

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

BSc THESIS

Deep Learning in Audio Chord Estimation

Theofanis A. Aslanidis

Supervisors: Aggelos Pikrakis, Assistant Professor, University of Pireaus
Yannis Kopsinis, Libra AI
Panagiotis Stamatopoulos, Assistant Professor, NKUA

ATHENS

JUNE 2020

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Βαθιά Μάθηση για Αναγνώριση Μουσικών Συγχορδιών

Θεοφάνης Α. Ασλανίδης

Επιβλέποντες: Άγγελος Πικράκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιά
Γιάννης Κοψίνης, Libra AI
Παναγιώτης Σταματόπουλος, Επίκουρος Καθηγητής, ΕΚΠΑ

ΑΘΗΝΑ

ΙΟΥΝΙΟΣ 2020

BSc THESIS

Deep Learning in Audio Chord Estimation

Theofanis A. Aslanidis
S.N.: 1115201500013

SUPERVISORS: Aggelos Pikrakis, Assistant Professor, University of Pireaus
Yannis Kopsinis, Libra AI

 Panagiotis Stamatopoulos, Assistant Professor, NKUA

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Βαθιά Μάθηση για Αναγνώριση Μουσικών Συγχορδιών

Θεοφάνης Α. Ασλανίδης
Α.Μ.: 1115201500013

Επιβλέποντες: Άγγελος Πικράκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιά
Γιάννης Κοψίνης, Libra AI
Παναγιώτης Σταματόπουλος, Επίκουρος Καθηγητής, ΕΚΠΑ

ABSTRACT

Each music piece consists of a set of different audio chords. These chords are the song’s
foundation and a skilful musician can identify them by ear. Although, most musicians can
identify audio chords, most non musically trained people cannot recognize them. This
thesis researches the use of neural networks and their importance, in the process of
identifying audio chords. Neural networks have shown great application on identifying
objects, as well as on extracting contextual information through time. The combination of
those characteristics is what this thesis will explore. More specifically, in this thesis what
is going to be presented is the power of a recurrent convolutional neural network in
comparison to other architectures for the purpose of identifying objects (chords) that have
an association through time.

Subject Area: Deep learning on audio, Automatic chord recognition

Keywords: Neural Networks, Deep Learning, Convolutional Neural
Networks, Recurrent Neural Networks, R – CNN, Audio Chord
Estimation

ΠΕΡΙΛΗΨΗ

Κάθε μουσικό κομμάτι περιέχει ένα συγκεκριμένο αριθμό από διαφορετικές συγχορδίες.
Αυτές οι συγχορδίες αποτελούν το σκελετό του τραγουδιού και ένας έμπειρος μουσικός
μπορεί να τις αναγνωρίσει με το αυτί. Όμως, ενώ η πλειοψηφία των μουσικών μπορεί να
αναγνωρίσει ακουστικά συγχορδίες, οι περισσότεροι μη-μουσικοί που απλά ασχολούνται
ερασιτεχνικά, δεν είναι σε θέση να αναγνωρίσουν τις συγχορδίες ακουστικά. Αυτή η
εργασία ερευνά την χρήση και σημαντικότητα των νευρωνικών δικτύων στην διαδικασία
της αναγνώρισης των συγχορδιών. Τα νευρωνικά δίκτυα, έχουν δείξει μεγάλη δυνατότητα
και προοπτική για την αναγνώριση αντικειμένων σε μια ποικιλία δεδομένων, καθώς και
αποκωδικοποίηση πληροφορίας σχετιζόμενης άμεσα με το χρόνο. Ο συνδυασμός των
χαρακτηριστικών αυτών, είναι αυτό που η εργασία αυτή θα ερευνήσει, πάνω σε μουσικά
δεδομένα. Συγκεκριμένα, σε αυτή την εργασία θα παρουσιαστεί η δυνατότητα των
αναδρομικών συνελικτικών νευρωνικών δικτύων σε αντίθεση με άλλες αρχιτεκτονικές –
πιο απλές – με σκοπό την αναγνώριση αντικειμένων που έχουν εξάρτηση από το χρόνο,
όπως οι μουσικές συγχορδίες.

Θεματική περιοχή: Εφαρμογή νευρωνικών δικτύων στη μουσική, Aυτόματη
αναγνώριση συγχορδιών

Λέξεις κλειδιά: Νευρωνικά δίκτυα, Deep Learning, Convolutional Neural
Networks, Recurrent Neural Networks, R – CNN, Audio Chord
Estimation

CONTENTS

LIST OF FIGURES 8

LIST OF TABLES 9

1. INTRODUCTION 10

2. BASIC KNOWLEDGE 11

2.1 Music . 11
 2.1.1 Intervals . 11
 2.1.2 Chords . 12

2.2 Deep Learning . 13
 2.2.1 CNN . 13
 2.2.2 RNN . 17

2.3 Audio Signal Processing . 20
 2.3.1 Linear frequency Spectrogram 20
 2.3.2 Logarithmic frequency Spectrogram 21

3. RELATED WORK 22

4. CHORD RECOGNITION PROCESS 24

4.1 Datasets . 24

4.2 Pre-Processing . 24
 4.2.1 DSP . 25
 4.2.2 Data augmentation . 26
 4.2.3 Labelling . 27
 4.2.4 Chord Vocabulary . 28
 4.2.5 Chord Analysis . 29
 4.2.6 Slicing . 30

4.3 Models – Training . 30
 4.3.1 Models . 30
 4.3.2 Training . 37
 4.3.2.1 Model M1 Experiments 38
 4.3.2.2 Model M2 Experiments 41
 4.3.3 Imbalanced Classification . 44

4.4 Post Processing . 47

4.5 Evaluation . 48

5. COMPARISON WITH MIREX PAPERS 51

6. FUTURE WORK 52

7. CONCLUSION 53

TABLE OF ACRONYMS 54

REFERENCES 55

LIST OF FIGURES

Figure 1: CNN operation visualization 14
Figure 2: CNN parameters . 15
Figure 3: CNN architecture . 16
Figure 4: Multiple Input – Multiple Output RNN 17
Figure 5: Multiple Input – Single Output RNN 17
Figure 6: Single Input – Multiple Output RNN 18
Figure 7: Bidirectional RNN . 18
Figure 8: LSTM cell . 19
Figure 9: ‘Let It Be’ by The Beatles waveform 20
Figure 10: ‘Let It Be’ by The Beatles spectrogram 20
Figure 11: ‘Let It Be’ by The Beatles constant-Q transform 21
Figure 12: ‘Let It Be’ by The Beatles Chromagram 21
Figure 13: SG1 network by Stefan Gasser and Franz Strasser 22
Figure 14: Data flow . 24
Figure 15: Constant-Q transform with 192 frequency bins and 24 bins per octave . 25
Figure 16: Data augmentation of cat 26
Figure 17: Data augmentation process 26
Figure 18: Chord Vocabulary representation in practice 28
Figure 19: Chord modes . 29
Figure 20: Non popular chord appearances 29
Figure 21: Recurrent Model Architecture M1 30
Figure 22: Model M2 Architecture 32
Figure 23: Part 1 – Feature Extraction FE1 33
Figure 24: Part 2 – Bi-LSTM and Classification 33
Figure 25: Part 1 – Feature Extraction FE2 34
Figure 26: Part 1 – Feature Extraction FE3 35
Figure 27: Part 1 – Feature Extraction FE4 35
Figure 28: Validation Loss Comparison FE3 and FE4 36
Figure 29: Fully Connected Vectorization FCV1 36
Figure 30: Fully Connected Vectorization FCV2 37
Figure 31: Callback History Loss M1 38
Figure 32: Callback History Accuracy M1 38
Figure 33: Root Task Confusion Matrix M1 39
Figure 34: Triad Task Confusion Matrix M1 39
Figure 35: Fourth Task Confusion Matrix M1 40
Figure 36: Comparison CRNN with RNN 41
Figure 37: Callback History Accuracy FCE3 41
Figure 38: FCE1 Triad Task Confusion Matrix 42
Figure 39: Left FCE3, Right FCE4 confusion matrices triad task 42
Figure 40: FCE1 Confusion matrix on fourth task 43
Figure 41: Left FCE3, right FCE4 Confusion matrix on fourth task 43
Figure 42: Loss model WL1 . 45
Figure 43: Loss model WL2 . 45
Figure 44: All model comparison 46
Figure 45: WL1 fourth task confusion matrix 46
Figure 46: Mirex statistics model comparison bar chart 50
Figure 47: Mirex statistics state of the art model comparison bar chart 51

LIST OF TABLES

Table 1: Intervals . 11
Table 2: Triads . 12
Table 3: Chord with fourth note . 12
Table 4: Jyh-Shing Roger Jang network 23
Table 5: Chord dictionary . 28
Table 6: Model description and parameters 31
Table 7: Parameter comparison . 35
Table 8: Triad Task model comparison accuracy 42
Table 9: Fourth accuracy model comparison 43
Table 10: Fourth accuracy weighted model comparison 46
Table 11: Mirex evaluation . 49

Deep Learning in Audio Chord Estimation

10

T. Aslanidis

1. INTRODUCTION

Audio chords are a fundamental piece of music and they are built over certain harmonic
rules, appearing appealing to the human ear. At the same time, deep learning is widely
known for its ability to discover nonlinear relationships on multi-dimensional data. This
thesis, using deep learning was aimed to find models that would discover those
relationships, as well as the point to that a neural network can learn some fundamental
knowledge of music theory.

