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ABSTRACT 

 

Hash functions are important tool in information security over the internet. The 
cryptographic hash functions are versatile cryptographic building blocks which are used 
in many different security applications such as the protection of the authenticity of 
information and digital signatures. The main purpose for what they are designed is to 
improve message integrity. The first part of this thesis gives an overview of existing 
hash functions and the different methods of designing these, MAC algorithms and digital 
signatures. Next, we present hash techniques on Recent Hash functions and the 
constructions of them are examined where we focus mainly on the popular attacks on 
hash functions and their vulnerability results. After a research on papers relevant with 
the order preserving minimal perfect hash function, we describe an algorithm for 
generating order preserving minimal perfect hash function, involving generation of 
acyclic random graphs with a three- step algorithm. This method uses a Mapping, 
Ordering, Searching (MOS) approach and we will try to describe an algorithm that will 
capture the movement of a node in an encrypted environment, where each node can 
move in the three-dimensional space (x, y, z). The main purpose is the node to 
encryptly send the area in which it is located and the recipient to perceive, to where the 
node moved depending on the values received. One point of particular interest is the 
combination of random graphs which can generate a minimal perfect hash function with 
dynamic hashing for further future work. 
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ΠΕΡΙΛΗΨΗ 

 

Οι συναρτήσεις κατακερματισμού (hash) είναι σημαντικό εργαλείο για την ασφάλεια 
πληροφοριών μέσω του Διαδικτύου. Οι κρυπτογραφικές hash συναρτήσεις είναι 
ευέλικτα κρυπτογραφικά δομικά στοιχεία που χρησιμοποιούνται σε πολλές διαφορετικές 
εφαρμογές ασφαλείας, όπως η προστασία της αυθεντικότητας των πληροφοριών και 
των ψηφιακών υπογραφών. Ο κύριος σκοπός για τον οποίο έχουν σχεδιαστεί είναι να 
βελτιώσουν την ακεραιότητα των μηνυμάτων. Το πρώτο μέρος αυτής της εργασίας 
παρέχει μια επισκόπηση των υπαρχόντων hash συναρτήσεων και των διαφορετικών 
μεθόδων σχεδίασης αυτών, αλγορίθμων MAC και ψηφιακών υπογραφών. Στη συνέχεια, 
παρουσιάζουμε τις hash τεχνικές πάνω στις πρόσφατες Hash συναρτήσεις και οι 
κατασκευές αυτών εξετάζονται με επίκεντρο κυρίως στις δημοφιλείς επιθέσεις των hash 
συναρτήσεων και στα αποτελέσματα ευπάθειας τους. Μετά από μια έρευνα σε 
δημοσιεύσεις που σχετίζονται με τις order preserving minimal perfect hash συναρτήσεις, 
περιγράφουμε έναν αλγόριθμο για τη δημιουργία ordering που διατηρεί την ελάχιστη 
perfect hash συνάρτηση και περιλαμβάνει τη δημιουργία ακυκλικών τυχαίων 
γραφημάτων με έναν αλγόριθμο τριών βημάτων. Αυτή η μέθοδος χρησιμοποιεί μια 
προσέγγιση χαρτογράφησης, ordering, αναζήτησης (MOS) και θα προσπαθήσουμε να 
περιγράψουμε έναν αλγόριθμο που θα συλλάβει την κίνηση ενός κόμβου σε ένα 
κρυπτογραφημένο περιβάλλον, όπου κάθε κόμβος μπορεί να κινηθεί στον τρισδιάστατο 
χώρο (x, y, ζ). Ο κύριος σκοπός είναι ο κόμβος να στείλει κρυπτογραφικά την περιοχή 
στην οποία βρίσκεται και ο παραλήπτης να αντιληφθεί, στο σημείο όπου ο κόμβος 
μετακινήθηκε ανάλογα με τις τιμές που λαμβάνονται. Ένα σημείο ιδιαίτερου 
ενδιαφέροντος είναι ο συνδυασμός τυχαίων γραφημάτων που μπορούν να 
δημιουργήσουν μια minimal perfect hash συνάρτηση με δυναμικό κατακερματισμό για 
περαιτέρω μελλοντικές εργασίες. 
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1 INTRODUCTION 

The science and art of information security is Cryptography, and serves as a core for all 
secure communication and network information exchange. Cryptography, originally 
coming from two Greek words “κρυπτός” “kryptós” meaning "hidden or secret" and 
“γράφειν” “graphein” "to write". It is the study of these schemes that are used to convert 
the original plaintext into the corresponding ciphertext using a specific key. Encrypting 
the information is a way to keep it secure so that only an authorized recipient can 
extract and read the original plaintext. This allows messages to be sent without the 
sender worrying about contents becoming available to an unauthorized person as the 
information/content would be meaningless to someone who don’t be authorized.  

 Firstly, we will begin, describing the symmetric and asymmetric cryptography and the 
differences between them as an introduction before the cryptographic hash functions. 

Cryptographic hash functions are important tool of modern cryptography. Their 
importance was first perceived with the invention of public key cryptography (PKC) by 
Diffie – Hellman and they became an important part of computer security. 

 These functions provide message integrity and they make sure that the receiver is 
receiving the content that the sender has already sent without the message has been 
modified. It is a mathematical operation that it is easy to perform, but extremely difficult 
to reverse. They take the arbitrary length input and produce a small output, called hash. 
It is designed to act as a one-way function, where you can put data into a hashing 
algorithm and get a unique string. The hash value can be described like a digital 
fingerprint of a message or a file, because two different messages cannot hash the 
same hash value. It is exactly like a person who has only one fingerprint and a small 
change in the message lead to totally change in the digest value. This is the reason 
why, nowadays, the hash functions are so useful for different applications such as 
digital signatures, password protection etc.  

There is security properties that a hash function is expected to preserve in order to 
avoid attacks. Attacking a hash function means breaking one of the security properties 
of the hash functions, focusing on structure of them or on algorithm of compression 
function.  

Many systems and application have to ensure in express access to information and 
objects in large network databases. When the fastest possible direct search is craved 
we usually apply hashing.  

1.1 Motivation and objective 

The main objective of this paper is to describe hash functions and more precisely to 
describe an order preserving minimal perfect hash function with a three- step algorithm 
for generating minimal perfect hash functions with the mapping- ordering- searching 
scheme. This algorithm captures the movement of a node which is moving in the three- 
dimensional space (x,y,z) in which it is located, and gives the opportunity to the 
recipient to perceive, to where the node moved depending on the values received. In 
order to achieve a framework with the above requirements we have to study the below: 

 To study the basic cryptographic techniques 

  To study the modern cryptographic techniques that are used in the networks 

 To learn the concepts of transferring information securely 

 To study the most well-known attacks on existing hash functions 
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 To study the vulnerability of the hash functions 

 To study the order preserving minimal perfect hash functions 

 To design and explain an order preserving minimal perfect hash function  
algorithm  

 To study an algorithm which capture the movement of a node in an encrypted 
environment 

1.2 Thesis structure and reading guide 

The following table gives an overview of the research structure of this paper. We begin 
with a short introduction in field of cryptography and specifically in symmetric and 
asymmetric cryptography. We continue with the cryptographic hash functions, the hash 
techniques, and a presentation of the recent hash functions and their designs.  

We present the main security properties, the most common attacks and the vulnerability 
of the hash functions.  

Finally, our proposed framework about secure order preserving minimal perfect hash 
function algorithm is described. 

 

Table 1: Thesis Chapter Structure 

Chapter Subsections Overview 

1. Introduction Motivation and objective 

thesis structure reading guide 

thesis concept 

An introduction of the concept and 
main objective of the paper and of its 
structure. 

2. Introducing 
cryptography 

Symmetric  

Asymmetric cryptography 

differences 

An introduction to cryptography, 
basic elements and the differences 
between symmetric and asymmetric 
cryptography 

3. Message integrity 
and digital 
signatures 

Cryptographic hash functions 

Hash techniques 

Recent hash functions 

MAC 

Digital Signatures 

A presentation of the cryptographic 
hash functions, their techniques and 
some recent trends.  

Presentation of the MAC and the 
Digital Signatures. 

4. Hash functions 
security Analysis 

Security properties 

Attacks on hash functions 

Vulnerability analysis 

A presentation of the security 
properties, the most common attacks 
and the vulnerability analysis of 
them. 

5. OPMPHF 
approaches 

Order preserving minimal perfect 
hash function  

Related OPMPHF’S 

A presentation of an order preserving 
minimal perfect hash function  

6. Proposed Secure 
OPMPHF Algorithm 

Mapping- Ordering- Searching 
Scheme 

The Proposed  Algorithm 

Technical summaries for Privacy- 
preserving proximity- based security 
systems for location based services 

Simulation of the proposed 
algorithm. 

A proximity- based authentication 
key generation strategy, without 
involving any trusted authority 

A dynamic privacy- preserving key 
management scheme 

7. Conclusion Conclusion and future work Conclusion and future work 
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1.3 Thesis concept 

In chapters 2-3 of this thesis we describe the properties and uses of hash functions in 
order to be efficient and we present the classification of hash functions, categorized 
them as keyed or unkeyed on the basis of the criterion whether they may or may not be 
the use of a key for designing a hash function. Secretly keyed hash functions are 
usually used to build Message Authentication Codes (MAC), with the canonical example 
is HMAC.  

In the second part different modes of constructing a hash function are represented, 
such as Merkle- Damgård construction, HAIFA construction, Sponge construction, 
Wide- Pipe construction and Tree Based construction. It is also discussed few existing 
popular hash functions like MD5, SHA-1, SHA-2, BLAKE, Whirlpool etc. In addition, 
some of recent hash functions designs are described such as Whirlpool, JH Hash, 
Blake-256, Blake2,SHA-3 (Keccak), Streebog and KangarooTwelve, that are using the 
new modified design architecture.  

We provide a discussion about the three classical hash function security properties in 
chapter 4, which are collision resistance, pre- image resistance and second pre- image 
resistance, explaining the goals of security and the most common attacks that exist on 
hash functions and the vulnerability of them.  

In the chapters 5-6 we discuss about minimal perfect hash functions that preserving the 
order of the key, and we describe an algorithm for finding an order preserving minimal 
perfect hash function with the use of Mapping, Ordering, Searching Scheme (MOS) 
where a node send the area in which it is located and the recipient to perceive, to where 
the node moved depending on the values received. 

In chapter 6, we describe a proximity- based authentication key generation strategy, 
without involving any trusted authority, pre-shared secret or public key infrastructure for 
mobile users in Wireless Networks and a dynamic privacy- preserving key management 
scheme for location – based services in vehicular ad hoc networks (VANETs).  
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2 INTRODUCING CRYPTOGRAPHY 

2.1 Overview 

The importance of information and communication systems for society globally is 
intensifying with the increasing value and quantity of data that is transmitted and stored 
on those systems. Those systems and data are also increasingly vulnerable to a variety 
of threats, such as unauthorized access and use, misappropriation, alteration and 
destruction. To hide any data and keep safe information, the technique that is mainly 
used is Cryptography. 

Cryptography is the science of secret writing with the goal of hiding the meaning of the 
message [1]. In addition, it can be stated that is the science of protecting data and 
provide methods of converting data into an unreadable form, so that only the valid user 
can access information with the using of mathematics to encrypt and decrypt data [2]. 

Cryptography separated into three main sections, Symmetric Ciphers, Asymmetric 
Ciphers and Cryptographic Protocols. Symmetric and Asymmetric Ciphers can be 
treated as constituent elements wherewith secure internet communication can be 
achieved. As a cryptographic protocol we can quote as an example the Transport Layer 
Security (TLS) which is used in every Web browser [3]. 

 

Figure 1: Overview of the field of Cryptography [3] 

 

Prior to the beginning we describe some terms that are commonly used in the science 
of cryptography, as we describe below: 

Plaintext is called the information we need to hide and it is about the original text which 
it could be in a form of characters, numerical data or any kind of information. For 
example the plaintext is the sending of a message in the sender before encryption, or it 
is the text at the receiver after decryption [2]. 

Cipher text is called the data that will be transmitted. It’s a term refers to the string of 
‘meaningless’ data, or unclear text that nobody must understand, except the recipients 
[2]. 

Cipher is the algorithm that is used to transform plaintext to cipher text. This method is 
called encryption, stating differently, it is a procedure of converting readable and 
understandable data into a ‘without meaning’ data [2]. 

The key is an input to the encryption algorithm, and this value must be independent of 
the plaintext. This input is used to transform the plaintext into cipher text, so different 
keys will produce a different cipher text. In the decipher side, the inverse of the key will 
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be used inside the algorithm instead of the key. There are two different types of keys 
the private key and the public key [2]. 

Computer security is a generic term for a collection of tools designed to protect any 
data from hackers, corruption or natural disaster while allowing these data to be 
available to the users at the same time. The NIST Computer Security Handbook defines 
the term as follow: ‘The protection afforded to an automated information system in order 
to attain the applicable objectives of preserving the integrity, availability, and 
confidentiality of information system resources (includes hardware, software, firmware, 
information/data, and telecommunications)’ [4]. 

Network security refers to any activity designed to protect the usability, integrity, 
reliability and safety of data during their transmission on a Network [2].  

Internet security is measures and procedures used to protect data during their 
transmission over a collection of interconnected networks, while information security is 
about how to prevent attacks, and to detect attacks on information- based systems [3].  

Thanks to the use of cryptography many goals can be accomplished. These goals can 
be either all achieved at the same time in one application or only one of them. These 
goals are assigned as below: 

Confidentiality: it is the main focus, that ensures that nobody can understand the 
received message except the one who has the decipher key [2]. 

Authentication: is the process of providing the identity that assures the communicating 
entity is the one that it claimed to be. This implies that the user or the system can prove 
their own identities to other parties who do not have personal knowledge of their 
identities [2]. 

Data Integrity: ensures that the received message has not been changed in any way 
from its original form. The data may get modified by an unauthorized entity intentionally 
or accidently. Integrity service confirms that whether data is intact or not since it was 
last created, transmitted, or stored by an authorized user. This can be achieved by 
using hashing at both sides the sender and the recipient in order to create a unique 
message digest and compare it with the one that received [2]. 

Non-Repudiation: it is a mechanism used to prove that the sender really sent this 
message, and the message was received by the specified party, so the recipient cannot 
claim that the message was not sent. For example, once an order is placed 
electronically, a purchaser cannot deny the purchase order, if non-repudiation service 
was enabled in this transaction [2]. 

Access Control: it is the process of preventing an unauthorized use of resources. This 
goal controls who can have access to the resources, if one can access, under which 
restrictions and conditions the access can be occurred, and what is the permission level 
of a given access [2]. 
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Figure 2: Computer security requirements [2] 

2.2 Symmetric Cryptography 

Symmetric cryptography is also referred as symmetric- key, secret key and single- key 
cryptography. In symmetric key cryptography a secret key may be held by one person 
or exchanged between the sender and the receiver of a message. If private key 
cryptography is used to send secret messages between two parties, both the sender 
and the receiver must have a copy of the secret key. 

 

Figure 3: Symmetric Cryptosystem [2] 

A Symmetric encryption scheme has five components Plaintext, Encryption Algorithm, 
Secret Key, Cipher-text and Decryption Algorithm. The Secret Key is shared by both, 
the sender and the receiver which they must have obtained in a secure fashion & 
should keep the key hidden, lest anyone who finds the key would be able to extract the 
hidden message. The Symmetric encryption was the only type of encryption in use prior 
to the development of Public-Key encryption in the 1970s. It remains by far the most 
widely used of the two types of encryption [2]. It was in use way before the computer 
era, and can be traced back to the ancient Rome & Egypt. The ciphers which were in 
use before the advent of the computers are termed as the classical encryption 
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algorithms. They were all very intriguing & worked on texts, but now we have bits & 
bytes [3]. 

There is a risk with hidden messages that somebody finds the hidden message and 
exposes it to unfriendly parties. This is especially the case for regular communications. 
Eventually the idea arose to encrypt messages so that they cannot be read even if 
intercepted and this has led to the development of cryptography. Ciphers allow parties 
to securely communicate by encrypting their messages with some secret knowledge 
(the secret key) into unreadable cipher text that can only be read by parties that 
possess the same secret knowledge. This form of encryption using a single secret key 
known to both sender and receiver is called symmetric encryption. [2] 

Authentication of messages, the act of confirming that a message really has been sent 
by a certain party, usually was achieved by a combination of inspecting the message 

(e.g. verify its signature). Symmetric encryption also provides some form of 
authentication. After all, no one else knows the secret key and is able to encrypt 
messages with it. However, this does not prevent the encrypted message from being 
purposely changed or simply repeated at an opportune moment by unfriendly parties. In 
general, authentication of the sender of something is achieved through mutual 
knowledge (such as a secret password), possession of a physical token (such as the 
king’s seal) and/or distinguished marks (such as a known birthmark) [3],[2]. 

2.2.1 Symmetric-key cryptography ciphers 

There are two generous classes of Symmetric encryption techniques block ciphers or 
stream ciphers.  

A block cipher enciphers input in blocks of plaintext as opposed to individual 
characters, the input form used by a stream cipher. A block cipher is a deterministic 
algorithm operating on fixed-length groups of bits, called blocks, with a uniform 
transformation that is specified by a symmetric key. Block ciphers operate as important 
elementary components in the design of many cryptographic protocols, and are widely 
used to implement encryption of bulk data. Nowadays they are used in many secure 
Internet protocols, including PGP (for secure e-mail), SSL (for securing TCP 
connections), and IPsec (for securing the network-layer transport) [5]. 

The following diagram describes block ciphers based general construction of a 
compression function for hash functions: 

 

Figure 4: Simple design of block cipher based hash functions compression function [5] 

 

Nowadays there are a number of well-known block ciphers, including DES (standing for 
Data Encryption Standard), 3DES, and AES (standing for Advanced Encryption 
Standard). Each of these algorithms also uses a string of bits for a key. 
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 For example, DES, which stands for Data Encryption Standard, used to be the most 
popular block cipher worldwide. The DES algorithm became a standard in the US in 
1977. However, it's already been proven to be vulnerable to brute force attacks and 
other cryptanalytic methods. DES is a 64-bit cipher that works with a 64-bit key. 
Actually, 8 of the 64 bits in the key are parity bits, so the key size is technically 56 bits 
long. 

AES or Advanced Encryption Standard is the most widely used block cipher in the 
world. It has a block size of 128 bits and supports three possible key sizes - 128, 192, 
and 256 bits. The longer size of the key, the stronger the encryption. However, longer 
keys also result in longer processes of encryption [5]. 

