
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

BSc THESIS

Translating Natural Language to SQL using Deep
Learning

Georgios Gr. Katsogiannis-Meimarakis

Supervisors: Georgia Koutrika, Research Director, ATHENA Research Center
Ioannis Ioannidis, Professor, NKUA

ATHENS

JUNE 2020

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Μετάφραση Φυσικής Γλώσσας σε SQL με Βαθιά Μάθηση

Γεώργιος Γρ. Κατσογιάννης-Μεϊμαράκης

Επιβλέποντες: Γεωργία Κούτρικα, Διευθύντρια Ερευνών, Ερευνητικό Κέντρο ΑΘΗΝΑ
Ιωάννης Ιωαννίδης, Καθηγητής, ΕΚΠΑ

ΑΘΗΝΑ

ΙΟΥΝΙΟΣ 2020

BSc THESIS

Translating Natural Language to SQL using Deep Learning

Georgios Gr. Katsogiannis-Meimarakis
S.N.: 1115201400065

SUPERVISORS: Georgia Koutrika, Research Director, ATHENA Research Center
Ioannis Ioannidis, Professor, NKUA

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Μετάφραση Φυσικής Γλώσσας σε SQL με Βαθιά Μάθηση

Γεώργιος Γρ. Κατσογιάννης-Μεϊμαράκης
Α.Μ.: 1115201400065

ΕΠΙΒΛΕΠΟΝΤΕΣ: Γεωργία Κούτρικα, Διευθύντρια Ερευνών, Ερευνητικό Κέντρο ΑΘΗΝΑ
Ιωάννης Ιωαννίδης, Καθηγητής, ΕΚΠΑ

ABSTRACT

Databases contain a vast amount of data, used to support a range of operations, from busi-
ness operations, scientific experiments to activities in our everyday lives. However they
are still inaccessible for non-technical users, without knowledge of Structured Query Lan-
guage (SQL). Natural language interfaces to databases lift these obstacles for such users
and they have recently bloomed. In this thesis, we will start by presenting the NL2SQL
problem (translating Natural Language to Structured Query Language), its most important
aspects and the anatomy of a NL2SQL system. We will compare some systems and see
how each one of them chooses to tackle the problem. In the main part of this work, we will
focus on the SQLNet system which uses deep learning methods to tackle the NL2SQL
problem. We will also test our own implementation of the system, investigate possible
improvements and test how well it works on various cases.

SUBJECT AREA: Deep Learning, Databases

KEYWORDS: Artificial Intelligence, Neural Networks, Machine Learning, Natural Lan-
guage Processing, Natural Language Interfaces

ΠΕΡΙΛΗΨΗ

Οι βάσεις δεδομένων περιέχουν τεράστια ποσότητα δεδομένων, τα οποία χρησιμοποιού-
νται για την υποστήριξη ενός μεγάλου εύρους δραστηριοτήτων από επιχειρηματικές δρα-
στηριότητες, επιστημονικά πειράματα μέχρι δραστηριότητες της καθημερινότητας μας. Παρά
όλα αυτά παραμένουν μη προσβάσιμες για έναν χρήστη χωρίς γνώση Γλώσσας Δομημέ-
νων Ερωτημάτων (SQL). Οι διεπαφές φυσικής γλώσσας για βάσεις δεδομένων καταρί-
πτουν αυτά τα εμπόδια και τελευταία βρίσκονται σε άνοδο. Στα πλαίσια αυτής της πτυχια-
κής εργασίας, θα ξεκινήσουμε παρουσιάζοντας το πρόβλημα NL2SQL (μετάφραση φυσι-
κής γλώσσας σε γλώσσα δομημένων ερωτημάτων), τα πιο σημαντικά του σημεία και την
ανατομία ενός συστήματος NL2SQL. Θα συγκρίνουμε κάποια συστήματα και θα δούμε
πως το καθένα από αυτά έχει επιλέξει να αντιμετωπίσει το πρόβλημα. Στο κύριο μέρος
της εργασίας, θα εστιάσουμε στο SQLNet, ένα σύστημα το οποίο χρησιμοποιεί τεχνικές
βαθιάς μάθησης για να αντιμετωπίσει το πρόβλημα NL2SQL. Επίσης, θα δοκιμάσουμε
τη δική μας υλοποίηση του συστήματος, θα προσπαθήσουμε να εφαρμόσουμε κάποιες
βελτιώσεις και θα ελέγξουμε πόσο καλά λειτουργεί σε διάφορες περιπτώσεις.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Βαθιά Μάθηση, Βάσεις Δεδομένων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Τεχνητή Νοημοσύνη, Νευρωνικά Δίκτυα, Μηχανική Μάθηση,
Επεξεργασία Φυσικής Γλώσσας, Διεπαφές Φυσικής Γλώσσας

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Georgia Koutrika, for her invaluable help and support
during this very demanding thesis as well as her patience and encouragement when things
weren’t going as planned.

This work was supported by computational time granted from the National Infrastructures
for Research and Technology S.A. (GRNET S.A.) in the National HPC facility - ARIS -
under project ID gkatsog-nl2sql. Τhe computational time was used for the training of all
models presented in this thesis.

CONTENTS

1. INTRODUCTION 14

1.1 The NL2SQL Problem . 15

1.2 NL2SQL System Workflow . 17

2. BACKGROUND AND RELATED WORK 21

2.1 NL2SQL Systems Comparison . 21

2.1.1 Natural Language Processor . 21

2.1.2 Intermediate Query Representation . 23

2.1.3 Query Interpreter . 24

2.1.4 User Interface . 25

2.1.5 Metadata . 26

2.2 Evaluation of Systems . 26

2.3 Available Data Sets/Databases . 27

3. THE WIKISQL TASK & DATASET 29

3.1 The WikiSQL Subsets . 29

3.2 SQL Query Complexity . 30

3.3 Bad Questions . 30

3.4 WikiSQL Statistics . 31

3.5 Summary . 33

4. SQLNET 34

4.1 SQL Sketch . 34

4.2 Dataflow in SQLNet . 35

4.3 Neural Query Translation Components . 38

4.3.1 Common Procedures . 38

4.3.2 Aggregation Function Predictor . 40

4.3.3 Column Selection Predictor . 40

4.3.4 Condition Number Predictor . 42

4.3.5 Condition Column Predictor . 42

4.3.6 Condition Operation Predictor . 43

4.3.7 Condition Value Predictor . 43

4.4 Programming Details . 47

4.5 Training Details . 48

5. EXPERIMENTS AND RESULTS 49

5.1 Evaluation . 49

5.2 Trying to Maximize the Embedding Coverage of WikiSQL 52

5.3 Testing on Database Views . 55

5.4 Interesting Examples of Queries . 58

5.5 Queries that SQLNet can not Answer . 61

6. CONCLUSION 63

ABBREVIATIONS - ACRONYMS 64

APPENDICES 64

A. PREDICTIONS ON IMDB DATABASE 65

REFERENCES 70

LIST OF FIGURES

1.1 NL2SQL Example . 15

1.2 NL2SQL Workflow . 18

3.1 WikiSQL data sample . 29

3.2 Aggregation functions in WikiSQL’s queries 32

3.3 Number of columns in WikiSQL’s tables . 32

3.4 Count of columns in SELECT clause in WikiSQL’s queries 32

3.5 Number of conditions appearing in WikiSQL’s queries 33

3.6 Number of operations appearing in WikiSQL’s queries’ conditions 33

4.1 SQLNet’s Query Sketch . 34

4.2 Dataflow in SQLNet . 35

4.3 An input preprocessing example . 36

4.4 Producing encodings from embeddings . 39

4.5 Column Attention . 40

4.6 Combining Outputs . 41

4.7 Aggregation Function Predictor with Column Attention 41

4.8 Column Selection Predictor with Column Attention 42

4.9 Condition Number Predictor . 43

4.10 Condition Column Predictor . 44

4.11 Condition Operation Predictor . 44

4.12 Condition String Predictor . 45

4.13 Condition String Predictor inference example 46

4.14 Condition String Predictor training example 47

5.1 An input example from the IMDb view movie_by_company 56

LIST OF TABLES

2.1 System Components Comparison . 21

2.2 System Components Comparison . 22

3.1 WikiSQL Sub-Sets . 30

3.2 WikiSQL Table Incorrectly Copied from Wikipedia 31

3.3 Actual Wikipedia Table . 31

3.4 WikiSQL Questions on the Incorrect Table 31

5.1 New Implementation’s Accuracy . 50

5.2 Testing SQLNet’s Adaptability . 51

5.3 Words without an embedding for each tokenization 52

5.4 Accuracy of modified NL processing models on WikiSQL 55

5.5 An example of an IMDb view: movie_by_company 56

5.6 Accuracy on IMDb single tables and views 57

5.7 Examples of queries about gender . 58

5.8 Examples of Spelling Mistakes & Predicted SQL Queries 59

5.9 Examples of Words without Embeddings & Predicted SQL Queries 59

5.10 Examples of Paraphrasing & Predicted SQL Queries 60

5.11 Examples of Open-Ended NLQs & Predicted SQL Queries 61

5.12 Examples of NLQs Answered with Yes or No & Predicted SQL Queries . . 61

5.13 Examples of NLQs Comparing Table Entries & Predicted SQL Queries . . . 62

5.14 Examples of NLQs using multiple constraints on the same attribute 62

A.1 NLQs on IMDb tables . 65

A.2 NLQs on IMDb tables . 66

A.3 Examples of NLQs on IMDb views . 67

A.4 Examples of NLQs on IMDb views . 68

A.5 Examples of NLQs on IMDb views . 69

PREFACE

This bachelor thesis was completed from September 2018 until June 2020 in Athens under
the supervision of research director Georgia Koutrika of the Athena Research Center, who
I would like to thank for her help and mentoring.

Θα ήθελα επίσης να πω ένα μεγάλο ευχαριστώ στην οικογένειά μου και στους φίλους μου,
χωρίς τους οποίους δεν θα ήμουν αυτός που είμαι σήμερα και δεν θα είχα καταφέρει όσα
έχω καταφέρει. Επίσης, ένα μεγάλο ευχαριστώ στου Άφαντους για όσα μου έχουν δώσει
και συνεχίζουν να μου δίνουν.

Translating Natural Language to SQL using Deep Learning

1. INTRODUCTION

The ever-increasing demand for data-driven approaches in decision making, planning and
business in general, has made the need for non-technical staff to use relational databases
all the more relevant. As a result, the quest for a simple and meaningful way to access
databases that does not require the knowledge of SQL is on the rise and has received a
lot of attention from the scientific community.

If we consider today’s wide-spread and mainstream use of web search engines and per-
sonal assistants, it becomes apparent how valuable it would be to create a system that
provides access to a relational database in a similar way. Such a system would allow any
person with elementary computer knowledge to access a relational database and retrieve
answers and data by posing questions using natural language.

In the words of Ted Codd (1974): ”If we are to satisfy the needs of casual users of data-
bases, we must break through the barriers that presently prevent these users from freely
employing their native languages.” [3]

This thesis examines the problem of translating Natural Language (NL) to Structured
Query Language (SQL) and investigates the efficiency of deep neural networks in this
task. More specifically, in this chapter we will start by introducing the before-mentioned
NL2SQL problem and we will explain its main aspects. We will then propose an abstract
workflow/architecture, that covers most NL2SQL systems, in order to obtain a better idea
of how most solutions approach the problem.

In chapter 2, we will go through the steps of the workflow and see how various NL2SQL
systems chose to implement each step. This will help us get a better understanding of
the ideas, methods and techniques that the scientific community has used to tackle the
problem. We will also take a brief look at the databases/datasets available for testing
NL2SQL systems. Among these systems, we will also examine SQLNet [18], a system
based on deep learning (DL), on which we will focus for the remainder of this thesis.

Chapter 3 contains an overview and statistics of WikiSQL, a data set for training and
testing NL2SQL systems, created by the authors of Seq2SQL [20]. SQLNet was also built
to perform on WikiSQL, so it is better to understand the task first, before the system.

In chapter 4, we will go deeper into the SQLNet system, study its architecture and see
exactly how it is built and how it works. An implementation of SQLNet has also been
developed by me, for the means of this thesis, in order to better understand the system,
but most importantly so that we can experiment on it. The implementation is based on the
original paper as well as the authors’ implementation which is available online1.

Finally, in chapter 5, after making sure that this new implementation achieves the same
scores as described in the SQLNet paper, we will be investigating ways to improve its per-
formance. Based on the observation that a lot of words from the WikiSQL are ”unknown”
to the system, we will be trying to decrease the number of unknown words by trying dif-
ferent tokenization methods and by applying spell-checking. We will also be taking the
system one step further, by testing it on a full relational database.

1https://github.com/xiaojunxu/SQLNet

G. Katsogiannis-Meimarakis 14

Translating Natural Language to SQL using Deep Learning

Figure 1.1: NL2SQL Example

1.1 The NL2SQL Problem

The NL2SQL problem can be simply described as follows:

Given a Natural Language Query (NLQ) on a Relational Database (RDB) with a specific
schema, produce a SQL query equivalent to the NLQ which is valid for the said RDB.

An example of the NL2SQL problem can be seen in Figure 1.1.

Even though it can be defined this simply, we must not underestimate the complexity and
the difficulty of the task. First and foremost any problem that involves NL is burdened by
the complexity NL carries: it can be hard to understand, some words or phrases can have
multiple interpretations, etc. Another notable point is that SQL can achieve great levels of
complexity, so a complete solution must be able to produce many different and complex
queries and understand the level of complexity that the user’s NLQ requires with respect to
the RDB’s schema. The solution must also be independent of a single database or domain
(e.g. movies, sports, etc.) and transferable to a new database with little to no adjustments
and ideally without the need of human labour. Another aspect to keep in mind is that we
are designing a system that is addressed to users with little or no knowledge of SQL and
relational databases. This burdens our system in two ways: on one hand it might not be
able to answer all NLQs, on the other hand it must be very cautious about the results it
presents to the user. Now let us look deeper into these aspects.

Natural Language Complexity

Understanding NL remains an open problem for the scientific community to this day. NL
can often be difficult to understand, even for a human, due to its flexibility and the absence
of strict rules. Even in a conversation between two people, it is normal to come across
misunderstandings, so a NL2SQL system must also be prepared to handle such cases.
Let us now look into some causes of NL complexity.

References can confuse the receiver of the question, because the part of the sentence
to which a word is referring is not always clear. For example, in the NLQ ”Coaches of
football teams who have won at least 3 Champions League titles” what is the word who
referring to? It is clear we are looking for coaches, but who must have won the titles? The
team or the coach? In real life, the receiver would ask for a clarification because this is
not something he can resolve by himself. A NL2SQL system would have to do something

G. Katsogiannis-Meimarakis 15

Translating Natural Language to SQL using Deep Learning

similar if it wanted to solve such misunderstandings. It would have to be able to identify
ambiguous situations and offer an interface for the user to clarify what he is asking for.

Inferences are also very common in NL because humans assume that whoever is listen-
ing has some fundamental knowledge about the world and can infer some things without
needing to hear them explicitly. Take for example the NLQ ”List all presidents after Barack
Obama”. It might appear very simple to people who have some basic knowledge of U.S.
politics, but for a computer it can be very confusing. First of all, it is implied that Barack
Obama was himself a president at some point. Furthermore, it is never said that we are
referring to presidents of the U.S. A NL2SQL system must have some kind of knowledge
base from which it can understand that Barack Obama was a U.S. president, in order to
handle this NLQ correctly.

Synonyms are another cause for misunderstandings. The user might choose a word in
his NLQ that is stored in the database using a synonym. For example, the user asks ”Who
is the composer of the Ode to Joy?” but the database has an entity named songwriter.
In such cases a NL2SQL must be able to understand to what the user is referring, even
though the exact word is not present in the database. We can also refer to this problem
as a vocabulary gap, between the user’s vocabulary and the system’s or the database’s
vocabulary.

