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Abstract

In the present master thesis a formalism is developed for obtaining the geometric
phase and the Berry curvature, within the framework of the relativistic multiple scatter-
ing Korringa-Kohn-Rostoker (KKR) method and the density functional theory for the
calculation of the electronic structure of solids. The physical significance of geometric
phase is known to be featured, among others, to the anomalous Hall effect theory. The
Berry curvature which is defined by the Bloch states over the energy bands, stems from
the spin-orbit interaction and exhibits very strong variations in the points where the
degeneracy of the energy bands due to this interaction is raised. The formalism is ap-
plied in the case of the ferromagnetic bcc Fe, for which the numerical stability of the
method and the dependence on the spin-orbit interaction strength is examined in a se-
ries of numerical experiments. Finally, the temperature dependence of the anomalous
Hall conductivity is also studied.
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Περίληψη

Στην παρούσα διπλωματική εργασία αναπτύσσεται ο ϕορμαλισμός εύρεσης της γεω-
μετρικής ϕάσης (Berry phase) και της γεωμετρικής καμπυλότητας (Berry curvature) για
σιδηρομαγνητικά υλικά, στο πλαίσιο της σχετικιστικής μεθόδου πολλαπλής σκέδασης
των Korringa, Kohn και Rostoker (KKR) και της θεωρίας συναρτησιακού της πυκνό-
τητας για τον υπολογισμό της ηλεκτρονικής δομής των στερεών. Η ϕυσική σημασία της
γεωμετρικής ϕάσης είναι γνωστό ότι αναδεικνύεται, μεταξύ άλλων, στη θεωρία του ανώ-
μαλου ϕαινομένου Hall. Η γεωμετρική καμπυλότητα, που ορίζεται μέσω των καταστά-
σεων Bloch πάνω στις ενεργειακές ζώνες, εκρέει από την αλληλεπίδραση σπιν-τροχιάς
και παρουσιάζει πολύ ισχυρές διακυμάνσεις στα σημεία όπου αίρεται ο εκϕυλισμός των
ενεργειακών ζωνώνλόγωαυτής της αλληλεπίδρασης. Οϕορμαλισμός εϕαρμόζεται στην
περίπτωση του σιδηρομαγνητικού bcc Fe, για την οποία εξετάζεται η αριθμητική ευστά-
θεια της μεθόδου και η εξάρτηση από την ισχύ της αλληλεπίδρασης σπιν-τροχιάς σε
μια σειρά από αριθμητικά πειράματα. Τέλος, μελετάται και η εξάρτηση της ανώμαλης
αγωγιμότητας Hall από την θερμοκρασία.
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Chapter 1

Introduction

The concept of geometric phase was first introduced byM. Berry in 1984 [1]. He dis-
covered that, when a system described by a parameter-dependent Hamiltonian evolves
adiabatically around a closed path, it acquires a phase. Because that phase results from
the geometrical properties of the parameter space, he named it geometric phase. How-
ever, it is more commonly established as Berry phase and, together with the Berry con-
nection and the Berry curvature, they are the basis of the Berry phase theory. The Berry
phase depends only on the geometry of the closed path and not on the parameter rate
of change on it, as long as the adiabatic approximation holds. Also, the Berry phase is a
gauge-invariant quantity.

Berry's discovery showed that the mathematical concepts of geometry and topology
can enter in many fields of Condensed Matter Physics. This helped into better under-
standing, predicting and discovering various effects [2]. Some of them are the family of
Hall effects in metals and insulators, the field of topological materials, the electric polar-
ization and the orbital magnetization.

As far as the interest of this thesis is concerned, theBerry phase theory gave the oppor-
tunity to reformulate the semi-classical equations ofmotion and interpret the anomalous
velocity in terms of the Berry curvature [3]. This led to attribute the intrinsicmechanism
behind the anomalous Hall effect to the Berry curvature that is derived from the occu-
pied Bloch states. The significance of this discovery was that it made possible to examine
the charge and spin transport properties in solids via first-principles calculations.

In this thesis, the Berry curvature of Bloch states is calculated within the KKR frame-
work, following the implementation of Gradhand et al. [4]. The studied system is the
ferromagnetic bcc Fe. Compared to [4], the Dirac equation is solved within the full-
potential scalar relativistic approximation, with the addition of a correction represent-
ing the SOC. Also, a different choice for the normalization of the scattering solutions is
made. Consequently, a new set of equations is derived for the Abelian Berry connection
and the Abelian Berry curvature. The equations are expressed in terms of the eigen-
vectors and the eigenvalues of the KKR matrix. The calculated Berry curvature is then
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2 1. Introduction

used to find the intrinsic anomalous Hall conductivity. It should be noted that the Berry
phase method is complementary to the Kubo-Bastin formula that was implemented by
Ködderitzsch et al. [5] in the relativistic KKR formalism within the Coherent Potential
Approximation (CPA) that treats chemical disorder in an element-specific manner.

This thesis is structured as follows. In Chapter 2, the general concept of Berry phase
is studied. At first it is introduced for an abstract quantummechanical system and then it
is applied on the Bloch electrons of a crystalline solid. Also, the fundamental expressions
for the Berry phase, the Berry connection and the Berry curvature are presented.

In Chapter 3, the KKRGreen functionmethod is presented. Firstly, a brief definition
of the Green function is given. Afterwards, the single-site scattering problem is exam-
ined and then, the multiple scattering problem from all the atoms within the crystal is
solved. From the solution of the multiple scattering problem, follows the formulation of
the KKR wavefunctions.

In Chapter 4, the anomalousHall effect is reviewed. Starting from an introduction to
its origins and a historical overview of its study, focus is given to the intrinsicmechanism
behind it. The semi-classical equations of motion are reformulated by considering a
wave-packet constructed from Bloch states, under the presence of external fields up to
first order. In this way, an expression for the anomalous velocity is derived in terms of
the Berry curvature. Last, for the electron transport problems, the intrinsic anomalous
Hall conductivity can be calculated from the Berry curvature.

In Chapter 5, the method to calculate the Berry curvature within the KKR frame-
work, developed for the purpose of this thesis, is described. The resulting equations for
the Berry connection and the Berry curvature depend on the eigenvectors and the eigen-
values of the KKRmatrix. The normalization of the KKRwavefunctions implies a special
treatment for the calculation of the derivative of the eigenvectors. This treatment is also
analyzed. Moreover, the KKR representation of matrices which appear in the relations
for the Berry curvature is presented. The matrices contain an integration over the unit
cell, which is also treated specially in the KKR framework, because of the entrance of the
shape functions and the expansions in spherical harmonics. A method to calculate vec-
tor matrices with integrals of four spherical harmonics is developed. Finally, the relation
to calculate the anomalous Hall conductivity from the energy resolved Berry curvature
is introduced.

Chapter 6 contains the results of the calculations for the ferromagnetic bcc Fe. At
first, the Berry curvature at the Fermi surface is studied. Then, the energy resolved Berry
curvature is examined. In the end, the anomalous Hall conductivity is calculated. In
the discussion of the results, the dependence of the Berry curvature on the spin-orbit
coupling is understood. Furthermore, the behavior of the Berry curvature under the
scaling of the spin-orbit coupling strength is seen and a comparison to other works is
made.



Chapter 2

Berry phase in quantummechanics

The basic aspects of the Berry phase concept introduced in the following Chapter are
based on the Refs. [2] and [6].

2.1 Berry phase and adiabatic evolution
At first, a quantum system described by a Hamiltonian that depends on a parameter

set λ = (λ1, λ2, ...) is considered. The Hamiltonian Ĥ(λ) and its discrete eigenspec-
trum {ϵn(λ)} are assumed to be smooth (have continuous derivatives) and unique func-
tions ofλ in the parameter space. For the instantaneous set of eigenstates {|nλ⟩} of this
Hamiltonian holds

Ĥ(λ)|nλ⟩ = ϵn(λ)|nλ⟩. (2.1)

The eigenstates {|nλ⟩} are not completely determined from (2.1), as an arbitrary λ-
dependent phase factor of {|nλ⟩} is still allowed. This arbitrariness can be removed
if the following gauge transformation is made

|nλ⟩′ = eiζn(λ)|nλ⟩. (2.2)

The arbitrary complex phase factor ζn(λ), also called gauge, is considered smooth and
single valued along these regions of the parameter space. The freedom of choice between
{|nλ⟩} and {|nλ⟩}′ is called gauge freedom.

During the time evolution of the system, the parameter λ(t) is considered to move
along a closed path C in the parameter space, with a period T such that λ(0) = λ(T ).
The time-dependent Schrödinger equation of the system is

Ĥ(λ(t))|ψ(t)⟩ = iℏ
∂

∂t
|ψ(t)⟩. (2.3)

The system is considered to evolve according to the adiabatic approximation [7], which
means that it remains in its instantaneous eigenstate throughout the time evolution. A
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4 2. Berry phase in quantum mechanics

state |ψ⟩ can be written as

|ψ(t)⟩ = eiγn(t)e−iαdyn(t)|nλ(t)⟩, (2.4)

whereαdyn(t) =
1
ℏ

∫ t

0
ϵn(t

′)dt′ is the dynamical phase obtained due to the time evolution.
The first exponential term is the geometric, ormore commonly known as Berry phase. By
demanding that |ψ(t)⟩ satisfies (2.3), γn is given by [1]

γn = i

∮
C
⟨nλ|∇λ|nλ⟩dλ. (2.5)

Thus, the Berry phase depends only on the geometric properties of the closed path C
and is independent of the way that λ(t) varies in time, as long as it is slow enough
for the adiabatic approximation to hold. It is obtained due to the variation of the state
with the changing Hamiltonian. It follows from the normalization ⟨nλ|nλ⟩ = 1, that
⟨nλ|∇λ|nλ⟩ = −⟨nλ|∇λ|nλ⟩∗ for any λ, so Berry phase is a purely real quantity.

In the gauge transformation considered in (2.2) the phase eiζn(λ) is single valued,
since along the closed path C

ζn(λ(0))− ζn(λ(T )) = 2π × integer. (2.6)

So the gauge transformation (2.2) yields for γn

γ′n = γn −
∮
C
dζn = γn. (2.7)

This means that the Berry phase is a gauge-invariant quantity. The fact that M. Berry
chose the parameter λ to move along a closed path C gave physical meaning to the geo-
metric phase. For a simple, constant in time, parameter-dependent Hamiltonian, only
the dynamical phase αdyn(t) occurs after time evolution. If the Hamiltonian evolves in
time according to the adiabatic approximation but the path C is not closed, then a geo-
metric phase also occurs, but it can be canceled out by a suitable gauge choice. A more
detailed analysis about the geometric phase can be found in [7].

2.2 Berry connection and Berry curvature
The expression for the Berry phase (2.5) can be written in the form

γn =

∮
C
An(λ)dλ, (2.8)

where the Berry connectionAn is introduced as the vector field

An(λ) = i⟨nλ|∇λ|nλ⟩. (2.9)



2.2 Berry connection and Berry curvature 5

It is obvious that the Berry connection is a purely real quantity. Although, unlike the
Berry phase, it is not gauge-invariant and thus not observable. A gauge transformation
(2.2) for the connection gives

A′
n = An −∇λζn. (2.10)

The Berry curvature Ωn is defined as an anti-symmetric, second-rank, field tensor
with components

Ωn
ij(λ) = ∂λi

An
j (λ)− ∂λj

An
i (λ) = −2Im

⟨
∂

∂λi

nλ

∣∣∣∣ ∂∂λj

nλ

⟩
. (2.11)

By its definition, the Berry curvature is purely real and gauge-invariant under the gauge
transformation (2.2), so it is also observable. If the parameter space is three-dimensional,
with the help of Stoke's theorem, the Berry phase (2.5) can be written as

γn =

∮
C
An(λ)dλ =

∫
S
Ωn(λ)dS, (2.12)

so Berry curvature can be seen in a pseudovector form as

Ωn(λ) = ∇λ ×An(λ). (2.13)

The Berry curvature components are related to its tensor form via the relation

Ωn
i =

1

2
ϵijkΩ

n
jk, (2.14)

with ϵijk the Levi-Civita anti-symmetric tensor. In analogy to electrodynamics, Ωn can
be seen as a vector field derived from the vector potential An and γn as the flux of Ωn

through S .
A more computationally useful relation for the Berry curvature can be obtained, if

it is expressed in terms of the eigenstates of the Hamiltonian. With the help of the com-
pleteness relation of the eigenstates set, the equation (2.13) can be written as

Ωn(λ) = −Im⟨∇λnλ| × |∇λnλ⟩ (2.15)

= −Im
∑
m̸=n

⟨∇λnλ|mλ⟩ × ⟨mλ|∇λnλ⟩. (2.16)

Using the relation ⟨nλ|mλ⟩ = δnm follows that ⟨nλ|∇λmλ⟩ = −⟨∇λnλ|mλ⟩. Then,
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together with the fact that the Hamiltonian operator is Hermitian, (2.1) gives

∇λĤ(λ)|nλ⟩+ Ĥ(λ)|∇λnλ⟩ = ∇λϵn(λ)|nλ⟩+ ϵn(λ)|∇λnλ⟩

(2.17)
·⟨mλ|
=⇒
m ̸=n

⟨mλ|∇λĤ(λ)|nλ⟩+ ϵm(λ)⟨mλ|∇λnλ⟩ = ϵn(λ)⟨mλ|∇λnλ⟩ (2.18)

=⇒ ⟨mλ|∇λnλ⟩ =
⟨mλ|∇λĤ(λ)|nλ⟩
ϵn(λ)− ϵm(λ)

, for m ̸= n.

