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ABSTRACT 

 

In Neuroscience, studying complex cognitive functions, such as attentional modulation,          
motor control or short-term memory, relies on understanding the circuit dynamics that            
underlie neuronal systems. Researchers need to observe and classify network events in            
synchronized brain activity, that’s characterised by alternating epochs of massive          
persistent network activity and periods of generalized neural silence, a tedious task when             
performed by a human expert. A popular method for recording network activity is Local              
Field Potential (LFP), as it allows for long and stable recordings from multiple sites. 

In Computer Science, state-of-the-art hardware combined with the abundance of large           
scale datasets, in recent years, have given rise to Deep Neural Networks (DNNs), a              
powerful computational model used by Deep Learning methods, that was able to            
approach, or even surpass, human level performance on various tasks that rely on pattern              
recognition, such as speech recognition and medical diagnosis.  

In this thesis, we explore if Deep Learning methods can amplify the accuracy of              
determining the timing and duration of network events in neuronal systems, by processing             
in-vitro LFP events. Particularly, we implement a variation of Dreem One Shot Event             
Detector (DOSED), ​a deep learning approach that jointly predicts locations, durations and            
types of events in EEG time series. In our approach the input to the network is an LFP                  
time series instead. Then we compare the performance of this method to LFPAnalyzer,             
which is based on the implementation of established signal processing and non-deep            
machine learning approaches, a method that has already been shown to perform better             
than semi-manual analysis. Both methods are fully automated and depend solely on data. 
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ΠΕΡΙΛΗΨΗ 

 

Στη Νευροεπιστήμη, η μελέτη σύνθετων γνωστικών λειτουργιών, όπως η προσαρμογή          
εστίασης, ο έλεγχος των κινήσεων ή η βραχυπρόθεσμη μνήμη, βασίζεται στην κατανόηση            
της δυναμικής του κυκλώματος που υπόκειται των νευρικών συστημάτων. Οι ερευνητές           
πρέπει να παρακολουθούν και να ταξινομούν γεγονότα δικτύου σε συγχρονισμένη          
εγκεφαλική δραστηριότητα, που χαρακτηρίζεται από εναλλασσόμενες εποχές μαζικής        
επίμονης δραστηριότητας δικτύου και περιόδους γενικευμένης νευρικής σιωπής, το οποίο          
αποτελεί ένα κουραστικό έργο, όταν εκτελείται από έναν ανθρώπινο εμπειρογνώμονα. Μια           
δημοφιλής μέθοδος για την καταγραφή δραστηριότητας δικτύου είναι το Δυναμικό Τοπικού           
Πεδίου (LFP), καθώς επιτρέπει σταθερές εγγραφές, μεγάλης διάρκειας, από πολλαπλές          
τοποθεσίες. 

Στην επιστήμη των υπολογιστών, οι τεχνολογικές εξελίξεις στα εξαρτήματα υπολογιστών          
σε συνδυασμό με την αφθονία των μεγάλης-κλίμακας βάσεων δεδομένων, τα τελευταία           
χρόνια έχουν οδηγήσει στη ραγδαία εξέλιξη των Βαθέων Νευρωνικών Δικτύων (DNN), ένα            
ισχυρό υπολογιστικό μοντέλο που χρησιμοποιείται από τις μεθόδους Βαθιάς Μάθησης, το           
οποίο έχει προσεγγίσει ή ακόμα και ξεπεράσει την απόδοση του ανθρώπου σε διάφορες             
εργασίες που βασίζονται στην αναγνώριση προτύπων, όπως η αναγνώριση ομιλίας και η            
ιατρική διάγνωση. 

Σε αυτή τη διατριβή, διερευνούμε αν οι μέθοδοι Βαθιάς Μάθησης μπορούν να ενισχύσουν             
την ακρίβεια του προσδιορισμού του χρονισμού και της διάρκειας των γεγονότων δικτύου            
σε νευρικά συστήματα, επεξεργαζόμενοι στο-γυαλί LFP γεγονότα. Συγκεκριμένα,        
εφαρμόζουμε μια παραλλαγή του ανιχνευτή γεγονότων Dreem One Shot Event (DOSED),           
μια βαθιάς μάθησης προσέγγιση, που προβλέπει ταυτόχρονα τις θέσεις, τις διάρκειες και            
τους τύπους συμβάντων στις χρονοσειρές του EEG. Στην προσέγγισή μας, η είσοδος στο             
δίκτυο είναι μια χρονική σειρά LFP. Στη συνέχεια, συγκρίνουμε την απόδοση αυτής της             
μεθόδου με τον LFPAnalyzer, ο οποίος βασίζεται στην εφαρμογή καθιερωμένων          
προσεγγίσεων επεξεργασίας σήματος και μη βαθιάς μηχανικής μάθησης, μιας μεθόδου          
που έχει ήδη αποδειχθεί ότι έχει καλύτερη απόδοση από την ημι-χειρωνακτική ανάλυση.            
Και οι δύο μέθοδοι είναι πλήρως αυτοματοποιημένες και εξαρτώνται αποκλειστικά από           
δεδομένα. 
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Event Detection and Classification of in-vitro LFP Electrophysiological Signals with Deep Learning 

1. INTRODUCTION 

 

1.1. Background 
On this project, we experiment with Deep Learning techniques, particularly of the field of              
Computer Vision, and apply them on a Signal Processing problem of Electrophysiological            
signals analysis, particularly LFP signals. 
 

1.1.1.  Signal Processing  

In order to better understand a phenomenon, we often study signals, i.e. functions that              
quantify and model the behaviour of a system​[1]​. In that regard, signals can convey various               
types of information, such as audio, video, speech, image, sonar or electrochemical            
information, among others​[1]​. But the relative information of a signal, is often accompanied             
by non-relative noise, obscuring the study of a phenomenon.  
In that context, we can define noise as random fluctuations of data, that perpetrate the               
obstruction of observing the original signal and the information it holds [2]​. One of the goals                
of Information Theory, a branch of mathematics that examines the transmission of            
information, is solving the problem of retrieving the useful information from a noisy             
observation​ [3]​.  

 
Figure 1.1: Graphical representation of a signal transmitted through a noisy channel (a) and the same 

signal without noise as a result of signal processing (b)​[4] 

Over the years, various methods have been established to process signals and extract the              
necessary compounds to analyze the phenomenon in question. But choosing the best            
suited method, starts by identifying the properties of the signal.  
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1.1.2. Electrophysiological Signals and Event-Related Potential 

Electrophysiology is a subfield of Physiology that examines the electrical properties of            
biological tissues and cells. So, in general, electrophysiological signals are functions of            
voltage fluctuations over a period of time, and in Neuroscience, these signals hold             
information over the electrical activity of neurons. 
In the 1950s, a new approach started coming to prominence, gaining influence over             
theories and research of human cognition. With this “information processing” approach,           
cognitive functions can be studied through the patterned neural activities, translated as            
informational transactions in the brain. These transactions are reflected in “event-related           
potentials” (ERPs), meaning that an increase in the electric field potential of a neuron, or a                
group of neurons, can be linked to certain events in the brain, who in turn can be linked to                   
certain cognitive functions.​[5]  

An ERP waveform contains positive and negative values representing voltage fluctuations           
that can be further analysed into a set of underlying components.​[6] Furthermore, the             
waveform can be divided into the signal of interest, i.e. a series of ERPs and the                
accompanying noise. This noise is the sum of random background brain activity, called             
neural oscillations, bio-signals and even electromagnetic interference caused by external          
factors, such as equipment used in the lab during the recording of the electrophysiological              
signal.  
In that context, in order to further analyse cognitive functions, one needs an             
electrophysiological monitoring method that evaluates the electrical activity in the brain to            
obtain electrophysiological signals and one signal processing method that extracts relative           
information in the form of ERPs.  
 

1.1.3. Electroencephalogram 

One of the most commonly used methods for measuring brain activity, is the             
Electroencephalogram (EEG), which is recorded through the use of electrodes attached to            
the scalp, and is used to diagnose various brain disorders, like epilepsy, brain tumors,              
brain damage, strokes or sleep disorders, among others. 
EEG provides a graphic display of voltage changes from different sites across the brain              
and is mostly used non-invasively (extracranial EEG), while it can also provide in-vivo             
measurements from surgically implanted electrodes focused at specific regions of the           
brain (intracranial EEG). 
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Figure 1.2: ​EEG data showing onset of an epileptic event.​[7] 

In the common case, human experts are the ones who visually inspect EEGs in search of                
ERPs, manually annotating the onset and offset of such events, as well as classifying              
them. But this raises the following issues: there is a high likelihood that annotations from               
different experts will vary significantly, and on top of that, the whole process is mundane,               
time consuming and costly on the experts’ end.​[8] 

 

1.1.4. Local Field Potential 

Another popular method for recording brain activity is the Local Field Potential (LFP; also              
known as intracranial EEG), which is more invasive than the extracranial EEG. To get an               
LFP recording, an extracellular microelectrode is set within brain tissue. The placement of             
the microelectrode should have sufficient distance from individual local neurons, in order to             
avoid dominance of the signal by a singular neural cell. This way, a great number of                
neurons can equally contribute to the signal that constitutes the potential generated by the              
total of all local currents on the surface of the microelectrode. 
The rising prevalence of LFPs can be credited to a number of factors. The utilization of                
advanced microelectrode technology of the last decade, in the form of silicon-based            
multi-electrodes, has enabled researchers to reach extraordinary spatial coverage and          
resolution of the processes that amount to the generation of the extracellular field.​[9] At a               
network level, integrative synaptic processes can be easily observed by researchers as            
LFPs provide different band-limited components and in addition, they provide useful           
information about the effect of neuro-modulatory pathways, local intra-cortical processing          
and the state of the cortical network.​[10,11] LFPs usually provide a wide spectrum of neural               
oscillators on the range of 1-100Hz that reflect the activity of various neural processing              
pathways.​[12] In neural processing, discrete and possibly disassociated information         
channels can be empirically examined through LFP signals​[13]​, and even provide           
apprehension of neuronal activity generated by circuit dynamics, when combined with           
spike recordings.​[14] Lastly, in-silico models of neuronal activity can be developed from            
information obtained through LFPs, that can later be compared to in-vivo experiments.​[15] 
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LFP signals consist of alternating epochs of massive persistent network activity and            
periods of generalized neural silence, so the accurate determination of the timing and             
duration of those network events, in the form of the events’ onset and offset, is crucial but                 
requires great manpower and tedious work for the researchers.​[16] 

 
Figure 1.3: ​A single LFP recording in three different plots, in terms of time :  

a) The original complete signal. The red box signifies the part that will be zoomed in, producing plot b. 
b) The same signal as plot a, but zoomed in. The red box signifies the part that will be zoomed in, 

producing plot c. 
c) The same signal as plot b, but zoomed in. The two green boxes signify the two events of interest. 

Anything out of the boxes is considered neural silence/noise. 

Notice that the peaks of the events are distinguishable with the eye, even from plot a, but we need to 
see them closer from plot c, to find their onset and offset. 

