

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE

DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

INTERSISCIPLINARY POSTGRADUADE DEGREE PROGRAM IN

“Management and Economics of Telecommunications Networks’’

MSc THESIS

Location Based Security in Mobile IoT

Dimitra K. Zisimopoulou

Supervisors: Eustathios Hadjiefthymiades, Professor

Anestis Papakotoulas, PhD Student

Athens

August 2020

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΔΙΟΙΚΗΣΗ ΚΑΙ
ΟΙΚΟΝΟΜΙΚΗ ΤΩΝ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΔΙΚΤΥΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Location Based Security in Mobile IoT

Δήμητρα Κ. Ζησιμοπούλου

Επιβλέποντες: Χατζηευθυμιάδης Ευστάθιος , Καθηγητής

Ανέστης Παπακοτούλας, Υποψήφιος Διδάκτωρ

ΑΘΗΝΑ

Αύγουστος 2020

MSc THESIS

Location Based Security in Mobile IoT

Dimitra K. Zisimopoulou

S.N.: MOP519

Supervisors: Eustathios Hadjiefthymiades, Professor

Anestis Papakotoulas, PhD Student

August 2020

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Location Based Security in Mobile IoT

Δήμητρα Κ. Ζησιμοπούλου

Α.Μ.: ΜΟΠ 519

ΕΠΙΒΛΕΠΩΝ: Χατζηευθυμιάδης Ευστάθιος , Καθηγητής

 Ανέστης Παπακοτούλας, Υποψήφιος Διδάκτωρ

Αύγουστος 2020

ABSTRACT

Hash functions are important tool in information security over the internet. The
cryptographic hash functions are versatile cryptographic building blocks which are used
in many different security applications such as the protection of the authenticity of
information and digital signatures. The main purpose for what they are designed is to
improve message integrity. The first part of this thesis gives an overview of existing
hash functions and the different methods of designing these, MAC algorithms and digital
signatures. Next, we present hash techniques on Recent Hash functions and the
constructions of them are examined where we focus mainly on the popular attacks on
hash functions and their vulnerability results. After a research on papers relevant with
the order preserving minimal perfect hash function, we describe an algorithm for
generating order preserving minimal perfect hash function, involving generation of
acyclic random graphs with a three- step algorithm. This method uses a Mapping,
Ordering, Searching (MOS) approach and we will try to describe an algorithm that will
capture the movement of a node in an encrypted environment, where each node can
move in the three-dimensional space (x, y, z). The main purpose is the node to
encryptly send the area in which it is located and the recipient to perceive, to where the
node moved depending on the values received. One point of particular interest is the
combination of random graphs which can generate a minimal perfect hash function with
dynamic hashing for further future work.

SUBJECT AREA: cryptography, hash functions security analysis

KEYWORDS: message integrity, hash techniques, order preserving, minimal perfect
hash functions, location based services.

ΠΕΡΙΛΗΨΗ

Οι συναρτήσεις κατακερματισμού (hash) είναι σημαντικό εργαλείο για την ασφάλεια
πληροφοριών μέσω του Διαδικτύου. Οι κρυπτογραφικές hash συναρτήσεις είναι
ευέλικτα κρυπτογραφικά δομικά στοιχεία που χρησιμοποιούνται σε πολλές διαφορετικές
εφαρμογές ασφαλείας, όπως η προστασία της αυθεντικότητας των πληροφοριών και
των ψηφιακών υπογραφών. Ο κύριος σκοπός για τον οποίο έχουν σχεδιαστεί είναι να
βελτιώσουν την ακεραιότητα των μηνυμάτων. Το πρώτο μέρος αυτής της εργασίας
παρέχει μια επισκόπηση των υπαρχόντων hash συναρτήσεων και των διαφορετικών
μεθόδων σχεδίασης αυτών, αλγορίθμων MAC και ψηφιακών υπογραφών. Στη συνέχεια,
παρουσιάζουμε τις hash τεχνικές πάνω στις πρόσφατες Hash συναρτήσεις και οι
κατασκευές αυτών εξετάζονται με επίκεντρο κυρίως στις δημοφιλείς επιθέσεις των hash
συναρτήσεων και στα αποτελέσματα ευπάθειας τους. Μετά από μια έρευνα σε
δημοσιεύσεις που σχετίζονται με τις order preserving minimal perfect hash συναρτήσεις,
περιγράφουμε έναν αλγόριθμο για τη δημιουργία ordering που διατηρεί την ελάχιστη
perfect hash συνάρτηση και περιλαμβάνει τη δημιουργία ακυκλικών τυχαίων
γραφημάτων με έναν αλγόριθμο τριών βημάτων. Αυτή η μέθοδος χρησιμοποιεί μια
προσέγγιση χαρτογράφησης, ordering, αναζήτησης (MOS) και θα προσπαθήσουμε να
περιγράψουμε έναν αλγόριθμο που θα συλλάβει την κίνηση ενός κόμβου σε ένα
κρυπτογραφημένο περιβάλλον, όπου κάθε κόμβος μπορεί να κινηθεί στον τρισδιάστατο
χώρο (x, y, ζ). Ο κύριος σκοπός είναι ο κόμβος να στείλει κρυπτογραφικά την περιοχή
στην οποία βρίσκεται και ο παραλήπτης να αντιληφθεί, στο σημείο όπου ο κόμβος
μετακινήθηκε ανάλογα με τις τιμές που λαμβάνονται. Ένα σημείο ιδιαίτερου
ενδιαφέροντος είναι ο συνδυασμός τυχαίων γραφημάτων που μπορούν να
δημιουργήσουν μια minimal perfect hash συνάρτηση με δυναμικό κατακερματισμό για
περαιτέρω μελλοντικές εργασίες.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: κρυπτογραφία, ανάλυση ασφάλειας hash συναρτήσεων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: ακεραιότητα μηνυμάτων, hash τεχνικές, order preserving, minimal
perfect hash συναρτήσεις, υπηρεσίες εντοπισμού θέσης.

ACKNOWLEDGEMENTS

It is a pleasure for me to thank all the people who have helped me to realize this Msc
Thesis.

In the first place, I want to express my gratitude to Prof. Eustathios Hadjiefthymiades
and PhD Student Anestis Papakotoulas, for being the promoters of this thesis. I’d like to
express my special thanks to them for their consistent support and guidance during the
running of this thesis. I appreciate the opportunity they gave me to finish this work and I
feel very fortunate to work with some of the best scientists of the Department.

Finally, I must express my very profound gratitude to my parents Konstantinos and
Sophia, my brother Harris and to my husband Akis for providing me with unfailing
support and continuous encouragement throughout my years of study and through the
process of researching and writing this thesis. This accomplishment would not have
been possible without them. Thank you.

Author

Dimitra Zisimopoulou

Στον πατέρα μου που με ενέπνευσε

 &

Στη μητέρα μου που πίστεψε σε μένα

TABLE OF CONTENTS

ABSTRACT ...

ACKNOWLEDGEMENTS ...

TABLE OF CONTENTS ..

LIST OF FIGURES ..

1 INTRODUCTION .. 19

1.1 Motivation and objective ... 19

1.2 Thesis structure and reading guide ... 20

1.3 Thesis concept ... 21

2 INTRODUCING CRYPTOGRAPHY ... 22

2.1 Overview ... 22

2.2 Symmetric Cryptography .. 24

2.2.1 Symmetric-key cryptography ciphers .. 25

2.3 Asymmetric Cryptography .. 26

2.3.1 RSA algorithm ... 27

2.3.2 Elliptic curve Cryptography ... 29

2.4 Differences between Symmetric and Asymmetric Cryptography .. 29

3 MESSAGE INTEGRITY AND DIGITAL SIGNATURES ... 31

3.1 Cryptographic Hash Functions .. 31

3.1.1 History ... 31

3.1.2 Properties and uses of hash functions .. 32

3.1.3 Keyed and Unkeyed Hash Functions .. 34

3.2 Hash Techniques ... 35

3.2.1 Design of new Hash Functions ... 35

3.3 Recent Hash Functions ... 42

3.3.1 Whirlpool Secure Hash Function .. 43

3.3.2 JH Hash Function .. 43

3.3.3 BLAKE-256.. 44

3.3.4 Keccak ... 45

3.3.5 Streebog .. 46

3.3.6 Kangaroo Twelve .. 47

3.4 Message Authentication Codes (MAC) .. 47

3.4.1 HMAC .. 48

3.5 Digital Signatures .. 49

3.5.1 El- Gamal Digital Signature Scheme .. 50

3.5.2 RSA Digital Signature Algorithm ... 53

3.5.3 Digital Signature Algorithm (DSA) ... 54

3.5.4 Elliptic Curve Digital Signature Algorithm ... 55

3.5.5 Elliptic Curve ElGamal Digital Signature Scheme .. 55

4 HASH FUNCTIONS SECURITY ANALYSIS ... 57

4.1 Security properties .. 57

4.1.1 Collision – Resistance (CR) .. 57

4.1.2 Pre- image Resistance (Pre) ... 57

4.1.3 2nd Pre- image Resistance (Sec) .. 58

4.2 Attacks on Hash Functions .. 58

4.2.1 Tree Based Attack ... 59

4.2.2 The most common attack - Brute Force Attack... 60

4.2.3 Merkle Damgård Construction .. 61

4.2.4 HAIFA Construction .. 63

4.2.5 Sponge Construction ... 64

4.2.6 Wide –Pipe Construction ... 66

4.3 Vulnerability analysis of recent hash functions ... 68

4.3.1 Comparative analysis between (MD5, SHA-1, SHA-2) ... 68

4.3.2 Comparison with other functions ... 69

4.3.3 Summary of Vulnerability Analysis per Hash Construction ... 72

5 ORDER PRESERVING MINIMAL PERFECT HASH FUNCTONS APROACHES 74

5.1.1 PHF (Perfect Hash Functions) .. 74

5.1.2 MPHF (Minimal Perfect Hash Functions) .. 74

5.1.3 OPMPHF (Order Preserving Minimal Perfect Hash Functions) .. 76

5.1.4 Order preserving encryption (OPE) .. 76

5.2 Related OPMPHF’S .. 77

5.2.1 A method for MPHF’s (Pascal reserved words) .. 77

5.2.2 Random Order preserving hash function (ROPF) .. 77

5.2.3 Content Addressable Network (CAN) ... 78

5.2.4 Acyclic Graphs .. 81

5.2.5 Two Level Hashing .. 83

5.2.6 Using Direction .. 83

6 PROPOSED SECURE OPMPF ALGORITHM ... 85

6.1 Introduction .. 85

6.2 Basic Concept .. 85

6.3 The new Algorithm... 87

6.3.1 Node movement .. 88

6.3.2 The mapping step ... 88

6.3.3 Maximal value Assigned to An edge ... 90

6.4 Technical summaries for Privacy- preserving proximity- based security systems for location

based services .. 90

6.4.1 A proximity- based authentication key generation strategy, without involving any trusted

authority .. 90

6.4.2 A dynamic privacy- preserving key management scheme ... 92

6.5 Appendices (Description of Algorithm) ... 93

6.5.1 The Mapping Phase .. 93

6.5.2 The ordering phase ... 93

6.5.3 The searching phase ... 95

7 CONCLUSION ... 98

8 FUTURE WORK .. 99

LIST OF NOTATIONS .. 100

RΕFERENCES .. 103

LIST OF FIGURES

Figure 1: Overview of the field of Cryptography [3] ... 22

Figure 2: Computer security requirements [2] .. 24

Figure 3: Symmetric Cryptosystem [2] .. 24

Figure 4: Simple design of block cipher based hash functions compression

function [5] ... 25

Figure 5: An example of block cipher [5] ... 26

Figure 6: Asymmetric Cryptosystem [2] .. 27

Figure 7: Symmetric vs Asymmetric encryption [8] ... 30

Figure 8: Working Mechanism of One Way Hash Function [9] 31

Figure 9: Use of Hash Function in Digital Signature [9] ... 33

Figure 10: Simplified Broad Categories of Cryptographic Hash Function [24] 35

Figure 11: The Merkle- Damgård hash construction [23] ... 36

Figure 12: Merkle- Damgård Padding algorithm [23] .. 36

Figure 13: MD5 Hash Function 80] ... 37

Figure 14: SHA-1 Hash Function [80] .. 37

Figure 15: SHA-256 Hash Function [80]... 38

Figure 16: The HAIFA construction [29] .. 39

Figure 17: The sponge construction for hash functions [33] 40

Figure 18: the Wide Pipe Hash Construction [33] ... 41

Figure 19: Tree- Based Hash Constructions [64] .. 42

Figure 20: the JH compression function structure [43] ... 44

Figure 21: The Gi function of BLAKE-256 [46] .. 45

Figure 22: Keccak function [46] ... 45

Figure 23: Streebog function [50] .. 46

Figure 24: MAC Algorithm [5] .. 48

Figure 25: HMAC [5] ... 49

Figure 26: Basic Digital Signature Protocol ... 50

Figure 27: Digital Signature ... 50

Figure 28: El- Gamal Cryptosystem [2] ... 52

Figure 29: El- Gamal Digital Signature Scheme [2] ... 53

Figure 30: Elliptic Curve Digital Signature Algorithm [58] 55

Figure 31: Security properties collision resistance, pre-image resistance, 2nd pre-

image resistance [25], [60], [61] ... 57

Figure 32: Different Types of Attacks on Hashing Algorithms 58

Figure 33: Classification of attacks on Hash Functions [62] 59

Figure 34: Tree- Based Hash Construction [64] .. 60

Figure 35: Joux’s Multicollision Attack [67] .. 61

Figure 36: 2nd pre-image attack on Merkle –Damgård [68] 62

Figure 37: Representation of New Attack on Standard Merkle- Damgård [31] 63

Figure 38: State- recovery attack HMAC with HAIFA [70] .. 63

Figure 39: Short message attack for HMAC with HAIFA [70] 64

Figure 40: A slide attack on Hash Functions .. 65

Figure 41: the cycle structure built with access to oracles f Kout◦ fKin and fKin ◦

fKout. .. 67

Figure 42: Two walks A and B colliding and sharing a cycle. The left example

shows unsynchronized cycles (the collision happens in the cycle, thus ZA≠ZB),

the right shows synchronized cycles (the collision happens before the cycle, in

the tails, thus ZA=ZB). ... 67

Figure 43: Differences in SHA family ... 69

Figure 44: Perfect Hash Functions [89] ... 74

Figure 45: Minimal Perfect Hash Functions [89] ... 74

Figure 46: Illustration of the Key Concepts [89] ... 75

Figure 47: Illustration of the Key Concepts ... 76

Figure 48: example of a two-dimensional unicode CAN storing items [92] 79

Figure 49: standard hash function on dimension 0 [92] .. 79

Figure 50: Default hash function inefficient to disseminate data items

(represented as black dots at the top-left corner of the CAN) [92]. 80

Figure 51: A Bipatrite Graph ... 81

Figure 52: A Cycle Free Bipatrite Graph [93] .. 83

Figure 53: A two Level OPMPHF Scheme [93] .. 83

Figure 54: Zero Degree Vertices are Useful [93] ... 84

Figure 55: perfect assignment problem for a graph with six vertices and five

edges [94] ... 87

Figure 56: main steps of the new algorithm .. 87

Figure 57: three coordinate axes ... 88

Figure 58: Axis (x, y) ... 88

Figure 59: Axis (x, y) ... 89

Figure 60: Flowchart of the proximity- based security system based on ambient

radio signals .. 91

Figure 61: Network architecture for LBSs in VANETs. ... 92

LIST OF TABLES

Table 1: Thesis Chapter Structure ... 20

Table 2: the differences between the symmetric and asymmetric encryption 30

Table 3: Survey of the best known attacks on secure hash functions 69

Table 4: Vulnerability Analysis per Hash Construction .. 72

Table 5: the timeline of attacks and their complexity ... 72

Table 6: Feature Comparison of Hashing Algorithms .. 73

Location Based Security in Mobile IoT

D. Zisimopoulou 19

1 INTRODUCTION

The science and art of information security is Cryptography, and serves as a core for all
secure communication and network information exchange. Cryptography, originally
coming from two Greek words “κρυπτός” “kryptós” meaning "hidden or secret" and
“γράφειν” “graphein” "to write". It is the study of these schemes that are used to convert
the original plaintext into the corresponding ciphertext using a specific key. Encrypting
the information is a way to keep it secure so that only an authorized recipient can
extract and read the original plaintext. This allows messages to be sent without the
sender worrying about contents becoming available to an unauthorized person as the
information/content would be meaningless to someone who don’t be authorized.

 Firstly, we will begin, describing the symmetric and asymmetric cryptography and the
differences between them as an introduction before the cryptographic hash functions.

Cryptographic hash functions are important tool of modern cryptography. Their
importance was first perceived with the invention of public key cryptography (PKC) by
Diffie – Hellman and they became an important part of computer security.

 These functions provide message integrity and they make sure that the receiver is
receiving the content that the sender has already sent without the message has been
modified. It is a mathematical operation that it is easy to perform, but extremely difficult
to reverse. They take the arbitrary length input and produce a small output, called hash.
It is designed to act as a one-way function, where you can put data into a hashing
algorithm and get a unique string. The hash value can be described like a digital
fingerprint of a message or a file, because two different messages cannot hash the
same hash value. It is exactly like a person who has only one fingerprint and a small
change in the message lead to totally change in the digest value. This is the reason
why, nowadays, the hash functions are so useful for different applications such as
digital signatures, password protection etc.

There is security properties that a hash function is expected to preserve in order to
avoid attacks. Attacking a hash function means breaking one of the security properties
of the hash functions, focusing on structure of them or on algorithm of compression
function.

Many systems and application have to ensure in express access to information and
objects in large network databases. When the fastest possible direct search is craved
we usually apply hashing.

1.1 Motivation and objective

The main objective of this paper is to describe hash functions and more precisely to
describe an order preserving minimal perfect hash function with a three- step algorithm
for generating minimal perfect hash functions with the mapping- ordering- searching
scheme. This algorithm captures the movement of a node which is moving in the three-
dimensional space (x,y,z) in which it is located, and gives the opportunity to the
recipient to perceive, to where the node moved depending on the values received. In
order to achieve a framework with the above requirements we have to study the below:

 To study the basic cryptographic techniques

 To study the modern cryptographic techniques that are used in the networks

 To learn the concepts of transferring information securely

 To study the most well-known attacks on existing hash functions

Location Based Security in Mobile IoT

D. Zisimopoulou 20

 To study the vulnerability of the hash functions

 To study the order preserving minimal perfect hash functions

 To design and explain an order preserving minimal perfect hash function
algorithm

 To study an algorithm which capture the movement of a node in an encrypted
environment

1.2 Thesis structure and reading guide

The following table gives an overview of the research structure of this paper. We begin
with a short introduction in field of cryptography and specifically in symmetric and
asymmetric cryptography. We continue with the cryptographic hash functions, the hash
techniques, and a presentation of the recent hash functions and their designs.

We present the main security properties, the most common attacks and the vulnerability
of the hash functions.

Finally, our proposed framework about secure order preserving minimal perfect hash
function algorithm is described.

Table 1: Thesis Chapter Structure

Chapter Subsections Overview

1. Introduction Motivation and objective

thesis structure reading guide

thesis concept

An introduction of the concept and
main objective of the paper and of its
structure.

2. Introducing
cryptography

Symmetric

Asymmetric cryptography

differences

An introduction to cryptography,
basic elements and the differences
between symmetric and asymmetric
cryptography

3. Message integrity
and digital
signatures

Cryptographic hash functions

Hash techniques

Recent hash functions

MAC

Digital Signatures

A presentation of the cryptographic
hash functions, their techniques and
some recent trends.

Presentation of the MAC and the
Digital Signatures.

4. Hash functions
security Analysis

Security properties

Attacks on hash functions

Vulnerability analysis

A presentation of the security
properties, the most common attacks
and the vulnerability analysis of
them.

5. OPMPHF
approaches

Order preserving minimal perfect
hash function

Related OPMPHF’S

A presentation of an order preserving
minimal perfect hash function

6. Proposed Secure
OPMPHF Algorithm

Mapping- Ordering- Searching
Scheme

The Proposed Algorithm

Technical summaries for Privacy-
preserving proximity- based security
systems for location based services

Simulation of the proposed
algorithm.

A proximity- based authentication
key generation strategy, without
involving any trusted authority

A dynamic privacy- preserving key
management scheme

7. Conclusion Conclusion and future work Conclusion and future work

Location Based Security in Mobile IoT

D. Zisimopoulou 21

1.3 Thesis concept

In chapters 2-3 of this thesis we describe the properties and uses of hash functions in
order to be efficient and we present the classification of hash functions, categorized
them as keyed or unkeyed on the basis of the criterion whether they may or may not be
the use of a key for designing a hash function. Secretly keyed hash functions are
usually used to build Message Authentication Codes (MAC), with the canonical example
is HMAC.

In the second part different modes of constructing a hash function are represented,
such as Merkle- Damgård construction, HAIFA construction, Sponge construction,
Wide- Pipe construction and Tree Based construction. It is also discussed few existing
popular hash functions like MD5, SHA-1, SHA-2, BLAKE, Whirlpool etc. In addition,
some of recent hash functions designs are described such as Whirlpool, JH Hash,
Blake-256, Blake2,SHA-3 (Keccak), Streebog and KangarooTwelve, that are using the
new modified design architecture.

We provide a discussion about the three classical hash function security properties in
chapter 4, which are collision resistance, pre- image resistance and second pre- image
resistance, explaining the goals of security and the most common attacks that exist on
hash functions and the vulnerability of them.

In the chapters 5-6 we discuss about minimal perfect hash functions that preserving the
order of the key, and we describe an algorithm for finding an order preserving minimal
perfect hash function with the use of Mapping, Ordering, Searching Scheme (MOS)
where a node send the area in which it is located and the recipient to perceive, to where
the node moved depending on the values received.

In chapter 6, we describe a proximity- based authentication key generation strategy,
without involving any trusted authority, pre-shared secret or public key infrastructure for
mobile users in Wireless Networks and a dynamic privacy- preserving key management
scheme for location – based services in vehicular ad hoc networks (VANETs).