(2.19)

Therefore, for the Berry curvature yields

Ωn(λ) = −Im
∑
m̸=n

⟨nλ|∇λĤ(λ)|mλ⟩ × ⟨mλ|∇λĤ(λ)|nλ⟩
[ϵn(λ)− ϵm(λ)]2

. (2.20)

The latter equation is very useful for numerical calculations because only the diagonal-
ization of the Hamiltonian is needed and the differentiation of the eigenstates is avoided.
The eigenvalue difference in the denominator denotes that when two eigenvalues are
close the Berry curvature becomes larger and even diverges. This happens at degeneracy
(ϵn = ϵm) and near degeneracy (ϵn ≃ ϵm) points of the energy band. Those points can
be seen as the sources of Berry curvature around them. Far from degeneracies, the Berry
curvature is rather small causing its shape to be similar to a δ-distribution function. In
analogy to electrodynamics, those degeneracy points can be seen as monopoles in the
parameter space.

The above discussion is restricted only in the case of a non-degenerate eigenvalue
spectrum which is also known as Abelian case. If there exists an N-fold degeneracy in
the eigenvalues, then one deals with the non-Abelian case. In contrast to the Abelian
Berry curvature which is a vector, the non-Abelian Berry curvature is a vector-valued
matrix in the N-dimensional parameter space. The matrix elements of the non-Abelian
Berry curvature are given by

Ωn
N,ij(λ) = ∂λi

An
N,j(λ)− ∂λj

An
N,i(λ) + [An

N,i(λ),An
N,j(λ)], (2.21)

where forN = 1 it is reduced to the Abelian case. The concept of the non-Abelian case
is beyond the context of this thesis and so it is no further discussed.

2.3 Berry connection and Berry curvature for Bloch elec-
trons

Moving forward from the introduction of the Berry phase to an abstract quantum
system described by a parameter-dependent Hamiltonian, in 1989 Zak [8] proved the
occurrence of the Berry phase effect in crystalline solids.
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The band structure of a crystal is determined by the single-electron Hamiltonian

Ĥ =
p̂2

2m
+ V̂ (r), (2.22)

where V̂ (r) = V̂ (r + R) is the periodic potential and R is the Bravais lattice vector.
The Bloch's theorem implies that the single-electron wavefunctions can be written in
the form

ψnk(r) = eikrunk(r), (2.23)

where unk have the periodicity of the lattice

unk(r) = unk(r+ R). (2.24)

The discrete indexn corresponds to the energy bands, while thewavevector k is restricted
inside the Brillouin zone (BZ). Then, over the unit cell, the wavefunctions satisfy the
periodic boundary conditions

ψnk(r+ R) = eikRψnk(r). (2.25)

At this point, the system does not meet the requirements of the Berry phase theory as
it is described by a k-independent Hamiltonian (2.22) and k-dependent boundary con-
ditions (2.25). In order for the Hamiltonian to be k-dependent, the following unitary
transformation is made

Ĥ(k) = e−ikrĤeikr = (p̂+ ℏk)2

2m
+ V̂ (r). (2.26)

Then, instead of solving the eigenvalue problem

Ĥψnk(r) = ϵnkψnk(r), (2.27)

the following is solved
Ĥ(k)unk(r) = ϵnkunk(r). (2.28)

The transformed Ĥ(k) is also mentioned as the Hamiltonian in crystal momentum rep-
resentation. The eigenvalue problem (2.27) is now rewritten in terms of an eigenvalue
problem of a k-dependent Hamiltonian which can be studied within the Berry phase
concept.

If the Brillouin zone is considered as the parameter space of the wavevector k, then
from (2.5) the Bloch states pick up a Berry phase

γn = i

∮
C
⟨unk|∇kunk⟩dk. (2.29)
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For non-degenerate Bloch bands n (Abelian case), the corresponding Berry connection
according to (2.9) is

An(k) = i⟨unk|∇kunk⟩, (2.30)

while from (2.13) the corresponding Berry curvature is

Ωn(k) = i⟨∇kunk| × |∇kunk⟩. (2.31)

As described above, the Bloch states exhibit an inherent Berry phase for the reason
that the wavevector k varies continuously in the Brillouin zone. Berry phase can also
appear when k is perturbed by externally applying small, electric or magnetic, fields.
Therefore, the Berry phase concept contributes in the proper description of the dynamics
of Bloch electrons.



Chapter 3

The Korringa-Kohn-Rostoker (KKR)
Green function method

In 1947 Korringa [9] and in 1954 Kohn and Rostoker [10] introduced the Korringa-
Kohn-Rostoker (KKR) multiple scattering method for the calculation of the electronic
structure of materials. Firstly, the scattering properties of each atomic scattering site
are determined, resulting in a single-site scattering matrix. Then, the multiple scatter-
ing by all atoms in the lattice is taken into account, by demanding that the incoming
wave at one lattice site equals the sum over the outgoing waves from all other scatter-
ing centers. Although, this method was introduced as a wavefunction method, later it
was reformulated as a Green function method [11--14]. The Green function of the lat-
tice is being calculated from the Green function of free space via the Dyson equation.
The adopted formalism for the KKR Green function method in this thesis is outlined in
references [15--22].

3.1 Definition of the Green function
For a quantum mechanical system the Hamiltonian operator in real-spin space is

Ĥ = K̂ ⊗ σ̂0 + V̂ (3.1)

where, K̂ is the kinetic energy operator, σ̂0 the identity operator in spin space and V̂ the
potential operator. For this system, the Green operator is defined as

(E − Ĥ)Ĝ(E) = Î. (3.2)

In terms of the eigenfunctions ψi and the eigenergies ϵi of Ĥ, the (retarded) Green
function can be expressed in its spectral representation in real-spin space

Gσ,σ′
(r, r′;E) = ⟨r, σ|Ĝ(E)|r′, σ′⟩ =

∑
i

ψσ
i (r)ψ

σ′†
i (r′)

E − ϵi + iΓ
(3.3)

9



10 3. The Korringa-Kohn-Rostoker (KKR) Green function method

with σ ∈ {↑, ↓}. In the limit of Γ → 0+, the Green function represents an outgoing
wave at r, generated by a source at r′. Due to the small imaginary part iΓ, the Green
function has poles for real energies, but is analytic for ImE > 0. For this reason, energy
integrals of the Green function converge by a transformation to contour integrals closed
in the upper complex energy plane.

From the latter equation, the imaginary part of G can be related to the spectrally
space- and spin- resolved density of states nσ(r;E). After space integration and by using
the Dirac identity, the spectral density of states is obtained

nσ(r, E) = − 1

π
ImGσ(r, r;E). (3.4)

3.2 The Voronoi construction
In order to calculate the Green function in the KKR formalism a division of the space

into atomic cells centered at the nuclei is needed. This is realized by a Voronoi construc-
tion which assigns each space point to its closest atomic cell. After this division, the
Green function of each atomic cell is being calculated individually. Then, for the full
Green function of the crystal, only a connection of all the atomic solutions is needed.
The space division is performed by defining a real space vector x as

x = r+ Rn, (3.5)

where Rn is a lattice vector and r is locally defined only within a cell n. The Voronoi
construction of the atomic cells and the system of coordinates are shown in Fig.(3.1).

The division into individual atomic cells is also taken into account for the calculation
of the crystal potential

V (x) =
∑
n

V n(x− Rn), V n(r) =

{
V (r+ Rn), if r+ Rn ∈ cell n
0, otherwise.

(3.6)

For integrals where the the domain of integration is restricted to the volume of the
atomic cell, the shape functionΘn(r) of each cell is introduced [21]

Θn(r) =

{
1, if r+ Rn ∈ cell n
0, otherwise.

(3.7)

In systems with more than one atom per unit cell, an additional vector χµ is needed
to define the position of the µth atom within the unit cell. Then the real space vector is
written as

x = r+ Rn + χµ (3.8)
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and the crystal potential as

V nµ(r) =

{
V (r+ Rn + χµ), if r ∈ cell {n, µ}
0, otherwise.

(3.9)

Figure 3.1: Illustration of the atomic cells (blue lines) found by the Voronoi construction. In
the center of the cells the crystal atoms are shown in gray color.

3.3 Scattering theory

3.3.1 Single-site scattering

First the case of scattering from the potential of a single atom in free space is being
studied. The Hamiltonian of the reference potential consists of only the kinetic energy
operator. The spin degree of freedom can be neglected for this case because the Hamil-
tonian is identical for the two spin states. The eigenfunctions of free space are incoming
plane waves

ϕk(r) = ⟨r|ϕk⟩ = eikr (3.10)

=
∑
L

4πiljl(κr)YL(r̂)YL(k̂). (3.11)
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The plane waves are expanded in real spherical harmonics YL(x̂), with expansion coef-
ficients given by the spherical Bessel functions jl(x). In the angular momentum repre-
sentation the multiple index L = (l,m) is used, together with κ = |k| =

√
Ek in atomic

Rydberg units (ℏ = 1, e2 = 2,me = 1/2, c = 2/α ≈ 274).
The Green function of free space is

g(r, r′;E) = − 1

4π

eiκ|r−r′|

|r− r′|
(3.12)

=
1

rr′

∑
L

YL(r̂)gl(r, r′;E)YL(r̂′). (3.13)

The Green function is also expanded in real spherical harmonics, with expansion coeffi-
cients defined as

gl(r, r′;E) = κrr′
[
θ(r′ − r)jl(κr)hl(κr

′) + θ(r − r′)hl(κr)jl(κr
′)
]
, (3.14)

where hl(κr) are the spherical Hankel functions.
If a perturbing potential of finite range V̂ embedded in free space is considered, its

representation in real- and spin-space will be

V σσ′
(r, r′) =


∑
L,L′

1

r2
V σσ′

LL′ (r)YL(r̂)YL′(r̂′)δ(r − r′), if |r| ≤ R

0, if |r| > R .

(3.15)

The Lippmann-Schwinger equation for the eigenfunctions of the corresponding Hamil-
tonian in spinor form is

Ψk,s(r) = eikrχs +

∫
dr′dr′′g(r, r′)V(r′, r′′)Ψk,s(r′′), (3.16)

where s ∈ {↑, ↓} and V(r′, r′′) is a (2 × 2) matrix in spin space. The eigenfunctions
Ψk,s(r) are (2 × 1) spinors in Schrödinger-Pauli theory, or (4 × 1) spinors in Dirac
theory.