The problem of audio chord estimation can be found on MIREX (Music Information
Retrieval Evaluation eXchange) where multiple scientists are getting involved each year.
MIREX provides certain guidelines on datasets, vocabularies, past submissions and
evaluation metrics which were used.

Many scientists have used various models and approaches on this matter. This work is
quite similar, a combination of the latest approaches using recurrent convolutional
networks in large vocabularies. Since each song consists of several chords, means that
there are labeled data which can be used for supervised learning.

The project is divided in two discrete parts, the harmonic and the computational. Each
one is going to be presented in detail later. Before continuing to the thesis research in
detail, it is vital to describe certain things that are taken for granted in the forthcoming
chapters.

Deep Learning in Audio Chord Estimation

11

T. Aslanidis

2. BASIC KNOWLEDGE

This chapter aims to provide all the appropriate basic knowledge that is required for this
thesis.

2.1 Music

Here, the reader can find all the necessary information about music, chords and intervals
to help him proceed to later chapters of this work.

2.1.1 Intervals

Before jumping into chords, there is a certain term which is the foundation of chords and
is called an interval. An interval is a certain distance between 2 notes. They are divided
in two categories: Melodic and Harmonic. In melodic intervals the notes are played one
after the other, while in harmonic they are played together. In the majority of songs, notes
aren’t played always together, so this work includes relationships between all kinds of
intervals. A set of those intervals consist of a certain chord.

Example,

• The distance between F and G is called a major third, because the distance is 4
semitones.

• The distance between F and C is called a perfect fifth, because the distance is 7
semitones.

Table 1. Intervals

Number of Semitones Minor/Major/Perfect Diminished/Augmented

0 Perfect Unison Diminished Second

1 Minor Second Augmented Unison

2 Major Second Diminished Third

3 Minor Third Augmented Second

4 Major Third Diminished Fourth

5 Perfect Fourth Augmented Third

6 - Diminished Fifth

7 Perfect Fifth Diminished Sixth

8 Minor Sixth Augmented Fifth

9 Major Sixth Diminished Seventh

10 Minor Seventh Augmented Sixth

11 Major Seventh Diminished Octave

12 Octave Augmented Seventh

Deep Learning in Audio Chord Estimation

12

T. Aslanidis

2.1.2 Audio Chords

The basic chords are called Triads – which contain 3 notes in total. Chords are separated
mainly into certain categories. Having an idea about the chord fundamentals is important
for understanding the results of this thesis.

• Major
• Minor
• Diminished
• Augmented
• Sustained

Table 2. Triads

Chord Symbol (on C) Qualities

Major Triad C P1,M3,P5

Minor Triad Cmin P1,m3,P5

Augmented Triad Caug P1,M3,A5

Diminished Triad Cdim P1,m3,D5

Sustained chords on the other hand, are when a part of the triad is replaced by a 2nd or a
4th in turn sus2 and sus4 appear. Example is a Csus4 where it consists of C + F + G.

On top of those triads, certain extra notes can be added, which lead to more complex
chords. Such chord as major7, minor7, dominant7, maj6, min6 which are in detail in the
table below.

Table 3. Chord with fourth notes

Chord Symbol (on C) Qualities

Major Seventh Chord Cmaj7 P1,M3,P5,M7

Minor Seventh Chord Cmin7 P1,m3,P5,m7

Dominant Seventh Chord C7 P1,M3,P5,m7

Augmented Seventh Chord Caug7 P1,M3,A5,m7

Diminished Seventh Chord Cdim7 P1,m3,d5,d7

Half Diminished Seventh
Chord

Chdim7 P1,m3,d5,m7

Minor-Major Seventh Chord Cminmaj7 P1,m3,P5,M7

Major Sixth Chord Cmaj6 P1,M3,M6

Minor Sixth Chord Cmin6 P1,m3,M6

Chords can appear on a variety of different styles. These styles have to do with the bass
of the chord and they are called Inversions. Notation-wise inversions can be either the
3rd, the 5th or (if exists) an extra note – a 7th for instance.

Deep Learning in Audio Chord Estimation

13

T. Aslanidis

2.2 Deep Learning

Deep learning is a subset of machine learning. It has to do with finding nonlinear
relationships in great amounts of data using layers. Different architectures exist in this
field, some of which are used in this thesis. Next there is a brief summary to elaborate on
how those architectures that were used work.

2.2.1 Convolutional Neural Networks (CNN)

Convolutional network architectures took their name from the mathematical operation of
convolution, but what they do is to implement cross-correlation and name it
convolution.[1] They are widely known for their use in application that deal with grid-like
data, such as images.

As it is widely seen in basic Multi-Layer Perceptron networks, the neuron operation that
is their foundation is

𝑎𝑖 = 𝑥𝑇𝑤𝑖 + 𝑏𝑖

In this technique the weight matrix – which contains the parameters that are tuned – is
multiplied with the input x and by adding a bias the outcome ai is produced, which is the
output of the neuron. In MLP, each neuron has its own weight matrix, with dimensions
similar to the input x of the neuron.

On the other hand, convolutional neural networks work differently as long as the weights
are considered. In this case, the weights ‘w’ are now called filters, and they are
independent from the input. In fact, in terms of size they are very small, allowing to be
multiplied by the input, multiple times at different points. In turn, they have a great
application on data with grid-like topologies, such as images and videos due to various
reasons that are in detail below. Convolutional networks can be found mostly in computer
vision which is one of the most highly developing areas of deep learning.

Deep Learning in Audio Chord Estimation

14

T. Aslanidis

Below, there is an input array and a filter (kernel) who is going to repeat an overlapping
multiplication with all different parts of the input and create a feature map. Each iteration
of the multiplication of the filter with the input, provide a single number for the output.

[

1 2 5 1 0 0
4 2 2 4 1 5
4 0 1 9 6 9
8 3 5 5 1 3
9 4 1 1 1 0
3 0 9 8 2 4]

∗ [
1 0 −1
1 0 −1
1 0 −1

] = [

1 −10 1 0
8 −13 0 1
14 −8 −1 3
5 −7 11 7

]

Which is analysed as shown below

[
1 0 −1
1 0 −1
1 0 −1

]

[

𝟏 𝟐 𝟓 𝟏 𝟎 𝟎
𝟒 𝟐 𝟐 𝟒 𝟏 𝟓
𝟒 𝟎 𝟏 𝟗 𝟔 𝟗
𝟖 𝟑 𝟓 𝟓 𝟏 𝟑
𝟗 𝟒 𝟏 𝟏 𝟏 𝟎
𝟑 𝟎 𝟗 𝟖 𝟐 𝟒]

 [

𝟏 −𝟏𝟎 𝟏 𝟎
𝟖 −𝟏𝟑 𝟎 𝟏
𝟏𝟒 −𝟖 −𝟏 𝟑
𝟓 −𝟕 𝟏𝟏 𝟕

]

[
1 0 −1
1 0 −1
1 0 −1

]

[

𝟏 𝟐 𝟓 𝟏 𝟎 𝟎
𝟒 𝟐 𝟐 𝟒 𝟏 𝟓
𝟒 𝟎 𝟏 𝟗 𝟔 𝟗
𝟖 𝟑 𝟓 𝟓 𝟏 𝟑
𝟗 𝟒 𝟏 𝟏 𝟏 𝟎
𝟑 𝟎 𝟗 𝟖 𝟐 𝟒]

 [

𝟏 −𝟏𝟎 𝟏 𝟎
𝟖 −𝟏𝟑 𝟎 𝟏
𝟏𝟒 −𝟖 −𝟏 𝟑
𝟓 −𝟕 𝟏𝟏 𝟕

]

Figure 1. CNN operation visualization

The operation is repeated for every combination inside the input array.

It is evident that convolutional networks overpowered the fully connected networks for
these grid-like topology data for some specific reasons. They are more favourable mostly
due to the easiness of training and the small number of parameters they require relatively
to fully connected ones.

Deep Learning in Audio Chord Estimation

15

T. Aslanidis

As an example, consider an input image of size 32×32 with 3 filters for red – green –
blue.

 6 filters, f = 5

 32×32×3 28×28×6
 Input Filter Feature Map

Figure 2. CNN parameters

Comparison between MLP – fully connected layer and a convolutional layer.