Location Based Security in Mobile IoT

D. Zisimopoulou 22

2 INTRODUCING CRYPTOGRAPHY

2.1 Overview

The importance of information and communication systems for society globally is
intensifying with the increasing value and quantity of data that is transmitted and stored
on those systems. Those systems and data are also increasingly vulnerable to a variety
of threats, such as unauthorized access and use, misappropriation, alteration and
destruction. To hide any data and keep safe information, the technique that is mainly
used is Cryptography.

Cryptography is the science of secret writing with the goal of hiding the meaning of the
message [1]. In addition, it can be stated that is the science of protecting data and
provide methods of converting data into an unreadable form, so that only the valid user
can access information with the using of mathematics to encrypt and decrypt data [2].

Cryptography separated into three main sections, Symmetric Ciphers, Asymmetric
Ciphers and Cryptographic Protocols. Symmetric and Asymmetric Ciphers can be
treated as constituent elements wherewith secure internet communication can be
achieved. As a cryptographic protocol we can quote as an example the Transport Layer
Security (TLS) which is used in every Web browser [3].

Figure 1: Overview of the field of Cryptography [3]

Prior to the beginning we describe some terms that are commonly used in the science
of cryptography, as we describe below:

Plaintext is called the information we need to hide and it is about the original text which
it could be in a form of characters, numerical data or any kind of information. For
example the plaintext is the sending of a message in the sender before encryption, or it
is the text at the receiver after decryption [2].

Cipher text is called the data that will be transmitted. It’s a term refers to the string of
‘meaningless’ data, or unclear text that nobody must understand, except the recipients
[2].

Cipher is the algorithm that is used to transform plaintext to cipher text. This method is
called encryption, stating differently, it is a procedure of converting readable and
understandable data into a ‘without meaning’ data [2].

The key is an input to the encryption algorithm, and this value must be independent of
the plaintext. This input is used to transform the plaintext into cipher text, so different
keys will produce a different cipher text. In the decipher side, the inverse of the key will

Location Based Security in Mobile IoT

D. Zisimopoulou 23

be used inside the algorithm instead of the key. There are two different types of keys
the private key and the public key [2].

Computer security is a generic term for a collection of tools designed to protect any
data from hackers, corruption or natural disaster while allowing these data to be
available to the users at the same time. The NIST Computer Security Handbook defines
the term as follow: ‘The protection afforded to an automated information system in order
to attain the applicable objectives of preserving the integrity, availability, and
confidentiality of information system resources (includes hardware, software, firmware,
information/data, and telecommunications)’ [4].

Network security refers to any activity designed to protect the usability, integrity,
reliability and safety of data during their transmission on a Network [2].

Internet security is measures and procedures used to protect data during their
transmission over a collection of interconnected networks, while information security is
about how to prevent attacks, and to detect attacks on information- based systems [3].

Thanks to the use of cryptography many goals can be accomplished. These goals can
be either all achieved at the same time in one application or only one of them. These
goals are assigned as below:

Confidentiality: it is the main focus, that ensures that nobody can understand the
received message except the one who has the decipher key [2].

Authentication: is the process of providing the identity that assures the communicating
entity is the one that it claimed to be. This implies that the user or the system can prove
their own identities to other parties who do not have personal knowledge of their
identities [2].

Data Integrity: ensures that the received message has not been changed in any way
from its original form. The data may get modified by an unauthorized entity intentionally
or accidently. Integrity service confirms that whether data is intact or not since it was
last created, transmitted, or stored by an authorized user. This can be achieved by
using hashing at both sides the sender and the recipient in order to create a unique
message digest and compare it with the one that received [2].

Non-Repudiation: it is a mechanism used to prove that the sender really sent this
message, and the message was received by the specified party, so the recipient cannot
claim that the message was not sent. For example, once an order is placed
electronically, a purchaser cannot deny the purchase order, if non-repudiation service
was enabled in this transaction [2].

Access Control: it is the process of preventing an unauthorized use of resources. This
goal controls who can have access to the resources, if one can access, under which
restrictions and conditions the access can be occurred, and what is the permission level
of a given access [2].

Location Based Security in Mobile IoT

D. Zisimopoulou 24

Figure 2: Computer security requirements [2]

2.2 Symmetric Cryptography

Symmetric cryptography is also referred as symmetric- key, secret key and single- key
cryptography. In symmetric key cryptography a secret key may be held by one person
or exchanged between the sender and the receiver of a message. If private key
cryptography is used to send secret messages between two parties, both the sender
and the receiver must have a copy of the secret key.

Figure 3: Symmetric Cryptosystem [2]

A Symmetric encryption scheme has five components Plaintext, Encryption Algorithm,
Secret Key, Cipher-text and Decryption Algorithm. The Secret Key is shared by both,
the sender and the receiver which they must have obtained in a secure fashion &
should keep the key hidden, lest anyone who finds the key would be able to extract the
hidden message. The Symmetric encryption was the only type of encryption in use prior
to the development of Public-Key encryption in the 1970s. It remains by far the most
widely used of the two types of encryption [2]. It was in use way before the computer
era, and can be traced back to the ancient Rome & Egypt. The ciphers which were in
use before the advent of the computers are termed as the classical encryption

Location Based Security in Mobile IoT

D. Zisimopoulou 25

algorithms. They were all very intriguing & worked on texts, but now we have bits &
bytes [3].

There is a risk with hidden messages that somebody finds the hidden message and
exposes it to unfriendly parties. This is especially the case for regular communications.
Eventually the idea arose to encrypt messages so that they cannot be read even if
intercepted and this has led to the development of cryptography. Ciphers allow parties
to securely communicate by encrypting their messages with some secret knowledge
(the secret key) into unreadable cipher text that can only be read by parties that
possess the same secret knowledge. This form of encryption using a single secret key
known to both sender and receiver is called symmetric encryption. [2]

Authentication of messages, the act of confirming that a message really has been sent
by a certain party, usually was achieved by a combination of inspecting the message

(e.g. verify its signature). Symmetric encryption also provides some form of
authentication. After all, no one else knows the secret key and is able to encrypt
messages with it. However, this does not prevent the encrypted message from being
purposely changed or simply repeated at an opportune moment by unfriendly parties. In
general, authentication of the sender of something is achieved through mutual
knowledge (such as a secret password), possession of a physical token (such as the
king’s seal) and/or distinguished marks (such as a known birthmark) [3],[2].

2.2.1 Symmetric-key cryptography ciphers

There are two generous classes of Symmetric encryption techniques block ciphers or
stream ciphers.

A block cipher enciphers input in blocks of plaintext as opposed to individual
characters, the input form used by a stream cipher. A block cipher is a deterministic
algorithm operating on fixed-length groups of bits, called blocks, with a uniform
transformation that is specified by a symmetric key. Block ciphers operate as important
elementary components in the design of many cryptographic protocols, and are widely
used to implement encryption of bulk data. Nowadays they are used in many secure
Internet protocols, including PGP (for secure e-mail), SSL (for securing TCP
connections), and IPsec (for securing the network-layer transport) [5].

The following diagram describes block ciphers based general construction of a
compression function for hash functions:

Figure 4: Simple design of block cipher based hash functions compression function [5]

Nowadays there are a number of well-known block ciphers, including DES (standing for
Data Encryption Standard), 3DES, and AES (standing for Advanced Encryption
Standard). Each of these algorithms also uses a string of bits for a key.

Location Based Security in Mobile IoT

D. Zisimopoulou 26

 For example, DES, which stands for Data Encryption Standard, used to be the most
popular block cipher worldwide. The DES algorithm became a standard in the US in
1977. However, it's already been proven to be vulnerable to brute force attacks and
other cryptanalytic methods. DES is a 64-bit cipher that works with a 64-bit key.
Actually, 8 of the 64 bits in the key are parity bits, so the key size is technically 56 bits
long.

AES or Advanced Encryption Standard is the most widely used block cipher in the
world. It has a block size of 128 bits and supports three possible key sizes - 128, 192,
and 256 bits. The longer size of the key, the stronger the encryption. However, longer
keys also result in longer processes of encryption [5].

Figure 5: An example of block cipher [5]

A stream cipher is a symmetric key cipher where plaintext digits are combined with a
pseudorandom cipher digit stream (keystream). In a stream cipher, each plaintext digit
is encrypted one at a time with the corresponding digit of the keystream, to give a digit
of the cipher text stream. Since encryption of each digit is dependent on the current
state of the cipher, it is also known as state cipher. In practice, a digit is typically a bit
and the combining operation an exclusive-or (XOR). Stream ciphers are designed to
approximate an idealized cipher, known as the One-Time Pad [5].

The One-Time Pad, can potentially achieve "perfect secrecy" and it's supposed to be
fully immune to brute force attacks. But there is a problem with the one- time pad. The
problem is that, in order to create such a cipher, its key should be as long or longer than
the plaintext [5].

RC4, which stands for Rivest Cipher 4, also known as ARCFOUR or ARC4, is the most
widely used of all stream ciphers. RC4 steam chiphers have been used in various
protocols like WEP and WPA (both security protocols for wireless networks) as well as
in TLS. Although recent studies have revealed vulnerabilities in RC4, prompting Mozilla
and Microsoft to recommend that it be disabled where possible [5].

2.3 Asymmetric Cryptography

Whitfield Diffie and Martin Hellman, researchers at Stanford University, first publicly
proposed asymmetric encryption in their 1977 paper, "New Directions in Cryptography".

Location Based Security in Mobile IoT

D. Zisimopoulou 27

Asymmetric cryptography, also known as public key cryptography, uses two different
keys to encrypt and decrypt data, the public key and the private key. The keys are
simply large numbers that have been paired together but are not identical (asymmetric).
The public key can be shared with everyone and the private key is kept secret. In the
two-key system is also known as the public key system, one key encrypts the
information and another, mathematically related key decrypts it. The computer sending
an encrypted message uses a chosen private key that is never shared and so is known
only to the sender. If a sender first encrypts the message with the intended receiver’s
public key and again with the sender’s secret private key, then the receiver may decrypt
the message, first using its secret key and then the sender’s public key. Using this
public-key cryptographic method, the sender and receiver are able to authenticate one
another as well as protect the secrecy of the message.

Figure 6: Asymmetric Cryptosystem [2]

The two participants in the asymmetric encryption are the sender and the receiver.
First, the sender obtains the receiver's public key. Then the plaintext is encrypted
with the asymmetric encryption algorithm using the recipient's public key, creating
the ciphertext. The ciphertext is then sent to the receiver, who decrypts the
ciphertext with his private key so he can access the sender's plaintext. Because of
the one-way nature of the encryption function, one sender is unable to read the
messages of another sender, even though each has the public key of the receiver.

So, securely sending a message to someone is possible without first exchanging a
secret key in advance anymore, as you simply encrypt your message with his public
key as found in the listing. Only a specific participant can now decrypt the cipher text
using the private key known only to him. This invention, builds on the fact that no
one can derive the private key from the public key [6].

2.3.1 RSA algorithm

RSA (Rivest-Shamir-Adleman) is the most common used asymmetric algorithm. This is
fixed in the SSL/TSL protocols which are used to provide communications security over
a computer network. RSA derives its security from the computational difficulty of

Location Based Security in Mobile IoT

D. Zisimopoulou 28

factoring large integers that are the product of two large prime numbers. Multiplying two
large primes is easy, but the difficulty of determining the original numbers from the
product forms the basis of public key cryptography security. The time it takes to factor
the product of two sufficiently large primes is considered to be beyond the capabilities of
most attackers, excluding nation-state actors who may have access to sufficient
computing power. RSA keys are typically 1024- or 2048-bits long, but experts believe
that 1024-bit keys could be broken in the near future, which is why government and
industry are moving to a minimum key length of 2048-bits [7].

RSA makes extensive use of arithmetic operations using modulo-n arithmetic. Recall
that x mod n simply means the remainder of x when divided by n. In modular arithmetic,
one performs the usual operations of addition, multiplication, and exponentiation.
However, the result of each operation is replaced by the integer remainder that is left
when the result is divided by n. Adding and multiplying with modular arithmetic is
facilitated with the following handy facts:

[(a mod n) + (b mod n)] mod n = (a + b) mod n

[(a mod n) – (b mod n)] mod n = (a – b) mod n

[(a mod n) • (b mod n)] mod n = (a • b) mod n

It results from the fact that (a mod n) d mod n = ad mod n.

There are interrelated components of RSA:

 The choice of the public key and the private key

 The encryption and decryption algorithm.

To generate the public and private RSA keys, we have the following steps:

1. Choose two large prime numbers, p and q. The larger the values, the more difficult it
is to break RSA, but the longer it takes to perform the encoding and decoding.

2. Compute n = p q and z = (p – 1)* (q – 1).

3. Choose a number, e, less than n, that has no common factors (other than 1) with z.
(In this case, e and z are said to be relatively prime.) The letter e is used since this
value will be used in encryption.

4. Find a number, d, such that ed– 1 is exactly divisible (that is, with no remainder) by z.
The letter d is used because this value will be used in decryption. Put another way,
given e, we choose d such that ed mod z = 1

5. The public key is the pair of numbers (n, e) and the private key is the pair of numbers
(n, d).

The encryption by A and the decryption by B are done as follows:

• Suppose A wants to send B a bit pattern represented by the integer number m (with m
< n). To encode, A performs the exponentiation mᵉ, and then computes the integer
remainder when me is divided by n. In other words, the encrypted value, c, of A’s
plaintext message, m, is c = mᵉ mod n

The bit pattern corresponding to this ciphertext c is sent to B.

• To decrypt the received ciphertext message, c, B computes m = cᵈ mod n which
requires the use of his private key (n,d) [5], [7].

Location Based Security in Mobile IoT

D. Zisimopoulou 29

2.3.2 Elliptic curve Cryptography

Elliptic curve Cryptography (ECC) is an alternative to RSA for implementing public key
cryptography. ECC is a public key encryption technique based on elliptic curve theory
that can create faster, smaller, and more efficient cryptographic keys. ECC generates
keys through the properties of the elliptic curve equation. To break ECC, we have to
compute an elliptic curve discrete logarithm, and it turns out that this is a significantly
more difficult problem than factoring. As a result, ECC key sizes can be significantly
smaller than those required by RSA yet deliver equivalent security with lower computing
power and battery resource usage making it more suitable for mobile applications than
RSA.

The typical application for asymmetric cryptography is authenticating data through the
use of digital signatures. Based on asymmetric cryptography, digital signatures can
provide assurances of evidence to the origin, identity and status of an electronic
document, transaction or message, as well as acknowledging informed consent by the
signer. The SSL/TSL cryptographic protocols for establishing encrypted links between
websites and browsers also make use of asymmetric encryption [7].

2.4 Differences between Symmetric and Asymmetric Cryptography

The main difference between these two methods of encryption is that asymmetric
encryption algorithms makes use of two different keys, one key to encrypt the data and
another key to decrypt it while symmetric encryption uses the same key to perform both
the encryption and decryption functions.

Second difference is the length of the keys. In symmetric cryptography, the length of the
keys is typically set at 128-bits or 256-bits, depending on the level of security that's
needed. However, in asymmetric encryption, there has to be a mathematical
relationship between the public and private keys. Asymmetric keys need to be much
longer to offer the same level of security. The difference in the length of the keys is so
pronounced that a 2048-bit asymmetric key and a 128-bit symmetric key provide just
about an equivalent level of security. Finally, asymmetric encryption is slower than
symmetric encryption, which has a faster execution speed.

Location Based Security in Mobile IoT

D. Zisimopoulou 30

Figure 7: Symmetric vs Asymmetric encryption [8]

Generally we can summarize the differences between the symmetric and asymmetric
encryption to the table below:

Table 2: the differences between the symmetric and asymmetric encryption

Symmetric Encryption Asymmetric Encryption

The same algorithm and the same key
is used for encryption and decryption.

One algorithm is used for encryption and
decryption with a pair of keys, one for
encryption and one for decryption.

The sender and the receiver must share
the algorithm and the key.

The sender and the receiver must each
have one of the matched pair of keys (not
the same one)

The key must be kept secret. One of the two keys must be kept secret.

Knowledge of the algorithm plus samples
of ciphertext must be insufficient to
determine the key.

Knowledge of the algorithm plus samples
of ciphertext plus one of the keys must be
insufficient to determine the other key.

Location Based Security in Mobile IoT

D. Zisimopoulou 31

3 MESSAGE INTEGRITY AND DIGITAL SIGNATURES

An equally important cryptography topic is the message integrity also known as
message authentication. In this chapter, we will describe a popular message integrity
technique that is used by many secure networking protocols. In addition we have to
discuss another important topic in cryptography, the cryptographic hash functions [5].

3.1 Cryptographic Hash Functions

Hashing is a method of cryptography that converts any form of data into a unique string
of text. It is a mathematical operation that is easy to perform, but extremely difficult to
reverse. These functions take an arbitrary length input and produce a small output. This
output is known as message digest or hash code or simply hash. Any piece of data can
be hashed, regardless of the data’s size, type or length. It is designed to act as a one-
way function, where you can put data into a hashing algorithm and get a unique string.
The hash value can be thought like a digital fingerprint of a message or file, because
two different messages/ files cannot have the same hash value. It is exactly the same
like a person who has only one unique fingerprint. The hash output depends on each
character of input, so a small change in the message will lead to totally different digest
value. This message digest is treated as a signature of that message.

 For this reason hash functions are an indispensable tool in different types of
applications such as digital signatures, Pseudo- Random Functions, Message
Authentication, Data Integrity, password protection etc. [9], [10].

Figure 8: Working Mechanism of One Way Hash Function [9]

A generic cryptographic hash function has two inputs: the message it’s going to
compress or hash (x) & a public key (s) that represents the fixed-length output of our
hash in alphanumeric characters. Our hashed result is termed the message digest or
simply digest (x*).

This looks like the following:

H(s,x) = x*

3.1.1 History

Commonly used hashing algorithms include Message Digest (MDx) algorithms, such as
MD5, and Secure Hash Algorithms (SHA), such as SHA-1 and the SHA-2 family that
includes the widely used SHA-256 algorithm. The recent attacks on MD4, MD5, SHA-0
and SHA-1 have enforced research in designing new cryptographic hash functions of
existing ones. A lot of issues were announced about techniques for efficiently collisions

Location Based Security in Mobile IoT

D. Zisimopoulou 32

in MD5 and SHA-1 , and it is nowadays clear that the MD5 and SHA-1 are not as strong
as we need and there was a requirement to shift towards in new hash functions with
improved designs [11], [12].

The way of the new approach was based on designing new hash functions from
scratch. The hash functions, like SHA-1 and MD5 have been for many years the most
famous until 2005 when Wang et al. [13] found that collisions for MD5 can reducing the
effort to find collisions on SHA-1 to 269 [13], [12].

Although a break with complexity of 269 is theoretical, it showed that SHA-1 is not as
strong and collision-resistant as it is supposed to be. That’s the reason why the National
Institute of Standards and Technology (NIST) announced an open competition in order
to select a new hash functions standard, to be named SHA-3 [14].

For this competition the 5 finalist candidates were BLAKE, Grøstl, JH, Keccak and
Skein and the competition ended on October 2, 2012 when the NIST announced that
Keccak would be the new SHA-3 hash algorithm [15].

As a consequence of this competition, both the theory and practice of hash functions
will make a significant step forward [16].

3.1.2 Properties and uses of hash functions

Hashing algorithms must have the following properties in order to be efficient: They are
deterministic, meaning that the same message always results in the same hash.

It is quick to compute the hash value for any given message.

it is practically infeasible to generate a message that yields a given hash value

a small change to a message should change the hash value so extensively that the new
hash value appears uncorrelated with the old hash value

It is infeasible to find two different messages with the same hash value

It must have very low probability of collisions.

Nowadays, hash functions are used for many different purposes. The average user
encounters hashing daily in the context of passwords. In crypto currency blockchains
today, we use hashing in order to write new transactions, timestamp them and add a
reference to them in the previous block. For example, running a decentralized network
such as Bitcoin requires both trustlessness and verification efficiency. A critical part of
their security involves being able to compress large chunks of information into a short
message standard, which can be efficiently verified if need be, known as hash [11], [12].

File verification

An important application of secure hashes is verification of message integrity. When we
compare the hash digests over the message before and after calculation, transmission
can determine whether any changes have been made to the message or the file.

Password verification

https://www.wikiwand.com/en/Deterministic_algorithm

Location Based Security in Mobile IoT

D. Zisimopoulou 33

Password verification relies on cryptographic hashes. If we store all user passwords as
clear text, this can result in a massive security breach if the password file is
compromised. A way that the danger can be reduced is to store the hash digest of each
password. For the authentication of a user, the password presented by the user is
hashed and then compared with the stored hash. A password hash requires the use of
a large random, non- secret salt value which can be stored with the password hash. The
salt randomizes the output of the password hash, making it impossible for an adversary
to store tables of passwords and precomputed hash values to which the password hash
digest can be compared.

Digital Signature

The purpose for which cryptographic hash functions were originally designed is input
preparation for digital signatures. The message is compressed using a hash function
and the fingerprint is the input to the digital signature algorithm. The message is
considered authentic if the signature verification succeeds given the signature and
recalculated hash digest over the message. So the message integrity property of the
cryptographic hash is used to create secure and efficient digital signature schemes. The
attack of the digital signature can be happened if the hash function can be abused.

 Figure 9: Use of Hash Function in Digital Signature [9]

Message Authentication Codes (HMAC)

An extra use of hash functions is for the authentication of high- speed message
between parties who share a common secret. This can be done with the use of HMAC
framework, where H is the hash function, K is the shared secret and M is the message
to be authenticated [9].

