
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

BSc THESIS

Robustness evaluation of Online Inductive Logic
Programming Methods against Noisy Maritime Data

Emmanouil G. Lykos

Supervisors:
Panagiotis Stamatopoulos, Assistant Professor, NKUA
Alexander Artikis, Researcher, NCSR «Demokritos»

Nikos Katzouris, Associate Researcher, NCSR «Demokritos»

ATHENS

AUGUST 2020

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Αξιολόγηση στιβαρότητας των online μεθόδων
επαγωγικού λογικού προγραμματισμού με θορυβώδη

ναυτικά δεδομένα

Εμμανουήλ Γ. Λύκος

Επιβλέποντες:
Παναγιώτης Σταματόπουλος, Επίκουρος Καθηγητής, ΕΚΠΑ
Αλέξανδρος Αρτίκης, Ερευνητής, ΕΚΕΦΕ «Δημόκριτος»

Νίκος Κατζούρης, Ερευνητής, Εξωτερικός Συνεργάτης, ΕΚΕΦΕ «Δημόκριτος»

ΑΘΗΝΑ

ΑΥΓΟΥΣΤΟΣ 2020

BSc THESIS

Robustness evaluation of Online Inductive Logic Programming Methods against Noisy
Maritime Data

Emmanouil G. Lykos
S.N.: 1115201600096

SUPERVISORS:
Panagiotis Stamatopoulos, Assistant Professor, NKUA
Alexander Artikis, Researcher, NCSR «Demokritos»

Nikos Katzouris, Associate Researcher, NCSR «Demokritos»

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Αξιολόγηση στιβαρότητας των online μεθόδων επαγωγικού λογικού προγραμματισμού
με θορυβώδη ναυτικά δεδομένα

Εμμανουήλ Γ. Λύκος
Α.Μ.: 1115201600096

ΕΠΙΒΛΕΠΟΝΤΕΣ:
Παναγιώτης Σταματόπουλος, Επίκουρος Καθηγητής, ΕΚΠΑ
Αλέξανδρος Αρτίκης, Ερευνητής, ΕΚΕΦΕ «Δημόκριτος»

Νίκος Κατζούρης, Ερευνητής, Εξωτερικός Συνεργάτης, ΕΚΕΦΕ «Δημόκριτος»

ABSTRACT

Inductive Logic Programming systems were widely used in order to help the task of pro-
ducing accurate definitions of events of interest in various fields like maritime monitoring.
In the field of maritime monitoring it is probable that the received data are mostly noisy,
this means that the data will not be an accurate representation of the real-world, thus it
is of outmost importance to evaluate these systems against noisy data, because these
will be the closest to the real-world data that will be probably encountered. In this thesis,
initially, a realistic and probabilistic noise injection method is proposed. Then, we inject
the noise into the given maritime data in order to evaluate how much it corrupts the data.
Finally, these systems are executed with the noisy dataset as input, in order to evaluate
their robustness. From the aforementioned experiments, it was shown that our proposed
method actually works, but affects differently every event. Moreover, it was illustrated that
the aforementioned systems are robust and accurate against noisy data.

SUBJECT AREA: Event Recognition

KEYWORDS: Event Recognition, Inductive Logic Programming, Maritime Monitoring,
Μachine Learning