• Fully Connected Layer:

3.072×4.704 = 14M parameters

• Convolution Layer:

Since f = 5 and there are 6 filters
5×5 = 25 + 1 (for bias) = 26×6 (filters) = 156 parameters

Useful properties of Convolutions: [2]

• Parameter sharing: The importance of parameter sharing, is that the parameters
– weights must be useful for all the input data, and not just for a local feature. More
specifically, it deteriorates the idea that an image’s statistical features are
stationary. If an image of a cat, contains a cat on the upper right corner, that
convolutional network, can label an image as a cat, even though the cat might be
on the lower left corner.

• Local connectivity: Restricts the layer from learning local features, and thus

provides a useful generalization exploiting the large number of parameters.

• Spatial Layout: the spatial layout of the convolution’s output, represents the spatial
layout of the convolution’s input.

Deep Learning in Audio Chord Estimation

16

T. Aslanidis

Some other building boxes of convolutional networks are the terms pooling, padding
and strides.

 Convolutions Subsampling

 Input Convolutions Pooling Convolutions Pooling Dense

Figure 3. CNN architecture

Pooling is a tool that all convolutional networks use in order to summarize local statistical
features, and greatly reduce the output space of a layer, and thus the next layer will have
k fewer input features. As is described in [1] this layer can greatly improve the statistical
efficiency of the net.

What a pooling layer does, is to summarize the output of the convolutional layer and
replace it with statistical summary of neighbourhoods. In applications it can be used either
as:

• Max

• Average

• L2 norm

• Weighted Average

Deep Learning in Audio Chord Estimation

17

T. Aslanidis

2.2.2 Recurrent Neural Networks (RNN)

Such as convolutional neural networks have shown great use in grid like data, recurrent
networks aim to process sequences of values x(1), …, x(τ) and find correlations between
the data that are close in the sequence. The amazing work of recurrent neural networks
is that they can find contextual information through time. There is a certain window in
which they can remember information between different time steps, and that depends on
a set of things – The architectural structure and the training algorithm [10]. For example,
the sentence “During my time in university, I’ve read a lot’s of books” is the same with
“I’ve read a lot’s of books, during my time in university”, but a multilayer network can not
identify them as the same, unless it is provided with both sequences to train. On the other
hand, RNNs have the generalization capability of transferring information in a certain
window of time steps. It is an architecture based on unfolding computational graphs. With
that in mind, it is understood why those networks are able to flow the information forward
and backward in time. Also, exactly as in convolutional networks, they are equipped with
the parameter sharing idea. [1]

Recurrent neural networks are divided in different categories, based on the number of
inputs and outputs.

List of categories:

1. Multiple Input – Multiple Output where the sequence input TX is equal to length
to the sequence output TY (TY = TX)

 𝑦̂<1> 𝑦̂<2> 𝑦̂<3> 𝑦̂<Ty>

𝑎<0>

 𝑥<1> 𝑥<2> 𝑥<3> 𝑥<Tx>

Figure 4: Multiple Input – Multiple Output RNN

In case𝑇𝑥 ≠ 𝑇𝑦then a different approach is needed, called encoder – decoder, such as

used in machine translation applications, or text generation.

2. Multiple Input – Single Output, where the sequence input TX corresponds to a
single output y. Example of this architecture is the case of Sentiment
Classification. 𝑦̂

𝑎<0>

 𝑥<1> 𝑥<2> 𝑥<3> 𝑥<Tx>

Figure 5: Multiple Input – Single Output RNN

Deep Learning in Audio Chord Estimation

18

T. Aslanidis

3. Single Input – Multiple Output, where a single input can lead to multiple outputs,
such as Music Generation.

 𝑦̂<1> 𝑦̂<2> 𝑦̂<3> 𝑦̂<Ty>

𝑎<0>

 𝑥

Figure 6: Single Input – Single Output RNN

More specifically, RNNs has shown great results on modelling long term dependencies
between acoustic events [6]. More about RNNs can be found on the deep learning book.
[1]

In this thesis, as described on later pages, the technique used is the first one – many to
many – since there is a label for every time step of input X with a chord Y.

2.2.3 Bidirectional – RNN

In simple RNNs, when predicting for the time step TK it uses all the information ranging
for T1 all the way up to TK . However, in most cases, information that appears after TK and
onwards, might be beneficial in the prediction of TK. In order to overcome those limitations
and make good use of the future time steps, no matter how large time data points exist
in the sequence, a new architecture was proposed (Mike Schuster and Kuldip K. Paliwal 1997)

[10] called Bidirectional Recurrent neural networks that is trained using all available
information on both past and future for each time step.

 𝑦̂<1> 𝑦̂<2> 𝑦̂<3> 𝑦̂<Ty>

 𝑥<1> 𝑥<2> 𝑥<3> 𝑥<Tx>

Figure 7. Bidirectional – RNN

Deep Learning in Audio Chord Estimation

19

T. Aslanidis

2.2.4 LSTM

With conventional RNN techniques, a certain problem is observed for certain training
procedures. When provided with large time data the back propagated error quickly
vanishes or blows up. On this problem, a major role is played by the magnitude of the
weights, which through back propagation, can change the error drastically. Long Short-
Term Memory (LSTM) belongs to the family of recurrent neural networks but it is not
affected by this problem.[8] With this architecture long time complex tasks could be finally
solved. [9]

The foundation of LSTMs is an LSTM cell, which consists of certain gates that are not
observed in other recurrent network techniques. Below there is a diagram of the LSTM
cell. ht
 Ct-1 Ct

 ht-1 ht

Figure 8. Image of LSTM cell

An LSTM cell takes as input the input data X, the last cell’s output and the last cell’s state.

The𝐶𝑡 is a symbol for the cell state / cell memory

𝐶𝑡 = 𝜎(𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡̃)

The symbolℎ𝑡stands for the cell’s output and is calculated by thetanhactivation of the
cell’s memory multiplied with the output gate.

ℎ𝑡 = tanh(𝐶𝑡) ∗ 𝑜𝑡

 The update gate or candidate is symbolized with 𝐶̃ and calculated as below.

𝐶𝑡̃ = tanh(𝑥𝑡𝑈
𝑔 + ℎ𝑡−1𝑊

𝑔)

In contrast with simple RNN techniques, LSTMs possess – in addition to the outer loop –
a linear self-loop inside the LSTM cell whose weight is controlled by the forget gate. This
forget gate has values between 0 and 1 since it is a sigmoid output.

𝑓𝑡 = 𝜎(𝑥𝑡𝑈
𝑓 + ℎ𝑡−1𝑊

𝑓)

The external input gate is similar to the forget gate.

𝑖𝑡 = 𝜎(𝑥𝑡𝑈
𝑖 + ℎ𝑡−1𝑊

𝑖)

The output gate of the cell, is also a sigmoid output which can shut off the cell’s output ht.

𝑜𝑡 = 𝜎(𝑥𝑡𝑈
𝑜 + ℎ𝑡−1𝑊

𝑜)

 ft it

x +

x

σ tanh

x

tanh

σ σ

Deep Learning in Audio Chord Estimation

20

T. Aslanidis

2.3 Audio Signal Processing

Besides from the fundamentals of chords and deep learning, some information about
audio signal processing is also necessary. Deep learning algorithms need
representations that can provide highly suitable data, in a format that is efficient of the
architecture used. In turn, providing raw audio directly to the algorithms is not going to
work. Thus, the need for certain digital signal processing algorithms is crucial in order to
turn the data in appropriate representations.

Figure 9. ‘Let It Be’ waveform

2.3.1 Spectrogram

A spectrogram is a visual representation of a signal. It is a time series of frequency
strength, ranging from low to high frequency. It is formed using the short time Fourier
transform – stft. The human ear can listen from 20Hz to 20.000 Hz, although by age this
window is shrinking.

It can be observed as a two-dimensional graph, with a third dimension represented from
colours, in the x-axis there is time, on y-axis frequencies and the colour which represents
the strength of the signal in each frequency bin.

By using these spectrograms, sound is shaped into an image. However, there is a major
difference between images, and spectrograms in terms of representation because a
spectrogram is also a time series of data, a sequence of frequencies that make sense
only as a whole.

Figure 10. Spectrogram of “Let It Be” by “The Beatles’’ with hop length = 2048

Hop length is the number of samples between successive audio frames [15]

Deep Learning in Audio Chord Estimation

21

T. Aslanidis

2.3.2 Logarithmic frequency Spectrogram

This transform is called also a constant-Q transform and it is quite similar to stft, but it
differentiates in the frequency spectrum. In constant Q transform there are K-bins of
frequencies with a window of Wi. It is a time series of filters logarithmically spaced in
frequency. Each filter’s window is a multiple of the previous one.