 

Figure 5: An example of block cipher [5] 

A stream cipher is a symmetric key cipher where plaintext digits are combined with a 
pseudorandom cipher digit stream (keystream). In a stream cipher, each plaintext digit 
is encrypted one at a time with the corresponding digit of the keystream, to give a digit 
of the cipher text stream. Since encryption of each digit is dependent on the current 
state of the cipher, it is also known as state cipher. In practice, a digit is typically a bit 
and the combining operation an exclusive-or (XOR). Stream ciphers are designed to 
approximate an idealized cipher, known as the One-Time Pad [5]. 

The One-Time Pad, can potentially achieve "perfect secrecy" and it's supposed to be 
fully immune to brute force attacks. But there is a problem with the one- time pad. The 
problem is that, in order to create such a cipher, its key should be as long or longer than 
the plaintext [5]. 

RC4, which stands for Rivest Cipher 4, also known as ARCFOUR or ARC4, is the most 
widely used of all stream ciphers. RC4 steam chiphers have been used in various 
protocols like WEP and WPA (both security protocols for wireless networks) as well as 
in TLS. Although recent studies have revealed vulnerabilities in RC4, prompting Mozilla 
and Microsoft to recommend that it be disabled where possible [5]. 

2.3 Asymmetric Cryptography 

Whitfield Diffie and Martin Hellman, researchers at Stanford University, first publicly 
proposed asymmetric encryption in their 1977 paper, "New Directions in Cryptography". 
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Asymmetric cryptography, also known as public key cryptography, uses two different 
keys to encrypt and decrypt data, the public key and the private key. The keys are 
simply large numbers that have been paired together but are not identical (asymmetric). 
The public key can be shared with everyone and the private key is kept secret. In the 
two-key system is also known as the public key system, one key encrypts the 
information and another, mathematically related key decrypts it. The computer sending 
an encrypted message uses a chosen private key that is never shared and so is known 
only to the sender. If a sender first encrypts the message with the intended receiver’s 
public key and again with the sender’s secret private key, then the receiver may decrypt 
the message, first using its secret key and then the sender’s public key. Using this 
public-key cryptographic method, the sender and receiver are able to authenticate one 
another as well as protect the secrecy of the message. 

 

Figure 6: Asymmetric Cryptosystem [2] 

The two participants in the asymmetric encryption are the sender and the receiver. 
First, the sender obtains the receiver's public key. Then the plaintext is encrypted 
with the asymmetric encryption algorithm using the recipient's public key, creating 
the ciphertext. The ciphertext is then sent to the receiver, who decrypts the 
ciphertext with his private key so he can access the sender's plaintext. Because of 
the one-way nature of the encryption function, one sender is unable to read the 
messages of another sender, even though each has the public key of the receiver. 

So, securely sending a message to someone is possible without first exchanging a 
secret key in advance anymore, as you simply encrypt your message with his public 
key as found in the listing. Only a specific participant can now decrypt the cipher text 
using the private key known only to him. This invention, builds on the fact that no 
one can derive the private key from the public key [6]. 

2.3.1 RSA algorithm 

RSA (Rivest-Shamir-Adleman) is the most common used asymmetric algorithm. This is 
fixed in the SSL/TSL protocols which are used to provide communications security over 
a computer network. RSA derives its security from the computational difficulty of 
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factoring large integers that are the product of two large prime numbers. Multiplying two 
large primes is easy, but the difficulty of determining the original numbers from the 
product forms the basis of public key cryptography security. The time it takes to factor 
the product of two sufficiently large primes is considered to be beyond the capabilities of 
most attackers, excluding nation-state actors who may have access to sufficient 
computing power. RSA keys are typically 1024- or 2048-bits long, but experts believe 
that 1024-bit keys could be broken in the near future, which is why government and 
industry are moving to a minimum key length of 2048-bits [7]. 

RSA makes extensive use of arithmetic operations using modulo-n arithmetic. Recall 
that x mod n simply means the remainder of x when divided by n. In modular arithmetic, 
one performs the usual operations of addition, multiplication, and exponentiation. 
However, the result of each operation is replaced by the integer remainder that is left 
when the result is divided by n. Adding and multiplying with modular arithmetic is 
facilitated with the following handy facts: 

[(a mod n) + (b mod n)] mod n = (a + b) mod n 

[(a mod n) – (b mod n)] mod n = (a – b) mod n 

[(a mod n) • (b mod n)] mod n = (a • b) mod n 

It results from the fact that (a mod n) d mod n = ad mod n. 

There are interrelated components of RSA: 

 The choice of the public key and the private key 

 The encryption and decryption algorithm.  

To generate the public and private RSA keys, we have the following steps: 

1. Choose two large prime numbers, p and q. The larger the values, the more difficult it 
is to break RSA, but the longer it takes to perform the encoding and decoding.  

2. Compute n = p q and z = (p – 1)* (q – 1). 

3. Choose a number, e, less than n, that has no common factors (other than 1) with z. 
(In this case, e and z are said to be relatively prime.) The letter e is used since this 
value will be used in encryption. 

4. Find a number, d, such that ed– 1 is exactly divisible (that is, with no remainder) by z. 
The letter d is used because this value will be used in decryption. Put another way, 
given e, we choose d such that ed mod z = 1 

5. The public key is the pair of numbers (n, e) and the private key is the pair of numbers 
(n, d). 

The encryption by A and the decryption by B are done as follows: 

• Suppose A wants to send B a bit pattern represented by the integer number m (with m 
< n). To encode, A performs the exponentiation mᵉ, and then computes the integer 
remainder when me is divided by n. In other words, the encrypted value, c, of A’s 
plaintext message, m, is c = mᵉ mod n 

The bit pattern corresponding to this ciphertext c is sent to B. 

• To decrypt the received ciphertext message, c, B computes m = cᵈ mod n which 
requires the use of his private key (n,d) [5], [7].  
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2.3.2 Elliptic curve Cryptography 

Elliptic curve Cryptography (ECC) is an alternative to RSA for implementing public key 
cryptography. ECC is a public key encryption technique based on elliptic curve theory 
that can create faster, smaller, and more efficient cryptographic keys. ECC generates 
keys through the properties of the elliptic curve equation. To break ECC, we have to 
compute an elliptic curve discrete logarithm, and it turns out that this is a significantly 
more difficult problem than factoring. As a result, ECC key sizes can be significantly 
smaller than those required by RSA yet deliver equivalent security with lower computing 
power and battery resource usage making it more suitable for mobile applications than 
RSA. 

The typical application for asymmetric cryptography is authenticating data through the 
use of digital signatures. Based on asymmetric cryptography, digital signatures can 
provide assurances of evidence to the origin, identity and status of an electronic 
document, transaction or message, as well as acknowledging informed consent by the 
signer. The SSL/TSL cryptographic protocols for establishing encrypted links between 
websites and browsers also make use of asymmetric encryption [7]. 

2.4 Differences between Symmetric and Asymmetric Cryptography 

The main difference between these two methods of encryption is that asymmetric 
encryption algorithms makes use of two different keys, one key to encrypt the data and 
another key to decrypt it while symmetric encryption uses the same key to perform both 
the encryption and decryption functions. 

Second difference is the length of the keys. In symmetric cryptography, the length of the 
keys is typically set at 128-bits or 256-bits, depending on the level of security that's 
needed. However, in asymmetric encryption, there has to be a mathematical 
relationship between the public and private keys. Asymmetric keys need to be much 
longer to offer the same level of security. The difference in the length of the keys is so 
pronounced that a 2048-bit asymmetric key and a 128-bit symmetric key provide just 
about an equivalent level of security. Finally, asymmetric encryption is slower than 
symmetric encryption, which has a faster execution speed. 
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Figure 7: Symmetric vs Asymmetric encryption [8] 

 

Generally we can summarize the differences between the symmetric and asymmetric 
encryption to the table below: 

 

Table 2: the differences between the symmetric and asymmetric encryption 

Symmetric Encryption Asymmetric Encryption 

The same algorithm and the same key 
is used for encryption and decryption. 

One algorithm is used for encryption and 
decryption with a pair of keys, one for 
encryption and one for decryption. 

The sender and the receiver must share 
the algorithm and the key. 

The sender and the receiver must each 
have one of the matched pair of keys (not 
the same one)  

The key must be kept secret. One of the two keys must be kept secret. 

Knowledge of the algorithm plus samples 
of ciphertext must be insufficient to 
determine the key. 

Knowledge of the algorithm plus samples 
of ciphertext plus one of the keys must be 
insufficient to determine the other key. 
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3 MESSAGE INTEGRITY AND DIGITAL SIGNATURES 

An equally important cryptography topic is the message integrity also known as 
message authentication. In this chapter, we will describe a popular message integrity 
technique that is used by many secure networking protocols. In addition we have to 
discuss another important topic in cryptography, the cryptographic hash functions [5].  

3.1 Cryptographic Hash Functions 

Hashing is a method of cryptography that converts any form of data into a unique string 
of text. It is a mathematical operation that is easy to perform, but extremely difficult to 
reverse. These functions take an arbitrary length input and produce a small output. This 
output is known as message digest or hash code or simply hash. Any piece of data can 
be hashed, regardless of the data’s size, type or length. It is designed to act as a one- 
way function, where you can put data into a hashing algorithm and get a unique string. 
The hash value can be thought like a digital fingerprint of a message or file, because 
two different messages/ files cannot have the same hash value. It is exactly the same 
like a person who has only one unique fingerprint. The hash output depends on each 
character of input, so a small change in the message will lead to totally different digest 
value. This message digest is treated as a signature of that message.  

 For this reason hash functions are an indispensable tool in different types of 
applications such as digital signatures, Pseudo- Random Functions, Message 
Authentication, Data Integrity, password protection etc. [9], [10]. 

 

 

Figure 8: Working Mechanism of One Way Hash Function [9] 

 

A generic cryptographic hash function has two inputs: the message it’s going to 
compress or hash (x) & a public key (s) that represents the fixed-length output of our 
hash in alphanumeric characters. Our hashed result is termed the message digest or 
simply digest (x*).  

This looks like the following: 

H(s,x) = x* 

3.1.1 History 

Commonly used hashing algorithms include Message Digest (MDx) algorithms, such as 
MD5, and Secure Hash Algorithms (SHA), such as SHA-1 and the SHA-2 family that 
includes the widely used SHA-256 algorithm. The recent attacks on MD4, MD5, SHA-0 
and SHA-1 have enforced research in designing new cryptographic hash functions of 
existing ones. A lot of issues were announced about techniques for efficiently collisions 
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in MD5 and SHA-1 , and it is nowadays clear that the MD5 and SHA-1 are not as strong 
as we need and there was a requirement to shift towards in new hash functions with 
improved designs [11], [12]. 

The way of the new approach was based on designing new hash functions from 
scratch. The hash functions, like SHA-1 and MD5 have been for many years the most 
famous until 2005 when Wang et al. [13] found that collisions for MD5 can reducing the 
effort to find collisions on SHA-1 to 269 [13], [12]. 

Although a break with complexity of 269 is theoretical, it showed that SHA-1 is not as 
strong and collision-resistant as it is supposed to be. That’s the reason why the National 
Institute of Standards and Technology (NIST) announced an open competition in order 
to select a new hash functions standard, to be named SHA-3 [14].  

For this competition the 5 finalist candidates were BLAKE, Grøstl, JH, Keccak and 
Skein and the competition ended on October 2, 2012 when the NIST announced that 
Keccak would be the new SHA-3 hash algorithm [15].  

As a consequence of this competition, both the theory and practice of hash functions 
will make a significant step forward [16].  

 

3.1.2 Properties and uses of hash functions 

Hashing algorithms must have the following properties in order to be efficient: They are 
deterministic, meaning that the same message always results in the same hash. 

It is quick to compute the hash value for any given message. 

it is practically infeasible to generate a message that yields a given hash value 

a small change to a message should change the hash value so extensively that the new 
hash value appears uncorrelated with the old hash value 

It is infeasible to find two different messages with the same hash value 

It must have very low probability of collisions.  

Nowadays, hash functions are used for many different purposes. The average user 
encounters hashing daily in the context of passwords. In crypto currency blockchains 
today, we use hashing in order to write new transactions, timestamp them and add a 
reference to them in the previous block. For example, running a decentralized network 
such as Bitcoin requires both trustlessness and verification efficiency. A critical part of 
their security involves being able to compress large chunks of information into a short 
message standard, which can be efficiently verified if need be, known as hash [11], [12]. 

 

File verification 

An important application of secure hashes is verification of message integrity. When we 
compare the hash digests over the message before and after calculation, transmission 
can determine whether any changes have been made to the message or the file.  

 

 

Password verification  

https://www.wikiwand.com/en/Deterministic_algorithm
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Password verification relies on cryptographic hashes. If we store all user passwords as 
clear text, this can result in a massive security breach if the password file is 
compromised. A way that the danger can be reduced is to store the hash digest of each 
password. For the authentication of a user, the password presented by the user is 
hashed and then compared with the stored hash. A password hash requires the use of 
a large random, non- secret salt value which can be stored with the password hash. The 
salt randomizes the output of the password hash, making it impossible for an adversary 
to store tables of passwords and precomputed hash values to which the password hash 
digest can be compared.   

 

Digital Signature 

The purpose for which cryptographic hash functions were originally designed is input 
preparation for digital signatures. The message is compressed using a hash function 
and the fingerprint is the input to the digital signature algorithm. The message is 
considered authentic if the signature verification succeeds given the signature and 
recalculated hash digest over the message. So the message integrity property of the 
cryptographic hash is used to create secure and efficient digital signature schemes. The 
attack of the digital signature can be happened if the hash function can be abused.  

 

 Figure 9: Use of Hash Function in Digital Signature [9] 

 

Message Authentication Codes (HMAC) 

An extra use of hash functions is for the authentication of high- speed message 
between parties who share a common secret. This can be done with the use of HMAC 
framework, where H is the hash function, K is the shared secret and M is the message 
to be authenticated [9]. 

𝐻𝑎𝐹𝑢(𝐾1 + 𝑜𝑢𝑡𝑝𝑢𝑡-𝑝𝑎𝑑𝑑𝑖𝑛𝑔, 𝐻𝑎𝐹𝑢(𝐾1 + 𝑖𝑛𝑝𝑢, 𝑋)) 

Where HaFu is the hash function 

K1  is the secret key shared between sender and receiver 

X is the message to be authenticated  

 

 

 

Pseudo- Random Functions 
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Hash functions are often used as pseudo- random functions. They provide a 
deterministic mechanism for generating random- seeming bit streams from some input 
source without any information about the input. After a Diffie- Hellman exchange, a 
typical use is generating cipher keying material [17]. 

 

Data Fingerprinting 

Hash functions can be used to produce fingerprints generally. Instead of digitally signing 
these fingerprints, the values are stored separately from the data and this permits later 
detection of changes to the original data [18], [19], [20]. 

 

3.1.3 Keyed and Unkeyed Hash Functions 

Hash functions can be classified as Keyed or Unkeyed, based on whether the hash 
function is using a type of key or not in the processing. [21]. 

Keyed hash functions make use of a key in the process of generating a hash value. 

Therefore, these functions require two specific inputs: (1) a message of arbitrary finite-
length, and (2) a key of specific length. The fundamental approach behind this is that, if 
adversary does not know the key, he must not be able to forge the message. Such type 
of hash functions are also known as Message Authentication Codes (MAC). Output of 
MAC depends on both – the message and the key [22]. 

The definition of keyed hash functions is below: 

“The map HASH :{0,1}* ×{0,1}n →{0,1}m is said to be a keyed hash function with m -bit 
output and n -bit key if H is a deterministic function that takes two inputs, the first of an 
arbitrary length, the second of n -bit length and outputs a binary string of length m -bits. 
Where both n, m are positive integers. {0,1}m and {0,1}n are the sets of all binary strings 
of length m and n respectively and {0,1}* is a set of all finite binary strings. Keyed hash 
function or MACs are majorly concerned with message integrity and source 
authentication both”[23]. 

 Unkeyed hash functions do not use any key as input to generate hash value. The 
majority of hash functions are unkeyed hash functions. By appending the digest to the 
message during the transmission, these hash functions are used for error detection. 
The error can be diagnosed if the digest of the received message at the receiving end is 
not equal to the received message digest.  

The definition of unkeyed hash functions is below: 

“The map H :{0,1}* →{0,1}m is said to be an unkeyed hash function with m –bit output if 
H is a deterministic function that takes an arbitrary length message as input and outputs 
a binary string of length m -bit. The notations m, {0,1}m and {0,1}* are similar as that of 
used in Definition of Keyed Hash Functions.  

The Unkeyed hash functions may further be classified into categories, named as- One- 

Way Hash Function (OWHF) and Collision Resistant Hash Function (CRHF). But, still a 
hash function must possess both qualities- one-way and collision resistance”[23]. 
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Figure 10: Simplified Broad Categories of Cryptographic Hash Function [24] 

 

3.2 Hash Techniques 

In this section many construction methods are explained. Hah functions that we use 
today are based on these constructions methods and we will describe and analyze the 
design of them.  

3.2.1 Design of new Hash Functions 

 

 Merkle–Damgård construction 

In 1989, The Merkle–Damgård construction was described by Ralph Merkle and Ivan 
Damgård, who independently proved that if an appropriate padding scheme is used and 
the compression function is collision-resistant, then the hash function will also be 
collision-resistant too [23]. A hash function built with the Merkle–Damgård construction 
is as resistant to collisions as is its compression function. Any collision for the full hash 
function can be traced back to a collision in the compression function. In order to make 
the construction secure, Merkle and Damgård proposed that messages be padded with 
a padding that encodes the length of the original message. Firstly, applies an MD-
compliant padding function to create an input whose size is a multiple of a fixed number. 
The hash function then breaks the result into blocks of fixed size, and processes them 
one at a time with the compression function, each time combining a block of the input 
with the output of the previous round. The last block processed should also be 
unambiguously length padded. Most common hash functions, including SHA-1, MD5, 
JH- Function, Streebog, take this form [25]. 
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Figure 11: The Merkle- Damgård hash construction [23] 

 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝐌𝐃𝐟 

𝑀 → 𝑀1  ⋯ 𝑀𝑙  

𝑦0 = 𝐼𝑉 

for i = 1 to l do 

𝑦𝑖 = 𝑓(𝑀𝑖, 𝑦𝑖−1 ) 

return 𝑦𝑙  

 

 

 

 

Figure 12: Merkle- Damgård Padding algorithm [23] 

  

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝐏𝐚𝐝𝒔(𝑴) 

𝑑 = 𝑀 + 1 + 64 𝑚𝑜𝑑 𝑚  

𝑀‖1‖0𝑑〈𝑀〉64  →  �̂� 

�̂�  →  𝑀1  ⋯ 𝑀𝑙  

 

Figure 12 illustrates the padding algorithm, where L is a 64-bit encoding of the the 
length of the message and m is the length of a single block. The message is then 
iterated repeatedly by calling a Fixed- Input-Length (FIL) compression function f : {0,1}n 
× {0,1}m → {0,1}n accepting two inputs: a message block Mi (of length m) and either an 
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Initialisation Vector IV (when hashing the first block) or a chaining variable (which is the 
output of the previous f call), both of length n. 