Universality of Solution

Another important aspect is that the solution must work with every given database, no
matter the schema nor the domain, with little to no fine tuning. If this fine tuning process
is required, ideally, it must be performed automatically or by a user with limited technical
knowledge.

For example, a NL2SQL systemmust be able to work with any type of domain (i.e. financial
data, weather data, geospatial data, etc.) and shouldn’t expect to be taught new essential
vocabulary. It should also be able to adapt to new databases that contain similar data but
have very different schemas, causing the required SQL queries to be very different.

It is also worth saying that even though we are trying to enable people without any pro-
gramming knowledge access DBs, we are at the same time assuming that they have
adequate knowledge of the English language. Even though it might seem as a second-
ary goal, making a NL2SQL system that can handle any language can be proven a very
difficult task [1] that should not be disregarded.

User Mistakes

The human factor is an aspect of the problem that must also be taken into account. Hu-
mans are prone to making mistakes that the system should be able to identify and handle.

Spelling mistakes and typos are a very common example. The system must employ
spell-checking and correcting mechanisms, in order to be able to identify and correct such
mistakes.

Syntactical and Grammatical mistakes are more challenging than spelling mistakes
because they are both harder to identify and solve. Additionally, the way this kind of mis-
takes are handled is very dependant on the NLP techniques the system uses to process
the NLQ. For example, if a system does not perform syntactic parsing, it most likely will

G. Katsogiannis-Meimarakis 16

Translating Natural Language to SQL using Deep Learning

not identify any syntactical errors.

System Restrictions

Due to the complexity of the problem, it is possible to encounter instances in which a
specific system is not able to produce a correct SQL query. This can be due to a either
NL2SQL system restriction or a database restriction. In either case, the system should
be able to identify the incapability to produce the expected result and inform the user
accordingly.

In the first case, a systemmight not be designed to satisfy some edge use-case scenarios,
because of the complexity and difficulty to do so. In the second case, the database might
not be designed to answer a specific question asked by the user. There might be instances
where the user might try to ask questions that cannot be answered, simply because the
database lacks the data to do so. Foe example, it is not possible to tell which is the best
selling phone if the database was not designed to keep track of sales.

Result Validation

Another problem that arises is that of validating whether the output the user gets is actu-
ally what he wanted. In contrast to using a search engine, our result is not a page with
information and descriptions that he can read and criticise. A NL2SQL system gives SQL
queries as its output or maybe the resulting data from executing that SQL query. Since
most of the times the user will not be able to write and read SQL there is no way for him
to be sure that the resulting SQL query represents his NLQ correctly.

In some cases, if the answer is blatantly different from what the user expects, it might
be easy to recognise a mistake. For example if the user expects a date as a result, he
would be unsettled by receiving a negative number or a name. However, in cases where
the answer’s type, value and range seems to match the user’s expectations, how can he
validate that this is what he was looking for?

1.2 NL2SQL System Workflow

Now that we have a grasp of the problem we are trying to solve, it would also be useful
to have an idea of the structure of a system that tackles the problem. Even though many
different approaches have been proposed, there are some key similarities between them.
Based on these similarities we will now present an abstract workflow/architecture that can
fit all of them, in order to better understand them. This architecture includes the most
important components of a NL2SQL system and the workflow indicates the procedure
followed from getting the user’s NLQ up to returning a SQL query to them. This workflow
can be seen in Figure 1.2.

Everything starts from the user giving a NLQ to the system through the User Interface
(UI). The NLQ is then passed to the Natural Language Processor which transforms it
into an Intermediate Query Represenation (IQR). The IQR is a representation or data
structure created from the original NLQ that is easier to use and translate into SQL for the
system. The Query Interpreter receives this representation and transforms it into a SQL
query. Finally, the SQL is presented to the user through the User Interface.

G. Katsogiannis-Meimarakis 17

Translating Natural Language to SQL using Deep Learning

Figure 1.2: NL2SQL Workflow: Blue solid arrows represent the flow of the query and black dotted
arrows represent interactions between components

TheMetadata is another component that is present in the architecture but does not always
have the same position in the workflow. It can interact with the UI, the NL Processor or the
Query Interpreter and help them perform their tasks depending on the design choices of
the system’s creators. The same goes for the User Interface which can involve the user
in the processes of the NL Processor or the Query Interpreter.

Let us now have a more in-depth look of each component.

User Inteface

The User Interface is the component that connects the user with the system. Its main task
is to request input (NLQ) from the user and present the output of the system (SQL) back
to the user. It is possible however to add a lot more functionality to the UI in almost every
step of the workflow.

The UI can start helping even before the user has entered the NLQ by providing features
such as auto-completion, suggestions, spell-checking, etc. It can also help the NL Pro-
cessor and the Query Interpreter by asking the user to clarify any ambiguities they might
encounter. Let us recall our previous example: ”Coaches of football teams who have won
at least 3 Champions League titles”. In this case the UI could ask the user to clarify if the
coach or the team must have won 3 titles. Lastly, when finaly presenting the output to
the user, the UI can offer some features that help the user check if the result is what he
actually wanted. For example it could provide an explanation in NL of the resulting SQL
query, a visual representation, etc.

Metadata

The metadata used by the system is a very central component since it is useful in all
steps of the workflow. When using the term metadata we are referring to all the data and
information that the system can use to perform its task. One essential piece of metadata,

G. Katsogiannis-Meimarakis 18

Translating Natural Language to SQL using Deep Learning

for example, is the schema of the database that the NLQ is addressed to. Without it,
it would be impossible to construct a valid SQL query. There are, however, even more
possibilities for going beyond that.

One possible design choice is to keep some general knowledge stored in the metadata,
where the system can look up words and phrases it does not understand. This can happen
by using a lexicon or word embeddings, for example. Some systems might create word
indices from the database’s contents to check if a word from the NLQ exists in the database
and even relate that word to a specific entity. Another idea is to store templates of SQL
queries in the metadata. This way the Query Interpreter can have some starting point
when composing a SQL query instead of starting from scratch.

In any case, the metadata used by the system depends on the specific solution.

Natural Language Processor

When a user types a NLQ the system receives a simple string of text, which by itself is
not very helpful since the operations that can be performed on it are very limited. The
NL Processor is the first thing the NLQ meets when it is given to a NL2SQL system and
is responsible for converting this string into a structure that is more practical and easy to
handle for the system. The output of this component is the IQR, a representation of the
initial string that carries a lot more info about how the system understands the NLQ and
is easier for the system to transform into a SQL query.

This part usually contains techniques such as text tokenization, various forms of NL pars-
ing such as syntactic or dependency parsing, word embeddings and other NLP methods.
Some systems choose to include the user by asking him to clarify any ambiguities. It is
also common to take advantage of the metadata, most often by using a knowledge base
including lexicons to better understand the user’s input, or even use the database’s content
(e.g. to check if a word from the NLQ appears in the DB).

Intermediate Query Representation

The Intermediate Query Representation is the output of the NL processing step. It is a
representation of the NLQ which is ready to be given to the system’s Query Interpreter for
further processing.

These representations can range between many different data structures and the choice
for each system largely depends on the system’s algorithms. Some common choices are
parse trees, program sketches, ontology languages and even sequences of words. Some
systems might produce more than just one representation, if they are unsure which is the
best-fitting for the NLQ. At a later point in the workflow they might decide to discard some
or they might even present all of them to the user.

It should also be noted that in some systems the NL processing and the query interpreta-
tion steps are so close to each other that it might not be relevant to talk about an IQR.

Query Interpreter

The Query Interpreter receives the IQR, i.e. the result of NL processing on the NLQ and
tries to interpret a SQL query based on it. To achieve this goal, the query interpreter

G. Katsogiannis-Meimarakis 19

Translating Natural Language to SQL using Deep Learning

may have mechanisms to evaluate the probability of an interpretation matching the user’s
intent, interpretation generators, mechanisms that locate mistakes in interpretations and
fix them, mechanisms that try to find the best way to use the words of the NLQ, neural
networks and more.

As in the NL processor, the user’s feedback along with the metadata can be requested to
aid the interpretation. In this step, some common types of metadata used is the schema
of the database and the data stored in it.

G. Katsogiannis-Meimarakis 20

Translating Natural Language to SQL using Deep Learning

2. BACKGROUND AND RELATED WORK

In this chapter we will examine some NL2SQL systems and compare how they chose to
implement the parts of the workflow described in the previous chapter. Specifically, we
will be seeing the following systems: SQLizer [19], NaLIR [8], ATHENA [16], Analyza [4],
Seq2SQL [20] and of course SQLNet [18].
Note that not all of these systems are strictly NL2SQL systems; some of them have slightly
different goals and/or purposes. Specifically, Analyza is built for ”Exploring data with con-
versation” and goes a bit beyond the NL2SQL task by proposing some very interesting
user interaction capabilities. Also, SQLNet and Seq2SQL handle a simpler version of the
problem called WikiSQL [20], where the NLQ of the user is directed to a single table rather
than a complete database. However both systems present interesting ideas that could be
applied to the general NL2SQL problem as well.

At the end of this chapter we will also discuss how a NL2SQL system can be evaluated,
as well as the available data sets for evaluating and training a NL2SQL system.

2.1 NL2SQL Systems Comparison

In the following sections we will examine each part of the workflow and compare the dif-
ferent solutions proposed by each system. Namely, we will be seeing how each system
implements the Natural Language Processor, Intermediate Query Representation,
Query Interpreter, User Interface and Metadata. Tables 2.1 and 2.2 offer an overview
of all system and all the parts of the workflow.

2.1.1 Natural Language Processor

NL Parsers

The most common way of processing NL is with a natural language parser. A NL parser is
a system that converts an utterance given by the user into a data structure that represents
the grammatical, syntactic, or other kind of structure of that utterance. The output of the
parser can therefore be easier to handle for a computer and represents the meaning of
the NLQ better than a string of text.

NL parsers are usually trained on hand-parsed sentences, because it is much easier and
efficient to let a model learn how parses are created from examples, rather than try to
design a set of rules (e.g. a Grammar) or a deterministic algorithm that can be applied to

Table 2.1: System Components Comparison

System NL Processor IQR Query Interpreter
SQLizer Semantic Parser Query Sketch Sketch Completion & Refinement
NaLIR Dependency Parser Parse/Query Tree Parse Tree Mapper & Adjustor
ATHENA ”NLQ Engine” Interpretation Tree Ontology-driven Interpretations Generator
Analyza Semantic Parser Semantic Parse Confidence Score & User Disambiguation
SQLNet Tokenization Word Embeddings Neural Networks
Seq2SQL Tokenization Word Embeddings Neural Networks

G. Katsogiannis-Meimarakis 21

Translating Natural Language to SQL using Deep Learning

Table 2.2: System Components Comparison

System User Interface Metadata
SQLizer No Schema & Stats
NaLIR Disambiguation Schema & Data Index
ATHENA Secondary options Ontology & Data Index

Analyza Disambiguation, Suggestions, Schema & Knowledge BaseSecondary Options
SQLNet No Column Names & Embeddings
Seq2SQL No Column Names & Embeddings

all possible inputs [9]. The use of neural networks is also possible and quite promising [5].
This also means that parsers are not perfect, even though they can achieve high accuracy.

It is common to use preexisting solutions or frameworks when implementing a NL2SQL
system rather than building a new one from scratch. Specifically, SQLizer uses a custom
semantic parser while taking advantage of the Stanford CoreNLP’s pre-trained models.
Analyza also uses a preexisting framework [9] based on the same ideas. NaLIR uses the
Stanford Dependency Parser [12], a well known and highly used dependency parser.

ATHENA’s ”NLQ Engine”

ATHENA implements a NLQ Engine, as its authors call it. This is a complex component
of three parts, that when given an NLQ as input, returns an Ontology Language Query.
Briefly, these parts are:

1. TheOntology Evidence Annotator, which creates ”Evidence Sets” and ”Relationship
Constraints” based on the user’s NLQ

2. The Ontology-driven Interpretations Generator, which creates a number of ”Inter-
pretation Trees”, which basically are the system’s interpretations of the query. To
determine which of these interpretations to keep, ATHENA ranks them based on the
likelihood of being correct, with respect to the NLQ

3. TheOntology Query Builder, which transforms the highest ranking interpretation into
an Ontology Language Query.

Essentially only the first part corresponds to what we have chosen to refer to as a ”NL
Processor” and produces an IQR (Evidence Sets & Relationship Constraints) for the next
two components to interpret. The second and third parts function more like a ”Query
Interpreter”. So in this section we will describe the first part and leave the other two for
the Query Interpreter section.

The way ATHENA processes the NLQ through its Ontology Evidence Annotator, is by
trying to understand to what each word of the NLQ is referring to, as well as the possible
dependencies between them. To achieve this, it checks each word individually, trying to
relate them to an ontology element (while also checking its synonyms with a dictionary)
or to value stored in the database by looking them up in a Translation Index.

The output of this process is an Evidence Set and a set of Relationship Constraints
which describe the candidate mappings of each word and the relationships between them.

G. Katsogiannis-Meimarakis 22

Translating Natural Language to SQL using Deep Learning

Based on these two structures, the Interpretations Generator will try to generate the best
interpretation which will be represented as an Interpretation Tree.

Text Tokenization

Seq2SQL and SQLNet present a different and simpler approach to handling NL, simply
by tokenizing the NLQ into a sequence of words (tokens) and using word embeddings to
represent them as vectors.

Text tokenization is the process of transforming a string of text into a sequence of separate
words. When we receive the NLQ as a string from the user there is not much we can do
with it, but extracting every word of the sentence allows us to use each word separately
(e.g. with word embeddings). Creating a text tokenizer is relatively simple, there are
however some edge cases that require careful handling. For this reason it is better to use
one of the already available frameworks.

The output of the tokenization process is a sequence of words. Each word is then assigned
a word embedding vector, so the final output of the NL processor is a sequence of word
embeddings. Word embeddings will be further discussed in section 2.1.2.

2.1.2 Intermediate Query Representation

The intermediate representation of the query is a choice with multiple possibilities and
variations even between systems that process the NLQ similarly or even in the same way.
For example, both SQLizer and Analyza use semantic parsing to process the NLQ but
their IQRs are very different; SQLizer uses query sketches whereas Analyza uses a data
structure called a semantic parse. Let us now look into some IQR choices.

Query Sketches

SQLizer uses query sketches to represent the query. A sketch is the outline of an incom-
plete SQL query, with ”holes” (e.g. missing the content of the WHERE clause) that need
to be completed for it to become valid. Sketches can have hints for each ”hole” that give
some direction as to how it needs to be filled.

Parse/Query Trees

Analyza uses a data structure called a semantic parse which contains detailed information
such as metrics, dimensions and terms left unused from the NLQ.

NaLIR, which uses a similar dependency parser, uses a parse tree which displays the
dependencies between the words/phrases of the NLQ and builds on it by adding, removing
and enriching its nodes (with the user’s guidance) until it can be transformed into a valid
SQL query.

G. Katsogiannis-Meimarakis 23

Translating Natural Language to SQL using Deep Learning

Word Embeddings

Word Embeddings is a technique for mapping a set of words to a set of numeric vectors.
This enables the transformation of text into numbers, which is very helpful when using
neural networks, since they can only accept numbers as input. There aremultiple methods
of creating this mapping but both Seq2SQL and SQLNet use the Global Vector (GloVe)
[14] model. This particular model is trained on a big corpus of text (e.g. several pages of
Wikipedia) and the vectors that are created reflect the probability of two words appearing
in the same context (e.g. the same page). This means that similar words have vectors with
small distance between them and the vectors of unrelated words have a larger distance.
Using this type of embeddings not only allows us to transform text into vectors, but the
vectors carry knowledge about the words they represent as well.

2.1.3 Query Interpreter

Interpretation Generation & Ranking

Although the techniques used by ATHENA, SQLizer, NaLIR and Analyza might seem com-
pletely different, their similarity becomes evident when looking at the bigger picture. Their
data structures and algorithms might differ but all these systems follow a philosophy of
generating interpretations, testing them and ranking them based on their validity, their
similarity to the NLQ and other more specific criteria.