 
In conclusion, on top of the above-mentioned reasons for LFPs rising popularity,            
neuroscience researchers perceive an enormous increase of analysis load, due to the            
growing need for massively parallel data from multi-electrode arrays. As such, the            
requirement for reliable, automated and high throughput tools for detecting and quantifying            
neural events in LFP signals is of grave significance.​[16] 
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1.1.5. Machine Learning  

Machine Learning (ML) is a subfield of Artificial Intelligence that concerns computer            
algorithms that learn how to solve a certain problem, without the programmer explicitly             
defining it or the approach to solve it. Instead, the computer learns how to solve the                
problem mainly from performing random actions at first, then evaluating said actions by             
comparing the generated results with data provided by the programmer, in order to select              
better future actions to get better results.  
Machine Learning is mostly used on problems whose solution consists of so complex             
steps that the programmer is unable to clearly define them. In these cases, it is preferable                
and more effective to guide the machine into developing its own algorithm than actually              
providing one yourself. The three main categories of approaches of ML are supervised             
learning, unsupervised learning and reinforcement learning.  
In supervised learning, a supervisor/expert provides already labeled data, in the form of             
example inputs and desired outputs, that will be used to train the algorithm to map every of                 
these inputs to specific outputs. During training, the algorithm processes the training data             
and makes a prediction for each data instance. Then it compares its prediction, with the               
ground truth, i.e. the labeled data the expert provided. The evaluation of how wrong the               
prediction was, sets how the algorithm should shift, in order to produce a prediction that’s               
going to be closer to the correct one in the future. After the end of the training period, the                   
algorithm will attempt to make predictions about previously “unseen” labeled data           
instances, so that the programmer can infer how well the algorithm can generalize to new,               
and possibly unlabeled, data. This method of learning is parallel to psychology’s concept             
learning and is widely used for problems of pattern recognition, aka classification and             
regression, aka function approximation.​[17] 

In unsupervised learning, the datasets are unlabeled and the supervision by an expert is              
minimal. The algorithm attempts to find undetected patterns and structure in the data by              
itself. It’s usually applied to general estimation problems, such as clustering, statistical            
distribution estimation, compression and filtering or feature learning.​[17] 

Finally, in reinforcement learning, the algorithm deploys intelligent agents that are able to             
interact with a dynamic environment and the actions they apply either positively or             
negatively reinforce these actions in the future. The problem is modelled as a Markov              
decision process environment, and in it, the agents need to balance between exploration,             
in the sense of performing an action that hasn’t been tried yet and exploitation, in the                
sense of repeating actions that previously yielded positive results. Reinforcement learning           
algorithms are widely used for control problems and other sequential decision making            
tasks, such as self driving vehicles, natural resource management, medicine design, as            
well as playing board games and video games.​[17] 
 

1.1.6. Artificial Neural Networks 

Artificial Neural Networks (ANNs) are mathematical models capable of learning how to            
solve problems. Their inspiration comes from biological neural networks. As such, ANNs            
mirror both their composition, as well as the way they function to learn new complicated               
tasks. An ANN consists of a collection of artificial neurons, the neurons’ connections, the              
connections’ weights and a propagation function, i.e. a function that defines the output of              
each neuron. The basic idea is that the input to the algorithm is feeded to a subset of                  
these neurons, who based on their connections, weights and propagation functions, each            
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output a number, which then serves an input to the next set of neurons, and so on, until it                   
reaches the final set of neurons, whose output is considered the output of the algorithm               
and the solution to the problem at hand.​[17] 

Much like their biological counterparts, each artificial neuron consists of a cell body, a              
nucleus, an axon, axon terminals and dendrites. The input ​to each artificial neuron, paired              
with individual ​weights ​to the incoming connections​, can be considered as the biological             
neurons’ dendrites. The inputs are combined with the ​sum ​function Σ in the cell body. Then                
the ​propagation function f ​, also called ​activation function, can be thought of as the               
computations that run also in the cell body, with the ​bias​. Finally the computed ​output               
signal​ is transferred through the axon to the outcoming connection i.e. the axon terminals. 

  
Figure 1.4: ​Graphical comparison of a biological neuron and an artificial one.​[18]  

The output of neuron​j , that has incoming connections from neuron​0 to neuron​n ​can then be                
defined as: 

utput  ( ( weight  output ) bias )o j = f ∑
n

i=0
 i , j i +  j  

where output​i ​is the input to neuron​j from neuron​i , weight ​i, j ​is the weight of the connection                   
of these two neurons, bias​j​ is the bias of neuron​j​ and f is the activation function.​[17] 

 
Figure 1.5: The three most commonly used activation functions are the sigmoid, tahn and ReLU 

functions.​[19] 
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In practice, these artificial neurons are nodes of a computational graph, that can be fully               
connected or not, pending on the task the ANN is trying to learn. Before training the                
network, the weights and the biases of each node are randomly assigned. During training,              
under the machine learning paradigm, the network predicts outputs for the given training             
data. The network proceeds to evaluate its output and then changes the weights and              
biases following a learning rule, set by the programmer, attempting to get better             
predictions in the future. After successfully training, the network is ready to be used to               
perform the task it learned, by predicting output for new data instances.​[17]  

 
Figure 1.6: An ANN as computational fully-connected graph with three layers, one for input, one for 

output and a hidden layer.​[20]  

ANNs can be used with all three aforementioned machine learning approaches and in later              
years, after decades of not working efficiently, they have been proven to be extremely              
powerful. The main reasons for ANNs recent success are one side, new computer             
technology, that enables running computational graphs with millions of artificial neurons           
and more than one hidden layers, and on the other side the enormous size of datasets                
available today, that allow the creation of statistical models capable of solving            
tremendously complex problems. These two factors have led the way to the greatest             
revolution in computers of this century, that has been named Deep Learning. 

1.1.7. Deep Learning and Deep Neural Networks 

Deep Learning (DL) is a subfield of ML that uses deep neural networks (DNNs), meaning               
ANNs that have more than one hidden layers, to learn to perform tasks. In DL a complex                 
task can be divided into simpler subtasks. Then each subtask can be assigned to one of                
the hidden layers to perform, making the network extremely efficient. This way, each layer              
is able to progressively extract higher level features from the input. For example, in Image               
Processing, the input layer of the network will receive the raw image represented as a               
matrix, where each element of the matrix corresponds to a pixel in the image. Then as the                 
data flows towards the output layer, passing through the hidden layers, the process can be               
thought of as trying to reconstruct the contents of the image. As such, the first hidden layer                 
could detect the dots in the picture and encode them as edges, the second could construct                
arrangements of edges, so that the third could compose more complex shapes and these              
shapes could be connected on the fourth layer to provide the form of an object, e.g. a dog,                  
that would be detected and classified as such on the final output layer. This constitutes the                
greatest advantage over classic ML algorithms, as the programmer doesn’t need to define             
what a dog is, or how a dog looks. Instead, the hard choice of which features in the data                   
are relevant to the task and which are not, is conducted by the network itself.​[17] 
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Apart from Image Processing​[21]​, DNNs have been used, yielding great results, on a             
number of fields, such as speech recognition​[22]​, audio recognition​[23]​, natural language           
processing​[24]​, language translation​[25]​, drug design​[26]​, medical image analysis​[27]​,        
bioinformatics​[28]​, board​[29] and video games​[30]​, while in most of these areas they have             
even surpassed human experts.  
Every DNN can be defined by its parameters, hyperparameters and strategies.  
The number of the parameters, or coefficients of the model, of a DNN, are defined by its                 
number of layers and the number of neurons each layer has. These are selected by the                
programmer based on the task the network attempts to learn. So the selection of the               
architecture of the network by the programmer, defines the selection of the number of              
parameters by the network itself. These parameters can be divided into the tr​ainable             
parameters​, meaning that their value changes during the training period, and the            
non-trainable parameters​. Usually the trainable parameters are the weights of the           
connections between neurons and the neurons’ biases.​[17] 

The hyperparameters of a DNN, are the parameters whose value is assigned by the              
programmer, before training, and they remain unchanged throughout. These include the           
number of hidden layers​, the ​learning rate​, i.e. how much do the trainable parameters              
change at every step of the training, the ​momentum​, i.e. a technique that increases the               
speed of convergence by embedding memory of past changes on the learnable            
parameters, the ​activation function of the neurons on each layer, the ​batch size​, i.e. the               
number of data instances the network processes before adjusting the trainable           
parameters, the ​number of epochs​, i.e. the number of times the network is going to               
process the whole training dataset, before ending the training period, and more.​[17] 

The strategies used by a DNN, involve the ​parameter initialization​, i.e. how the trainable              
parameters are going to be initialized before training, the ​data normalization​, i.e.            
normalization or standardization of the input data before training, the ​optimization           
algorithm​, i.e. the algorithm that computes how the trainable parameters should be            
adjusted in order for the the desired output to be produced, the ​loss function​, i.e. a function                 
that evaluates how far from the desired output, the network’s actual output is, or in other                
words the error of the network, and more. ​[17] 

To sum up, when a programmer wants to build a DNN that learns how to solve a certain                  
problem, he needs to carefully select the hyperparameters and strategies of the DNN for it               
to be successful. These can be selected either by a priori knowledge of the problem or by                 
trial and error.  

1.1.8. Computer Vision 

Computer Vision is the interdisciplinary field that pursues to automate various visual tasks             
the human visual system can perform and even surpass it. These tasks include acquiring,              
processing, analyzing, detecting and extracting useful information from digital images, so           
that they can be encoded into symbolic information that a computer can “understand”, in              
order to select and perform appropriate actions.​[31]  
Computer Vision algorithms can be applied to numerous problems, for instance, event            
detection​[32]​, video tracking​[33]​, scene reconstruction​[34]​, image restoration​[35]​, object        
recognition​[36]​, motion estimation​[37]​, and many more. In these fields, Computer Vision has            
seen a drastic rise in efficiency, due to the utilization of DL and DNNs.  
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1.1.9. Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) are a class of DNNs that are used for Computer              
Vision algorithms. Like the DNNs, they are also inspired by biological processes of             
animals, specifically by copying the organization of the connectivity of neurons in the visual              
cortex. In the visual cortex, specific neurons only respond to specific overlapping regions             
of the visual field, also called the receptive field. In this way, in a CNN each artificial                 
neuron gets input from a specific area of the input image, while these overlapping areas               
can reconstruct the original input to the network, should they be combined. This enables              
each neuron to focus on a specific part of the image, making it easier to perform complex                 
tasks on large images or videos. These small areas will be combined to larger areas going                
through the many hidden layers of a CNN, in order to capture spatial and temporal               
dependencies between the elements of the input image. Doing so, enables CNNs to learn              
which filters to apply to get the desired output, without the need of a human expert to                 
hand-engineer them, as with classical machine learning algorithms.​[38] 

 
Figure 1.7: A CNN that learns how to detect and classify various types of vehicles.​[39] 

CNNs take their name from the application of convolution, the mathematical operation, on             
the areas of the input image. Like the DNNs they consist of one input layer, one output                 
layer and more than one hidden layer. These hidden layers are divided into the              
convolutional layers, the ones that perform the convolution on the image and the             
non-convolutional layers, whose properties and number vary and are chosen based on the             
task the CNN attempts to learn to perform. Typically, the convolutional layers use the              
ReLU activation function, and are followed by pooling layers, fully-connected layers and            
normalization layers.​[38] 

The input of a CNN is in the form of a matrix, or otherwise called tensor, with size: number                   
of data instances x image height x image width x image properties. The image properties               
can either be the different channels of a recording, the RGB colour channels, number of               
frames that will be processed together when the input is in video, or some other property.                
Passing through a convolutional layer, the input gets abstracted to a feature map, whose              
size would be : number of data instances x feature map height x feature map width x                 
feature map properties. ​[38] 

The feature map height and width depend on the individual kernel size of the individual               
convolutional layer, which are hyperparameters of the CNN. The kernel of a convolutional             
layer, is the filter that will be applied on the layer’s input and has the form of a matrix. As                    
the kernel matrix, “slides” on the image input matrix of the convolutional layer, it produces               
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the aforementioned feature matrix as the output to the layer, that will serve as the image                
input matrix to the next convolutional layer. ​[38] 

The way the kernel matrix “slides” is defined by the stride number. This is the number of                 
pixels the kernel matrix will shift over the input matrix. The combination of kernel size and                
stride define the size of the output matrix.​[38] 

These can be fully demonstrated and further explained on the image below: 

 
Figure 1.8: The steps of a convolution of an input image matrix of size (5x5x1) at a convolutional 
layer with kernel size (3x3x1), producing the output feature matrix of size (3x3x1), with strides=1. 