 

Message Digest 5 (MD5) 

MD5 is a hash function designed by Ronald L. Rivest in 1992 as a more strength 
version of MD4. Taking an arbitrary length input message, the MD5 produces a single 
output of 128-bit length message digest. The input message is divided to multiple blocks 
of 512 bits each [26]. 

 

Figure 13: MD5 Hash Function 80] 

 

Secure Hash Function 1 (SHA-1) 

Secure Hash Algorithm (SHA-1) is based on MD4 , and was proposed by the U.S. 
National Institute for Standards & Technology (NIST) in 1995 for certain U.S federal 
government applications. The SHA-1 produces a single 160-bit length output from an 
arbitrary length input message. The input message is divided to multiple blocks each of 
512 bits. Each message block is represented as a sequence of sixteen 32-bit words 
[27].  

 

Figure 14: SHA-1 Hash Function [80] 
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Secure Hash Function 2 (SHA-2) 

SHA-2 family is a set of Cryptographic Hash Function (SHA-224, SHA-256, SHA- 384, 
SHA-512, SHA-512/224 and SHA-512/256) designed by the U.S. National Security 
Agency (NSA). SHA-2 consists of a set of six hash functions with digests that are 224, 
256, 384 or 512 bits. For SHA-224 and SHA- 256, each message block has 512 bits, 
which are represented as a sequence of 32-bit words. For SHA-384 and SHA-512, each 
message block has 1024 bits, which are represented as a sequence of 64-bit words. 
SHA-224 and SHA-256 operate on 32-bit words and SHA-384 and SHA-512 operate on 
64-bit words. SHA-256 and SHA-512 are novel hash functions which use different shift 
amounts and additive constants, but their structures are otherwise virtually identical, 
differing only in number of rounds. SHA-224 and SHA-384 are simply the truncated 
versions ofSHA-256 and SHA-512 respectively. SHA-512/224 and SHA-512/256 are 
also truncated version of SHA-512 but the initial values are generated using the method 
described in FIPS PUB 180-4 [27]. 

 

Figure 15: SHA-256 Hash Function [80]  

 

 HAIFA construction 

The HAIFA construction (hash iterative framework) is a cryptographic structure 
designed by Eli Biham and Orr Dunkelman in 2007. It is one of the modern alternatives 
to the Merkle–Damgård construction, avoiding its weaknesses like length extension 
attacks. For example Blake-256 takes this form [28].  

HAIFA modifies Merkle-Damgård by introducing extra input parameters to the 
compression function. Those parameters are a salt value (used as a key to create 
families of hash functions - if only one hash function is needed, the salt is set to 0), and 
the number of bits hashed so far. In fact, HAIFA can be considered a dedicated-key 
hash function [29]. The idea of adding additional input parameters to the compression 
function has been previously proposed by Rivest through a process called dithering 
[30], though a second pre-image attack against dithered hash functions was reported by 
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Andreeva et al. in [31]. An obvious drawback of HAIFA is efficiency degradation since 
the compression function now has more input parameters to process. Furthermore, 
HAIFA cannot be (easily) used to patch existing Merkle-Damgård based hash functions 
because a compression function designed for the Merkle-Damgård construction would 
not naturally accommodate the extra HAIFA parameter inputs. 

 

 

Figure 16: The HAIFA construction [29] 

 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝐇𝐀𝐈𝐅𝐀𝒔
𝒉
 

 𝑀 →  𝑀1  ⋯ 𝑀𝑙  

𝑦0 = 𝐼𝑉 

for i = 1 to l do 

𝑦𝑖 = 𝑓(𝑀𝑖, 𝑦𝑖−1, 𝑏𝑖, 𝑠 ) 

return 𝑦𝑙 

 

 Sponge construction 

This construction is totally different in design than Merkle-Damgård, and it’s about a 
new and promising hashing construction [32]. In sponge hashing we have two phases, 
the first one is the absorbing phase and the second one is the squeezing phase.  

A sponge construction is any of a class of algorithms with finite internal state that take 
an input bit stream of any length and produce an output bit stream of any desired 
length. A sponge function is built from three components: 

 A state memory, S, containing b bits, 

 A function f: {0,1}b 
{0,1}b that transforms the state memory (often it is a 

pseudorandom permutation of the 2b  state values) 

 A padding function P 

The state memory is divided into two sections: one of size r (the bitrate) and the 
remaining part of size c (the capacity). These sections are denoted R and C 
respectively. 
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The padding function appends enough bits to the input string so that the length of the 
padded input is a whole multiple of the bitrate, r. The padded input can thus be broken 
into r-bit blocks. The sponge construction can also be used to build practical 
cryptographic primitives. For example, Keccak cryptographic sponge with a 1600-bit 
state has been selected by NIST as the winner in the SHA-3 competition [32].  

 

Figure 17: The sponge construction for hash functions [33] 

 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝐒𝐩𝐧𝐠𝒏
𝒑
 

 𝑀 →  𝑀1  ⋯ 𝑀𝑙  

𝑟 = 0, 𝑐 = 0 

for i = 1 to l do 

𝑝(𝑟 ⊕𝑀𝑖 , 𝑐) = (𝑟, 𝑐) 

for i = 1 to l do 

𝑌 = 𝑌 ‖𝑟 

𝑝(𝑟, 𝑐) 

return Y 

 

As we notice before, the Sponge construction is totally different from the Merkle- 
Damgård, so the generic attacks that we have already discuss are not applicable in this 
construction. However, that does not mean that the sponge construction is not 
susceptible to other to other kinds of attacks like slide attack. An obvious disadvantage 
of sponge construction is that their relatively large states slows down the full diffusion of 
bits, hence the sponge construction may be more suitable for hashing large messages.  

Secure Hash Function 3 (SHA-3) 

After several successful collision attacks which were progressively reduced in 
complexity (such as MD5, SHA-1 and SHA-2), NIST, in the Federal Register, 
announced a public competition to develop SHA-3, a completely new hashing algorithm. 
In 2007, the announcement for the initiative was published. Then, four years later, on 
October 2nd, 2012, the winner of the competition Keccak, was announced. In 2014, 
NIST considered SHA-3 as a standard hash function. However, this algorithm is 
susceptible to first collision-finding attacks [34], [35]. On the other hand, the algorithm 
shows relatively low software performance compared to other hash functions [36]. 
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 Wide- Pipe Construction 

One construction for hash function, which is called Wide- Pipe construction, was 
proposed as an improvement over Merkle- Damgård construction, by Stefan Lucks [33]. 
Its structure is quite similar to that of Merkle- Damgård design, but it has larger internal 
state size. Lucks [33] suggested that Joux [37]and length extension are mainly based 
on Internal collisions and internal collisions can be avoided if we widen the internal pipe 
from n bits to w >= n bits. 

 If a hash of n bits is desired, then two compression functions f1, f2 will be required: 

 f1 :  {0,1}w X{0,1}m 
 {0,1}w  

 f2 :  {0,1}w X{0,1}n 

Then wide pipe iterated hash is constructed like this: 

 For i = 1, ...., L : Computer Hi = f1 (Hi-1 , Mi) 

 Finally Set H(M) = f2 (HL)  

 

Compression function f1 takes w bits (generally w = 2n) of chaining value and m bits of 
message (M) and compressed this to an output of w bits and in the last another 
compression function f2, compresses the last internal hash value (w bits) to the final 
hash value (n bits). SHA- 224 and SHA-384 are based on the same design.  

 

 

Figure 18: the Wide Pipe Hash Construction [33] 

This structure is analogous to that of Merkle–Damgård construction with the only 
exception that its constitutional state size is large, due to which its internally used bit-
length is also larger than Wide-pipe construction’s output bit-length. The compression 
operation g takes 2n-bits of chaining variable and n bits of the message and 
compresses this to an output of 2n bit to produce a hash of n bits. Finally, one more 
compression function is used that compresses the final 2n bit long internal digest to the 
final hash value (n bits). Half of the last 2n-bit-output is simply abandoned. For example 
SHA- 224 derived from SHA- 256 and SHA-384 derived from SHA-512 and takes this 
form. 

Mridul Nandi and Souradyuti Paul [38] established that the Wide pipe hash function can 
be made around two times faster. And for this, the wide pipe state should be split into 
two same parts as follows: first part should be given as input to the next compression 
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operation while the second part should be linked with the output of first part’s 
compression operation. The important idea behind this design of hashing is to feed-
forward half of the previous chaining value and then to XOR it to the result of the 
compression operation. While doing this in each of the iteration, the input message 
blocks to construction becomes longer than the original wide pipe construction method. 
Using the same function g as before, it takes c-bit chaining value and c + m bit of the 
message. However, this construction method demands extra memory to be used for 
feed-forward step. Lucks further suggested that to widen the internal state, the double 
pipe hash functions may also be used as an alternative approach. Two parallel 
iterations are processed in this approach. These two iterations can be initialized with 
different initialization vectors or they can use different compression functions or they 
can even iterate the message blocks in different permutations. Finally, the outputs of the 
two iterations are mixed to get the final digest value. 

 

  Tree- based Hash Functions 

The Tree based hash functions are the most collocate category of hash constructions 
and they are firmly applicable for multi-core platforms in which various processors can 
independently but simultaneously perform on various parts of the message. 

In this way, firstly the message is broken into blocks, and after individually 
randomization they are combined by an XOR type of operation. This structure can be 
used for building incremental functions at the same time its structure is similar to a two-
level tree and it may be parallelized because of independence of the randomization 
process of the individual blocks. Different threads or processors are made responsible 
for this independence. Major limitation of Tree-based constructions is their non-
suitability for low-end platforms like smart cards, because of this iterative functions are 
more popular and more usable. Skein [39] and MD6 [40] hash functions (SHA-3 
candidates) provide a tree hashing mode.  

 

Figure 19: Tree- Based Hash Constructions [64] 

3.3 Recent Hash Functions 

Most of the hash functions are not enough safe from attacks. Nowadays, the aim of 
researchers is to find new hash functions probably with totally new designs. Some of 
recent hash functions designs such as Whirlpool, JH Hash, Blake-256, Blake2, SHA-3 
(Keccak), Streebog and Kangaroo Twelve, that are using the new modified design 
architecture. 
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3.3.1 Whirlpool Secure Hash Function 

Whirlpool is a cryptographic hash function that was designed by Vincent Rijmen and 
Paulo Barreto in 2000 and has been recommended by the NESSIE project. It is block 
cipher based secure hash algorithm, where block ciphers have disadvantages such as 
they are slow, but Whirlpool provides security and performance as good as hash 
functions based on non- block ciphers. Whirlpool takes a message of any length less 
than 2256 bits and returns a 512- bit message. This hash function is a Merkle–Damgård 
construction based on an AES like block cipher W [41] Because the output length is 
more than of SHA-1, we have a stronger result.  

The Whirlpool hash function is given as: 

 

H0= initial value 

Hi = E(H i-1, Mi) +  H i-1 + Mi 

Hi = hash code value 

 

 

The dedicated 512-bit block cipher W [K]: M 8×8[GF (28)]   M 8×8 [GF(28)], 
parameterized by the 512-bit cipher key K, and it operates on a state of 4*16 bytes of 
Rijandeal. It becomes slow in speed, due to more numbers of rounds.  

Whirlpool has good performance in terms of execution speed and can work with lesser 
memory requirements, because it does not require excessive storage space. It can be 
efficiently implemented in constrained environments like smart cards. Furthermore, it 
does not use expensive instructions for the building of the processor. The mathematical 
simplicity of the primitive resulting doing analysis easier. Finally, it has a very long hash 
length that provides protection against birthday attacks and offers a larger internal state 
of entropy containment, as needed for pseudo-random number generators [42]. 

3.3.2 JH Hash Function 

JH Hash function was designed by Hongjun Wu to be submitted to NIST hash 
competition, in 2008. There are four JH hash algorithms, JH-224, JH-256, JH-384, JH-
512, constructed from the same compression function. It processes message blocks of 
512 bits and generates hash of 224,256,384,512 bits.  This hash function is a Merkle–
Damgård construction also, based on a generalized AES design methodology.  
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Figure 20: the JH compression function structure [43] 

 

In each iteration the compression function f is used to update the chaining value of 1024 
bits as follows: Hi = f (Hi-1, Mi ), where Hi-1  is the previous value, Mi  is the current 
message block. The compression function f is given as: 

 f (Hi-1 , Mi ) = E (Hi-1 + Mi  ΙΙ 0512 ) + 0512  ΙΙ 

 Mi where E is a permutation of 1024 bits, and 0512 means the string of 512 ‘0’ bits.  

For c≤ n/2, JH Hash Function using an ideal n bit permutation and producing c- bit 
outputs by truncation is collision resistant up to O (2 C/2). This bound implies that JH 
function provides the optimal collision resistance in the random permutation model.  JH 
Hash functions are very efficient in S/W. With bit slice implementation using SSE2, the 
speed of JH is about 16.8 cycles/byte on Intel Core2 Duo microprocessor, running 64-
bit Operating System, with Intel C++ compiler [44] 

The simple JH compression function structure reduces the cost of security evaluation 
with respect to differential cryptanalysis. Because of enough confusion and diffusion 
after message modification, it is secure against differential attacks. We notice that it is 
resistant to second pre-image attack because we use 1024 bit hash value for JH- 512 
while the reversible property of compression function is being taken into consideration. 

3.3.3 BLAKE-256 

Blake-256 hash function was developed by Jean- Philippe Aumasson, Luca Henzen, 
Willi Meier and Raphadel Phan in 2008 to be submitted as a competitor in NIST SHA-3 
competition [45] The core BLAKE-256 compression function takes, as an input, 512 
bits/16 words/64 bytes of message data, 256 bits/8 words/32 bytes of chaining value, 
128 bits/4 words/ 16 bytes of salt, and additionally a counter that is 64 bits/2 words/8 
bytes. A series of XORs, rotations and modular additions are used for generating new 
chaining values. Its compression function takes 512 bit input and 128 bit salt to produce 
128 bit output by applying an invertible nonlinear transformation composed of 14 
rounds, and each round uses a non-linear permutation G. It accepts four of 32 bit 
words, two message words and two constant words. It leads the simplicity of algorithm 
and performs fastly on software and hardware. As all of the blake-based algorithms, 
Blake 256 is based on and uses ChaCha stream cipher developed by Dan Bernstein. 
However, Blake 256 provides some additional features, like adding a rearranged copy 
of the input block, XORed with several round constants before each round of the 
ChaCha cipher. It can work for message less than 264 bit [45]. 
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Figure 21: The Gi function of BLAKE-256 [46] 

3.3.4 Keccak  

Kavun and Yalcin reported the lightweight implementations of Keccak- f (200) and 
Keccak- f (400) permutations. They are variants of the SHA-3 hash function and the 
development of Keccak based on the sponge construction. Best known as a hash 
function, it nevertheless can also be used for authentication, (authenticated) encryption 
and pseudo-random number generation. Its structure is the extremely simple sponge 
construction and internally it uses the innovative Keccak-f cryptographic permutation 
[46]. 

 

 

Figure 22: Keccak function [46] 

 

Given an input bit string N, a padding function pad, a permutation function f that 
operates on bit blocks of width b, a rate r and an output length d, we have capacity c = b 
− r and the sponge construction Z = sponge[f,pad,r](N,d), yielding a bit string Z of length 
d, works as follows: [47] 

 

 pad the input N using the pad function, yielding a padded bit string P with a 
length divisible by r (such that n = len(P)/r is integer) 

 break P into n consecutive r-bit pieces P0, ..., Pn−1 

 initialize the state S to a string of b zero bits 

 absorb the input into the state: for each block Pi: 

 extend Pi at the end by a string of c zero bits, yielding one of length b 

 XOR that with S 

 apply the block permutation f to the result, yielding a new state S 

 initialize Z to be the empty string 
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 while the length of Z is less than d: 

 append the first r bits of S to Z 

 if Z is still less than d bits long, apply f to S, yielding a new state S 

 truncate Z to d bits 

In SHA-3, the state S consists of a 5 × 5 array of w-bit words (with w=64), b = 5 × 5 × w 
= 5 × 5 × 64 = 1600 bits total. Keccak is also defined for smaller power-of-2 word sizes 
w down to 1 bit (total state of 25 bits). Small state sizes can be used to test cryptanalytic 
attacks, and intermediate state sizes (from w = 8, 200 bits, to w = 32, 800 bits) can be 
used in practical, lightweight applications [48],[32]. 

3.3.5 Streebog 

Streebog is a family of two hash algorithms, Streebog-256 and Streebog-512, defined in 
the Russian national standard GOST R34.11-2012 Information Technology - 
Cryptographic Information Security - Hash Function. Streebog operates on 512-bit 
blocks of the input, using the Merkle–Damgård construction to handle inputs of arbitrary 
size. The high-level structure of the new hash function resembles the one from GOST R 
34.11-94, however, the compression function was changed significantly.   

The compression function operates in Miyaguchi–Preneel mode and employs a 12-
round AES-like cipher with a 512-bit block and 512-bit key. (It uses an 8×8 matrix of 
bytes rather than AES's 4×4 matrix.) 

Streebog-256 uses a different initial state than Streebog-512, and truncates the output 
hash, but is otherwise identical [49]. 

 

 

Figure 23: Streebog function [50] 

 

Wang, et al, describe a collision attack on the compression function reduced to 9.5 
rounds with 2176 time complexity and 2128 memory complexity [51]. 

Ma, et al, describe a preimage attack that takes 2496 time and 264 memory or 2504 
time and 211 memory to find a single preimage of GOST-512 reduced to 6 rounds. 
They also describe a collision attack with 2181 time complexity and 264 memory 
requirement in the same paper [52]. 
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 Guo, et al, describe a second preimage attack on full Streebog-512 with total time 
complexity equivalent to 2266 compression function evaluations, if the message has 
more than 2259 blocks [50]. 