ΠΕΡΙΛΗΨΗ

Τα συστήματα Επαγωγικού Λογικού Προγραμματισμού έχουν ευρέως χρησιμοποιηθεί για
να παράξουν αποτελεσματικά, ακριβείς ορισμούς για γεγονότα που μας ενδιαφέρουν σε
διάφορα πεδία, όπως αυτό της Ναυτικής Παρακολούθησης. Στο συγκεκριμένο πεδίο είναι
πολύ πιθανό ότι τα δεδομένα θα είναι θορυβώδη, αυτό σημαίνει ότι τα δεδομένα δεν θα
είναι μία ακριβής αναπαράσταση του πραγματικού κόσμου, άρα είναι τεράστιας σημασίας
να αξιολογήσουμε αυτά τα συστήματα σε θορυβώδη δεδομένα, διότι αυτά είναι πιο κοντά
στα δεδομένα του πραγματικού κόσμου όπου συνήθως θα αντιμετωπίσει. Στην παρούσα
πτυχιακή εργασία, αρχικά, παραθέτουμε μία ρεαλιστική και πιθανοτική μέθοδο εισαγωγής
θορύβου. Έπειτα, εισάγουμε τον θόρυβο στα υπάρχοντα ναυτικά δεδομένα που έχουμε
για να αξιολογήσουμε κατά πόσο αλλοιώνονται. Τέλος, εκτελούμε αυτά τα συστήματα με
τα θορυβώδη δεδομένα ως είσοδο για να αξιολογήσουμε το πώς τα πάει σε αυτά. Από τα
προαναφερθέντα πειράματα φάνηκε ότι η προτεινόμενη μέθοδος δουλεύει, αλλά επηρεά-
ζει διαφορετικά το κάθε γεγονός. Επιπλέον, παρατηρείται ότι τα προαναφερθέντα συστή-
ματα είναι στιβαρά και ακριβή απέναντι στα θορυβώδη δεδομένα.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Αναγνώριση Γεγονότων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Αναγνώριση γεγονότων, Επαγωγικός Λογικός Προγραμματισμός,
Ναυτική Παρακολούθηση, Μηχανική Μάθηση

ACKNOWLEDGEMENTS

Undertaking and completing an undergraduate thesis is a challenging and difficult journey
for most students because, for the majority of them, it is their first contact with research,
thus, they should learn how research is conducted in order to complete their thesis. But,
I was privileged enough to have good supervisors both as researchers, but mostly as
people. Hence, I want to heartily thank my supervisors, Dr P.Stamatopoulos, Dr. A.Artikis
and Dr. N.Katzouris for showing me how to work on the field of research and helping me
completing the present thesis. Moreover, I want to further thank Dr. N.Katzouris, who was
always there for me, answering with patience and politeness my numerous e-mails about
issues that I encountered through the course of the thesis, even when he had a lot of work
to do. Finally, I want to thank my friends and family who were always interested in my
progress in this thesis and encouraging me, even in the hardest times.

CONTENTS

1 INTRODUCTION 11

2 BACKGROUND 12
2.1 First-Order Logic . 12

2.2 Event Calculus . 12

2.3 Inductive Logic Programming . 14

2.4 Maritime Dataset . 15

3 OLED Background 17
3.1 Hoeffding Bound . 17

3.2 OLED . 17

4 WOLED Background 19
4.1 Online Structure Learning . 19

4.2 WoLED . 20

4.3 WoLED ASP . 21

5 NOISE INJECTION 23
5.1 Noise Injection Method . 23

5.2 Technical Notes . 24

6 RTEC EVALUATION 27

7 LEARNING EXPERIMENTS 31
7.1 Data Preparation . 31

7.2 Performance Evaluation . 31

7.3 Experimental Setting and Results . 33

8 CONCLUSIONS AND FUTURE WORK 35
8.1 Summary . 35

8.2 Future Work . 35

ABBREVIATIONS - ACRONYMS 36

REFERENCES 37

LIST OF FIGURES

4.1 WoLED’s High Level Strategy . 20

5.1 Noise Function . 24

7.1 k-Fold Cross Validation . 32

LIST OF TABLES

2.1 Main Predicates of Event Calculus . 13

2.2 Domain Independent axioms of Event Calculus 13

2.3 Background Knowledge example lines . 14

2.4 Mode Declarations example lines . 15

2.5 Low Level Events at Synopsis . 15

2.6 Critical Point Representation Example . 15

2.7 High Level Events . 16

6.1 anchoredOrMoored . 28

6.2 gap . 28

6.3 loitering . 28

6.4 lowSpeed . 28

6.5 pilotOps . 28

6.6 rendezVous . 28

6.7 stopped . 28

6.8 withinArea . 28

6.9 Total results . 28

7.1 Learning results . 34

Robustness evaluation of Online Inductive Logic Programming Methods against Noisy Maritime Data