ATHENA’s Ontology-driven Interpretations Generator picks one evidence for each word
of the NLQ from the evidence set and tries to find the correct connections between them,
thus producing possible interpretations of the NLQ. As these interpretations are produced,
they are also ranked based on the likelihood of correctly capturing the users intent and
the highest ranked one is finally presented to the user.

SQLizer’s methodology has two steps, a Type-directed Sketch Completion followed by
Sketch Refinement using Repair. First, based on the sketch generated by the parser, it
tries to find expressions that complete it which are valid with respect to the schema of the
database and assigns a confidence score to each one of them. The confidence score is an
estimation of the probability that the way the sketch is completed matches the user’s intent
and is calculated based on the NL hints given by the parser, the names of the schema
elements, the foreign and primary keys and the database’s contents. After generating
said completions, the system searches for possible faults in the completions and tries to
repair them. This is again done by finding expressions that don’t pass our confidence
score threshold even though all their strict sub-expressions are above the threshold and
applying some predefined repair techniques.

NaLIR’s take on the matter uses a Parse Tree Node Mapper followed by a Parse Tree
Structure Adjustor. The first generates mappings to SQL components of every node of the
parse tree produced by the parser based on a similarity function. Eachmapping exceeding
a predefined threshold is considered a candidate mapping for the node. Then, the latter,
generates more trees by creating all the possible adjustments to the parse tree so that it
becomes syntactically valid and ranks them based on the probability of being correct. In
both steps, despite the system’s ranking, the final choice of which tree will be kept is made
by the user and the ranking only serves in choosing which options to present to the user.

G. Katsogiannis-Meimarakis 24

Translating Natural Language to SQL using Deep Learning

Neural Networks

Seq2SQL and SQLNet, employ a very different technique compared to all the other sys-
tems. They use neural networks and deep learning techniques in order to produce a SQL
query that is most probable to match the user’s input.

For example one neural network could be responsible for predicting the probability of which
aggregation function between SUM, MAX, etc. should be used. Another network, when
given the sequence of words from the user’s input, could predict the sequence of words
in the WHERE clause.

We will be seeing this case more in-depth in chapter 4, where we will be examining the
SQLNet system.

2.1.4 User Interface

On the subject of User Interface capabilities and how to include the user in the process
there are many different approaches and some interesting ideas. At one end of the spec-
trum, SQLNet, Seq2SQL and SQLizer are examples of systems not having any interaction
at all with the user, besides asking for a NLQ and presenting a SQL query. It should be
noted that this happens mostly because of the complexity of the first two systems which
both use deep neural networks. In theses cases it is clearly much more challenging to
include the user in the process. It could also be attributed to the simplicity of the WikiSQL
problem, since there aren’t any complex schemas or multiple tables to choose between.

ATHENA goes a small step further, not by requiring any further interaction by the user, but
by accompanying the SQL query that it believes is the best interpretation of the NLQ, with
some other high-ranking interpretations as alternatives, in case the user was looking for
something different. This however might not be very effective if the user can’t read SQL.

NaLIR goes way beyond, by not only including the user in the transformation, but by es-
sentially relying on the user to clear any ambiguities both when processing the NL and
when interpreting the query until the desired result is achieved. It could be argued that
this kind of excessive involvement might render the system unfriendly to the user and
decrease productivity by making the whole process too slow and tiring.

Analyza is a very good example on how the system can interact with the user. Some very
interesting features it presents are the following:

• Suggesting queries that we think might be useful based on what the database con-
tains or what the user has searched so far

• Auto-completing user’s queries as they are being written so that the are well suited
to our database’s schema and data

• Providing alternative choices in case our highest-ranking prediction is not what the
user is looking for

• Translating our output queries back to NL, in order to explain our interpretation to
the user and try to validate the results

• Giving the user a comprehensible overview or a visualisation of the data in order to
eliminate any confusion on what can be accomplished by our database andminimise
user mistakes

G. Katsogiannis-Meimarakis 25

Translating Natural Language to SQL using Deep Learning

2.1.5 Metadata

The amount and types of data kept by each system can range from the bare essentials
(e.g. the schema of the database), up to some very sophisticated architectures that include
knowledge that could even be unrelated to the current database in use.

On one side, SQLNet and Seq2SQL have the most simple approach. They only use the
table column names of the table on which the NLQ is directed and rely on the knowledge
of their word embeddings, described in section 2.1.2.

SQLizer also has a relatively simple approach by using the database’s schema and various
statistics about its contents to make sure it is forming valid queries and to assess the
likelihood of the query being the one it is looking for. For example, a query with a WHERE
clause of the form WHERE x == c will get a low likelihood if the value c doesn’t exist in
the database. NaLIR also takes advantage of the data in a similar way by using a Data
Index, i.e. a data structure that helps the system check if a value appears in its contents.

ATHENA also uses an interesting data index for looking up keywords that also supports
variant generators that helps group similar names that refer to the same real-world entity
(e.g. ”George Katsogiannis”, ”G.Katsogiannis” and ”Giorgos Katsogiannis” refer to the
same person and must be handled in the same way). What distinguishes it from other
systems is that it does not rely on the schema of the data base but works with ontologies
and mapping functions relating them to the DB that need to be provided by the designer of
the DB. This adds an extra level of complexity to making the system adaptable to different
databases but at the same time provides physical independence from the DB.

Analyza has an extended metadata store and goes way beyond than simply using the
schema of the database. It enriches it by adding a lot of extra information describing the
tables and the data by a curation process that requires a human curator and with the aid of
a knowledge graph. Additionally, it keeps track of every interaction with the user and tries
to learn phrases and words that are classified as unknown when first encountered as well
as identify requests for data that is not available in the database and respond accordingly.

2.2 Evaluation of Systems

Another very important question that must be considered is how can we decide which
system is better at this complex task. Based on the problem and its challenges, it becomes
clear that evaluating a NL2SQL system comes down to the following key aspects:

• The effectiveness and accuracy of the system at synthesising valid SQL queries
that correspond to the user’s intentions

• How much time it takes to synthesise such a query

• Its ability to work equally well on different databases and how much aid it requires
by the user to do so

Depending on the structure of each system and more importantly the level of interaction
needed by the user, there are different ways of evaluating its quality. Systems that depend
on the user’s feedback, like NaLIR, should be evaluated by testing the speed and ease
with which an inexperienced user manages to form an accurate query. For systems such

G. Katsogiannis-Meimarakis 26

Translating Natural Language to SQL using Deep Learning

as SQLizer, where no user feedback is needed, evaluating their performance can be as
simple as calculating the percentage of correct translations on a certain data set.

Because of these functional differences it is very difficult to have a precise comparison
between all the systems we presented. Even though this is inevitable due to the problem’s
nature and the various levels of user inclusion, a common axis that would enable as to
clearly and consistently evaluate NL2SQL systems would be beneficial to the efforts of
tackling the problem.

Another problem in comparing NL2SQL systems is the lack of available databases as well
as NLQs with their corresponding SQL queries, to test the systems on. This poses a very
big barrier to testing the performance of systems, especially when it comes to testing their
adaptability to new databases.

2.3 Available Data Sets/Databases

The lack of data sets, as mentioned before, has pushed researchers to use already-
available databases, often adjusting them by hand to better suit their needs, while sim-
ultaneously generating NLQs by themselves or in some cases by crowd-sourcing them.
In this section we will provide a brief overview and comparison of the data sets used by
the systems presented. It should be noted that just as the aforementioned systems have
some fundamental differences between them, so do the data sets.

Microsoft Academic Search (MAS)

The MAS data set was developed by the authors of NaLIR [8] based on Microsoft’s Aca-
demic database1. The full database is not made completely available by Microsoft but can
be accessed in some depth by its API. The data set created for [8] contains 196 questions
and has been made public by its authors. The schema of the database consists of 17
tables and 53 collumns and takes up 3.2 GB of space. It has also been used for SQLizer
[19] and ATHENA [16].

Internet Movie Database (IMDb)

The IMDb data set used by SQLizer [19] is based on the online movie database IMDb. It
contains 128 questions and has been made available by its authors. The schema of the
database consists of 16 tables and 65 collumns and takes up 2 GB of space.

Yelp data set

The Yelp data set used by SQLizer [19] is based on the the business review website Yelp.
It contains 128 questions and has been made available by its authors.

The schema of the database consists of 16 tables and 65 columns and takes up 2 GB of
space.

1https://academic.microsoft.com

G. Katsogiannis-Meimarakis 27

Translating Natural Language to SQL using Deep Learning

WikiSQL data set

A crowd-sourced data set was developed for the WikiSQL task which was proposed in
[20]. It contains NLQs and their equivalent SQL queries, each based on a single table
taken from Wikipedia. The data set is available for download on Github2. It contains
87726 question pairs based on 26375 table schemas.

Besides not being a full relational database, another difference to all the other data sets
mentioned is that it is not based on one specific domain, instead every table contains data
from different domains (e.g. sports, geography, etc). We will take a closer look on this
data set in chapter 3.

FIN data set

The FIN data set contains financial data and was created by IBM and used for the ATHENA
system[16]. It consists of 108 question that were produced by IBM employees. Given that
ATHENA works on ontologies rather than RDBs, the data set is described by an ontology
that contains 75 concepts, 289 properties and 95 relations but it is also stored on a RDB
with a normalized schema.

GeoQuery data set

The GeoQuery workload contains geographical data and has been used to evaluate the
ATHENA system [16] among others. It was first used in [17] and was made public by its
authors. It consists of 250 questions over 800 facts implemented in Prolog.

Other Available data sets

Besides the data sets used by the systems we have discussed, there are still some worth
mentioning.

WikiTableQuestions is a data set very similar to WikiSQL, which features questions on
single tables on a variety of domains, similarly to WikiSQL. Their main difference is that
WikiTableQuestions doesn’t expect SQL queries as an output to its questions but rather a
simple answer. It was developed for [13] and has been made available by its authors.

The SCHOLAR data set was released with [6] and contains 816 NLQ accompanied with
SQL, over an academic relational database.

2https://github.com/MetaMind/wikisql

G. Katsogiannis-Meimarakis 28

Translating Natural Language to SQL using Deep Learning

3. THE WIKISQL TASK & DATASET

Before getting into further detail about the SQLNet system, it is necessary to first explain
the task which it was made to deal with.

The WikiSQL task and dataset was proposed by the authors of Seq2SQL [20]. It consists
of a large number of tables taken from various pages of Wikipedia. The data provided by
its creators include the tables’ contents and the names of each table’s columns. In some
cases some additional information is provided, such as the name of the Wikipedia page
from which the table is taken or the caption of the table. It also contains NLQs and their
equivalent SQL queries, each based on a single table. This is a very important difference
to most available data sets, since it doesn’t use complete databases but single tables for
each query. This means that there is no underlying schema to take into account and that
the SQL queries that it contains are not that complex (e.g. there are no joins in any query).

Besides not being a full relational database, another difference is that it is not based on
one specific domain, because the tables were taken from Wikipedia. Instead, every table
contains data from different domains (e.g. sports, geography, train tracks from eastern
Europe, etc). An example of a data sample can be seen in Figure 3.1.

It was created by crowd-sourcing the questions and the queries. For this reason a lot of
its queries might be badly written, have mistakes or even be completely wrong. In other
occasions, the tables might have been copied incorrectly, leading to incomprehensible NL
and SQL queries.

The data set is available for download on Github and contains 80,654 question pairs based
on 26,531 tables. The Github page also features a performance ”leaderboard”, which
presents the best performances achieved on the WikiSQL task by various NL2SQL sys-
tems from the scientific community.

3.1 The WikiSQL Subsets

The data set is separated into 3 parts by its creators to ensure that all models that use it
as a benchmark are using the same questions for the same purposes. This ensures that
the leaderboard of the accuracies achieved by various systems is fair. However, it can be
used as a whole or with different splits if one does not intend to submit his results in the
leaderboard.

Country Players Standard Minor First title Last title
England 35 119 28 1977 2013
Scotland 7 71 7 1987 2013
Wales 6 29 3 1974 2013

...

NLQ: ”Which country has more than 5 players?”

Ground Truth SQL Query: SELECT Country WHERE Players > 5

Figure 3.1: A WikiSQL data sample consists of the NLQ and the table on which the question is
asked, along with the equivalent SQL query.

G. Katsogiannis-Meimarakis 29

Translating Natural Language to SQL using Deep Learning

Table 3.1: WikiSQL Sub-Sets

Questions Tables
Train Set 56,355 18,585

Validation Set 8,421 2,716
Test Set 15,878 5,230

Total 80,654 26,531

The subsets are the following:

1. Train set: To be used to train the model.

2. Validation set: To be used to check the model’s performance during training and
possibly affect the model’s training, e.g. check for over-fitting and stop training when
it is observed.

3. Test set: To be used only for testing and comparing performance of different models,
i.e. the test set does not affect the model during its training in any way.

Each subset has its own unique tables so the same query or table is never seen by the
model both in training and testing.

3.2 SQL Query Complexity

Because all questions are targeted to single tables, the resulting SQL queries are not that
complex. This is evident even by the way the SQL queries are stored in the data set. Each
SQL query is comprised of:

1. A SELECT on one of the table’s columns

2. One or no aggregation function performed on that column, which will be one of
{None, MAX, MIN, AVG, SUM, COUNT}

3. A series of conditions (or no conditions) each of which is comprised of:

(a) The column of the table on which the condition is applied
(b) The operation that is applied, which will either be =, > or <
(c) The value against which the condition is applied

So essentially if we predict each of these parts we have predicted the SQL query. This is
something to keep in mind because it is the idea behind the way SQLNet works.

3.3 Bad Questions

As mentioned before, there are some questions and tables in the WikiSQL data set that
make little or no sense at all. Such questions usually have no knowledge to offer to our
systems and may even create problems, since they force the systems to learn something
wrong or incomprehensible.

G. Katsogiannis-Meimarakis 30

Translating Natural Language to SQL using Deep Learning

Table 3.2: WikiSQL Table Incorrectly Copied from Wikipedia

! Late 1941 Late 1942 Sept. 1943 Late 1943 Late 1944 1978 Veteran membership
Bosnia and Herzegovina 20000 60000 89000 108000 100000

Croatia 7000 48000 78000 122000 150000
Kosovo 5000 6000 6000 7000 20000

Macedonia 1000 2000 10000 7000 66000
Montenegro 22000 6000 10000 24000 30000

Serbia (proper) 23000 8000 13000 22000 204000
Slovenia 2000 4000 6000 34000 38000
Vojvodina 1000 1000 3000 5000 40000

Table 3.3: Actual Wikipedia Table (Yugoslavian Partisan Army Composition by Region)

Late 1941 Late 1942 Sept. 1943 Late 1943 Late 1944
Bosnia and Herzegovina 20000 60000 89000 108000 100000

Croatia 7000 48000 78000 122000 150000
Kosovo 5000 6000 6000 7000 20000

Macedonia 1000 2000 10000 7000 66000
Montenegro 22000 6000 10000 24000 30000

Serbia (proper) 23000 8000 13000 22000 204000
Slovenia 2000 4000 6000 34000 38000
Vojvodina 1000 1000 3000 5000 40000
Total 81,000 135,000 215,000 329,000 648,000

Table 3.4: WikiSQL Questions on the Incorrect Table

NLQ: Name the most late 1943 with late 194 in slovenia
SQL: SELECT max(late 1943)WHERE ! late 1941 = slovenia
NLQ: What is the least september 1943 when late 1943 is 78000
SQL: SELECT min(sept. 1943)WHERE late 1943 = 78000
NLQ: What is the late 1941 when 1978 veteran membership is 20000
SQL: SELECT ! late 1941WHERE 1978 veteran membership = 20000

Take for example Table 3.2, which is clearly a product of some error. As it turns out this
table was copied incorrectly fromWikipedia, using a wrong header for the first column and
as a result it has been rendered unusable. The correct table, seen in Table 3.3, can be
found on a Wikipedia and refers to the Yugoslav Partisans of WWII.