The output of the convolutional layer goes through a ReLU layer, which passes forward              
only the positive values to the pooling layer. The pooling layer’s purpose is two-fold: to               
simplify the output of the previous layer and to reduce its size. There are three main                
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pooling layers, the max pooling, the average pooling and the sum pooling layer, all of               
which perform to their input the operation in their name to produce their output. So a max                 
pooling layer, with kernel size (height x width) will perform a max operation that will               
produce an output of size (height x width).​[38] The effects of the pooling layer are better                
showcased in the image below: 

 
Figure 1.9: Max pooling with kernel size (2x2) and stride=2, applied to a (4x4) matrix to produce a 

(2x2) output matrix.​[38]  

Following the last convolutional and pooling layers pair is a set of one or more               
fully-connected layers, i.e. layers whose input and output are fully-connected with their            
nodes. The purpose of these are to reduce the size of the input matrix to a vector with                  
elements equal to the number of classes available for classification.  
Finally, on the last layer, the softmax activation function is applied, which belongs to the               
sigmoid activation functions family mentioned before. The softmax returns a vector of            
probabilities that all sum to one, with ‘x’ element of the vector representing the probability               
of the input to the network to belong to the class numbered ‘x’.​[38] 
Now we have fully explained how a feed-forward of one input data instance at a CNN used                 
for detection and classification works. As explained before, after getting the prediction for             
the class from the output layer for all data instances on the batch, the loss function is                 
called to evaluate the error of the predictions. Then the optimization policy adjusts the              
trainable parameters so that the next predictions of the next batch of data will hopefully be                
more accurate. When we reach the final epoch, having made predictions for the whole              
dataset multiple times, we can end the training period and start using the network for new                
and “unseen” data. 
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1.2.  Related Work 
In this chapter, we are going to overview some of the methods previously used for               
processing Electrophysiological Signals, including an ML approach for in-vitro LFP signals,           
as well as a DL approach for in-vivo EEG signals, the latter being the inspiration for our                 
approach in detecting and classifying events of in-vitro LFP signals, and showcase the             
advantages and limitations of each method.  
 

1.2.1. Analysing Electrophysiological signals 

In recent years, there have been various methods and approaches applied to            
Electrophysiological signal processing.​[16] Software packages like EEGLAB​[40]​,       
CHRONUX​[41]​, OSort​[42]​, Spike2​[43]​, have been proven to be really effective for other types             
of neuronal signals, but not as much when they are used for detection and quantification of                
events on LFP signals. This can be easily credited to the very nature of field potential                
recordings that are characterized by inconsistent and fluctuating voltage bursts.  
Some researchers attempted to combat these issues by combining intracellular with           
extracellular recordings, thus extracting event-related information from intracellular        
recordings and applying them on LFP recordings​[44,45]​. Others based their approaches on            
multiunit activity​[46,47]​, that is established as having higher acquisition frequencies, while           
they use neuronal spikes for event detection, but these are properties not found on LFP               
recordings. Other solutions include the utilization of user-defined inconsistent global          
thresholds for the voltage, so when you get values surpassing said threshold, the software              
marks it as an event.​[48,49] The main problem with these kind of approaches is that they are                 
not data driven, i.e. the applied threshold is global and selected once before the              
processing starts, not taking into account the differences that may occur between diverse             
recordings across labs, animals, drugs or tasks that the animals may perform during the              
recordings, leading to either, or both, overestimation and underestimation of the number of             
events in a recording or of the onset and offset values of these events. Aside from that,                 
they rely on trial and error to select that threshold, making them extremely time              
consuming, and the fact that even on the same experimental models, a different threshold              
may yield better results, proves that the threshold is subjective.​[16]  
Another group of researchers managed to overcome these problems, by supplying a data             
driven method for automatically defining the threshold on pre-processed in-vivo LFP           
recordings.​[50] In this approach, the threshold is selected after a series of assumptions, who              
may be logically set, but remain user-defined. The downsides of this approach are that it               
includes an essential pre-processing step to eliminate frequencies under 20Hz and also,            
that the threshold is applied to the whole recording, both of which can be proven to be                 
crucial, because the lower frequencies can be important to the research at hand or              
because the signal may contain events with low periodically or dynamic baseline            
fluctuations.​[16]  
To summarize, previous work on the subject of LFP signal processing, either relies on              
detection on other-than-LFP electrophysiological signals or relies on global thresholds that           
may not always perform well on dissimilar datasets. 
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1.2.2. LFPAnalyzer 

The aforementioned reasons led to the development of LFPAnalyzer, a software package            
that allows automatic detection and quantification of events in LFP signals, without the             
need for assumptions on the signal on the user’s end, by applying data driven methods               
that are locally adaptive, leading to a more precise estimation of the threshold and in turn,                
more precise estimation of the onsets and offsets of the events. Additionally, there is no               
need for a pre-processing step, as the method is applied to unfiltered recordings, the              
approach is fully automated and successful in detecting recurrent events, as well as             
estimating their various properties.​[16] 

The techniques this method employs come from Signal Processing, Speech Analysis and            
Machine Learning. An overview and an example can be seen in Figure 1.9, while the steps                
will be explained in detail below.  

 
Figure 1.10: Schematic overview of LFPAnalyzer: Panel 1 shows the steps that are applied to detect 

the events and Panel 2 shows the same steps applied on a frame of an LFP recording.​[16]  

Panel 1-a: First of all, the DC offset created by the acquisition process and the amplifier                
gets subtracted from the LFP recording, transforming the signal to analog. Then, because             
higher frequencies than 200Hz do not carry any relevant information, a third order             
Butterworth low-pass filter is applied to remove them. The preprocessed signal gets            
segmented to frames of 11 seconds, in order for the method to be locally adaptive and                
avoid applying a global threshold. These frames are non-overlapping, and the selection of             
their length is based on the fact that for the threshold estimation to be successful, both an                 
event (or more), that usually last no more than 8 seconds, and some baseline information               
(noise) need to be present. The results of the first step applied on Panel 2-a can be shown                  
in Panel2-b.​[16]  
Panel 1-b: The next step of this method is to apply two complementary transformations to               
all extracted frames, to generate two feature signals. The first one is the Hilbert Transform,               
a fundamental tool in Fourier analysis​[51]​, that has been used in neurophysiological signals             
for latency analysis.​[52,53] Hilbert Transform is very suitable for LFP signals, as it can be               
regarded as a method that represents narrow-band signals with reference to amplitude            
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and frequency modulation and will provide the signal’s envelope. The second is the Short              
TIme Energy Transformation, which is widely used in speech analysis and is very effective              
for silence period detection, as well as distinguishing audio classes.​[54] Given that speech             
and LFP signals share a lot of similarities, such as that they are both generated from a                 
time varying vocal tract and electrical burst respectively, with time varying excitation, and             
thus both of them are non-stationary. These two transformations will be used to evaluate              
two distinct thresholds that will be combined to provide the final threshold that will be used                
for detecting the events. The need for both of them stems from the fact that Hilbert                
Transform excludes parts of the events, as low amplitude periods are not passed to the               
transformed signal, while Short Time Energy Transform tends to divide individual events,            
due to its hypersensitivity to small silent periods detected in the middle of individual              
events. The two transformed signals can be shown in Panel 2-c and Panel 2-d.​[16] 

Panel 1-c: Then, the Gaussian Mixture Model (GMM), a data driven method from ML is               
applied to dynamically define the thresholds for both feature signals.​[55] The method is             
adjusted to be used unsupervised​[56] and will dictate the number of classes of events in the                
data. The algorithm produces one histogram of the voltage values for each frame of the               
transformed signal. We define as the two available classes that could be detected in a               
frame as one being an event, when it includes high voltage values, positive or negative,               
and the other being the noise, when it doesn’t include high values. Each frame may               
include either both noise and events, or just noise. Then, we can assume that the               
histogram will contain two peaks, should there be noise and events, and just one peak,               
should there be no events. The histogram is produced by the combination of GMM and               
Expectation-Maximization algorithm​[56,57]​, while the threshold is estimated through the         
incorporation of Minimum Message Length criterion into the Expectation-Maximization         
algorithm, providing flexibility for precise evaluation of the threshold on LFP signals with             
diverse properties.​[58] If the frame contains only noise, then no threshold is selected.             
Otherwise, the threshold is selected under the Bayes rule.​[58] On Panel 2-e and Panel 2-f,               
the red line representing the threshold can be shown for the two transformed signals.              
Anything surpassing this line is considered an event, while anything under it is considered              
noise, i.e. baseline.​[16]  
Panel 1-d: The last steps of the algorithm is to extract the corresponding masks for each                
transformed signal and combine them through the use of a Logical OR operation. The two               
thresholds are applied on the two transformed signals, and the generated masks consist of              
periods of ones, depicting the events, and periods of zeros, depicting the noise. A              
post-processing step is applied on the combined mask, so that events whose standard             
deviation (SD) is lower than the complete signal’s SD can be excluded, given that events               
will show higher SD than the complete signal, because it includes long periods of noise               
with small amplitude variability. The extracted masks can be shown in red in Panel 2-g and                
Panel 2-h, while the combined and final mask on Panel 2-i.​[16]  
This software has been proven to be more efficient than manual analysis and superior to               
other methods, as it overcomes the arbitrariness of global thresholds and succeeds in             
detecting all events that show clear differences from noise, even when the events’ periods              
are relatively so short that they might have remained undetected from other methods.​[16] 
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1.2.3. Dreem One Shot Event Detector 

Dreem One Shot Event Detector (DOSED) is a DL algorithm for detecting and classifying              
events in EEG recordings, specifically ones recorded during sleep.​[8] This approach is            
influenced by computer vision algorithms used for object detection, e.g. YOLO​[59] and            
SSD​[60]​. As such, DOSED uses a CNN to construct a feature map from raw EEG               
recordings, with two parallel modules on the CNN’s output layer, one used for localization,              
i.e. detecting the events’ centers and durations, to extract their onsets and offsets and one               
used for classification, distinguishing between 3 classes: spindles, K-complexes and          
arousals. The CNN is trained with supervised learning and back-propagation.​[8] 

 
Figure 1.11: Examples of EEG micro-events: a K-Complex, a Spindle and an Arousal. 

The first step of the algorithm is to divide every EEG recording of the provided labeled                
dataset, into EEG samples of 20 seconds duration. Then, N​d ​default overlapping events             
are generated, covering the entire sample. Each default event is characterised by its             
center t​c and duration t​d​. The initial values for the default events’ durations depend on the                
typical duration of a true event that the CNN is trying to detect, as well as the overlapping                  
factor, in order for the whole sample to be covered.​[8]  
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Figure 1.12: N​d​ default overlapping events are generated, covering the whole sample. 
 Inside the purple box lies an event (yet undetected).​[8] 

Then, the CNN is feeded with all the generated samples, and it generates the predicted               
events, i.e. the adjusted centers and durations for each of the N​d default events in each                
sample, as well as the probability p​L of each of them containing a true event. If this                 
probability, of any predicted event, is higher than a certain cross-validated threshold θ​L​,             
then it is considered as containing a true event.  