𝐻𝑎𝐹𝑢(𝐾1 + 𝑜𝑢𝑡𝑝𝑢𝑡-𝑝𝑎𝑑𝑑𝑖𝑛𝑔, 𝐻𝑎𝐹𝑢(𝐾1 + 𝑖𝑛𝑝𝑢, 𝑋))

Where HaFu is the hash function

K1 is the secret key shared between sender and receiver

X is the message to be authenticated

Pseudo- Random Functions

Location Based Security in Mobile IoT

D. Zisimopoulou 34

Hash functions are often used as pseudo- random functions. They provide a
deterministic mechanism for generating random- seeming bit streams from some input
source without any information about the input. After a Diffie- Hellman exchange, a
typical use is generating cipher keying material [17].

Data Fingerprinting

Hash functions can be used to produce fingerprints generally. Instead of digitally signing
these fingerprints, the values are stored separately from the data and this permits later
detection of changes to the original data [18], [19], [20].

3.1.3 Keyed and Unkeyed Hash Functions

Hash functions can be classified as Keyed or Unkeyed, based on whether the hash
function is using a type of key or not in the processing. [21].

Keyed hash functions make use of a key in the process of generating a hash value.

Therefore, these functions require two specific inputs: (1) a message of arbitrary finite-
length, and (2) a key of specific length. The fundamental approach behind this is that, if
adversary does not know the key, he must not be able to forge the message. Such type
of hash functions are also known as Message Authentication Codes (MAC). Output of
MAC depends on both – the message and the key [22].

The definition of keyed hash functions is below:

“The map HASH :{0,1}* ×{0,1}n →{0,1}m is said to be a keyed hash function with m -bit
output and n -bit key if H is a deterministic function that takes two inputs, the first of an
arbitrary length, the second of n -bit length and outputs a binary string of length m -bits.
Where both n, m are positive integers. {0,1}m and {0,1}n are the sets of all binary strings
of length m and n respectively and {0,1}* is a set of all finite binary strings. Keyed hash
function or MACs are majorly concerned with message integrity and source
authentication both”[23].

 Unkeyed hash functions do not use any key as input to generate hash value. The
majority of hash functions are unkeyed hash functions. By appending the digest to the
message during the transmission, these hash functions are used for error detection.
The error can be diagnosed if the digest of the received message at the receiving end is
not equal to the received message digest.

The definition of unkeyed hash functions is below:

“The map H :{0,1}* →{0,1}m is said to be an unkeyed hash function with m –bit output if
H is a deterministic function that takes an arbitrary length message as input and outputs
a binary string of length m -bit. The notations m, {0,1}m and {0,1}* are similar as that of
used in Definition of Keyed Hash Functions.

The Unkeyed hash functions may further be classified into categories, named as- One-

Way Hash Function (OWHF) and Collision Resistant Hash Function (CRHF). But, still a
hash function must possess both qualities- one-way and collision resistance”[23].

Location Based Security in Mobile IoT

D. Zisimopoulou 35

Figure 10: Simplified Broad Categories of Cryptographic Hash Function [24]

3.2 Hash Techniques

In this section many construction methods are explained. Hah functions that we use
today are based on these constructions methods and we will describe and analyze the
design of them.

3.2.1 Design of new Hash Functions

 Merkle–Damgård construction

In 1989, The Merkle–Damgård construction was described by Ralph Merkle and Ivan
Damgård, who independently proved that if an appropriate padding scheme is used and
the compression function is collision-resistant, then the hash function will also be
collision-resistant too [23]. A hash function built with the Merkle–Damgård construction
is as resistant to collisions as is its compression function. Any collision for the full hash
function can be traced back to a collision in the compression function. In order to make
the construction secure, Merkle and Damgård proposed that messages be padded with
a padding that encodes the length of the original message. Firstly, applies an MD-
compliant padding function to create an input whose size is a multiple of a fixed number.
The hash function then breaks the result into blocks of fixed size, and processes them
one at a time with the compression function, each time combining a block of the input
with the output of the previous round. The last block processed should also be
unambiguously length padded. Most common hash functions, including SHA-1, MD5,
JH- Function, Streebog, take this form [25].

Location Based Security in Mobile IoT

D. Zisimopoulou 36

Figure 11: The Merkle- Damgård hash construction [23]

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝐌𝐃𝐟

𝑀 → 𝑀1 ⋯ 𝑀𝑙

𝑦0 = 𝐼𝑉

for i = 1 to l do

𝑦𝑖 = 𝑓(𝑀𝑖, 𝑦𝑖−1)

return 𝑦𝑙

Figure 12: Merkle- Damgård Padding algorithm [23]

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝐏𝐚𝐝𝒔(𝑴)

𝑑 = 𝑀 + 1 + 64 𝑚𝑜𝑑 𝑚

𝑀‖1‖0𝑑〈𝑀〉64 → �̂�

�̂� → 𝑀1 ⋯ 𝑀𝑙

Figure 12 illustrates the padding algorithm, where L is a 64-bit encoding of the the
length of the message and m is the length of a single block. The message is then
iterated repeatedly by calling a Fixed- Input-Length (FIL) compression function f : {0,1}n
× {0,1}m → {0,1}n accepting two inputs: a message block Mi (of length m) and either an

Location Based Security in Mobile IoT

D. Zisimopoulou 37

Initialisation Vector IV (when hashing the first block) or a chaining variable (which is the
output of the previous f call), both of length n.

Message Digest 5 (MD5)

MD5 is a hash function designed by Ronald L. Rivest in 1992 as a more strength
version of MD4. Taking an arbitrary length input message, the MD5 produces a single
output of 128-bit length message digest. The input message is divided to multiple blocks
of 512 bits each [26].

Figure 13: MD5 Hash Function 80]

Secure Hash Function 1 (SHA-1)

Secure Hash Algorithm (SHA-1) is based on MD4 , and was proposed by the U.S.
National Institute for Standards & Technology (NIST) in 1995 for certain U.S federal
government applications. The SHA-1 produces a single 160-bit length output from an
arbitrary length input message. The input message is divided to multiple blocks each of
512 bits. Each message block is represented as a sequence of sixteen 32-bit words
[27].

Figure 14: SHA-1 Hash Function [80]

Location Based Security in Mobile IoT

D. Zisimopoulou 38

Secure Hash Function 2 (SHA-2)

SHA-2 family is a set of Cryptographic Hash Function (SHA-224, SHA-256, SHA- 384,
SHA-512, SHA-512/224 and SHA-512/256) designed by the U.S. National Security
Agency (NSA). SHA-2 consists of a set of six hash functions with digests that are 224,
256, 384 or 512 bits. For SHA-224 and SHA- 256, each message block has 512 bits,
which are represented as a sequence of 32-bit words. For SHA-384 and SHA-512, each
message block has 1024 bits, which are represented as a sequence of 64-bit words.
SHA-224 and SHA-256 operate on 32-bit words and SHA-384 and SHA-512 operate on
64-bit words. SHA-256 and SHA-512 are novel hash functions which use different shift
amounts and additive constants, but their structures are otherwise virtually identical,
differing only in number of rounds. SHA-224 and SHA-384 are simply the truncated
versions ofSHA-256 and SHA-512 respectively. SHA-512/224 and SHA-512/256 are
also truncated version of SHA-512 but the initial values are generated using the method
described in FIPS PUB 180-4 [27].

Figure 15: SHA-256 Hash Function [80]

 HAIFA construction

The HAIFA construction (hash iterative framework) is a cryptographic structure
designed by Eli Biham and Orr Dunkelman in 2007. It is one of the modern alternatives
to the Merkle–Damgård construction, avoiding its weaknesses like length extension
attacks. For example Blake-256 takes this form [28].

HAIFA modifies Merkle-Damgård by introducing extra input parameters to the
compression function. Those parameters are a salt value (used as a key to create
families of hash functions - if only one hash function is needed, the salt is set to 0), and
the number of bits hashed so far. In fact, HAIFA can be considered a dedicated-key
hash function [29]. The idea of adding additional input parameters to the compression
function has been previously proposed by Rivest through a process called dithering
[30], though a second pre-image attack against dithered hash functions was reported by

Location Based Security in Mobile IoT

D. Zisimopoulou 39

Andreeva et al. in [31]. An obvious drawback of HAIFA is efficiency degradation since
the compression function now has more input parameters to process. Furthermore,
HAIFA cannot be (easily) used to patch existing Merkle-Damgård based hash functions
because a compression function designed for the Merkle-Damgård construction would
not naturally accommodate the extra HAIFA parameter inputs.

Figure 16: The HAIFA construction [29]

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝐇𝐀𝐈𝐅𝐀𝒔
𝒉

 𝑀 → 𝑀1 ⋯ 𝑀𝑙

𝑦0 = 𝐼𝑉

for i = 1 to l do

𝑦𝑖 = 𝑓(𝑀𝑖, 𝑦𝑖−1, 𝑏𝑖, 𝑠)

return 𝑦𝑙

 Sponge construction

This construction is totally different in design than Merkle-Damgård, and it’s about a
new and promising hashing construction [32]. In sponge hashing we have two phases,
the first one is the absorbing phase and the second one is the squeezing phase.

A sponge construction is any of a class of algorithms with finite internal state that take
an input bit stream of any length and produce an output bit stream of any desired
length. A sponge function is built from three components:

 A state memory, S, containing b bits,

 A function f: {0,1}b
{0,1}b that transforms the state memory (often it is a

pseudorandom permutation of the 2b state values)

 A padding function P

The state memory is divided into two sections: one of size r (the bitrate) and the
remaining part of size c (the capacity). These sections are denoted R and C
respectively.

Location Based Security in Mobile IoT

D. Zisimopoulou 40

The padding function appends enough bits to the input string so that the length of the
padded input is a whole multiple of the bitrate, r. The padded input can thus be broken
into r-bit blocks. The sponge construction can also be used to build practical
cryptographic primitives. For example, Keccak cryptographic sponge with a 1600-bit
state has been selected by NIST as the winner in the SHA-3 competition [32].

Figure 17: The sponge construction for hash functions [33]

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝐒𝐩𝐧𝐠𝒏
𝒑

 𝑀 → 𝑀1 ⋯ 𝑀𝑙

𝑟 = 0, 𝑐 = 0

for i = 1 to l do

𝑝(𝑟 ⊕𝑀𝑖 , 𝑐) = (𝑟, 𝑐)

for i = 1 to l do

𝑌 = 𝑌 ‖𝑟

𝑝(𝑟, 𝑐)

return Y

As we notice before, the Sponge construction is totally different from the Merkle-
Damgård, so the generic attacks that we have already discuss are not applicable in this
construction. However, that does not mean that the sponge construction is not
susceptible to other to other kinds of attacks like slide attack. An obvious disadvantage
of sponge construction is that their relatively large states slows down the full diffusion of
bits, hence the sponge construction may be more suitable for hashing large messages.

Secure Hash Function 3 (SHA-3)

After several successful collision attacks which were progressively reduced in
complexity (such as MD5, SHA-1 and SHA-2), NIST, in the Federal Register,
announced a public competition to develop SHA-3, a completely new hashing algorithm.
In 2007, the announcement for the initiative was published. Then, four years later, on
October 2nd, 2012, the winner of the competition Keccak, was announced. In 2014,
NIST considered SHA-3 as a standard hash function. However, this algorithm is
susceptible to first collision-finding attacks [34], [35]. On the other hand, the algorithm
shows relatively low software performance compared to other hash functions [36].

Location Based Security in Mobile IoT

D. Zisimopoulou 41

 Wide- Pipe Construction

One construction for hash function, which is called Wide- Pipe construction, was
proposed as an improvement over Merkle- Damgård construction, by Stefan Lucks [33].
Its structure is quite similar to that of Merkle- Damgård design, but it has larger internal
state size. Lucks [33] suggested that Joux [37]and length extension are mainly based
on Internal collisions and internal collisions can be avoided if we widen the internal pipe
from n bits to w >= n bits.

 If a hash of n bits is desired, then two compression functions f1, f2 will be required:

 f1 : {0,1}w X{0,1}m
 {0,1}w

 f2 : {0,1}w X{0,1}n

Then wide pipe iterated hash is constructed like this:

 For i = 1,, L : Computer Hi = f1 (Hi-1 , Mi)

 Finally Set H(M) = f2 (HL)

Compression function f1 takes w bits (generally w = 2n) of chaining value and m bits of
message (M) and compressed this to an output of w bits and in the last another
compression function f2, compresses the last internal hash value (w bits) to the final
hash value (n bits). SHA- 224 and SHA-384 are based on the same design.

Figure 18: the Wide Pipe Hash Construction [33]

This structure is analogous to that of Merkle–Damgård construction with the only
exception that its constitutional state size is large, due to which its internally used bit-
length is also larger than Wide-pipe construction’s output bit-length. The compression
operation g takes 2n-bits of chaining variable and n bits of the message and
compresses this to an output of 2n bit to produce a hash of n bits. Finally, one more
compression function is used that compresses the final 2n bit long internal digest to the
final hash value (n bits). Half of the last 2n-bit-output is simply abandoned. For example
SHA- 224 derived from SHA- 256 and SHA-384 derived from SHA-512 and takes this
form.

Mridul Nandi and Souradyuti Paul [38] established that the Wide pipe hash function can
be made around two times faster. And for this, the wide pipe state should be split into
two same parts as follows: first part should be given as input to the next compression

Location Based Security in Mobile IoT

D. Zisimopoulou 42

operation while the second part should be linked with the output of first part’s
compression operation. The important idea behind this design of hashing is to feed-
forward half of the previous chaining value and then to XOR it to the result of the
compression operation. While doing this in each of the iteration, the input message
blocks to construction becomes longer than the original wide pipe construction method.
Using the same function g as before, it takes c-bit chaining value and c + m bit of the
message. However, this construction method demands extra memory to be used for
feed-forward step. Lucks further suggested that to widen the internal state, the double
pipe hash functions may also be used as an alternative approach. Two parallel
iterations are processed in this approach. These two iterations can be initialized with
different initialization vectors or they can use different compression functions or they
can even iterate the message blocks in different permutations. Finally, the outputs of the
two iterations are mixed to get the final digest value.

 Tree- based Hash Functions

The Tree based hash functions are the most collocate category of hash constructions
and they are firmly applicable for multi-core platforms in which various processors can
independently but simultaneously perform on various parts of the message.

In this way, firstly the message is broken into blocks, and after individually
randomization they are combined by an XOR type of operation. This structure can be
used for building incremental functions at the same time its structure is similar to a two-
level tree and it may be parallelized because of independence of the randomization
process of the individual blocks. Different threads or processors are made responsible
for this independence. Major limitation of Tree-based constructions is their non-
suitability for low-end platforms like smart cards, because of this iterative functions are
more popular and more usable. Skein [39] and MD6 [40] hash functions (SHA-3
candidates) provide a tree hashing mode.

Figure 19: Tree- Based Hash Constructions [64]

3.3 Recent Hash Functions

Most of the hash functions are not enough safe from attacks. Nowadays, the aim of
researchers is to find new hash functions probably with totally new designs. Some of
recent hash functions designs such as Whirlpool, JH Hash, Blake-256, Blake2, SHA-3
(Keccak), Streebog and Kangaroo Twelve, that are using the new modified design
architecture.

Location Based Security in Mobile IoT

D. Zisimopoulou 43

3.3.1 Whirlpool Secure Hash Function

Whirlpool is a cryptographic hash function that was designed by Vincent Rijmen and
Paulo Barreto in 2000 and has been recommended by the NESSIE project. It is block
cipher based secure hash algorithm, where block ciphers have disadvantages such as
they are slow, but Whirlpool provides security and performance as good as hash
functions based on non- block ciphers. Whirlpool takes a message of any length less
than 2256 bits and returns a 512- bit message. This hash function is a Merkle–Damgård
construction based on an AES like block cipher W [41] Because the output length is
more than of SHA-1, we have a stronger result.

The Whirlpool hash function is given as:

H0= initial value

Hi = E(H i-1, Mi) + H i-1 + Mi

Hi = hash code value

The dedicated 512-bit block cipher W [K]: M 8×8[GF (28)] M 8×8 [GF(28)],
parameterized by the 512-bit cipher key K, and it operates on a state of 4*16 bytes of
Rijandeal. It becomes slow in speed, due to more numbers of rounds.

Whirlpool has good performance in terms of execution speed and can work with lesser
memory requirements, because it does not require excessive storage space. It can be
efficiently implemented in constrained environments like smart cards. Furthermore, it
does not use expensive instructions for the building of the processor. The mathematical
simplicity of the primitive resulting doing analysis easier. Finally, it has a very long hash
length that provides protection against birthday attacks and offers a larger internal state
of entropy containment, as needed for pseudo-random number generators [42].

3.3.2 JH Hash Function

JH Hash function was designed by Hongjun Wu to be submitted to NIST hash
competition, in 2008. There are four JH hash algorithms, JH-224, JH-256, JH-384, JH-
512, constructed from the same compression function. It processes message blocks of
512 bits and generates hash of 224,256,384,512 bits. This hash function is a Merkle–
Damgård construction also, based on a generalized AES design methodology.

Location Based Security in Mobile IoT

D. Zisimopoulou 44

Figure 20: the JH compression function structure [43]

In each iteration the compression function f is used to update the chaining value of 1024
bits as follows: Hi = f (Hi-1, Mi), where Hi-1 is the previous value, Mi is the current
message block. The compression function f is given as:

 f (Hi-1 , Mi) = E (Hi-1 + Mi ΙΙ 0512) + 0512 ΙΙ

 Mi where E is a permutation of 1024 bits, and 0512 means the string of 512 ‘0’ bits.

For c≤ n/2, JH Hash Function using an ideal n bit permutation and producing c- bit
outputs by truncation is collision resistant up to O (2 C/2). This bound implies that JH
function provides the optimal collision resistance in the random permutation model. JH
Hash functions are very efficient in S/W. With bit slice implementation using SSE2, the
speed of JH is about 16.8 cycles/byte on Intel Core2 Duo microprocessor, running 64-
bit Operating System, with Intel C++ compiler [44]

The simple JH compression function structure reduces the cost of security evaluation
with respect to differential cryptanalysis. Because of enough confusion and diffusion
after message modification, it is secure against differential attacks. We notice that it is
resistant to second pre-image attack because we use 1024 bit hash value for JH- 512
while the reversible property of compression function is being taken into consideration.

3.3.3 BLAKE-256

Blake-256 hash function was developed by Jean- Philippe Aumasson, Luca Henzen,
Willi Meier and Raphadel Phan in 2008 to be submitted as a competitor in NIST SHA-3
competition [45] The core BLAKE-256 compression function takes, as an input, 512
bits/16 words/64 bytes of message data, 256 bits/8 words/32 bytes of chaining value,
128 bits/4 words/ 16 bytes of salt, and additionally a counter that is 64 bits/2 words/8
bytes. A series of XORs, rotations and modular additions are used for generating new
chaining values. Its compression function takes 512 bit input and 128 bit salt to produce
128 bit output by applying an invertible nonlinear transformation composed of 14
rounds, and each round uses a non-linear permutation G. It accepts four of 32 bit
words, two message words and two constant words. It leads the simplicity of algorithm
and performs fastly on software and hardware. As all of the blake-based algorithms,
Blake 256 is based on and uses ChaCha stream cipher developed by Dan Bernstein.
However, Blake 256 provides some additional features, like adding a rearranged copy
of the input block, XORed with several round constants before each round of the
ChaCha cipher. It can work for message less than 264 bit [45].

Location Based Security in Mobile IoT

D. Zisimopoulou 45

Figure 21: The Gi function of BLAKE-256 [46]

3.3.4 Keccak

Kavun and Yalcin reported the lightweight implementations of Keccak- f (200) and
Keccak- f (400) permutations. They are variants of the SHA-3 hash function and the
development of Keccak based on the sponge construction. Best known as a hash
function, it nevertheless can also be used for authentication, (authenticated) encryption
and pseudo-random number generation. Its structure is the extremely simple sponge
construction and internally it uses the innovative Keccak-f cryptographic permutation
[46].

Figure 22: Keccak function [46]

Given an input bit string N, a padding function pad, a permutation function f that
operates on bit blocks of width b, a rate r and an output length d, we have capacity c = b
− r and the sponge construction Z = sponge[f,pad,r](N,d), yielding a bit string Z of length
d, works as follows: [47]

 pad the input N using the pad function, yielding a padded bit string P with a
length divisible by r (such that n = len(P)/r is integer)

 break P into n consecutive r-bit pieces P0, ..., Pn−1

 initialize the state S to a string of b zero bits

 absorb the input into the state: for each block Pi:

 extend Pi at the end by a string of c zero bits, yielding one of length b

 XOR that with S

 apply the block permutation f to the result, yielding a new state S

 initialize Z to be the empty string

Location Based Security in Mobile IoT

D. Zisimopoulou 46

 while the length of Z is less than d:

 append the first r bits of S to Z

 if Z is still less than d bits long, apply f to S, yielding a new state S

 truncate Z to d bits

In SHA-3, the state S consists of a 5 × 5 array of w-bit words (with w=64), b = 5 × 5 × w
= 5 × 5 × 64 = 1600 bits total. Keccak is also defined for smaller power-of-2 word sizes
w down to 1 bit (total state of 25 bits). Small state sizes can be used to test cryptanalytic
attacks, and intermediate state sizes (from w = 8, 200 bits, to w = 32, 800 bits) can be
used in practical, lightweight applications [48],[32].

3.3.5 Streebog

Streebog is a family of two hash algorithms, Streebog-256 and Streebog-512, defined in
the Russian national standard GOST R34.11-2012 Information Technology -
Cryptographic Information Security - Hash Function. Streebog operates on 512-bit
blocks of the input, using the Merkle–Damgård construction to handle inputs of arbitrary
size. The high-level structure of the new hash function resembles the one from GOST R
34.11-94, however, the compression function was changed significantly.

The compression function operates in Miyaguchi–Preneel mode and employs a 12-
round AES-like cipher with a 512-bit block and 512-bit key. (It uses an 8×8 matrix of
bytes rather than AES's 4×4 matrix.)

Streebog-256 uses a different initial state than Streebog-512, and truncates the output
hash, but is otherwise identical [49].

Figure 23: Streebog function [50]

Wang, et al, describe a collision attack on the compression function reduced to 9.5
rounds with 2176 time complexity and 2128 memory complexity [51].