Besides this table being incomprehensible, the WikiSQL dataset actually contains ques-
tions posed on this table and even gives the expected SQL queries that should be pro-
duced from these questions. These questions can be seen in Table 3.4. Note how these
NLQs are both incomprehensible and have spelling mistakes but still are accompanied
by some questionable SQL queries that will probably confuse any NL2SQL system that is
trained on them.

3.4 WikiSQL Statistics

Finally, we computed a set of statistics on the data set, to better understand its character-
istics.

In Figure 3.2 we see how many times each aggregation function is found in the queries.
Here we observe that the overwhelming majority of SQL queries don’t use an aggregation
function. However if a function is used, the number that of appearances of each function

G. Katsogiannis-Meimarakis 31

Translating Natural Language to SQL using Deep Learning

(None) COUNT MIN MAX AVG SUM
Aggregation Function

0

10000

20000

30000

40000

50000

60000
N

um
be

r o
f Q

ue
rie

s

Figure 3.2: Aggregation functions in
WikiSQL’s queries

5 7 9 11 13 15 17 19 22 24 26 44
Number of Columns

0

2000

4000

6000

8000

10000

N
um

be
r o

f T
ab

le
s

Figure 3.3: Number of columns in WikiSQL’s
tables

0 2 4 6 8 10 12 14 16 18 20 22 30 35 41
Column in SELECT Clause

0

2500

5000

7500

10000

12500

N
um

be
r o

f Q
ue

rie
s

Figure 3.4: Count of columns in SELECT clause in WikiSQL’s queries

are quite close.

In Figure 3.3 we can see that most tables have between 5 to 7 columns. Hence, we are
dealing with tables with a small number of columns. Hence, this is another indication that
WikiSQL is not a very complex dataset for evaluaitng NL2SQL systems.

Figure 3.4 shows the position of the columns that appear in the SELECT clause of the data
set’s queries (e.g. we see that the 5th column is most often selected). Considering that
most tables have between 5 to 7 columns, we observe that table columns are uniformly
selected, which is a good thing.

Figure 3.5 shows the number of conditions in theWHERE clause of the queries and Figure
3.6 shows how many times each operation appears in the conditions. Here we observe
that the data set is not that balanced since most queries contain 1 condition and most con-
ditions have the operation ”=”. It would be better for a model to learn on a more balanced
data set.

G. Katsogiannis-Meimarakis 32

Translating Natural Language to SQL using Deep Learning

0 1 2 3 4
Number of Conditions

0

10000

20000

30000

40000

50000
N

um
be

r o
f Q

ue
rie

s

Figure 3.5: Number of conditions appearing
in WikiSQL’s queries

= < >
Condition Operation

0

20000

40000

60000

80000

N
um

be
r o

f C
on

di
tio

ns

Figure 3.6: Number of operations appearing
in WikiSQL’s queries’ conditions

3.5 Summary

To conclude, let us collect some key facts about the WikiSQL data set and outline its
advantages and drawbacks.

• Crowd-sourced NLQs and SQL queries based on single tables copied from Wikipe-
dia

• Published with the Seq2SQL paper [20]

• Available on Github

• A lot of systems have been created based on it by the scientific community

Advantages

• Very large number of NLQs along with the equivalent SQL queries

• Very large number of different tables

• Many different topics between tables

Drawbacks

• Some tables have been incorrectly copied

• Some NLQs are incomprehensible

• For some SQL queries it is very difficult to understand why they correspond to their
equivalent NLQ

• Relatively simple SQL queries (no FROM, JOIN, GROUP BY, SORT, etc.)

• It does not appear to be very well balanced, especially when it comes to the condi-
tions of the SQL queries

G. Katsogiannis-Meimarakis 33

Translating Natural Language to SQL using Deep Learning

4. SQLNET

SQLNet [18] is a NL2SQL system that was developed to tackle the WikiSQL task [20],
described in the previous chapter.

For the purposes of this thesis, an implementation of SQLNet was developed based on
the published paper and the authors’ implementation. This implementation was developed
using the Tensorflow and Keras deep learning libraries for the Python programming lan-
guage. The original implementation was created using the PyTorch deep learning library
for Python and is available on GitHub1. The two implementations have very minor differ-
ences, mainly due to the different functionality of the libraries used. Some improvements
were applied after implementing the original system, but these will be discussed in chapter
5.

This chapter will provide a description and analysis of SQLNet and its components along
with remarks and observations made while implementing it. We will start by presenting the
SQL Sketch, the idea on which SQLNet is based on. Next we will go through a generalized
dataflow that will give us an idea of the processes and steps that take place in SQLNet
from the moment that a NLQ is given from the user until the point where a prediction
is produced. After we have a general understanding of this process, we will examine
every neural component of the system separately and examine similarities and differences
between them.

4.1 SQL Sketch

The most important aspect of SQLNet is that it is based on a ”SQL Sketch”. This sketch
is essentially a grammar that can produce all possible SQL queries found in WikiSQL, as
simple as it might seem. The sketch can be seen in Figure 4.1. This builds on the fact
we mentioned in section 3.2, i.e. there are only a few specific sub-parts, that have to be
predicted in order to create the desired SQL query.

Effectively, it means that every query is produced by filling the gaps of this specific sketch.
Every query has a column to be selected, an aggregation function ((None), MAX, MIN,
COUNT, etc.) to be applied to the results and zero or more conditions. Each condition
can be specified by a column, an operation (=, >,<) and a value. As we will see in the
following chapters, we are going to have a predictor component (a neural network) for
each of these specific tasks.

The use of this specific sketch also means that the capabilities of SQLNet are restricted.
It cannot predict any queries that don’t follow this grammar. For example, queries with
JOINs, GROUP BYs, etc are out of this system’s reach.

1https://github.com/xiaojunxu/SQLNet

SELECT <AGG> <COLUMN>
(WHERE <COLUMN> <OP> <VALUE>
(AND <COLUMN> <OP> <VALUE>)∗)?

Figure 4.1: SQLNet’s Query Sketch

G. Katsogiannis-Meimarakis 34

Translating Natural Language to SQL using Deep Learning

Figure 4.2: Dataflow in SQLNet

4.2 Dataflow in SQLNet

In this section we will give a brief explanation of how data flows in the SQLNet system;
how everything starts from the user’s input, how it is processed and how we reach to the
final output.

Everything starts by giving the system aNLQ and a table on which it is being asked. Before
being fed to the networks, the data is first tokenized and then transformed into numerical
values, in the form of word embeddings. The arrays are then given to the networks and
each one of them makes a prediction for a specific part of the SQL query. Finally, by
joining the most probable predictions we can construct the entire predicted SQL query.
An overview of the dataflow can be seen in Figure 4.2.

Input Data & Preprocessing

The user’s NLQ is taken as is, but the table on which the question is addressed is not taken
in its entirety. From the table, we choose to only keep the column names and discard the
data of its contents. So the input used by SQLNet consists of two parts:

1. The user’s NLQ

2. The column names of the table on which the question is being asked

G. Katsogiannis-Meimarakis 35

Translating Natural Language to SQL using Deep Learning

NLQ:
→ ”What’s the smallest number of players?”
Tokenized NLQ Sequence:
→ [<BEG>, ”what”, ”’s”, ”the”, ”smallest”, ”number”, ”of”, ”players”, ”?”, <END>]
NLQ Embeddings Array:
→ An array of shape: nlq_length× embeddings_dimension

Column Names:
→ [”Country”, ”Players”, ”Standard”, ”Minor”, ”First title”, ”Last title”]
Tokenized Column Names Sequence:
→ [[”country”], [”players”], [”standard”], [”minor”], [”first”, ”title”], [”last”, ”title”]]
Column Embeddings Array:
→ An array of shape: column_count×max_column_length× embeddings_dimension

Figure 4.3: An input preprocessing example

So both our inputs are text and more specifically the NLQ is one single string of text and
the column names are multiple strings in a specific order. However, before any data can
be fed into the model it needs to be processed and most importantly it must be turned into
numbers. It is necessary to remember that even though our data is in text format, neural
networks only deal with numbers.

To achieve this transformation first we will use two NLP techniques: text tokenization and
word embeddings. We will now explain these processes with more detail. An example of
the entire preprocessing procedure can be seen in figure 4.3, for NLQ and table column
inputs.

Text Tokenization

The first step is the tokenization of the query and the column names. This means sep-
arating each string we have into sequences of single words. This is a relatively simple
task and there are many tokenizers available that can perform this task. SQLNet uses the
Stanford CoreNLP tokenizer [11].

Something that needs to be noted here is that by tokenizing a string that contains a NLQ,
we are creating a sequence of words. So our input is actually a sequence and not just a set
of words, because the order of the words in a sentence is important. This is something
very important to consider when choosing the right neural network architecture to treat
our data. Equivalently, by tokenizing a series of strings, each of which is the name of a
column, we are creating a series of series of words. So our second input, is a double
nested series. The order of the columns is important as well because it will later help us
distinguish them.

Embedding Layer

The embedding layer transforms each word that it is given to a numeric vector, so that the
vector can then be fed to the neural network.

There are many embedding techniques for turning words into vectors, however SQLNet

G. Katsogiannis-Meimarakis 36

Translating Natural Language to SQL using Deep Learning

uses the Global Vectors (GloVe) [14] method. In fact, the creators of GloVe have released
a pre-trained GloVe embedding set, which we will be using. This set has been trained
on 42 billion tokens and has a vocabulary size of 1.9 million words and a corresponding
vector for each word with a dimension of 300. It is available on Stanford’s website2 under
the name ”Common Crawl (42B tokens, 1.9M vocab, ...)”.

So the job of our embedding layer will be relatively simple. Since all the vectors are already
trained, it only needs to assign each word to the corresponding vector according to the
pre-trained set we have. If we encounter a word which is not included in the pre-trained
set of vectors, we assign a zero vector to it.

After the embedding array has been created, the preprocessing is completed and we can
feed this array to each component’s neural network.

Working with Batches of Data

Another aspect we must keep in mind is that training a neural network, or in our case
multiple networks, is a costly procedure that takes time and processing power. To reduce
this time, it is a common technique to feed the network multiple data samples at once.
Such a group of samples is called a ”batch” of data.

When working in batches the shape of our arrays changes by adding an extra dimension.
So for example the NLQ embedding array will be of shape:

batch_size×max_nlq_length× embeddings_dimension

and the table column embedding array will be of shape:

batch_size×max_column_count×max_column_length× embeddings_dimension

Note that a batch can have NLQs of many different lengths but an array can’t have rows
of different lengths. To make up for this we use the max length in the batch as the array’s
dimension and add ”dummy” values in vectors that are smaller. This technique is called
padding.

Neural Networks

After having processed the inputs into embedding matrices, they can be passed to the
neural query translation components. SQLNet has 6 separate neural networks, each one
of them receives the same input and is responsible for completing a different part of the
SQL query. These neural networks are the main and most complicated part of the system.
Each network will be explained in section 4.3.

Output

Finally, each of SQLNet’s neural networks produces a score output, which is its prediction
on the part of the sketch it was designed to complete. We will see every component and
its output in the following sections.

2https://nlp.stanford.edu/projects/glove/

G. Katsogiannis-Meimarakis 37

Translating Natural Language to SQL using Deep Learning

4.3 Neural Query Translation Components

SQLNet can be divided into 6 separate neural query translation components that produce
6 different outputs that complete different parts of the SQL query. Each component is an
independent neural network responsible for a specific task. More precisely these com-
ponents are responsible for predicting the following parts of the query sketch:

1. Aggregation Function (Subsection 4.3.2)

2. Column Selection (Subsection 4.3.3)

3. Number of Conditions (Subsection 4.3.4)

4. Column in each Condition (Subsection 4.3.5)

5. Operation in each Condition (Subsection 4.3.6)

6. Value String in each Condition (Subsection 4.3.7)

4.3.1 Common Procedures

Before presenting every neural network separately, it would be preferable to explain some
procedures that occur in almost all of them.

Encoding the Embeddings

The first thing that happens in each component’s network when receiving the embedding
array is an encoding process. To calculate the encodings EQ, Ecol of the NLQ and the
column names, we feed each embedding array into two layers of bidirectional LSTMs.
This procedure can be seen in Figure 4.4.

Notice that because the column embeddings have an extra dimension, we choose to keep
only the last time step for each sample in the column length dimension. This transformation
ensures that both inputs have the same number of dimensions.

Each component has separate weights for its LSTMs for the NLQ and the table columns
and the the weights are not shared between components.

Column Attention

After having calculated the encodings, most of the components employ a technique named
Column Attention. The creators of SQLNet demonstrate that this technique produces a
noticeable increase in accuracy. It is possible to create all the networks we will display
later without column attention, however since its use is clearly beneficial, we will be using
it in all our networks.

Column attention is a technique introduced in SQLNet, that tries to give more meaning
to the words of the NLQ, or to the encodings produced from the NLQ to be precise, by
adding information from the encodings produced from the table columns encodings. In
most cases there are some words in the NLQ that are more relevant in predicting a part of

G. Katsogiannis-Meimarakis 38

Translating Natural Language to SQL using Deep Learning

Figure 4.4: Producing encodings from embeddings

the SQL. For example, in the example of Figure 4.3, the word ”players” is very important,
because it indicates we will select the column ”players” of the table. What column attention
does is give more emphasis to key words in the NLQ by taking the column names into
consideration.

So instead of calculating EQ for NLQ we calculate EQ|col using the column encodings as
follows:

EQ|col = EQw

Where w are the weights of the column attention and are calculated as:

w = softmax(v)

vi = (Ecol)
TWEi

Q ∀i ∈ {1, . . . , L}

Where L is the length of the NLQ and W is a trainable matrix.

An overview of the column attention mechanism can be seen in figure 4.5.

Combining Outputs

Since we have two separate inputs (i.e. NLQ and column names) , but a single output for
each neural query translation component, they have to be combined in order to produce a
result. This happens at the end of each network after processing each input. The process
consists of adding the outputs of each process, applying the tanh activation function on
the result and feeding it to a linear layer. Finally, a softmax activation function is applied
to produce the final prediction probabilities. An overview of this procedure can be seen in
Figure 4.6 and can also be described as:

P (col|Q) = softmax(uT
a tanh(u

T
c Ecol + uT

q EQ))

Where Ecol, EQ are the encodings of the column names and the NLQ and uc, uq, ua are the
trainable matrices of the linear layers.

G. Katsogiannis-Meimarakis 39

Translating Natural Language to SQL using Deep Learning

Figure 4.5: Column Attention

Note that this is only the general idea; some components have a slightly different behavior.
For example the Condition Column Predictor, uses the sigmoid activation function and the
condition string predictor uses the ReLU function instead of the softmax function. The Ag-
gregation function and the condition number predictors don’t add the column encondings
to the final result so in their case the same procedure happens using only EQ.

4.3.2 Aggregation Function Predictor

The aggregation function predictor predicts the probabilities of each of the 6 possible func-
tions to be applied, for each column of the table. This means, for example that different
probabilities are calculated for applying the MAX function on the first and second columns.

The output it produces has a shape of batch_size × column_count × 6, since there are
only 6 possible functions to choose between. The possible outcomes are: None, COUNT,
MIN, MAX, AVG and SUM. It is possible however to re-train this network with any number
of functions we choose, but this would obviously require a data set that uses these extra
functions.

An overview of its architecture can be seen in Figure 4.7.

4.3.3 Column Selection Predictor

The column selection predictor predicts which column of the table will be in the SELECT
slot of the sketch. An overview of its structure can be seen in Figure 4.8.

The output of the column selection predictor is a batch_size ×max_column_length array
that shows the predicted probability of each column of the table to be selected in the SQL
query.