 
   ​Figure 1.13: The CNN generates the predicted events, whose centers and durations are the 

adjusted coordinates of the default events from Figure 1.11.  
The dotted boxes contain predicted events, with p​L​ < θ​L​, while the other two overlapping boxes in the 

middle, over the purple box, contain predicted events with p​L​ ≥ θ​L​. ​[8]  

Lastly, non-maximum suppression (NMS)​[58,59] is used to exclude overlapping events, by           
grouping predictions with the same detected class, based on their IoU score​[59]​, keeping             
the ones with the highest p​L​.​[8] 

 
 ​Figure 1.14: NMS applied on the predicted events with  p​L​ ≥ θ​L​ from ​ ​Figure 1.12 generates the final 

output of the algorithm that contains the true event. ​[8] 

The first part of the CNN consists of a Convolutional 2D layer, with Linear activation               
function, Stride=1 and C number of kernels of size=(C,1), where C is the number of EEG                
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channels of the recording, followed by a transpose layer. These two layers act as spatial               
filters of the input multivariate signal with the purpose of increasing the signal to noise               
ratio​[61,62,63] Should there be only one channel on the EEG recording, these two layers              
remain unused.​[8] 

The second part, consists of a series of K Convolutional 2D layers with ReLU activation               
function, Stride=1 and 4x2​k number of kernels of size=(1,3), where k=1..K, each one             
followed by a Max Pooling 2D layer with Stride=(1,2) and kernel size=(1,2). These layers              
act as temporal feature extractors, processing the codependence of the input sample in             
terms of time. The number K was selected to be equal to 8.​[8] 

The last part of the CNN, consists of the localization and classification modules, the output               
of the CNN. Localization is performed through the use of a Convolutional 2D layer, with               
Linear activation function, no stride and 2xN​d number of kernels of size=(C,T/2​K​), while             
classification through the use of a Convolutional 2D layer, with softmax activation function             
applied every L+1 kernels, with no stride and (L+1)xN​d kernels of size=(C,T/2​K​). The             
number T represents the time series of the sample, e.g. if the sample is 20 seconds long                 
and the recording is sampled at 256 Hz then T = 5120 and L is the number of classes to                    
be detected in the data. The reason that the kernels are equal to (L+1)xN​d is because the                 
algorithm assigns the label ‘0’, to predicted events containing no true event, then the label               
‘1’ for events that belong to class 1 and label ‘L’ for the events of class L. These two                   
convolutional layers are parallel to each other and connected to the last Max Pooling 2D               
layer of the precious block of the CNN.​[8]  
For the training of the CNN, a custom loss function is attempted to be minimized, that                
utilizes the IoU score between the default events and the true events to match them, in                
order to compare the predicted events with the corresponding true events. Stochastic            
gradient descent was used as an optimizing policy, with learning rate = 10​-4 or 10​-3               
(depending on the dataset), momentum = 0.9, batch size = 32 and epochs = 200. The                
batches fed to the network contained 50% samples with at least one true event and 50%                
with no true event. Three metrics were used to evaluate its performance: precision, recall              
and f1 score​[8] 
Before using the network for training, the programmer needs only to select the default              
events number N​d​, their duration and overlapping factor, based on the properties of the              
events that need to be detected, and the learning rate and detection threshold θ​L​, that               
should be evaluated by experimental knowledge.​[8] 
DOSED has been proven to be extremely versatile and efficient in both detecting and              
classifying micro-events in EEG recordings, surpassing the three other state-of-the-art          
detection approaches it was compared with, as it has been tested on four datasets.  
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1.3. Our Objective 

While the LFPAnalyzer excels in detecting events, their classification still remains a            
manual and extremely time consuming task, given that a researcher may have to process              
hours long recordings. On top of that, on the programmer’s side, a vast background on               
electrophysiological signals and their properties is mandatory in order to develop such            
algorithms, and generalizing LFPAnalyzer to detect events in signals other than LFP can             
be tremendously complex.  
As previously mentioned, DL algorithms offer automatic feature extraction, so the           
programmers need to know the bare minimum of the properties of the signal they are               
going to analyze. Moreover, DL algorithms generalize really well on similar datasets,            
making it possible for the programmer to use the same DNN architecture, with minimal              
adjustments, to learn to perform the same task on different input data.  
So, in order to develop an algorithm for event detection and classification of in-vitro LFP               
electrophysiological signals with Deep Learning, we can simply adjust the DOSED           
algorithm to receive as input data samples from LFP recordings, instead of EEG and train               
it accordingly. 
In this thesis, we will explain every part of DOSED in full detail. Then we will analyse the                  
necessary changes that need to be made for it to train with LFPs, as well as the datasets                  
that we are going to use, how to extract the samples and what statistics we can infer.                 
Finally, we will show some of the libraries, hardware and software that can be used to                
develop, train and use a DL algorithm. 
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2. SYSTEM OVERVIEW 

In this section, we will give an in depth look of the system we developed, that is inspired                  
by DOSED. We will explain in full detail how a CNN, a model that is used for computer                  
vision problems, can be modified to analyze electrophysiological signals, as well as how             
we can modify DOSED to analyze LFP recordings, instead of EEG. The code was fully               
developed in Python 3, as well as Keras and Tensorflow. 
  

2.1.  Electrophysiological Signal Processing as a Computer Vision task.  

Before the development of software that automatically processes electrophysiological         
signals, the labor of event detection and classification had to be performed manually by an               
expert. The expert would have to create a visualization of the signal, manually or              
automatically, creating a function of its voltage fluctuations over time and then visually             
inspect it, to manually annotate the events in the signal. Since the human brain is able to                 
perform such a task, with the help of human vision, and Computer Vision algorithms have               
been proven to be better detectors, we can safely assume that a computer can also               
perform visual signal analysis. 
So, we can build a CNN that instead of 2-dimensional images, it receives 1-dimensional              
“images” of an electrophysiological signal, since the time variant has a constant rate and              
only the voltage fluctuates at a changing rate. Thus, we can represent the input signal as a                 
vector, where the i-th element gives the voltage at the i-th time step. The reason we avoid                 
including time as a 2nd dimension is that the more dimensions the algorithm will need to                
process, the greater the algorithm’s complexity will be. We will further explain all the              
preprocessing steps to transform our dataset to the desired form later. 
The CNN will be trained with supervised learning. As such, we will need to develop a loss                 
function that will estimate the error of the network’s predictions, one that the network will               
attempt to minimize, to learn to perform the task at hand. Moreover, the loss function               
needs to be differentiable with respect to the trainable parameters, so that stochastic             
gradient descent methods and back-propagation can be applied as the optimization policy.            
To achieve this, we are going to develop a mathematical model that solves the problem of                
event detection and classification and transform it into a CNN. 
 
2.2. Mathematical Model 

The aim of the algorithm is to learn a prediction function .f
︿

: X → Y  

2.2.1. Event, Input and Output Definitions 

We start with some definitions:  

● Let  be the set of input LFP signals in our dataset, where  stands for the X = ℜCxT C  
number of channels of the recorded signal and  stands for the number of timeT  
steps. 

● Let  be the number of available labels or classes of events to be detected.  L ∈ ℵ  
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● We define as ​L the set of labels, and 0 the label that represents the1, , .., }= { 2 . L  
absence of an event, i.e. baseline. 

● Let ​E  L be the set of events, with an event E ​beℜ  x=  2 0}⋃ {  {t ,  , l}e =  c t d  ∈  
characterized by its center in time , its duration  and its label L  t c ∈ ℜ  t d ∈ ℜ l∈  

.0}⋃ {  

● We define as a ​true event​, an event with label , that has been annotated by a =l / 0  
human expert and as a ​predicted event​, an event with label , that has been =l / 0  
annotated by an algorithm.  

●  Let  be an LFP sample of 20 s duration, extracted from our dataset.x∈ X  

● Given that , we generate default events​ over sample .  N d ∈ ℵ   N d x  

● Let be the set of ​default events​,  generated over(x) d , i 1, , ..,  }}D = { i  ∈ { 2 . N d  
sample , with being the i-th ​default event​.  is the default event’sx   t ,  )d i = ( i

c t i
d

  t i
c  

center, while  is its duration. t i
d   

● Let be the list of the true events​ annotated over(x) {e , j 1, , ..,  }}E =  j  ∈ { 2 . N e  N e  
sample .x  

● Let E ​  and E​,  be theY ⊆ (x) Y {( t , t , l )f
︿

∈  =  
︿

i
c  
︿

i
d  
︿ 
i ∈ 1, , ..,  }}i∈ { 2 . N d  

prediction made by the model  over the sample x, where are thef
︿

 t , t ) ri
︿ = (

︿

i
c  
︿

i
d  

predicted adjustions to the coordinates of default event . d i  

● Actually, the network, instead of , will output the probabilities of each label forl  
︿ 
i  

every event, so let , be a probability vector, where .  0, ] π︿ i ∈ [ 1 |L|+1  ∑
 

l ∈ L ⋃{0}
π︿ l

i = 1   

● Finally, E​, is the actual prediction(x) Y {( t , t , π )f
︿

∈  =  
︿

i
c  
︿

i
d  ︿  

i ∈ 1, , ..,  }}i∈ { 2 . N d  
made by the model   over the sample x.f

︿

 

 
So the network takes as input a sample  and provides as output, not the actualx  
coordinates of the predicted event, nor the predicted label, but the predicted adjustions to 
the coordinates, i.e. centers and durations, of the default events that were generated over 
sample x, as well as the predicted probabilities for each event of belonging to every 
available class.  
The network’s goal is for these predicted adjustions to result in a default event’s 
coordinates perfectly matching a true event’s coordinates in time, as well as the label of 
that particular default event that has the highest probability to be the label annotated for 
the matching true event. 
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Figure 2.1: Default events generated over a sample x and the trained network’s expected output: 

a) The sample x, with two annotated true events in red:  
e​1​=(0.25,0.5,1),e​2​=(4.1,0.4,2). 

b) N​d​ default events generated over sample x, with duration=1s and overlap factor=0.5 in green. 
Note that the difference in the size of the boxes at the y-axis is used only for the overlapping 

of the default events to be more visually comprehensible. 

c) Only four of the N​d​ default events intersect with the true events: d​1​,d​7​,d​8​ and d​9​. 

d) The two default events that exhibit the highest matching factor with the true events: 
 d​1​=(t​1​c​=0.5,t​1​d​=1) and d​8​=(t​8​c​=4,t​8​d​=1) 

e) The network’s expected output for the N​d​ correctly predicted events:  
(Boxes in yellow are the ones that have been predicted to contain a true event):  

if :  , where = ,  i / 1 8 (x)  f
︿

=  t , t , π )  (
︿

i
c  
︿

i
d  ︿  

i rgmax(π ) 0  a ︿  
i =   

if :  , where and  i = 1 (x)  f
︿

=  t , t , π )  (
︿ c

1  
︿d

1  ︿  
1   .25,   .5   t

︿ c
1 + t c1 = 0  t

︿ d
1 + t d1 = 0 rgmax(π ) 1  a ︿  

1 =   

if :  , where and  i = 8 (x)  f
︿

=  t , t , π )  (
︿ c

8  
︿d

8  ︿  
8   .1,   .4   t

︿ c
8 + t c8 = 4  t

︿ d
8 + t d8 = 0 rgmax(π ) 2  a ︿  

8 =   
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2.2.2.  Loss function 

With these in mind, we will define a loss function that quantifies the error of the prediction. 
We aim for the loss function to be minimized by the optimization policy. As such, we need 
the loss function to be equal to zero when we have the correct prediction, and higher than 
zero when it’s incorrect. The difficulty in defining the loss function stems from the fact that 
we need to quantify the error in a way, that the furthest we are from the correct prediction 
the higher the value of the loss function should be. 
To do so, we will use the Intersection over Union (IoU) criterion​[59]​ that quantifies the 
overlap between two areas: 

,oU (area , rea )  0, ]I a a b =  area ⋃area a b

area ⋂area a b ∈ [ 1   

where are two areas with the same number of dimensions.rea , rea a a a b  

The IoU will be used to estimate the time overlap between a default and a true event. So if                    
, then the two events don’t overlap in time, and if , thenoU (d ,  ) 0I i e j =             oU (d ,  ) 1I i e j =    

the two events perfectly overlap. 