Ma, et al, describe a preimage attack that takes 2496 time and 264 memory or 2504
time and 211 memory to find a single preimage of GOST-512 reduced to 6 rounds.
They also describe a collision attack with 2181 time complexity and 264 memory
requirement in the same paper [52].

Location Based Security in Mobile IoT

D. Zisimopoulou 47

 Guo, et al, describe a second preimage attack on full Streebog-512 with total time
complexity equivalent to 2266 compression function evaluations, if the message has
more than 2259 blocks [50].

3.3.6 Kangaroo Twelve

Kangaroo Twelve is a fast and secure extendable-output function (XOF), the
generalization of hash functions to arbitrary output lengths. Derived from Keccak, it aims
at higher speeds than FIPS 202's SHA-3 and SHAKE functions, while retaining their
flexibility and basis of security. Kangaroo Twelve is sharing many common features with
SHAKE128, like the sponge construction, the extendable-output function (XOF), and the
128-bit security strength, but except from that it has major improvements.

On high-end platforms, it can exploit a high degree of parallelism, whether using
multiple cores or the single-instruction multiple-data (SIMD) instruction set of modern
processors. On Intel's® Haswell and Skylake architectures, Kangaroo Twelve tops at
less than 1.5 cycles/byte for long messages on a single core, and at 0.55 cycles/byte on
the SkylakeX architecture. On low-end platforms, as well as for short messages, it also
benefits from about a factor two speed-up compared to the fastest FIPS 202.

Kangaroo Twelve is a higher-performance reduced-round (from 24 to 12 rounds)
version of Keccak which claims to have 128 bits of security [53].

3.4 Message Authentication Codes (MAC)

A Message Authentication Code (MAC), is also known as a cryptographic checksum or
a keyed hash function, and it is widely used in practice. MACs share some properties
with digital signatures, and also provide message integrity and message authentication.
In contrast with digital signatures, MACs are symmetric-key schemes and they do not
provide non-repudiation. One benefit of MACs is that they are faster than digital
signatures since they are based on either block ciphers or hash functions.

In cryptography, a message authentication code (MAC), is a short piece of information
used to authenticate a message in different words, to confirm that the message came
from the stated sender (its authenticity) and has not been changed [1],[2].

MAC defined over (K, M,T) is a pair of algorithms (S, V):

S(k, m): returns a message authentication code t which belongs to a set T

V(k, m, t): returns a value true or false depending on the correctness of the received
authentication code where:

 M is a set of all possible messages m,

 K is a set of all possible keys k,

 T is a set of all possible authentication codes t

The simplest way to mark the authenticity of the message is to compute its checksum.
One can attach the result to the transmitted message. The disadvantage of this method
is the lack of protection against intentional modifications in the message content. The
intruder can change the message, then calculate a new checksum, and eventually
replace the original checksum by the new value. An ordinary CRC algorithm allows only
to detect randomly damaged parts of messages (but not intentional changes made by
the attacker).

Location Based Security in Mobile IoT

D. Zisimopoulou 48

We define the message integrity problem using, the A sender and B receiver. Suppose
B receives a message (which may be encrypted or may be in plaintext) and it is
believed that this message was sent by A. To authenticate this message, B needs to
verify:

a. The message indeed originated from A.

b. The message was not tampered with on its way to B. [5]

Figure 24: MAC Algorithm [5]

Properties of Message Authentication Codes

1. Cryptographic checksum A MAC generates a cryptographically secure
authentication tag for a given message.

2. Symmetric MACs are based on secret symmetric keys. The signing and verifying
parties must share a secret key.

3. Arbitrary message size MACs accept messages of arbitrary length.

4. Fixed output length MACs generate fixed-size authentication tags.

5. Message integrity MACs provide message integrity: Any manipulations of a
message during transit will be detected by the receiver.

6. Message authentication The receiving party is assured of the origin of the
message.

7. No nonrepudiation Since MACs are based on symmetric principles, they do not
provide nonrepudiation [1].

3.4.1 HMAC

HMAC is a popular system of checking message integrity. It uses one-way hash
functions to produce unique mac values.

Location Based Security in Mobile IoT

D. Zisimopoulou 49

Figure 25: HMAC [5]

The input parameters ipad and opad are used to modify the secret key. They may have
various values assigned. It is recommended to choose the values that would make both
inputs to the hash functions look as different as possible. Using a secure hash function
guarantees the security of the HMAC algorithm. Nowadays, the HMAC algorithm is
used in many systems, including some popular Internet protocols (SSL, IPsec, SSH) [1].

3.5 Digital Signatures

Digital signatures are one of the most important cryptographic tools and they are widely
used nowadays. A digital signature is a mathematical scheme for verifying the
authenticity of digital messages or documents. There must be a number of prerequisites
satisfied in order a digital signature become valid. The digital signature gives to the
recipient very strong reason to believe that the message was created by a known
sender (authentication), and that the message was not altered in transit (integrity).

Applications for digital signatures range from digital certificates for secure e-commerce
to legal signing of contracts to secure software updates. Together with key
establishment over insecure channels, they form the most important instance for public-
key cryptography.

As with conventional hand-written signatures, only the person who creates a digital
message must be capable of generating a valid signature. In order to achieve this with
cryptographic primitives, we have to apply public-key cryptography. The basic idea is
that the person who signs the message uses a private key, and the receiving party uses
the matching public key.

https://en.wikipedia.org/wiki/Data_integrity

Location Based Security in Mobile IoT

D. Zisimopoulou 50

Figure 26: Basic Digital Signature Protocol

A signed message can unambiguously be traced back to its originator since a valid
signature can only be computed with the unique signer’s private key. Only the signer
has the ability to generate a signature on his behalf. Hence, we can prove that the
signing party has actually generated the message [1], [2],[7].

Figure 27: Digital Signature

3.5.1 El- Gamal Digital Signature Scheme

El- Gamal digital signature is the asymmetric approach of authentication mechanism. It
is based on discrete logarithm and uses β as the universally known random number that
serves as the generator, u as the universally known prime number that serves as the
modulus, H() as the universally hash function [2], [54], [55], [56] .

As with Diffie–Hellman, the global elements of Elgamal are a prime number q and

a, which is a primitive root of q. User A generates a private/public key pair as follows:

Location Based Security in Mobile IoT

D. Zisimopoulou 51

1. Generate a random integer XA, such that 1 < XA 6<q - 1.

2. Compute 𝑌𝐴 = 𝑎
𝑋𝐴𝑚𝑜𝑑 𝑞

3. A’s private key is XA and A’s public key is {q, a, YA}.

Any user B that has access to A’s public key can encrypt a message as follows:

1. Represent the message as an integer M in the range 0 ≤ M ≤ q - 1.

Longer messages are sent as a sequence of blocks, with each block being an integer

less than q.

2. Choose a random integer k such that 1 ≤ k ≤ q - 1.

3. Compute a one-time key 𝐾 = 𝑌𝐴
𝑘𝑚𝑜𝑑 𝑞

4. Encrypt M as the pair of integers (C1, C2) where

 𝐶1 = 𝑎
𝑘𝑚𝑜𝑑𝑞 𝐶2= 𝐾𝑀 𝑚𝑜𝑑𝑞

User A recovers the plaintext as follows:

1. Recover the key by computing 𝐶1
𝑋𝐴𝑚𝑜𝑑 𝑞

2. Compute 𝑀 = (𝐶2𝐾
−1) 𝑚𝑜𝑑 𝑞

These steps are summarized in Figure 28. Alice generates a public/private key pair;
Bob encrypts using Alice’s public key; and Alice decrypts using her private key.

Let us demonstrate why the Elgamal scheme works. First, we show how K is

recovered by the decryption process:

𝐾 = 𝑌𝐴
𝑘𝑚𝑜𝑑 𝑞 𝐾 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠

𝐾 = (𝑎𝑋𝐴𝑚𝑜𝑑 𝑞) 𝑚𝑜𝑑 𝑞 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑑𝑒 𝑢𝑠𝑖𝑛𝑔 𝑌𝐴 = 𝑎
𝑋𝐴𝑚𝑜𝑑 𝑞

𝐾 = 𝑎𝑘𝑋𝐴𝑚𝑜𝑑 𝑞 𝑏𝑦 𝑡ℎ𝑒 𝑟𝑢𝑙𝑒𝑠 𝑜𝑓 𝑚𝑜𝑑𝑢𝑙𝑎𝑟 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐

𝐾 = 𝐶1
𝑋𝐴𝑚𝑜𝑑 𝑞 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑑𝑒 𝑢𝑠𝑖𝑛𝑔 𝐶1 = 𝑎

𝑘𝑚𝑜𝑑𝑞

Next, using K, we recover the plaintext as

𝐶2 = 𝐾𝑀 𝑚𝑜𝑑 𝑞

(𝐶2𝐾
−1)𝑚𝑜𝑑 𝑞 = 𝐾𝑀𝐾−1𝑚𝑜𝑑 𝑞 = 𝑀 𝑚𝑜𝑑 𝑞 = 𝑀

We can restate the Elgamal process as follows, using Figure 28.

1. Bob generates a random integer k.

2. Bob generates a one-time key K using Alice’s public-key components YA, q and k.

3. Bob encrypts k using the public-key component a, yielding C1. C1 provides
sufficient information for Alice to recover K.

4. Bob encrypts the plaintext message M using K.

5. Alice recovers K from C1 using her private key.

6. Alice uses K-1 to recover the plaintext message from C2.

Location Based Security in Mobile IoT

D. Zisimopoulou 52

Figure 28: El- Gamal Cryptosystem [2]

Thus, K functions as a one-time key, used to encrypt and decrypt the message.

For example, let us start with the prime field GF (19); that is, q = 19. It has

Primitive roots {2, 3, 10, 13, 14, 15} We choose a = 10.

Alice generates a key pair as follows:

1. Alice chooses XA = 5.

2. Then 𝑌𝐴 = 𝑎
𝑋𝐴𝑚𝑜𝑑 𝑞 = 𝑎5𝑚𝑜𝑑 19 = 3

3. Alice’s private key is 5 and Alice’s public key is {q, a, YA} = {19, 10, 3}.

Suppose Bob wants to send the message with the value M = 17. Then:

1. Bob chooses k = 6.
2. Then K = (YA)k mod q = 36 mod 19 = 729 mod 19 = 7.
3. So C1 = ak mod q = a6 mod 19 = 11

Location Based Security in Mobile IoT

D. Zisimopoulou 53

C2 = KM mod q = 7 * 17 mod 19 = 119 mod 19 = 5

4. Bob sends the ciphertext (11, 5).

For decryption:

1. Alice calculates K = (C1) XA mod q = 115 mod 19 = 161051 mod 19 = 7.

2. Then K-1 in GF (19) is 7-1 mod 19 = 11.

3. Finally, M = (C2
K-1) mod q = 5 * 11 mod 19 = 55 mod 19 = 17.

Figure 29: El- Gamal Digital Signature Scheme [2]

3.5.2 RSA Digital Signature Algorithm

This technique uses modulo arithmetic to sign a message digitally. Let B (sender) sends
the message to A (receiver). This technique considers the public key of B and hash
function H() is universally known [55].

 Firstly, B performs the following:

i. Selects two prime numbers, U and V

ii. Computes NB = U. V

iii. Selects PB such that PB has no division (factors) in common with [(U-1)
(V-1)]

iv. Calculates the secret key SB such that SB PB = 1 mod [(U-1) (V-1)]

The public key set of B contains N and PB, using which B creates the signature
of the message.

v. B hashes the msg [h= H(msg) h is the hash of the message msg]

vi. B creates the digital signature [sign = h SB mod NB where sign is the
signature]

Once the signature is created, B sends (msg, sign) to A.

vii. A uses the H() to obtain the h’ (hash’) [h' = H(msg')]

Location Based Security in Mobile IoT

D. Zisimopoulou 54

viii. A decrypts the signature to retrieve its hash (h) [h = signPB mod Nb]

ix. Alice finally checks if : h = h'

x. If the match is found in the hash value retrived and the hash value
calculated, then A confirms the authenticity and integrity of the
message along with the signature, else it is rejected.

3.5.3 Digital Signature Algorithm (DSA)

Digital signature algorithm is generated using various parameters like the private key x,
per message secret key number k, data to be signed, and the hash function. Similarly it
is verified using various parameters like the public key y which is mathematically
calculated from x, the data to be verified and the same hash function used during
signature generation [57].

The parameters used are as follows:

 p – a prime modulus

 q – a prime divisor of (p-1)

 g – a generator of the sub group of order q mod p.

 x - the private key is an randomly selected integer within the range [1, q-1].

 y – the public-key obtained through y = gx mod p.

 k – the per message secret key (unique to each message) obtained randomly
within the range [1,q-1].

Let N be the bit length of q. Let min (N, outlen) denote the minimum of the positive
integers N and outlen, where outlen is the bit length of the hash function output
block. The signature of message M contains pair of numbers r and s obtained using:

 r = (gk mod p) mod q.

 z = the leftmost min(N, outlen) bits of Hash(M).

 s = (k-1 (z + xr)) mod q.

Once the signature (r,s) is generated, A may transmit message M, and (r,s) to B. Let
M’, r’ and s’ be the transmitted version of M, r and s.

To verify the signature B will perform the following steps:

i. B shall check that 0 < r' < q and 0 < s'< q; if any one of the condition is
violated, the signature is rejected.

ii. If both the conditions in step-i are satisfied, B computes- w = (s')–1 mod q,
where (s')–1 is the multiplicative inverse of s’ mod q

Location Based Security in Mobile IoT

D. Zisimopoulou 55

z = the leftmost min(N, outlen) bits of Hash(M').

u1 = (zw) mod q.

u2 = ((r')w) mod q.

v = (((g)u1 (y)u2) mod p) mod q.

iii. If v = r', then the signature is accepted else rejected.

3.5.4 Elliptic Curve Digital Signature Algorithm

This is the elliptic curve cryptographic version of Digital Signature Algorithm (ECDSA).
This algorithm operates based on combination of three algorithms, key generation,
signature generation and signature verification.

The key pair of an user (say A) is associated with a specific set of EC domain
parameters D= (q, FR, a, b, G, n, h), where: E is an elliptic curve defined over Fq; P is a
point of prime order n in E(Fq); q is a prime; FR is the Field Representation which is an
indication for representation used for the elements of Fq; a and b are the two field
elements in Fq which define the equation of the elliptic curve E over Fq'.

 two field elements xG and yG in Fq which define a finite point G=(xG, yG) of prime order
in E(Fq); the cofactor h= #E(Fq)/n [58].

Figure 30: Elliptic Curve Digital Signature Algorithm [58]

3.5.5 Elliptic Curve ElGamal Digital Signature Scheme

Elliptic Curve Cryptography can be combined with ElGamal Digital signature algorithm
to generate EC ElGamal Digital Signature Scheme. Entity A selects a random integer kA
from the interval (1, n-1) as the private key and computes the public key, A = kA G [59].

Location Based Security in Mobile IoT

D. Zisimopoulou 56

i. Select random interger k from the interval (1, n-1).

ii. Compute R= kG = (xR, yR) where r = xR mod n; if r = 0 go to step i.

iii. Compute e = h(M), where h is the hash function {0,1}* Fn

iv. Compute s = k-1 (e + rkA) mod n; if then go to step i. (R,s) is the
signature of message M. A sends the signature and the message to B
for verification.

B performs the following to verify the signature: Verify that s is an integer in

 (1, n-1) and R = (xR, yR) ε E(Fq)

i. Compute V1 = sR

ii. Compute V2 = h (M)G + rA, where r = xR

iii. If V1 = V2, then the signature is accepted by B, else declared as
invalid.

Location Based Security in Mobile IoT

D. Zisimopoulou 57

4 HASH FUNCTIONS SECURITY ANALYSIS

4.1 Security properties

There are three properties a hash function is expected to preserve. These three
properties are collision resistance, pre-image resistance and 2nd pre- image resistance.

Figure 31: Security properties collision resistance, pre-image resistance, 2nd pre-image resistance
[25], [60], [61]

The input to a secure hash function is called the pre-image and the output is called the
image. A hash function collision is two different inputs (pre-images) which result in the
same output. A hash function is collision-resistant if an adversary can’t find any
collision. A hash function is pre-image resistant if, given an output (image), an
adversary can’t find any input (pre-image) which results in that output. A hash function
is second-pre-image resistant if, given one pre-image, an adversary can’t find any other
pre-image which results in the same image.

4.1.1 Collision – Resistance (CR)

Collision resistance is a property of cryptographic hash functions. A hash function H is
collision resistant if it is difficult to find two inputs that hash to the same output. For
example, any two inputs a and b such that H(a) = H(b), while a ≠ b. Collision resistance
does not mean that no collisions exist but simply is hard to find [25].

 A family of functions {hk : {0, 1}m(k) → {0, 1}l(k)} generated by some algorithm G is a
family of collision resistant hash functions, if |m(k)| > |l(k)| for any k, i.e., hk compresses
the input string, and every hk can be computed within polynomial time given k, but for
any probabilistic polynomial algorithm A, we have

Pr [k ← G(1n), (x1, x2) ← A(k, 1n) s.t. x1 ≠ x2 but hk(x1) = hk(x2)] < negl(n),

Where negl (·) denotes some negligible function, and n is the security parameter [60].

4.1.2 Pre- image Resistance (Pre)

Given a hash h it should be hard to find any message m such that h = hash (m). This
concept is related to that of the one-way function. Functions that lack this property are
vulnerable to pre-image attacks. So hash functions should be computationally non-

Location Based Security in Mobile IoT

D. Zisimopoulou 58

invertible, that means that when a message is hashed, it should be infeasible to retrieve
the original message from which the hash value was obtained.

4.1.3 2nd Pre- image Resistance (Sec)

Given an input m1, it should be hard to find another input, m 2 (not equal to m1) such
that hash(m1)=hash(m2). This property is sometimes referred to as weak collision
resistance. Functions that lack this property are vulnerable to second pre-image attacks.
The best attack against hash should be the brute force attack [61].

A graphical representation of the above attacks is shown in Figure 29 to help
understand the concepts better.

Figure 32: Different Types of Attacks on Hashing Algorithms

4.2 Attacks on Hash Functions

As per definition attacking a hash function means breaking one of the security
properties of the hash functions. Attacks may focus on structure of hash function or on
algorithm of compression function. As we can see in the figure below, from the
classification of the attacks on Hash functions, hash functions can be classified on
classifications based on properties and classifications based on attacking methodology.

Location Based Security in Mobile IoT

D. Zisimopoulou 59

Figure 33: Classification of attacks on Hash Functions [62]

4.2.1 Tree Based Attack

Tree based hash functions are able to be made parallel for hash constructions and
these are pertinent for multi-core platforms in which various processors can
independently but simultaneously perform on various parts of the message. The first
who suggested an early tree-based mode of operation, was Damgård [63], and Pal and
Sarkar [64] advanced it. Equivalently, this way was also used by Rogaway and Bellare
[61] who they designed non-keyed one-way hash functions along with Naor and Yung
[65] but it could not be proved stronger than collision-resistant hash functions.
Micciancio and Bellare [66] in they designed the way randomize- and- combine in which
first the message is broken into blocks, and after separately randomization they are
combined by an XOR type of operation.

This structure can be used for constructing accumulative functions, simultaneous its
structure is similar to a two-level tree and it may be parallelized because of
independence of the randomization process of the individual blocks. Different threads or
processors are in charge for this independence. Extensive limitation of Tree-based
constructions is their inappropriateness for low-end platforms such as RFID and smart
cards, because of these iterative functions are more well-known and more working.
Along with repetitive structure, Skein [39] and MD6 [40]hash functions also follow a tree
hashing mode.

Location Based Security in Mobile IoT

D. Zisimopoulou 60

Figure 34: Tree- Based Hash Construction [64]

4.2.2 The most common attack - Brute Force Attack

Brute force attacks work on all hash functions independent of their structure and any
other working details. They are similar to exhaustive search or brute- force key recovery
attacks on the encryption schemes to extract the secret key of the encryption scheme.
The security of any hash function lies in its output bit size. For a hash code of length n,
the level of effort required to resist different brute force classical attacks on hash
functions is as follow:

Pre-image attack: Effort required for brute force attack = 2n. In this attack, for a given
n-bit digest h of the hash function H(), the attacker evaluates H() with every possible
input message M until the attacker obtains the value h.

2nd Pre-image attack: Effort required for brute force attack = 2n. In this attack, for a
given message M and the hash function H(), the attacker tries H() with every possible
input message M' ≠ M until the attacker obtains the value H(M).

Collision attack: Effort required for brute force attack= 2n/2. In this attack, for a given
hash function H, the attacker tries to find two messages M and M' such that M ≠ M' and
H(M) = H(M'). On average the opponent would have to try 2n/ 2 (= 2n-1) messages to
find one that matches the hash code of the intercepted message. However a chosen
plain text attack (based on Birthday Paradox) is possible and in that case the effort
required for collision in a Hash function is 2n/2 in place of 2n-1. It is also referred as
Birthday Attack [22].

 Multi- Preimage Attack

We briefly study about the multi- Preimage attack on Tree- based Hash functions. We
can define the following attack for a Hash Function H : {0,1} * {0,1}n .

Given a Random y є {0,1}n, find a subset C = { X1,…,Xr} of size r (≥1) such that

H(X1)= …=H(Xr)= y.

The complexity for multi-preimage attack for a random function is Ω(r2n) where for a
Tree based hash function there is a r- way preimage attack which complexity is O (2n/2).
We have to mention that is very similar with the Multicollision attack and for what we are
looking for is output value as given image y, and not finding the last collision. The last
step’s complexity is O(2n) which transcend to the complexity r2n2n/2 of Multicollision
attack.

Location Based Security in Mobile IoT

D. Zisimopoulou 61

4.2.3 Merkle Damgård Construction

 Joux’s Multicollision Attack

A. Joux [71] found an algorithm to construct a 2r-multicollision set on a classical iterated
hash function, having time complexity O(r 2n/2), which is a considerable improvement
over the birthday attack. There is a 2r-way collision attack for the classical iterated hash
function based on a compression function, f : {0, 1}n+n’ {0, 1}n, where the attack has
complexity O(r 2n/2). This complexity is much less than the complexity for the
generalized birthday attack.