Figure 11. Spectrogram of “Let It Be” by “The Beatles’’ with #bins = 192, bins per octave = 24 and
hop length = 2048

2.3.3 Chromagram

Chromagram is a spectral representation of a signal, that consists of chroma features.
Those features are a projection of the musical notes onto 12 bins. Since the distribution
of frequencies on notes is known, they can be represented in chroma. A 12-bin spectral
representation of 12 bins – 1 bin for each semitone.

Figure 12. ‘Let it Be’ Chromagram, hop length=2048

Deep Learning in Audio Chord Estimation

22

T. Aslanidis

3. RELATED WORK

Every year, MIReX holds competitions for various audio specific tasks, amongst them
audio chord estimation. Some scientists each year, are presenting models with very good
results, on an amount of data that have an incremental trajectory. The most commonly
used datasets as of 2019, are Isophonics [1] a dataset that consists of 180 songs by the
Beatles, created by Christopher Harte, McGill Billboard [2] created by researchers at
McGill University, RWC [3], Robbin Williams [4] and 2002pop[5], as they were listed by
Humphrey and Bello.

For audio extraction most scientists use NNLS chroma plugin from Center for Digital
Music at the Queen Mary University of London, and train on the entirety of the songs. It
uses a Gaussian-HMM as a decoder/encoder in order to extract chromagram features
using a probabilistic model.

Model wise, in 2016, Junqi Deng and Yu-Kwong Kwok developed both a deep belief and
a BLSTM-RNN network, evaluating their performances on the task. At the same year,
Filip Korzeniowski and Gerhard Widmer used a Convolutional neural network followed by
a Conditional Random Field.

Later, in 2018, Stefan Gasser and Franz Strasser developed a Convolutional neural
network.

 Figure 13: SG1 network by Stefan Gasser and Franz Strasser

Deep Learning in Audio Chord Estimation

23

T. Aslanidis

It is comprised of different classification tasks, as it is separated in 5 parts. The main part,
the classification task for root note, a mutual part of a 2-layer Convolution, followed by
the 2 remaining classification tasks – chord description/quality and inversion.

It is important to state the fact that they performed batch normalization after each
convolution layer – something that will be seen in this thesis implementation too.

Lastly, in 2018, Jyh-Shing Roger Jang proposed a recurrent convolutional network,
followed by a structural chord representation.

Table 4. Jyh-Shing Roger Jang network parameters

Layer Type Parameters

Convolution 16×3×3
Convolution 16×3×3
Convolution 16×3×3
Max Pooling 3×3
Convolution 32×3×3
Convolution 32×3×3
Convolution 32×3×3
Max Pooling 3×3
Convolution 64×3×3
Convolution 64×3×3
Max Pooling 3×4

Bi-LSTM 128×2
Fully Connected 145

As it is seen from the Mirex 2018 audio estimation results, the latter model of Jang’s with
the recurrent convolutional network, is more powerful than just the convolutional.

In turn, in this thesis the research will focus on the application of simple recurrent
networks in the audio chord classification task in comparison with various versions of a
recurrent convolutional network.

Deep Learning in Audio Chord Estimation

24

T. Aslanidis

4. CHORD RECOGNITION PROCESS

During this thesis, the research was focused on various methods for each step of the
process, including pre-processing, model architectures, training hyper parameters and
post processing techniques. There are some methods which helped improve the
accuracy substantially, and others that didn’t make a great impact on the result.

4.1 Datasets

For the training and testing, the dataset used is the Isophonics Beatles, created by Harte
[3] providing 180 songs by The Beatles. Because of copyright issues it was difficult to
acquire the same audio files that the transcription were made on. Instead, taking the
remastered versions of the songs, and using a modification made on the MATLAB scripts
that Harte provides, to shift the transcriptions onto the new events on my audio tracks,
can lead to perfectly aligned dataset. The format of the data set is 180 audio tracks on
mono .wav format at 44kHz sample rate, with their respective chord label files that have
the start and the end time of each chord appearance.

4.2 Pre – Processing

When working with artificial neural networks, the input data in most cases is not used in
their raw form, in order to provide a solid basis for the algorithm to train. Certain
processing and modifications have to be applied on the data, to transform them into
appropriate representations. As an example, in this case, a network cannot perform well
when seeing input information as waveforms, instead it can perform very well when it
sees the corresponding frequency representation of the waveform, called a spectrogram
– as described in chapter 2. Also, a network cannot learn label names as characters such
as ‘Cat’, ‘Dog’, ‘Horse’. Upon classifying images of animals, each category has to inherit
an encoding, called one-hot encoding which is a vector of size equal to the number of
categories full of zeros, except a one placed on the column of each category. Example,
3 categories ‘Cat’, ‘Dog’, ‘Horse’. The one hot for each category will be respectively:
[1 0 0], [0 1 0], [0 0 1].

With all the above in mind, it is time to elaborate on the data that this thesis includes.
Each neural network, in order to work it needs some input data called X and the output
data called Y. In this case, X data are the track features, and the Y data the chord labels.
The purpose of this network is by seeing the track features to be able to identify at each
time frame which chord appears. In order to proceed with that mindset, it is vital to do
certain processing on the raw data provided by the datasets presented in detail on
chapter 4.1.

Below there is a chart of how the data flows until reaching the neural network. Each box
is a part in this chapter and will be elaborated on in detail.

Figure 14. Data flow

Raw Data

Augmentation

DSP Labelling Slicing

Deep Learning in Audio Chord Estimation

25

T. Aslanidis

4.2.1 DSP

In order to transform the data into a format that can be easily understood and provide a
solid ground for feature extraction for the network, the raw audio data were transformed
into the related spectrograms.

Three different approaches on the spectrograms:

1. Short time Fourier transform (STFT)
2. Chromagram (1 bin for each semitone)
3. Logarithmic frequency spectrogram (constant-Q)

For each method, the appropriate tests followed and concluded that the best method is
the constant-Q transform. Regular linear STFT provided too many frequency bands, and
in turn the network had a huge amount of input features, leading to an enormous number
of parameters. Chromagram, on the other hand, with 12 input features provided lots of
information about the notes used, but little of how they were distributed throughout the
spectrum – C2 and C4 are the same notes but provide different information. Also
discovering inversions was harder, due to the same reason.

Thus, by using the constant-Q transform it produces an optimal number of features that
fit to the later models. Also, constant-Q provided features with the appropriate amount of
frequency overlapping, that was useful for the algorithm later to identify features on
different frequency bands. Also, the sample rate used was 22050, with 192 number of
bins, 24 bins per octave and a hop length of 2048.

After creating a spectrogram for each track, the result was a NumPy array with the input
data for each track.

Figure 15. Constant Q Transform with 192 frequency bins and 24 bins per octave

Deep Learning in Audio Chord Estimation

26

T. Aslanidis

4.2.2 Data augmentation

In computer vision, there is a very important step of the data pre-processing which targets
on generalization of the training data. As an example, if a neural network always sees a
picture of a cat zoomed in high quality and always upright, if it ever sees an image of a
cat in low quality and another position from the ones seen, it may have some trouble
classifying it as a cat sometimes. In order to have a generalized neural network, a very
good practice is called data augmentation.

 Input data

 Augmented data

 Figure 16. Cat example data augmentation

Exactly as mentioned with the images of a cat, the same has application on a picture of
a chord. When the neural network sees for every song the relevant spectrograms, it labels
them as time series with the appropriate root and quality. The song “Let it be” is mostly a
piano with a vocal and corresponds to certain chord labels. If the network, ever sees a
piano with a vocal, but playing different chords than those of “Let it Be” there is a
possibility that the loss is going to be higher than the training example. That can easily
be overturned simply by pitch shifting our existing audio clips certain semitones up and
down, generalizing our dataset for every combination of chord that may come for testing
to identify.

Also, the addition of Gaussian noise before pitch shifting each song is scientifically proven
that reduces overfitting [22]. Adding noise provides a smoother and easier to learn dataset
leading to better generalization.

Figure 17. Data augmentation process

Raw Data Environmental Noise Pitch Shift Dataset Down Sampling

Deep Learning in Audio Chord Estimation

27

T. Aslanidis

4.2.3 Labelling

Moving forward with the annotation data, for the labelling task, each audio frame from the
frequency data, has to me mapped with an appropriate chord label.

for each x in Xi:
if t(x) > label_start: x_label = Cj
if t(x) > label_end → next_label

 Annotation Spectrogram
 Starts Ends Chord

[

0
1
2
3
4
5
…
𝐾]

[

0.0 1.2 𝑁
1.2 2.4 𝐺
2.4 7.1 𝐷:𝑚𝑖𝑛
7.1 12.9 𝐶
12.9 14.0 𝐴: 7
14.0 18.8 𝐺
… … …

235.0 242.2 𝑁]

[

0
1
2
3
4
5
…
𝑀]

[

0.0 0.0 … 0.0
0.0 0.0 … 0.0
0.2 1.5 … 0.6
0.9 4.2 … 9.2
1.1 2.6 … 10.1
6.7 3.1 … 10.6
… … … …
0.0 0.0 … 0.0]

Tracki

K: number of chords in Tracki
M: number of time steps in spectrogram

[

0
1
…
𝑘

𝑘 + 1
𝑘 + 2

…
𝑙

𝑙 + 1
…
𝑗

𝑗 + 1
…
𝑀]

[

𝑁
𝑁
…
𝐺
𝐺
𝐺
…

𝐷:𝑚𝑖𝑛
𝐷:𝑚𝑖𝑛

…
𝐶
𝐶
…
𝑁]

chordlabi

It is widely known, that in neural networks, character labels can not be used, they have
to transform into one hot encodings or a similar numerical value. In order to present these
chords in one hot encodings, the simplest way is to create an encoding for each unique
chord that appears in the dataset. In this case, there are 407 unique chords without and
1.500 with data augmentation. So, in the process of creating one hot encodings of length
1.500, it would amount to an insanely large output space for the model. Thus, an algorithm
was developed, that took each chord label and created a chord vocabulary, with which it
could represent the majority of the chords inside the dataset, in a representation that
could have the strongest positive influence on the model’s predictions.