The eigenfunctions are expanded in real spherical harmonics as [22, 23]

Ψk,s(r) =
∑
L

4πilRs
L(r;E)YL(k̂) (3.17)

Rs
L(r;E) =

∑
L′

1

r
Rs
L′L(r;E)YL′(r̂). (3.18)
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By replacing the expansions in Eq.(3.16), the Lippmann-Schwinger equations for the
scattering solutions are produced

Rs
L′L(r;E) = JL(r;E)δL′,Lχ

s +
∑
L′′

∫
dr′′gl′(r, r

′′;E)VL′L′′(r′′)Rs
L′′L(r

′′;E) (3.19)

SsL′L(r;E) = HL(r;E)β
s
L′L(E) +

∑
L′′

∫
dr′′gl′(r, r

′′;E)VL′L′′(r′′)SsL′′L(r
′′;E),

(3.20)

where β matrix is defined as

βs
L′L(E) = δL′,Lχ

s − κ

∫
dr′JL(r

′;E)
∑
L′′

VL′,L′′(r′)SsL′′L(r
′;E) (3.21)

and the abbreviations JL(r;E) = rjL(κr) and HL(r;E) = rhL(κr) are used. The
scattering functionsRL(r), SL(r) are called, respectively, regular (convergewhen r → 0)
and irregular (diverge when r → 0) right solutions of the radial Lippmann-Schwinger
equation. They are (2 × 1) spinors in Schrödinger-Pauli theory, or (4 × 1) spinors in
Dirac theory. Similarly, there exist regular and irregular left solutions, R̄L(r) and S̄L(r)
respectively [22, 23]

R̄s
LL′(r;E) = J̄L(r;E)δL,L′χs +

∑
L′′

∫
dr′′R̄s

L′′L(r
′′;E)VL′′L′(r′′)gl′(r

′′, r;E) (3.22)

S̄sLL′(r;E) = β̄
s
LL′(E)H̄L(r;E) +

∑
L′′

∫
dr′′S̄sL′′L(r

′′;E)VL′′L′(r′′)gl′(r
′′, r;E),

(3.23)

where β̄ matrix is defined as

β̄
s
LL′(E) = δL,L′χs − κ

∫
dr′R̄s

LL′′(r′;E)
∑
L′′

VL′′,L′(r′)HL′(r′;E). (3.24)

The left solutions are (1× 2) spinors in Schrödinger-Pauli theory, or (1× 4) spinors in
Dirac theory.

In this scattering problem, the Green function can be expanded in terms of the cor-
responding right and left scattering solutions, yielding the expression

Gs
LL′(r, r′;E) = κ

∑
L′′

[
θ(r′−r)Rs

LL′′(r;E)S̄sL′′L′(r′;E)+θ(r−r′)SsLL′′(r;E)R̄s
L′′L′(r′;E)

]
.

(3.25)
For the atomic transitionmatrix (t-matrix), the expression which occurs after expan-

sion into spherical harmonics and integration over the angular part is

tss
′

LL′(E) =
∑
σ,σ′

∑
L′′

∫
drδs,σJL(r;E)V

σσ′

L,L′′(r)Rσ′s′

L′′L′(r;E). (3.26)
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3.3.2 Multiple scattering theory
Next the case of multiple scattering from all the atoms within the crystal is studied.

A set of identical scatterers at lattice positions Rn, with n = 1, ..., N , is considered. The
periodic potential is given by

V σσ′
(r+ Rn, r′ + Rn′) = δn,n′V σσ′

(r, r′), (3.27)

where V σσ′
(r, r′) is the single scattering potential of each identical atomic cell. The fol-

lowing analysis is based on the demand that the incoming wave at site n equals the sum
over the scattered waves from all other sites n′.

The expansion coefficients of the Green function of free space for the multiple scat-
tering problem, or also called structure constants, are evaluated from

gnn
′

ΛΛ′ = −δσ,σ′(1− δn,n′)4πκ
∑
L′′

il−l′+l′′CLL′L′′hL′′(Rn − Rn′ ;E), (3.28)

where the Gaunt coefficients CLL′L′′ =
∫
dΩYL(r̂)YL′(r̂)YL′′(r̂) and the multiple index

Λ = (L, s) = (l,m, s) are introduced.
The Green function for the periodic set of identical scatterers has the form [23]

G(r+ Rn, r′ + Rn′ ;E) = δn,n′Gs(r, r′;E) +
∑
Λ,Λ′

RΛ(r;E)Gnn′

ΛΛ′(E)R̄Λ′(r′;E). (3.29)

The first term refers to the single site problem, while the second term refers to the mul-
tiple scattering problem. The coefficientsGnn′

ΛΛ′(E) are called structural Green functions
and they are determined, with the help of the structure constants, by the Dyson equation

Gnn′

ΛΛ′(E) = gnn
′

ΛΛ′(E) +
∑

n′′,Λ′′,Λ′′′

gnn
′′

ΛΛ′′(E)tn
′′

Λ′′Λ′′′(E)Gn′′n′

Λ′′′Λ′(E). (3.30)

The physical meaning of the latter equation can be seen if the sum is expanded. An
electron can travel from site n′ to n directly, or after being scattered by one site, or by
two sites, etc.

The generalization to systems with more than one atom in the unit cell is made by
introducing the basis vector χµ, with µ = 1, ..., Nat, which indicates the position of the
µth atom within the unit cell. Then the potential around the cell centers has the form

V σσ′
(r+ Rn + χµ, r′ + Rn′ + χµ′) = δn,n′δµ,µ′V µ,σσ′

(r, r′). (3.31)

Because of the periodicity of the scatterers, the quantities needed for the determina-
tion of the crystal structure depend on the relative position of the scatterers. This be-
comes evident by a Fourier transformation of the structure constants gµµ

′

ΛΛ′′(k, E), which
yields an expression that depends only on the geometry of the lattice

gµµ
′

ΛΛ′′(k, E) =
∑
n′ ̸=n

gnµ;n
′µ′

ΛΛ′′ (E)eik·(Rn+χµ−Rn′−χµ′ ) (3.32)
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The calculation of the structure constants and the t-matrix is performed in k-space
for constant energy E, with a cutoff at l = lmax. The lmax is determined as the l after
which the t-matrix becomes negligible.

The band structure of the crystal E(k) is determined by the KKR secular equation
[17] ∑

Λ′,µ′

[
δΛ,Λ′δµ,µ′ −

∑
Λ′′

gµµ
′

ΛΛ′′(k, E)tµ
′

Λ′′Λ′(E)
]
Cµ′

kΛ′ = 0. (3.33)

In practice, the secular equation is treated as en eigenvalue problem

¯̄M(k, E)C̄n = λnC̄n, (3.34)

where the KKR matrix is introduced. The band structure points, for which the secular
equation is fulfilled, are the pairs (k, E) which correspond to a vanishing eigenvalue
λn = 0.

3.3.3 KKR wavefunctions

The Blochwavefunctions at a certain energyE, in a cell aroundχµ, that emerge from
the KKR multiple scattering theory are

Ψnk(r+ χµ) =
∑
Λ

Cµ
nkΛR

µ
Λ(r;E) for En(k) = E, (3.35)

where n denotes the Bloch band which corresponds to a vanishing eigenvalue.
The normalization of the wavefunctions implies that

⟨Ψnk|Ψnk⟩ = 1. (3.36)

From Eq.(3.35) it follows that

⟨Ψnk|Ψnk⟩ =
(

Ψ↑
nk(r+ χµ)

Ψ↓
nk(r+ χµ)

)†(
Ψ↑

nk(r+ χµ)

Ψ↓
nk(r+ χµ)

)
(3.37)

=
∑
σ

∑
µ

∫
V µ

dr |Ψσ
nk(r+ χµ)|2 (3.38)

=
∑
σ

∑
µ

∫
drΘµ(r)Ψσ∗

nk(r+ χµ)Ψ
σ
nk(r+ χµ), (3.39)

where the integration over the volume V µ of the atomic unit cell at site µ is extended to
full space by using the shape functionsΘµ(r). The regular solutionsRσs,µ

L (r;E) and the
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shape functions are expanded into real spherical harmonics

Rσs,µ
L (r;E) =

∑
L

1

r
Rσs,µ

L′L (r;E)YL′(r̂) (3.40)

Θµ(r) =
∑
L

Θµ
L(r)YL(r̂) (3.41)

so, the wavefunctions are expanded as

Ψσ
nk(r+ χµ) =

∑
L,s

Rσs,µ
L (r;E)Csµ

kL (3.42)

=
∑
L′,L,s

1

r
Rσs,µ

L′L (r;E)YL′(r̂)Csµ
kL. (3.43)

The normalization equation becomes then [16]

⟨Ψnk|Ψnk⟩ =
∑
µ

∑
ss′

∑
LL′

Csµ∗
kL ρss

′,µ
LL′ C

s′µ
kL′ with (3.44)

ρss
′,µ

LL′ (E) =
∑

L1,L2,L3

CL1,L2,L3

∫
dr
∑
σ

[
Rσs,µ

L1L
(r;E)

]∗
Rσs′,µ

L2L′ (r;E) ΘL3(r). (3.45)

In practice, the numerical eigenvalue routine that diagonalizes the KKR matrix re-
turns the eigenvectors ¯̃Ck, which have euclidean norm ¯̃C†

k
¯̃Ck = 1. Those eigenvectors

need to be normalized correctly in order for the wavefunctions to fulfill the normaliza-
tion condition. The correctly normalized eigenvectors are

Csµ
kL =

1√
P
C̃sµ

kL with (3.46)

P =
∑
µ

∑
ss′

∑
LL′

C̃sµ∗
kL ρss

′,µ
LL′ C̃

s′µ
kL′ =

¯̃C†
k ¯̄ρ ¯̃Ck. (3.47)

The normP of the wavefunctions is a vector-matrix-vector product. BothP and thema-
trix ¯̄ρ are calculated once per energy. Also ¯̄ρ does not depend on k, so it is calculated once
for a given energy. For ¯̄ρ, the spherically symmetric contribution L3 = 0 is calculated
separately from the non-spherically symmetric. In that case, the Gaunt coefficients are
CL1,L2,0 = 1√

4π
δL1,L2 and the shape functions are Θµ

0(r) =
√
4π. So for the spherically

symmetric contribution

¯̄ρsph(E) =
∑
L1

1√
4π

∫
dr
∑
σ

[
Rσs,µ

L1L
(r;E)

]∗
Rσs′,µ

L1L′ (r;E) Θ0(r). (3.48)
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3.4 Spin-orbit coupling (SOC)
Spin-orbit coupling (SOC) is the relativistic interaction of a particle's spin with its

motion inside a potential. In the frame of reference of a moving electron inside the
electric field E of nucleus, the magnetic field B ∼ v × E which is created, couples to
the electron's magnetic moment due to its intrinsic spin. As a purely relativistic effect
it is described by the fully relativistic Dirac equation. From this equation, in the non-
relativistic limit an additional term is extracted which couples the electron's magnetic
moment σ to its orbital momentum L. That term can be treated as a correction to the
Schrödinger equation and is described by the Hamiltonian

ĤSOC =
eℏ

4M(r)2c2
1

r

dV (r)

dr
L · σ = ζ(r)L · σ, (3.49)

whereM(r) = m + 1
2c2

[E − V (r)] is the enhanced relativistic mass close to the core.
The factor ζ(r) is called spin-orbit coupling parameter and determines the strength of the
spin-orbit coupling. The potential V (r) is the average spin-up and spin-down potential,
i.e. V (r) =

V↑+V↓
2

. The most important contribution to the potential comes from the
strong nuclear electric field and because of that spin-orbit coupling is stronger in heavy
atoms. Moreover, the dependence on L implies that s-electrons are unaffected by the
spin-orbit coupling, whereas p orbitals experience stronger spin-orbit coupling than d
or f orbitals because they are closer to the nucleus. The above formalism and details for
spin-orbit coupling is based on [24] and Chapters A1 and B6 of Ref. [25].

The total Hamiltonian consists of the Schrödinger equation plus the spin-orbit cou-
pling correction term and it can be seen as a (2× 2)matrix in spin-space(

Htot
↑↑ Htot

↑↓
Htot

↓↑ Htot
↓↓

)
=

(
H↑↑ 0
0 H↓↓

)
+

(
HSOC

↑↑ HSOC
↑↓

HSOC
↓↑ HSOC

↓↓

)
. (3.50)

For the purpose of numerical experiments, a multiplicative constant is included

ĤSOC −→ ξ · ĤSOC (3.51)

thatmay strengthen or weaken the spin-orbit coupling (ξ = 1 corresponds to the regular
SOC).