This is the basic idea of Joux’s attack. Consider the set of n-tuples {0, 1}n. We use the
notation h h ' (a labeled arc) to mean f (h ,m) = h', where |h| = |h’| = n and |m| = n'.
The strategy of Joux’s attack is to first find r successive collisions by performing r
successive birthday attacks, as follows:

𝑧0
𝑦1
2

→ 𝑧1 𝑎𝑛𝑑 𝑧0
𝑦1
2

→ 𝑧1 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑧1 𝑤ℎ𝑒𝑟𝑒 𝑦1
1 ≠ 𝑦1

2

𝑧0
𝑦2
2

→ 𝑧1 𝑎𝑛𝑑 𝑧1
𝑦2
2

→ 𝑧2 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑧2 𝑤ℎ𝑒𝑟𝑒 𝑦2
1 ≠ 𝑦2

2

⋮

𝑧𝑟−1
𝑟
→ 𝑧𝑟 𝑎𝑛𝑑 𝑧𝑟−1

𝑦𝑟
2

→ 𝑧𝑟 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑧𝑟 𝑤ℎ𝑒𝑟𝑒 𝑦𝑟
1 ≠ 𝑦𝑟

2

𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑠𝑒𝑡

{𝑦1
1, 𝑦1

2} 𝑥 {𝑦2
1, 𝑦2

2} 𝑥 ⋯𝑥{𝑦𝑟
1, 𝑦𝑟

2}

 𝑖𝑠 𝑎 2𝑟 −𝑚𝑢𝑙𝑡𝑖𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛

Figure 35: Joux’s Multicollision Attack [67]

 Second Preimage Attack on Merkle Damgård Construction

Kelsey and Kohno in 2006, published a generic second preimage attack for long
messages against the Merkle Damgård Scheme. The attack complexity is 2 n-k

compression function calls if the original given message is 2k – block long.

We will describe the diamond structure. A diamond structure of size l is a multicollision
with the shape of a tree of depth l with 2l leaves. The tree nodes are labeled by the n-bit
chaining values, and the edges are labeled by the m-bit message blocks. A message

Location Based Security in Mobile IoT

D. Zisimopoulou 62

block is mapped between two evolving states of the chaining value by the compression
function f. Thus, there is a path labeled by the l message blocks from any one of the 2 l
starting leaf nodes that leads to the same final chaining value h at the root of the tree
[68].

Figure 36: 2nd pre-image attack on Merkle –Damgård [68]

For the new second preimage attack, let Μ be a target message of length 2k blocks.
The main idea of the attack is that connecting the target message to a precomputed
collision tree of size l can be done with 2 n-l computations. In addition, connecting the
root of the tree to one of the 2k chaining values encountered during the computation of
Η f (M) takes only 2 n-k compression function calls. Since a diamond structure can be
computed in time much less than 2 n, we successfully launch a second preimage
attack. The attack works in four steps. The messages M’ and Μ are of equal length and
hash to the same value before strengthening, so they produce the same hash value
with the added Merkle-Damgård strengthening. The first step allows for precomputation
and its time and space complexity is about 2(n+l)/2+2. The second step of the attack is
carried out online with 2 n-k work, and the third step takes 2 n-l works. The total time
complexity of the attack is then 2(n+l)/2+2 precomputation and 2 n-k + 2 n-l online
computations and their sum is minimal when l= (n-4)/3 for a total of about 5* 2 2n/3 +2
n-k computations [31].

Location Based Security in Mobile IoT

D. Zisimopoulou 63

Figure 37: Representation of New Attack on Standard Merkle- Damgård [31]

4.2.4 HAIFA Construction

 State- recovery attack HMAC with HAIFA

Firstly, we will describe the first internal state- recovery attack HMAC with HAIFA
construction. The attack has a complexity of O ̃(2l-s) using messages of length 2s, but
this only applies with s ≤ l/5, and the lowest complexity we can have is 24l/5 [69].

The detailed attack is as follows:

Fix a message C of length 2s. Query the oracle with 2u messages Mi = [i] ║ C.

Build an online diamond filter for the set of unknown states X, obtained after Mi.

Starting from 2t arbitrary starting points, iterate the compression function with the fixed
message C.

Test each image point x’, against each of the unknown states of X. If a match is found,
then with high probability the state reached after the corresponding Mi is x’.

Figure 38: State- recovery attack HMAC with HAIFA [70]

Complexity analysis

 In Step 3, we match the set X of size 2u and a set of size 2t. We compare 2t+u pairs of
points, and each pair collides with probability 2s−l. The attack is successful with high

Location Based Security in Mobile IoT

D. Zisimopoulou 64

probability if t + u ≥ l− s. We now assume that t = l − s − u, and evaluate the complexity
of each step of the attack:

Step 1: 2s+u/2+l/2

Step 2: 2s+t = 2l−u

Step 3: 2t+u· u = 2 l−s· u

The lowest complexity is reached when all the steps of the attack have the same
complexity, with s = l/5. Generally, we assume that s ≤ l/5 and we set u = s.

This give an attack with complexity O (2l−s) since s + u/2 + l/2 = 3s/2 + l/2 ≤ 4l/5 ≤ l − s.

The Second attack that we will describe is short message attack for HMAC with HAIFA.
The attack has a complexity of O ̃(2l-2s) using messages of length 2s, but this only
applies with s ≤ l/10, and the lowest complexity we can have is 24l/5 .

 Short message attack for HMAC with HAIFA

1. Query the oracle with 2u messages Mi = [i] ║ [0]2s, and locate 2c1 collisions. We fix an
arbitrary suffix C of length 2s, and use Mi = [i] ║ C.

2. For each collision (i, j), use a binary search to find the distance μ ij from the starting
point to the collision, and denote the state reach after Mi (or Mj) by yij . Denote the set of
all yij (containing about 2c1 states) by Y. Build an online diamond filter for all the states in
Y.

3. Run a fixed-offset collision search by iterating the compression function with C from
2t starting points.

4. We match each offline collision x, only with online collisions that occur at the same
offset as x. Thus, for each x, we test only the end point of its chain (at offset 2s) with the
corresponding states in Y. Note that each x is matched with 2c1· 2−s states in Y on
average.

Figure 39: Short message attack for HMAC with HAIFA [70]

4.2.5 Sponge Construction

 Slide attacks on “extended” sponge constructions

Assume that H is an iterative hash function with an internal state of c words of p-bit
each and a final output size of n bits. Let M = M1||M2|| · · · ||Ml be the m×p-bit blocks of
the message to hash with Ml ≠ 0m×p (the message is padded before split into blocks).
Let Mi be the message block hashed at each round i and Xi the internal state after

Location Based Security in Mobile IoT

D. Zisimopoulou 65

proceeding Mi, with X0 = IV . We then have Xi = F(S(Xi−1, Mi)), where F is the round
function and S defines how the message is incorporated in the internal state. Once all
the l message blocks have been processed, r blank rounds are applied Xi = F(Xi−1) and
A := Xl+r is the final internal state. Finally, we derivate n output bits by using the final
output function T (Xl+r). Such a hash function can be written as

𝐻(𝑀) = 𝑋0
𝐹(𝑆(𝑋0,𝑀1))

→ ⋯
𝐹(𝑆(𝑋𝑙−1,𝑀𝑙))

→ 𝑋𝑙
𝐹((𝑋𝑙))

→ ⋯
𝐹((𝑋𝑙+𝑟−1))

→ 𝑋𝑙+𝑟
𝑇(𝐴)
→ 𝑇(𝐴),

where TA represents the hash output. In the original model, S introduces the message
blocks by XORing them to particular positions of the internal state. However, in this
situation, we can also consider a function S that replaces some bits of the internal state
by the message bits. In addition, in the original model, the final output function T
continues to apply some blank rounds and extract some bits from the internal state at
the end of each application, until n bits have been received. In this situation we consider
the case where the output bits come from a direct truncation of the final internal state A,
and we call it truncated sponge. There first issue, related to the general design of
sponge functions is invertibility. This means that we can run the function F into both
directions. The second issue is self-similarity, where all the blank rounds behave
identically, and even a normal round can behave as a blank round if we have Xi−1 =
S(Xi−1 , Mi). In the case of a XOR sponge we need Mi = 0 and in the case of an
overwrite sponge we require that Mi is equal to the overwritten part of the internal state.
We will exploit self-similarity for our slide attacks. The idea is that if one message M1
=M1|| . . . ||Ml is the prefix of another message M2 = M1|| . . . ||Ml ||Ml+1, the extended
state after processing the first l blocks is the same. Now, if Xl+1 = S(Xl, Ml+1),
processing the next message block Ml+1 for the longer message is the same as the first
blank round when hashing the shorter message – the extended states remain identical.
We call these two messages a slid pair: the two final internal states are just one
permutation away B := Xjl+r+1 = F(X) (l+r). The slide attack is shown in Figure below:

Figure 40: A slide attack on Hash Functions

Once we were able to generate a slid pair, we need to detect it. This fully depends on
the output function T. When T is defined as in the original sponge framework, it is very
easy to detect a slid pair: most of the output bits will be equal, just shifted by one round.
If T is a truncation, we need to do a case by case analysis depending on the strength of
the round function F and the number of bits thrown away. Yet finding and detecting a
slid pair already allows us to differentiate the hash function from a random oracle. A
step forward from this is by attacking a MAC with prefix key, i.e. MAC (K, M). Note that
such a construction makes sense as using HMAC based on a sponge hash function will

Location Based Security in Mobile IoT

D. Zisimopoulou 66

turn out to be very inefficient. This is due to the fact that hashing very short messages is
quite slow because of the blank rounds. Therefore, Bertoni et al. [28],[71] proposed to
use prefix-MAC instead of HMAC.

Consider a secret key K. For simplicity and without loss of generality, we assume some
K to be a uniformly distributed (k × m × p)-bit random value (i.e. k message words long),

for some public integer constant k. We will write K = (K1, …, Km) ∈ ({0, 1}m×p)k. The
adversary is allowed to choose message challenges Ci, while the oracle replies MAC(K,
Ci) = H(K||Ci). Ideally, finding K in such a scenario would require the adversary to

exhaustively search over the set of all possible K ∈ {0, 1} k×m×p, thus taking 2k×m×p−1 units
of time on average. Forging a valid MAC depends on the size of the hash output and
the size of the key, with a generic attack it requires min{2 k×m×p−1, 2n} units of time. A pair
of challenges (Ci, Cj), with Ci = Ci

1 I ||Ci
2 || · · · ||Ci

l and Cj = Ci ||Cj
l is called a slid pair for

K if their final internal state are slid by one application of the blank round function as:

Xj
k+l+r+1 = F(xi

k+l+r)

Provided that one can generate slid pairs and detect them, one can also try to retrieve
the internal state Xi k+l+r thanks to this information. Again, a case by case analysis is
required here. When Xi k+l+r is known, one can invert all the blank rounds and get Xi

k+l .
Note that with this information, an attacker can directly forge valid MACs for any
message that contains M as prefix (exactly like the extension attacks against MD-based
hash functions). If the round function with the message is also invertible, we can
continue to invert all the challenge rounds and get Xi

k. This will allow us to recover some
non trivial information on the secret key K.

A general outline of the attack is as follows:

1. Find and detect slid pairs of messages
2. Recover the internal state
3. Uncover some part of the secret key or forge valid MACs

The padding is very important. For the XOR sponge functions, an appropriate padding
can avoid slide attacks. Indeed, in that case, we require Ml= 0m×p to get a slid pair. This
gives an explanation why the condition Ml ≠ 0m×p is needed for the indifferentiability
proofs of XOR sponge functions. However, for the truncated sponge function, a padding
is ineffective to avoid slide attacks.

4.2.6 Wide –Pipe Construction

 State recovery

We present an internal-state-recovery attack that is applicable to wide-pipe hash
functions.

We observe that if walk A and walk B follow the structure in Figure 38, then for any
query in the cycle of walk A, denoted as qA, the inner hash value H Kin(qA) is necessarily
equal to some query in the cycle of walk B, denoted as qB. The goal is therefore
to find this query among all qB, all the members of walk B that belong to the cycle.
That means that we want to coordinate the two cycles from walk A and walk B, which
we already know that they have the same length.

Location Based Security in Mobile IoT

D. Zisimopoulou 67

Figure 41: the cycle structure built with access to oracles f Kout◦ fKin and fKin ◦ fKout.

Mainly, even if we know that walk A and walk B have the same length and they are
actually doing the same computations, it seems difficult to synchronize the two cycles
because we do not know where the tail in walk A and in walk B is entering the cycle.
However, in the special case where the collision between walk A and walk B happens in
the tail (and not in the cycle), then we know that the tails are entering the cycle at the

same position n that case, the cycles are directly synchronized and the attacker
knows all the successive hash output values for every computation in the cycle. [72]

Figure 42: Two walks A and B colliding and sharing a cycle. The left example shows
unsynchronized cycles (the collision happens in the cycle, thus ZA≠ZB), the right shows

synchronized cycles (the collision happens before the cycle, in the tails, thus ZA=ZB).

The first and second phases of the attack will be devoted to building a walk A and
walk B with a rather long tail, such that during the third phase there is a good chance
to get a collision between an element of the tail of walk A and an element of the tail
of walk B. In order to recover an internal state, he will focus on one randomly chosen
value belonging to the cycle, denoted qA, and its next hash output qB, with
qB=H(Kin,qA). Then he will try to guess the internal hash value X=h(h(IV,Kin),qA||pad1)
that led to qB, i.e.g (X) =qB. We assume that g(·) is easy to invert (given an output u,
it is easy to find all preimages leading to u) and that it is balanced (given an output
value, there exists 2l−n corresponding input values through g). Inverting g provides
2l−n candidates Xi such that g(Xi) =qB. For each of these candidates, we will apply a

Location Based Security in Mobile IoT

D. Zisimopoulou 68

filter to remove the bad guesses. The filter is based on an offline extension of the
computation of HKin [72].

4.3 Vulnerability analysis of recent hash functions

Generally is preferable to be impossible to break security properties. A hash function is
called broken when there exists a known explicit attack that is faster than the general
attack for a security property. It must be noted that even unbroken hash functions may
be insecure in the real-world. The best known general attack to break Pre, aPre, ePre,
Sec, aSec and eSec is a brute force search, where hashes f(M′) are computed for
randomly chosen messages M′ until a message M′ is found where f(M′) is the target
hash value (and M′ ̸= M for Sec, aSec, eSec). For a hash function (family) with an
output hash size of N bits, this attack succeeds after approximately 2N evaluations of
the hash function. Already for N ≥ 100 this attack is clearly infeasible in the real world
for the present day and near future.

4.3.1 Comparative analysis between (MD5, SHA-1, SHA-2)

Attacks on MD5

In 1993, B. Den Boer and A. Bosselaers found a kind of Pseudo-Collision with
complexity 216 for MD5 which consists of the same message with two different sets of
initial values [73]

In 1996, H. Dobbertin presented a free start collision with complexity 234 for MD5 during
the rump session of EUROCRYPT’96 [74].

In 2005, Wang et.al found collisions with 239 hash operations for MD5 [75].

 In 2013, Xie Tao, Fanbaoliu and Dengguo published an attack that breaks MD5
collision resistance in 218. This attack runs in less than a second on a typical modern
computer [76].

Attacks on SHA-1

In 2005, Biham et al published a theoretical attack on a reduced version of SHA-1(58
out of 80 rounds) which finds collision with a computational effort of 275 operations
(fewer than 280 operations) [11].

In 2005, Wang et. al published an improvement on the SHA-1 attack at the CRYPTO
2005 rump session, lowering the complexity required for finding a collision in SHA-1 to
269 [12].

In 2010 Marc Steven presents an identical prefix collision attack against up to 46 rounds
of SHA-256 attack on SHA-1 with complexities equivalent to approximately
261(theoretical) [77].

Attacks on SHA-2

In 2011, Mario Lamberger and Florian Mendel published the best attack, which is
Pseudo Collision attack against up to 46 rounds of SHA-256 [78].

Location Based Security in Mobile IoT

D. Zisimopoulou 69

Figure 43: Differences in SHA family

It is clear that new hash functions or new methods of employing hash functions are
necessary. Some popular hash functions, which are widely used are MD5, SHA-1 but
after finding collisions in them, the designers focus in the creation of new secure and
faster hash functions. It has been observed that MD5 is fast but proven inadequate, as
now it no longer remains collision resistance. Security of SHA-1 is also questionable. So
in this paper new hash algorithms are proposed like Whirlpool, BLAKE-256, JH Hash,
Keccak, Streebog and Kangaroo Twelve are products of such new generation of hash
functions.

Therefore, it can be concluded that a hash and authenticity, must be designed and
made into a priority.

The MD5, SHA-1, SHA-2 are very popular hash functions. But, after finding collisions in
popular hash functions as MD-5 and SHA-1, focus got shifted towards designing new
secure and faster hashes functions. BLAKE- 256, Whirlpool, JH Hash etc. are products
of such new generation of hash functions. Although they used to follow, more or less,
the same Merkle-Damgård construction, but each of design has modified this
construction for better security and improved performance results, for example JH hash
function has included bit slicing. The designers are also working on modification of
these new designs for better performance, so that, the attacks which are possible as of
now, may not perform in coming times and we may get full-proof hash functions.

4.3.2 Comparison with other functions

Table 3: Survey of the best known attacks on secure hash functions

Nam
e

Yea
r

bits cpb Colission attacks

Safe? comp mem ref

Sec preimage attacks

Safe? comp mem ref

const
ructio
n

MD2 89 128 638 no

2⁶⁴ 2⁰ [79]

yes

2⁷² 2⁷² [75] Merkl
e–

Dam
gård

Snefr
u-2

90 128 ? no 2¹³ 2⁰ [75] no 2²⁵ 2⁰ [75] Merkl
e–

Location Based Security in Mobile IoT

D. Zisimopoulou 70

[75] Dam
gård

MD4 90 128 4.0 no

2² 2⁰ [75]

yes

2⁹⁵ 2³⁸ [80] Merkl
e–

Dam
gård

RIPE
MD

90 128 ? no

2¹⁸ 2⁰ [75]

yes

 Merkl
e–

Dam
gård

MD5 92 128 5.1 no

2²⁴ 2⁰ [81]

yes

2¹²³ 2⁴⁸ [82] Merkl
e–

Dam
gård

HAV
AL-
256-3
[75]

92 256 ? no

2²⁹ 2⁰ [83]

yes

2²²⁵ 2⁶⁸ [44] Merkl
e–

Dam
gård

SHA-
0

93 160 ? no

2³⁴

2⁰

[84] yes

2¹⁸⁹

2⁸

 Merkl
e–

Dam
gård

GOS
T

94 256 ?
may
be

2¹⁰
⁵

2⁰ [71]
yes

2¹⁹² 2⁷⁰ [71] AES
desig

n

SHA-
1

95 160 18 no

2⁶³

2⁰

[43]

yes

 Merkl
e–

Dam
gård

RIPE
MD-
160
[85]

96 160 17
may
be

2⁸⁰

2⁰

yes

Merkl
e–

Dam
gård

Tiger
[86]

96 192 6.2 yes

yes

2¹⁸⁹

2⁸

[28]

Merkl
e–

Dam
gård

Pana
ma
[87]

98 512 2.5 no
2⁶ 2⁰ [79]

yes

Whirl
pool
[41]

00 512 50 yes

yes
 Merkl

e–
Dam

Location Based Security in Mobile IoT

D. Zisimopoulou 71

gård

SHA-
256
[75][8
6]

01 256 19 yes

yes

 Merkl
e–

Dam
gård

Radio
Gatú
n [75]

06 256 ? yes

yes

 ideal
mang
ling

functi
on

Skein
[75]

08 256 8.7 yes

yes

 Uniqu
e

Block
Iterati

on

Blake
3 [75]

08 256 17 yes

yes
 Merkl

e tree

Grøst
l [75]

08 256 24 yes

yes
 AES

desig
n

Kecc
ak
(SHA
-3)
[88]

08 256 16 yes

yes

 spon
ge

JH
[77]

08 256 20 yes

yes

 Merkl
e–

Dam
gård

BLAK
E2
[86]

12 256 5.7 yes

yes

 HAIF
A

struct
ure

Stree
bog

12
256/
512

12 yes

yes

 Merkl
e–

Dam
gård

Kang
arooT
welve

16 128 <1,5 yes

yes

 Spon
ge

const
ructio

n

legend:

https://electriccoin.co/blog/lessons-from-the-history-of-attacks-on-secure-hash-functions/#id146

Location Based Security in Mobile IoT

D. Zisimopoulou 72

 bit: the number of bits of output

cpb: cycles per byte [*]

comp: approximate computation required for the attack

mem: approximate memory required for the attack

The main result of this investigation is that there is a big gap between the historical
successes of collision attacks and the almost non-existence successes of pre-image
attacks. This is evidence that a cryptosystem invulnerable to collision attacks is much
safer than one that is vulnerable to collision attacks (regardless of whether it is
vulnerable to pre-image attacks).

Another interesting pattern in these results is that maybe sometime between 1995
(SHA-1) and 2000 (Whirlpool), humanity learned how to make collision-resistant hash
functions, and none of the prominent secure hash functions designed since that era
have succumbed to collision attacks. Maybe modern hash functions like SHA-256, SHA-
3, and BLAKE2 will never be broken.

4.3.3 Summary of Vulnerability Analysis per Hash Construction

Table 4: Vulnerability Analysis per Hash Construction

Attacks/

Construction

Brute
Force
Attack

Pre-
image

2nd
Pre-
ima
ge

Collisio
n

Joux’s
Multicollisi
on

Short
message

State-
recove
ry

Slide

Merkle-
Damgård

HAIFA

Sponge

Wide- Pipe

Tree-Based

The majority of the popular hash functions are based on the famous Merkle –Damgård
construction. As we notice in the table below, several weaknesses are found in this
construction giving raise to a class of generic attacks that is applicable to any hash
function based on the Merkle- Damgård construction.