 
Figure 2.2: Three examples of the IoU between two squares in 2 dimensions.​[67] 

We are going to apply per-prediction matching​[60]​, thus we will apply bipartite matching, to 
match every true event with the default event that exhibits the highest IoU value. Then 
compare the coordinates of the predicted events that correspond to the default events, 
with the true events the latter were matched with, as well as their predicted label, the one 
with the highest probability. 
In order to define the loss function as such, we will define a series of functions that will be 
used to estimate the final error of the prediction: 

● The matching function returns, if it exists, the(i) 1, , ..,  } 1, , ..,  } ⊘}γ : { 2 . N d → { 2 . N e ⋃ {  
index of the true event that exhibits the highest IoU with the default event withj  
index ,that is over a set IoU threshold :i  0, ]η Loss ∈ [ 1  

● if , for at least one , then :oU (d ,  ) η  I i e j −  Loss ≥ 0 1, , ..,  }j ∈ { 2 . N e  
(i) argmax  (IoU (d ,  ) η ) 1, , ..,  },  γ =  j∈{1,2,...,N  }e i e j −  Loss ∈ { 2 . N e  

● if  , then:oU (d ,  ) η  I i e j −  Loss < 0   
(i) γ =  ⊘  

N. Antoniadis                                                                                                   ​36 



Event Detection and Classification of in-vitro LFP Electrophysiological Signals with Deep Learning 

● The encoding function returns the encoded coordinates of a (d )   ϕ ej i  
: ℜ 2 → ℜ 2  

default event , in respect to a true event , in order to quantify the relative d i  e j  
variations in centers and durations between  and [64]​ : d i  e j  

●   (d t ,  ) ) , og )ϕ ej i = ( i
c t i

d
  = ( t i

d

t −t j
c

i
c

 l t i
c

t j
d

 

● The loss function  applies coordinate-wise the Huber loss1  L smooth : ℜ 2 → ℜ  
function​[64]​ and is used to greatly penalize the network when the error is small, so it 
will keep on looking for a better solution, but also to not discourage the network 
when the error is big: 

●  if x| 1, then| <   : 1 (x)  L smooth = 2
x 2  

● if x| 1, then| ≥   : 1 (x) x|  L smooth = | −  2
1  

● The event-matched loss function , returns the sum of the quantified l + → ℜ  
accuracy of both the localization and classification for every predicted event, whose 
corresponding default events matched to a true event, through the matching 
function: 

●  1 (ϕ (d )  ) log(π )l + = ∑
 

i∈{1,2,...,N  }, γ(i)=⊘d /
L smooth e γ(i) i − r︿ i −  ︿

i
l γ(i)

  

● The event-unmatched loss function , returns the sum of the quantified l − → ℜ  
accuracy of classification for every predicted event, whose corresponding default 
event did not get matched to a true event, through the matching function: 

●  log(π )l − =  − ∑
 

i∈{1,2,...,N  }, γ(i)=⊘d

 ︿

i
0  

  

● The final loss function , between the true annotation and the l : Y × Y → ℜ + (x)E  
model prediction over the signal is defined as:(x) f

︿

x  
● (E(x), (x)) l  l f

︿

=  +
norm + l −

norm  

where  are obtained by dividing with the number of theirl ,   +
norm l −

norm l ,    
+ l  

−  
terms respectively. 
 

In conclusion, training the network is reduced to solving the minimization problem below: 

●  
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2.2.3. Function  - The architecture of the networkf  

Now that we defined the loss function along with the training of the network in 
mathematical terms, we can presume to define the function .f  

We are going to thoroughly explain the DOSED, and by extension our own, CNN              
architecture, through its mathematical model. We can think of the network as being a set               
of three distinct parts. The spatial filtering part, the temporal processing part and the              
predictor/output part. 

We will use for  a CNN, that outputs  potential events, given a set of default eventsf  N d  
, over a signal .(x) d , i 1, , ..,  }}D = { i  ∈ { 2 . N d x  

● Let . Then we can define the network as the composition of three, , ,  K F C T ∈ ℵ  
function: 

(x) ψ(φ (φ (x)))f =  T C  

 

2.2.3.1. The function φ​C ​- Spatial Filtering: 

The multivariate signals of the input are spatially filtered, in order to increase the signal to 
noise ratio, as it corresponds to a matrix multiplication.​[61-63]​ This can be used to increase 
the algorithm’s robustness in cases where there have been bad channels or electrode 
removal.​[8]  

The function  performs linear combinations of the  input signals and φ C : X → X C C  
returns a new signal  in the form of a tensor. It is implemented as a two dimensionalx∈ X  
convolutional layer, with kernels of size=  that correspond to space and time. TheC C, )( 1  
output of the convolutional layer acts as the input to a two dimensional convolutional 
transpose layer that, as its name implicates, performs a transpose operation. In the case 
where the input signal has only one channel ( , this function translates to thex )C = 1  
identity function and therefore . dφ C = I  

2.2.3.2. The function φ​T​ - Temporal Feature Extraction: 

The purpose of this function is to extract temporal dependencies in the signal . Startingx  
from the first layer, it relates the neighbouring voltage values to each other, creating small 
groups. From then on, going deeper into the network, the function relates the small groups 
to bigger and bigger, until it passes through every layer. The output of this function is a 
tensor whose values correlate the whole original signal in the temporal dimension. 
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Figure 2.3: A visualization of a simplified Temporal Feature Extraction with an input of 20 elements, 

where each square represents the voltage value of the i-th time step, and the kernel has size=3: 

1st to 2nd layer:​ The voltage information from the three blue squares of the 1st layer gets correlated 
in the red square of the 2nd layer. 

2nd to 3rd layer​: The voltage information from the two green squares of the 1st layer gets correlated 
with the information of the three blue, resulting in the red square of the 3rd layer. 

final layer:​ All coloured squares from the first layer, along with some other neighboring squares, 
have been correlated in the red square of the final layer.  

The function consists of blocks, where each block k consists of a two    φ T : X → ℜ
F×C×T   K          

dimensional convolutional layer, with batch normalization​[65]​, and ReLU activation         
function​[66] and a max-pooling layer. The convolutional layer of block k will convolve the              
previous feature maps x​k-1 with kernels of size=(1,3) that correspond to space and       4 × 2 k

         
time, with stride=1 and the use of zero padding to maintain the dimension of the input                
tensor of the layer. The temporal max-pooling has kernel size=(1,2), with stride=2 and             
divides the temporal dimension by 2. None of these blocks process the spatial dimension.              
The output of this function is a tensor with shape = , where and           F , , )( C T     F = 4 × 2 K  

.T =  T
2 K   

2.2.3.3. The function ψ - The predictor: 
The aim of this function is to perform the final prediction, using the temporal feature maps 
extracted by . It will predict both the adjustions to the coordinates and the probabilities φ T  
of the labels for all  potential events, based on the  default events generated over N d  N d  
sample .x  

The function L  consists of two parallel to each other two ℜ ψ : ℜ F×C×T → ( 2 × 0}) ⋃ { N  d  
dimensional convolutional layers. The first one, used for localization, has  kernels 2 × N d  
of size= , with linear activation function, while the second, used for classification, hasC, )( T  

 kernels of size= , with softmax activation function applied on everyL )  ( + 1 × N d C, )( T  
output feature maps, in order to end up with  probabilities (one for every labelL + 1 L + 1  

plus one for noise).  
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2.3. Our Approach 

We are going to use the exact same network architecture as DOSED, since we can infer                
that it will be sufficient for LFP as well. For example, a CNN that was built for learning to                   
detect dogs, can be used to detect cats, or other animals, or maybe objects. As long as                 
the network receives the same type of input data, to learn to perform the same task, the                 
only thing that differs between learning to detect different things is the datasets that will be                
used to train it. 
Now that we have set the mathematical foundations we can build the network itself, that               
will receive samples from preprocessed recordings, in the form of tensors and will output              
tensors representing the coordinates and probabilities of labels for the potential            N d  
events. The final step that is applied to the output of the network is Non-Maximum               
Suppression, and its purpose is to exclude overlapping potential events with labels other             
than 0, by selecting the one with the highest confidence. 
 
Table 2.1: The CNN architecture, where C is the number of channels of the input sample/tensor x, T is 

the number of time steps and K is a hyperparameter set before the start of the training period, that 
defines how many blocks will perform temporal feature extraction. 

Module Layer Type Number of 
Kernels 

Size of 
Kernels 

Output Dimension Activation 
Function 

Stride Padding 

Input Input - - 1, , )  ( C T  - - - 

 
  φ c  

Conv2D  C  C, )  ( 1  C, , )  ( 1 T  linear 1 same 

Conv2D 
Transpose 

- - 1, , )  ( C T  - - - 

 
  φ T   
 

 blocks  k  
1, , .., }  k ∈ { 2 . K   

Conv2D   4 × 2 k  1, )  ( 3  4  , , /2 )  ( × 2 k C T k−1  ReLU 1 same 

Batch 
Normalization 

- - 4  , , /2  ( × 2 k C T k−1

) 
- - - 

MaxPooling 
2D 

- 1, )  ( 2  )4  , , /2  ( × 2 k C T k  - (1,2) - 

- localization ψ  Conv2D   2 × N d  C, /2 )  ( T K  2  , , )  ( × N d 1 1  Linear - valid 

- classification ψ  Conv2D L )  ( + 1 ×   
  N d  
 

C, /2 )  ( T K  (L )  , , )  ( + 1 × N d 1 1  Softmax 
every 
L )  ( + 1  

kernels 

- valid 
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2.3.1.  Preprocessing 
We are going to apply two preprocessing steps, one used to increase the signal to noise                
ratio and one used to visually magnify the signal. 
In order to increase the signal to noise ratio, we will perform the preprocessing steps of                
LFPAnalyzer. As such, we will subtract the DC offset from the LFP recordings transforming              
the signal to analog and will apply a Butterworth low-pass filter to remove frequencies              
higher than 200Hz.​[16] Although this step is optional, as DOSED has been proven to be               
sufficiently applied to unfiltered raw EEG recordings​[8]​, we have observed an enormous            
speed-up to the training process. 

 
Figure 2.4: DC offset removal and application of a low-pass Butterworth filter: 

a) A raw LFP recording. 
b) The preprocessed LFP recording. 

The second preprocessing step is to “visually” magnify the recordings. The intuition comes             
from the fact that the problem is treated as a Computer Vision task. Therefore we can                
assume that whatever action helps a human expert detect and classify events, will also              
help a computer perform the same task. Indeed, after experimentation, we observed that             
multiplying the LFP recordings by a factor of 100,000, greatly increased the convergence             
of the algorithm, as it visually magnifies the differences of the events, who exhibit voltage               
values away from zero, and the baseline, who exhibit voltage values close to zero.  

 
Figure 2.5: Magnification of a preprocessed LFP recording: 

a) A preprocessed LFP recording. 
b) The magnified LFP recording. 
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2.3.2. Input 
The recordings are then divided into samples. The samples are extracted in two ways,              
depending on their use.  
For training data, we want to keep a balanced dataset of samples. That means that we                
want 50% of the samples to contain at least one true event, while the other 50% to contain                  
no true events at all.​[8] The motive is that the network needs to learn to detect and classify                  
both true events and baseline, so we need to make sure that none of them is favoured                 
against the other. Since the samples that will be used for training are already annotated,               
we developed an algorithm that extracts one sample for every annotated event in the full               
recording. First, we make a list of every event in the recording. Then for every event in that                  
list, we extract a sample whose coordinates in the original recording are selected             
randomly. As such, the position of the event inside the sample is random, and a lot of                 
samples will end up containing more than one event, since the sample duration that we               
have chosen is large enough to allow for samples that are relatively close to each other to                 
end up in the same sample. The events that randomly end up in a sample, are not                 
excluded from the list, so there is a chance that the same neighboring events will be                
present in more than one sample. Additionally, every time we extract a sample with an               
event, by taking it off the event list, we randomly select a sample from the recording that                 
contains only noise, whose coordinates are somewhere in between the previously selected            
event and the event that will be selected afterwards. If these two events are so close to                 
each other, that a sample with sufficient duration can’t be extracted, then we randomly              
select a sample with baseline from the full recording. The same action is also performed in                
the case where the last event of the recording is too close to its end. 
When the network is already trained and we want to use it to make accurate predictions,                
we divide the recordings into sequential overlapping samples of the same duration as used              
in training. The overlapping factor of the samples is determined by the average duration of               
events used in training, to avoid on one hand over-segmentation that will lead to slower               
execution time and on the other hand to avoid missing parts of events that were divided                
when the samples were extracted. 
Finally, in both cases, each sample is formatted in the input shape of the network, which is                 
defined by C, the number of channels of the recordings, and by extent the samples, and T                 
the number of timesteps. The latter is set based on the selected duration for the samples                
that we will feed to the network, as well as the sampling frequency that we chose to                 
sample on the original LFP signals. So every sample is transformed into a tensor of shape                
(1,C,T) and feeded into the network in batches of the selected batch size. 
 

2.3.3. Default Events 

Before the start of the training process and the build of the network, we define the                
coordinates of the default events that are generated over each sample . These    N d          x   
coordinates are the same for every sample and consist of the default events’ centers and               
duration. The duration of the default events is selected based on the average duration of               
the already annotated LFP events of our dataset. The centers of the default events are               
initialized based, apart from their duration, on the their number: and their overlapping          N d     
factor. We will further talk about our selection for these numbers in the third section of this                 
thesis. 
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2.3.4. Output 

The output of the network for each sample is two tensors of shape and        x       2  , , )( × N d 1 1   
, which will be reshaped into two arrays of shape and(L )  , , )( + 1 × N d 1 1           2  )( × N d   

, representing the predicted potential events’ adjustions to the default(L )  )( + 1 × N d     N d         
events’ coordinates and probabilities of labels respectively. The predicted adjustions to the            
default events’ coordinates will be added to the actual coordinates of the default             N d   
events to provide the actual coordinates of the predicted potential events. Then the             
argmax operation will be performed on the predicted probabilities to provide the actual             
predicted labels of the potential events. These will be combined to construct a list of               
potential events on which we will apply the post-processing step. 