G. Katsogiannis-Meimarakis 40

Translating Natural Language to SQL using Deep Learning

Figure 4.6: Combining Outputs

Figure 4.7: Aggregation Function Predictor with Column Attention

G. Katsogiannis-Meimarakis 41

Translating Natural Language to SQL using Deep Learning

Figure 4.8: Column Selection Predictor with Column Attention

4.3.4 Condition Number Predictor

The condition number predictor is tasked with predicting how many conditions each query
will have. Since no query in the WikiSQL data set has more than 4 queries, the creators of
SQLNet decided to keep the prediction range between 0 and 4. This however is something
that can be easily changed.

The output array has a shape of batch_size×5, which represents the probabilities for each
query to have 0, 1, 2, 3 or 4 queries.

The architecture of this component can be seen in Figure 4.9. Notice how this component
has only one branch, i.e. only one input. It does not use the column names, but predicts
the number of conditions base solely on the user’s NLQ.

4.3.5 Condition Column Predictor

The condition column predictor predicts the probability for each column of the table to be
present in the conditions of the query. The output array’s size is batch_size× col_count.

The way it works is that the condition number predictor makes a prediction on the num-
ber k of conditions that will be present in the query and the k columns with the highest
probabilities are used.

G. Katsogiannis-Meimarakis 42

Translating Natural Language to SQL using Deep Learning

Figure 4.9: Condition Number Predictor

An overview of this component can be seen in Figure 4.10. Notice how it is nearly identical
to the column selection predictor.

4.3.6 Condition Operation Predictor

This component predicts which operation would be applied to each column of the table if it
were to be included in the conditions of the query. The output array’s size is batch_size×
col_count× 3, so we get the probability of each operation (=, >,<), for each column.

An overview of the component is presented in Figure 4.11. Again, notice how this compon-
ent is nearly identical to the condition column predictor and the column selection predictor
as well.

4.3.7 Condition Value Predictor

The condition value predictor is a Sequence to Sequence (seq2seq) network that predicts
the value of the condition (i.e. the value slot in Figure 4.1) for each column. This prediction
is made for all columns, no matter if they will be in fact chosen to appear in the conditions.
The value is always a part of the user’s NLQ, so its task is to select a sequence of words
from the NLQ. There are some differences compared to the previous networks that we will
explain in this section. The most important aspects to keep in mind are that the condition
value predictor:

1. Predicts a sequence of cond_len length

G. Katsogiannis-Meimarakis 43

Translating Natural Language to SQL using Deep Learning

Figure 4.10: Condition Column Predictor

Figure 4.11: Condition Operation Predictor

G. Katsogiannis-Meimarakis 44

Translating Natural Language to SQL using Deep Learning

Figure 4.12: Condition String Predictor

2. Uses its last output as its next input

3. Operates differently during training and inference

An overview of the predictor’s structure can be seen in Figure 4.12. A noticeable differ-
ence is that this component has an extra branch besides the NLQ and the table header
branches. The third branch of the component employs a seq2seq type network, which
changes the behavior of the whole component. The input of the new branch has a shape
of batch_size×col_count×cond_len×tok_num, where tok_num is the number of tokens in
the NLQ (including a ”begin” token at the start and a ”end” token at the end). This matrix
indicates which token has been assigned in which position of the condition value for each
NLQ in the batch, for each column in the table corresponding to the NLQ.

For inference, the new branch operates as follows: First it receives an initial input of
cond_len = 1, containing only begin token (”<BEG>”). This notifies the component that
the condition value must begin and as a result, the component predicts the first token
(word) of the condition (for each column of each NLQ). Moving on, the hidden state of the
LSTM is kept and the first output is now used as input. This can be seen as asking the
component ”If the first word is x what will be the second word of the condition value?”.
The new output is again used as the next input until the end token (”<END>”) is predicted
which signals the end of the condition string. Note that during this procedure, the inputs
of the NLQ branch and the column names branch do not change.

During training, the aforementioned process must be simplified for two reasons. First,
because the expected result is already known and there is no need to use the predictions
as input. Second, and most important, because the predictions might be incorrect and
training on incorrect input would hurt the model’s performance. Instead of taking multiple
inputs of cond_len = 1 and using each output as the next input, all the inputs are given
as one sequence. More specifically, the input of this branch is a sequence containing the
begin token followed by the tokens of the (ground truth) condition value. Similarly, the
correct output of the condition string predictor is a sequence of the tokens of the condition
value followed by the end token.

G. Katsogiannis-Meimarakis 45

Translating Natural Language to SQL using Deep Learning

Figure 4.13: Condition String Predictor inference example

To better illustrate this, consider the following example NLQ: ”How old is Tom Cruise?”,
posed on a table containing among others the names and ages of various actors. The ex-
pected SQL query would be something like SELECT age WHERE name = Tom Cruise.
Therefore, the condition value predictor would have to predict the sequence [”Tom”,
”Cruise”, ”<END>”].
During inference (i.e. when the training has been done and we don’t have an expected
output for our input), we only provide aBegin (<BEG>) token to the condition value decoder
LSTM and as an output the condition value predictor returns the first predicted token of
the condition value. In the current example that token would have to be ”Tom”. The
LSTM would keep its hidden state produced from the first token input (so that it has some
knowledge about what it has seen before) and we would then feed it its previous output
token (”Tom”). The model would take the new input and produce the next token of the
string, which in this example would be ”Cruise”. We then repeat the same process but this
time, we would get the End (<END>) token signaling that this is the end of the condition
value. An illustration of this process can be seen in Figure 4.13.

During training (i.e. when the model has an expected output for every input), there is no
need to follow the same process because we already have access to all the tokens. In-
stead, we can give them to the decoder all at the same time as a sequence (i.e. [”<BEG>”,
”Tom”, ”Cruise”]). An illustration of the training process of the condition string predictor can
be seen in figure 4.14.

G. Katsogiannis-Meimarakis 46

Translating Natural Language to SQL using Deep Learning

Figure 4.14: Condition String Predictor training example

4.4 Programming Details

Having described the system, it is also important to note some programming decisions
made during its implementation. These decisions are made to avoid unnecessary com-
putations that could reduce the system’s speed.

Tokenizing Before Training

The tokenization process can be costly and time-consuming, especially when faced with
a large data set such as WikiSQL. Additionally, training for 200 epochs means that every
question is seen be the model 200 times. This means that if tokenization was to happen
at run-time, the data set would have to be tokenized 200 times. For these reasons it
is preferable to tokenize all NLQs and column names of the data set before training the
model.

This is done in two steps. First the data set is loaded and every NLQ and column name is
tokenized. A new data set is then created using all the contents of the original, along with
the tokenization. In this way, when the model loads the tokenized data set, it can use the
tokenized inputs instead of having to tokenize every input when it needs to use it.

Creating the Embedding Layer

As mentioned earlier, the embedding layer stores the corresponding numerical vector for
each word in its vocabulary. However, the pre-trained embedding set that is being used
features a vocabulary of 1.9 million words. Loading all these vectors (approx. 5GB) on
the memory whenever the model is run would be very costly and inefficient. Given that
the WikiSQL data set has a vocabulary size of only about 50 thousand unique words in its

G. Katsogiannis-Meimarakis 47

Translating Natural Language to SQL using Deep Learning

NLQs and table column names, there is no need to load all the vectors in the pre-trained
embeddings.

Before creating the embedding layer, it would be beneficial to first find which words are
needed and load only their embeddings, to save time and memory. This is achieved in
two steps. First a word index is created, containing all the unique words of the data set
that will be used by the model. In our case this means all the words found in the NLQs
and column names of WikiSQL. Then, all the pre-trained vectors are loaded and a new
matrix is created, containing only the vectors of the words in the word index.

The new embedding matrix has a shape of [size(word_index) × embedding_dim], where
embedding_dim is the size of the embedding vectors and is selected during the creation of
the embedding set. The pre-trained embedding set used by SQLNet has an embedding_dim
equal to 300. The newly created embedding matrix is the used to initialise the embedding
layer.

4.5 Training Details

At first we will be following the same training and network configurations as described in
the paper, to test that our implementation is correct. In the following chapter, however,
we will discuss how we can change these choices to improve the model presented in the
paper.

We will be using the Adam optimizer [7] with a learning rate equal to 0.001. The hidden
states of all layers (indicated as hidden_dim in all figures) will be 100. All LSTM layers
have 2 layers depths (i.e. each time we refer to a LSTM we are actually stacking two of
them) and a dropout rate of 30% is applied to all of them.

We will be using the same tokenization of the data set, which is produced using the Stan-
ford CoreNLP Tokenizer [11]. We will however present some problems observed and
some proposals to improve on them.

The model is trained for a total of 200 epochs; during the first 100 epochs the weights
of the embeddings are frozen (i.e. they stay the same and are not trained), during the
last 100 epochs we allow the embeddings to be trained as well. This is something that
increases accuracy as shown by the authors of SQLNet.

As mentioned before, the training of the model is performed on ARIS and we would like
to thank and acknowledge GRNET S.A. for granting us access to the Greek national high
performance systems, ARIS.

G. Katsogiannis-Meimarakis 48

Translating Natural Language to SQL using Deep Learning

5. EXPERIMENTS AND RESULTS

In this chapter, we will present several improvements wemade on the original SQLNet and
evaluate them experimentally. Wewill start by testing it on the same benchmark its authors
tested it on, i.e. theWikiSQL data set and at the same time, attempt to evaluate it using the
criteria set at the beggining of this work. Following that, we will investigate the coverage
of the data set by our embeddings. As we show, more than 20% of the words found
in WikiSQL do not have a word embedding representation. By applying spell-checking
and different tokenization techniques we attempt to increase the coverage and also test
how it affects the system’s performance. Moving on, we will attempt to test SQLNet on
a complete database. However, since it cannot create queries over multiple tables, we
will be creating views covering multiple tables of the IMDb database and feeding them to
the system as a single table. Finally, we will be displaying some results from the IMDb
database as well as other interesting results from the WikiSQL data set while we try to
provide some insight on the system’s performance, what it can and cannot answer.

5.1 Evaluation

After having described the SQLNet system, let us recall the criteria set for evaluating a
NL2SQ system as described in section 2.2. A NL2SQL system can be evaluated on three
axes: (a) its effectiveness and accuracy at synthesising valid SQL queries that correspond
to the user’s intentions, (b) the time it needs to synthesise the query and (c) its ability to
work equally well on different databases needing as little aid as possible from the user.
We shall now evaluate SQLNet based on these axes.

Accuracy

What must first be examined is the new implementation’s performance. To this end we
can test our system on the same tests that the authors of the paper perform, i.e. test its
accuracy on WikiSQL’s validation and test sub-sets. We can measure accuracy in two
ways:

1. Comparing the output SQL to the ground truth SQL (referred to as query match
accuracy and also used in [18]). If the predicted query is the same as the ground
truth (the order of the conditions does not matter), then it is considered correct. This
metric depends on the following sub-metrics and a prediction is considered accurate
when all the following are simultaneously accurate:

(a) Aggregation function accuracy, which measures if the predicted aggregation
function is the same as in the ground truth

(b) Column selection accuracy, which measures if the predicted column in the
SELECT clause is the same as in the ground truth

(c) Condition accuracy, which measures if the entire condition clause in the pre-
diction matches the ground truth, without taking the the order of the conditions
into account (e.g. ”WHERE age > 20 AND name = tom” matches ”WHERE
name = tom AND age > 20”). A predicted condition matches the ground truth if
all the following are simultaneously accurate:

G. Katsogiannis-Meimarakis 49

Translating Natural Language to SQL using Deep Learning

Table 5.1: New Implementation’s Accuracy on WikiSQL (CA refers to using column attention and
EMB refers to using trained embeddings)

Model Test Set Validation Set
Accagg Accsel Acccond Accqm Accagg Accsel Acccond Accqm

Our Impl. (+CA) 88.7% 92.9% 69.1% 58.9% 88.6% 93.6% 70.4% 60.2%
Paper (+CA) 90.3% 90.4% 70.0% - 90.1% 91.1% 72.1% -

Our Impl. (+CA +EMB) 88.4% 93.3% 73.1% 62.0% 87.9% 93.6% 73.6% 62.3%
Paper (+CA +EMB) 90.3% 90.9% 71.9% 61.3% 90.1% 91.5% 74.1% 63.2%

i. Number of conditions
ii. Column in each condition
iii. Operation in each condition
iv. Value string in each condition

2. Comparing the results of executing both these queries (referred to as execution
accuracy and also used in [20])

For the means of our evaluation we will only be using the query match accuracy and its
sub-metrics. The reasons for this are two. First, because the complexity of the queries
found in the WikiSQL data set is relatively low, as we mentioned in section 3.2. Second,
because the SQLNet system produces predictions based on its query sketchwhichmatches
the structure of WikiSQL’s queries very closely, as we mentioned in section 4.1. As a res-
ult, the possibility that SQLNet makes a prediction that is different from the ground truth
but yields the correct results in a meaningful way (i.e. not by chance) are low.

In table 5.1 we can observe the querymatch accuracy (Accqm) of themodel’s predictions on
both the test and validation subsets of WikiSQL, along with its aforementioned sub-metrics
(Accagg, Accsel, Acccond). The upper half of the table compares our implementation’s result
to the results presented in [18], after being trained using column attention (CA) for 100
epochs. The lower half presents the same comparison after making the word embeddings
trainable and training the models for an additional 100 epochs.

As it can be seen, the new implementation’s accuracy is very close to the initial imple-
mentation’s score, as it was anticipated. Even though some small differences can be
observed, they can most likely be attributed to the randomness of the initialisation of the
model’s weights and to the randomness of the dropout in the LSTM layers.

Even though these results are a validation that the new implementation works correctly,
they also point out that the system’s effectiveness does not meet our standards. A query
match accuracy of about 60% indicates that themodel fails to produce a query that matches
the user’s intent almost half the time, which is not enough.

Time

When evaluating a SQLNet on the aspect of time efficiency we must take into account
that, being a deep learning system, it works in two phases: training and inference.

Training is a costly task that requires iterating over the large data set that is WikiSQL
for 200 epochs. A single epoch of training on the Greek supercomputer ”ARIS” takes
about 15 minutes. This time could be significantly improved by adding support for parallel
computations and better use of the system’s multiple graphics card. The training process
might be costly, however it must take place only once and will produce a model that can

G. Katsogiannis-Meimarakis 50

Translating Natural Language to SQL using Deep Learning

Table 5.2: Testing SQLNet’s Adaptability on Different Categories of Tables

Category #NLQs #Tables Accagg Accsel Acccond Accqm

Movies 27 9 92.6% 100.0% 70.4% 63.0%
Music 37 11 78.4% 78.4% 51.4% 37.8%
Sports 37 13 89.2% 97.3% 62.2% 54.1%
Politics 23 8 73.9% 95.7% 65.2% 39.1%
Science 25 9 84.0% 92.0% 60.0% 44.0%

Economics 17 7 76.5% 82.4% 29.4% 23.5%
Technology 25 5 92.0% 80.0% 32.0% 24.0%

be used on any machine, such as an ordinary laptop, to make as many predictions as we
like.

Inference is the phase during which the model has been trained and can make predictions
on NLQs it has never seen before. The time needed to construct a query, on a laptop with
an Intel i5 processor, is just a few seconds. This means that a user could run this system
on his computer and create SQL queries from NLQs almost instantaneously, which in most
cases is adequate of our expectations of time efficiency.

Database Adaptability

The third and final axis of our evaluation, is whether the system can adapt on new data-
bases with as little help from the user as possible. Given that SQLNet does not work on
full databases but on single tables, it cannot be fully evaluated on this axis. Ιt would be
possible, however, to examine how it adapts on different tables. To this end, it is to our
benefit that the data set on which we are training the model is multi-disciplinary, since it
was taken from Wikipedia. The system’s adaptability could be tested by selecting tables
from WikiSQL that fall into some basic categories and examining if the system performs
equally on all of them.

Taking that into account, I have created 7 categories of tables based on the subject that
they cover. The tables were hand-picked from the WikiSQL test set and all the question
that were posed on these tables were used.