3.3.6 Kangaroo Twelve 

Kangaroo Twelve is a fast and secure extendable-output function (XOF), the 
generalization of hash functions to arbitrary output lengths. Derived from Keccak, it aims 
at higher speeds than FIPS 202's SHA-3 and SHAKE functions, while retaining their 
flexibility and basis of security. Kangaroo Twelve is sharing many common features with 
SHAKE128, like the sponge construction, the extendable-output function (XOF), and the 
128-bit security strength, but except from that it has major improvements.  

On high-end platforms, it can exploit a high degree of parallelism, whether using 
multiple cores or the single-instruction multiple-data (SIMD) instruction set of modern 
processors. On Intel's® Haswell and Skylake architectures, Kangaroo Twelve tops at 
less than 1.5 cycles/byte for long messages on a single core, and at 0.55 cycles/byte on 
the SkylakeX architecture. On low-end platforms, as well as for short messages, it also 
benefits from about a factor two speed-up compared to the fastest FIPS 202. 

Kangaroo Twelve is a higher-performance reduced-round (from 24 to 12 rounds) 
version of Keccak which claims to have 128 bits of security [53]. 

3.4 Message Authentication Codes (MAC) 

A Message Authentication Code (MAC), is also known as a cryptographic checksum or 
a keyed hash function, and it is widely used in practice. MACs share some properties 
with digital signatures, and also provide message integrity and message authentication. 
In contrast with digital signatures, MACs are symmetric-key schemes and they do not 
provide non-repudiation. One benefit of MACs is that they are faster than digital 
signatures since they are based on either block ciphers or hash functions. 

In cryptography, a message authentication code (MAC), is a short piece of information 
used to authenticate a message in different words, to confirm that the message came 
from the stated sender (its authenticity) and has not been changed [1],[2]. 

MAC defined over (K, M,T) is a pair of algorithms (S, V): 

S(k, m): returns a message authentication code t which belongs to a set T 

V(k, m, t): returns a value true or false depending on the correctness of the received 
authentication code where: 

 M is a set of all possible messages m, 

 K is a set of all possible keys k, 

 T is a set of all possible authentication codes t 

The simplest way to mark the authenticity of the message is to compute its checksum. 
One can attach the result to the transmitted message. The disadvantage of this method 
is the lack of protection against intentional modifications in the message content. The 
intruder can change the message, then calculate a new checksum, and eventually 
replace the original checksum by the new value. An ordinary CRC algorithm allows only 
to detect randomly damaged parts of messages (but not intentional changes made by 
the attacker).  
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We define the message integrity problem using, the A sender and B receiver. Suppose 
B receives a message (which may be encrypted or may be in plaintext) and it is 
believed that this message was sent by A. To authenticate this message, B needs to 
verify: 

a. The message indeed originated from A. 

b. The message was not tampered with on its way to B. [5] 

 

 

Figure 24:  MAC Algorithm [5] 

 

Properties of Message Authentication Codes 

1. Cryptographic checksum A MAC generates a cryptographically secure 
authentication tag for a given message. 

2. Symmetric MACs are based on secret symmetric keys. The signing and verifying 
parties must share a secret key. 

3. Arbitrary message size MACs accept messages of arbitrary length. 

4. Fixed output length MACs generate fixed-size authentication tags. 

5. Message integrity MACs provide message integrity: Any manipulations of a 
message during transit will be detected by the receiver. 

6. Message authentication The receiving party is assured of the origin of the 
message. 

7. No nonrepudiation Since MACs are based on symmetric principles, they do not 
provide nonrepudiation [1]. 

 

3.4.1 HMAC 

HMAC is a popular system of checking message integrity. It uses one-way hash 
functions to produce unique mac values. 
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Figure 25:  HMAC [5] 

 

The input parameters ipad and opad are used to modify the secret key. They may have 
various values assigned. It is recommended to choose the values that would make both 
inputs to the hash functions look as different as possible. Using a secure hash function 
guarantees the security of the HMAC algorithm. Nowadays, the HMAC algorithm is 
used in many systems, including some popular Internet protocols (SSL, IPsec, SSH) [1]. 

 

3.5 Digital Signatures 

Digital signatures are one of the most important cryptographic tools and they are widely 
used nowadays. A digital signature is a mathematical scheme for verifying the 
authenticity of digital messages or documents. There must be a number of prerequisites 
satisfied in order a digital signature become valid. The digital signature gives to the 
recipient very strong reason to believe that the message was created by a known 
sender (authentication), and that the message was not altered in transit (integrity).  

Applications for digital signatures range from digital certificates for secure e-commerce 
to legal signing of contracts to secure software updates. Together with key 
establishment over insecure channels, they form the most important instance for public-
key cryptography. 

As with conventional hand-written signatures, only the person who creates a digital 
message must be capable of generating a valid signature. In order to achieve this with 
cryptographic primitives, we have to apply public-key cryptography. The basic idea is 
that the person who signs the message uses a private key, and the receiving party uses 
the matching public key. 

https://en.wikipedia.org/wiki/Data_integrity
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Figure 26:  Basic Digital Signature Protocol 

 

A signed message can unambiguously be traced back to its originator since a valid 
signature can only be computed with the unique signer’s private key. Only the signer 
has the ability to generate a signature on his behalf. Hence, we can prove that the 
signing party has actually generated the message [1], [2],[7]. 

 

 

Figure 27:  Digital Signature 

 

3.5.1 El- Gamal Digital Signature Scheme 

El- Gamal digital signature is the asymmetric approach of authentication mechanism. It 
is based on discrete logarithm and uses β as the universally known random number that 
serves as the generator, u as the universally known prime number that serves as the 
modulus, H() as the universally hash function [2], [54], [55], [56] . 

As with Diffie–Hellman, the global elements of Elgamal are a prime number q and 

a, which is a primitive root of q. User A generates a private/public key pair as follows: 
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1. Generate a random integer XA, such that 1 < XA 6<q - 1. 

2. Compute 𝑌𝐴 = 𝑎
𝑋𝐴𝑚𝑜𝑑 𝑞 

3. A’s private key is XA and A’s public key is {q, a, YA}. 

Any user B that has access to A’s public key can encrypt a message as follows: 

1. Represent the message as an integer M in the range 0 ≤ M ≤ q - 1.  

Longer messages are sent as a sequence of blocks, with each block being an integer 

less than q. 

2. Choose a random integer k such that 1 ≤ k ≤ q - 1. 

3. Compute a one-time key 𝐾 = 𝑌𝐴
𝑘𝑚𝑜𝑑 𝑞 

4. Encrypt M as the pair of integers (C1, C2) where 

 𝐶1 = 𝑎
𝑘𝑚𝑜𝑑𝑞    𝐶2= 𝐾𝑀 𝑚𝑜𝑑𝑞 

User A recovers the plaintext as follows: 

1. Recover the key by computing 𝐶1
𝑋𝐴𝑚𝑜𝑑 𝑞 

2. Compute 𝑀 = (𝐶2𝐾
−1) 𝑚𝑜𝑑 𝑞 

These steps are summarized in Figure 28. Alice generates a public/private key pair; 
Bob encrypts using Alice’s public key; and Alice decrypts using her private key. 

Let us demonstrate why the Elgamal scheme works. First, we show how K is 

recovered by the decryption process: 

𝐾 = 𝑌𝐴
𝑘𝑚𝑜𝑑 𝑞                                    𝐾 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 

𝐾 = (𝑎𝑋𝐴𝑚𝑜𝑑 𝑞) 𝑚𝑜𝑑 𝑞                                       𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑑𝑒 𝑢𝑠𝑖𝑛𝑔 𝑌𝐴 =  𝑎
𝑋𝐴𝑚𝑜𝑑 𝑞  

𝐾 =  𝑎𝑘𝑋𝐴𝑚𝑜𝑑 𝑞                                                  𝑏𝑦 𝑡ℎ𝑒 𝑟𝑢𝑙𝑒𝑠 𝑜𝑓 𝑚𝑜𝑑𝑢𝑙𝑎𝑟 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐  

𝐾 = 𝐶1
𝑋𝐴𝑚𝑜𝑑 𝑞                                                        𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑑𝑒 𝑢𝑠𝑖𝑛𝑔 𝐶1 = 𝑎

𝑘𝑚𝑜𝑑𝑞      

Next, using K, we recover the plaintext as 

𝐶2 = 𝐾𝑀 𝑚𝑜𝑑 𝑞 

(𝐶2𝐾
−1)𝑚𝑜𝑑 𝑞 = 𝐾𝑀𝐾−1𝑚𝑜𝑑 𝑞 =  𝑀 𝑚𝑜𝑑 𝑞 = 𝑀 

 

We can restate the Elgamal process as follows, using Figure 28. 

1. Bob generates a random integer k. 

2. Bob generates a one-time key K using Alice’s public-key components YA, q and k. 

3. Bob encrypts k using the public-key component a, yielding C1. C1 provides 
sufficient information for Alice to recover K. 

4. Bob encrypts the plaintext message M using K. 

5. Alice recovers K from C1 using her private key. 

6. Alice uses K-1 to recover the plaintext message from C2. 
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Figure 28:  El- Gamal Cryptosystem [2] 

 

Thus, K functions as a one-time key, used to encrypt and decrypt the message. 

For example, let us start with the prime field GF (19); that is, q = 19. It has 

Primitive roots {2, 3, 10, 13, 14, 15} We choose a = 10. 

Alice generates a key pair as follows: 

1. Alice chooses XA = 5. 

2. Then 𝑌𝐴 = 𝑎
𝑋𝐴𝑚𝑜𝑑 𝑞 = 𝑎5𝑚𝑜𝑑 19 = 3 

3. Alice’s private key is 5 and Alice’s public key is {q, a, YA} = {19, 10, 3}. 

Suppose Bob wants to send the message with the value M = 17. Then: 

1. Bob chooses k = 6. 
2. Then K = (YA)k mod q = 36 mod 19 = 729 mod 19 = 7. 
3.  So C1 = ak mod q = a6 mod 19 = 11 
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C2 = KM mod q = 7 * 17 mod 19 = 119 mod 19 = 5 

4. Bob sends the ciphertext (11, 5). 

For decryption: 

1. Alice calculates K = (C1) XA mod q = 115 mod 19 = 161051 mod 19 = 7. 

2. Then K-1 in GF (19) is 7-1 mod 19 = 11. 

3. Finally, M = (C2
K-1) mod q = 5 * 11 mod 19 = 55 mod 19 = 17. 

 

 

Figure 29:  El- Gamal Digital Signature Scheme [2] 

3.5.2 RSA Digital Signature Algorithm 

This technique uses modulo arithmetic to sign a message digitally. Let B (sender) sends 
the message to A (receiver). This technique considers the public key of B and hash 
function H() is universally known [55]. 

 

 Firstly, B performs the following: 

i. Selects two prime numbers, U and V 

ii. Computes NB = U. V 

iii. Selects PB such that PB has no division (factors) in common with [(U-1) 
(V-1)] 

iv. Calculates the secret key SB such that  SB PB = 1 mod [(U-1) (V-1) ] 

The public key set of B contains N and PB, using which B creates the signature 
of the message. 

v. B hashes the msg  [h= H(msg) h is the hash of the message msg] 

vi. B creates the digital signature  [sign = h SB mod NB where sign is the 
signature] 

Once the signature is created, B sends (msg, sign) to A. 

vii. A uses the H() to obtain the h’ (hash’) [h' = H(msg')] 
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viii. A decrypts the signature to retrieve its hash (h) [h = signPB  mod Nb] 

ix. Alice finally checks if :  h = h' 

x. If the match is found in the hash value retrived and the hash value 
calculated, then A confirms the authenticity and integrity of the 
message along with the signature, else it is rejected. 

3.5.3 Digital Signature Algorithm (DSA) 

Digital signature algorithm is generated using various parameters like the private key x, 
per message secret key number k, data to be signed, and the hash function. Similarly it 
is verified using various parameters like the public key y which is mathematically 
calculated from x, the data to be verified and the same hash function used during 
signature generation [57]. 

The parameters used are as follows: 

 p – a prime modulus 

 q – a prime divisor of (p-1) 

 g – a generator of the sub group of order q mod p. 

 x - the private key is an randomly selected integer within the range [1, q-1]. 

 y – the public-key obtained through y = gx mod p. 

  k – the per  message  secret key  (unique to each message) obtained randomly 
within the range [1,q-1]. 

Let N be the bit length of q. Let min (N, outlen) denote the minimum of the positive 
integers N and outlen, where outlen is the bit length of the hash function output 
block. The signature of message M contains pair of numbers r and s obtained using: 

 r = (gk mod p) mod q. 

 z = the leftmost min(N, outlen) bits of Hash(M). 

 s = ( k-1 (z + xr)) mod q. 
 

Once the signature (r,s) is generated, A may transmit message  M,  and (r,s)  to B. Let 
M’, r’ and s’ be the transmitted version of M, r and s. 

To verify the signature B will perform the following steps: 

i. B shall check that 0 < r' < q and 0 < s'< q; if any one of the condition is 
violated, the signature is rejected. 

ii. If both the conditions in step-i are satisfied, B computes- w = (s')–1 mod q,  
where (s')–1 is  the multiplicative inverse of s’ mod q 
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z = the leftmost min(N, outlen) bits of Hash(M'). 

u1 = (zw) mod q. 

u2 = ((r')w) mod q. 

v = (((g)u1 (y)u2) mod p) mod q. 

iii. If v = r', then the signature is accepted else rejected. 

 

3.5.4 Elliptic Curve Digital Signature Algorithm 

This is the elliptic curve cryptographic version of Digital Signature Algorithm (ECDSA). 
This algorithm operates based on combination of three algorithms, key generation, 
signature generation and signature verification. 

The key pair of an user (say A) is associated with a specific set of EC domain 
parameters D= (q, FR, a, b, G, n, h), where: E is an elliptic curve defined over Fq; P is a 
point of prime order n in E(Fq); q is a prime; FR is the Field Representation which  is  an  
indication for representation  used for the elements of  Fq; a and b are the two field 
elements in Fq which define the equation of the elliptic curve E over Fq'. 

 two field elements xG and yG in Fq which define a finite point G=(xG, yG) of prime order 
in E(Fq); the cofactor h= #E(Fq)/n [58]. 

 

 

Figure 30:  Elliptic Curve Digital Signature Algorithm [58] 

 

 

3.5.5 Elliptic Curve ElGamal Digital Signature Scheme 

Elliptic Curve Cryptography can be combined with ElGamal Digital signature algorithm 
to generate EC ElGamal Digital Signature Scheme. Entity A selects a random integer kA 
from the interval (1, n-1) as the private key and computes the public key, A =   kA G [59]. 
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i. Select random interger k from the interval (1, n-1). 

ii. Compute R= kG = (xR, yR) where r = xR mod n; if r = 0 go to step i. 

iii. Compute e = h(M),  where h  is the  hash  function  {0,1}*   Fn 

iv. Compute s = k-1 (e + rkA) mod n; if then go to step i. (R,s) is the 
signature of message M. A sends the signature and the message to B 
for verification.  

B performs the following to verify the signature: Verify that s is an integer in 

 (1, n-1) and R = (xR, yR) ε E(Fq) 

i. Compute V1 = sR 

ii. Compute  V2 = h (M)G + rA, where r = xR 

iii. If V1 = V2, then the signature is accepted by B, else declared as 
invalid. 
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4 HASH FUNCTIONS SECURITY ANALYSIS 

4.1 Security properties 

There are three properties a hash function is expected to preserve. These three 
properties are collision resistance, pre-image resistance and 2nd pre- image resistance.  

 

 

Figure 31: Security properties collision resistance, pre-image resistance, 2nd pre-image resistance 
[25], [60], [61] 

 

The input to a secure hash function is called the pre-image and the output is called the 
image. A hash function collision is two different inputs (pre-images) which result in the 
same output. A hash function is collision-resistant if an adversary can’t find any 
collision. A hash function is pre-image resistant if, given an output (image), an 
adversary can’t find any input (pre-image) which results in that output. A hash function 
is second-pre-image resistant if, given one pre-image, an adversary can’t find any other 
pre-image which results in the same image. 

4.1.1 Collision – Resistance (CR) 

Collision resistance is a property of cryptographic hash functions. A hash function H is 
collision resistant if it is difficult to find two inputs that hash to the same output. For 
example, any two inputs a and b such that H(a) = H(b), while a ≠ b. Collision resistance 
does not mean that no collisions exist but simply is hard to find [25].  

 A family of functions {hk : {0, 1}m(k) → {0, 1}l(k)} generated by some algorithm G is a 
family of collision resistant hash functions, if |m(k)| > |l(k)| for any k, i.e., hk compresses 
the input string, and every hk can be computed within polynomial time given k, but for 
any probabilistic polynomial algorithm A, we have 

Pr [k ← G(1n), (x1, x2) ← A(k, 1n) s.t. x1 ≠ x2 but hk(x1) = hk(x2)] < negl(n), 

Where negl (·) denotes some negligible function, and n is the security parameter [60]. 

 

4.1.2 Pre- image Resistance (Pre)  

Given a hash h it should be hard to find any message m such that h = hash (m). This 
concept is related to that of the one-way function. Functions that lack this property are 
vulnerable to pre-image attacks. So hash functions should be computationally non- 
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invertible, that means that when a message is hashed, it should be infeasible to retrieve 
the original message from which the hash value was obtained.  

 

4.1.3 2nd Pre- image Resistance (Sec) 

Given an input m1, it should be hard to find another input, m 2 (not equal to m1) such 
that hash(m1)=hash(m2). This property is sometimes referred to as weak collision 
resistance. Functions that lack this property are vulnerable to second pre-image attacks. 
The best attack against hash should be the brute force attack [61]. 

A graphical representation of the above attacks is shown in Figure 29 to help 
understand the concepts better. 

 

Figure 32:  Different Types of Attacks on Hashing Algorithms 

 

4.2 Attacks on Hash Functions  

As per definition attacking a hash function means breaking one of the security 
properties of the hash functions. Attacks may focus on structure of hash function or on 
algorithm of compression function. As we can see in the figure below, from the 
classification of the attacks on Hash functions, hash functions can be classified on 
classifications based on properties and classifications based on attacking methodology.  
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Figure 33: Classification of attacks on Hash Functions [62] 

4.2.1 Tree Based Attack  

Tree based hash functions are able to be made parallel for hash constructions and 
these are pertinent for multi-core platforms in which various processors can 
independently but simultaneously perform on various parts of the message. The first 
who suggested an early tree-based mode of operation, was Damgård [63], and Pal and 
Sarkar [64] advanced it. Equivalently, this way was also used by Rogaway and Bellare 
[61] who they designed non-keyed one-way hash functions along with Naor and Yung 
[65] but it could not be proved stronger than collision-resistant hash functions. 
Micciancio and Bellare [66] in they designed the way randomize- and- combine in which 
first the message is broken into blocks, and after separately randomization they are 
combined by an XOR type of operation. 