Brute Force Attack is applicable on all hash functions independent of the structure.

Table 5: the timeline of attacks and their complexity

Location Based Security in Mobile IoT

D. Zisimopoulou 73

Table 6: Feature Comparison of Hashing Algorithms

FEATURES

Hashing Algorithm

MD-5 SHA-1 BLAKE-2

Security Less secure than
SHA-1

More Secure Secure as SHA-3

Length of
message digest

128 bits

160 bits

256 bits or 512 bits

No. of attacks
needed to find
original message

2123.4 bit operations
required [75]

2151.1 bit operations
required [80]

2256 or 2512

(exhaustive search)

Attacks to try and
find two message
producing the
same MD

249.8 bit operations
required [75]

Between 260.3 and
265.3 bit operations

 [75]

2256 or 2256

(exhaustive search)

Speed Faster 60 iterations Slower 80 iterations Faster than SHA
and MD

Successful attacks
reported

YES

YES

NO

Location Based Security in Mobile IoT

D. Zisimopoulou 74

5 ORDER PRESERVING MINIMAL PERFECT HASH FUNCTONS
APROACHES

Many systems and applications have to ensure in express access to information and
objects in large network databases. When the fastest possible direct search is craved
we usually apply hashing.

5.1.1 PHF (Perfect Hash Functions)

We use optimal hashing techniques to make operations as efficient as possible,
providing:

 One-probe access to a record, given its key

 No collisions to be resolved

 Full utilization of hash table space.

When we referred in Optimal speed for hashing means that each key from the key set
will map to a unique location in the hash table thus avoiding time wasted in resolving
collisions. That is achieved with a perfect hash function (PHF), whose operation is
illustrated at the Figure 41 [89].

Figure 44: Perfect Hash Functions [89]

5.1.2 MPHF (Minimal Perfect Hash Functions)

When the hash table has minimal size, i.e. is fully loaded, with ISI=IT|, the hash function
is called minimal. When both properties keep, we can say that we have a minimal
perfect hash function (MPHF) as shown at the bottom of Figure. Note that, in reality, key
set itself is usually neither ordered nor sequential, but can clearly be indexed by the
integers (1.., n–1 for convenience of illustration [89]

Figure 45: Minimal Perfect Hash Functions [89]

Location Based Security in Mobile IoT

D. Zisimopoulou 75

MPHF Algorithm

To facilitate discussion, we give a description of the terminology.

 U: key universe IUI=N.

 S: actual key set S c U, ISI=n<<N.

 T: hashtable IT|=m, m>n.

 h: hash function h:U T

 h is a perfect hash function (PHF): no collisions, h is one-to-one on S.

 h is a minimal perfect hash function (MPHF):no collisions and m=n.

For a given key set S taken from universe U, we desire a MPHF h that will map any key
k in S to a unique slot in hash table T. Actually, Mapping and Ordering steps are
essentials so that the rapid Searching can take place [89]

The (MOS) scheme is illustrated in figure bellow:

Figure 46: Illustration of the Key Concepts [89]

Mapping step converts the problem of hashing keys into a disparate problem, in a
different space. Ordering step concretes the way for searching in the new space, in this
way so the locations can be identified in the hash table. Hashing after that associates
mapping from the keys into the new space, and adopting the results of Searching to find
the proper hash table location [89].

This basic algorithm

 Is a probabilistic algorithm

 Is based on ordering the vertices in a bipartite dependency graph

 Requires expected linear running time

Location Based Security in Mobile IoT

D. Zisimopoulou 76

 Handles large sets containing millions of keys and

 Yields MPHFs of size clog2 n bits per key (0.5 < c < 1).

We have to mention that this Algorithm requires less than one word of specification
space for each key in S. However, this is significantly more space than the theoretical
lower bound, which is roughly 1.5 bits per key [89].

5.1.3 OPMPHF (Order Preserving Minimal Perfect Hash Functions)

While dynamic hashing generally does not preserve the original key ordering, we can
use order-preserving key transformations, which are appropriate for dynamic key sets
as long as the key distributions are or can be made to be stable [GARG86]. In contrast,
we made the very useful assumption that our key sets are static, and investigated
published algorithms for finding minimal perfect hash functions MPHFs [DATT88]).

Our interest focuses on MPHFs that also have the property of preserving the order of
the input key set. To specify what is implied, consider Figure below. A function must be
obtained that maps keys, usually in the form of character strings or concatenations of
several numeric fields, into hash table locations. In brief, the ith key is mapped into the ith
hash table location.

Figure 47: Illustration of the Key Concepts

5.1.4 Order preserving encryption (OPE)

An order-preserving symmetric encryption (OPE) scheme is a deterministic symmetric
encryption scheme whose encryption algorithm produces ciphertexts that preserve
numerical ordering of the plaintexts. OPE was proposed in the database community by
Agrawal et al. [d] in 2004 as a tool to support efficient range queries on encrypted data.

We want to have deterministic encryption schemes that preserve numerical ordering on

their plaintext-space. For A, B ⊆ N with |A|≤|B|, a function f : A → B is order-preserving
if for all i, j ∈ A, f(i) > f(j) if i>j.

We say that deterministic encryption scheme SE = (K, Enc, Dec) with plaintext and
ciphertext-spaces D, R is order-preserving if Enc(K, ·) is an order-preserving function
from D to R for all K output by K (with elements of D, R interpreted as numbers,
encoded as strings). Unless otherwise stated, we assume the plaintext-space is [M] and

the ciphertext- space is [N] for some N ≥ M ∈ N [90].

Location Based Security in Mobile IoT

D. Zisimopoulou 77

5.2 Related OPMPHF’S

5.2.1 A method for MPHF’s (Pascal reserved words)

A method is presented for computing machine independent, minimal perfect hash
functions known as Pascal’s Reserved Words. The space S consists of words and
divided according to the frequencies of the occurrences of the letters. The associated
values of each letter have the form below:

hash value key length + the associated value

of the key's first character + the associated value of the key's last character

For Pascal's 36 reserved words, there is a specific list that defines the associated value
for each letter and the corresponding hash table with hash values running from 2
through 37.

For example consider that the associated value for letter C is 1 and the value for letter E
is 0 and we want the computation for word “CASE”. So we have the procedure:

(1 "C") + (0 "E") + (4 length ("CASE")) = 5.

After the words have been put in order by character occurrence frequencies, the order
is modified of the list such that any word whose hash value is determined by assigning
the associated character values already determined by The backtracking search
procedure then attempts to find a set of associated values which will permit the unique
referencing of all members of the key word list. It does this by trying the words one at a
time in order previous words is placed next. Each "try" tests whether the given hash
value is already assigned and, if not, reserves the value and assigns the letters.

The search time for computing such functions is related to the number of identifiers to
be placed, the maximum value which is allowed to be associated with a character, and
the density of the resultant hash table. If the table density is one (i.e., a minimal perfect
hash) and the maximum associated value is allowed to be the count of distinct first and
last letter occurrences (21 for Pascal's reserved words), then the above procedure finds
a solution for Pascal's reserved words in about seven seconds on a DEC PDP-11/45
using a straightforward implementation of the algorithm in Pascal. Incorporation of the
above hash function into a Pascal cross-reference program yielded a 10 percent
reduction in total run time for processing large programs [91].

5.2.2 Random Order preserving hash function (ROPF)

An OPE scheme is secure if oracle access to its encryption function is indistinguishable
from oracle access to a random order-preserving function (ROPF) on the same domain
and range. Any secure OPE scheme (including the only currently known block cipher-
based scheme should “closely” imitate the behavior of an ROPF. So, a good idea is to
focus on analyzing the ideal object, an ROPF.

We define the “ideal” ROPF scheme as follows:

Let OPFD,R denote the set of all order-preserving functions from D to R. Define

ROPFD,R = (Kr, Encr, Decr) as the following encryption scheme:

• Kr returns a random element g of OPFD,R.

• Encr takes the key and a plaintext m to return g(m).

Location Based Security in Mobile IoT

D. Zisimopoulou 78

• Decr takes the key and a ciphertext c to return g−1(c).

The above scheme is not computationally efficient, but our goal is its security analysis
for the purpose of clarifying security of all POPF-secure constructions.

Most Likely Plaintext: Fix a symmetric encryption scheme SED,R = (K, Enc,Dec). For

given c ∈ R, if mc ∈ D is a message such that

Pr [K ← K : Enc(K, m) = c]

achieves a maximum at m = mc, then we call mc a (if unique, “the”) most likely plaintext
for c.

Most Likely Plaintext Distance: Fix a symmetric encryption scheme SE[M],[N] = (K, Enc,

Dec). For given c1, c2 ∈ R, if dc1,c2 ∈ {0, 1,...,M − 1}

Such that Pr [K $ ← K : (c1, c2) = Enc(K,(m1, m2)) ; m2 − m1 mod M = d]

achieves a maximum at d = dc1,c2 , then we call dc1,c2 a (if unique, “the”) most likely
plaintext distance from c1 to c2 [90].

5.2.3 Content Addressable Network (CAN)

A CAN network is a decentralized Peer-to-Peer infrastructure that can be represented
as a d-dimensional coordinate space. Let us consider an overlay made of n peers.
Each peer is responsible for the zone it holds in the network (a set of intervals in this
space). All dimensions have a minimum and a maximum CAN-based value Cmin and
Cmax.

 For instance, Figure 38 presents a two-dimensional CAN overlay where each peer
manages a zone bounded by an interval on each dimension. Each peer’s interval is
constant and can only be modified during join or leave node operations.

Each peer can only communicate with its neighbors, thus routing from neighbor to
neighbor has to be done in order to reach remote zones in the network. The CAN
topology is a torus which means, in Figure 38, that peers p1 and p3 are neighbors on
the horizontal dimension [92].

Location Based Security in Mobile IoT

D. Zisimopoulou 79

Figure 48: example of a two-dimensional unicode CAN storing items [92]

Figure 49: standard hash function on dimension 0 [92]

Minimum and maximum unicode values Umin and Umax are set to determine the unicode
range that can be managed within the overlay: in Figure 45, Umin is equal to A and Umax
is equal to Z. A unicode value is associated with each bound of a peer and a peer is
responsible for storing the items whose unicode value falls between these bounds. For
example, in Figure 45, p1 is responsible for data between [A; G[(coordinates included
in [0; 0:25[) on the horizontal dimension, and [A; M[(coordinates included in [0; 0:5[) on
the vertical one.

Location Based Security in Mobile IoT

D. Zisimopoulou 80

The mapping relation between overlay-based coordinates and unicode-based values
can be seen as a form of hash function. Indeed, to each unicode value corresponds a
coordinate between Omin and Omax, obtained by applying a given hash function on the
unicode value. This hash function provides coordinates that determine where a data
item should be stored. The default hash function for the CAN of Figure 45 is shown in
Figure 46. The graph describes which CAN coordinate is associated with which unicode
value, hence each peer is associated with a segment of the function [p2’s segment is
highlighted in Figure 46]. For instance, ‘G’ corresponds to coordinate 0.25 on the hash
function graph, which means this value is managed by p2 on dimension 0 because its
interval is [0.25; 0.5]

When a peer receives a new data item to insert or a query to execute, it has to convert
the unicode-encoded values into coordinates to check whether it is responsible for this
item/query or not. For example, the hashed value of string ProductType1 in the context
of an overlay storing worldwide data (wide unicode range, up to code point value 220,
as depicted in Figure 47 would be equal to coordinate 0.00004673 (i.e. at the far-left in
the identifier space). By default, strings made of Latin characters have a low hashed
value, whereas strings made of any East-Asian characters have high values (close to
Omax) because such characters are located towards the end of the unicode table. If the
hashed value does not match the peer’s coordinates, it means the peer is not
responsible for the corresponding item. In this case, the peer forwards the item/query to
a neighbor managing an interval closer to the requested one.

The order-preserving storage technique presented above suffers from a major
drawback regarding data distribution. Indeed, having a system covering the whole
Unicode range means potential overloaded areas may appear, depending on data
distribution. Figure 40 describes a system where only triples made of Latin characters
are stored, which means only a small area of the CAN is targeted when inserting or
querying data. In consequence, peer p1 becomes overloaded, while the rest of the
network stores nothing as it is dedicated to other Unicode characters. Based on this
observation, our contribution aims at dynamically adapting the size of skewed Unicode
areas in a CAN, by changing hash functions to determine where data should be stored.
We will present hereafter our notion of variable hash function and how it helps balance
the load of a storage system [92].

Figure 50: Default hash function inefficient to disseminate data items (represented as black dots
at the top-left corner of the CAN) [92].

Location Based Security in Mobile IoT

D. Zisimopoulou 81

5.2.4 Acyclic Graphs

In this technique, it is constructed a bipartite graph G, enough large so that no cycles
are present. A bipartite graph is a graph whose vertices can be divided in two disjoint
and independent sets U,V such that every edge connects a vertex in U to one in V.
Vertex sets U and V are usually called the parts of the graph. This method is based on
the use of a large ratio (2r/n) which leads to the probability of having a cycle approach
to zero.

Figure 51: A Bipatrite Graph

We assume that a bipartite graph having 2r vertices on each side and having n random
edges. Let Pr (2i) be the probability of having a cycle of length 2i formed in a particular

vertex set of 2i vertices, with i vertices being on each side. There are
i!(i−1)!

2

ways to form distinct cycles out of these 2ivertices and (𝑛
2𝑖
)(2𝑖)! Ways to select 2i edges

to form such a cycle. The remaining 𝑛 − 2𝑖 edges can go into G in(𝑟2)n-2i different
ways.

Thus in total there are 𝑖!
(𝑖−1)!

2
(𝑛
2𝑖
)(2𝑖)! (𝑟2) n-2i ways to form the 2i edge in the vertex

set. Given a total of (r2)n possibilities,

(
(𝑖 − 1)!

2
(
𝑛

2𝑖
) (2𝑖)! (𝑟2) n −

2i

𝑟2𝑛
)

Let Zij be an indicator random variable. Zij = 1 if there is a 2i edge cycle in the jth

vertex set of 2i vertices, Zij = 0 otherwise. Clearly, there are (𝑟
𝑖
)²such sets in G

Each vertex set has the same probability of having 2i edge cycles.

Let Xi be a random variable counting the number of 2i edge cycles in G.

We have 𝑋𝑖 = ∑ 𝑍𝑖𝑗
(𝑟𝑖)²

𝑗=1
= (𝑟

𝑖
)
2
(2𝑖)

Define 𝑌𝑐 = ∑ 𝑟 𝑖=1 = 𝑋𝑖 as another random variable counting the number of cycles in
G of length from 2 to 2r.

𝐸(𝑌𝑐) = ∑𝐸(𝑋𝑖)

𝑟

𝑖=1

Location Based Security in Mobile IoT

D. Zisimopoulou 82

 = ∑(
𝑟

𝑖
)
2

Pr(2𝑖)

𝑟

𝑖=1

 = ∑(
𝑟

𝑖
)
2

𝑖!
(𝑖 − 1)!

2𝑟4𝑖
(2𝑖)!

𝑟

𝑖=1

(
𝑛

2𝑖
)

 ≅ ∑(
𝑟𝑖

𝑖!
 𝑒
−𝑖2

2𝑟)

2

𝑖! (𝑖 − 1)! (2𝑖)!

2𝑟4𝑖
(
𝑛2𝑖

(2𝑖)!
2𝑖 𝑒

−2𝑖2

2𝑛)

𝑟

𝑖=1

 = ∑
1

2𝑖
 (
𝑛

𝑟
)
2𝑖

 𝑒−𝑖
2 (
1
𝑟
+
2
𝑛
)

𝑟

𝑖=1

 = ∑
1

2
 (
𝑛

𝑟
)
2𝑖

𝑟

𝑖=1

 ≤ ∑
1

2
 (
𝑛

𝑟
)
2𝑖

∞

𝑖=1

 =
1

2

(𝑛𝑟)

2

(1−(𝑛𝑟)
2
)

 then 𝐸(𝑌𝑐) ≤
1

((𝑟𝑛)
2
−1)

when 𝑟 = 𝑛 𝑙𝑜𝑔𝑛, 𝐸(𝑌𝐶) → 0 𝑎𝑠 𝑛 → ∞

If there are no cycles, we have sufficient freedom during the Searching phase to select
g values that will preserve any a priori key order. Because G is acyclic, we obtain an
ordering of non-zero degree vertices v to yield levels K(v) following certain constraints
which only contain one edge (one key). This is achieved through an edge traversal
(e.g., depth-first or breadth-first) of all components in G, In figure 41, there is an acyclic
bipartite graph, ordering obtained by depth-first traversal of first the left connected
component and then the right might give the vertex sequence (VS)) : [v1, v5 , v0 , v2 ,
v6 , v3 , v1]. The corresponding levels of edges are given in the edge sequence: [{},
{e1}, {e0 }, {e3}, {e2 }, {}, {e4 }]. In this example, each level has at most one edge, which
is only possible if G is acyclic [93].

Location Based Security in Mobile IoT

D. Zisimopoulou 83

Figure 52: A Cycle Free Bipatrite Graph [93]

During the Searching phase, a single pass through the ordering can determine g values
for all keys in a manner that preserves the original key ordering. This is possible since
with only one edge being handled at each level, there are no interdependencies that
would restrict the g value assignments [93].

5.2.5 Two Level Hashing

The second approach is to use two level hashing. We have the MPHF in the first level
and an array of pointers in the second level. A hash value from the MPHF addresses
the second level where the real locations of records are kept. The records are arranged
in the desired order. This method uses at the first level 2r, and at the second, n
computer words for the OPMPHF. Figure 42 illustrates the two level hashing schemes
[93].

Figure 53: A two Level OPMPHF Scheme [93]

5.2.6 Using Direction

The third technique is based on the idea of using G to store the additional information
required to specify an OPMPHF. For n keys, if the graph has somewhat more than n
vertices (i.e., if ratio > 1), then there should be enough room to specify the OPMPHF. In

Location Based Security in Mobile IoT

D. Zisimopoulou 84

a random graph of this size, a significant number of vertices will have zero degree. We
have to use indirection for some of the keys, in this case using the composition:

h(k) = g({ho(k) + g(h1(k)) + g(h2(k))}mod2r) while on the other hand, the desired location
of a key that is, as before, found directly is determined by:

h(k) = {h0 (k) + g(h1k)) + g(h2(k))} mod n.

We use the g function in two ways, one way for regular keys and the other way for keys
that are handled through indirection. The actual distribution is binomial and can be
approximated by the Poisson:

𝐸(𝑥 = 𝑑) =
{2𝑟𝑒−

𝑛
𝑟 (
𝑛
𝑟)
𝑑

}

𝑑!

 𝐸(𝑥 = 𝑑) = {2𝑟𝑒−
𝑛
𝑟}

When 2r = n, about 13.5% of the vertices have zero-degree. If these zero-degree
vertices can be used to record order information for a significant number of keys, then it
is not necessary for G to be acyclic to generate an OPMPHF. Note that keys associated
with edges e0 and ei can be indirectly hashed into zero-degree vertices v6 and v2. In
general, an edge (key) is indirectly hashed when that situation is described by
information associated with its two vertices, given by h1(k) and h2(k). Usually, indirection
can be indicated using one bit per vertex that is decided at MPHF building time and that
is subsequently kept for use during function application time [93].

Figure 54: Zero Degree Vertices are Useful [93]

Location Based Security in Mobile IoT

D. Zisimopoulou 85

6 PROPOSED SECURE OPMPF ALGORITHM

6.1 Introduction

Hashing methods for no static sets of keys have a certain amount of wasted space and
time. The space is wasted due to unused locations in a table and time is wasted
because we have to resolve collisions when the keys are hashed to the same table
location. But if the keys are static, then is possible to compute a hash function h(x) to
find any key in the table with no collisions in this case and that is a perfect hash
function. If a perfect hash function can also preserve an a priori key ordering, then is
called an order preserving perfect hash function. A perfect hash function that can stores
a set of records in a table of the size equal to the number keys is called minimal perfect
hash function which avoids the wasted space and time.

Minimal perfect hash functions are used for memory efficient and fast retrieval of items
from static sets, such as universal resource locations in Web search engines etc.

To find perfect hash functions may not be easy. According to Knuth [94], the total
number of possible hash functions from S (|S|= n) into [0, m-1] (m ≥n) is mn and only
m(m -1) . . . (m-n+1) are perfect. Thus, the probability that no collisions occur is the ratio
(m(m-1) . . . (m-n+ 1))/mn which tends to zero very fast. For m = 13 and n = 10, the
probability that no collisions occur is only 0.0074 [94].

We present a three- step algorithm for generating minimal perfect hash functions. This
method uses a Mapping, Ordering, Searching (MOS) approach and the construction of
a minimal perfect hash function is accomplished in three steps as below:

In the first step the mapping transforms a set of keys from the original universe to a
universe of hash identifiers. A hash identifier is a collection of selected properties of a
key, such as symbols comprising the key, their positions of occurrence in the key, the
key length, etc. This step has to preserve “uniqueness”, i.e. if two keys are
distinguishable in the original universe, they must also be distinguishable in the hash
universe.

The second step is ordering and in this step the key is placed in a sequence which
determines the precedence in which hash values are assigned to keys. Keys are
divided into subsets W0, W1,…, Wk.

The third step, searching, tries to extend the desired hash function h from the domain
Wi-1 to Wi. This is the only step of potentially exponential time complexity, since if the
searching step encounters Wi for which h cannot be extended, it backtracks to earlier
subsets, assigns different hash values to the keys of these subsets and tries again to
recomputed hash values for subsequent subsets [89].

One of the most efficient and practical algorithms for generating order preserving
minimal perfect hash functions, involves the generation of acyclic random graphs

G = (V, E), where |V| = cn and |E| = n [95], [96], [97].