Chapter 4

Anomalous Hall effect (AHE)

4.1 Introduction to the origin of AHE
The following review of the aspects of AHE and its origins is based on Refs. [2,17,26,

27]. In 1879, E. Hall discovered the ordinary Hall effect (HE) [28]. He noticed that the
longitudinal current flowing in y-direction through a conductor is curved towards the
transverse x-direction, when an external magnetic field H is applied along the vertical
z-direction. Due to the Lorentz force, the electrons approach the transverse side of the
conductor, generating a finite transverse voltage, also called Hall voltage. The resulting
Hall resistivity ρxy is proportional to the external magnetic field and can be written as

ρxy = R0Hz, (4.1)

whereR0 is theHall coefficientwhich, in the simplest case, is related to the carrier density
n as R0 = − 1

ne
.

Later, in 1880, E. Hall noticed that for ferromagnetic materials the emerging Hall
current was larger than in non-magnetic materials [29]. That contribution is known as
the anomalous Hall effect (AHE). An experimental relation established for the total Hall
effect in ferromagnetic materials, with sample magnetizationM along the z-axis, is

ρxy = R0Hz + 4πRsMz, (4.2)

where Rs is the material-dependent coefficient of the anomalous Hall resistivity. The
second term is the anomalous contribution which is proportional to the sample magne-
tization and, usually, is larger than the ordinary contribution.

Although the origin of HE was attributed to the Lorentz force on the moving elec-
trons under magnetic field, the origin of AHE was unknown for years after its discovery.
The first successful explanation was given by Karplus and Luttinger in 1954 [30], who
stated that the spin-orbit coupling is themechanism behindAHE. Under the presence of
an external electric field, electronic states with spin-orbit coupling acquire a transverse

18
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anomalous velocity. Also, they suggested that the resulting anomalous Hall resistivity is
related to the longitudinal resistivity as ρxy ∝ ρ2xx. This contribution is called intrinsic,
as it depends only on the band structure.

In 1955, Smit proposed the skew-scattering as the main mechanism behind AHE
[31, 32]. The moving electrons are scattered by the presence of impurities and defects.
The spin-orbit coupling causes an asymmetry in the scattering rates of electrons of dif-
ferent spin which creates a preferred average scattering direction, leading to a transverse
current. He also stated that thismechanism scales as ρxy ∝ ρxx, in terms of the longitudi-
nal resistivity. In 1970, Berger proposed the side-jumpmechanism [33] as a contribution
to theAHE.According to Berger, the electrons undergo a sudden coordinate shift during
scattering by an impurity, leading, also, to an asymmetric scattering process. His mech-
anism predicts ρxy ∝ ρ2xx, in compliance with the intrinsic contribution. Although it
is caused by the impurity scattering, the side-jump mechanism is independent of their
concentration. The skew-scattering and the side-jump mechanisms are called extrinsic
contributions to the AHE, as they are purely impurity and disorder effects.

In the recent years, after the establishment of the Berry phase concept, the study of
AHE was promoted significantly. It was understood that the anomalous velocity of the
intrinsic mechanism stems from the Berry curvature of the occupied states. The Berry
curvature acts as an effective magnetic field in the momentum space which modifies
the motion of the electrons, leading to the intrinsic AHE. Thus, it became possible to
evaluate the intrinsic AHE from band structure calculations. Studies in ferromagnetic
materials and semiconductors came to agreement with experimental results for several
materials [34--38]. A more insightful consideration was made by Haldane [39], who
stated that the intrinsic contribution to AHE could be calculated from the Berry curva-
ture of quasi-particles on the Fermi surface. Therefore, it is a Fermi surface property
and the demanding calculation of the Berry curvature over the entire Fermi sea is not
needed. Implementation of Haldane's approach [40] came in agreement with previous
theoretical and experimental results.

In conclusion, it is supposed that both the intrinsic and extrinsic contributions in
general coexist [41] behind the origin of AHE. In the clean sample limit, the scattering re-
laxation time is very large and the extrinsic skew-scattering mechanism dominates. The
intrinsic contribution is independent of scattering and plays an important role in every
occasion. It is most enhanced when the Fermi level is located near avoided crossings of
electronic bands due to spin-orbit coupling.
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4.2 Semi-classical electronic transport

4.2.1 Equations of motion

The dynamics of Bloch electrons, in the presence of weak external electric E or mag-
netic B fields, can be studied under the semi-classical theory, on the wave-packet ap-
proach. In this approach, wave-packets are constructed from Bloch states
ψnk(r) = eikrunk(r), which are the eigenfunctions of the unperturbed lattice Hamilto-
nian Ĥ0 = p̂2

2m
+ V̂ (r), with dispersion relation ϵn(k) for the n-th band. The resulting

equations of motion describe how its center of mass (rc, kc)moves in phase space. The
wave-packet is considered strongly centered at kc, with small k-spread compared to the
Brillouin zone. On the other hand, the uncertainty principle requires that the r-spread
is larger than the lattice constant. If the external fields are weak enough, they evolve
in space slowly compared to the spread of the wave-packet, and even more slowly com-
pared the lattice constant. In this case, they can be treated as classical perturbations.
However, the spatial variations of the periodic potential take place in dimensions much
smaller than the spread of the wave-packet, so they are treated in a quantum-mechanical
manner. The semi-classical equations of motion which arise under these conditions are

ṙc = vn(kc) =
∂ϵn(kc)
ℏ ∂kc

, (4.3)

ℏk̇c = −e E− e ṙc × B. (4.4)

The first equation is the common expression for the group velocity of the unperturbed
band structure. The second equation describes the dynamics under the influence of the
Lorentz force of the external fields. In the presence of constant electric E = (0, Ey, 0)
andmagnetic B = (0, 0, Bz) field, the above equations yield the ordinary Hall resistivity
ρxy ∝ Bz . However, the above formula fails to explain more complicated phenomena
as, for example, the AHE.

In order to derive a more efficient semi-classical formula, it is needed to take into
account the presence of the external fields up to first order. The first derivation was suc-
cessfully made by Chang and Niu [3] and a later generalization was made by Sundaram
and Niu [42]. The following analysis is presented in [7]. The wave-packet is constructed
from Bloch states as

|W0⟩ =
∫
BZ

dk w(k, t)|ψnk⟩. (4.5)

Theweight functionw(k, t) is strongly centered at kc =
∫
BZ

dk |w(k, t)|2k, and its phase
arg(w(k, t))must satisfy rc = ⟨W0|r|W0⟩. With the help of the identity [43]

⟨ψnk′ |r|ψnk⟩ = δ(k− k′)An(k)− i
∂

∂k
δ(k− k′), (4.6)
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whereAn(k) is the Berry connection of the Bloch states, the expectation value of r in the
wave-packet can be written as

rc = ⟨W0|r|W0⟩ (4.7)

=

∫
BZ

dk
∫
BZ

dk′|w(k, t)||w(k′, t)|⟨ψnk′ |r|ψnk⟩ei[arg(w(k,t))−arg(w(k′,t))] (4.8)

(4.6)
=

∫
BZ

dk
∫
BZ

dk′|w(k, t)||w(k′, t)|
[
δ(k− k′)An(k)− i

∂

∂k
δ(k− k′)

]
(4.9)

× ei[arg(w(k,t))−arg(w(k′,t))] (4.10)

=

∫
BZ

dk|w(k, t)|2An(k) (4.11)

+ i

∫
BZ

dk
∫
BZ

dk′δ(k− k′)
∂

∂k

{
|w(k, t)||w(k′, t)|ei[arg(w(k,t))−arg(w(k′,t))]

}
(4.12)

=

∫
BZ

dk|w(k, t)|2An(k)−
∫
BZ

dk|w(k, t)|2 ∂
∂k

arg(w(k, t)), (4.13)

yielding the expression

rc = An(kc)−
∂

∂kc
arg(w(kc, t)). (4.14)

In general, the equations of motion for rc and kc can be derived from the time-
dependent Schrödinger equation for the wave-packet. The Schrödinger equation can
be conveniently obtained by using a time-dependent variational principle (TDVP) from
the Lagrangian [44]

L =

⟨
W

∣∣∣∣iℏ ddt
∣∣∣∣W⟩− ⟨W |Ĥ|W ⟩, (4.15)

where d/dtmeans the derivative with respect to the time dependence of the wave func-
tion explicitly or implicitly through rc and kc. The Hamiltonian Ĥ under the presence
of electromagnetic fields is

Ĥ =
1

2m

[
p̂+ eA(r, t)

]2
+ V (r)− e ϕ(r). (4.16)

The vector potential and the scalar potential of the external fields are denoted by A and
ϕ respectively. At the center of the wave-packet, A can be locally gauged away by the
gauge choice

|W ⟩ = e−i
e
ℏA(rc,t)r|W0⟩. (4.17)

Then, the energy of the wave-packet is

⟨W |Ĥ|W ⟩ = ⟨W0|Ĥ′|W0⟩, (4.18)
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where

Ĥ′ = ei
e
ℏA(rc,t)r Ĥ e−i

e
ℏA(rc,t)r (4.19)

=
1

2m

{
p̂+ e[A(r, t)− A(rc, t)]

}2
+ V (r)− e ϕ(r). (4.20)

For A, the gauge A(r, t) = 1
2
B × r − E · t is chosen, which up to first order in (r − rc)

gives
Ĥ′ ≃ Ĥ0 +

e

4m

[
B× (r− rc) · p̂+H.c

]
− e ϕ(r), (4.21)

where H.c denotes the Hermitian conjugate. Therefore, the energy of the wave-packet
can be written as

⟨W0|Ĥ′|W0⟩ ≃ ϵn(kc) +
e

2m
B · Ln(kc)− e ϕ(rc), (4.22)

where Ln(kc) = ⟨W0|(r − rc) × p̂|W0⟩ is the orbital angular momentum of the wave-
packet about its center of mass rc. Also, the time derivative term is calculated as⟨

W

∣∣∣∣iℏ ddt
∣∣∣∣W⟩ = e Ȧ(rc, t) · rc − ℏ

∂

∂t
arg(w(kc, t)). (4.23)

According to Eq.(4.14) and if total time derivative terms are neglected, the final form for
the effective Lagrangian is

L(rc, kc, ṙc, k̇c, t) = ℏ kc · ṙc− e ṙc ·A(rc, t)+ℏ k̇c ·An(kc)+ e ϕ(rc)−En(kc), (4.24)

where the unperturbed band energy ϵn(kc) is modified by the magnetization energy
e
2m

B · Ln(kc), leading to a total band energy En(kc) = ϵn(kc) + e
2m

B · Ln(kc).
Finally, the equations of motion are derived from the Euler-Lagrange equations

d

dt

(
∂L
∂ṙc

)
− ∂L
∂rc

= 0 and
d

dt

(
∂L
∂k̇c

)
− ∂L
∂kc

= 0, (4.25)

resulting to

ṙc =
∂En(kc)
ℏ ∂kc

− k̇c ×Ωn(kc), (4.26)

ℏ k̇c = −e E− e ṙc × B, (4.27)

where Ωn is the Berry curvature of the Bloch states. It is clear that, compared to (4.3),
the expression for the velocity contains also the anomalous velocity term and the modi-
fication of the band energy due to the magnetization energy.
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In the case of a ferromagnet subject to a constant external electric field E and in the
absence of magnetic field B, the latter equations of motion can be written as

ṙc =
∂ϵn(kc)
ℏ ∂kc

+
e

ℏ
E×Ωn(kc), (4.28)

ℏ k̇c = −e E, (4.29)

where the anomalous velocity is van(kc) = e
ℏE × Ωn(kc). This term is transverse to the

electric field and gives rise to the intrinsic AHE. Going beyond Karplus and Luttinger,
the semi-classical description can describe how the intrinsic AHE stems from the Berry
curvature of the Bloch states.

4.2.2 Electron transport

The electron transport in solids can be described by the Boltzmann equation within
the semi-classical approach. The Boltzmann equation determines the evolution of the
non-equilibrium distribution function g = g(r, k, t) of Bloch electrons, which are accel-
erated by external fields. The total rate of change for g is written as

dg

dt
=
∂g

∂t
+ ṙ · ∂g

∂r
+ k̇ · ∂g

∂k
. (4.30)

The changes in g are caused by the semi-classical dynamics and, also, by collisions at
impurities or phonons. In the steady state, the total rate of change must be equal to the
collision term, i.e. dg

dt
=
(
∂g
∂t

)
coll

. Therefore, in the relaxation time approximation for
the collisions, i.e. g− f = Aet/τ the steady state g obeys the Boltzmann equation [7,45]

ṙ · ∂gnk
∂r

+ k̇ · ∂gnk
∂k

=
fnk − gnk

τnk
, (4.31)

where τnk is the relaxation time and fnk is the Fermi-Dirac equilibrium distribution func-
tion of the Bloch state k, with band index n.

