. Combinations


	4. METHODOLOGY
	4.1. Pre-processing
	4.1.1. Labeling
	4.1.2. Tokenization
	4.1.3. Vectorization

	4.2. Model Development

	5. EXPERIMENTS
	5.1. Batch size and number of epochs.
	5.2. Optimizer
	5.3. Initial weight values, weight constraints
	5.4. Number of neurons and dropout rate
	5.5. Final results
	5.6. Examples

	6. CONCLUSION