Deep Learning in Audio Chord Estimation

28

T. Aslanidis

4.2.4 Chord Vocabulary

Later on, the chords were separated in distinct qualities. First there is the chord root, bass
note (inversion), triad mode, fourth note. The dataset used is very small in order to add
extra notes 9ths,11ths and 13ths since as it will be evident later on the chapters, there is
difficulty predicting the fourth note existence.

Table 5. Chord dictionary

Dimension Meaning

0-13 Root

0-13 Bass

0-7 Triad

0-5 Fourth

Specifically,

𝑅𝑜𝑜𝑡 ∈ {𝐶,C#, 𝐷,D#, 𝐸, 𝐹,F#,G,G#, 𝐴,A#, 𝐵,𝑁, 𝑋}

𝐵𝑎𝑠𝑠 ∈ {𝐶,C#, 𝐷,D#, 𝐸, 𝐹,F#,G,G#, 𝐴,A#, 𝐵, 𝑁, 𝑋}

𝑇𝑟𝑖𝑎𝑑 ∈ {𝑀𝑎𝑗𝑜𝑟,𝑀𝑖𝑛𝑜𝑟, 𝐷𝑖𝑚𝑖𝑛𝑖𝑠ℎ𝑒𝑑, 𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑, 𝑆𝑢𝑠2, 𝑆𝑢𝑠4,𝑁, 𝑋}

𝐹𝑜𝑢𝑟𝑡ℎ ∈ {𝑑𝑖𝑚7, 𝑚𝑖𝑛7,𝑚𝑎𝑗7,𝑚𝑎𝑗6, 𝑁, 𝑋}

Component Domain Spaces

• N = silence
• X = unknown

Depicted below is the representation of this chord vocabulary and how it is implemented
in practice, as well as how all the different components are separated.

Figure 18: Chord Vocabulary representation in practice

Deep Learning in Audio Chord Estimation

29

T. Aslanidis

4.2.5 Chord analysis

It is important to provide detail analytics for the chord labeled data that exist on the
datasets used. It is important to show what data are represented and used to train and
test this thesis in order to be able to understand certain forthcoming such as class
imbalance.

Figure 19. chord modes

Figure 20. Non popular modes appearances

Looking at those numbers, it is evident that some classes are underrepresented, thus the
problem of class imbalance rises. This problem is addressed later in this thesis.

0

2000

4000

6000

8000

10000

12000

Major
64%

Minor
19%

Rest
17%

Major

Minor

Rest

Deep Learning in Audio Chord Estimation

30

T. Aslanidis

4.2.6 Slicing

One step before training, is a technique used with which it sliced all of the training data,
into small chunks of 300-time steps → 22 seconds. Because the models used are based
on a bidirectional LSTM layer, it is vital to have small chunks of time series, in order for
the LSTM to learn better and more efficiently.

When used the M2 architecture with slicing, there was a 5% increase in the model’s
accuracy.

4.3 Model – Training

In this chapter, the variety of different architectures that were used is going to be
presented. Started from a very simple architecture and built the way up through a more
complex one.

4.3.1 Models

M1.
Predicting with a Recurrent Neural Network Architecture (RNN). The first method used
was a 2-layer recurrent neural network of Bidirectional LSTM. Even though bidirectional
LSTM is a very powerful architecture for time series, it couldn’t perform above a certain
upper bound that it reached.

Generally, it is a very simple model that is trained very easily, and with small amount of
data it reached a decent accuracy on some tasks. In this model there is only a 2-layer
bidirectional LSTM with a dropout after each layer used, in order to decode the input
features into feature vectors that together with a fully connected layer, will have the ability
for a linear separation between root, bass, triad and fourth note.

Bidirectional LSTM {96}

Dropout {0.4}

Bidirectional LSTM {64}

Dropout {0.4}

Dense {128}

Dense {14} Dense {14} Dense {7} Dense {5}

Chord
{ Root + Bass + Triad + Fourth }

Figure 21. Recurrent Model Architecture M1

Deep Learning in Audio Chord Estimation

31

T. Aslanidis

Model description

Table 6. M1 Model description and parameters

Layer Output Shape Parameters #

Input [slice_size, 192] 0
Bidirectional [slice_size, 192] 221952
Bidirectional [slice_size, 128] 131584

Dense [slice_size, 128] 16512
Activation (sigmoid) [slice_size, 128] 0

Dense [slice_size, 14] 1806
Dense [slice_size, 14] 1806
Dense [slice_size, 8] 1032
Dense [slice_size, 6] 774

Activation (softmax) [slice_size, 14] 0
Activation (softmax) [slice_size, 14] 0
Activation (softmax) [slice_size, 8] 0
Activation (softmax) [slice_size, 6] 0

Total parameters: 375,466
Trainable parameters: 375,466
Non-trainable parameters: 0

This model works, by taking as an input the 192-dimensional shaped vectors of the
logarithmic frequency spectrograms and treat it exactly such as time series. Each time
step in the input vector is a 192-dimensional variable, and the first layer will search for
contextual information through time on them. A bidirectional RNN was used for this task,
because in chords it matters what follows each value, not only what was there before.
After the first layer, another Bi – LSTM layer is stacked in order to allow for greater model
complexity. As the data is increasing, a simple model with small complexity will not be
able to learn well enough.
Following the LSTMs is the general fully connected layer, which also benefits from the
stacked LSTMs since it will not fall into certain patterns over time.

In order to achieve a multiple output model, the usage of 4 different fully connected layers
gave good results, each for every output, that classifies with SoftMax activation the class
that is selected from each domain.

Deep Learning in Audio Chord Estimation

32

T. Aslanidis

M2.
As it was described in Chapter 2, convolutional networks work well with grid-like topology
data that have a spatial relationship. Spectrograms, on the M1 model were interpreted as
time series of vectors, with 192 features. In this model, spectrograms will be interpreted
as images. To do that, convolutional layers are summoned before the recurrent layer, in
order to provide feature extraction.

Figure 22. Model 2 Architecture

These convolutional layers will have the ability to map the spectrogram’s data into an
output vector, where this vector is going to be the input for the bidirectional LSTM layer
which will discover all the contextual information through time.

For the convolutions there are 2 different techniques that can be applied on audio.

• 1D Convolutions
• 2D Convolutions

Both techniques provide very good results, but they both have their differences.
First of all, 1D convolutions retain only the temporal layout of the spectrogram. On the
other hand, 2D convolution layers, among the temporal layout, they also retain the
frequential layout, by giving attention to neighboring frequency bands. With that in mind,
means that the same filters will be applied on different frequency offsets. Thus, each
output vector will be a 2D feature map of the input spectrogram.

1D convolutions understand the difference between a regular image, and a spectrogram
and how different in context they are. They can learn and extract features, that they can
occur at any time. But, 2D convolutions, not only learn features can occur at any time,
but they assume that they can occur at any frequency – pitch, shiftable across all the
frequency spectrum.

With all the above in mind, the designed network, consists of 2D convolutions as a feature
extraction tool, in order to extract local features. The following recurrent layer will then
have a chance to decode the features spanning across the time variable.

Also, to note, 2D convolutions are a better choice than 1D convolutions for music
analysis, as it is indicated by Lostanlen and Cella [16]. After thorough experimenting, the
basis of the CRNN network is presented below.

Input data Bi - LSTM
F

C

 … …

Deep Learning in Audio Chord Estimation

33

T. Aslanidis

The kernel has a 3×3 dimension and an incremental filter size from 16 to 64. Choosing
an incremental filter size is widely used in CNNs due to the hierarchical value that they
give to the context. Example, smallest features combined form a bigger one – in this case,
a major third and a perfect fifth, form a major triad chord.