In order to describe the intrinsic AHE, the presence of a constant electric field E is
considered. The center of mass (rc, kc) of the wave-packet constructed in 4.2.1 is further
simply denoted as (r, k). Then, up to first order in E, the solution of (4.31) gives

gnk = fnk + τnk
e

ℏ
E · ∂ϵn

∂k
∂fnk
∂ϵn

. (4.32)

According to the linear response theory, the charge conductivity tensor σc is defined as

Jc = ¯̄σcE. (4.33)
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The electric current density is given by

Jc = − e

V

∑
n,k

gnk vnk (4.34)

= − e

V VBZ

∑
n

∫
BZ

dk gnk vnk (4.35)

= − e

(2π)3

∑
n

∫
BZ

dk gnk vnk, (4.36)

where V is the crystal volume, VBZ is the Brillouin zone volume and vnk is the electron
velocity which is given by the term ṙc in (4.28). By inserting the semi-classical equations
ofmotion (4.28) and up to first order inE, the resulting expression for the electric current
density is

Jc = −E× e2

ℏ(2π)3
∑
n

∫
BZ

dk fnk Ωn(k)−
e2τ

(2π)3

∑
n

∫
BZ

dk
∂ϵn
∂k

E · ∂ϵn
∂k

∂fnk
∂ϵn

, (4.37)

with the approximation τnk = τ = const.
An expression for the conductivity tensor can be deduced from (4.37), in combina-

tion with (4.33). The second term of (4.37) yields the symmetric conductivity tensor,
which depends on the properties of the system near the Fermi energy. The first term of
(4.37) gives the anti-symmetric conductivity tensor

εijkσ
c
ij = − e2

ℏ(2π)3
∑
n

∫
BZ

dk fnk Ωk
n(k), where (i, j, k) = {x, y, z}. (4.38)

Thus, the modern view on the origin of the anomalous Hall effect and the spin Hall
effect (SHE) can be summarized as follows [46]. In ferromagnetic systems, where the
time-reversal symmetry is broken and the space-inversion symmetry is present, the non-
vanishing total Berry curvature of the occupied Bloch statesΩ(k) =

∑
n

Ωn(k) creates a

transverse charge current for each spin direction. If the magnetization is finite M ̸= 0,
the number of spin-up electrons differs from the number of spin-down electrons, lead-
ing to a non-vanishing total transverse charge current. Hence, this is the mechanism
behind the origin of the intrinsic AHE. The intrinsic anomalous conductivity can be cal-
culated by (4.38). On the other hand, in non-magnetic systems, where the time-reversal
symmetry exists but the space-inversion symmetry is broken, the total Berry curvature
vanishes. The number of spin-up electrons equals the number of spin-down electrons
and the magnetization is zero. In this case, the charge current vanishes but there exist a
spin current, which gives rise to the SHE. A schematic representation of both AHE and
SHE can be seen in Fig.(4.1). In the context of this thesis, only ferromagnetic systems
are studied, so focus is given only in the intrinsic AHE calculation.
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Figure 4.1: Illustration of (a) the anomalous Hall effect and (b) the spin Hall effect [46].



Chapter 5

First-principles calculation of the Berry
curvature for Bloch electrons

As seen in Chapter 4, the first-principles calculation of the Berry curvature of Bloch
states is crucial in order to study charge or spin transport phenomena as AHE and SHE.
The two most common approaches to calculate the Berry curvature involve the Kubo-
formula [36, 47, 48] and the Wannier interpolation scheme [37, 40]. A new approach
within the KKR framework was implemented by Gradhand et al. [4]. This approach is
the subject of this thesis. In contrast with Gradhand et al., two different considerations
are made. The first one is that the Bloch wavefunctions are treated as solutions of the
full-potential scalar relativistic approximation to theDirac equation, with the addition of
a correction representing the SOC, while Gradhand et al. treat the Dirac equation in the
atomic-sphere approximation (ASA). The second one is that a different choice for the
normalization of the scattering solutions is made. As a consequence, there is distinction
in the resulting equations for the Abelian Berry connection and the Abelian Berry curva-
ture, leading to a numerical differentiation of the eigenvectors of the KKR matrix. The
new formof theAbelian Berry curvature is later used to calculate the intrinsic anomalous
hall conductivity (AHC).

5.1 The KKR framework and the group velocity of Bloch
states

The following discussion is restricted to ferromagnetic systems with one atom per
unit cell. In such systems, the spontaneous magnetization breaks the time-reversal de-
generacy of the Bloch bands. Then, because the Bloch states are non-degenerate, one
deals with the Abelian case for the Berry phase.

26
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As seen in Chapter 3, the KKR expansion for the wavefunction is

Ψnk(r) =
∑
Λ

Cn
Λ(k) RΛ(En(k); r), (5.1)

where RΛ are the regular scattering solutions, Cn
Λ are the right eigenvectors of the KKR

matrix and Λ = (L, s) = (l,m, s) is a multiple index introduced to label the spin and
orbital angular momentum quantum numbers. The band structure of the lattice, i.e the
energy eigenvalues En(k), is determined by the solution of the eigenvalue problem of
the KKR matrix

¯̄M(k, E)C̄n = λnC̄n. (5.2)

The band structure points are the combinations (k, E)which correspond to a vanishing
eigenvalue λn = 0. The KKR matrix is defined as

MΛ,Λ′(k, E) = δΛ,Λ′ −
∑
Λ′′

gΛΛ′′(k, E) tΛ′′Λ′(E), (5.3)

where gΛΛ′′(k, E) are the structure constants, which depend only on the geometry of
the lattice, and tΛ′′Λ′(E) is the t-matrix, which depends only on the shape of the scat-
tering periodic potential. Also, the KKR matrix has a dimension of N × N , where
N = 2(lmax + 1)2 and the factor 2 accounts for the spin-up and spin-down directions.
The KKR matrix is a non-Hermitian matrix, so apart from the right eigenvectors C̄n,
for the same eigenvalue λn, there exist also the distinct left eigenvectors D̄n which are
defined as

D̄†
n
¯̄M(k, E) = λnD̄

†
n. (5.4)

If the normalization condition

C̄†
nC̄n = 1 and D̄†

nD̄n = 1, (5.5)

is used, then the eigenvectors also fulfill

D̄†
nC̄n′ ∝ δn,n′ , D̄†

nC̄n ̸= 1, (5.6)
C̄†

nC̄n′ ̸= 0, D̄†
nD̄n′ ≠ 0. (5.7)

An expression for the group velocity of the Bloch states can be obtained in terms of
the properties of the KKR matrix. Starting from the fact that the band structure points
obey the condition λn(k, En(k)) = 0, the total derivative of the eigenvalues, which is
normal to the constant energy surface E = En(k), gives

∇kλn(k, E)
∣∣
E=En(k)

= 0 ⇒ (5.8)

∂λn(k, E)

∂k

∣∣∣∣
E=En(k)

+∇kEn(k)
∂λn(k, E)

∂E

∣∣∣∣
E=En(k)

= 0. (5.9)
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It should be noticed that the total derivative∇k is restricted to the band structure points
k which constitute the constant energy surface E = En(k). Then, the definition of the
group velocity yields

vn(k) =
1

ℏ
∇kEn(k) = −1

ℏ

∂λn(k, E)

∂k

∣∣∣∣
E=En(k)

∂λn(k, E)

∂E

∣∣∣∣
E=En(k)

. (5.10)

From the definition of the left eigenvectors, the following expression can be obtained

D̄†
n
¯̄MC̄n = λnD̄

†
nC̄n. (5.11)

By taking the partial derivative of both sides with respect to k, one takes

∂λn(k, E)

∂k
=
D̄†

n(∂
¯̄M/∂k)C̄n

D̄†
nC̄n

. (5.12)

Therefore, the group velocity is given by the expression

vn(k) = −1

ℏ

D̄†
n

∂ ¯̄M(k, E)

∂k

∣∣∣∣
E=En(k)

C̄n(
D̄†

nC̄n

) ∂λn(k, E)

∂E

∣∣∣∣
E=En(k)

. (5.13)

The partial derivative ∂λn(k, E)/∂E is calculated numerically, while the partial deriva-
tive ∂ ¯̄M/∂k is calculated from the relation

∂ ¯̄M(k, En(k))
∂k

= −∂
¯̄g(k, En(k))

∂k
t(En(k)), (5.14)

where
∂ ¯̄g(k, En(k))

∂k
= i

∑
R

R eikR ¯̄g(R, En(k)). (5.15)

The former relation is derived by taking the partial derivative of the KKR matrix with
respect to k, while the latter relation is expressed in terms of the real-space structure
constants ¯̄g(R, En(k)) and is derived from the derivative of (3.32).

5.2 Abelian Berry connection
In Section 2.3 the Berry phase concept for the Bloch states of a crystalline solid was

introduced. It was shown that the Berry connection is expressed as (2.30)

An(k) = i⟨unk|∇kunk⟩ = i

∫
ω

u†nk(r)∇kunk(r)dr, (5.16)
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where ω is the volume of a unit cell. Because the KKR method calculates the wavefunc-
tionΨnk(r) and not the periodic part unk(r), the above expression forAn(k) needs to be
reformulated in terms ofΨnk(r). This can be done with the help of unk(r) = e−ikrΨnk(r).
The resulting expression for the Berry connection is [4]

An(k) = i

∫
ω

Ψ†
nk(r)∇kΨnk(r)dr +

∫
ω

Ψ†
nk(r)rΨnk(r)dr = Ak

n(k) +Ar
n(k), (5.17)

where
Ak

n(k) = i

∫
ω

Ψ†
nk(r)∇kΨnk(r)dr, (5.18)

and
Ar

n(k) =
∫
ω

Ψ†
nk(r) rΨnk(r)dr. (5.19)

The total derivative of the KKR expansion (5.1) which is normal to the constant en-
ergy surface E = En(k) is

∇kΨnk(r) =
∑
Λ

[
∇kC

n
Λ(k) RΛ(E; r) + Cn

Λ(k) vn(k)
∂RΛ(E; r)

∂E

]
, (5.20)

which gives

⟨Ψnk|∇kΨnk⟩ =
∑
Λ,Λ′

Cn∗
Λ (k)∇kC

n
Λ′(k)

∫
ω

R†
Λ(E; r) RΛ′(E; r) dr (5.21)

+ vn(k)
∑
Λ,Λ′

Cn∗
Λ (k) Cn

Λ′(k)
∫
ω

R†
Λ(E; r)

∂RΛ′(E; r)
∂E

dr. (5.22)

Then,Ak
n(k) can be written as

Ak
n(k) = AKKR

n (k) +Av
n(k), (5.23)

where
AKKR

n (k) = i C̄†
n
¯̄ρ∇kC̄n, (5.24)

with the matrix ¯̄ρ given by

(¯̄ρ)Λ,Λ′(E) =

∫
ω

R†
Λ(E; r) RΛ′(E; r) dr (5.25)

and
Av

n(k) = i vn C̄†
n
¯̄∆ C̄n, (5.26)
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with the matrix ¯̄∆ given by

(
¯̄∆
)
Λ,Λ′

(E) =

∫
ω

R†
Λ(E; r)

∂RΛ′(E; r)
∂E

dr. (5.27)

ForAr
n(k), the expansion (5.1) yields

Ar
n(k) = C̄†

n
¯̄r C̄n, (5.28)

where the vector matrix ¯̄r is introduced as

(¯̄r)Λ,Λ′(E) =

∫
ω

R†
Λ(E; r) r RΛ′(E; r) dr. (5.29)

Therefore, the full expression for the Berry connection is

An(k) = AKKR
n (k) +Av

n(k) +Ar
n(k). (5.30)

5.3 Abelian Berry curvature

Since the Berry curvature is defined as

Ωn(k) = ∇k ×An(k), (5.31)

it can be also considered as a sum of the same contributions as the Berry connection

Ωn(k) = ΩKKR
n (k) +Ωv

n(k) +Ωr
n(k). (5.32)

For the following calculations, the completeness relation of the non-Hermitian KKR
matrix is taken into consideration