1. INTRODUCTION

Event Recognition is the task of recognizing events of interest, from data in various settings
such as videos from surveillance cameras or vessel trajectories. In order to complete this
task, a logic programming formalism named Event Calculus [12] is used. Event Calculus
exploits the power of logic programming by using first-order logic rules -based on Event
Calculus Dialect- in order to recognize the events of interest based on ground truth events
that belong in the Knowledge Base. However, in huge datasets, many different patterns
of the same event can occur and maybe after some time the actual behavior patterns of
an event might change, thus, the task to write them by hand is tedious and error-prone
because, as we mentioned above, even if the hand-crafted rules are accurate, the event
might change its behavior and the pattern will not be anymore accurate. For this reason,
Inductive Logic Programming(ILP)[4] methods, have been used, that their task is to learn
the different patterns of an event of interest, given the Low Level and High Level Events
that are present in some time and the information about whether the event, that we want
to learn, happens or not. The Inductive Logic Programming methods that we dealt with,
are the OLED[10] and WoLED[11, 15] which are shown to produce accurate patterns for
the events to be learned and scale well. These methods, also, have the power that they
are Online methods, specifically, they need only a single-pass of the training dataset to
produce the results. However, these methods had not been evaluated on the maritime
dataset, let alone their robustness against the maritime dataset that contains noise. In the
current thesis, our task is to present realistic ways to inject noise in the maritime dataset,
in order to evaluate the robustness of these Online Inductive Programming methods in a
realistic setting that can be encountered in the real-world. The inspiration for the noise
injection method came from Section 8.2 from [16] where the author expresses the idea of
uncertainty of recognized events. Therefore, the author proposes a noise injection method
that attaches to every recognized CAVIAR activity a probability, and afterwards, deletes
the event instances that their attached probability is less than a given threshold. Our
contribution to this method was to convert it to the maritime setting, not only by attaching
to every AIS signal a probability but also each AIS signal was attached to its own threshold
which derives in a realistic way. Afterwards, we will illustrate how much the recognized
intervals that were evicted from Run-Time Event Calcucus(RTEC)[2], which is an Event
Calculus framework, had changed. This will be done in order to determine how effective
was the injected noise. Finally, we will present the results of OLED and WoLED in order
to evaluate the robustness of these learners. The structure of the rest of the thesis is
the following. Chapters 2,3 and 4 outlines the theoretical foundations that are necessary
to understand the current thesis. Chapter 5, illustrates our methodology about injecting
realistic noise in the maritime dataset. Chapter 6, presents the RTEC results in terms of
howHigh Level Intervals are changed. Chapter 7, indicates the learning results fromwhich
we can evaluate the robustness of the aforementioned learners. Chapter 8, presents the
conclusions of our work and subjects of further research.

E. Lykos 11

Robustness evaluation of Online Inductive Logic Programming Methods against Noisy Maritime Data

2. BACKGROUND

2.1 First-Order Logic

In the present thesis, we use a first-order language where atoms, literals(possibly negated
atom), rules and logic programs are defined as in [7] and not denotes negation as failure.
Rules, atoms, literals and programs are ground if they contain no variables. Rules are
written as α ← δ1, δ2, ..., δn where α is an atom and δ1, δ2, ..., δn is a conjunction of literals.
An interpretation I is a set of true ground atoms. I satisfies a ground literal α(respective
not α) if and only if α ∈ I(respective α /∈ I) and it satisfies a ground rule if and only
if it satisfies the head, or does not satisfy the body. I is a minimal(Herbrand) model of
a logic program Π if and only if it satisfies every ground rule in Π and none of its strict
subsets has this property. I is an answer set of Π if and only if it is a minimal model
of the program that results from the ground instances of Π, after removing all rules with
a negated literal not satisfied by I, and all negative literals from the remaining rules. A
choice rule is an expression of the form {α} ← δ1, δ2, ..., δn and, intuitevely, denotes that
whenever the body δ1, δ2, ..., δn is satisfied by an answer set I of a program that includes
the choice rule, instances of the head α are arbitrarily included in I (satisfied) as well. A
weak constraint is an expression of the form :∼ δ1, δ2, ..., δn.[w], where δi’s are literals and
w is an integer. The intuitive meaning of a weak constraint c is that the satisfaction of the
conjunction δ1, δ2, ..., δn by an answer set I of a program that includes c incurs a cost ofw for
I. Inclusion of weak constraints in a program result in an optimization that returns answer
sets of minimum cost. Formal account of choice rules and weak constraints’ semantics
are included in [7].