This structure can be used for constructing accumulative functions, simultaneous its 
structure is similar to a two-level tree and it may be parallelized because of 
independence of the randomization process of the individual blocks. Different threads or 
processors are in charge for this independence. Extensive limitation of Tree-based 
constructions is their inappropriateness for low-end platforms such as RFID and smart 
cards, because of these iterative functions are more well-known and more working. 
Along with repetitive structure, Skein [39] and MD6 [40]hash functions also follow a tree 
hashing mode. 
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Figure 34: Tree- Based Hash Construction [64] 

 

4.2.2 The most common attack - Brute Force Attack 

Brute force attacks work on all hash functions independent of their structure and any 
other working details. They are similar to exhaustive search or brute- force key recovery 
attacks on the encryption schemes to extract the secret key of the encryption scheme. 
The security of any hash function lies in its output bit size. For a hash code of length n, 
the level of effort required to resist different brute force classical attacks on hash 
functions is as follow: 

Pre-image attack: Effort required for brute force attack = 2n. In this attack, for a given 
n-bit digest h of the hash function H( ), the attacker evaluates H( ) with every possible 
input message M until the attacker obtains the value h. 

2nd Pre-image attack: Effort required for brute force attack = 2n. In this attack, for a 
given message M and the hash function H( ), the attacker tries H( ) with every possible 
input message M' ≠ M until the attacker obtains the value H(M). 

Collision attack: Effort required for brute force attack= 2n/2. In this attack, for a given 
hash function H, the attacker tries to find two messages M and M' such that M ≠ M' and 
H(M) = H(M'). On average the opponent would have to try 2n/ 2 (= 2n-1) messages to 
find one that matches the hash code of the intercepted message. However a chosen 
plain text attack (based on Birthday Paradox) is possible and in that case the effort 
required for collision in a Hash function is 2n/2 in place of 2n-1. It is also referred as 
Birthday Attack [22]. 

 Multi- Preimage Attack  

We briefly study about the multi- Preimage attack on Tree- based Hash functions. We 
can define the following attack for a Hash Function H : {0,1} *  {0,1}n . 

Given a Random y є {0,1}n, find a subset C = { X1,…,Xr} of size r (≥1) such that  

H(X1)= …=H(Xr)= y. 

The complexity for multi-preimage attack for a random function is Ω(r2n) where for a 
Tree based hash function there is a r- way preimage attack which complexity is O (2n/2). 
We have to mention that is very similar with the Multicollision attack and for what we are 
looking for is output value as given image y, and not finding the last collision. The last 
step’s complexity is O(2n) which transcend to the complexity r2n2n/2 of Multicollision 
attack.  
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4.2.3 Merkle Damgård Construction 

 Joux’s Multicollision Attack  

A. Joux [71] found an algorithm to construct a 2r-multicollision set on a classical iterated 
hash function, having time complexity O(r 2n/2), which is a considerable improvement 
over the birthday attack. There is a 2r-way collision attack for the classical iterated hash 
function based on a compression function, f : {0, 1}n+n’  {0, 1}n, where the attack has 
complexity O(r 2n/2). This complexity is much less than the complexity for the 
generalized birthday attack. 

This is the basic idea of Joux’s attack. Consider the set of n-tuples {0, 1}n. We use the 
notation h   h '  (a labeled arc) to mean f (h ,m ) = h', where |h| = |h’| = n and |m| = n'. 
The strategy of Joux’s attack is to first find r successive collisions by performing r 
successive birthday attacks, as follows: 

 

𝑧0
𝑦1
2

→   𝑧1 𝑎𝑛𝑑  𝑧0
𝑦1
2

→   𝑧1 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑧1  𝑤ℎ𝑒𝑟𝑒 𝑦1
1 ≠ 𝑦1

2 

𝑧0
𝑦2
2

→   𝑧1 𝑎𝑛𝑑  𝑧1
𝑦2
2

→   𝑧2 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑧2  𝑤ℎ𝑒𝑟𝑒 𝑦2
1 ≠ 𝑦2

2 
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𝑧𝑟−1
𝑟
→  𝑧𝑟 𝑎𝑛𝑑  𝑧𝑟−1

𝑦𝑟
2

→   𝑧𝑟 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑧𝑟  𝑤ℎ𝑒𝑟𝑒 𝑦𝑟
1 ≠ 𝑦𝑟

2 

𝑡ℎ𝑒𝑛  𝑡ℎ𝑒 𝑠𝑒𝑡 
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1, 𝑦1
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1, 𝑦2
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2}   

 𝑖𝑠 𝑎 2𝑟 −𝑚𝑢𝑙𝑡𝑖𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 

 

 

Figure 35: Joux’s Multicollision Attack [67] 

 

 Second Preimage Attack on Merkle Damgård Construction 

Kelsey and Kohno in 2006, published a generic second preimage attack for long 
messages against the Merkle Damgård Scheme. The attack complexity is 2 n-k 

compression function calls if the original given message is 2k – block long.  

We will describe the diamond structure. A diamond structure of size l is a multicollision 
with the shape of a tree of depth l with 2l leaves. The tree nodes are labeled by the n-bit 
chaining values, and the edges are labeled by the m-bit message blocks. A message 
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block is mapped between two evolving states of the chaining value by the compression 
function f. Thus, there is a path labeled by the l message blocks from any one of the 2 l 
starting leaf nodes that leads to the same final chaining value h at the root of the tree 
[68]. 

 

 

Figure 36: 2nd pre-image attack on Merkle –Damgård [68] 

 

For the new second preimage attack, let Μ be a target message of length 2k blocks. 
The main idea of the attack is that connecting the target message to a precomputed 
collision tree of size l can be done with 2 n-l computations. In addition, connecting the 
root of the tree to one of the 2k chaining values encountered during the computation of 
Η f (M) takes only 2 n-k compression function calls. Since a diamond structure can be 
computed in time much less than 2 n, we successfully launch a second preimage 
attack. The attack works in four steps. The messages M’ and Μ are of equal length and 
hash to the same value before strengthening, so they produce the same hash value 
with the added Merkle-Damgård strengthening. The first step allows for precomputation 
and its time and space complexity is about 2(n+l)/2+2. The second step of the attack is 
carried out online with 2 n-k work, and the third step takes 2 n-l works. The total time 
complexity of the attack is then 2(n+l)/2+2 precomputation and 2 n-k + 2 n-l online 
computations and their sum is minimal when l= (n-4)/3 for a total of about 5* 2 2n/3 +2 
n-k computations [31]. 
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Figure 37: Representation of New Attack on Standard Merkle- Damgård [31] 

4.2.4 HAIFA Construction 

  State- recovery attack HMAC with HAIFA 

Firstly, we will describe the first internal state- recovery attack HMAC with HAIFA 
construction. The attack has a complexity of O ̃(2l-s) using messages of length 2s, but 
this only applies with s ≤ l/5, and the lowest complexity we can have is 24l/5 [69]. 

The detailed attack is as follows: 

Fix a message C of length 2s. Query the oracle with 2u messages Mi = [i] ║ C.  

Build an online diamond filter for the set of unknown states X, obtained after Mi. 

Starting from 2t arbitrary starting points, iterate the compression function with the fixed 
message C. 

Test each image point x’, against each of the unknown states of X. If a match is found, 
then with high probability the state reached after the corresponding Mi is x’. 

 

Figure 38: State- recovery attack HMAC with HAIFA [70] 

Complexity analysis 

 In Step 3, we match the set X of size 2u and a set of size 2t. We compare 2t+u pairs of 
points, and each pair collides with probability 2s−l. The attack is successful with high 
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probability if t + u ≥ l− s. We now assume that t = l − s − u, and evaluate the complexity 
of each step of the attack: 

Step 1: 2s+u/2+l/2    

Step 2: 2s+t = 2l−u  

Step 3: 2t+u· u = 2 l−s· u 

The lowest complexity is reached when all the steps of the attack have the same 
complexity, with s = l/5. Generally, we assume that s ≤ l/5 and we set u = s.  

This give an attack with complexity O (2l−s) since s + u/2 + l/2 = 3s/2 + l/2 ≤ 4l/5 ≤ l − s. 

The Second attack that we will describe is short message attack for HMAC with HAIFA. 
The attack has a complexity of O ̃(2l-2s) using messages of length 2s, but this only 
applies with s ≤ l/10, and the lowest complexity we can have is 24l/5 . 

 

 Short message attack for HMAC with HAIFA 

1. Query the oracle with 2u messages Mi = [i] ║ [0]2s, and locate 2c1 collisions. We fix an 
arbitrary suffix C of length 2s, and use Mi = [i] ║ C. 

2. For each collision (i, j), use a binary search to find the distance μ ij from the starting 
point to the collision, and denote the state reach after Mi (or Mj) by yij . Denote the set of 
all yij (containing about 2c1 states) by Y. Build an online diamond filter for all the states in 
Y. 

3. Run a fixed-offset collision search by iterating the compression function with C from 
2t starting points. 

4. We match each offline collision x, only with online collisions that occur at the same 
offset as x. Thus, for each x, we test only the end point of its chain (at offset 2s) with the 
corresponding states in Y. Note that each x is matched with 2c1· 2−s states in Y on 
average. 

 

Figure 39: Short message attack for HMAC with HAIFA [70] 

4.2.5 Sponge Construction 

 Slide attacks on “extended” sponge constructions 

Assume that H is an iterative hash function with an internal state of c words of p-bit 
each and a final output size of n bits. Let M = M1||M2|| · · · ||Ml be the m×p-bit blocks of 
the message to hash with Ml ≠ 0m×p (the message is padded before split into blocks). 
Let Mi be the message block hashed at each round i and Xi the internal state after 
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proceeding Mi, with X0 = IV . We then have Xi = F(S(Xi−1, Mi)), where F is the round 
function and S defines how the message is incorporated in the internal state. Once all 
the l message blocks have been processed, r blank rounds are applied Xi = F(Xi−1) and 
A := Xl+r is the final internal state. Finally, we derivate n output bits by using the final 
output function T (Xl+r). Such a hash function can be written as  

𝐻(𝑀) =  𝑋0
𝐹(𝑆(𝑋0,𝑀1)) 

→         ⋯ 
𝐹(𝑆(𝑋𝑙−1,𝑀𝑙))

→          𝑋𝑙
𝐹((𝑋𝑙 )) 

→      ⋯ 
𝐹((𝑋𝑙+𝑟−1 )) 

→          𝑋𝑙+𝑟
𝑇(𝐴) 
→   𝑇(𝐴),  

 

where TA represents the hash output. In the original model, S introduces the message 
blocks by XORing them to particular positions of the internal state. However, in this 
situation, we can also consider a function S that replaces some bits of the internal state 
by the message bits. In addition, in the original model, the final output function T 
continues to apply some blank rounds and extract some bits from the internal state at 
the end of each application, until n bits have been received. In this situation we consider 
the case where the output bits come from a direct truncation of the final internal state A, 
and we call it truncated sponge. There first issue, related to the general design of 
sponge functions is invertibility. This means that we can run the function F into both 
directions. The second issue is self-similarity, where all the blank rounds behave 
identically, and even a normal round can behave as a blank round if we have Xi−1 = 
S(Xi−1 , Mi ). In the case of a XOR sponge we need Mi = 0 and in the case of an 
overwrite sponge we require that Mi is equal to the overwritten part of the internal state. 
We will exploit self-similarity for our slide attacks. The idea is that if one message M1 
=M1|| . . . ||Ml is the prefix of another message M2 = M1|| . . . ||Ml ||Ml+1, the extended 
state after processing the first l blocks is the same. Now, if Xl+1 = S(Xl, Ml+1), 
processing the next message block Ml+1 for the longer message is the same as the first 
blank round when hashing the shorter message – the extended states remain identical. 
We call these two messages a slid pair: the two final internal states are just one 
permutation away B := Xjl+r+1 = F(X) (l+r). The slide attack is shown in Figure below: 

 

Figure 40: A slide attack on Hash Functions  

Once we were able to generate a slid pair, we need to detect it. This fully depends on 
the output function T. When T is defined as in the original sponge framework, it is very 
easy to detect a slid pair: most of the output bits will be equal, just shifted by one round. 
If T is a truncation, we need to do a case by case analysis depending on the strength of 
the round function F and the number of bits thrown away. Yet finding and detecting a 
slid pair already allows us to differentiate the hash function from a random oracle. A 
step forward from this is by attacking a MAC with prefix key, i.e. MAC (K, M). Note that 
such a construction makes sense as using HMAC based on a sponge hash function will 
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turn out to be very inefficient. This is due to the fact that hashing very short messages is 
quite slow because of the blank rounds. Therefore, Bertoni et al. [28],[71] proposed to 
use prefix-MAC instead of HMAC. 

Consider a secret key K. For simplicity and without loss of generality, we assume some 
K to be a uniformly distributed (k × m × p)-bit random value (i.e. k message words long), 

for some public integer constant k. We will write K = (K1, …, Km) ∈ ({0, 1}m×p)k. The 
adversary is allowed to choose message challenges Ci, while the oracle replies MAC(K, 
Ci) = H(K||Ci). Ideally, finding K in such a scenario would require the adversary to 

exhaustively search over the set of all possible K ∈ {0, 1} k×m×p, thus taking 2k×m×p−1 units 
of time on average. Forging a valid MAC depends on the size of the hash output and 
the size of the key, with a generic attack it requires min{2 k×m×p−1, 2n} units of time. A pair 
of challenges (Ci, Cj ), with Ci = Ci

1 I ||Ci
2  || · · · ||Ci

l and Cj = Ci ||Cj
l is called a slid pair for 

K if their final internal state are slid by one application of the blank round function as: 

Xj
k+l+r+1 = F(xi

k+l+r) 

Provided that one can generate slid pairs and detect them, one can also try to retrieve 
the internal state Xi k+l+r  thanks to this information. Again, a case by case analysis is 
required here. When Xi k+l+r  is known, one can invert all the blank rounds and get Xi

k+l . 
Note that with this information, an attacker can directly forge valid MACs for any 
message that contains M as prefix (exactly like the extension attacks against MD-based 
hash functions). If the round function with the message is also invertible, we can 
continue to invert all the challenge rounds and get Xi

k. This will allow us to recover some 
non trivial information on the secret key K. 

A general outline of the attack is as follows: 

1. Find and detect slid pairs of messages 
2. Recover the internal state 
3. Uncover some part of the secret key or forge valid MACs 

The padding is very important. For the XOR sponge functions, an appropriate padding 
can avoid slide attacks. Indeed, in that case, we require Ml= 0m×p to get a slid pair. This 
gives an explanation why the condition Ml ≠ 0m×p is needed for the indifferentiability 
proofs of XOR sponge functions. However, for the truncated sponge function, a padding 
is ineffective to avoid slide attacks. 

4.2.6 Wide –Pipe Construction 

 State recovery 

We present an internal-state-recovery attack that is applicable to wide-pipe hash 
functions.  

We observe that if walk A and walk B follow the structure in Figure 38, then for any 
query in the cycle of walk A, denoted as qA, the inner hash value H Kin(qA) is necessarily 
equal to some query in  the  cycle  of  walk  B,  denoted  as qB.  The  goal  is  therefore  
to  find  this  query  among  all  qB, all the members of walk B that belong to the cycle. 
That means that we want to coordinate the two cycles from walk A and walk B, which 
we already know that they have the same length.  
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Figure 41: the cycle structure built with access to oracles f Kout◦ fKin and fKin ◦ fKout. 

 

Mainly, even if we know that walk A and walk B have the same length and they are 
actually doing the same computations, it seems difficult to synchronize the two cycles 
because we do not know where the tail in walk A and in walk B is entering the cycle. 
However, in the special case where the collision between walk A and walk B happens in 
the tail (and not in the cycle), then we know that the tails are entering the cycle at the 

same position n that case, the cycles are directly synchronized and the attacker 
knows all the successive hash output values for every computation in the cycle. [72] 

 

Figure 42: Two walks A and B colliding and sharing a cycle. The left example shows 
unsynchronized cycles (the collision happens in the cycle, thus ZA≠ZB), the right shows 

synchronized cycles (the collision happens before the cycle, in the tails, thus ZA=ZB). 

The first and second phases of the attack will be devoted to building a walk A and 
walk B with a rather long tail, such that during the third phase there is a good chance 
to get a collision between an element of the tail of walk A and an element of the tail 
of walk B. In order to recover an internal state, he will focus on one randomly chosen 
value belonging to the cycle, denoted qA, and its next hash output qB, with 
qB=H(Kin,qA). Then he will try to guess the internal hash value X=h(h(IV,Kin),qA||pad1) 
that led to qB, i.e.g (X) =qB. We assume that g(·) is easy to invert (given an output u, 
it is easy to find all preimages leading to u) and that it is balanced (given an output 
value, there exists 2l−n corresponding input values through g). Inverting g provides 
2l−n candidates Xi such that g(Xi) =qB. For each of these candidates, we will apply a 
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filter to remove the bad guesses. The filter is based on an offline extension of the 
computation of HKin [72].  

4.3 Vulnerability analysis of recent hash functions  

Generally is preferable to be impossible to break security properties. A hash function is 
called broken when there exists a known explicit attack that is faster than the general 
attack for a security property. It must be noted that even unbroken hash functions may 
be insecure in the real-world. The best known general attack to break Pre, aPre, ePre, 
Sec, aSec and eSec is a brute force search, where hashes f(M′) are computed for 
randomly chosen messages M′ until a message M′ is found where f(M′) is the target 
hash value (and M′ ̸= M for Sec, aSec, eSec). For a hash function (family) with an 
output hash size of N bits, this attack succeeds after approximately 2N evaluations of 
the hash function. Already for N ≥ 100 this attack is clearly infeasible in the real world 
for the present day and near future. 

4.3.1 Comparative analysis between (MD5, SHA-1, SHA-2) 

 

Attacks on MD5 

In 1993, B. Den Boer and A. Bosselaers found a kind of Pseudo-Collision with 
complexity 216 for MD5 which consists of the same message with two different sets of 
initial values [73] 

In 1996, H. Dobbertin presented a free start collision with complexity 234 for MD5 during 
the rump session of EUROCRYPT’96 [74].  

In 2005, Wang et.al found collisions with 239 hash operations for MD5 [75]. 