 

2.3.5. Post-Processing 

We will apply on the list of potential events Non-Maximum Suppression​[59-60] (NMS), to             
exclude events with labels other than zero and suppress the potential events that overlap              
with each other, thus eliminating duplicate detections. 

 

Figure 2.6: NMS applied on detection boxes used for face detection on an image. 
Left: The detection boxes that consist the output of the CNN. 

Right: The final selected detection box that contains the detected face, as the output of NMS.​[68] 

NMS is an algorithm that also uses the IoU criterion, in order to group overlapping               
detection boxes and proceeds to select the one with the highest confidence score on each               
group. Specifically, we will use the potential events’ coordinates to group each two             
consecutive events, when they exhibit IoU higher than a set threshold . Afterwards,            η NMS   
we will use the potential events’ probabilities for each label as the confidence score, and               
the algorithm will only keep the one with the highest score. If an event, that has label other                  
than 0, doesn’t exhibit IoU with any other potential event higher than the threshold, then it                
is also selected as an actual event. 
Finally, we check if each of the events selected by NMS exhibit a confidence score, i.e. the                 
probabilities of containing a true event, higher than a set threshold , thus            θ conf idence   
providing the final output of the system. 
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3. EXPERIMENTS 

3.1. Dataset 

The experiments were performed on a dataset provided by Skaliora’s Electrophysiology           
lab at the Biomedical Research Foundation of the Academy of Athens. The dataset             
contained 756 LFP recordings of 20-23 mins duration, with varying sampling frequencies:            
5000-10000 Hz. The recordings were obtained from mice of both sexes, from different age              
groups, of two types: Wild Type (WT) and b-2 Knockout (b2KO), while various drugs were               
administered to more than half of them, such as GCP, Gabazine, DHbE, MLA, or a               
combination of the last two, on varying doses. Most of the recordings were originally              
obtained for three other experiments, one studying the effects of Gabazine and GCP, one              
studying the effects of DHbE and MLA and the last examining sex differences. All of the                
recordings were recorded on the same recording site, on room temperature, through a             
single channel, so they are not multivariate signals as the ones used in DOSED​[8]​. 
The events on the records were detected using the LFPAnalyzer software package. In             
some rare occasions, their onset and offset were manually edited by human experts, if              
they observed that they weren’t accurate enough. Additionally, they were fully labeled by             
the same experts. 
From these 756 LFP recordings we extracted 62438 samples of 20 s duration, with              
sampling frequency of 256Hz. The reasons for the selection of the samples’ duration and              
sampling frequency are explained in full detail in the 3.3.1 time step: sample duration          T      
and sampling frequency section below. The average samples per LFP recording were            
found to be 82.58. Of the 62438 samples, 31219 contain at least 1 event, while the rest                 
31219 samples contained no events, keeping the balance between events and baseline as             
discussed in section 2.3.2 Input. 
The 31219 samples with events, contain a total of 53600 events, with three different              
labels: ‘0’,’1’,’2’’, which correspond to three classes: Upstates, Biphasics or Blimps and            
Unknown/Unclassified, with the number of events per label shown at the pie chart below.              
To clarify, the label ‘0’ used here is for a true event and not to be confused with the label                    
‘0’ mentioned in the previous sections, that annotated the absence of an event. 

 
Figure 3.1: Class distribution of the 53600 events from the 62438 samples. 
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Moreover we calculated the following statistics, since we will need them to set some              
Hyperparameters later. The statistics for the number of events per sample, were            
calculated over the samples that contained at least one event. On the other hand, all of the                 
recordings contained at least one event, so we calculated these statistics over all of the               
recordings. 

Table 3.1: Various events’ statistics. 
 min average max 

duration (s) 0.10  1.21 9.83 

number of events per sample 1 1.71 11 

number of events per record 1 70.89 220 

 
Additionally we counted the number of recordings and samples by sex, age and group. As               
we can see below in figure 3.2, there is an observable asymmetry in the distribution of                
both recordings and samples, in the case of sex and type. There are 7.3 times more                
recordings from male mice than female, 6.2 times more samples from male than female,              
3.1 times more recordings from WT mice than b2KO and 2.7 times more samples from WT                
than b2KO. Also, we can clearly see that we have more older mice in both recordings and                 
samples. But it is noteworthy, that the number of samples has a better distribution in the                
age groups, than the number of the recordings. This, as well as the fact that we have a                  
slightly less difference in sample number than recording number by sex and type, can be               
credited to the fact that we extract from every recording, samples in twice the amount of                
the events in the recording. So we can infer that pups and adolescents, as well as females                 
and b2KO mice, exhibit more events per recording, as opposed to adults and old mice, or                
males and WT correspondingly, at least in our dataset. 
Lastly, we can see in figure 3.3 the number of records and samples by drug and by drug                  
and dose. Again, we can observe that mice that have been given Gabazine exhibit more               
events per sample, compared to other drugs or the non-administration of a drug. This is               
easily noticeable in both pairs of bar graphs, but especially in the pair of bar graphs about                 
drug and dose. The greater the dose of Gabazine administered to mice, the more the               
samples, hence the more the events per recording. On the other hand, we can observe               
that the exact opposite happens with CGP, as the greater the dose, the less the samples                
per recording. Also, there is a slight increase with descending order in samples per              
recording for DHbE, DHbe+MLA and MLA. Finally, the dataset is balanced in drug             
administration, as it contains 31094 samples from mice on which some drug was             
administered and 31344 samples from mice on which no drug was administered. 
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Figure 3.2: Number of recordings and samples by sex, age and type. 
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Figure 3.3: Number of recordings and samples by drug and by drug and dose. 

Out of the 62438 extracted samples in our dataset, 53072 (85%) were used for training the                
network, while the other 9366 (15%) were used for validation. Both the training and              
validation data were balanced between samples with at least one event and samples with              
no events. The labels of the events on the samples were updated, in respect to the label                 
‘0’ being reserved from the network to annotate the absence of an event, in the predicted                
events. Additionally, since LFPAnalyzer was used to detect the onset and offset of the              
events, that generates a mask for every recording to annotate them, as discussed in              
section 1.2.1 LFPAnalyzer, we extracted said masks for every sample and stored them             
along with the actual sample and labels of the events of the sample. The already               
computed samples’ masks are going to make the computations of the evaluation metrics             
faster, as discussed in section 3.5. Evaluation Metrics. 
 

3.2. Software and Hardware 

The algorithm was fully developed in Python 3. The CNN was built and trained with               
Tensorflow 2, an end-to-end open source platform for machine learning development and            
the Tensorflow-integrated Keras deep learning API. The samples were extracted from           
MATLAB files and stored in csv files. The training of the network was executed on Google                
Colab, a cloud service used for Python developing, that allows for free access to GPUs, a                
necessary hardware to accelerate CNN training, since the computations performed by the            
CNN on its parallel neurons mimics the GPU computation pattern.​[69]​. Specifically we            
performed the training on the Google Colab Pro platform, that provides better resources             
and longer runtime duration for a small monthly fee. The runtime duration is the number of                
hours you can continuously be logged in the cloud service and execute a program, before               
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the service stops your execution, in order to stop you from abusing the resources and               
make sure that everyone can have access to them. The difference in resources between              
the free Colab and Colab Pro can be seen below, in Table 3.2. 
 

Table 3.2: Comparison of the resources available with Google Colab and Google Colab Pro. 

 Google Colab Google Colab Pro 

CPU Intel(R) Xeon(R) CPU @ 
2.20GHz 

Intel(R) Xeon(R) CPU @ 
2.30GHz 

GPU Nvidia Tesla K80 Nvidia Tesla P100 - PCIE - 
16GB 

RAM 12.8 GB 26.3 GB 

Runtime Duration  12 hours 24 hours 

 

3.3. Hyperparameters 

The hyperparameters of the algorithm were carefully selected, either by a priori knowledge             
of the nature of the hyperparameter, or by suggestion of the DOSED paper​[8] or by               
experimental testing. 

3.3.1.  timesteps: sample duration and sampling frequency:T  

The variable is the number of timesteps of each sample, as explained in the previous T                
section, that is defined as . sample duration ampling f requency  T =  * s  

The samples’ duration was selected to be 20 s, due to the fact that in our dataset we have                   
observed events of maximum duration: 9.83 s, and we needed to make sure that even in                
the most extreme case, e.g. a sample with two events of max duration positioned right               
next to each other, there will be sufficient baseline in each sample. Moreover, increasing              
the samples’ duration more than 20 s, would increase the network’s learnable parameters             
by a huge factor, since the network’s size depends on . That would result in slowing          T       
down the network’s convergence time.  
Additionally, the same would occur if we raised the sampling frequency. Due to the              
network’s architecture, should be a number that can be expressed as a power of 2. In  T                
addition, the lowest sampling frequency observed on our dataset was 5000 Hz, so the only               
candidates for the sampling frequency were 256, 512, 1024, 2048 and 4096 Hz. Building              
the network and training it with these sampling frequencies resulted in the following             
numbers of network parameters and training times. The training time was calculated for 1              
epoch with 100 samples. 
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Table 3.3: Numbers of parameters and training time by Sampling frequency.  
Sampling 
Frequency 

(Hz) 

Non-Trainable 
Parameters 

(#) 

Trainable 
Parameters 

(#) 

Total 
parameters 

(#) 

Training Time 
(s) 

256 20,400 2,303,868 2,324,268 57.83 

512 40,804 8,777,516 8,818,320 68.12 

1024 81,612  34,233,996 34,315,608 85.26 

2048 163,228 135,282,000  135,445,228  107.86 

4096 326,460  538,999,536 539,325,996 169.67 

The exponential increase in all these properties can be observed in the bar charts below: 

 
Figure 3.4: Bar charts of the parameters’ number and training time by sampling frequency. 

The training time’s exponential increase, due to the sampling frequency, may not seem             
extreme on the above bar, but this can be credited to the low samples’ number. If we were                  
to train on the whole dataset, we would observe a tremendous increase in training time.               
Also, the exponential growth of the parameters’ number leads to the same growth in              
memory and computational resources needed both for training and using the network for             
predictions post-training. 
On the other hand, a low sampling frequency can lead to minor inaccuracies on the onset                
and offset of the detected events. For example, if we choose a sampling frequency of 256                
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Hz, and we apply it to downsample a recording that had an original sampling frequency of                
10000, then the onset and offset detection may be off by a factor of 0 to 39.06. 
However, since the inaccuracy factor isn’t that great, while the memory and computational             
resources, as well as the training time differ greatly between different sampling            
frequencies we selected to run the experiments with a sampling frequency of 256 Hz,              
given our available hardware. In the future, should someone have more powerful            
computing systems, with multiple powerful GPUs that allow parallel computation for           
acceleration, we suggest to train and run the network with a sampling frequency of 1024               
Hz, since it has the greatest trade-off between accuracy in onset and offset detection and               
resource consumption. 
 