N∑
m=1

C̄mD̄
†
m

D̄†
mC̄m

=
N∑

m=1

D̄mC̄
†
m

C̄†
mD̄m

= ¯̄1, (5.33)

together with the vector calculus identity

∇× (ψA) = ψ(∇× A) +∇ψ × A, (5.34)

where ψ is a scalar quantity and A a vector.
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Starting from the componentΩKKR
n (k), one gets

ΩKKR
n (k) = ∇k ×AKKR

n (k) = i∇k
(
C̄†

n
¯̄ρ
)
×∇kC̄n + i C̄†

n
¯̄ρ
(
∇k ×∇kC̄n

)︸ ︷︷ ︸
=0

(5.35)

= i
∑
Λ,Λ′

∫
∇k
(
Cn∗

Λ R†
Λ RΛ′

)
×∇kC

n
Λ′ dr (5.36)

= i
∑
Λ,Λ′

∫ (
∇kC

n∗
Λ R†

Λ RΛ′ + vn Cn∗
Λ

∂R†
Λ

∂E
RΛ′ (5.37)

+ vn Cn∗
Λ R†

Λ

∂RΛ′

∂E

)
×∇kC

n
Λ′ dr (5.38)

= i
(
∇kC̄

†
n
¯̄ρ+ vn C̄†

n
¯̄∆† + vn C̄†

n
¯̄∆
)
×∇kC̄n (5.39)

= i∇kC̄
†
n
¯̄ρ×∇kC̄n + i vn ×

(
C̄†

n
¯̄∆∇kC̄n + C̄†

n
¯̄∆† ∇kC̄n

)
. (5.40)

In order to avoid thematrix-matrix cross products of the last equation, the completeness
relation (5.33) is used, yielding to

ΩKKR
n (k) = i

∑
m

∇kC̄
†
n
¯̄ρ C̄m × D̄†

m ∇kC̄n

D̄†
m C̄m

+ i vn ×
(
C̄†

n
¯̄∆∇kC̄n + C̄†

n
¯̄∆† ∇kC̄n

)
,

(5.41)

where the sum is going over all the eigenstates of the KKRmatrix. At last, the component
ΩKKR

n (k) is given by

ΩKKR
n (k) = i

∑
m

(
C̄†

m
¯̄ρ∇kC̄n

)∗ × D̄†
m ∇kC̄n

D̄†
m C̄m

+ i vn ×
(
C̄†

n
¯̄∆∇kC̄n + C̄†

n
¯̄∆† ∇kC̄n

)
.

(5.42)

Next, the componentΩv
n(k) can be written as

Ωv
n(k) = ∇k ×Av

n(k) = −i vn ×∇k

(
C̄†

n
¯̄∆ C̄n

)
(5.43)

= −i vn ×
(
∇k C̄

†
n
¯̄∆ C̄n + C̄†

n ∇k
¯̄∆ C̄n︸ ︷︷ ︸

vn×∇k
¯̄∆=0

+ C̄†
n
¯̄∆∇kC̄n

)
, (5.44)

resulting to the expression

Ωv
n(k) = −i vn ×

[(
C̄†

n
¯̄∆† ∇kC̄n

)∗
+ C̄†

n
¯̄∆∇kC̄n

]
. (5.45)
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Finally, the componentΩr
n(k) is calculated as

Ωr
n(k) = ∇k ×Ar

n(k) = ∇k ×
(
C̄†

n
¯̄r C̄n

)
(5.46)

=
∑
Λ,Λ′

∫
∇k

(
Cn∗

Λ R†
Λ RΛ′ Cn

Λ′

)
× r dr+

∑
Λ,Λ′

∫
Cn∗

Λ R†
Λ RΛ′ Cn

Λ′ ×∇kr dr︸ ︷︷ ︸
∇kr=0

(5.47)

= 2 · Re
{∑

Λ,Λ′

∫ [
Cn∗

Λ R†
Λ ∇k

(
Cn

Λ′ RΛ′
)]

× r dr
}

(5.48)

= 2 · Re
{∑

Λ,Λ′

∫ [
vn × Cn∗

Λ R†
Λ r

∂RΛ′

∂E
Cn

Λ′

]
dr
}

(5.49)

− 2 · Re
{∑

Λ,Λ′

∫ [
Cn∗

Λ R†
Λ r RΛ′ ×∇kC

n
Λ′

]
dr
}

(5.50)

= 2 · vn × Re
{
C̄†

n
¯̄rE C̄n

}
− 2 · Re

{
C̄†

n
¯̄r×∇kC̄n

}
, (5.51)

with
(¯̄rE)Λ,Λ′(E) =

∫
ω

R†
Λ(E; r) r

∂RΛ′(E; r)
∂E

dr. (5.52)

The final form is obtained by inserting the completeness relation (5.33)

Ωr
n(k) = 2 · vn × Re

{
C̄†

n
¯̄rE C̄n

}
− 2 · Re

{∑
m

C̄†
n
¯̄r C̄m × D̄†

m ∇kC̄n

D̄†
m C̄m

}
. (5.53)

In summary, the Abelian Berry curvature of the Bloch states can be calculated from
(5.32), where its components are given by (5.42), (5.45) and (5.53) respectively. For this
purpose, the right C̄ and left D̄ eigenvectors of the KKR matrix are needed, together
with the group velocity vn and the matrices ¯̄ρ, ¯̄∆, ¯̄r and ¯̄rE . It must be made clear that
the eigenvectors which enter the KKR expansion (5.1) and the relations (5.42), (5.45)
and (5.53) are correctly normalized in the way that is described in Subsection 3.3.3. On
the contrary, the eigenvectors which enter the group velocity expression (5.13) are the
ones that are obtained directly from the numerical subroutine that performs the KKR
matrix diagonalization and have euclidean norm 1. Furthermore, the way that the total
derivative ∇kC̄n is calculated will be analyzed in Section 5.4, while the representation
of the matrices ¯̄ρ, ¯̄∆, ¯̄r and ¯̄rE in the KKR framework will be analyzed in Section 5.5. In
practice, the above calculations are performed at specified energy. The Green function,
the t-matrix and the above matrices are calculated once per energy. Then, the shape of
the constant energy surface which corresponds to the lattice BZ is determined. For every
k-point in this surface the KKR matrix is calculated, resulting in the group velocity and,
finally, the Berry curvature of the Bloch bands is obtained.
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5.4 Total derivative of KKR eigenvectors
In Subsection 3.3.3 the correct normalization of the eigenvectors of the KKR matrix

was introduced as

C̄n =
¯̃Cn√
P
, with P = ¯̃C†

n
¯̄ρ ¯̃Cn. (5.54)

Both the eigenvectors and the norm P of the wavefunction depend on the wavevector k
and the band energy En(k). Thus, the total derivative is given by

∇kC̄n = ∇k

(
¯̃Cn√
P

)
=

√
P ∇k

¯̃Cn − ¯̃Cn ∇k
√
P(√

P
)2 =

∇k
¯̃Cn√
P

−
¯̃Cn ∇kP

2
(√

P
)3 , (5.55)

where
∇k

√
P =

∇kP

2
√
P
. (5.56)

The total derivative∇kP is calculated as

∇kP = ∇k

(
¯̃C†
n
¯̄ρ ¯̃Cn

)
(5.57)

= ∇k
¯̃C†
n
¯̄ρ ¯̃Cn +

¯̃C†
n ∇k ¯̄ρ

¯̃Cn +
¯̃C†
n
¯̄ρ∇k

¯̃Cn (5.58)

=
(
¯̃C†
n
¯̄ρ∇k

¯̃Cn

)∗
+ ¯̃C†

n

(
vn ¯̄∆† + vn ¯̄∆

)
¯̃Cn +

¯̃C†
n
¯̄ρ∇k

¯̃Cn (5.59)

= 2 · Re
{
C̃†

n
¯̄ρ∇k

¯̃Cn

}
+ 2 · vn · Re

{
¯̃C†
n
¯̄∆ ¯̃Cn

}
. (5.60)

The total derivative∇k
¯̃Cn is calculated numerically as

∇k
¯̃Cn(k) =

∂ ¯̃Cn

∂k

∣∣∣∣
E=En(k)

+ vn
∂ ¯̃Cn

∂E

∣∣∣∣
E=En(k)

(5.61)

=
1

2 δk

[
¯̃Cn(k+ δk, En(k))− ¯̃Cn(k− δk, En(k))

]
(5.62)

+ vn
1

2 δE

[
¯̃Cn(k, En(k) + δE)− ¯̃Cn(k, En(k)− δE)

]
. (5.63)

5.5 KKR representation of matrices

Thematrices ¯̄ρ, ¯̄∆ and the vector matrices ¯̄r, ¯̄rE , which appear in the relations for the
Berry curvature, contain an integration over the unit cell ω which is treated explicitly
in the KKR framework. As seen in Subsection 3.3.3, the shape functions Θ(r) enter in
the integration and they are expanded, together with the regular wavefunctionsR(r, E),
into real spherical harmonics.
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An expression for the ¯̄ρmatrix has already been obtained (3.44), (3.48). For only one
atom in the unit cell it yields

(¯̄ρ)Λ,Λ′(E) =
∑

L1,L2,L3

CL1,L2,L3

∫
dr
∑
σ

[
Rσ

L1Λ
(r;E)

]∗
Rσ

L2Λ′(r;E) ΘL3(r), (5.64)

and for the spherically symmetric contribution
(
L3 = 0, CL1,L2,0 =

1√
4π
δL1,L2 ,Θ0(r) =√

4π
)
(¯̄ρ)sphΛ,Λ′(E) =

∑
L1

1√
4π

∫
dr
∑
σ

[
Rσ

L1Λ
(r;E)

]∗
Rσ

L1Λ′(r;E) Θ0(r). (5.65)

In the same way, the matrix ¯̄∆ is calculated as(
¯̄∆
)
Λ,Λ′

(E) =
∑

L1,L2,L3

CL1,L2,L3

∫
dr
∑
σ

[
Rσ

L1Λ
(r;E)

]∗ ∂Rσ
L2Λ′(r;E)

∂E
ΘL3(r),

(5.66)

while the spherically symmetric contribution is(
¯̄∆
)sph
Λ,Λ′

(E) =
∑
L1

1√
4π

∫
dr
∑
σ

[
Rσ

L1Λ
(r;E)

]∗ ∂Rσ
L1Λ′(r;E)

∂E
Θ0(r). (5.67)

The vector matrices ¯̄r and ¯̄rE are treated in a different way because of the presence
of the vector r in the integration, which is also expanded into real spherical harmonics
as

r =
∑
L

fL(r)YL(r̂). (5.68)

That yields an additional spherical harmonic, so the integration of four spherical har-
monics has to be performed. A detailed derivation is shown below for the vector matrix
¯̄r.

Starting from the expansion into real spherical harmonics one obtains

(¯̄r)Λ,Λ′(E) =

∫
ω

R†
Λ(E; r) r RΛ′(E; r) dr (5.69)

=
∑

L1,L2,L3,L4

∫
dr
∑
σ

[
Rσ

L1Λ
(r;E)

]∗
Rσ

L2Λ′(r;E) ΘL3(r) fL4(r) (5.70)

·
∫
YL1(r̂) YL2(r̂) YL3(r̂) YL4(r̂) dΩ. (5.71)
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In order to perform the integral of the four spherical harmonics, the idea described in
AppendixA of [49] is followed. At first, two spherical harmonics are expressed as a linear
combination of a single spherical harmonic

YL3(r̂) YL4(r̂) =
∑
L

cL(L3, L4) YL(r̂), (5.72)

where the coefficients cL(L3, L4) are given by

cL(L3, L4) =

∫
YL3(r̂) YL4(r̂) Y

∗
L (r̂) dΩ =

∫
YL3(r̂) YL4(r̂) YL(r̂) dΩ = CL3,L4,L,

(5.73)
because for the real spherical harmonics holds Y ∗

L = YL. Thus, the integral of four
spherical harmonics can be written as∫

YL1(r̂) YL2(r̂) YL3(r̂) YL4(r̂) dΩ =
∑
L

∫
YL1(r̂) YL2(r̂) YL(r̂) CL3,L4,L dΩ (5.74)

=
∑
L

CL1,L2,L CL3,L4,L (5.75)

The property of the Gaunt coefficients [15]

CL,L′,L′′ ̸= 0 only if |l′ − l′′| ≤ l ≤ l′ + l′′ and m = m′ +m′′, (5.76)

restricts the dummy index L = (l,m) in the range

|l1(3) − l2(4)| ≤ l ≤ l1(3) + l2(4) with m = m1(3) +m2(4). (5.77)

Therefore, the ¯̄r vector matrix is calculated from the relation

(¯̄r)Λ,Λ′(E) =
∑

L1,L2,L3,
L4,L,σ

CL1,L2,LCL3,L4,L

∫
dr
[
Rσ

L1Λ
(r;E)

]∗
Rσ

L2Λ′(r;E)ΘL3(r)fL4(r),

(5.78)

where fL4(r) = r

√
4π

3
r̂, and L4 = 2, 3, 4. (5.79)

The resulting expression for the vector function fL4(r) is obtained by an analytic calcu-
lation in the spherical coordinate system. Also, the spherically symmetric contribution
is

(¯̄r)sphΛ,Λ′(E) =
∑

L1,L2,L4,σ

CL1,L2,L4

1√
4π

∫
dr
[
Rσ

L1Λ
(r;E)

]∗
Rσ

L2Λ′(r;E) Θ0(r) fL4(r).