 In 2013, Xie Tao, Fanbaoliu and Dengguo published an attack that breaks MD5 
collision resistance in 218. This attack runs in less than a second on a typical modern 
computer [76].  

 

Attacks on SHA-1 

In 2005, Biham et al published a theoretical attack on a reduced version of SHA-1(58 
out of 80 rounds) which finds collision with a computational effort of 275 operations 
(fewer than 280 operations) [11].  

In 2005, Wang et. al published an improvement on the SHA-1 attack at the CRYPTO 
2005 rump session, lowering the complexity required for finding a collision in SHA-1 to 
269 [12].  

In 2010 Marc Steven presents an identical prefix collision attack against up to 46 rounds 
of SHA-256 attack on SHA-1 with complexities equivalent to approximately 
261(theoretical) [77]. 

 

Attacks on SHA-2 

In 2011, Mario Lamberger and Florian Mendel published the best attack, which is 
Pseudo Collision attack against up to 46 rounds of SHA-256 [78]. 
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Figure 43: Differences in SHA family 

   

It is clear that new hash functions or new methods of employing hash functions are 
necessary. Some popular hash functions, which are widely used are MD5, SHA-1 but 
after finding collisions in them, the designers focus in the creation of new secure and 
faster hash functions. It has been observed that MD5 is fast but proven inadequate, as 
now it no longer remains collision resistance. Security of SHA-1 is also questionable. So 
in this paper new hash algorithms are proposed like Whirlpool, BLAKE-256, JH Hash, 
Keccak, Streebog and Kangaroo Twelve are products of such new generation of hash 
functions. 

Therefore, it can be concluded that a hash and authenticity, must be designed and 
made into a priority. 

 

The MD5, SHA-1, SHA-2 are very popular hash functions. But, after finding collisions in 
popular hash functions as MD-5 and SHA-1, focus got shifted towards designing new 
secure and faster hashes functions. BLAKE- 256, Whirlpool, JH Hash etc. are products 
of such new generation of hash functions. Although they used to follow, more or less, 
the same Merkle-Damgård construction, but each of design has modified this 
construction for better security and improved performance results, for example JH hash 
function has included bit slicing. The designers are also working on modification of 
these new designs for better performance, so that, the attacks which are possible as of 
now, may not perform in coming times and we may get full-proof hash functions.   

 

4.3.2 Comparison with other functions 

 

Table 3: Survey of the best known attacks on secure hash functions 

Nam
e 

Yea
r 

bits cpb Colission attacks 

 

Safe? comp mem    ref    

Sec preimage attacks  

 

Safe? comp mem    ref 

const
ructio
n 

MD2 89 128 638 no 

2⁶⁴ 2⁰ [79] 

yes 

2⁷² 2⁷² [75]  Merkl
e–

Dam
gård  

Snefr
u-2 

90 128 ? no 2¹³ 2⁰ [75] no 2²⁵ 2⁰ [75] Merkl
e–
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[75] Dam
gård  

MD4 90 128 4.0 no 

2² 2⁰ [75] 

yes 

2⁹⁵ 2³⁸ [80] Merkl
e–

Dam
gård  

RIPE
MD 

90 128 ? no 

2¹⁸ 2⁰ [75] 

yes 

   Merkl
e–

Dam
gård  

MD5 92 128 5.1 no 

2²⁴ 2⁰ [81] 

yes 

2¹²³ 2⁴⁸ [82] Merkl
e–

Dam
gård  

HAV
AL-
256-3 
[75] 

92 256 ? no 

2²⁹ 2⁰ [83] 

yes 

2²²⁵ 2⁶⁸ [44] Merkl
e–

Dam
gård  

SHA-
0 

93 160 ? no 

 

2³⁴ 

 

2⁰ 

 

[84] yes 

 

2¹⁸⁹ 

 

2⁸ 

 Merkl
e–

Dam
gård  

GOS
T 

94 256 ? 
may
be 

2¹⁰
⁵ 

2⁰ [71] 
yes 

2¹⁹² 2⁷⁰ [71] AES 
desig

n 

SHA-
1 

95 160 18 no 

 

2⁶³ 

 

2⁰ 

 

[43] 

 

yes 

   Merkl
e–

Dam
gård  

RIPE
MD-
160 
[85] 

96 160 17 
may
be 

 

2⁸⁰ 

 

2⁰ 

 

yes 

    

Merkl
e–

Dam
gård  

Tiger 
[86] 

96 192 6.2 yes 

   

yes 

 

2¹⁸⁹ 

 

2⁸ 

 

[28] 

Merkl
e–

Dam
gård  

Pana
ma 
[87] 

98 512 2.5 no 
2⁶ 2⁰ [79] 

yes 
    

Whirl
pool 
[41] 

00 512 50 yes 
   

yes 
   Merkl

e–
Dam
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gård  

SHA-
256 
[75][8
6]  

01 256 19 yes 

   

yes 

   Merkl
e–

Dam
gård  

Radio
Gatú
n [75] 

06 256 ? yes 

   

yes 

   ideal 
mang
ling 

functi
on 

Skein 
[75] 

08 256 8.7 yes 

   

yes 

   Uniqu
e 

Block 
Iterati

on 

Blake 
3 [75] 

08 256 17 yes 
   

yes 
   Merkl

e tree 

Grøst
l [75] 

08 256 24 yes 
   

yes 
   AES 

desig
n 

Kecc
ak 
(SHA
-3) 
[88] 

08 256 16 yes 

   

yes 

   spon
ge  

JH 
[77] 

08 256 20 yes 

   

yes 

   Merkl
e–

Dam
gård  

BLAK
E2 
[86] 

12 256 5.7 yes 

   

yes 

   HAIF
A 

struct
ure 

Stree
bog
  

12 
256/
512 

12 yes 

   

yes 

   Merkl
e–

Dam
gård  

Kang
arooT
welve
 
  

16 128 <1,5 yes 

   

yes 

   Spon
ge 

const
ructio

n 

  

legend: 

https://electriccoin.co/blog/lessons-from-the-history-of-attacks-on-secure-hash-functions/#id146
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 bit: the number of bits of output  

cpb: cycles per byte [*] 

comp: approximate computation required for the attack 

mem: approximate memory required for the attack 

 

The main result of this investigation is that there is a big gap between the historical 
successes of collision attacks and the almost non-existence successes of pre-image 
attacks. This is evidence that a cryptosystem invulnerable to collision attacks is much 
safer than one that is vulnerable to collision attacks (regardless of whether it is 
vulnerable to pre-image attacks). 

Another interesting pattern in these results is that maybe sometime between 1995 
(SHA-1) and 2000 (Whirlpool), humanity learned how to make collision-resistant hash 
functions, and none of the prominent secure hash functions designed since that era 
have succumbed to collision attacks. Maybe modern hash functions like SHA-256, SHA-
3, and BLAKE2 will never be broken. 

4.3.3 Summary of Vulnerability Analysis per Hash Construction  

 

Table 4:  Vulnerability Analysis per Hash Construction  

           
Attacks/ 

Construction 

Brute 
Force 
Attack 

Pre- 
image  

2nd 
Pre- 
ima
ge  

Collisio
n  

Joux’s 
Multicollisi
on  

Short 
message  

State- 
recove
ry  

Slide 

Merkle- 
Damgård 

    

 

    

HAIFA         

Sponge         

Wide- Pipe          

Tree-Based         

         

 

 

The majority of the popular hash functions are based on the famous Merkle –Damgård 
construction.  As we notice in the table below, several weaknesses are found in this 
construction giving raise to a class of generic attacks that is applicable to any hash 
function based on the Merkle- Damgård construction.  

Brute Force Attack is applicable on all hash functions independent of the structure.  

 

 

 

Table 5: the timeline of attacks and their complexity 
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Table 6: Feature Comparison of Hashing Algorithms  

 

FEATURES 

Hashing Algorithm 

MD-5                            SHA-1                     BLAKE-2 

Security Less secure than 
SHA-1 

More Secure Secure as SHA-3 

Length of 
message digest  

 

128 bits 

 

160 bits 

 

256 bits or 512 bits 

 

No. of attacks 
needed to find 
original message 

 

2123.4 bit operations 
required [75] 

 

2151.1 bit operations 
required [80] 

 

2256 or 2512  

(exhaustive search) 

Attacks to try and 
find two message 
producing the 
same MD 

 

249.8 bit operations 
required [75] 

 

Between 260.3 and 
265.3 bit operations 

 [75] 

 

2256 or 2256 

(exhaustive search) 

 

Speed Faster 60 iterations  Slower 80 iterations Faster than SHA 
and MD 

Successful attacks 
reported 

 

YES 

 

YES 

 

NO 
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5 ORDER PRESERVING MINIMAL PERFECT HASH FUNCTONS 
APROACHES 

Many systems and applications have to ensure in express access to information and 
objects in large network databases. When the fastest possible direct search is craved 
we usually apply hashing. 

5.1.1 PHF (Perfect Hash Functions) 

We use optimal hashing techniques to make operations as efficient as possible, 
providing: 

 One-probe access to a record, given its key 

 No collisions to be resolved 

 Full utilization of hash table space. 

When we referred in Optimal speed for hashing means that each key from the key set  
will map to a unique location in the hash table thus avoiding time wasted in resolving 
collisions. That is achieved with a perfect hash function (PHF), whose operation is 
illustrated at the Figure 41 [89]. 

 

Figure 44: Perfect Hash Functions [89] 

 

5.1.2 MPHF (Minimal Perfect Hash Functions) 

When the hash table has minimal size, i.e. is fully loaded, with ISI=IT|, the hash function 
is called minimal. When both properties keep, we can say that we have a minimal 
perfect hash function (MPHF) as shown at the bottom of Figure. Note that, in reality, key 
set itself is usually neither ordered nor sequential, but can clearly be indexed by the 
integers (1.., n–1 for convenience of illustration [89] 

 

Figure 45: Minimal Perfect Hash Functions [89] 
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MPHF Algorithm  

To facilitate discussion, we give a description of the terminology. 

  U: key universe IUI=N. 

 S: actual key set S c U, ISI=n<<N. 

 T: hashtable IT|=m, m>n. 

 h: hash function h:U  T 

 h is a perfect hash function (PHF):  no collisions, h is one-to-one on S. 

 h is a minimal perfect  hash function (MPHF):no collisions and m=n. 

For a given key set S taken from universe U, we desire a MPHF h that will map any key 
k in S to a unique slot in hash table T. Actually, Mapping and Ordering steps are 
essentials so that the rapid Searching can take place [89]  

The (MOS) scheme is illustrated in figure bellow: 

 

 

Figure 46: Illustration of the Key Concepts [89] 

Mapping step converts the problem of hashing keys into a disparate problem, in a 
different space. Ordering step concretes the way for searching in the new space, in this 
way so the locations can be identified in the hash table. Hashing after that associates 
mapping from the keys into the new space, and adopting the results of Searching to find 
the proper hash table location [89]. 

This basic algorithm  

 Is a probabilistic algorithm 

 Is based on ordering the vertices in a bipartite dependency graph 

 Requires expected linear running time 
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 Handles large sets containing millions of keys and 

 Yields MPHFs of size clog2 n bits per key (0.5 < c < 1). 

We have to mention that this Algorithm requires less than one word of specification 
space for each key in S. However, this is significantly more space than the theoretical 
lower bound, which is roughly 1.5 bits per key [89].  

5.1.3  OPMPHF (Order Preserving Minimal Perfect Hash Functions) 

While dynamic hashing generally does not preserve the original key ordering, we can 
use order-preserving key transformations, which are appropriate for dynamic key sets 
as long as the key distributions are or can be made to be stable [GARG86]. In contrast, 
we made the very useful assumption that our key sets are static, and investigated 
published algorithms for finding minimal perfect hash functions MPHFs [DATT88]).  

Our interest focuses on MPHFs that also have the property of preserving the order of 
the input key set. To specify what is implied, consider Figure below. A function must be 
obtained that maps keys, usually in the form of character strings or concatenations of 
several numeric fields, into hash table locations. In brief, the ith key is mapped into the ith 
hash table location. 

 

Figure 47: Illustration of the Key Concepts 

5.1.4 Order preserving encryption (OPE) 

An order-preserving symmetric encryption (OPE) scheme is a deterministic symmetric 
encryption scheme whose encryption algorithm produces ciphertexts that preserve 
numerical ordering of the plaintexts. OPE was proposed in the database community by 
Agrawal et al. [d] in 2004 as a tool to support efficient range queries on encrypted data. 

We want to have deterministic encryption schemes that preserve numerical ordering on 

their plaintext-space. For A, B ⊆ N with |A|≤|B|, a function f : A → B is order-preserving 
if for all i, j ∈ A, f(i) > f(j) if  i>j.  

We say that deterministic encryption scheme SE = (K, Enc, Dec) with plaintext and 
ciphertext-spaces D, R is order-preserving if Enc(K, ·) is an order-preserving function 
from D to R for all K output by K (with elements of D, R interpreted as numbers, 
encoded as strings). Unless otherwise stated, we assume the plaintext-space is [M] and 

the ciphertext- space is [N] for some N ≥ M ∈ N [90]. 
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5.2 Related OPMPHF’S  

5.2.1 A method for MPHF’s (Pascal reserved words) 

A method is presented for computing machine independent, minimal perfect hash 
functions known as Pascal’s Reserved Words. The space S consists of words and 
divided according to the frequencies of the occurrences of the letters. The associated 
values of each letter have the form below:  

hash value   key length + the associated value 

of the key's first character + the associated value of the key's last character 

For Pascal's 36 reserved words, there is a specific list that defines the associated value 
for each letter and the corresponding hash table with hash values running from 2 
through 37.  

For example consider that the associated value for letter C is 1 and the value for letter E 
is 0 and we want the computation for word “CASE”. So we have the procedure: 

(1 "C") + (0 "E") + (4  length ("CASE")) = 5. 

After the words have been put in order by character occurrence frequencies, the order 
is modified of the list such that any word whose hash value is determined by assigning 
the associated character values already determined by The backtracking search 
procedure then attempts to find a set of associated values which will permit the unique 
referencing of all members of the key word list. It does this by trying the words one at a 
time in order previous words is placed next. Each "try" tests whether the given hash 
value is already assigned and, if not, reserves the value and assigns the letters.  

The search time for computing such functions is related to the number of identifiers to 
be placed, the maximum value which is allowed to be associated with a character, and 
the density of the resultant hash table. If the table density is one (i.e., a minimal perfect 
hash) and the maximum associated value is allowed to be the count of distinct first and 
last letter occurrences (21 for Pascal's reserved words), then the above procedure finds 
a solution for Pascal's reserved words in about seven seconds on a DEC PDP-11/45 
using a straightforward implementation of the algorithm in Pascal. Incorporation of the 
above hash function into a Pascal cross-reference program yielded a 10 percent 
reduction in total run time for processing large programs [91].  

5.2.2 Random Order preserving hash function (ROPF) 

An OPE scheme is secure if oracle access to its encryption function is indistinguishable 
from oracle access to a random order-preserving function (ROPF) on the same domain 
and range. Any secure OPE scheme (including the only currently known block cipher-
based scheme should “closely” imitate the behavior of an ROPF. So, a good idea is to 
focus on analyzing the ideal object, an ROPF. 

We define the “ideal” ROPF scheme as follows: 

Let OPFD,R denote the set of all order-preserving functions from D to R. Define 

ROPFD,R = (Kr, Encr, Decr) as the following encryption scheme: 

• Kr returns a random element g of OPFD,R. 

• Encr takes the key and a plaintext m to return g(m). 
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• Decr takes the key and a ciphertext c to return g−1(c). 

 

The above scheme is not computationally efficient, but our goal is its security analysis 
for the purpose of clarifying security of all POPF-secure constructions. 

 

Most Likely Plaintext: Fix a symmetric encryption scheme SED,R = (K, Enc,Dec). For 

given c ∈ R, if mc ∈ D is a message such that 

 

Pr [ K ← K : Enc(K, m) = c] 

 

achieves a maximum at m = mc, then we call mc a (if unique, “the”) most likely plaintext 
for c. 

 

Most Likely Plaintext Distance: Fix a symmetric encryption scheme SE[M],[N] = (K, Enc, 

Dec). For given c1, c2 ∈ R, if dc1,c2 ∈ {0, 1,...,M − 1} 

Such that Pr [ K $ ← K : (c1, c2) = Enc(K,(m1, m2)) ; m2 − m1 mod M = d ] 

achieves a maximum at d = dc1,c2 , then we call dc1,c2 a (if unique, “the”) most likely 
plaintext distance from c1 to c2 [90]. 

5.2.3 Content Addressable Network (CAN) 

A CAN network is a decentralized Peer-to-Peer infrastructure that can be represented 
as a d-dimensional coordinate space. Let us consider an overlay made of n peers.  
Each peer is responsible for the zone it holds in the network (a set of intervals in this 
space). All dimensions have a minimum and a maximum CAN-based value Cmin and 
Cmax.  

 For instance, Figure 38 presents a two-dimensional CAN overlay where each peer 
manages a zone bounded by an interval on each dimension. Each peer’s interval is 
constant and can only be modified during join or leave node operations. 

Each peer can only communicate with its neighbors, thus routing from neighbor to 
neighbor has to be done in order to reach remote zones in the network. The CAN 
topology is a torus which means, in Figure 38, that peers p1 and p3 are neighbors on 
the horizontal dimension [92]. 
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Figure 48: example of a two-dimensional unicode CAN storing items [92] 

 

 

Figure 49: standard hash function on dimension 0 [92] 

 

Minimum and maximum unicode values Umin and Umax are set to determine the unicode 
range that can be managed within the overlay: in Figure 45, Umin is equal to A and Umax 
is equal to Z. A unicode value is associated with each bound of a peer and a peer is 
responsible for storing the items whose unicode value falls between these bounds. For 
example, in Figure 45, p1 is responsible for data between [A; G[ (coordinates included 
in [0; 0:25[) on the horizontal dimension, and [A; M[ (coordinates included in [0; 0:5[) on 
the vertical one. 
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The mapping relation between overlay-based coordinates and unicode-based values 
can be seen as a form of hash function. Indeed, to each unicode value corresponds a 
coordinate between Omin and Omax, obtained by applying a given hash function on the 
unicode value. This hash function provides coordinates that determine where a data 
item should be stored. The default hash function for the CAN of Figure 45 is shown in 
Figure 46. The graph describes which CAN coordinate is associated with which unicode 
value, hence each peer is associated with a segment of the function [p2’s segment is 
highlighted in Figure 46]. For instance, ‘G’ corresponds to coordinate 0.25 on the hash 
function graph, which means this value is managed by p2 on dimension 0 because its 
interval is [0.25; 0.5]  

When a peer receives a new data item to insert or a query to execute, it has to convert 
the unicode-encoded values into coordinates to check whether it is responsible for this 
item/query or not. For example, the hashed value of string ProductType1 in the context 
of an overlay storing worldwide data (wide unicode range, up to code point value 220, 
as depicted in Figure 47 would be equal to coordinate 0.00004673 (i.e. at the far-left in 
the identifier space). By default, strings made of Latin characters have a low hashed 
value, whereas strings made of any East-Asian characters have high values (close to 
Omax) because such characters are located towards the end of the unicode table. If the 
hashed value does not match the peer’s coordinates, it means the peer is not 
responsible for the corresponding item. In this case, the peer forwards the item/query to 
a neighbor managing an interval closer to the requested one. 