Conv2D {16, 3×3}

Conv2D {16, 3×3}

Conv2D {16, 3×3}

Max Pooling {1,3}

Conv2D {32, 3×3}

Conv2D {32, 3×3}

Conv2D {32, 3×3}

Max Pooling {1,3}

Conv2D {64, 3×3}

Conv2D {64, 3×3}

Max Pooling {1,4}

Figure 23. Part 1 – Feature Extraction FE1

Flatten + Batch Norm

Bi LSTM {128*2}

Classification

Dense {14} Dense {14} Dense {7} Dense {5}

Chord
{ Root + Bass + Triad + Fourth }

Figure 24. Part 2 – Bi-LSTM and Classification

 Convolution 2D

Activation ReLu

Batch Normalization

Deep Learning in Audio Chord Estimation

34

T. Aslanidis

Using the above two parts combined they achieved a 2.3 minimum loss at the 14th epoch,
where the model started to overfitting, providing no better results.

In turn, a model with a higher complexity was chosen, adding another convolutional block
with 128 filters.

Conv2D {16, 3×3}

Conv2D {16, 3×3}

Conv2D {16, 3×3}

Max Pooling {1,3}

Conv2D {32, 3×3}

Conv2D {32, 3×3}

Conv2D {32, 3×3}

Max Pooling {1,3}

Conv2D {64, 3×3}

Conv2D {64, 3×3}

Max Pooling {1,4}

Conv2D {128, 3×3}

Conv2D {128, 3×3}

Figure 25. Part 1 – Feature Extraction FE2

This way, the minimum loss was dropped to 2.1 and the model was scaled better,
performing better at the most complex tasks – triads and fourths. The only problem with
the model, is that the last convolutional layers, contain large amount of parameters, and
also provide very big feature matrices. Thus, when the LSTM takes those vectors as
inputs, it needs also a huge amount of parameters.

In order to solve this problem having acquainted all the extra power from the 128 filter
convolutions, I had to add another layer, which would reduce the dimension from 128 to
64.

For this task, 3 different strategies were approached. First strategy was to add a
Convolution Layer with filter size 64. The second one, was to try and use a fully connected
layer, but not for classification, but to reduce the size of each feature matrix. The last one,
was to use the pooling layers, in order to reduce the amount of feature matrices, and not
the number of features in each matrix.

Deep Learning in Audio Chord Estimation

35

T. Aslanidis

FE1

Conv2D {128, 3×3}

Conv2D {128, 3×3}

Conv2D {64, 3×3}

Figure 26. Part 1 – Feature Extraction FE3

FE1

Conv2D {128, 3×3}

Conv2D {128, 3×3}

Dense {64, 3×3}

Figure 27. Part 1 – Feature Extraction FE4

Those two models are the 2 best performing models. FE3 uses an extra convolutional
layer with filter size equal to 64 in order to minimize the parameters that go into the Bi-
LSTM.

Table 7. Parameter Comparison

FE2 FE3 FE4

1,107,722 852,810 787,018

The difference between the last layers is that a fully connected layer, has only

128×64+64 = 8,256 parameters
(+64 is for the bias)

because it is the same used for all the features matrices produced by the convolution.

On the other hand, the convolutional layer has

(3×3×128+1) × 64 = 73,792 parameters.
(n×m×l+1) × k, where n, m = kernel size, l is the input features, +1 for the bias and k is
the output features.

Deep Learning in Audio Chord Estimation

36

T. Aslanidis

Between the FE3 and FE4 models, as it is evident from the below graphs, they perform
almost the same.

Figure 28. Validation Loss Comparison FE3 and FE4

On the other hand, the strategy with using the pooling layers differently, leading to fewer
feature matrices, did not work as expected as it started overfitting after 20 epochs, hitting
a 2.2 minimum loss. Although the training was faster, and the model had fewer
parameters equal to 581,386 the models FE3 and FE4 seemed to work better with this
validation set.

Lastly, a strategy that is commonly used, is using fully connected layers to decode the
feature extraction into simpler feature vectors, generalizing the information extracted by
the CNN.

FE3

Flatten + Batch Norm

Dense {128}

Part 2

Figure 29. Fully Connected Vectorization FCV1

Deep Learning in Audio Chord Estimation

37

T. Aslanidis

FE3

Flatten + Batch Norm

Bi-LSTM {128*2}

Dense {64}

Classification

 Figure 30. Fully Connected Vectorization FCV2

Those 2, are the last models that came to trial, and their performances will be presented
in detail on the next chapter.

Generally, in all the models, each convolutional block consists of the convolution followed
by a ReLu activation and a batch normalization. There are certain applications, mostly in
deep neural networks, where batch normalization is one of the most important
foundations of the network. Using batch normalization makes our model capable to learn
at higher learning rates without facing problems with the initialization of the weights. [17]

4.3.2 Training

The models were trained on a 2x Tesla K80 GPU and 32GB RAM on the Google Cloud
Platform.

• Batch Size = 32 (when a sample is a 22 second part of a track). The number of

training examples in one forward/backward pass.

• Optimizer = Adam
◦ Learning rate = 0.0001
◦ Beta1 = 0.900
◦ Beta2 = 0.999
◦ Epsilon = 10-8

• Loss = the sum of the 4 individual losses of the model [root, bass, triad, fourth]

each computed with categorical cross entropy.

𝑳𝒐𝒔𝒔𝒄𝒓𝒐𝒔𝒔𝒆𝒏𝒕𝒓𝒐𝒑𝒚 = − ∑ 𝒚𝒊 𝐥𝐨𝐠(𝒚𝒊̂)

𝒊

𝑳𝒐𝒔𝒔 = ∑𝑳𝒐𝒔𝒔𝑪𝒓𝒐𝒔𝒔𝑬𝒏𝒕𝒓𝒐𝒑𝒚𝐢

𝟒

𝟏

• Epochs

◦ CRNN: 40
◦ RNN: 80

Deep Learning in Audio Chord Estimation

38

T. Aslanidis

4.3.2.1 Model M1 Experiments

Callback history of loss and accuracy for both train and validation sets.

Figure 31. Callback History Loss M1

Figure 32. Callback History Accuracy M1

Deep Learning in Audio Chord Estimation

39

T. Aslanidis

As it is clearly depicted from the figures above, this recurrent model was able to scale
and identify root and bass notes all the way up to an accuracy of 80%. To provide more
detail about those 2 classification tasks, below is provided the confusion matrix for the
root prediction task.

Root Task

 Figure 33. Root Task Confusion Matrix M1

On the other hand, triads and fourth notes are stable on an accuracy percentage over
80%. Accuracy is not a representative metric for this task. Due to the imbalance of
classes, and the non – existence of a fourth note most of the times, as well as most of
the chords being major, other techniques must be used, in order to provide a good
understanding of how this model behaved. For this reason, I will present the confusion
matrix, a table that shows the performance of a classification task. It is a way to visualize
the performance of the model. Most times confusion matrices are seen on binary
classification tasks. Below, a multi class confusion matrix is used, that visualizes the True
class vs the Predicted class.

Triad Task

 As it is evident, mostly all
silences were identified
correctly. The distribution of
chords in this matrix, tends to
predict major.
• Major 94.7%
• Minor 60.3%
• Diminished 0%
• Augmented 0%
• Sus2 0%
• Sus4 0%

 Figure 34. Triad Task Confusion Matrix M1

Deep Learning in Audio Chord Estimation

40

T. Aslanidis

Fourth Task

Figure 35. Fourth Task Confusion Matrix M1

On the fourth note prediction task, it is evident that the model has completely failed to
identify a single one fourth note, besides silence. Although the train prediction is 94% and
the validation prediction is 81.42% it classified as silence, all dim7, min7, maj7 and maj6
chords.

Finally, after thorough experimenting, concluded that a better result could not be achieved
only by working with recurrent layers. There was a need to implement an architecture that
would have the ability before the recurrent layers, to extract features from the input. Thus,
a recurrent convolutional architecture neural network was implemented, M2.

Deep Learning in Audio Chord Estimation

41

T. Aslanidis

4.3.2.2 Model M2 Experiments

Figure 36. Comparison CRNN with RNN

The figure, clearly depicts the difference that made the feature extraction part of the
network, dropping the validation loss significantly.

Figure 37. Callback History Accuracy FCE3

Deep Learning in Audio Chord Estimation

42

T. Aslanidis

Triad Task

 Figure 38. FCE1 Triad Task Confusion Matrix

On the other hand, with the addition of the 128 filter size convolutions the accuracy
increased as it is depicted in the matrices.

Figure 39. Left FCE3, Right FCE4 confusion matrices triad task

FCE4 and FCE3 have a little variation on the minor and major chords correct predictions
and it is understandable. The real difference comes to show when the latter two models,
could predict some of the least represented chords in the dataset – augmented and sus4.