(5.80)
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With the same procedure the vector matrix ¯̄rE is calculated from the relations

(¯̄rE)Λ,Λ′(E) =
∑

L1,L2,L3,
L4,L,σ

CL1,L2,LCL3,L4,L

∫
dr
[
Rσ

L1Λ
(r;E)

]∗∂Rσ
L2Λ′(r;E)

∂E
ΘL3(r)fL4(r)

(5.81)

and

(¯̄rE)sphΛ,Λ′(E) =
∑

L1,L2,L4,σ

CL1,L2,L4

1√
4π

∫
dr
[
Rσ

L1Λ
(r;E)

]∗ ∂Rσ
L2Λ′(r;E)

∂E
Θ0(r) fL4(r).

(5.82)

5.6 Application in AHE
The Berry curvature calculated from (5.32) is used to determine the intrinsic AHC.

For a ferromagnetic systemwithmagnetizationM along the z axis, only the z component
Ωz(k) =

∑
n

Ωz
n(k) ̸= 0, due to the symmetry restrictions seen in Appendix A. Then, the

expression for the transverse AHC is given by (4.38) as

σc
xy = − e2

ℏ(2π)3
∑
n

∫
BZ

dk fnk Ωz
n(k). (5.83)

The last relation is further written as

σc
xy = − e2

ℏ(2π)3

∫ EF

dE Ωz(E), (5.84)

where the energy resolved Berry curvature is introduced as

Ωz(E) =
∑
n

∫
IS(E)

d2 k

| vnF (k) |
Ωz

n(k). (5.85)

The isosurface (IS) integral is performed for a dense integration mesh of energies up
to the Fermi energy level E = EF . Then, by artificially shifting the Fermi energy, the
intrinsic AHC (5.84) is calculated as a function of EF .



Chapter 6

Berry curvature and anomalous Hall
conductivity (AHC) calculations for the
ferromagnetic bcc Fe

In this thesis, the studied system is ferromagnetic bcc Fe, withmagnetizationM along
the z-axis. The calculations were carried out by using the Jülich KKR code [50]. The
self-consistent calculation of the potential together with the calculations for the Green
function and the t-matrix were computedwith theKKRhost program. The Fermi formal-
ism of the Berry curvature was implemented in the PKKprime code, which previously
included the Fermi surface and Bloch wavefunction calculation.

The self-consistent calculations for the potential were performed for two different
lmax cutoffs and for a lattice constant a = 5.4a.u1. For lmax = 3, the total magnetic
moment in the unit cell was 2.18µB. Also, for lmax = 2, the total magnetic moment in
the unit cell was 2.23µB.

6.1 Berry curvature

In the first step, the Berry curvature, given from (5.32), can be calculated over the
Fermi surface. The calculations are performed for lmax = 3, lmax = 2 and lmax = 2 with
increased spin-orbit coupling strength ξ = 2, instead of ξ = 1 (3.51). The results for the
absolute value of the Berry curvature on the Fermi surface are represented in Fig.(6.1).
In order to find the Fermi surface, an initial 12× 12× 12 k-points grid is chosen, which
after further refinements results to a mesh of 96 × 96 × 96 k-points. This grid size is
sufficient to resolve the small Fermi surface branches of bcc Fe, but, as is it will be shown
afterwards, it is not fine enough to accurately calculate the value of the Berry curvature.

1a.u. denotes atomic Rydberg units. 1a.u.=0.529Å

37
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Thus, Fig.(6.1) can only be used to have a qualitative image of the behavior of the Berry
curvature.

The first observation one can make is that the value of |Ωn(k)| is almost everywhere
close to zero, except from small regions where its value is very large. In these regions,
also called "hot-spots", avoided crossings of two bands appear, due to the spin-orbit cou-
pling interaction, leading to the rise of the Berry curvature. They are mostly located near
the points where the Fermi surface touches the BZ boundaries, or, near the points where
different energy bands of the Fermi surface come close. Furthermore, the angular mo-
mentum cutoff (lmax = 2 or 3) affects the calculations and results to a slightly different
Fermi surface shape and, also, to higher values for the Berry curvature for lmax = 2. Last
but not least, as expected, the increase in the spin-orbit coupling strength results to a
decrease in the Berry curvature.



6.1 Berry curvature 39

Figure 6.1: The absolute value of the Berry curvature |Ωn(k)|, in atomic Rydberg units, on the
Fermi surface of the ferromagnetic bcc Fe for (1) lmax = 3, (2) lmax = 2 and (3) lmax = 2 with
increased spin-orbit coupling strength ξ = 2. In (1a),(2a) and (3a) the whole Fermi surface is
depicted, whereas in (1b), (2b) and (3b), only the half Fermi surface is represented in order to
demonstrate nested branches of the Fermi surface.
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6.2 Energy resolved Berry curvature
In this part, the energy resolved Berry curvature Ωz(E) is calculated from (5.85). In

order to do this, the sufficient size of the k-points grid has to be decided first. By in-
creasing the grid size, the value where Ωz(E) converges is sought for, together with the
condition thatΩx(E) = Ωy(E) = 0. For lmax = 3, starting from a 12× 12× 12 k-points
grid and up until a 22 × 22 × 22 grid, the convergence is not met. The need for more
refined andmore time-demanding surfacemapping can be covered with themuch faster
lmax = 2 choice. In that case, one deals with KKR matrices of a 18 × 18 dimension, in-
stead of a 32×32 dimension for lmax = 3. Therefore, for lmax = 2, convergence is met at
a 28×28×28 grid. The convergence process can be seen in Table 6.1 for lmax = 3 and in
Table 6.2 for lmax = 2. For the rest of the calculations within this thesis, the 26×26×26
k-points grid is chosen.

lmax = 3
k-points grid size Ωx(E) Ωy(E) Ωz(E)

12×12×12 -1.00E+00 8.44E-01 -2.94E+02
14×14×14 2.17E-02 4.05E-02 3.81E+01
16×16×16 -1.15E+00 2.11E-01 4.88E+02
18×18×18 9.91E-01 1.24E+00 4.27E+02
20×20×20 -5.11E+01 8.89E+01 2.42E+02
22×22×22 -3.23E+01 9.12E+00 4.04E+02

Table 6.1: Convergence process for the decision of the k-points grid size for lmax = 3.

lmax = 2
k-points grid size Ωx(E) Ωy(E) Ωz(E)

12×12×12 -5.01E+00 9.31E+00 -4.33E+03
22×22×22 1.41E+01 8.66E+00 -2.18E+03
24×24×24 4.62E+00 9.73E+00 -1.52E+03
26×26×26 1.36E+01 5.79E+00 -1.47E+03
28×28×28 4.74E+01 -8.72E+00 -1.37E+03

Table 6.2: Convergence process for the decision of the k-points grid size for lmax = 2.

After deciding the suitable k-points grid size,Ωz(E) is calculated in the energy inter-
val [EF−0.6Ry, EF+0.25Ry]. The density of states (DOS) diagramof the ferromagnetic
bcc Fe appears in Fig.(6.2). The sharp peaks come from the d electron states, whereas
the rest, almost flat, contribution comes from the s and p electron states.

The first calculation ofΩz(E) is performed for the ξ = 1 case (regular SOC strength).
As stated in [4], the spiky character ofΩ(k) demands a very dense energy mesh. The en-
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Figure 6.2: Density of states of the ferromagnetic bcc Fe, relative to the Fermi energy level.

ergy partition is initially picked at 4mRy and successively decreased to 2mRy and 1mRy.
The results can be seen in Fig.(6.3). Although a spiky behavior ofΩz(E) is formed already
at the 4mRy partition, whenmoving to the 2mRy and 1mRy partitions new peaks appear,
or others that had already appeared become sharper. It is evident that a finer energy di-
vision is needed. The partition is further decreased in 0.5mRy, 0.25mRy and 0.125mRy.
The calculated Ωz(E) is also presented in Fig.(6.3). In the states above the Fermi energy,
the shape of Ωz(E) is not changed, so, its value at this region is converged. However,
in the regions between (−0.27,−0.2)mRy and (−0.15, 0.05)mRy, convergence is not
met because new peaks still appear. By focusing only on these two regions, the energy
partition is further reduced to 0.0625mRy, 0.03125mRy and 0.015625mRy. The results
for the partitions 0.0625mRy and 0.03125mRy and separately for the 0.015625mRy par-
tition, are shown in Fig.(6.4). Even at these very small partitions, new peaks still appear
or become sharper, making it difficult to come to a conclusion about the shape ofΩz(E).
One solution could be to performmore calculations in these regions and, perhaps, going
to a finer partition. This could not be accomplished due to restrictions in the available
computational time. Even without these restrictions, the results would still be unreliable.
Such small precision may introduce a numerical instability which stems from the way
that the KKR matrix equation is solved in order to define the band structure. Conse-
quently, for the ξ = 1 case, it is not feasible to calculate a trustworthy shape for Ωz(E).
One can attribute this difficulty to the nature of Fe as a material with weak SOC. That
leads to smaller avoided band crossings, which result in larger Berry curvature locally at
these avoided crossings.
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Figure 6.3: Energy resolved Berry curvature Ωz(E), in atomic Rydberg units (a.R.u), (a) for
4mRy, 2mRy and 1mRy energy partitions and (b) for 0.5mRy, 0.25mRy and 0.125mRy energy
partitions. The results are presented relatively to the Fermi energy level. The arrows are used
to indicate the new peaks that appear when the energy partition is decreased.
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Figure 6.4: Energy resolved Berry curvature Ωz(E), in atomic Rydberg units (a.R.u), (a) for
0.0625mRy and 0.03125mRy energy partitions and (b) for 0.015625mRy energy partition.
The results are presented relatively to the Fermi energy level. The arrows are used to indicate
the new peaks that appear when the energy partition is decreased.
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In order to overcome the difficulty of needing a very dense energy mesh, the spin-
orbit coupling strength is increased to ξ = 2. For this case, the energy partition of
0, 05mRy was found adequate. The calculated Ωz(E), together with the corresponding
DOS diagram, is presented in Fig.(6.5) for the ξ = 2 case. The spiky character of Ωz(E)
is well depicted, while the presentation together with the DOS diagram leads one to at-
tribute the large contributions to Ωz(E) to the d-electron peaks. In these regions the
energy bands come close, so the Berry curvature is increased. In the states below 0.35Ry,
where there are mostly s and p electron states, the Berry curvature vanishes. Also, in
comparison with the ξ = 1 case, it can be seen that, the peaks ofΩz(E) decrease with the
increase in the spin-orbit coupling strength ξ. This is expected, because stronger SOC
leads to larger splitting at avoided crossings (induced by SOC) and thus smaller values
ofΩz(E) at the peaks. It should be noticed that the splitting appears in the denominator
of (2.20), causing the near divergence, while ξ appears in the numerator (included in
the Hamiltonian), causing an overall smooth enhancement. In conclusion, this system
seems more suitable for the calculation Ωz(E), than the non-converging ξ = 1 case.
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Figure 6.5: Energy resolved Berry curvature Ωz(E), in atomic Rydberg units (a.R.u), and
density of states in the case of increased spin-orbit coupling strength ξ = 2. The results are
presented relatively to the Fermi energy level.