The order-preserving storage technique presented above suffers from a major 
drawback regarding data distribution. Indeed, having a system covering the whole 
Unicode range means potential overloaded areas may appear, depending on data 
distribution. Figure 40 describes a system where only triples made of Latin characters 
are stored, which means only a small area of the CAN is targeted when inserting or 
querying data. In consequence, peer p1 becomes overloaded, while the rest of the 
network stores nothing as it is dedicated to other Unicode characters. Based on this 
observation, our contribution aims at dynamically adapting the size of skewed Unicode 
areas in a CAN, by changing hash functions to determine where data should be stored. 
We will present hereafter our notion of variable hash function and how it helps balance 
the load of a storage system [92]. 

 

Figure 50: Default hash function inefficient to disseminate data items (represented as black dots 
at the top-left corner of the CAN) [92]. 
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5.2.4 Acyclic Graphs  

In this technique, it is constructed a bipartite graph G, enough large so that no cycles 
are present. A bipartite graph is a graph whose vertices can be divided in two disjoint 
and independent sets U,V such that every edge connects a vertex in U to one in V. 
Vertex sets U and V are usually called the parts of the graph. This method is based on 
the use of a large ratio (2r/n) which leads to the probability of having a cycle approach 
to zero.  

 

 

Figure 51: A Bipatrite Graph  

We assume that a bipartite graph having 2r vertices on each side and having n random 
edges. Let Pr (2i) be the probability of having a cycle of length 2i formed in a particular 

vertex set of 2i vertices, with i vertices being on each side. There are 
i!(i−1)!

2
 

ways to form distinct cycles out of these 2ivertices and (𝑛
2𝑖
)(2𝑖)! Ways to select 2i edges 

to form such a cycle. The remaining 𝑛 − 2𝑖 edges can go into G  in(𝑟2)n-2i different 
ways.  

Thus in total there are 𝑖!  
(𝑖−1)!

2
(𝑛
2𝑖
)(2𝑖)! (𝑟2)  n-2i ways to form the 2i edge in the vertex 

set. Given a total of (r2)n possibilities, 

(
(𝑖 − 1)!

2
(
𝑛

2𝑖
) (2𝑖)! (𝑟2)  n −

2i

𝑟2𝑛
) 

Let Zij be an indicator random variable.  Zij = 1 if there is a 2i edge cycle in the jth  

vertex set of 2i vertices, Zij = 0 otherwise.  Clearly, there are (𝑟
𝑖
)²such sets in G 

Each vertex set has the same probability of having 2i edge cycles. 

Let Xi be a random variable counting the number of 2i edge cycles in G.  

We have 𝑋𝑖 = ∑ 𝑍𝑖𝑗
(𝑟𝑖)²

𝑗=1
= (𝑟

𝑖
)
2
(2𝑖) 

Define 𝑌𝑐 = ∑ 𝑟  𝑖=1 = 𝑋𝑖  as another random variable counting the number of cycles in 
G of length from 2 to 2r. 

 

𝐸(𝑌𝑐) =  ∑𝐸(𝑋𝑖)

𝑟

𝑖=1
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𝑟
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           ≤  ∑
1

2
  (
𝑛
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∞

𝑖=1

 

        =
1

2
 
(𝑛𝑟)

2

(1−(𝑛𝑟)
2
)
 

 

  then 𝐸(𝑌𝑐) ≤  
1

((𝑟𝑛)
2
−1)

 

when 𝑟 = 𝑛 𝑙𝑜𝑔𝑛, 𝐸(𝑌𝐶) → 0 𝑎𝑠 𝑛 → ∞ 

 

If there are no cycles, we have sufficient freedom during the Searching phase to select 
g values that will preserve any a priori key order. Because G is acyclic, we obtain an 
ordering of non-zero degree vertices v to yield levels K(v) following certain constraints 
which only contain one edge (one key). This is achieved through an edge traversal 
(e.g., depth-first or breadth-first) of all components in G, In figure 41, there is an acyclic 
bipartite graph, ordering obtained by depth-first traversal of first the left connected 
component and then the right might give the vertex sequence (VS) ) : [v1, v5 , v0 , v2 , 
v6 , v3 , v1]. The corresponding levels of edges are given in the edge sequence: [{}, 
{e1}, {e0 }, {e3}, {e2 }, {}, {e4 }]. In this example, each level has at most one edge, which 
is only possible if G is acyclic [93]. 
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Figure 52: A Cycle Free Bipatrite Graph [93] 

During the Searching phase, a single pass through the ordering can determine g values 
for all keys in a manner that preserves the original key ordering.  This is possible since 
with only one edge being handled at each level, there are no interdependencies that 
would restrict the g value assignments [93]. 

5.2.5 Two Level Hashing 

The second approach is to use two level hashing. We have the MPHF in the first level 
and an array of pointers in the second level. A hash value from the MPHF addresses 
the second level where the real locations of records are kept. The records are arranged 
in the desired order. This method uses at the first level 2r, and at the second, n 
computer words for the OPMPHF. Figure 42 illustrates the two level hashing schemes 
[93]. 

 

Figure 53: A two Level OPMPHF Scheme [93] 

 

 

5.2.6 Using Direction 

The third technique is based on the idea of using G to store the additional information 
required to specify an OPMPHF. For n keys, if the graph has somewhat more than n 
vertices (i.e., if ratio > 1), then there should be enough room to specify the OPMPHF. In 
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a random graph of this size, a significant number of vertices will have zero degree. We 
have to use indirection for some of the keys, in this case using the composition: 

h(k) = g({ho(k) + g(h1(k)) + g(h2(k))}mod2r) while on the other hand, the desired location 
of a key that is, as before, found directly is determined by: 

h(k) = {h0 (k) + g(h1k)) + g(h2(k))} mod n. 

We use the g function in two ways, one way for regular keys and the other way for keys 
that are handled through indirection. The actual distribution is binomial and can be 
approximated by the Poisson: 

𝐸(𝑥 = 𝑑) =
{2𝑟𝑒−

𝑛
𝑟  (
𝑛
𝑟)
𝑑

}

𝑑!
 

   𝐸(𝑥 = 𝑑) = {2𝑟𝑒−
𝑛
𝑟} 

When 2r = n, about 13.5% of the vertices have zero-degree. If these zero-degree 
vertices can be used to record order information for a significant number of keys, then it 
is not necessary for G to be acyclic to generate an OPMPHF. Note that keys associated 
with edges e0 and ei can be indirectly hashed into zero-degree vertices v6 and v2.  In 
general, an edge (key) is indirectly hashed when that situation is described by 
information associated with its two vertices, given by h1(k) and h2(k). Usually, indirection 
can be indicated using one bit per vertex that is decided at MPHF building time and that 
is subsequently kept for use during function application time [93]. 

 

Figure 54: Zero Degree Vertices are Useful [93] 
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6 PROPOSED SECURE OPMPF ALGORITHM 

6.1 Introduction  

Hashing methods for no static sets of keys have a certain amount of wasted space and 
time. The space is wasted due to unused locations in a table and time is wasted 
because we have to resolve collisions when the keys are hashed to the same table 
location. But if the keys are static, then is possible to compute a hash function h(x) to 
find any key in the table with no collisions in this case and that is a perfect hash 
function. If a perfect hash function can also preserve an a priori key ordering, then is 
called an order preserving perfect hash function. A perfect hash function that can stores 
a set of records in a table of the size equal to the number keys is called minimal perfect 
hash function which avoids the wasted space and time.    

Minimal perfect hash functions are used for memory efficient and fast retrieval of items 
from static sets, such as universal resource locations in Web search engines etc.  

To find perfect hash functions may not be easy. According to Knuth [94], the total 
number of possible hash functions from S (|S|= n) into [0, m-1] (m ≥n) is mn and only 
m(m -1) . . . (m-n+1) are perfect. Thus, the probability that no collisions occur is the ratio 
(m(m-1) . . . (m-n+ 1))/mn which tends to zero very fast. For m = 13 and n = 10, the 
probability that no collisions occur is only 0.0074 [94]. 

We present a three- step algorithm for generating minimal perfect hash functions. This 
method uses a Mapping, Ordering, Searching (MOS) approach and the construction of 
a minimal perfect hash function is accomplished in three steps as below: 

In the first step the mapping transforms a set of keys from the original universe to a 
universe of hash identifiers. A hash identifier is a collection of selected properties of a 
key, such as symbols comprising the key, their positions of occurrence in the key, the 
key length, etc. This step has to preserve “uniqueness”, i.e. if two keys are 
distinguishable in the original universe, they must also be distinguishable in the hash 
universe.  

The second step is ordering and in this step the key is placed in a sequence which 
determines the precedence in which hash values are assigned to keys. Keys are 
divided into subsets W0, W1,…, Wk.  

The third step, searching, tries to extend the desired hash function h from the domain 
Wi-1 to Wi.  This is the only step of potentially exponential time complexity, since if the 
searching step encounters Wi for which h cannot be extended, it backtracks to earlier 
subsets, assigns different hash values to the keys of these subsets and tries again to 
recomputed hash values for subsequent subsets [89]. 

One of the most efficient and practical algorithms for generating order preserving 
minimal perfect hash functions, involves the generation of acyclic random graphs  

G = (V, E), where |V| = cn and |E| = n [95], [96], [97]. 

6.2 Basic Concept 

Consider S be a set of n distinct keys belonging to a finite universe U of keys. The keys 
in S are stored so that queries asking if key x є U is in S can be answered. If the set of 
keys is static, then it is possible to compute a hash function h(x) to find any key in the 
table with no collisions and this function is called perfect hash function. [95]. 
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The algorithm for selecting proper g values and setting mark (indirection) bits for 
vertices in G consists of the three steps: Mapping, Ordering, and Searching [89].  The 
Mapping step builds random tables the three functions h0, h1, and h2 that map each key 
k into a unique triple (h0(k), h1(k), h2(k)). The h0(k), h1(k), h2(k) triples are used to build a 
bipartite graph (called dependency graph).  Let k1, k2, ...,kn be the set  of  keys. The h0 
(k), h1(k), and h2 (k) functions are selected as the result of building tables of random 
numbers. If triples are not distinct, new random tables are generated, defining new h0 

(k), h1(k), h2(k) functions.  

For a given undirected graph G = (V, E), where |V| = cn and |E| = n, find a function g:V 
> {0,1,... , |V| -1} such that the function h : E > {0,1,..., n -1}, defined as  h(e)= (g(a) + 
g(b)) mod n (1) is a bijection, where e = {a, b}.  

This means that we are looking for an assignment of values to vertices so that for each 
edge the sum of values associated with endpoints taken modulo the number of edges is 
a unique integer in the range [0, n -1]. The ordering and searching steps of the MOS 
approach are a very simple way of solving the perfect assignment problem. Czech, 
Havas and Majewski [95] showed that the perfect assignment problem can be solved in 
optimal time if G is acyclic. To generate an acyclic graph two vertices h1(x) and h2(x) are 
computed for each key x є S. Thus, set S has a corresponding graph G, with V = 
{0,1,..., v} and E = {{h1(x), h2(x)}: x є S}.  

We want to have acyclic graphs, so the algorithm repeatedly selects h1 and h2 until the 
corresponding graph is acyclic. In order to be useful the solution, we must have |S|= n 
and |V|= cn, for some constant c, such that acyclic graphs dominate the space of all 
random graphs. Havas et al. [98] proved that if |V|= cn holds with c > 2 the probability 
that G is acyclic is  

 

𝑝 =  𝑒
1
𝑐  √
𝑐 − 2

𝑐
 

 

For c = 2.09 the probability of a random graph being acyclic is p> 1/3. Consequently, for 
such c, the expected number of iterations to obtain an acyclic graph is lower than 3 and 
the g function needs 2.09n integer numbers to be stored, since its domain is the set V 
[95]. 

Given an acyclic graph G, for the ordering step we associate with each edge an unique 
number h(e) є [0, n -1] in the order of the keys of S to obtain an order preserving 
function. Figure 55 illustrates the perfect assignment problem for an acyclic graph with 
six vertices and with the five table entries assigned to the edges. 
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Figure 55: perfect assignment problem for a graph with six vertices and five edges [94] 

6.3 The new Algorithm 

Consider the following problem. We will try to describe an algorithm that will capture the 
movement of a node in an encrypted environment. Each node can move in the three-
dimensional space (x, y, z). The main purpose of the project is the node to encryptly 
send the area in which it is located and the recipient to perceive, to where the node 
moved depending on the values received. 

For a given undirected graph G = (V, E), where |V| = n and |E| = m, find a function g:V > 
{0,1,... , n-1} such that the function h : E > {0,..., m-1}, defined as 

ℎ(𝑒 = (𝑢, 𝑣) ∈ 𝐸) = (𝑔(𝑢) + 𝑔(𝑣))𝑚𝑜𝑑 𝑚 is a bijection. 

We are looking for an assignment of values to vertices so that for each edge the sum of 
values associated with its endpoints taken modulo the number of edges is a unique 
integer in the range [0,m-1].  

If the graph is acyclic, a simple procedure can be used to find values for each vertex, as 
follows: 

 Associate with each edge a unique number h(e) є[0,m-1] in any order. 

 For each connected component of G choose a vertex v 

 For this vertex set g(v) to 0. 

 Traverse the graph using a depth- first search beginning with vertex v.  

 If vertex w is reached from vertex u, and the value associated with the edge  

 e= (u,w) is h(e), set g(w) to (h(e)- g(u))mod m.  

 Apply the above method to each component of G. 

We are ready to present the new algorithm for generating a minimal perfect hash 
function. The mapping step generates a random undirected graph G taking S as input. 
The ordering step determines the order in which hash values are assigned to keys. The 
graph is derived to Gcrit and Gncrit. 

 procedure New Algorithm (S,g) 

Mapping (S,G); 

Ordering (G, Gcrit,  Gncrit,); 

Searching ((G, Gcrit,  Gncrit ,g); 

Figure 56: main steps of the new algorithm 
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6.3.1 Node movement 

We assume that the motion of the node is divided into two steps and includes motion 
with respect to the axes (x, y) & (x, z), so as to show the motion to the right-left & up-
down. 

 

 

Figure 57: three coordinate axes 

 

6.3.2 The mapping step  

The respective movement is also divided into two steps, where each step corresponds 
to a new field. 

 

 

 

 

 

 

 

 

Figure 58: Axis (x, y) 

 

Red  starting point (point of immobility) 

Blue  Possible areas of the first step 

Yellow  Possible areas of the second step 

We consider that the backward movement presents the least probabilities, as the node 
will be in motion. 
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Figure 59: Axis (x, y) 

Red  starting point (point of immobility) 

Blue  Possible areas of the first step 

Yellow  Possible areas of the second step 

 

Field of motion 

Axis (x, z) Axis (x, z) 

First step   5 fields First step  3 (top-down-same level) 

Second step  5 fields Second step  3 (top-down-same level) 

Total 52 = 25 possible moves Total 32 = 9 possible moves 

In total we have 25 * 9 = 225 fields 

The mapping procedure (S,G) receives as input the set of keys from S and generates a 
random undirected graph G. To generate the Minimal Perfect Hash Function the 

number of critical edges in G must be|𝐸𝑐𝑟𝑖𝑡| ≤  
1

2
 |𝐸|, where  |𝐸𝑐𝑟𝑖𝑡| ⊆ 𝐸 be a set of 

critical edges which contains all edges from E connecting critical vertices. The reason is 
that the maximum value of h(e) assigned to an edge e E in this case is m-1. The 
random graph G is generated using two hash functions h1 and h2. These functions 
transform the keys from S to integers in [0, │V│-1], so the set of vertices V has │V│ 
vertices and each one of them is labeled with a distinct value from [0, │V│-1]. For each 
key x from S the edge {h1(x), h2(x)} is added to E. A self-loop occurs when h1(x) = h2(x). 
We want to avoid self-loops so we try to modify h2(x) by adding a random number in the 
range [1, |V |−1]. When a multiple edge occurs we abort and start again a new iteration. 

We expect that the number of iterations to obtain G is constant. Let p be the probability 
of generating a random graph G without self-loops and multiple edges. Let X be a 
random variable counting the number of iterations to generate G. Variable X is said to 
have the geometric distribution with P (X = i) = p(1−p)i−1. So, the expected number of 
iterations to generate G is  

𝑁𝑖(𝑋) = ∑ 𝑗 𝑃(𝑋 = 𝑗) = 1/𝑝∞
𝑗=1  , its variance is V (X) = (1 − p)/p2. 