Each of the created categories was evaluated separately and the results can be seen in
Table 5.2. Each row represents a different category and the accuracy scores that SQLNet
was able to achieve. Looking at the Query Match Accuracy column, we notice that there
is a big difference between the categories. The highest ranking category is ”Movies” with
63%, which is close to the model’s usual performance, and the lowest ”Economics” with
23.5%. The model performs well, for its standards, in categories such as ”Movies” and
”Sports” but it does not achieve the same accuracy on the other 5 categories. In fact,
the model produces an accuracy lower than 44% in all the 5 remaining categories. This
difference could be an indicator that the model does not adapt well on different categories
of tables.

This could be attributed to the unbalanced number of tables available for each category.
While searching for tables to add to our categories, it was noticed that there were many
more tables available for ”Movies” and ”Sports” in the data set, than for any other category.
To conclude, even though a larger amount of NLQs in each category could allow us to be
more certain, these results lead us to believe that SQLNet does not adapt that well on
different categories.

G. Katsogiannis-Meimarakis 51

Translating Natural Language to SQL using Deep Learning

Table 5.3: Words without an embedding for each tokenization

Tokenization Unique Words Unknown Words
Baseline 51,114 11,181 21.8%
Spellchecking 51,114 8,197 16.0%
Spellchecking (ascii) 51,114 9,202 18.0%
Split ”/”, ”-”, ”.”, ”_” 48,869 10,847 22.2%
Split & Spellchecking (ascii) 48,869 8,731 17.8%

5.2 Trying to Maximize the Embedding Coverage of WikiSQL

While processing the inputs of our model it can be observed that about 20% of the words
found in WikiSQL’s NLQs and column names (i.e. the model’s inputs) have no repres-
entation in Stanford’s pre-trained GloVe embeddings that we are using. When our model
comes across a word that has no embedding, it treats it as an unknown word and rep-
resents it with a zero vector to be fed to the network. This means that when given to our
model, these words provide little to no knowledge at all and are most likely seen as noise,
by the model, that makes the task of understanding the NLQ and producing a SQL query
even more difficult.

Additionally, if the contents of the WikiSQL tables are taken into account as well, the
percentage of words without an embedding representation rises up to about 50%. These
however are words that our model never sees, because the model does not use the tables’
contents.

It would be interesting to investigate why this happens and how this percentage could be
improved.

Exploring Unknown Words

A first course of action would be to observe the unknown words, in order to understand
why they might not be present in the pre-trained embeddings. With a quick look we can
recognise some distinct categories of unknown words:

• Numbers (”138.063”, ”+1:35.553”, ”3x5402”)

• Dates (”15/02/1975”, ”24.11.07”)

• Different languages (Chinese, Arabic, etc.)

• Names (”petrovits”, ”kassianos”)

• Badly tokenized words (”goals/matches”, ”package-socket”, ”non-seating”)

• Spelling mistakes (”innhabitants”, ”episoede”)

• Symbols (scientific symbols, etc.)

Now we can begin to understand why there are so many unknown words. We obviously
cannot expect the pre-trained GloVe to have seen every single number that can be formed,
nor every date with every possible date format. The same goes for names, especially if

G. Katsogiannis-Meimarakis 52

Translating Natural Language to SQL using Deep Learning

they are not English. Furthermore, these embeddings have been trained on an English
text corpus so they are expected to not recognise other languages. Finally there are a
lot of symbols and special Unicode characters that are reasonably unknown to our em-
beddings. In any case we must note that these categories of words are not always un-
known; some similar examples of words can have an embedding (e.g. ”24:02”, ”115–118”,
”west/sudwest”, etc.).

There are however some things that we could improve. We could certainly split tokens
like ”goals/matches” into two separate words that would definitely be known. We could
also try to correct spelling mistakes.

Correcting Spelling Mistakes

To reduce the number of unknown words, we will first attempt to correct any spelling mis-
takes it is possible. This will not be done manually because it would undermine one of
the main goals of the NL2SQL problem, which is that the system has to require little to no
human involvement. Instead, a spell checking algorithm will be used. This algorithm was
first proposed by Peter Norvig in a blog post [15] and has now been neatly implemented
as a python library named pyspellcheck.

Now for every word that does not have an embedding, we will ask for the spell checker’s
correction and check if the correction has an embedding. If the correction has an embed-
ding, we will assign the correction’s embeddings to the word instead of the zero vector it
would have been assigned as an unkown word. By applying this we notice the following
behaviors:

• Some spelling mistakes are indeed being corrected

• Some foreign words are being corrected to unrelated English words (e.g. the French
word ”montagne” which means mountain, was corrected to ”montage”)

• Some tokens containing numbers are being corrected to similar tokens (e.g. ”t214”,
which does not have an embedding, was corrected to ”t2”, which has an embedding)

• Some symbols and words in Chinese and Arabic were corrected to random articles
(e.g. the degree symbol was corrected to ”a”)

During this procedure we notice a lot of symbols and foreign words being corrected to
English articles such as ”a”, ”of”, etc. This might cause the system to develop a false
understanding of these words, which could have negative effects in its performance con-
sidering how often these articles are used. To prevent some unwanted corrections, we
also try correcting only words that contain only ASCII characters. This means that words
containing non-ASCII symbols, letters with accents as well as Chinese, Arabic etc. char-
acters will be ignored.

This results in a reduction of unknown words, which can be seen in table 5.3. More spe-
cifically, line 2 shows the improvements by spell-checking all words and line 3 shows the
result of spell-checking words with ascii characters only. As expected, correcting ascii
words only, results in a smaller but probably more sensible reduction of unknown words.
Nevertheless, even when correcting ascii words only, we manage to reduce the number
of unknown words by about 2,000 words.

G. Katsogiannis-Meimarakis 53

Translating Natural Language to SQL using Deep Learning

Improving Tokenization

Another thing we did is try to improve the tokenization quality. As we mentioned earlier,
there are a lot of badly tokenized words that have not been split on characters like ”/”, ”-”,
etc. resulting in unknown words such as ”goals/matches”, ”package-socket”, etc. At the
same time, however, there are a lot of dates and numbers that have the same characters
in them that we would not want to change. So the approach followed in this case will be to
split all tokens that contain ”/”, ”-”, ”_”, ”.” or ”,” but only if these characters are not adjacent
to a number.

Following this technique, the token ”package-socket” will be split into the three separate
tokens: ”package”, ”-” and ”socket”. However, the token ”138.063” will not be split as it
would not be any better to have the tokens ”138”, ”.” and ”063” instead of it.

This results in a decrease both in the number of total unique words but also the number
of unknown words. The results can be seen in table 5.3. Specifically, line 4 shows the
results of tokenizing using these ”split” rules and line 5 shows the result of applying spell-
checking (on ascii words only) after using the new split-tokenization. What is interesting is
that even though there are now less unknown words, the percentage of unknown words is
higher than the original because the number of unique words has decresed as well. Addi-
tionally, applying spelling corrections on top of the split-tokenization reduces the number
of unknown words by an extra 1,000 words. This means that in the split-tokenization there
are less words to be corrected.

Results in Accuracy

It is evident that these modifications in the way we handle our input can increase the
embedding coverage but how does this reflect in the final model performance? To test
this we will train three new models, using the improved NL processing and test them on
the same test we used for our implementation.

The results of each new model compared to our initial model can be seen in table 5.4. The
table is separated in two parts, the top part being themodel’s accuracy after training for 100
epochs and the bottom part after making the word embeddings trainable and training for an
additional 100 epochs. The first line in both parts represents our initial model, presented in
table 5.1, which uses the tokenization used in [18] (line 1 of table 5.3) while the following
three lines show the accuracy achieved by the models trained using the improvements
we discussed earlier. The marking +SP denotes a model using spellcheck on words with
ascii characters (line 3 of table 5.3), the marking +TK denotes a model using the improved
tokenization (line 4 of table 5.3) and the marking +TK +SP denotes a model using both
improvements (line 5 of table 5.3).

Notice how the spell-checking model achieves a query match accuracy higher than the
original model by almost 2% in the train set (61.6% as opposed to 58.9% and 63.9% as
opposed to 62% when using trained embeddings). In contrast, the two other models,
display an accuracy lower than the original model. It is interesting how applying spell-
checking without changing the tokenization increases the accuracy but applying spell-
checking to the improved tokenization has negative effects on the accuracy. This might
be an indicator that the proposed changes in the tokenization are doing more harm than
good.

More interesting observations can be made from the three accuracy sub-metrics:

G. Katsogiannis-Meimarakis 54

Translating Natural Language to SQL using Deep Learning

Table 5.4: Accuracy of modified NL processing models on WikiSQL (EMB: Trained Embeddings,
SP: Spellchecking, TK: Improved Tokenization)

Model Test Set Validation Set
Accagg Accsel Acccond Accqm Accagg Accsel Acccond Accqm

SQLNet 88.7% 92.9% 69.1% 58.9% 88.6% 93.6% 70.4% 60.2%
SQLNet (+SP) 88.6% 91.2% 73.4% 61.6% 87.8% 92.1% 74.0% 61.7%
SQLNet (+TK) 88.8% 91.9% 67.0% 56.4% 88.2% 92.7% 66.9% 56.3%
SQLNet (+TK +SP) 89.5% 91.9% 66.8% 56.4% 88.3% 92.7% 66.8% 56.5%
SQLNet (+EMB) 88.4% 93.3% 73.1% 62.0% 87.9% 93.6% 73.6% 62.3%
SQLNet (+EMB +SP) 88.8% 92.3% 75.3% 63.9% 88.3% 93.0% 75.6% 63.7%
SQLNet (+EMB +TK) 88.9% 92.9% 68.8% 58.3% 88.2% 93.8% 68.9% 58.3%
SQLNet (+EMB +TK +SP) 89.0% 92.6% 68.5% 58.2% 88.2% 93.9% 68.6% 58.0%

• The highest aggregation function accuracy is achieved by themodel using both spell-
checking and the improved tokenization, which stands out considering that it has the
worst performance in all the other metrics

• No improved model manages to out-perform the original when it comes to column
selection accuracy, not even the spell-checking model which has a higher query
match accuracy

• The spell-checking model achieves the highest condition accuracy between all other
models, which is probably why it also has the best performance in query match
accuracy as well

5.3 Testing on Database Views

Another very interesting question is how our system performs when faced with a complete
database and not just single tables. Since SQLNet is designed to only accept single tables
as input, what we tried is to create views covering multiple tables of a database. Doing
this, we are be able to pass a view of multiple tables as a single table, thus eliminating
our system’s incapability of taking multiple tables into account and performing joins. This
is an attempt to test the system on an experiment that is somewhat closer to a complete
database so as to get an idea of how it would perform.

Creating the Input

To achieve our goal we will be using the IMDb database, that was published along with
[19], on which we have created the following views/tables:

actor_by_tv_series←actor ▷◁ cast ▷◁ tv_series
actor_by_movie←actor ▷◁ cast ▷◁ movie

actor_by_movie_by_genre←actor ▷◁ cast ▷◁ movie ▷◁ classification ▷◁ genre

movie_by_company←movie ▷◁ copyright ▷◁ company

movie_by_keyword←movie ▷◁ tags ▷◁ keyword

movie_by_genre←movie ▷◁ classification ▷◁ genre

G. Katsogiannis-Meimarakis 55

Translating Natural Language to SQL using Deep Learning

NLQ:
→ ”Find all movies by Netflix”
Column Names:
→ [”movie title”, ”movie release year”, ”movie title aka”, ”company name”,

”company country code”]

Figure 5.1: An input example from the IMDb view movie_by_company

An example of a table that is created by these views can be seen in table 5.5 and a
complete example of the input that SQLNet receives is shown in Figure 5.1. Notice how
the column names of the created view also carry the name of the table from which the
column is taken (e.g. ”movie”, ”company”, etc).

After having created these tables based on the aforementioned views, we are able to
pass them as input to SQLNet just as we have been doing with WikiSQL’s tables. Any
SQL queries created will be based on the query sketch we described in section 4.1 and
will be valid for execution on the equivalent view but not on the entire database.

Testing Performance on the Views

Moving on, the new views can now be tested, to see how the system reacts to NLQs
directed to them. The NLQs given to the system for each view along with the results
produced can be seen in appendix A. The queries used originate from THOR’s [2] query
benchmark.

The questions are separated in two categories: (a) NLQs that can be (theoretically) trans-
lated into SQL queries by SQLNet and (b) NLQs that cannot be translated into SQL queries
because of SQLNet’s restrictions. Such restrictions are also described at the end of this
chapter. For the questions of category (a), a ground truth was added manually so that the
accuracy of the predictions can be measured.

The goal of these NLQs is to try to utilise almost all the available attributes in as many
parts of the query as possible (i.e. in the SELECT clause, the condition, etc.) and at the
same time try to cover as many possible types of question a user could ask this specific
database. Given a movie database, it is expected to encounter a lot of questions that
contain names, titles, years and roles (character names). The difficulty of the NLQs varies
from easy (e.g. ”Return all movies of Brad Pitt”) to difficult (e.g. ”Who acts as Olivia Pope
in the series Scandal”). In the second question, the system needs to understand that the
name given belongs to a character (role attribute) and not to an actor (name attribute).
There are also some deliberate spelling mistakes included so as to examine how the
system reacts to them.

What we notice in general is that the system’s predictions are not that good. Surely this

Table 5.5: An example of an IMDb view: movie_by_company

movie movie movie movie company company
title release_year title_aka budget name country_code

’Northwest Passage’ 1940 - $2,677,762 MGM [us]
’I Know Where I’m Going!’ 1945 - £200,000 Archers, The [gb]

...
...

...
...

...
...

G. Katsogiannis-Meimarakis 56

Translating Natural Language to SQL using Deep Learning

Table 5.6: Accuracy on IMDb single tables and views (EMB: Trained Embeddings, SP:
Spellchecking, TK: Improved Tokenization)

Model Tables (n = 20) Views (n = 25)
Accagg Accsel Acccond Accqm Accagg Accsel Acccond Accqm

SQLNet 90.0% 55.0% 15.0% 0.0% 92.0% 44.0% 24.0% 4.0%
SQLNet (+SP) 90.0% 70.0% 20.0% 10.0% 92.0% 28.0% 12.0% 4.0%
SQLNet (+TK) 95.0% 50.0% 15.0% 5.0% 84.0% 52.0% 8.0% 4.0%
SQLNet (+TK +SP) 100.0% 45.0% 25.0% 10.0% 92.0% 48.0% 8.0% 4.0%
SQLNet (+EMB) 90.0% 55.0% 30.0% 5.0% 92.0% 40.0% 20.0% 4.0%
SQLNet (+EMB +SP) 85.0% 70.0% 25.0% 5.0% 92.0% 24.0% 12.0% 4.0%
SQLNet (+EMB +TK) 75.0% 70.0% 10.0% 0.0% 92.0% 32.0% 0.0% 0.0%
SQLNet (+EMB +TK +SP) 90.0% 60.0% 25.0% 10.0% 92.0% 28.0% 8.0% 4.0%

decrease in performance can also be attributed to the small number of examples, the use
of a different database and the introduction of a new methodology (using views to counter
the inability to use JOINs). Despite these factors, these results can surely provide an
insight on aspects of the system that are in dire need of improvement.

Table 5.6 shows the achieved accuracy of queries on single tables of the database (left
side) and on views created from multiple tables (right side). The aggregation function
accuracy is the only metric which is close to the performance on the WikiSQL data set.
The select column accuracy is lower than previously, ranging between 24% and 52%
(on views) compared to the 90% accuracy achieved on WikiSQL. The biggest problem,
however, is observed in the condition accuracy metric, which in some cases can be as
low as 0% and in the best case reaches only 30%. This is clearly what drags down the
query match accuracy as well.

What is most alarming, is that the performance on single tables of the IMDb database is
not that higher than the performance on views. One would expect, that after having seen
so many tables in the WikiSQL data set, our model would not struggle that much (max.
10% query match accuracy) with similar tables. This discovery resonates to the concern
that the WikiSQL data set is not that well crafted (section 3.3) and that a model trained on
it might not generalise that well in real-world situations.