6.2 Basic Concept

Consider S be a set of n distinct keys belonging to a finite universe U of keys. The keys
in S are stored so that queries asking if key x є U is in S can be answered. If the set of
keys is static, then it is possible to compute a hash function h(x) to find any key in the
table with no collisions and this function is called perfect hash function. [95].

Location Based Security in Mobile IoT

D. Zisimopoulou 86

The algorithm for selecting proper g values and setting mark (indirection) bits for
vertices in G consists of the three steps: Mapping, Ordering, and Searching [89]. The
Mapping step builds random tables the three functions h0, h1, and h2 that map each key
k into a unique triple (h0(k), h1(k), h2(k)). The h0(k), h1(k), h2(k) triples are used to build a
bipartite graph (called dependency graph). Let k1, k2, ...,kn be the set of keys. The h0
(k), h1(k), and h2 (k) functions are selected as the result of building tables of random
numbers. If triples are not distinct, new random tables are generated, defining new h0

(k), h1(k), h2(k) functions.

For a given undirected graph G = (V, E), where |V| = cn and |E| = n, find a function g:V
> {0,1,... , |V| -1} such that the function h : E > {0,1,..., n -1}, defined as h(e)= (g(a) +
g(b)) mod n (1) is a bijection, where e = {a, b}.

This means that we are looking for an assignment of values to vertices so that for each
edge the sum of values associated with endpoints taken modulo the number of edges is
a unique integer in the range [0, n -1]. The ordering and searching steps of the MOS
approach are a very simple way of solving the perfect assignment problem. Czech,
Havas and Majewski [95] showed that the perfect assignment problem can be solved in
optimal time if G is acyclic. To generate an acyclic graph two vertices h1(x) and h2(x) are
computed for each key x є S. Thus, set S has a corresponding graph G, with V =
{0,1,..., v} and E = {{h1(x), h2(x)}: x є S}.

We want to have acyclic graphs, so the algorithm repeatedly selects h1 and h2 until the
corresponding graph is acyclic. In order to be useful the solution, we must have |S|= n
and |V|= cn, for some constant c, such that acyclic graphs dominate the space of all
random graphs. Havas et al. [98] proved that if |V|= cn holds with c > 2 the probability
that G is acyclic is

𝑝 = 𝑒
1
𝑐 √
𝑐 − 2

𝑐

For c = 2.09 the probability of a random graph being acyclic is p> 1/3. Consequently, for
such c, the expected number of iterations to obtain an acyclic graph is lower than 3 and
the g function needs 2.09n integer numbers to be stored, since its domain is the set V
[95].

Given an acyclic graph G, for the ordering step we associate with each edge an unique
number h(e) є [0, n -1] in the order of the keys of S to obtain an order preserving
function. Figure 55 illustrates the perfect assignment problem for an acyclic graph with
six vertices and with the five table entries assigned to the edges.

Location Based Security in Mobile IoT

D. Zisimopoulou 87

Figure 55: perfect assignment problem for a graph with six vertices and five edges [94]

6.3 The new Algorithm

Consider the following problem. We will try to describe an algorithm that will capture the
movement of a node in an encrypted environment. Each node can move in the three-
dimensional space (x, y, z). The main purpose of the project is the node to encryptly
send the area in which it is located and the recipient to perceive, to where the node
moved depending on the values received.

For a given undirected graph G = (V, E), where |V| = n and |E| = m, find a function g:V >
{0,1,... , n-1} such that the function h : E > {0,..., m-1}, defined as

ℎ(𝑒 = (𝑢, 𝑣) ∈ 𝐸) = (𝑔(𝑢) + 𝑔(𝑣))𝑚𝑜𝑑 𝑚 is a bijection.

We are looking for an assignment of values to vertices so that for each edge the sum of
values associated with its endpoints taken modulo the number of edges is a unique
integer in the range [0,m-1].

If the graph is acyclic, a simple procedure can be used to find values for each vertex, as
follows:

 Associate with each edge a unique number h(e) є[0,m-1] in any order.

 For each connected component of G choose a vertex v

 For this vertex set g(v) to 0.

 Traverse the graph using a depth- first search beginning with vertex v.

 If vertex w is reached from vertex u, and the value associated with the edge

 e= (u,w) is h(e), set g(w) to (h(e)- g(u))mod m.

 Apply the above method to each component of G.

We are ready to present the new algorithm for generating a minimal perfect hash
function. The mapping step generates a random undirected graph G taking S as input.
The ordering step determines the order in which hash values are assigned to keys. The
graph is derived to Gcrit and Gncrit.

 procedure New Algorithm (S,g)

Mapping (S,G);

Ordering (G, Gcrit, Gncrit,);

Searching ((G, Gcrit, Gncrit ,g);

Figure 56: main steps of the new algorithm

Location Based Security in Mobile IoT

D. Zisimopoulou 88

6.3.1 Node movement

We assume that the motion of the node is divided into two steps and includes motion
with respect to the axes (x, y) & (x, z), so as to show the motion to the right-left & up-
down.

Figure 57: three coordinate axes

6.3.2 The mapping step

The respective movement is also divided into two steps, where each step corresponds
to a new field.

Figure 58: Axis (x, y)

Red starting point (point of immobility)

Blue Possible areas of the first step

Yellow Possible areas of the second step

We consider that the backward movement presents the least probabilities, as the node
will be in motion.

Location Based Security in Mobile IoT

D. Zisimopoulou 89

Figure 59: Axis (x, y)

Red starting point (point of immobility)

Blue Possible areas of the first step

Yellow Possible areas of the second step

Field of motion

Axis (x, z) Axis (x, z)

First step 5 fields First step 3 (top-down-same level)

Second step 5 fields Second step 3 (top-down-same level)

Total 52 = 25 possible moves Total 32 = 9 possible moves

In total we have 25 * 9 = 225 fields

The mapping procedure (S,G) receives as input the set of keys from S and generates a
random undirected graph G. To generate the Minimal Perfect Hash Function the

number of critical edges in G must be|𝐸𝑐𝑟𝑖𝑡| ≤
1

2
 |𝐸|, where |𝐸𝑐𝑟𝑖𝑡| ⊆ 𝐸 be a set of

critical edges which contains all edges from E connecting critical vertices. The reason is
that the maximum value of h(e) assigned to an edge e E in this case is m-1. The
random graph G is generated using two hash functions h1 and h2. These functions
transform the keys from S to integers in [0, │V│-1], so the set of vertices V has │V│
vertices and each one of them is labeled with a distinct value from [0, │V│-1]. For each
key x from S the edge {h1(x), h2(x)} is added to E. A self-loop occurs when h1(x) = h2(x).
We want to avoid self-loops so we try to modify h2(x) by adding a random number in the
range [1, |V |−1]. When a multiple edge occurs we abort and start again a new iteration.

We expect that the number of iterations to obtain G is constant. Let p be the probability
of generating a random graph G without self-loops and multiple edges. Let X be a
random variable counting the number of iterations to generate G. Variable X is said to
have the geometric distribution with P (X = i) = p(1−p)i−1. So, the expected number of
iterations to generate G is

𝑁𝑖(𝑋) = ∑ 𝑗 𝑃(𝑋 = 𝑗) = 1/𝑝∞
𝑗=1 , its variance is V (X) = (1 − p)/p2.

Let d be the space of edges in G that may be generated by h1 and h2. The graphs
generated in this step are undirected and the number of possible edges in d is given by

|𝑑| = (|𝑉|
2
) . The number of possible edges that might become a multiple edge when the

j th edge is added to G is j −1, and the incremental construction of G implies that p (|V |)
is:

𝑝(|𝑉| = ∏
(|𝑉|
2
) − (𝑗 − 1)

(|𝑉|
2
)

𝑛

𝑗=1

= ∏
(|𝑉|
2
) − 𝑗

(|𝑉|
2
)

𝑛−1

𝑗=0

As │V│= cn the probability is as follow:

𝑝(𝑛) = ∏1 − (
2𝑗

𝑐2𝑛2 − 𝑐𝑛
)

𝑛−1

𝑗=0

Using an asymptotic estimate from Palmer [99], for two functions f1: ℜ → ℜ and f2: ℜ →
ℜ defined by f1(k) = 1 − k and f2(k) = e−k, the inequality

Location Based Security in Mobile IoT

D. Zisimopoulou 90

f1(k) ≤ f2(k) is true ∀ k ∈ ℜ. Considering 𝑘 =
2𝑗

 𝑐2𝑛2−𝑐𝑛
 we have

𝑝(𝑛) ≤ ∏𝑒
− (

2𝑗
𝑐2𝑛2−𝑐𝑛

)
=

𝑛−1

𝑗=0

𝑒
− (

𝑛−1
𝑐2𝑛−𝑐

)

Thus, lim
𝑛→∞

𝑝(𝑛) ≅ 𝑒
1

𝑐2

As Ni(X) = 1/p then Ni(X) ≃ 𝑒
1

𝑐2 . After that, we empirically determine the c value to

obtain a random graph G with |𝐸𝑐𝑟𝑖𝑡| ≤
1

2
 |𝐸| the probability P|Ecrit| that |Ecrit| ≤ |E|, |E|

= n, tends to 0 when c < 1.15 and n increases. However, it tends to 1 when c ≥ 1.15 and
n increases. Thus, |V | = 1.15n is considered a threshold for generating a random graph
G where |Ecrit| ≤ |E| with probability tending to 1 when n increases. Therefore, we use c
= 1.15 in the new algorithm. The MPHF generated by the new algorithm needs 1.15n
integer numbers to be stored, since |V | = 1.15n. Thus, the generated function is stored
in 55% —1.15n/2.09n — of the space necessary to store the one generated by the
CHM algorithm. As P|Ecrit| tends to 1 when n increases, we consider that the expected

number of iterations to generate G is Ni(X) ≃𝑒
1

𝑐2 . For c = 1.15, Ni(X) ≃ 2.13 on average,
which is constant. So, the mapping step takes O(n) time. The rationale is that P|Ecrit|
tends to 1 when n increases. However, if some addition g(u)+g(w) is greater than m in

the searching step for {u, w} ∈ E then the mapping step is restarted.

6.3.3 Maximal value Assigned to An edge

 For a random graph G with |Ecrit| = 0.5n and |V | = 1.15n, it is always possible to

generate a MPHF because the maximal value Amax assigned to an edge e ∈ Ecrit is at
most m − 1 (Amax corresponds to the maximal value generated by the assignment of
values to critical vertices)

Theorem 1The number of back edges Nb edges of a random graph G = Gcrit∪Gncrit is
given by: Nbedges = |Ecrit| − |Vcrit| + 1.

Theorem 2 The maximal value Amax assigned to an edge e ∈ Ecrit in the assignment of
values to critical vertices is: Amax ≤ 2|Vcrit| − 3 + 2Nt.

6.4 Technical summaries for Privacy- preserving proximity- based security

systems for location based services

6.4.1 A proximity- based authentication key generation strategy, without
involving any trusted authority

We describe a proximity- based authentication key generation strategy, without
involving any trusted authority, pre-shared secret or public key infrastructure. We
assume that a radio client called Alice initiates the authentication and pairwise session
key generation with clients I her proximity. A peer client called Bob responds to her
request. Both clients monitor their ambient radio signals at the frequency band during
the time specified by Alice. Bob informs Alice his public location tag, which incorporates
the RSSIs, sequence numbers and media access control (MAC) addresses of the

Location Based Security in Mobile IoT

D. Zisimopoulou 91

packets. Bob builds and keep secret location tag, which consists of the packet arrival
time sequence. Based on Bob’s public location tag and her own measurements, Alice
identifies their shared packets and uses their features to derive the proximity evidence
of Bob for both authentication and session key generation. Meanwhile, Alice informs
Bob the indices of their shared packets in his secret location tag and helps him to
generate his copy of the session key [100].

Figure 60: Flowchart of the proximity- based security system based on ambient radio signals

By integrating the authentication and key generation process, we build a proximity-
based security protocol for mobile users in wireless networks.

As illustrated in figure 60 this protocol consists of the following steps:

1. Alice decides and broadcasts her proximity test policy.
2. Upon receiving Alice’s request, Bob measures the features of the packets as

Alice specified. Both clients extract and store the RSSIs, arrival time, MAC
addresses and sequence number of their ambient packets.

3. Bob builds a location tag, sends Alice his public location tag, and keeps his
secret location tag.

4. Alice authenticates Bob.
5. Alice compares Bob’s public location tag with her trace to identify their shared

packets. Following a key generation Algorithm, Alice builds a session key, KA,
and informs Bob the indices of their shared packets in his trace J.

6. Based on his secret location tag and the indices J, Bob generates his session
key, KB.

In the above handshake process, error connection coding can be applied to counteract
the transmission errors due to channel fading and interference. In addition, because of
the different ambient ratio environments and packet loss rates, clients usually take
different time to obtain a given number of ambient packets. Due to this problem, the
proposed key generation strategy relies on the same shared packets between Bob and
Alice and thus provides a certain degree of robustness against packet loss.

Location Based Security in Mobile IoT

D. Zisimopoulou 92

6.4.2 A dynamic privacy- preserving key management scheme

We describe a proposed scheme in which, we first introduce a privacy- preserving
authentication technique that not only provides the user’s anonymous authentication but
enables double-registration detection as well.

The location based services session key update procedures. Firstly the session of an
LBS is divided into several time slots so that each time slot holds a different session
key. Secondly, we integrate a novel dynamic threshold technique in traditional vehicle to
vehicle and vehicle to infrastructure communications to achieve the session key’s
backward secrecy.

Performance evaluations via extensive simulations demonstrate the efficiency and
effectiveness of the proposed scheme, in terms of low key update delay and fast key
update ratio.

We consider a typical location- based service in vehicular ad hoc networks (VANET)
which comprises an SP, some deployed RSUs affiliated to the SP, and a large number
of vehicle users U’ = { U1, U2,…} moving around the area, as shown in Figure 61.

Figure 61: Network architecture for LBSs in VANETs.

The SP in the area can provide various services, such as to provide some local traffic
information or establish a virtual on- road community. Because the vehicle users move
along the road, the SP cannot directly reach the vehicles. Therefore, after being
connected with the SP by wire links or any other links with high bandwidth and low
delay, the affiliated RSUs can help the SP to broadcast and/or relay messages to
vehicle users via vehicular communications. The stationary RSUs are usually located at
the road side and perform two main functions broadcasting and relaying. The
broadcasting component is responsible for broadcasting service contents that originated
from the SP to the vehicle users on the road, where the service contents can either
directly reach the passing-by vehicles or reach other vehicles in a manner. The relaying
component helps vehicle users with forwarding some requests to reduce the burdens at
the SP. RSU is trustable and usually equipped with not only high- storage capacity but
strong computational capability as well, which causes its high cost. Due to the high cost,
it is impractical to erect RSUs to cover the whole area, particularly at the early
deployment of LBSs in VANETs. In this network model, only a small number of RSUs
are deployed at some spots [101].

Location Based Security in Mobile IoT

D. Zisimopoulou 93

Each vehicle Ui є U’ is equipped with an on board unit device, which allows it to
communicate with other vehicles for sharing some information of common interest or
communicate with the RSUs for accessing the LBSs and receiving service contents
relayed by the RSUs. The OBU device in VANET has no power constrained issue and
is equipped with powerful computational and communication capabilities [101].

6.5 Appendices (Description of Algorithm)

6.5.1 The Mapping Phase

Step Description of Algorithm

1. build random table for h0, h1 and h2

2. for each v in (0 ...2r - 1] do vertex[v].firstedge = 0; vertex[v].degree = 0

3. for each i in [1...n] do

edge[i].ho = h0 (ki); edge(i).h1 = h1(ki); edge[i].h2 = h2(ki)

edge[i].nextedge1 = 0

add edge[i] to linked list with header vertex [h1(ki)].firstedge;

increment vertex[h 1(ki)].degree

add edge[i) to linked list with header vertex(h2(ki)).firstedge;

increment vertex(h2(ki)).degree

4. for each v in [O ...r - 1) do

check that all edges in linked list vertex[v].firstedge

 have distinct (h0, h1, h2) triples.

5. if triples are not distinct then repeat from step(1).

6.5.2 The ordering phase

Step Description of Algorithm

1. CId = 0 /* assign all vertices an ID 0. */
 for v in [0 ...2r - 1) do assign CId to v
CId= 1

 for v in [0 ...2r - 1) do /*assign unique nonzero IDs to CCY s and AC s. */

 if v has nonzero degree and its component ID equals 0 then

 initialize(VSTACK) /* process one component. */

 push(v, VSTACK) /* save the first vertex of the component. */

 do

Location Based Security in Mobile IoT

D. Zisimopoulou 94

 v = pop(VSTACK) /* get an unassigned vertex from VSTACK. */

 assign CId to v /* assign the ID. */

 for each w adjacent to v do

 /* if there are vertices unassigned, put them into VSTACK. */

 if component ID of w is zero and not in VSTACK then

 push(w, VSTACK)

 while VSTACK is not empty

 CId = CId +1 /* increase ID for next component. */

 2. initialize(VSTACK) /* get all one-degree vertices into VSTACK. * / .

 for each nonzero degree v in [0 ...2r - 1) do

 if vertex[v].degree = 1 then

 push(v, VSTACK)

 decrement vertex[v].degree

 3. while VSTACK is not empty do /* visit and truncate all edges in Ecp. */ .

 v = pop(VSTACK)

 for each w adjacent to v do

 if degree of w > 0 then decrease vertex[w].degree

 if vertex[w].degree = 1 then push(w, VSTACK)

 4. make all vertices not SELECTED /* obtain a VScc for all Vcc vertices. */ .

 i = 1;

 for all nonzero degree and not SELECTED v in [0 ...2r - 1] do

 select vi = a vertex of maximum degree > 0

 initialize(VHEAP); insert (v;, VHEAP)

 do

 vi = deletemax(VHEAP)

 mark vi SELECTED and put vi into VS

 for each w adjacent to vi do

 if w is not SELECTED and w is not in VHEAP then

 insert(w, VHEAP)

 i=i+l

 while VHEAP is not empty

 5. for i = 1 to t do /* assign indirection bit to all vertices in Vcc */ .

 Let s= IK(vi)I and Wj be any MARKED vertex adjacent to vi

 Let t be the number of not MARKED vertices adjacent to vi

 If s = 0 then vertex[vi].bit = 1

Location Based Security in Mobile IoT

D. Zisimopoulou 95

 If s= 1 then

 if vertex[wj].bit = 0 then vertex[v1].bit = 1

 else vertex[v1].bit = 0

 If s > 1 then

 if i= 0 and vertex[wj].bit = 0 for all Wj then vertex[vi].bit = 0

 else

 for all Wj do

 if vertex[wj] = 0 then vertex[wj].bit = 1

 vertex[vi].bit = 1

6.5.3 The searching phase

Step Description of Algorithm

 1. R = {}, S = {} /* S is the set of component IDs of those occupied trees. */

 /* R records the root vertices of trees in S. */

 /*Both sets are empty at first. */

 for i = 1 to t do /* assign g values to Vccs to have edges in Ecc indirectly hashed. */

 mark vi ASSIGNED /* select the next vertex in V Scc for g value assignment. */

 establish a random probe sequence s0, s1, ..., Sn-1 for [0 ...n -1]

 /* prepare the order in which different g values will be tried. * /

 j=0

 do

 Let W be the set of ASSIGNED vertices adjacent to vi

 Collision = false

 if IK(vi)I=0 then /* Vi is the first vertex of an un-assigned component. * /

 vertex[vi].g = sji /*assign vi's g entry the value sj. */

 else

 if IK(vi)I = 1 AND vertex[vi].mark ≠ vertex[w].mark then

 /* if only one edge in the level and it is a direct edge, then assign the g value */

 /* to vertex Vi such that hfinal of the edge can be computed directly. */

 let w be in W and k in K(vi)

 vertex[vi].g = [edge[k].final - edge[k].h0 - vertex[w].g] mod n

 /* assign g value when k is direct */

 if edge[k].final ≥ a then vertex[vi].g = edge[k].final - a

 else vertex[vi].g = n - a + edge[k].final

 else /* all the edges in the level have to be indirect. Need to find * /

Location Based Security in Mobile IoT

D. Zisimopoulou 96

 /* unoccupied zero-degree vertices or trees. * /

if vi in [0 ...r - 1] then /* distinguish which side vi is on * /

 for each k in K(vi) do/* vi is on h1 side. */

 h(k) = edge[k].ho + vertex[edge[k].h2] + (sj mod 2r)

 /* obtain the location of indirect-to vertex. */

 if vertex[h(k)] is occupied OR vertex[h(k)).Cld in S then

 collision = true /* the indirect-to vertex is occupied. */

else /* the vi is on h2 side. */

 for each k in K(vi) do

h(k) = edge[k].h0 + vertex[edge[k].h1] + (sj mod 2r)

 if vertex[h(k)] is occupied OR vertex[h(k)].Cld in S then

 collision = true

if not collision then

 /* if all indirect-to locations are not occupied, */

 /* set all of them occupied. */

for each kin K(vi) do

 if vertex[h(k)] is a zero-degree vertex then

 set vertex[h(k)] occupied

 else

 S = S UNION {vertex[h(k)].CId}

 R =R UNION {vertex[h(k)]}

 vertex[h(k)].g = edge[k].final /"' set the g value of for indirect key */

 i=i+1

 else /* if this sj causes any collisions, try next one. */

 j=j+1

 if j > n+1

 fail

While collision

2. Initialize (VSTACK) /* process EAC */ .

 for i = 0 to n -1 do

 if Vi is both cycle and tree vertex then

 /* identify starting vertices. */

 for all w not ASSIGNED in step 1 and adjacent to Vi do

 push (w, VSTACK)

 while VSTACK is not empty do v = pop(VSTACK)

Location Based Security in Mobile IoT

D. Zisimopoulou 97

 /* directly hash all tree edges. */

 mark v ASSIGNED

 for w ASSIGNED and adjacent to v do

 let k join v and w

 vertex[vi].g = [edge[k].final - edge[k].ho - vertex[w].g] mod n

 for all w not ASSIGNED and adjacent to v and not in VSTACK do

 push(w, VSTACK)

 3. Repeat (2) for all vertices in R. Each vertex in R will act as vi in (2).

 4. repeat (2) for arbitrary root vertices in ACs that have not accepted any indirect
edges. Each such vertex will act as Vi in (2)

Location Based Security in Mobile IoT

D. Zisimopoulou 98

7 CONCLUSION

In this thesis, we have shown how cryptographic hash functions gained its importance in
the field of cryptography. We have made all the attempts to give a complete picture of
cryptographic hashes, its design techniques and vulnerabilities. We discussed the most
popular hash functions security properties and notions and showed how these
requirements have influenced the design of hash functions.