Table 8. Triad Task model comparison accuracy

 FCE1 FCE3 FCE4

Major 94.06% 94.00% 95.39%

Minor 77.13% 78.93% 73.75%

Diminished 48.46% 44.68% 38.77%

Augmented 0.00% 31.19% 11.00%

Sus2 0.00% 0.00% 0.00%

Sus4 0.00% 0.03% 0.03%

Deep Learning in Audio Chord Estimation

43

T. Aslanidis

Fourth Task

Figure 40. FCE1 Confusion matrix on fourth task

Figure 41. Left FCE3, right FCE4 Confusion matrix on fourth task

Table 9. Fourth accuracy model comparison

 FCE1 FCE3 FCE4

N 97.59% 95.57% 96.78%

dim7 39.51% 0.05% 0.06%

min7 24.85% 34.24% 30.30%

maj7 0.00% 0.02% 0.04%

maj6 0.00% 0.10% 0.00%

Deep Learning in Audio Chord Estimation

44

T. Aslanidis

4.3.3 Imbalanced classification

As it is evident from the data analysis done on chords, and confirmed by the training
process, most chord classes are underrepresented, a problem called imbalanced
classification. When the models see 10K major chords but only 1000 minor chords it will
not be able to classify the minor chord as minor and will label them as major.

To illustrate this further, with a dataset of 10K major chord and 1000 minor, and only those
2 classes, when a track containing 10 major chords is submitted for evaluation, the model
will have 100% accuracy, but when a track with 8 minor and 2 major chords is submitted
for evaluation the accuracy will be roughly 20%.

In order to solve this problem, there are lot of different solutions and metrics, all relevant
to the dataset and problem on hand. In the case of this thesis, 2 different things can be
applied.

1. Create more instances of the underrepresented classes or delete some instances
of the overrepresented one.

2. Apply weighted loss training. This is a process, where the loss is not influenced

equally by each class that is not classified correctly. In the simple case of not
weighted loss training, imagine that each class has a weight equal to 1, and the
loss is influenced by this weight x classification error. It is feasible to apply a
different weight on each class, and thus a misclassified minor class will influence
the cross-entropy loss more than a misclassified major.

The mindset it to punish the model more for wrongly classifying a chord that is not seen
so many times, and not apply much influence when there a wrong classification of a class
that exist several instances.

From the two previously methods, only the weighted loss training made it to
implementation. In order to do that, all the input data were scanned to count instances of
classes appearances. It is important to note that weighted loss training was performed
only for triads and fourths. Due to data augmentation, the classes of root and bass notes
were uniformly distributed.

Thus, the weight of each class is computed by,

Weigh𝑡𝑐𝑙𝑎𝑠𝑠 =
max { ∑ 𝑖𝑛𝑠𝑡𝑎𝑛𝑐esclass

Alldataset
i=0 ∀ class }

∑ (𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑖==𝑐𝑙𝑎𝑠𝑠)Alldataset
i=0

Deep Learning in Audio Chord Estimation

45

T. Aslanidis

For the weighted loss training 2 different algorithms were used.

1. Used the below formula

𝐰 = 𝐥𝐨𝐠𝟐(𝐖𝐞𝐢𝐠𝐡𝐭𝐜𝐥𝐚𝐬𝐬 + 𝟏)

Figure 42. Loss model WL1

2. Use for each sample the corresponding class weight

𝐰 = 𝐦𝐢𝐧(𝐖𝐞𝐢𝐠𝐡𝐭𝐜𝐥𝐚𝐬𝐬, 𝐚) 𝐰𝐡𝐞𝐫𝐞 𝐚 𝐢𝐬 𝐚 𝐡𝐲𝐩𝐞𝐫𝐩𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫

Figure 43. Loss model WL2

Deep Learning in Audio Chord Estimation

46

T. Aslanidis

 Figure 44. All model comparison

Fourth Task

 Figure 45. WL1 fourth task confusion matrix

In comparison with the other models, this is the best performing one on this task.

Table 10. Fourth accuracy weighted model comparison

 FCE1 FCE3 FCE4 WL1

N 97.59% 95.57% 96.78% 86.7%

dim7 39.51% 0.05% 0.06% 63.4%

min7 24.85% 34.24% 30.30% 55.3%

maj7 0.00% 0.02% 0.04% 20.8%

maj6 0.00% 0.10% 0.00% 38.7%

Deep Learning in Audio Chord Estimation

47

T. Aslanidis

4.4 Post – Processing

Processing applied on data after the predictions, in order to smooth the results and
provide a better and accurate result.

4.4.1 Heuristic Algorithm

In the models presented, the last layer before classification is the Bilinear LSTM which
correlates each time step with a certain vector, and this vector is what the fully connected
layer sees in order to classify root, bass, triad and fourth. These predictions due to the
large amount of time steps and high sampling rate, certain noise might appear – random
predictions.

In order to smooth results the necessity for a certain algorithm based on the concept of
median filtering had to be implemented. The philosophy of the algorithm is to create
certain entities through time and through those entities filter the random predictions with
appearances <= 4. Firstly, in order to create a chord entity, the root predictions are
scanned, replacing the random predictions of the rest of the components.

 Root Vector Name

[0.05, 0.92, 0.03] C

[0.05, 0.92, 0.03] C

[0.05, 0.90, 0.05] C

[0.12, 0.87, 0.01] C

[0.18, 0.81, 0.01] C

[0.66, 0.32, 0.02] G

[0.55, 0.40, 0.05] G

[0.12, 0.78, 0.10] C

[0.12, 0.78, 0.10] C

[0.05, 0.92, 0.03] C

[0.02, 0.91, 0.07] C

[0.02, 0.88, 0.10] C

To explain this further, first consider the maximum size of the “noise” to be reduced. Then
consider the filter_size, and a window of size

Window_Size = 2 ∗ filter_size + 2

It is necessary 1*filter_size for the potential minor class, 1*filter_class + 1 for the over
weighting other class, and + 1 to be sure, that the filter size is not at the edges of the
window. With that window, it is feasible to can scan all the prediction data, and should it
find that a class is over weighting some minor class that fits in the filter size, the minor
class is going to be replaced with the weighted class.

Applying my post processing

filter

is going to replace those G chords

with the chord that was playing

before the noise – C

Deep Learning in Audio Chord Estimation

48

T. Aslanidis

4.5 Evaluation

In this chapter there is an extend analysis on the evaluation techniques used and explain
what each score means, as well as presenting the complete evaluation graphs for each
method used.

4.5.1 Metrics

For this thesis, were used the metrics proposed by J. Pauwels and G. Peeters [13] for
the MIREX competitions for audio chord estimation. They proposed evaluation methods
in a sound and unambiguous way. Those metrics involve scores for different elements of
this thesis, evaluating the model accuracy for predicting:

• root of the chord
• bass note
• major / minor
• triad chord
• seventh note
• Mirex score – at least 3 notes correct

Those different metrics, all has foundation on segment evaluation, they just use different
components of the reference, and evaluation to do that.

Correct Estimation False Estimation

Reference

 B:min D:min G:7 C

Estimation

 D:min G C

Root Evaluation

MajMin Evaluation

Fourth Evaluation

Mirex Evaluation

Deep Learning in Audio Chord Estimation

49

T. Aslanidis

Although, if in the reference chords instead of a B:min existed a B:min7 the Mirex
evaluation would be as below:

Reference

 B:min7 D:min G:7 C

Estimation

 D:min G C

Mirex Evaluation

Because Mirex metrics evaluates if the 2 chord have at least 3 same notes. B:min7 and
D:min are very similar chords, and both contain {D, F, A}. B:min7 is a D:min with a B on
the bass. In turn, Mirex metric sees them as similar chords.

The scores are calculated as a percentage:

Total_of_correctly_predicted_time_frames

Total_time_frames_of_song
∗ 100%

The test set is the CD1 containing 17 singles (out of 180).

Table 11. Mirex statistics all models

Root Third MajMin MIREX Seventh

Thirds
Inversion

MajMin
Inversion CSR

M1 80.44% 75.36% 69.24% 74.77% 51.33% 70.19% 65.59% 55.64%

FCE1 84.02% 80.99% 74.78% 80.75% 57.45% 75.32% 70.63% 61.24%

FCE3 84.96% 82.12% 75.88% 82.33% 58.89% 76.66% 71.91% 62.76%

FCE4 85.72% 82.51% 75.64% 82.61% 58.52% 76.36% 71.65% 62.49%

FCV1 84.11% 81.56% 75.32% 81.98% 58.37% 76.06% 71.33% 62.12%

FCV2 84.32% 81.15% 74.80% 81.42% 58.35% 75.94% 71.25% 62.05%

WL1 84.97% 81.38% 75.08% 82.99% 56.36% 76.08% 71.39% 60.08%

Deep Learning in Audio Chord Estimation

50

T. Aslanidis

Figure 46. Mirex statistics model comparison bar chart

Although the dataset used is not sufficient to make definite conclusions, big changes in
the architecture have an impact in performance. The simple recurrent model has lower
Mirex statistics on all areas. Upon using the M2 architecture, with the FCE1 model that
goes up to 64 filter size convolutions, there is a significant increase in the Mirex accuracy
of 5 to 6 % depending on the category. On top of that, using further convolutional layers
with 128 filter size, further increased the Mirex statistics by 0.5 to 1.5 %.