3.3.2. Default events: , default event duration and overlap factor: N d  

The default events are characterized by 3 hyperparameters: their number , their N d  
duration and their overlap factor.  
We define the following function to evaluate the number of default events that will be 
generated over a sample :x  

  nt ( ( 1) / (1 verlap factor))N d max = i sample duration
default event duration −  − o  

The intuition behind the above function, comes from the worst case scenario, in which a               
sample could be populated with as many events it can fit, if they were positioned right next                 
to each other. We want to be able to detect all of them, so we define as such the maximum                    
number of default events needed. The function returns the closer integer to the float      nt(x)i          
number .x   

The default event duration was selected to be equal to 1.21 seconds, the average event               
duration detected on our dataset, since the sweeping majority of event durations fall             
around that number. If the default event duration was closer to the maximum event              
duration of our dataset, then the CNN would struggle greatly to learn to predict the correct                
duration of true events that exhibit really short durations and vice versa. I.e. it would need                
more training time to learn to make so big adjustions to the durations of the predicted                
events. So we think that the selection of the average duration is the best, as it allows for                  
small numeric adjustions on the default duration, with the sign of the adjustion dictating              
whether the potential event is shorter, when it’s minus, or longer, when it’s plus, than the                
default event duration. 
The overlap factor has been chosen to be equal to 0.5, as suggested in DOSED​[8]​,               
meaning that two subsequent default events will share half of their duration. The reason              
for this is that there could be two different events, or more, right next to each other and we                   
want to avoid one of them remaining undetected. Also, because the events in the              
recordings, and by extent in the samples, are sparse, a greater overlap factor would result               
in slower convergence time, as it would affect the default events’ number , which             N d   
would affect the size of the CCN and the computations needed for the evaluation of the                
loss function on every training and validation step. So the number 0.5, gave us the best                
trade-off between accuracy in detection and execution time.  
Moreover, as mentioned above in section 3.1 Dataset, the average number of true events              
in a sample on our dataset is 1.71, with the maximum being 11. So the combined selection                 
of the default event duration and overlap factor, gives us more than enough default events               
to detect any potential events present in a sample .x  
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Finally, we have: 
● efault event duration .21 sd = 1  
● verlap factor 0.5  o =   

and 
● ample duration 20 s  s =   

hence: 
●  0  N d  

= 3  

We selected to be equal to 30, while , so that the CNN will have an output   N d  
       2  N d  max

= 3          
layer with a smoother output shape :2  , , ), (L )  , , )( × N d 1 1 ( + 1 × N d 1 1  

●   classification:  and localization: . 0  N d  = 3 ⇒ (60, , )( 1 1 240, , ))  ( 1 1   

over 

●  classification:  and localization: . 2  N d  = 3 ⇒ (64, , )  ( 1 1 256, , ))  ( 1 1  

where . L = 3  

 

3.3.3.  channels and  labels:C L  

For the current experiments, we selected , since our dataset doesn’t contain       C = 1       
multivariate signals. However, the network was developed as detailed in section 2.3 Our             
Approach, enabling the use of multivariate signals for training, should they be available in              
the future. Moreover, as explained in section 2.2.3.1 The function φ​C ​- Spatial Filtering.              
when , then the function φ​C ​becomes the Identity function. C = 1  

For the purpose of this thesis, we selected to only train the CNN, with . That means              L = 1    
that the network will only have to classify among two labels: 0 for baseline and 1 for events                  
of any type. This was chosen as such, due to the fact that training on such a big dataset,                   
with that big a network, requires an enormous amount of time, given our available              
hardware through Google Colab Pro, and that’s more than we have available for an              
undergrad thesis. However, the CNN was developed to enable classification with more            
labels, a task that we will continue in the future, as described in section 4. Conclusions and                 
Future Work. 
 

3.3.4. Thresholds for IoU, Loss function and Non-Maximum Suppression: 
The algorithm utilizes three thresholds: the IoU overlap threshold used in the Loss      η Loss          
function, the IoU overlap threshold used in NMS and the confidence  η NMS          θ conf idence    
threshold used after NMS. 
As discussed in section 2.2.2 Loss function, the hyperparameter is used to perform         η Loss       
bipartite matching between the default and true events. It was set to be , as              .5  η Loss = 0   
suggested in DOSED​[8]​. 
The hyperparameter , is used to group potential events, when they exhibit IoU   η NMS            
higher than , in order to later eliminate the ones of the same group, with the lowest   η NMS                
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confidence scores, i.e. lowest predicted probabilities to contain a true event, as discussed             
in section 2.3.5 Post-Processing. It was experimentally set as . .9η NMS = 0  

Lastly, the hyperparameter is used right after NMS, so that the algorithm will    θ conf idence            
output only the predicted events, whose probability to contain a true event is greater than               

, as discussed in section 2.3.5 Post-Processing. It was experimentally set as θ conf idence             
, as the network excelled at detecting baseline, so anything above 0.2 was .2θ conf idence = 0              

indeed a true event. 
 

3.3.5. Batch size and number of Epochs: 
The batch size of the CNN, is a crucial hyperparameter that affects the convergence of the                
algorithm. The batch size dictates how many samples the network will process until it              
adjusts its learnable parameters, in order to make better predictions in the future. Usually,              
most DNNs, and by extent most CNNs, have a large batch size, but we observed that                
larger batch sizes were slowing down the convergence time of the algorithm. This can be               
credited to the fact that while processing the samples in the large batch, the optimization               
policy would try to calculate the necessary adjustments to its parameters, but before it              
could apply them, processing the rest of the samples in the batch would result in               
unlearning what it learned, so by the time the adjustments were applied they made no               
significant difference in the efficiency of the network. So we observed that the best three               
candidates for the batch size were 16, 32 and 64, since the batch size conventionally has                
to be a power of two. We trained the network with all three and selected 64 as the best                   
choice. The reasons behind our selection are explained in detail in section 3.6.1. Batch              
size comparison. 
As for the number of epochs, i.e. the number of times that the network will process the                 
whole dataset, during training, we selected , due to the great amount of time      pochs 30  e =          
each epoch needs to finish on our available hardware and our lack of available time. We                
can infer given our results, that for , we would need about 50-60 epochs, for our       L = 1          
system to reach the desired efficiency. For , if we were to classify the events with all        L = 3           
the available labels in our dataset, we assume that we would need 200 epochs, as               
suggested in DOSED​[8]​. We explain in full details, the training time constraints and             
limitations, in section 3.4 Training. 
 

3.3.6. Learning rate  and Momentum rl μ  
Learning rate and Momentum are two hyperparameters used by the Stochastic Gradient            
Descent optimization policy. The first one dictates how much do the trainable parameters             
change at every step of the training, i.e. after the processing of each batch of samples,                
while the second is used by a technique that increases the speed of convergence by               
embedding memory of past changes on the learnable parameters, so the number of             
Momentum dictates the percentage of these past changes. They were selected to be             

and  as suggested by DOSED​[8]​.r 10 l =  −3 .9μ = 0  
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3.4. Training 
We trained the CNN with the aforementioned hyperparameters, with three different batch            
sizes: 16, 32 and 64, whose output is detailed in 3.6. Results. Both the training and                
validation datasets were randomly shuffled. Optimization techniques were used to speed           
up the process, such as special operations for computing on GPU and using mixed              
precision policy to represent the float variables on the calculations, i.e. using float16             
instead of float32 or float64, where the numbers 16, 32 and 64 represent the number of                
bytes available to store the numbers beyond the floating point. We also created a special               
callback function to store into log files the training loss and validation loss at the end of                 
each batch, and the validation precision, recall and metrics, that are detailed below, at        1f        
the end of every epoch. 
The training time for one epoch was about 11 hrs for batch size = 64, about 8 hrs for batch                    
size = 32 and about 6 hrs for batch size = 16. Since Google Colab Pro enforces a random                   
timeout almost every 22-24 hours, with a waiting time to log back in of about 4-6 hours, we                  
saved the parameters of the network to a log file every 10000 samples and we loaded                
them every time we had to restart the training process. 
 

3.5. Evaluation Metrics 

For the evaluation of the algorithm’s efficiency we are going to use precision, recall, and f1                
score, which can be given by the following functions: 

● recision p =  true positive
true positive+false positive  

● ecall  r =  true positive
true positive+false negative  

● 1 f = 2 *  precision recall*
precision+recall  

Since, in most cases, when precision increases then recall decreases and vice versa, the              
f1 score is the most objective metric to evaluate the algorithm’s efficiency.  
Based on the nature of our input data, we have developed the following evaluation metric               
to compute the score, that is accelerated through the use of masks.1f  

As described in section 1.2.2 LFPAnalyzer, we define as a mask, a signal             0, }  m : ℜ → { 1  
that is generated over an LFP sample , to annotate its events:x  

● , if  is a timestep in , where  is annotated as an event.(t) 1  m =  t x (t)x  
●  , if  is a timestep in , where  is annotated as baseline.(t) 0  m =  t x (t)x  
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Figure 3.5: A mask (in red)  generated over an LFP sample (in black). 

Since the masks on our dataset are already computed for the true events, at runtime we                
need only to compute the for the predicted events, as     redicted mask 0, }  p : ℜ → { 1       
described above, and compare it with the  .rue mask 0, }  t : ℜ → { 1  

● , when the annotated events of  are true events.rue mask(t) m(t)  t =  x  

● , when the annotated events of  are predicted eventsredicted mask(t) m(t)  p =  x  

To compare the two masks, we will create a new mask that we will call               
 :etric mask − , , , }  m : ℜ → { 1 0 1 2  

● etric mask(t) 2 predicted mask(t) true mask(t)  m =  *  −    

Now we can assign to each of the four numbers that the can output: {-1,0,1,2},            etric mask  m     
one of the four characterizations for our predictions: {false negative, true negative, true             
positive, false positive} that we need in order to compute the precision and recall and               
finally the score, with the following algorithm:1f  

● alse negatives 0f =   

● rue negatives 0t =   

● rue positives 0t =   

● alse positives 0f =   

● for  in sample :t x  
● if etric mask(t)  m =  − 1  

● then alse negatives alse negatives f = f + 1  
● if etric mask(t) 0  m =   

● then rue negatives rue negatives t = t + 1  
● if etric mask(t) 1  m =   

● then rue positives rue positives t = t + 1  
● if etric mask(t) 2  m =   

● then alse positives alse positives f = f + 1  

Thus, for every timestep in a sample , we can annotate our prediction on to be either   t      x        t     
a false negative, a true negative, a true positive or a false positive predicted timestep.               
Summing each of these timesteps will give us the final number of false negatives, and so                
on, for the prediction on the sample , and we can proceed to compute precision, recall       x          
and  score with the functions described above.1f  

Below on figures 3.6-9, we show some examples of applying the aforementioned            
evaluation metric on different predictions on a pair of samples, one that contains true              
events, and one that contains only baseline and we compute the combined precision,             
recall and  score for the predictions on both samples.1f  

The main benefits of this method are mainly computational. As we mentioned, the             
is precomputed. The complexity of computing the isrue mask  t         rediction mask  p   (T )O  

comparisons, since we need to create timesteps. The complexity of computing the      T        
is multiplications between integers, which is really faster thanetric mask  m   (T )O          

multiplying float numbers, and subtractions. The calculation of the false positives,    (T )O         
etc, is  comparisons between integers.(T )O   

So the total complexity of computing the false positives, etc, for one sample is: 
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● (2 ) comparisons  O * T  

● (T ) integer multiplications  O  

● (T ) integer subtractions  O  

 

The complexity of the evaluation metric over a set of  validation samples:n  

●  comparisons(n )O * 2 * T  

● multiplications between integers + multiplications between floats (for(n )O * T      (2)O      

the computation of )1f   

=  multiplications between integers(n )O * T   

● subtractions between integers + additions between integers(n )O * T      (4 n ))  O * ( − 1     

(for the computation of the sum of false positives etc) + additions between           (3)  O    

floats (for the computation of the divisors of precision, recall and )1f   

= subtractions between integers(n ) O * T  

● divisions between integers (for the computation of precision and recall) +(2)O             

 divisions between floats (for the computation of )(1)O 1f  

=  divisions(3)  O  

 

And finally, the total complexity of the evaluation metric over a set of  validation samples:n   

● (2 ) O(n ) (n ) O(3) O(4 )  O * n * T +  * T + O * T +  =  * n * T   

 

Additionally, this method utilizes the least possible memory resources, since all the            
calculations except 6 are between integers. 
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Figure 3.6: The Evaluation metric applied over two samples, one that contains events (left column), 

one that contains only baseline (right column) and their combined precision recall and f1 at the 
bottom, when both predictions were wrong. 
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Figure 3.7: The Evaluation metric applied over two samples, one that contains events (left column), 

one that contains only baseline (right column) and their combined precision recall and f1 at the 
bottom, when the 1st prediction is wrong and the 2nd is correct. 
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Figure 3.8: The Evaluation metric applied over two samples, one that contains events (left column), 

one that contains only baseline (right column) and their combined precision recall and f1 at the 
bottom,  the 1st prediction is correct and the 2nd is wrong. 
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Figure 3.9: The Evaluation metric applied over two samples, one that contains events (left column), 

one that contains only baseline (right column) and their combined precision recall and f1 at the 
bottom, when both predictions were correct. 
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3.6. Results 

After training the  network for 30 epochs, we achieved the following maximum efficiency 
with batch size = 64, for the validation data : 
● : 0.6796591f   

● precision: 0.688305  
● recall: 0.671227 
● loss: 0.0977 

 
Figure 3.10: Plot of precision, recall, f1 and validation loss by epochs. 