In the second part of this thesis we provided a thorough discussion of the state of art of
hash functions designs.

Finally, an algorithm for finding order preserving minimal perfect hash functions is
described. The method is able to find OPMPHF for various sizes of key sets. Several
probabilistic analysis results on the characteristics of the random graph G are given.
They are useful in guiding a proper selection of various parameters and providing
insights on the design of the three main steps of the algorithm.

More experiments with the algorithm are planned. One direction is the dynamic hashing.
Other possible interests are concerned with the conjecture.

Location Based Security in Mobile IoT

D. Zisimopoulou 99

8 FUTURE WORK

Hashing algorithms can be pretty useful. However, IT is a really fast-changing industry
and this entropy also extends to hashing algorithms. Hash algorithms through which
devices in the IoT can securely send messages between them, can be proved very
useful in the future, because the Internet of Things (IoT) promises to be the next big
revolution of the World Wide Web. In order to ensure integrity, hash algorithm is used. It
has a very wide range of applications, ranging from smart cities, smart homes, and a lot
more. When nodes in wireless sensor networks are monitored through internet it
becomes a part of Internet of Things. This brings in a lot of concerns related to security,
privacy and standardization.

Location Based Security in Mobile IoT

D. Zisimopoulou 100

LIST OF NOTATIONS

List of Abbreviations

PKC Public Key Cryptography

AES Advanced Encryption Standard

DES Data Encryption Standard

DSA Digital Signature Algorithm

ECDSA Elliptic Curve Digital Signature Algorithm

ISO International Organization for Standardization

MAC Message Authentication Code

HMAC Hashing Message Authentication Codes

MDx Message Digest x

NESSIE New European Schemes for Signatures, Integrity and Encryption

NIST National Institute of Standards and Technology

RIPEMD RIPE Message Digest

RSA Rivest-Shamir-Adleman

SHA-1 Secure Hash Algorithm 1

SHA-2 Secure Hash Algorithm 2

SIMD Single instruction multiple - data

TIMESEC Digital Timestamping and the Evaluation of Security

TLS Transport Layer Security

SSL Secure Sockets Layer

TCP Transmission Control Protocol

PGP Pretty Good Privacy

RC4 Rivest Cipher 4

MOS Mapping- Ordering- Searching

ECC Elliptic Curve Cryptography

CAN Content Addressable Network

CRHF Collision Resistant Hash Function

OWHF One Way Hah Function

MDC Message Detection Code

NSA National Security Agency

HAIFA Hash Iterative Framework

CR Collision Resistance

Pre Pre- image Resistance

Location Based Security in Mobile IoT

D. Zisimopoulou 101

Sec 2nd Pre- image Resistance

PHF Perfect Hash Function

MPHF Minimal Perfect Hash Function

OPMPHF Order Preserving Minimal Perfect Hash Function

OPE Order Preserving encryption

ROPF Random Order Preserving Hash Function

Location Based Security in Mobile IoT

D. Zisimopoulou 102

List of Mathematical Symbols

f compression function

g output transformation

h hash function or MAC algorithm

E encryption algorithm

F round function of a block cipher

X input to a function

Y output from a function

K key for MAC or encryption algorithm

M message

P plaintext

C ciphertext

Xi input block

Mi message block

Hi chaining variable

IV initial value

Wj message word (32-bit or 64-bit)

n output length (of a hash function or MAC algorithm)

b block length (of a compression function or block cipher)

c chaining variable length

k key length

D domain of a function

R range of a function

K key space

M message space

|S| number of elements of the set S

O order

∈ Element of. . .

∞ infinity

exp exponential function

max maximum of. . .

mod modulo (remainder of integer division)

[Z] the smallest integer larger than or equal to Z

Location Based Security in Mobile IoT

D. Zisimopoulou 103

RΕFERENCES

[1] C. Paar and J. Pelzl, Understanding Cryptography. Springer Berlin Heidelberg, 2010.

[2] W. Stallings, Cryptography and Network Security: Principles and Practices. 2005.

[3] C. Paar and J. Pelzl, Understanding Cryptography. 2010.

[4] B. Guttman and E. A. Roback, “NIST SP800-12 - An Introduction to Computer Security: The NIST

Handbook (1995),” 1995.

[5] J. F. Kurose and K. W. Ross, COMPUTER NETWORKING A Top-Down Approach. .

[6] W. Diffie, W. Diffie, and M. E. Hellman, “New Directions in Cryptography,” IEEE Trans. Inf. Theory,

1976, doi: 10.1109/TIT.1976.1055638.

[7] K. H. Rosen, CryptographyTheoryandpractice(3ed).pdf. 2006.

[8] “No Title.” https://searchsecurity.techtarget.com/definition/asymmetric-cryptography.

[9] H. Tiwari and K. Asawa, “Cryptographic hash function: An elevated view,” Eur. J. Sci. Res., 2010.

[10] “Recent Contribution to Cryptographic Hash Functions.,” [Online]. Available:

https://www.drdobbs.com/security/recent-contributions-to-cryptographic-ha/219500573.

[11] E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet, and W. Jalby, “Collisions of SHA-0 and

Reduced SHA-1.”

[12] X. Wang, Y. L. Yin, and H. Yu, “Finding collisions in the full SHA-1,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 3621 LNCS, no.

90304009, pp. 17–36, 2006, doi: 10.1007/11535218_2.

[13] X. Wang, D. Feng, X. Lai, and H. Yu, “Collisions for Hash Functions MD4, MD5, HAVAL-128 and

RIPEMD,” vol. 5, pp. 5–8, 2004.

[14] “NIST.” https://www.federalregister.gov/documents/2007/11/02/E7-21581/announcing-request-for-

candidate-algorithm-nominations-for-a-new-cryptographic-hash-algorithm-sha-3.

[15] “Hash Function Competition.” https://en.wikipedia.org/wiki/NIST_hash_function_competition, last

accessed 30/5/2019.

[16] B. Preneel, “The first 30 years of cryptographic hash functions and the NIST SHA-3 competition,”

Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics),

vol. 5985 LNCS, pp. 1–14, 2010, doi: 10.1007/978-3-642-11925-5_1.

[17] “Recent Contribution to Cryptographic Hash Functions.”

[18] T. Dierks and C. Allen, “RFC 2246: The TLS Protocol,” Network Working Group. 1999.

[19] G. Kim and E. Spafford, “Experiences with tripwire: Using integrity checkers for intrusion

detection,” no. March 1995, 1994, [Online]. Available:

http://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=2114&context=cstech.

Location Based Security in Mobile IoT

D. Zisimopoulou 104

[20] G. H. Kim and E. H. Spafford, “Writing, Supporting, and Evaluating Tripwire: A Publically Available

Security Tool,” Proc. USENIX Unix Appl. Dev. Symp., pp. 89–107, 1994.

[21] S. Notions, S. Al-kuwari, J. H. Davenport, and R. J. Bradford, “Cryptographic Hash Functions :

Recent Design Trends and,” Eprint.Iacr.Org, 2011.

[22] M. Bellare and T. Kohno, “Hash function balance and its impact on birthday attacks,” Lect. Notes

Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 2004.

[23] R. C. Merkle, “A certified digital signature,” pp. 218–238, 1990.

[24] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of applied cryptography. 1996.

[25] S. Goldwasser and M. Bellare, “Lecture notes on cryptography,” … “Cryptography Comput. Secur.

…, no. July, pp. 1–289, 2008, [Online]. Available: http://sreekavitha.in/Cryptography/gb.pdf.

[26] M. das G. Rua, “The MD5 Message Digest Algorithm,” Japanese Soc. Biofeedback Res., vol. 19,

pp. 709–715, 1992, doi: 10.20595/jjbf.19.0_3.

[27] “ARCHIVED PUBLICATION.” [Online]. Available:

http://csrc.nist.gov/publications/PubsFIPS.html#fips180-4.

[28] J.-P. A. M. C.-W. P. Henzen, “The Hash Function BLAKE.”

[29] M. Bellare and T. Ristenpart, “Hash functions in the dedicated-key setting: Design choices and

MPP transforms,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 4596 LNCS, pp. 399–410, 2007, doi: 10.1007/978-3-540-73420-8_36.

[30] R. Rivest, “Abelian square-free dithering for iterated hash functions,” ECrypt Hash Funct. Work.

June, 2005, [Online]. Available: http://people.csail.mit.edu/rivest/Rivest-

AbelianSquareFreeDitheringForIteratedHashFunctions.pdf.

[31] E. Andreeva et al., “Second preimage attacks on dithered hash functions,” Lect. Notes Comput.

Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 4965 LNCS, pp.

270–288, 2008, doi: 10.1007/978-3-540-78967-3_16.

[32] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Sponge Functions,” 2014. [Online].

Available: http://keyak.noekeon.org/.

[33] S. Lucks, “Design Principles for Iterated Hash Functions,” E-Print, no. September, pp. 1–22, 2004,

[Online]. Available: http://eprint.iacr.org/2004/253.

[34] I. Dinur, O. Dunkelman, and A. Shamir, “New attacks on Keccak-224 and Keccak-256,” 2012, doi:

10.1007/978-3-642-34047-5_25.

[35] I. Dinur, O. Dunkelman, and A. Shamir, “Collision attacks on up to 5 rounds of SHA-3 using

generalized internal differentials,” 2014, doi: 10.1007/978-3-662-43933-3_12.

[36] D. C. Kim, D. Hong, J. K. Lee, W. H. Kim, and D. Kwon, “LSH: A new fast secure hash function

family,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 2014, vol. 8949, pp. 286–313, doi: 10.1007/978-

Location Based Security in Mobile IoT

D. Zisimopoulou 105

3-319-15943-0_18.

[37] A. Joux, “Multicollisions in iterated hash functions. Application to cascaded constructions,” vol. 1,

no. 1, pp. 6–8, 2003, doi: 10.16309/j.cnki.issn.1007-1776.2003.03.004.

[38] M. Nandi and S. Paul, “Speeding up the wide-pipe: Secure and fast hashing,” 2010, doi:

10.1007/978-3-642-17401-8_12.

[39] N. Ferguson et al., “The Skein Hash Function Family.”

[40] R. L. Rivest et al., “The MD6 hash function: A proposal to NIST for SHA-3,” Preprint, 2008.

[41] P. S. L. M. Barreto, V. Rijmen, and S. T. S. A, “The W HIRLPOOL Hashing Function,” no. January

2003, pp. 1–20, 2014.

[42] J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Cryptanalytic attacks on pseudorandom number

generators,” 1998, doi: 10.1007/3-540-69710-1_12.

[43] “Hash Function JH; designed by Hongjun Wu.” https://www3.ntu.edu.sg/home/wuhj/research/jh/

(accessed Aug. 01, 2020).

[44] J.-P. Aumasson, L. Henzen, W. Meier, and R. C. W. Phan, “SHA-3 proposal BLAKE,” SHA3

Compet., pp. 1–79, 2010, [Online]. Available: http://www.131002.net/blake.

[45] M. Maqableh, a Samsudin, and M. Alia, “New Hash function based on chaos theory (CHA-1),” Int.

J. …, vol. 8, no. 2, pp. 20–26, 2008, [Online]. Available:

http://paper.ijcsns.org/07_book/200802/20080203.pdf.

[46] J. Kelsey, “The New SHA3 Hash Functions.”

[47] J. Kelsey, S. Chang, and R. Perlner, “SHA-3 Derived Functions : cSHAKE, KMAC, TupleHash and

ParallelHash,” NIST Spec. Publ., vol. 800, p. 185, 2016, doi: 10.6028/NIST.SP.800-185.

[48] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, and R. Van Keer, “CAESAR submission: Ketje

v1,” 2014. [Online]. Available: http://ketje.noekeon.org/.

[49] R. Gost, “Algebraic Aspects of the Russian Hash Standard,” pp. 1–18, 2012.

[50] J. Guo, J. Jean, G. Leurent, T. Peyrin, and L. Wang, “The usage of counter revisited: Second-

preimage attack on new Russian standardized hash function,” 2014, doi: 10.1007/978-3-319-

13051-4_12.

[51] Z. Wang, H. Yu, and X. Wang, “Cryptanalysis of GOST R hash function,” Inf. Process. Lett., 2014,

doi: 10.1016/j.ipl.2014.07.007.

[52] B. Ma, B. Li, R. Hao, and X. Li, “Improved cryptanalysis on reduced-round GOST and Whirlpool

hash function,” 2014, doi: 10.1007/978-3-319-07536-5_18.

[53] “Keccak Team.” https://keccak.team/index.html (accessed Aug. 01, 2020).

[54] D. Aspinall, “Outline Cryptography V : Digital Signatures Handwritten versus Digital Signatures

Signature mechanism Digital signatures with a TTP Digital signatures from PK encryption Attacks

Location Based Security in Mobile IoT

D. Zisimopoulou 106

on signature schemes [HAC] Existential forgery Signatures with redundancy S.”

[55] A. Kirkby, “Cryptography And E-Commerce: A Wiley Tech Brief,” Netw. Secur., vol. 2001, no. 4, p.

9, Apr. 2001, doi: 10.1016/s1353-4858(01)00416-0.

[56] S. Karforma and S. Banerjee, “OBJECT ORIENTED MODELING OF ELGAMAL DIGITAL

SIGNATURE FOR AUTHENTICATION OF STUDY MATERIAL IN E-LEARNING SYSTEM,” vol.

8354, no. 4, 2015.

[57] F. Publication, “Archived Publication,” vol. 3, no. June 2009, 2013, [Online]. Available:

http://csrc.nist.gov/publications/PubsFIPS.html#fips180-4.

[58] J. Tom, B. K. Alese, A. Thompson, P. Nlerum, and B. State, “Performance and Security of Group

Signature in Wireless Networks,” vol. 4523, no. May, pp. 82–98, 2018.

[59] . K. R., “Elliptic Curve ElGamal Encryption and Signature Schemes,” Inf. Technol. J., 2005, doi:

10.3923/itj.2005.299.306.

[60] C. November, “Lecture 12 Motivation : Domain Extension of MACs Collision-Resistant Hash

Functions Extending the Domain of CRHF,” pp. 1–18, 2008.

[61] C. Crypto, L. Notes, and C. S. Vol, “Mihir Bellare Phillip Rogaway,” Lect. Notes Comput. Sci., vol.

1294, pp. 1–32, 1997.

[62] A. Bala and I. Chana, “Fault Tolerance-Challenges, Techniques and Implementation in Cloud

Computing,” Int. J. Comput. Sci. Issues, vol. 9, no. 1, pp. 288–293, 2012.

[63] I. B. Damgård, “A design principle for hash functions,” 1990, doi: 10.1007/0-387-34805-0_39.

[64] P. Pal and P. Sarkar, “PARSHA-256 - A new parallelizable hash function and a multithreaded

implementation,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), 2003, doi: 10.1007/978-3-540-39887-5_25.

[65] M. Naor and M. Yung, “Universal one-way hash functions and their cryptographic applications,”

1989, doi: 10.1145/73007.73011.

[66] M. Bellare and M. Daniele, “A New Paradigm for Collision- free Hashing: Incrementality at

Reduced Cost,” pp. 285–299, 1996.

[67] A. Joux, “Multicollisions in iterated hash functions. application to cascaded constructions,” Lect.

Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 2004,

doi: 10.1007/978-3-540-28628-8_19.

[68] J. Kelsey and T. Kohno, “Herding hash functions and the nostradamus attack,” 2006, doi:

10.1007/11761679_12.

[69] G. Leurent, T. Peyrin, and L. Wang, “New generic attacks against hash-based MACs,” 2013, doi:

10.1007/978-3-642-42045-0_1.

[70] I. Dinur and G. Leurent, “Improved generic attacks against hash-based MACs and HAIFA,” 2014,

doi: 10.1007/978-3-662-44371-2_9.

Location Based Security in Mobile IoT

D. Zisimopoulou 107

[71] G. Bertoni, “Keccak sponge function family main document,” Nist, no. January 2009, pp. 1–121,

2009.

[72] T. Peyrin, Y. Sasaki, and L. Wang, “Generic related-key attacks for HMAC,” Lect. Notes Comput.

Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 7658 LNCS, pp.

580–597, 2012, doi: 10.1007/978-3-642-34961-4_35.

[73] B. den Boer and A. Bosselaers, “Collisions for the compression function of MD5,” 1994, doi:

10.1007/3-540-48285-7_26.

[74] I. Mironov, “Hash functions : Theory, attacks, and applications Theory of hash functions,” Microsoft

Res. Silicon Val. Campus, 2005.

[75] X. Wang and H. Yu, “How to break MD5 and other hash functions,” 2005, doi:

10.1007/11426639_2.

[76] T. Xie, F. Liu, and D. Feng, “Fast collision attack on MD5,” IACR ePrint Arch. Rep., 2006, doi:

10.1.1.301.4421.

[77] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov, “The first collision for full SHA-

1.” [Online]. Available: https://shattered.io.

[78] M. Lamberger and F. Mendel, “Higher-Order Differential Attack on Reduced SHA-256,” IACR

Cryptol. ePrint Arch., 2011.

[79] “Difficulty - Bitcoin Wiki.” https://en.bitcoin.it/wiki/Difficulty (accessed Aug. 01, 2020).

[80] J. Zhong and X. Lai, “Improved Preimage Attack on One-block MD4,” vol. 2.

[81] “Lessons From The History Of Attacks On Secure Hash Functions.”

https://electriccoin.co/blog/lessons-from-the-history-of-attacks-on-secure-hash-functions/.

[82] “RadioGatún.” http://radiogatun.noekeon.org/ (accessed Aug. 01, 2020).

[83] N. Ferguson, “The Skein Hash Function Family,” Argument, vol. 30, no. 4, p. 79, 2010, [Online].

Available: http://www.schneier.com/skein.html.

[84] P. Gauravaram et al., “Grøstl – a SHA-3 candidate,” vol. 0, no. 2, pp. 1–42, 2011.

[85] H. Dobbertin, A. Bosselaers, and B. Preneel, “RIPEMD-160: A strengthened version of RIPEMD,”

in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), 1996, vol. 1039, pp. 71–82, doi: 10.1007/3-540-60865-6_44.

[86] R. Anderson and E. Biham, “Tiger: A fast new hash function,” in Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 1996, vol. 1039, pp. 89–97, doi: 10.1007/3-540-60865-6_46.

[87] J. Daemen and C. Clapp, “Fast hashing and stream encryption with PANAMA,” in Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 1998, vol. 1372, pp. 60–74, doi: 10.1007/3-540-69710-1_5.

Location Based Security in Mobile IoT

D. Zisimopoulou 108

[88] F. Mendel, N. Pramstaller, C. Rechberger, M. Kontak, and J. Szmidt, “Cryptanalysis of the GOST

Hash Function,” doi: 10.1007/978-3-540-85174-5.

[89] E. A. Fox, Q. fan chen, and L. S. Heath, “Faster algorithm for constructing minimal perfect hash

functions,” SIGIR Forum (ACM Spec. Interes. Gr. Inf. Retrieval), pp. 266–273, 1992, doi:

10.1145/133160.133209.

[90] A. Boldyreva, N. Chenette, and A. O’Neill, “Order-preserving encryption revisited: Improved

security analysis and alternative solutions,” 2011, doi: 10.1007/978-3-642-22792-9_33.

[91] R. J. Cichelli, “Minimal Perfect Hash Functions Made Simple,” Commun. ACM, vol. 23, no. 1, pp.

17–19, 1980, doi: 10.1145/358808.358813.

[92] M. Antoine and F. Huet, “Multiple order-preserving hash functions for load balancing in P2P

networks,” 2018, doi: 10.1504/IJCNDS.2018.088501.

[93] E. A. Fox, Q. F. Chen, A. M. Daoud, and L. S. Heath, “Order preserving minimal perfect hash

functions and information retrieval,” 1989, doi: 10.1145/96749.98233.

[94] F. C. Botelho, D. Menoti, and N. Ziviani, “A new algorithm for constructing minimal perfect hash

functions,” no. May, 2004.

[95] Z. J. Czech, G. Havas, and B. S. Majewski, “Perfect hashing,” Theor. Comput. Sci., vol. 182, no.

1–2, pp. 1–143, 1997, doi: 10.1016/S0304-3975(96)00146-6.

[96] B. S. Majewski, N. C. Wormald, G. Havas, and Z. J. Czech, “A family of perfect hashing methods,”

Comput. J., vol. 39, no. 6, 1996.

[97] B. Bollobas, Random Graphs. London, Orlando, San Diego, NewYork, Toronto, Montreal, Sydney,

Tokyo: Academic Press, Inc., 1985.

[98] G. Havas, “Graphs , Hypergraphs and Hashing,” no. March, 2016, doi: 10.1007/3-540-57899-4.

[99] Palmer E.M., Graphical Evolution. New York: John Wiley & Sons, 185AD.

[100] L. Xiao, Q. Yan, W. Lou, G. Chen, and Y. T. Hou, “Proximity-based security techniques for mobile

users in wireless networks,” IEEE Trans. Inf. Forensics Secur., vol. 8, no. 12, pp. 2089–2100,

2013, doi: 10.1109/TIFS.2013.2286269.

[101] R. Lu, X. Lin, X. Liang, S. Member, and X. S. Shen, “A Dynamic Privacy-Preserving Key

Management Scheme for Location-Based Services in VANETs,” IEEE Trans. Intell. Transp. Syst.,

vol. 13, no. 1, pp. 127–139, 2012, doi: 10.1109/TITS.2011.2164068.