Next, the spin-orbit coupling strength is further increased to ξ = 4 and ξ = 6. The
shape of the DOS diagram in relation to the different values of the strength ξ can be
seen in Fig.(6.6). The effect of the increase in ξ is more significant in the region between
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(−0.15, 0)Ry. The d-electron peaks formed in this region separate from each other and
become sharper. For ξ = 6, these peaks have a totally different shape in comparison
with the ξ = 1 case. Ωz(E) is calculated for ξ = 4 with a 1mRy energy partition and
for ξ = 6 with a 2mRy energy partition. The results are shown in Fig.(6.7), together
with the ξ = 2 case. By further increasing ξ, the formed peaks are smoother and the
overall shape becomes less spiky. This can be attributed to the further separation of the
energy bands due to the increased spin-orbit interaction. Also, the value of Ωz(E) does
not decrease significantly, in comparison to the transition from ξ = 1 to ξ = 2. That
maybe is because the overall smooth enhancement to the Berry curvature, caused by the
increase in ξ, compensates for the further decrease, caused by the larger band splitting.
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Figure 6.6: Density of states of the ferromagnetic bcc Fe for different values of the spin-orbit
coupling strength ξ. The results are presented relatively to the Fermi energy level.
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Figure 6.7: Energy resolved Berry curvature Ωz(E), in atomic Rydberg units (a.R.u), for dif-
ferent values of the spin-orbit coupling strength ξ. The results are presented relatively to the
Fermi energy level.
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6.3 AHC calculation
After calculating the energy resolved Berry curvature, the intrinsic anomalous Hall

conductivity σxy(E) can be found from integrating the peaked function Ωz(E) over the
energies (see (5.84)), up to a final energy E , i.e. σxy = − e2

ℏ(2π)3
∫ E

dE ′ Ωz(E ′). The
physical value is at σxy(E = EF ). For the ξ = 1 case, the calculated σxy for some selected
energy partitions can be seen in Fig.(6.8). It is clear that the convergence problem of this
case is also present in σxy. From Fig.(6.8), it can be seen that the problematic regions are
near (−0.25,−0.2)Ry and (−0.15,−0.1)Ry.
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Figure 6.8: Intrinsic anomalous Hall conductivity σxy for 1mRy, 0.125mRy and
0.015625mRy energy partitions.The results are presented relatively to the Fermi energy level.

Furthermore,σxy is also calculated for the caseswhere the spin-orbit coupling strength
ξ is increased. The results are presented in Fig.(6.9). One can see how the increase in the
spin-orbit coupling strength alters the shape of σxy in a smooth way. In Fig.(6.9) also
the calculated σxy for ξ = 1 and 1mRy is included. It seems that this case approaches
the ones where ξ is increased, while the differences are clearly located in the problem-
atic regions near (−0.25,−0.2)Ry and (−0.15,−0.1)Ry. The behavior of σxy near the
Fermi energy can be seen in Fig.(6.10). Although the shape of σxy calculated for ξ = 1
approaches the one calculated in [51], its value is approximately 20 times larger. Also,
in Fig.(6.10) the calculated σxy at the Fermi energy can be seen in relation to the spin-
orbit coupling strength ξ. Its shape is similar to the one obtained in [36], with the results
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being again approximately 20 times larger. The origin of this discrepancy is not clear
at present. For the ξ = 1 case, the calculated σxy for Fe, by other first-principles meth-
ods [36,37,40,51], ranges between 750S/cm and 800S/cm at zero temperature, while the
experimentally measured value in room temperature is 1032S/cm [52].
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Figure 6.9: Intrinsic anomalous Hall conductivity σxy for different values of the spin-orbit
coupling strength ξ.The results are presented relatively to the Fermi energy level.
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Figure 6.10: (a) Intrinsic anomalous Hall conductivity σxy , around the Fermi energy, for
different values of the spin-orbit coupling strength ξ. (b) Intrinsic anomalousHall conductivity
σxy at the Fermi energy in relation to the spin-orbit coupling strength ξ.
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The last step is to examine the temperature dependence of the intrinsic σxy by con-
voluting with the Fermi function in (5.84). The calculations are performed for the cases
with the increased spin-orbit coupling strength ξ = 2, ξ = 4 and ξ = 6, while the tem-
perature is set at T = 150K and at T = 300K. The results are shown in Fig.(6.11). The
temperature dependence starts to become important near the Fermi energy at −0.1eV
where σxy is a decreasing function. At the Fermi energy level, the value of σxy increases
with T . Above the Fermi energy, the Fermi function vanishes and σxy becomes constant.
As it is seen in Fig.(6.11), the effect of electronic temperature (up to room temperature)
is rather small. The same is expected for the effect of magnetic fluctuations induced by
temperature since the Curie temperature of bcc Fe is large (1043K).
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Figure 6.11: Intrinsic anomalous Hall conductivity σxy in relation to temperature T , for dif-
ferent values of the spin-orbit coupling strength ξ. In (a) ξ = 2, in (b) ξ = 4 and in (c) ξ = 6.
The results are presented relatively to the Fermi energy level.



Chapter 7

Conclusion

In summary, a method was developed in order to calculate the Abelian Berry curva-
ture within the framework of the full-potential scalar relativistic approximation to the
Dirac equation, with the addition of a correction representing the spin-orbit coupling
(SOC). This method was then used for the calculation of the intrinsic anomalous Hall
conductivity (AHC). The studied system was the ferromagnetic bcc Fe.

At first, the Berry curvature was calculated over the Fermi surface. Its value was
large only on "hot-spots" where avoided crossings of energy bands appear due to the
SOC. These regions act as Berry curvature sources and, in order to be well depicted, a
very dense k-points grid is needed. Then, after the decision of the suitable k-points grid,
the energy resolved Berry curvature was calculated. Its spiky shape demanded a very fine
energy partition. By progressively decreasing the energy partition, it was shown that it is
unfeasible to reach convergence for the regular (ξ = 1) SOC strength. This difficulty was
attributed to the nature of Fe as a material with weak SOC. As a result, smaller avoided
crossings appear and the Berry curvature is larger at these regions. The convergence dif-
ficulty was overcome by artificially increasing the SOC strength to ξ = 2. That made
possible to use a fine enough energy partition which would not cause numerical instabil-
ities. As expected, the Berry curvature decreased because stronger SOC leads to larger
splittings in the induced avoided crossings. The spiky character of the energy resolved
Berry curvature was well depicted, while the peaks with the higher contributions were
attributed to the d-electron states. Moreover, by further increasing the SOC strength
to ξ = 4 and ξ = 6 the formed peaks became smoother and the overall shape of the
energy resolved Berry curvature less spiky. An extrapolation from the converged values
for ξ = 6, 4, and 2 gives the result for ξ = 1.

Furthermore, the AHC was calculated from integrating the energy resolved Berry
curvature over the energies. Although the behavior of AHC around the Fermi energy
level was similar to other works, its value was calculated approximately 20 times larger.
Additionally, the AHC increased non-linearly to the SOC strength as shown in previous
works, with the results being again approximately 20 times larger. The origin of this
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deviation was not found. Finally, the dependence of AHC on the electronic temperature
was studied. It was found that, AHC increases together with the temperature, only in a
small area of 0.1eV below the Fermi energy level. In general, the effect of the electronic
temperature (up to room temperature) was rather small.



Appendix A

Berry curvature symmetries in k-space

The general symmetry properties of the Berry curvature in k-space is that, under
time-reversal symmetry Ωn(−k) = −Ωn(k), while under space-inversion symmetry
Ωn(−k) = Ωn(k) [6]. In systems where both time-reversal and space-inversion sym-
metries are present, the Berry curvature is identically zero. The ferromagnetic materials
which are the subject of this thesis, exhibit only space-inversion symmetry because the
spontaneous magnetization breaks the time-reversal symmetry. Apart from the above
symmetries, the Berry curvature displays further constraints related to the elements of
the space group of k [53].

The magnetic point group of a cubic metal with magnetizationM along [001], which
is the case for bcc Fe studied in this thesis, is the 4/mm′m′ [54]. It consists of 8 uni-
tary and 8 anti-unitary elements, leading to a total of 16 elements. The elements of the
unitary subgroup are {E,C2z, C4z, C4z−1, I, S4z−1, σz, S4z}. The elements of the anti-
unitary subgroup are {C2x, C2y, C2a, C2b, σx, σy, σda, σdb}. In both subgroups, the last 4
elements are the inversion symmetric of the first 4. The Berry curvature behaves as an
axial vector in k-space, that means that under a rotation R it changes as

Ω′
n(Rk) = det(R) R Ωn(k), (A.1)

in addition to the group velocity which behaves as a polar vector

v′n(Rk) = R vn(k), (A.2)

With that in mind and together with the relations for the Berry curvature tensor

Ωα
n(k) =

1

2
ϵαβγΩn,βγ(k), (A.3)

Ωn,βγ(k) = −Ωn,βγ(k), (A.4)
with (α, β, γ) = (x, y, z), α ̸= β ̸= γ, (A.5)
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the constraints of the Berry curvature can be found in each case. The constraints from
the first 4 symmetry elements can be seen in Table A.1 for the unitary elements and in
Table A.2 for the anti-unitary elements. In these tables, also the behavior of the group
velocity can be seen. For the rest inversion symmetric elements, the constraints can be
found by the space-inversion symmetry propertyΩn(−k) = Ωn(k). The essential point
of the above discussion is that, only the z component Ωz(k) =

∑
n

Ωz
n(k) ̸= 0.

Unitary elements
k vn(k) Ωn(k)

E (kx, ky, kz) (vx, vy, vz) Ωx
n(kx, ky, kz)

Ωy
n(kx, ky, kz)

Ωz
n(kx, ky, kz)

C2z (−kx,−ky, kz) (−vx,−vy, vz) Ωx
n(−kx,−ky, kz) = −Ωx

n(kx, ky, kz)
Ωy

n(−kx,−ky, kz) = −Ωy
n(kx, ky, kz)

Ωz
n(−kx,−ky, kz) = Ωz

n(kx, ky, kz)
C4z (−ky, kx, kz) (−vy, vx, vz) Ωx

n(−ky, kx, kz) = −Ωy
n(kx, ky, kz)

Ωy
n(−ky, kx, kz) = Ωx

n(kx, ky, kz)
Ωz

n(−ky, kx, kz) = Ωz
n(kx, ky, kz)

C4z−1 (ky,−kx, kz) (vy,−vx, vz) Ωx
n(ky,−kx, kz) = Ωy

n(kx, ky, kz)
Ωy

n(ky,−kx, kz) = −Ωx
n(kx, ky, kz)

Ωz
n(ky,−kx, kz) = Ωz

n(kx, ky, kz)

Table A.1: Constraints on the Berry curvature and on the group velocity in k-space for the
first 4 unitary elements of the magnetic point group 4/mm′m′.
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Anti-unitary elements
k vn(k) Ωn(k)

C2x (kx,−ky,−kz) (vx,−vy,−vz) Ωx
n(kx,−ky,−kz) = −Ωx

n(kx, ky, kz)
Ωy

n(kx,−ky,−kz) = Ωy
n(kx, ky, kz)

Ωz
n(kx,−ky,−kz) = Ωz

n(kx, ky, kz)
C2y (−kx, ky,−kz) (−vx, vy,−vz) Ωx

n(−kx, ky,−kz) = Ωx
n(kx, ky, kz)

Ωy
n(−kx, ky,−kz) = −Ωy

n(kx, ky, kz)
Ωz

n(−kx, ky,−kz) = Ωz
n(kx, ky, kz)

C2α (ky, kx,−kz) (vy, vx,−vz) Ωx
n(ky, kx,−kz) = −Ωy

n(kx, ky, kz)
Ωy

n(ky, kx,−kz) = −Ωx
n(kx, ky, kz)

Ωz
n(ky, kx,−kz) = Ωz

n(kx, ky, kz)
C2β (−ky,−kx,−kz) (−vy,−vx,−vz) Ωx

n(−ky,−kx,−kz) = Ωy
n(kx, ky, kz)

Ωy
n(−ky,−kx,−kz) = Ωx

n(kx, ky, kz)
Ωz

n(−ky,−kx,−kz) = Ωz
n(kx, ky, kz)

Table A.2: Constraints on the Berry curvature and on the group velocity in k-space for the
first 4 anti-unitary elements of the magnetic point group 4/mm′m′.
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