Some simple questions work relatively well and their results are correct or almost correct
We can see some inexplicably bad condition values and condition clauses in general and
in a lot of cases the wrong column is being selected. By looking at the results it seems like
the system is missing some information from the NLQ or that it is not understanding the
tables that well. This might imply that the complicated condition predictors (i.e. number,
column, operation and value predictors) fail to generalise and are in need of fine tuning or
even training in new and different data sets.

Another thing we can notice is that our system does not understand that the phrase ”fe-
male actor”, ”male director”, etc. means that an extra condition like ”WHERE gender =
female/male” must be added. This might happen because most NLQs in WikiSQL (from
which it was trained) don’t have such ”hidden” conditions, i.e. in most cases the condition
is more explicit and at the end of the NLQ. For example, the question ”Find all actors from
Austin that are female” might have been easier to translate. Even when the condition is
added at the end of the sentence (e.g. ”Find all actors from from Austin that are female”)
the system struggles to use the term correctly. By inspecting the WikiSQL data set, it was
noticed that it also lacks NLQs using a gender attribute. Even when attempting to recre-
ate something similar, using a table fromWikiSQL that contains information about political

G. Katsogiannis-Meimarakis 57

Translating Natural Language to SQL using Deep Learning

candidates1, the same mistakes were encountered (table 5.7).

Table 5.7: Examples of queries about gender

NLQ: Show male candidates
SQL: SELECT VotesWHERE Votes =
NLQ: What are the names of male candidates?
SQL: SELECT Candidate’s NameWHERE Rank = male
NLQ: Find all female candidates
SQL: SELECT COUNT(Candidate’s Name)WHERE Rank =

One thought on what could be going wrong is the main difference between these tables
created by view and the WikiSQL tables. The column names of tables created from views
also carry the name of their original table. For example, in movie_by_company the first
columns are ”movie title”, ”movie release year”, ..., ”company name”, ”company country
code”. This might make columns from the same table harder to distinguish because they
all start with the same word. It might confuse the system or make it harder to understand
which is more appropriate each time. However, this intuition was proven wrong; after
removing the table names no significant change was observed.

5.4 Interesting Examples of Queries

In order to fully understand the system’s capabilities it would be beneficial to examine it
further than just a simple accuracy percentage. For this reason, this section will examine
specific types and cases of questions and check how the system responds to them. To do
this, we will use a table from theWikiSQL test set and produce our own NLQs on this table.
We will be checking which words have embeddings and what results are being produced
from our system. We will be using the SQLNet model trained with column attention for
200 epochs, with its embedding layer being trained for the 100 last epochs.

Spelling Mistakes

In a previous section we noticed and tried to correct the problem of misspelled words, but
it would also be interesting to see what actually happens when misspelling occur. The
underlined words are the ones we are spelling incorrectly on purpose and the words in
red are the words that don’t have an embedding. Notice that in some cases we might
make a spelling mistake but the misspelled word might still have an embedding.

In the table above we have some NLQs posed on a table2 with data of players from Amer-
ican football teams. As we see the first NLQ, without mistakes, gets transformed correctly.
When we make a spelling mistake on a word that indicates the column that must be se-
lected, there is a mistake in the column that gets selected. This is expected; the system
does not recognise the word because it only receives a zero vector because this word
has no embedding. When we make a spelling mistake in a word that has to be used as
a value for a condition we notice something interesting. When a word doesn’t have an
embedding it gets ignored in the condition string (e.g. when we mistakenly write ”Maden”
instead of ”Madden”) but when a word is misspelled but still has an embedding it gets

1Table ID: 2-12890300-4
2Table ID: 1-11677691-4

G. Katsogiannis-Meimarakis 58

Translating Natural Language to SQL using Deep Learning

Table 5.8: Examples of Spelling Mistakes & Predicted SQL Queries, red color indicates words
without embeddings and underlining indicates spelling mistakes

NLQ: What’s the position of Tre Madden?
SQL: SELECT PositionWHERE Player = tre madden
NLQ: What’s the possition of Tre Madden?
SQL: SELECT SchoolWHERE Player = tre madden
NLQ: What’s the position of Tre Maden?
SQL: SELECT PositionWHERE Player = tre
NLQ: What’s the position of Te Madden?
SQL: SELECT PositionWHERE Player = te madden
NLQ: What’s the position of Te Maden?
SQL: SELECT PositionWHERE Position = te
NLQ: hat’s the position of Tre Madden?
SQL: SELECT PositionWHERE Player = tre madden
NLQ: Whqt’s the position of Tre madden?
SQL: SELECT PositionWHERE Player = tre madden
NLQ: Position of Tre Madden?
SQL: SELECT PositionWHERE Player = tre madden

included nevertheless (e.g. ”When we write ”Te” instead of ”Tre”). This shows that the
impact of word not having an embedding is worse than the impact of a misspelled word.
One last thing we notice is that it doesn’t matter if we misspell the introductory word of the
question (i.e. ”what”), nor if it doesn’t have an embedding nor if its completely removed.
In all three cases we get the same correct result.

Words with no Embeddings

We have already seen an interesting example where a word without an embedding is not
used in the condition string when it should have, it would be interesting to investigate other
similar cases. This time we will be using a table3 that contains information on songs from
Indian movies. Again, the words in red color don’t have an embedding.

Table 5.9: Examples of Words without Embeddings & Predicted SQL Queries, red color indicates
words without embeddings

NLQ: In which songs is Ravindra Jain the music director?
SQL: SELECT Song nameWHERE Music director = ravindra jain
NLQ: In which songs is Rajan Bawa the music director?
SQL: SELECT LyricistWHERE Music director = rajan bawa
NLQ: In which songs is Usha Khanna the music director?
SQL: SELECT Song nameWHERE Music director = usha
NLQ: In which songs is Jugal Kishore-Tilak Raj the music director?
SQL: SELECT LyricistWHERE Film name = jugal —raj

In these examples we see that a word without an embedding can be used in the condition
string, in contrast to what happened in the previous example. We also notice, however,
that it might cause other problems. For instance, in the second example the name ”Rajan”

3Table ID: 1-11827596-2

G. Katsogiannis-Meimarakis 59

Translating Natural Language to SQL using Deep Learning

gets used in the condition value but for some reason changing the name breaks the column
selection and gives an incorrect result. In the third example only one of the two unknown
words gets used in the condition string and in the final example we get a complete mess
where both the selected column and the condition are wrong. As a general observation
we can say that having words without embedding in our NLQ increases the chances of
something going wrong.

Paraphrasing words

Another aspect that would be interesting to investigate is how well our system deals with
different phrases that mean or imply the same thing. This time we will be using a table4
that contains info on the national basketball team of Lithuania.

Table 5.10: Examples of Paraphrasing & Predicted SQL Queries

NLQ: Which player has a height of 2.00?
SQL: SELECT Player WHERE Height = 2.00
NLQ: Which player is as tall as 2.00?
SQL: SELECT Player WHERE Height = 2.00
NLQ: Which player is 2.00 meters tall?
SQL: SELECT Player WHERE Height = 2.00
NLQ: Who has a height of 2.00?
SQL: SELECT Player WHERE Height = 2.00

NLQ: Which players play the guard position?
SQL: SELECT Player WHERE Position = guard
NLQ: Which players are guards?
SQL: SELECT Player WHERE Position = guards
NLQ: Show me the guards
SQL: SELECT Current ClubWHERE Player = guards AND No = guards
NLQ: Show me the players that are guards
SQL: SELECT Player WHERE Position = guards
NLQ: Who are the guards?
SQL: SELECT Current Club

Here we have a set of example where the system performs exceptionally and a set where
it works incorrectly. We see that when asking about the height of the players in different
ways it produces correct results. However when asked about which players are in the
guard position, it doesn’t do that well unless the word player in found in the NLQ. This
might be due to the fact that it might be more common to ask about the height of a person
in different manners but talking about the word ”guard” in the sense of the basketball
position might be less common.

Something slightly unrelated, but very interesting, is that between the SQL queries asking
about the guards, only the first would execute correctly. This is because the column Posi-
tion of the table contains the word ”guard” and not ”guards”. This is something the system
is not aware of and also is completely incapable of solving. As we mentioned before, the
condition value is always a sequence of words from the NLQ so in this case, if the user’s

4Table ID: 1-12962773-10

G. Katsogiannis-Meimarakis 60

Translating Natural Language to SQL using Deep Learning

NLQ contains the wrong value, he is doomed to get a SQL query that might seem correct
but does not return any results.

5.5 Queries that SQLNet can not Answer

We have demonstrated some queries that are very interesting in testing the system’s limits
to see where it performs well and where it doesn’t. Now we will talk about some types of
NLQs that are clearly out of the system’s reach and we would not expect it to provide a
correct SQL. These limitations, as we will see, are mostly due to the the simplicity of the
Sketch that all queries produced by SQLNet are based on.

Open-Ended Questions

Because of the familiarity most users have with search engines, they might pose vague
and open-ended questions such as ”Tell me about ...” or ”Find about ...”. A possible solu-
tion could be to include the option of using the asterisk (*) operator in the SELECT clause,
among all the columns of the table. However such questions highlight the need to include
data exploration capabilities in NL2SQL systems. Let’s use the table of football players
once again to demonstrate some examples.

Table 5.11: Examples of Open-Ended NLQs & Predicted SQL Queries

NLQ: Tell me about Tre Madden
SQL: SELECT PositionWHERE Player = tre madden
NLQ: Who is Tre Madden?
SQL: SELECT Player WHERE Player = tre madden

Queries answered with a yes or a no

Questions that are answered with a yes or a no cannot be strictly answered because
SQLNet only returns a SQL query and by extension the resulting data. Using that data to
produce an affirmative or negative response demands an extra layer of processing which
is currently beyond the scope of the system. The user could look through the resulting data
and reach to a conclusion by himself but it would be nice to be able to have the system
do that for him. We will demonstrate some examples from the football players table.

Table 5.12: Examples of NLQs Answered with Yes or No & Predicted SQL Queries

NLQ: Are there any players from Springfield High School?
SQL: SELECT Player WHERE School = springfield high school
NLQ: Is Tre Madden a linebacker?
SQL: SELECT HometownWHERE Player = tre madden AND Position = linebacker

As we see, in the first case the user would get an indirect response to his question. In the
second example however, the system would return something completely irrelevant that
would be of no use to the user.

G. Katsogiannis-Meimarakis 61

Translating Natural Language to SQL using Deep Learning

Comparing Table Entries

This is something that clearly cannot happen because of the limitations of the Sketch we
are trying to complete. Such NLQs would require different structures of SQL queries,
perhaps a nested query. Lets use the table of the Lithuanian basketball team once more
to demonstrate some examples.

Table 5.13: Examples of NLQs Comparing Table Entries & Predicted SQL Queries

NLQ: Who is the tallest player?
SQL: SELECT Player
NLQ: Who is the tallest guard?
SQL: SELECT Player WHERE Position = guard
NLQ: Who is taller than the player with the number 13?
SQL: SELECT HeightWHERE No = 13

Using Multiple Constraints on the Same Attribute

Another restriction originating from the design of the system is the incapability for the same
attribute (table column) to be included more than once in the condition clause. The con-
dition column predictor makes a prediction about the most probable column to appear in
the condition clause and the k highest ranking columns are chosen based on the condi-
tion number predictor’s output. This does not leave room for the possibility of a column
appearing more than once. As a result, the system cannot correctly translate NLQs such
as the following questions posed on a table5 describing a political composition over the
years:

Table 5.14: Examples of NLQs using multiple constraints on the same attribute

NLQ: Show all treasurers between 2004 and 2008
Expectation: SELECT Treasurer WHERE Year > 2004

AND Year < 2008
Prediction: SELECT Electoral College votesWHERE Year = 2008

AND State Senate = 2008
NLQ: Who was the governor after 2004 and before 2008?

Expectation: SELECT Governor WHERE Year > 2004
AND Year < 2008

Prediction: SELECT U.S. Senator (Class III)WHERE Year > 2004
AND State Senate > 2004

5Table ID: 1-18052353-4

G. Katsogiannis-Meimarakis 62

Translating Natural Language to SQL using Deep Learning

6. CONCLUSION

In this thesis we talked about the NL2SQL problem, we looked at the general architecture
of a NL2SQL system, compared some interesting NL2SQL systems and focused on the
SQLNet system, which tries to tackle the problem using Deep Learning techniques. To
better understand SQLNet, we examined the WikiSQL data set which it was made for and
trained with and underlined its relatively low complexity. After developing our own imple-
mentation of SQLNet, we first tested it on WikiSQL and got similar results as its creators.
We then tried to improve its performance based on the remark that a big percentage of the
words it handles have no vector representation in its word embedding set. We discovered
that by performing a spellcheck on every word we don’t have an embedding for, we can
increase the model’s accuracy on WikiSQL by 2%. Following this, we tried to test the
model on complete databases (using views) and specific types of questions that would
be interesting in real use-cases and noticed that the model does not respond that well to
neither them. This is an indicator that even though SQLNet performs relatively well on the
WikiSQL task, it still requires some improvements before it’s ready to be used in bigger
scale scenarios.

Future Work

While working on SQLNet and studying similar systems some ideas for improving the sys-
tem came up, that seem promising but were not included in this thesis. Both were inspired
by the gap in the embeddings we have talked about and aim to enrich the embeddings as
well as the NL understanding of the system in general.

The first idea is to train a set of GloVe embeddings using the contents of the tables we are
using to train the model. As other non-ML systems create word indices and dictionaries
for word disambiguation using the contents of their databases, we could also add more
info to our embeddings using the contents of our tables. More specifically, one possible
approach would be to train a new set of word embeddings using each column of each
table as a GloVe context. This means that these new embeddings would learn how often
a word in a table is associated with the name of a column.

An other idea is to try to encapsulate a syntactic, dependency, etc. tree in the embeddings.
There has been work [10] on the Structural Embedding of Syntactic Trees (SEST) for NL
tasks using character or word embeddings, that has shown that it possible to embed such
a structure in the embeddings and that it can improve the model’s accuracy. Considering
that most non-ML solutions of the NL2SQL problem use a syntactic or other type of tree,
it would be very interesting to see if ML solutions can also benefit from such a structure.
Besides giving very beneficial information on every word of the NLQ, these embeddings
would also help understand unknown words.