Let d be the space of edges in G that may be generated by h1 and h2. The graphs 
generated in this step are undirected and the number of possible edges in d is given by 

|𝑑| =  (|𝑉|
2
) . The number of possible edges that might become a multiple edge when the 

j th edge is added to G is j −1, and the incremental construction of G implies that p (|V |) 
is: 

𝑝(|𝑉| =  ∏
(|𝑉|
2
) − (𝑗 − 1)

(|𝑉|
2
)

𝑛

𝑗=1

= ∏
(|𝑉|
2
) − 𝑗

(|𝑉|
2
)

𝑛−1

𝑗=0

  

As │V│= cn the probability is as follow: 

𝑝(𝑛) =  ∏1 − (
2𝑗

𝑐2𝑛2 − 𝑐𝑛
) 

𝑛−1

𝑗=0

 

Using an asymptotic estimate from Palmer [99], for two functions f1: ℜ → ℜ and f2: ℜ → 
ℜ defined by f1(k) = 1 − k and f2(k) = e−k, the inequality  
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f1(k) ≤ f2(k) is true ∀ k ∈ ℜ. Considering 𝑘 =  
2𝑗

 𝑐2𝑛2−𝑐𝑛
 we have  

 

𝑝(𝑛) ≤  ∏𝑒
− (

2𝑗
𝑐2𝑛2−𝑐𝑛

)
=

𝑛−1

𝑗=0

𝑒
− (

𝑛−1
𝑐2𝑛−𝑐

)
 

Thus, lim
𝑛→∞ 

𝑝(𝑛) ≅  𝑒
1

𝑐2 

As Ni(X) = 1/p then Ni(X) ≃ 𝑒
1

𝑐2  . After that, we empirically determine the c value to 

obtain a random graph G with |𝐸𝑐𝑟𝑖𝑡| ≤  
1

2
 |𝐸| the probability P|Ecrit| that |Ecrit| ≤ |E|, |E| 

= n, tends to 0 when c < 1.15 and n increases. However, it tends to 1 when c ≥ 1.15 and 
n increases. Thus, |V | = 1.15n is considered a threshold for generating a random graph 
G where |Ecrit| ≤ |E| with probability tending to 1 when n increases. Therefore, we use c 
= 1.15 in the new algorithm. The MPHF generated by the new algorithm needs 1.15n 
integer numbers to be stored, since |V | = 1.15n. Thus, the generated function is stored 
in 55% —1.15n/2.09n — of the space necessary to store the one generated by the 
CHM algorithm. As P|Ecrit| tends to 1 when n increases, we consider that the expected 

number of iterations to generate G is Ni(X) ≃𝑒
1

𝑐2 . For c = 1.15, Ni(X) ≃ 2.13 on average, 
which is constant. So, the mapping step takes O(n) time. The rationale is that P|Ecrit| 
tends to 1 when n increases. However, if some addition g(u)+g(w) is greater than m in 

the searching step for {u, w} ∈ E then the mapping step is restarted. 

6.3.3 Maximal value Assigned to An edge 

 For a random graph G with |Ecrit| = 0.5n and |V | = 1.15n, it is always possible to 

generate a MPHF because the maximal value Amax assigned to an edge e ∈ Ecrit is at 
most m − 1 (Amax corresponds to the maximal value generated by the assignment of 
values to critical vertices) 

Theorem 1The number of back edges Nb edges of a random graph G = Gcrit∪Gncrit is 
given by: Nbedges = |Ecrit| − |Vcrit| + 1. 

Theorem 2 The maximal value Amax assigned to an edge e ∈ Ecrit in the assignment of 
values to critical vertices is: Amax ≤ 2|Vcrit| − 3 + 2Nt. 

 

6.4 Technical summaries for Privacy- preserving proximity- based security 

systems for location based services 

6.4.1 A proximity- based authentication key generation strategy, without 
involving any trusted authority 

We describe a proximity- based authentication key generation strategy, without 
involving any trusted authority, pre-shared secret or public key infrastructure. We 
assume that a radio client called Alice initiates the authentication and pairwise session 
key generation with clients I her proximity. A peer client called Bob responds to her 
request. Both clients monitor their ambient radio signals at the frequency band during 
the time specified by Alice. Bob informs Alice his public location tag, which incorporates 
the RSSIs, sequence numbers and media access control (MAC) addresses of the 
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packets. Bob builds and keep secret location tag, which consists of the packet arrival 
time sequence. Based on Bob’s public location tag and her own measurements, Alice 
identifies their shared packets and uses their features to derive the proximity evidence 
of Bob for both authentication and session key generation. Meanwhile, Alice informs 
Bob the indices of their shared packets in his secret location tag and helps him to 
generate his copy of the session key [100]. 

 

 

 

Figure 60: Flowchart of the proximity- based security system based on ambient radio signals 

By integrating the authentication and key generation process, we build a proximity- 
based security protocol for mobile users in wireless networks.  

As illustrated in figure 60 this protocol consists of the following steps: 

1. Alice decides and broadcasts her proximity test policy. 
2. Upon receiving Alice’s request, Bob measures the features of the packets as 

Alice specified. Both clients extract and store the RSSIs, arrival time, MAC 
addresses and sequence number of their ambient packets. 

3. Bob builds a location tag, sends Alice his public location tag, and keeps his 
secret location tag. 

4. Alice authenticates Bob. 
5. Alice compares Bob’s public location tag with her trace to identify their shared 

packets. Following a key generation Algorithm, Alice builds a session key, KA, 
and informs Bob the indices of their shared packets in his trace J.  

6. Based on his secret location tag and the indices J, Bob generates his session 
key, KB. 

In the above handshake process, error connection coding can be applied to counteract 
the transmission errors due to channel fading and interference. In addition, because of 
the different ambient ratio environments and packet loss rates, clients usually take 
different time to obtain a given number of ambient packets. Due to this problem, the 
proposed key generation strategy relies on the same shared packets between Bob and 
Alice and thus provides a certain degree of robustness against packet loss.   
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6.4.2 A dynamic privacy- preserving key management scheme 

We describe a proposed scheme in which, we first introduce a privacy- preserving 
authentication technique that not only provides the user’s anonymous authentication but 
enables double-registration detection as well.  

The location based services session key update procedures. Firstly the session of an 
LBS is divided into several time slots so that each time slot holds a different session 
key. Secondly, we integrate a novel dynamic threshold technique in traditional vehicle to 
vehicle and vehicle to infrastructure communications to achieve the session key’s 
backward secrecy.  

Performance evaluations via extensive simulations demonstrate the efficiency and 
effectiveness of the proposed scheme, in terms of low key update delay and fast key 
update ratio.  

We consider a typical location- based service in vehicular ad hoc networks (VANET) 
which comprises an SP, some deployed RSUs affiliated to the SP, and a large number 
of vehicle users U’ = { U1, U2,…} moving around the area, as shown in Figure 61. 

 

 

Figure 61: Network architecture for LBSs in VANETs. 

 

The SP in the area can provide various services, such as to provide some local traffic 
information or establish a virtual on- road community. Because the vehicle users move 
along the road, the SP cannot directly reach the vehicles. Therefore, after being 
connected with the SP by wire links or any other links with high bandwidth and low 
delay, the affiliated RSUs can help the SP to broadcast and/or relay messages to 
vehicle users via vehicular communications. The stationary RSUs are usually located at 
the road side and perform two main functions broadcasting and relaying. The 
broadcasting component is responsible for broadcasting service contents that originated 
from the SP to the vehicle users on the road, where the service contents can either 
directly reach the passing-by vehicles or reach other vehicles in a manner. The relaying 
component helps vehicle users with forwarding some requests to reduce the burdens at 
the SP. RSU is trustable and usually equipped with not only high- storage capacity but 
strong computational capability as well, which causes its high cost. Due to the high cost, 
it is impractical to erect RSUs to cover the whole area, particularly at the early 
deployment of LBSs in VANETs. In this network model, only a small number of RSUs 
are deployed at some spots [101]. 
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Each vehicle Ui є U’ is equipped with an on board unit device, which allows it to 
communicate with other vehicles for sharing some information of common interest or 
communicate with the RSUs for accessing the LBSs and receiving service contents 
relayed by the RSUs. The OBU device in VANET has no power constrained issue and 
is equipped with powerful computational and communication capabilities [101]. 

 

 

6.5 Appendices (Description of Algorithm) 

6.5.1 The Mapping Phase 

Step Description of Algorithm  

 

1. build random table for h0, h1 and h2 

2. for each v in (0 ...2r - 1] do vertex[v].firstedge  = 0; vertex[v].degree  = 0 

3.        for each i in [1...n] do 

edge[i].ho = h0 (ki); edge(i).h1 = h1( ki); edge[i].h2  = h2(ki) 

edge[i].nextedge1 = 0 

add edge[i] to linked list with header vertex [h1( ki)].firstedge; 

increment vertex[h 1(ki)].degree 

add edge[i) to linked list with header vertex(h2(ki)).firstedge;  

increment vertex(h2(ki)).degree 

4. for each v in [O ...r - 1) do 

check that all edges in linked list vertex[v].firstedge  

             have distinct  (h0, h1, h2) triples. 

5. if triples are not distinct then repeat from step(1). 

 

6.5.2 The ordering phase 

Step Description of Algorithm  

 

1. CId = 0 /* assign all vertices an ID 0. */ 
 for v in [0 ...2r - 1) do assign CId to v  
CId=  1 

                for v in [0 ...2r - 1) do /*assign unique nonzero IDs to CCY s and AC s. */ 

                      if v has nonzero degree and its component ID equals 0 then 

                           initialize(VSTACK)  /* process one component.  */ 

                           push( v, VSTACK) /* save the first vertex of the component. */ 

                          do 



Location Based Security in Mobile IoT 

D. Zisimopoulou                                                                                                                                                              94 

 

                              v = pop(VSTACK) /* get an unassigned vertex from VSTACK. */ 

                              assign CId to v /* assign the ID. */ 

                              for each w adjacent to v do 

                                           /* if there are vertices unassigned, put them into VSTACK.  */ 

                                   if component  ID of w is zero and not in VSTACK  then 

                                                 push(w, VSTACK)  

                             while VSTACK is not empty 

                      CId = CId +1 /* increase ID for next component.  */ 

    2. initialize(VSTACK) /* get all one-degree vertices into VSTACK. * / . 

           for each nonzero degree v in [0 ...2r - 1) do 

                  if vertex[v].degree = 1 then 

              push(v, VSTACK) 

             decrement vertex[ v].degree 

   3. while VSTACK  is not empty do /* visit and truncate all edges in Ecp. */ . 

                    v = pop(VSTACK) 

                    for each w adjacent to v do 

                           if degree of w > 0 then decrease vertex[w].degree 

                           if vertex[w].degree = 1 then push(w, VSTACK) 

   4. make all vertices not SELECTED /* obtain a VScc for all Vcc vertices. */ . 

            i = 1; 

           for all nonzero degree and not  SELECTED v in  [0 ...2r - 1] do 

                  select vi = a vertex of maximum  degree > 0 

                  initialize(VHEAP);  insert  (v;, VHEAP)  

                  do 

                  vi = deletemax(VHEAP) 

                 mark vi SELECTED and put vi into VS 

                 for each w adjacent to vi do 

                         if w is not SELECTED and w is not in VHEAP then  

                              insert(w,  VHEAP) 

                        i=i+l 

                 while VHEAP is not empty 

    5. for i = 1 to t do /* assign indirection  bit to all vertices in Vcc */  . 

           Let s= IK(vi)I and Wj be any MARKED vertex adjacent to vi 

           Let t be the number of not MARKED vertices adjacent to vi 

           If s = 0 then vertex[vi].bit  = 1 
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           If s= 1 then 

                 if vertex[wj].bit = 0 then vertex[v1].bit = 1 

                else vertex[v1].bit = 0 

           If s > 1 then 

                if i= 0 and vertex[wj].bit = 0 for all Wj  then vertex[vi].bit = 0 

               else 

                      for all Wj do 

                              if vertex[wj]  = 0 then vertex[wj].bit  = 1 

                      vertex[vi].bit   = 1 

 

6.5.3 The searching phase  

Step Description of Algorithm  

     1. R = {}, S = {} /* S is the set of component IDs of those occupied trees.  */ 

                                /* R records the root vertices of trees in S. */ 

                               /*Both sets are empty at first. */ 

        for i = 1 to t do /* assign g values to Vccs to have edges in Ecc indirectly hashed.  */ 

       mark vi  ASSIGNED  /* select the next vertex in  V Scc for g value assignment.  */ 

       establish a random probe sequence s0, s1, ..., Sn-1 for [0 ...n -1] 

                         /* prepare the order in which different g values will be tried. * / 

         j=0 

        do 

        Let W be the set of ASSIGNED vertices  adjacent to vi 

        Collision = false 

       if IK(vi)I=0 then /* Vi is the first vertex of an un-assigned  component.  * / 

             vertex[vi].g = sji /*assign vi's g entry the value sj.  */ 

       else 

      if IK(vi)I  = 1 AND  vertex[vi].mark ≠ vertex[w].mark   then 

        /* if only one edge in the level and it is a direct edge, then assign the g value */ 

       /* to vertex Vi such that hfinal of the edge can be computed directly.  */ 

   let w be in W and k in K(vi) 

   vertex[vi].g = [edge[k].final - edge[k].h0 - vertex[w].g] mod n 

               /* assign g value when k is direct */ 

        if edge[k].final ≥  a  then vertex[vi].g  = edge[k].final  - a 

        else vertex[vi].g = n - a + edge[k].final 

    else         /* all the edges in the level have to be indirect. Need to find * / 
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          /* unoccupied zero-degree vertices or trees.  * / 

if vi in [0 ...r - 1] then /* distinguish which side vi is on * / 

       for each k in K(vi) do/* vi is on h1 side.  */ 

             h(k) = edge[k].ho + vertex[edge[k].h2] + (sj mod 2r) 

                     /* obtain the location of indirect-to vertex.  */ 

        if vertex[h(k)] is occupied OR vertex[h(k)).Cld  in S then 

              collision = true /* the indirect-to vertex is occupied. */ 

else /* the vi is on h2 side.  */ 

         for each k in K(vi) do 

h(k) = edge[k].h0 + vertex[edge[k].h1] + (sj mod 2r) 

       if vertex[h(k)] is occupied OR vertex[h(k)].Cld  in S then 

               collision = true 

if not  collision  then 

                      /* if all indirect-to locations are not occupied, */ 

                      /* set all of them occupied.  */ 

for each kin K(vi) do 

         if vertex[h(k)] is a zero-degree vertex then 

                        set vertex[h(k)] occupied 

        else 

                       S = S UNION {vertex[h(k)].CId} 

                       R =R UNION {vertex[h(k)]} 

                 vertex[ h(k)].g = edge[k].final  /"' set the g value of for indirect key  */ 

         i=i+1 

    else /* if this sj  causes any collisions, try next one.  */ 

       j=j+1 

      if j > n+1 

           fail 

While collision 

2. Initialize (VSTACK)  /* process EAC  */ . 

                for i = 0 to n -1 do 

                     if Vi is both cycle and tree vertex then 

                                                          /* identify starting vertices.  */ 

                             for all w not  ASSIGNED  in step 1 and  adjacent  to Vi  do 

                                     push (w, VSTACK) 

                    while VSTACK is not empty do v = pop(VSTACK) 
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                                                     /* directly hash all tree edges. */ 

                   mark v ASSIGNED 

                   for w ASSIGNED and adjacent to v do  

                         let k join v and w 

                        vertex[vi].g = [edge[k].final - edge[k].ho - vertex[w].g] mod n 

                   for all  w  not  ASSIGNED   and  adjacent  to v  and  not  in  VSTACK  do 

                                    push(w, VSTACK) 

    3. Repeat (2) for all vertices in R. Each vertex in R will act as vi in (2). 

    4. repeat (2) for arbitrary root vertices in ACs  that have not  accepted  any indirect 
edges. Each such vertex will act as Vi in (2) 
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7 CONCLUSION 

 

In this thesis, we have shown how cryptographic hash functions gained its importance in 
the field of cryptography. We have made all the attempts to give a complete picture of 
cryptographic hashes, its design techniques and vulnerabilities. We discussed the most 
popular hash functions security properties and notions and showed how these 
requirements have influenced the design of hash functions.  

In the second part of this thesis we provided a thorough discussion of the state of art of 
hash functions designs.  

Finally, an algorithm for finding order preserving minimal perfect hash functions is 
described. The method is able to find OPMPHF for various sizes of key sets. Several 
probabilistic analysis results on the characteristics of the random graph G are given. 
They are useful in guiding a proper selection of various parameters and providing 
insights on the design of the three main steps of the algorithm.  

More experiments with the algorithm are planned. One direction is the dynamic hashing. 
Other possible interests are concerned with the conjecture.  
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8 FUTURE WORK 

Hashing algorithms can be pretty useful. However, IT is a really fast-changing industry 
and this entropy also extends to hashing algorithms. Hash algorithms through which 
devices in the IoT can securely send messages between them, can be proved very 
useful in the future, because the Internet of Things (IoT) promises to be the next big 
revolution of the World Wide Web. In order to ensure integrity, hash algorithm is used. It 
has a very wide range of applications, ranging from smart cities, smart homes, and a lot 
more. When nodes in wireless sensor networks are monitored through internet it 
becomes a part of Internet of Things. This brings in a lot of concerns related to security, 
privacy and standardization.  
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LIST OF NOTATIONS 

List of Abbreviations 

PKC Public Key Cryptography 

AES Advanced Encryption Standard 

DES Data Encryption Standard 

DSA Digital Signature Algorithm 

ECDSA Elliptic Curve Digital Signature Algorithm 

ISO International Organization for Standardization 

MAC Message Authentication Code 

HMAC Hashing Message Authentication Codes 

MDx Message Digest x 

NESSIE New European Schemes for Signatures, Integrity and Encryption 

NIST National Institute of Standards and Technology 

RIPEMD RIPE Message Digest 

RSA Rivest-Shamir-Adleman 

SHA-1 Secure Hash Algorithm 1 

SHA-2 Secure Hash Algorithm 2 

SIMD Single instruction multiple - data 

TIMESEC Digital Timestamping and the Evaluation of Security 

TLS Transport Layer Security  

SSL Secure Sockets Layer 

TCP Transmission Control Protocol 

PGP Pretty Good Privacy 

RC4  Rivest Cipher 4 

MOS Mapping- Ordering- Searching 

ECC Elliptic Curve Cryptography 

CAN Content Addressable Network 

CRHF Collision Resistant Hash Function 

OWHF One Way Hah Function 

MDC Message Detection Code 

NSA National Security Agency 

HAIFA Hash Iterative Framework 

CR Collision Resistance 

Pre Pre- image Resistance 
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Sec 2nd Pre- image Resistance 

PHF Perfect Hash Function 

MPHF Minimal Perfect Hash Function 

OPMPHF Order Preserving Minimal Perfect Hash Function 

OPE Order Preserving encryption 

ROPF Random Order Preserving Hash Function 
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List of Mathematical Symbols 

f compression function 

g output transformation 

h hash function or MAC algorithm 

E encryption algorithm 

F round function of a block cipher 

X input to a function 

Y output from a function 

K key for MAC or encryption algorithm 

M message 

P plaintext 

C ciphertext 

Xi input block 

Mi message block 

Hi chaining variable 

IV initial value 

Wj message word (32-bit or 64-bit) 

n output length (of a hash function or MAC algorithm) 

b block length (of a compression function or block cipher) 

c chaining variable length 

k key length 

D domain of a function 

R range of a function 

K key space 

M message space 

|S| number of elements of the set S 

O order 

∈ Element of. . . 

∞ infinity 

exp exponential function 

max maximum of. . . 

mod modulo (remainder of integer division) 

[Z] the smallest integer larger than or equal to Z 
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