Root Third MajMin Mirex Seventh Thirds Inv MajMin Inv CSR

0

10

20

30

40

50

60

70

80

90

100
M1

FCE1

FCE3

FCE4

WL1

Deep Learning in Audio Chord Estimation

51

T. Aslanidis

5. COMPARISON WITH MIREX PAPERS

The comparison between this thesis models and the models of the MIREX competition is
not representative, and that is due to the fact, that the models on MIREX were trained on
many more data than the presented ones, thus they are generalized over a number of
different songs. As described earlier, due to the nature of this thesis and the copyrights
of the songs, it is difficult to acquire the large amount of data that would be a lot helpful.

As an example, the McGill Billboard has been made public, but only several features.
More specifically, all the songs with the annotations are published but with chromagrams
of 36 frequency bands. For the presented models, a very different representation was
used, and thus couldn’t not use what the McGill university provides publicly. Quoting from
the MIREX page,

“The training and testing divisions differ for the two data sets. The Isophonics has been
available publicly for so long that it no longer makes sense to offer a separate training
phase; as such, the entire data set will be used for testing, as in previous years. “

In turn, the statistics provided by Mirex are extracted from testing on all of the Beatles
dataset. On the other hand, my scores were extracted by testing on CD1 containing all
the singles of Beatles. Those songs, contain a decent representation of chords in the
same analogies they appear on the whole dataset. As a result, the goal was to provide
some scores that will have a minor relevance to provide a head to head comparison
between state of the arts models and mine.

Figure 47. Mirex statistics state of the art model comparison bar chart

As it is clear from the graph, the area that my model performs most poorly against the
others is the Mirex Seventh, due to Seventh being the task with the least training values.

79.89
76.5

67.79

74.33

86.75 86.25

75.87

84.4482.03
78.67

69.2

76.84

84.96

75.88

58.9

71.91

Root MajMin Seventh MajMin Inv

0

10

20

30

40

50

60

70

80

90

100

CLSYJ1

JLCX1

SG1

FCE3

Deep Learning in Audio Chord Estimation

52

T. Aslanidis

6. FUTURE WORK

For the future, this thesis has a lot more ground for innovation and experimentation.

Firstly, having more data in hand would be extremely helpful – which due to copyright of
audio tracks, was difficult to do so – in datasets like Billboard 2012, USpop2002 and
Robbie Williams. With these datasets, possibly there would be a greater and more
general model, that could identify chords, on a number of different styles (in the modern
western pop music).
Thus, the difference between similar models like FCE3 and FCE4 might be more evident
and provide with results that will lead into a position to make more certain conclusions
about.

Secondly, there is ground for a more state of the art system of post processing. From
Viterbi algorithm, to try and embed models like word embeddings into chord sequences,
in order to filter the predictions with the most possible next chord in a sequence.

Lastly, there is the matter of the beat tracking – which is also a separate MIREX
classification task – which can be used, as a secondary input, for the model to decode
better the time where the chord will change.

Deep Learning in Audio Chord Estimation

53

T. Aslanidis

7. CONCLUSION

To come to a conclusion, M2 architecture over performed the simple M1 architecture, and
it is evident from all performance graphs and statistics. The CNN feature extraction part
of the model provided the Bi – LSTM with very good feature matrices and led to decent
representation of the input data for all 4 tasks. In more depth, the performance of all the
models of the M2 architecture, are performing very well in the same area. It is not safe to
make any definite conclusions from these results, since the training and testing datasets
are limited. Nevertheless, they provide a good idea of which one could scale better on a
larger dataset, with more chords of the under – represented classes. Also, the advantages
of domain reduction by separating the chord recognition task in 4 different tasks are
substantial.

Deep Learning in Audio Chord Estimation

54

T. Aslanidis

ABBREVIATIONS – ACRONYMS

CNN Convolutional neural network

RNN Recurrent neural network

LSTM Long Short-Term Memory

CRNN Convolutional Recurrent Network

Bi – LSTM Bidirectional LSTM

F C Fully Connected Layer

MLP Multi – Layer Perceptron

DSP Digital Signal Processing

STFT Short Time Fourier Transform

MIREX Music Information Retrieval Evaluation eXchange

MajMin Major Minor

CSR Chord Symbol Recall

Deep Learning in Audio Chord Estimation

55

T. Aslanidis

REFERENCES

[1] Ian Goodfellow and Yoshua Bengio and Aaron Courville “Deep Learning” MIT Press. (2016).

[2] Jan Schlüter “Deep Learning for Event Detection, Sequence Labelling and Similarity Estimation in Music

Signals” Department of Computational Perception, Johannes Kepler University Linz. (2017)

[3] Harte, Christopher. Towards automatic extraction of harmony information from music signals. (2010).

[4] Christon-Ragavan Nadar , Jakob Abeßer , Sascha Grollmisch “Towards CNN-based Acoustic Modeling
of Seventh Chords for Automatic Chord Recognition.” SMC (2019).

[5] Bruno di Giorgi, Massimiliano Zanoni, Augusto Sarti, Stefano Tubaro, Automatic chord recognition based
on the probabilistic modeling of diatonic modal harmony, in Proceedings of the 8th international workshop
on multidimensional (nD) systems – nDS13 – November 9 – September 11, 2013, Erlangen, Germany

[6] Vijayaditya Peddinti, Daniel Povey, Sanjeev Khudanpur. “A time delay neural network architecture for
efficient modeling of long temporal contexts.” INTERSPEECH (2015).

[7] Sak, Hasim, Andrew W. Senior and Françoise Beaufays. “Long short-term memory recurrent neural
network architectures for large scale acoustic modeling.” INTERSPEECH (2014).

[8] Felix A. Gers, Jurgen Schmidhuber, Fred Cummins “Learning to Forget: Continual Prediction with LSTM”
Neural Computation (2000).

[9] Hochreiter S. and Schmidhuber J. “Long short-term memory.” Neural Computation (1997).

[10] Mike Schuster and Kuldip K. Paliwal “Bidirectional Recurrent Neural Networks.” IEEE (1997).

[11] Jyh-Shing Roger Jang, Tzu-Chun Yeh, Song-Rong Lee, I Chien, Chord Estimation, Mirex 2019
submission

[12] Junyan Jiang, Ke Chen, Wei Li, Gus Xia “Large-vocabulary Chord Transcription Via Chord Structure
Decomposition” ISMIR 2019

[13] J. Pauwels, G. Peeters, "Evaluating automatically estimated chord sequences," 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, 2013, pp. 749-753.

[14] Jason Brownlee, How to Prepare Univariate Time Series Data for Long Short-Term Memory Networks,
https://machinelearningmastery.com/prepare-univariate-time-series-data-long-short-term-memory-
networks/

[15] Librosa library glossary https://librosa.github.io/librosa/glossary.html

[16] V. Lostanlen, C.-E. Cella. Deep convolutional networks on the pitch spiral for music instrument
recognition. In Proceedings of the 17th International Society for Music Information Retrieval Conference
(ISMIR) 2016

[17] Sergey Ioffe, Christian Szegedy - Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift, 2015

[18] Stefan Gasser, Franz Strasser, SG1, Mirex 2018 submission

[19] Mirex Results – https://www.music-ir.org/mirex/wiki/2018:Audio_Chord_Estimation_Results

[20] Taemin Cho dataset https://github.com/tmc323/Chord-Annotations

[21] Isophonics dataset. Centre for Digital Music (C4DM) at Queen Mary, University of London

[22] Jason Brownlee – Train neural networks with noise to reduce overfitting --
https://machinelearningmastery.com/train-neural-networks-with-noise-to-reduce-overfitting/

https://machinelearningmastery.com/prepare-univariate-time-series-data-long-short-term-memory-networks/
https://machinelearningmastery.com/prepare-univariate-time-series-data-long-short-term-memory-networks/
https://librosa.github.io/librosa/glossary.html
https://www.music-ir.org/mirex/wiki/2018:Audio_Chord_Estimation_Results
https://github.com/tmc323/Chord-Annotations
http://www.elec.qmul.ac.uk/digitalmusic/
http://www.qmul.ac.uk/
https://machinelearningmastery.com/train-neural-networks-with-noise-to-reduce-overfitting/

Deep Learning in Audio Chord Estimation

56

T. Aslanidis

[23] Jason Brownlee in Deep Learning for Computer Vision - How Do Convolutional Layers Work in Deep
Learning Neural Networks? - https://machinelearningmastery.com/convolutional-layers-for-deep-learning-
neural-networks/

https://machinelearningmastery.com/convolutional-layers-for-deep-learning-neural-networks/
https://machinelearningmastery.com/convolutional-layers-for-deep-learning-neural-networks/