G. Katsogiannis-Meimarakis 63

Translating Natural Language to SQL using Deep Learning

ABBREVIATIONS - ACRONYMS

DB Data Base

DL Deep Learning

IQR Intermediate Query Representation

LSTM Long Short-Term Memory

ML Machine Learning

NL Natutal Language

NL2SQL Natural Language to Structured Query Language

NLP Natural Language Processing

NN Neural Network

RDBMS Relational Data Base Management System

RNN Recurrent Neural Network

SEQ2SEQ Sequence to Sequence

SQL Structured Query Language

UI User Interface

G. Katsogiannis-Meimarakis 64

Translating Natural Language to SQL using Deep Learning

APPENDIX A. PREDICTIONS ON IMDB DATABASE

Table A.1: NLQs on IMDb tables

movie
NLQ: How much was the budget of ”Finding Nemo”
GT: SELECT budgetWHERE title = ”Finding Nemo”

PRED: SELECT budgetWHERE title = ”finding ””
NLQ: Find all movies produced in 2015
GT: SELECT titleWHERE release year = 2015

PRED: SELECT titleWHERE title = 2015
director

NLQ: Find the naitonaliti of directro ”Woody Allen”
GT: SELECT nationalityWHERE name = ”Woody Allen”

PRED: SELECT COUNT(birth city)WHERE name = ”woody allen”
NLQ: Find all male directors from Greece
GT: SELECT nameWHERE nationality = Greece AND gender = male

PRED: SELECT nameWHERE nationality = greece

G. Katsogiannis-Meimarakis 65

Translating Natural Language to SQL using Deep Learning

Table A.2: NLQs on IMDb tables

actor
NLQ: Find all actors from ”Los Angeles”
GT: SELECT nameWHERE birth city = ”Los Angeles”

PRED: SELECT nameWHERE birth city = ”los ”
NLQ: Find all female actors from Austin
GT: SELECT nameWHERE birth city = Austin AND gender = female

PRED: SELECT nameWHERE birth city = austin
NLQ: Find all actors from Austin that are female
GT: SELECT nameWHERE birth city = Austin AND gender = female

PRED: SELECT nameWHERE nationality = austin
NLQ: Find all the actresses from Austin
GT: SELECT nameWHERE birth city = Austin AND gender = female

PRED: SELECT nameWHERE birth city = austin
NLQ: Find all the women actors from Austin
GT: SELECT nameWHERE birth city = Austin AND gender = female

PRED: SELECT nameWHERE birth city = austin
NLQ: What is the nationality of ”Kevin Spacey”
GT: SELECT nationalityWHERE name = ”Kevin Spacey”

PRED: SELECT nationalityWHERE name = ”kevin ””
NLQ: Count all actors
GT: SELECT COUNT(name)

PRED: SELECT name
NLQ: Count all male actors
GT: SELECT COUNT(name)WHERE gender = male

PRED: SELECT gender WHERE name = actors
NLQ: How many female actors were born in ”New York City”
GT: SELECT COUNT(name)WHERE birth city = ”New York City” AND gender = female

PRED: SELECT COUNT(name)WHERE birth city = ”new york city”
NLQ: Find all actors who were born in ”New York City” before 2000
GT: SELECT nameWHERE birth city = ”New York City” AND birth year < 2000

PRED: SELECT nameWHERE birth city = 2000new ”city” AND birth year < 2000
NLQ: What is the birth place of actor ”Kevin Spacey”
GT: SELECT birth cityWHERE name = ”Kevin Spacey”

PRED: SELECT birth cityWHERE name = ”kevin ””
NLQ: What is the sex of ”Angelina Jolie”
GT: SELECT gender WHERE name = ”Angelina Jolie”

PRED: SELECT gender WHERE name = ”angelina jolie”
NLQ: Return the gendre of ”Angelina Jolie”
GT: SELECT gender WHERE name = ”Angelina Jolie”

PRED: SELECT birth year WHERE name = ”angelina jolie”
NLQ: Return all Asian actors
GT: SELECT nameWHERE nationality = Asian

PRED: SELECT birth cityWHERE name = asian actors
NLQ: Return all American actors
GT: SELECT nameWHERE nationality = American

PRED: SELECT birth year WHERE gender = american
NLQ: Where is ”Brad Pitt” from
GT: SELECT nationalityWHERE name = ”Brad Pitt”

PRED: SELECT birth cityWHERE name = ”brad pitt”

G. Katsogiannis-Meimarakis 66

Translating Natural Language to SQL using Deep Learning

Table A.3: NLQs on IMDb views

actor_by_movie
NLQ: Find all moveis of ”Brad Pitt”
GT: SELECT movie titleWHERE actor name = ”Brad Pitt”

PRED: SELECT cast roleWHERE actor name = ”brad pitt
NLQ: Find all movies of atcor ”Margot Robbie”
GT: SELECT movie titleWHERE actor name = ”Margot Robie”

PRED: SELECT cast roleWHERE movie title = ””margot robbie”
NLQ: Find all roles in the movie ”My Cousin Vinny”
GT: SELECT cast roleWHERE movie title = ”My Cousin Vinny”

PRED: SELECT cast roleWHERE movie title = ”my cousin vinny”
NLQ: What is the number of actors in the movie ”Grumpier Old Men”
GT: SELECT COUNT(actor name)WHERE movie title = ”Grumpier Old Men”

PRED: SELECT COUNT(cast role)WHERE movie title = ”old old men”
NLQ: How many actors from China have acted in ”Rush Hour 3”
GT: SELECT COUNT(actor name)WHERE actor nationality = China

AND movie title = ”Rush Hour 3”
PRED: SELECT COUNT(actor name)WHERE actor nationality = china
NLQ: What is the number of movies in which Jennifer Aniston acted after 2010?
GT: SELECT COUNT(movie title)WHERE actor name = Jennifer Aniston

AND movie release year > 2010
PRED: SELECT COUNT(movie title aka)WHERE actor name = jennifer

AND movie release year > 2010
NLQ: Find the actor who played Captain Miller in the movie ”Saving Private Ryan”
GT: SELECT actor nameWHERE cast role = Captain Miller

AND movie title = ”Saving Private Ryan”
PRED: SELECT actor birth year WHERE movie title aka = ”private ryan”
NLQ: Who acted John Nash in the movie ”A Beautiful Mind”?
GT: SELECT actor nameWHERE cast role = John Nash

AND movie title = ”A Beautiful Mind”
PRED: SELECT actor nameWHERE movie title = ”a beautiful mind”
NLQ: Find all movies where ”Brad Pitt” act after 2002 and before 2010
GT: SELECT movie titleWHERE actor name = ”Brad Pitt”

AND movie release year > 2002 AND movie release year < 2010
PRED: SELECT actor birth cityWHERE movie release year > 2010

AND actor name = brad pittpitt” AND actor birth year = 2010
NLQ: Find all movies featuring ”Kate Winslet”
GT: SELECT movie titleWHERE actor name = ”Kate Winslet”

PRED: SELECT cast roleWHERE movie title = ”kate movies movies
NLQ: Find all movies in which ”Robin Wright” appears
GT: SELECT movie titleWHERE actor name = ”Robin Wright”

PRED: SELECT movie title akaWHERE actor name = ”robin wright”
NLQ: Return all movies of ”Brad Prit”
GT: SELECT movie titleWHERE actor name = ”Brad Pitt”

PRED: SELECT actor birth year WHERE movie title = brad brad
NLQ: Find all females in the cast of ”Grumpier Old Men”
GT: SELECT actor nameWHERE movie title = ”Grumpier Old Men”

AND actor gender = female
PRED: SELECT movie title akaWHERE movie title = ”old old men”

G. Katsogiannis-Meimarakis 67

Translating Natural Language to SQL using Deep Learning

Table A.4: NLQs on IMDb views

actor_by_tv_series
NLQ: Who acts as ”Olivia Pope” in the series Scandal
GT: SELECT actor nameWHERE cast role = ”Olivia Pope”

AND tv series title = Scandal
PRED: SELECT actor nameWHERE tv series title = ”olivia pope””

movie_by_company
NLQ: Find all movies by Netflix
GT: SELECT movie titleWHERE company name = Netflix

PRED: SELECT movie title akaWHERE company country code = movies
NLQ: How many movies did Netflix produce?
GT: SELECT COUNT(movie title)WHERE company name = Netflix

PRED: SELECT COUNT(company country code)
NLQ: Find all movies produced by Netflix after 2009
GT: SELECT movie titleWHERE company name = Netflix

AND movie release year > 2009
PRED: SELECT movie title akaWHERE movie release year > 2009

AND company name = netflix
NLQ: Find all movies produced by Netflix before 2015
GT: SELECT movie titleWHERE company name = Netflix

AND movie release year < 2015
PRED: SELECT movie title akaWHERE movie release year = 2015

AND company country code = 2015
NLQ: Find the movies produced by Neftlix
GT: SELECT movie titleWHERE company name = Netflix

PRED: SELECT company country codeWHERE company country code = movies
movie_by_director

NLQ: Find all movies directed by Steven Spielberg after 2006
GT: SELECT movie titleWHERE director name = Steven Spielberg

AND movie release year > 2006
PRED: SELECT director nameWHERE director name = steven

AND director birth year > steven
NLQ: Who is the director of the movie ”Catch me if you can”?
GT: SELECT director nameWHERE movie title = ”Catch me if you can”

PRED: SELECT director nameWHERE movie title = catch me if you can
NLQ: Who was the director of the movie Joy from 2015?
GT: SELECT director nameWHERE movie title = Joy

AND movie release year = 2015
PRED: SELECT director nameWHERE director name = joy

AND director nationality = joy
NLQ: How many movies did Alfred Hitchcock direct?
GT: SELECT COUNT(movie title)WHERE director name = Alfred Hitchcock

PRED: SELECT COUNT(director gender)WHERE director name = alfred
NLQ: Find all movies directed by ”Steven Spielberg” after 2006
GT: SELECT COUNT(movie title)WHERE director name = ”Steven Spielberg”

AND movie release year > 2006
PRED: SELECT director nameWHERE director name = ”steven ””

AND director birth year > 2006
NLQ: Find all films directed by ”Woody Allen”
GT: SELECT COUNT(movie title)WHERE director name = ”Woody Allen”

PRED: SELECT movie budgetWHERE director name = ”woody allen”

G. Katsogiannis-Meimarakis 68

Translating Natural Language to SQL using Deep Learning

Table A.5: NLQs on IMDb tables and views where a prediction is not possible

movie
NLQ: Find about ”star wars”

PRED: SELECT title akaWHERE title = ”star wars”
NLQ: What is ”star wars”

PRED: SELECT title akaWHERE title = ”star wars”
NLQ: Find about ”true crime”

PRED: SELECT budgetWHERE title = ”true crime”
NLQ: Find the most expensive movie

PRED: SELECT MAX(budget)
NLQ: Find the decade with the most movies produced

PRED: SELECT MAX(release year)WHERE budget = movies
director

NLQ: What is the most prolific director
PRED: SELECT MAX(name)

actor
NLQ: Find about ”Margot Robbie”

PRED: SELECT birth year WHERE name = ”margot robbie”
tv_series

NLQ: Which is the most long lasting tv series
PRED: SELECT MAX(release year)WHERE num of episodes =

producer
NLQ: Find about ”Walt Disney”

PRED: SELECT birth year WHERE name = ”walt disney”
NLQ: Who is ”Walt Disney”

PRED: SELECT nameWHERE name = ”walt disney”
actor_by_tv_series

NLQ: Is ”Fred Mendes” presenting the News
PRED: SELECT actor birth year WHERE actor name = ”fred mendes”
NLQ: Is ”Mendes Fred” presenting the News

PRED: SELECT actor birth year WHERE actor name = ”mendes fred””
actor_by_movie

NLQ: Is ”Sharp Douglas” playing in ”Power With-out Glory”
PRED: SELECT MIN(actor birth year)WHERE actor name = ”sharp douglas
NLQ: Is ”Tom Cruise” playing in ”American Made”

PRED: SELECT actor birth year WHERE movie title = ”tom ””
NLQ: Find all actors who acted in the same movie as Tom Hanks

PRED: SELECT actor nameWHERE movie title = tom in
NLQ: Find the actors that have not played in the same movie with ”Brad Pitt”

PRED: SELECT actor nameWHERE actor name = ”brad pitt”
NLQ: What is the latest movie by ”Jim Jarmusch”

PRED: SELECT MAX(movie title aka)WHERE actor name = ”jim jarmusch”
NLQ: List the movies by ”Woody Allen” sorted by cast size

PRED: SELECT movie title akaWHERE actor name = woody woody allen”
NLQ: Find all movies that star both Angelina Jolie and Brad Pitt

PRED: SELECT cast roleWHERE actor name = angelina jolie
movie_by_director

NLQ: Find the directors that have not directed more than 10 movies
PRED: SELECT director nameWHERE director name = not directed

G. Katsogiannis-Meimarakis 69

Translating Natural Language to SQL using Deep Learning

BIBLIOGRAPHY

[1] Ion Androutsopoulos, Graeme D. Ritchie, and Peter Thanisch. Natural language interfaces to databases
- an introduction. CoRR, cmp-lg/9503016, 1995.

[2] Theofilos Belmpas, Orest Gkini, and Georgia Koutrika. Analysis of database search systems with thor. In
Proceedings of the 2020 ACMSIGMOD International Conference onManagement of Data, SIGMOD ’20,
page 2681–2684, Richland, SC, 2020. International Foundation for Autonomous Agents and Multiagent
Systems.

[3] E.F. Codd. Seven steps to rendezvous with the casual user. Data Base Management, pages 179–199,
01 1974.

[4] Kedar Dhamdhere, Kevin S. McCurley, Ralfi Nahmias, Mukund Sundararajan, and Qiqi Yan. Analyza:
Exploring data with conversation. In Proceedings of the 22Nd International Conference on Intelligent
User Interfaces, IUI ’17, pages 493–504, New York, NY, USA, 2017. ACM.

[5] Li Dong and Mirella Lapata. Language to logical form with neural attention. CoRR, abs/1601.01280,
2016.

[6] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy, and Luke Zettlemoyer. Learning
a neural semantic parser from user feedback. CoRR, abs/1704.08760, 2017.

[7] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.

[8] Fei Li and H. V. Jagadish. Constructing an interactive natural language interface for relational databases.
Proc. VLDB Endow., 8(1):73–84, September 2014.

[9] Percy Liang. Learning executable semantic parsers for natural language understanding. Commun.
ACM, 59(9):68–76, August 2016.

[10] Rui Liu, Junjie Hu, Wei Wei, Zi Yang, and Eric Nyberg. Structural embedding of syntactic trees for
machine comprehension, 2017.

[11] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard, and David
McClosky. The Stanford CoreNLP natural language processing toolkit. In Association for Computational
Linguistics (ACL) System Demonstrations, pages 55–60, 2014.

[12] M. Marneffe, B. Maccartney, and C. Manning. Generating typed dependency parses from phrase
structure parses. In Proceedings of the Fifth International Conference on Language Resources and
Evaluation (LREC-2006), Genoa, Italy, May 2006. European Language Resources Association (ELRA).
ACL Anthology Identifier: L06-1260.

[13] Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured tables.
CoRR, abs/1508.00305, 2015.

[14] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word
representation. In Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543,
2014.

[15] Peter Norvig. How to write a spelling corrector, 2007. [Online; accessed 20-February-2020].

[16] Diptikalyan Saha, Avrilia Floratou, Karthik Sankaranarayanan, Umar Farooq Minhas, Ashish R. Mittal,
and Fatma Özcan. Athena: An ontology-driven system for natural language querying over relational
data stores. Proc. VLDB Endow., 9(12):1209–1220, August 2016.

[17] Lappoon R. Tang and Raymond J. Mooney. Using multiple clause constructors in inductive logic pro-
gramming for semantic parsing. In Proceedings of the 12th European Conference on Machine Learning,
pages 466–477, Freiburg, Germany, 2001.

[18] Xiaojun Xu, Chang Liu, and Dawn Song. Sqlnet: Generating structured queries from natural language
without reinforcement learning. CoRR, abs/1711.04436, 2017.

[19] Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig. Sqlizer: Query synthesis from
natural language. Proc. ACM Program. Lang., 1(OOPSLA):63:1–63:26, October 2017.

[20] Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries from nat-
ural language using reinforcement learning. CoRR, abs/1709.00103, 2017.

G. Katsogiannis-Meimarakis 70

	CONTENTS
	INTRODUCTION
	The NL2SQL Problem
	NL2SQL System Workflow

	BACKGROUND AND RELATED WORK
	NL2SQL Systems Comparison
	Natural Language Processor
	Intermediate Query Representation
	Query Interpreter
	User Interface
	Metadata

	Evaluation of Systems
	Available Data Sets/Databases

	THE WIKISQL TASK & DATASET
	The WikiSQL Subsets
	SQL Query Complexity
	Bad Questions
	WikiSQL Statistics
	Summary

	SQLNET
	SQL Sketch
	Dataflow in SQLNet
	Neural Query Translation Components
	Common Procedures
	Aggregation Function Predictor
	Column Selection Predictor
	Condition Number Predictor
	Condition Column Predictor
	Condition Operation Predictor
	Condition Value Predictor

	Programming Details
	Training Details

	EXPERIMENTS AND RESULTS
	Evaluation
	Trying to Maximize the Embedding Coverage of WikiSQL
	Testing on Database Views
	Interesting Examples of Queries
	Queries that SQLNet can not Answer

	CONCLUSION
	ABBREVIATIONS - ACRONYMS
	APPENDICES
	PREDICTIONS ON IMDB DATABASE
	REFERENCES