The sudden increase of both recall and , shown at figure 3.10, happened because we       1f          
fine-tuned the hyperparameters and after the training had already    η NMS    θ conf idence       
reached the 25th epoch. Thus, the evaluation metrics showed that our system had already              
achieved great efficiency and should we had the time to train for more epochs, it would                
improve even more. 
On the next page, in Figure 3.11, we can see the actual results of detection and                
classification on ten samples: 

a) This sample contained a single event, which was perfectly detected. 
b) This sample contained only baseline, and no events were detected. 
c) This sample contained one event near its start. Its offset was perfectly detected, but              

not its onset. 
d) This sample contained one event near its end. Its duration was overestimated by             

our system. 
e) This sample contained two events. The first one’s duration was overestimated, but            

its center was perfectly predicted. The second one was perfectly detected. 
f) This sample contained two events. The first one’s duration was perfectly estimated,            

but not its center. The second one wasn’t detected at all.  
g) This sample contained two events. The first one was located right next to the start               

of the sample and it was perfectly detected. The second one had both the onset               
and offset wrong. 

h) This sample contained two events. The first one had correct offset, but wrong onset,              
while the second one had correct onset, but wrong offset. 

i) This sample contained one really short event whose duration was overestimated. 
j) This sample contained only baseline, but our system wrongly predicted an event. 
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Figure 3.11: Our system’s output on 10 samples. True mask in red, predicted mask in green.  
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3.6.1. Batch size comparison 

We have trained our system with three different batch sizes: 16, 32 and 64. Here we                
present the results, comparing the three approaches. 
 

Table 3.4: Best observed loss and evaluation metrics by batch size.  

 Batch size = 16 Batch size = 32 Batch size = 64 

Validation loss 0.1109 0.1040 0.0977 

Precision 0.697034 0.635029 0.688305 

Recall 0.624974 0.626305 0.671227 

1f  0.659040 0.6738911 0.679659 

 
On Figure 3.12 we have plotted various losses by batch size: 
On the left column of Figure 3.12:  

● Panel 1, we have plotted the batch loss’ value by batch for the three different batch                
sizes. The batch loss is the training loss that is computed at the end of every batch.  

● Panel 2, we have plotted the epoch loss’ value by epoch for the three different               
batch sizes. The epoch loss is the training loss that is computed at the end of every                 
epoch. 

● Panel 3, we have plotted the epoch val loss’ value by epoch for the three different                
batch sizes. The epoch val loss is the validation loss that is computed at the end of                 
every epoch. 

On the right column - panels 1-3, we have plotted the epoch training and validation losses                
for each of the three batch sizes. 
While on the batch and epoch loss plots of the left column, we observe that the losses                 
decrease faster for batch sizes 16 and 32 than 64, on the epoch val loss plot we observe                  
the exact opposite. Moreover, we can see on the panels of the right column, that the                
epoch loss and epoch val loss converge to one another the fastest when the batch size is                 
64. These facts show as that the selection of the batch size as 64, proves to be the best                   
choice to avoid overfitting, i.e. to avoid the network of making great predictions over the               
training data, data that it has already learned from and processed a lot of times, while                
making poor predictions over the validation data, that it hasn’t learned from, and didn’t              
specialize on. The overfitting problem is one of the major problems in DL, as when it is                 
observed, the DNN fails to generalize well to new “unseen” data. 
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Figure 3.12: Comparison of various loss functions’ values for the various batch sizes. 

On Figure 3.13 we compare the evaluation metrics of our approach by batch size. 
On the left column we have plotted the three metrics, precision, recall and by epoch, for             1f     
the three batch sizes, while on the right column we have plotted together the three metrics                
by epoch, for each of the batch sizes. 
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Figure 3.13: Comparison of the evaluation metrics for the various batch sizes. 

Here we can see clearly that the batch size of 64 outperforms the rest on all three                 
evaluation metrics. Again, the sudden increase in recall and is observed due to the         1f       
fine-tuning of the aforementioned thresholds after epoch 25. The reason that before epoch             
25, the others seemed to outperform the network with batch size = 64, is that they                
provided better classification scores, in the sense that they gave higher probabilities to             
potential events that actually contained true events, than the probabilities provided by the             
other system. As we explained in section 3.3.5 Batch size and number of Epochs, we               
observed that as the batch size increases, the “learning” during each batch of data seems               
to decrease. The most plausible explanation is that the greater the batch size, the greater               
the number of samples with only baseline in it, so it balances out the learning of detecting                 
the true events, as the samples with baseline have little to no difference among each other                
and as such are reinforced, while the samples that contain events differ greatly among              
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each other and as such are weakened out. In the end, the greater the number of batch                 
size, the better the network learns to detect baseline over true events. But as shown               
above, in the long run that is the preferable choice. By epoch 25, the network has learned                 
to detect baseline so well, that it gives really high probabilities to segments not containing               
an event, i.e. it is very confident in detecting baseline. Thus, we can lower the                θ conf idence  
threshold for detecting events, mentioned in section 3.3.4 Thresholds, to 0.2, and            
everything with higher probability is actually a true event. 
Moreover, selecting a greater batch size than 64 would result in slower convergence time              
for our system, as explained in section 3.3.5 Batch size and number of Epochs and would                
favor the baseline detection too much over the event detection.  
To sum up, the choice of a batch size of 64 is the best one as it provides the best trade-off                     
between the following factors: 

● Overfitting avoidance 
● Performance of evaluation metrics 
● Training time 
● Balance in baseline and event detection 

 

3.6.2. Efficiency vs LFPAnalyzer 
On Figure 3.14 we compare the results of our approach with the ones from LFPAnalyzer:  
We can see on the bar chart the difference in number of detected events between the two                 
approaches. Then, on the other three panels we have created three scatter-plots of the              
differences on durations, onsets and offsets of the detected events. For all three we              
plotted the numbers of our approach minus the ones from LFPAnalyzer. 

Even though we only managed to train our system for only 30 epochs, we have achieved a                 
satisfactory efficiency, as shown by the distributions on the scatter-plots. 

 
Figure 3.14: Comparison of our approach with LFPAnalyzer. 
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3.6.3. Computational Time vs LFPAnalyzer 

Our system may need a great amount of time to train the CNN, but it only needs less than                   
500 ms to process a sample, in order to make a prediction. When presented with a full                 
LFP recording of approximate duration of 20 mins, the system extracts 80 samples of 20 s                
duration, with an overlap factor of 0.25, in order to avoid an event getting caught in                
between two consecutive samples and remaining undetected. So the average time to            
predict the onset and offset of the events in the LFP recording is well under a minute, as                  
the processing time of the 80 samples is 40 s at most, and the extraction of the samples                  
and their recombination into the original recording is almost instantaneous. Consequently,           
our approach needs half the time to predict the onsets and offsets of events in a 20 min                  
LFP recording than LFPAnalyzer, that performs the same task in under 2 mins.​[16]  
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4. CONCLUSIONS AND FUTURE WORK 

 

In this thesis, we explored how a signal processing problem, that of event detection and               
classification of in-vitro LFP electrophysiological signals, can be handled as a Computer            
Vision problem and solved with Deep Learning algorithms. We build a system, inspired by              
the DOSED​[8] architecture, that relies on a CNN to learn the task at hand. We explained                
the mathematical foundations of the algorithm and how it can be implemented in Python              
using state-of-the-art software and hardware, like Tensorflow, Keras, Google Colab Pro           
and a powerful nvidia GPU. We created a dataset of LFP samples, that were extracted               
from LFP recordings, that contained events, whose onset and offset were detected using             
the LFPAnalyzer software and their labels were annotated by human experts. We            
discussed the preprocessing steps required to speed up the training period of the CNN,              
like DC offset removal and application of a low-pass Butterworth filter, as well as a               
magnification process, to help the CNN “see” the events better. Additionally, we presented             
the way to feed the preprocessed samples into the network for training. We explained how               
the network learns to create feature maps of the input data and utilizes the default events                
generated over each sample, with the aim of outputting the potential predicted events.             
Furthermore, we discussed the importance of NMS as a post-processing step, to finalize             
the output of the algorithm by extracting a unique solution from the CNN’s output.              
Moreover, we fully examined the properties of our dataset and explained in detail the              
reasons behind the selection of the hyperparameters of our algorithm. We tackled the             
limitations of training a large CNN with a big dataset and discussed our tailor-made              
method for evaluating the efficiency of the algorithm. 
We presented our results, when training with three different batch sizes and showed how              
fast our system learns to discriminate between events and baseline. We then compared             
our results in detection of events’ onsets and offsets, as much as duration, with the ones of                 
LFPAnalyzer and showed that our approach performs this task in half the time. 
The results presented here are encouraging and leave room for additional improvements.            
In the future, we are going to further train our system in detection, to allow it to reach its full                    
potential in efficiency, and use it to classify against all available classes. Should we have               
the necessary hardware, we are going to train the CNN with the sampling frequency of               
1024 Hz, the one that has the best trade-off between accuracy and convergence time.              
Another direction worth exploring, would be whether a multivariate signal would improve            
the performance of the algorithm, by speeding up the training period.  
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TABLE OF TERMINOLOGY 

Ξενόγλωσσος όρος Ελληνικός Όρος 
Signal Processing Επεξεργασία Σήματος 
Electrophysiological Signals Ηλεκτροφυσιολογικά Σήματα 
Event Related Potential Δυναμικό Σχετικό με Γεγονός  
Electroencephalogram Ηλεκτροεγκεφαλογράφημα 
Local Field Potential Δυναμικό Τοπικού Πεδίου 
Machine Learning Μηχανική Μάθηση 
Artificial Intelligence Τεχνητή Νοημοσύνη 
Artificial Neural Networks Τεχνητά Νευρωνικά Δίκτυα 
Deep Learning Βαθιά Μάθηση 
Deep Neural Networks Βαθιά Νευρωνικά Δίκτυα 
Computer Vision Μηχανική Όραση 
Convolutional Neural Networks Συνελικτικά Νευρωνικά Δίκτυα 
Event Detection Ανίχνευση Γεγονότων 
Classification Κατηγοριοποίηση 
in-vitro στο-γυαλί - “σε μη ζωντανό οργανισμό” 
in-vivo “σε ζωντανό οργανισμό” 
in-silico στον-υπολογιστη - “σε προσομοιωμένο    

οργανισμό”  
Non-Maximum Suppression Μη Μέγιστη Καταστολή 
Intersection over Union Τομή προς Ένωση 
Loss function Συνάρτηση κόστους 
Back propagation Οπίσθια Διάδοση 
Stochastic Gradient Descent Στοχαστική Κλίση Κατάβασης 
Spatial Filtering Χωρικό φιλτράρισμα 
Temporal Feature Extraction Εξαγωγή Χρονικών Χαρακτηριστικών 
Predictor Προβλεπτής 
Evaluation Metric Μετρική Αξιολόγησης 
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ABBREVIATIONS - ACRONYMS 

ERP Event Related Potential 

EEG Electroencephalogram 

LFP Local Field Potential 

ML Machine Learning 

ANNs Artificial Neural Networks 

DL Deep Learning 

DNNs Deep Neural Networks 

CNNs Convolutional Neural Networks 

GMM Gaussian Mixture Model 

SD Standard Deviation 

DOSED Dreem One Shot Event Detector  

NMS Non-Maximum Suppression 

IoU Intersection over Union 

ReLU Rectified Linear Unit 

WT Wild Type 

b2KO b2 Knockout 

GPU Graphical Processing Unit 
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