2.2 Event Calculus

Event Calculus[12] is a logic programming framework for representation and reasoning
about effects and their events. Event Calculus consist of the following three entinties:

• Time Points: They denote the time that a predicate is true and usually have an
integer value.

• Fluents: They are properties that can have different values at different time points.

• Events: They are events that with their occurences in time that can affect the value
of one or more fluents.

Event Calculus is comprised by a set of rules that define the event occurences, the effects
of events and the value of fluents which is called event description. In Table 2.1 are
shown the main predicates of the Event Calculus and their meaning. In Table 2.2 are
shown the domain-independent axioms of Event Calculus, which are the built-in rules of
Event Calculus. Note that, not represents negation by failure. The first two describe the
law of inertia, which tell that if an event was initiated then it still persists until something
happens, that it terminates it. The first rule declares that an event holds at time T + 1 if it
is initiated at time T and second rule declares that an event holds at time T + 1 if it holds
at time T and was not terminated at this time. The third rule declares that an event holds

E. Lykos 12

Robustness evaluation of Online Inductive Logic Programming Methods against Noisy Maritime Data

Table 2.1: Main Predicates of Event Calculus

Predicate Meaning
happensAt(E, T) Event E is occurring at time T
happensFor(E, I) I is the list of the maximal intervals

during which event E takes place
holdsAt(F = V, T) The value of fluent F is V at time T .
holdsFor(F = V, I) I is the list of the maximal intervals

for which F = V holds continuously
initiatedAt(F = V, T) At time T a period of time for which F = V is initiated

terminatedAt(F = V, T) At time T a period of time for which F = V is terminated
relative_complement_all(I ′, L, I) I is the list of maximal intervals produced by

the relative complement of the list
of maximal intervals I ′ with respect to
every list of maximal intervals of list L

union_all(L, I) I is the list of maximal intervals
produced by the union of the lists of

maximal intervals of list L
intersect_all(L, I) I is the list of maximal intervals

produced by the intersection of
the lists of maximal intervals of list L

Table 2.2: Domain Independent axioms of Event Calculus

Axioms
holdsAt(F = V, T + 1)←
initiatedAt(F = V, T).

holdsAt(F = V, T + 1)←
holdsAt(F = V, T),

not terminatedAt(F = V, T).
holdsAt(F = V, T)←
holdsFor(F = V, I),

(Ts, Te) ∈ I,
Ts ≤ T < Te.

at a time T if T belongs in a maximal interval that holdsFor/2 predicate returns. The third
rule is used for Statically Determined Fluents which will be explained later.

In RTEC event description defines the event instances with the use of happensAt/2 pre-
dicate, the different values of fluents over time with the use of holdsAt/2 and holdsFor/2
predicates and the effects of the events with the use of initiatedAt/2 and terminatedAt/2
predicates. The events that are used in RTEC are shown in Table 2.1. Fluents in RTEC
(that are used to define domain-dependent axioms) fall in these two categories: simple
and statically determined. Simple fluents are fluents that their value is defined with the
use of initiatedAt/2 and terminatedAt/2 predicates and the truth value of a holdsAt/2 pre-
dicate is determined by using the law of inertia, specifically the first two built-in domain
independent axioms of Table 2.2 are used. Statically Determined fluents are fluents that
their value is defined with the use of holdsFor/2 predicate and the truth value of holdsAt/2
predicate is determined by if the given time belongs to any of the maximal intervals that
holdsFor/2 predicate returns, thus the third built-in domain independent axiom of Table 2.2
is used.

E. Lykos 13

Robustness evaluation of Online Inductive Logic Programming Methods against Noisy Maritime Data

OLED input consists of two parts, narrative and annotation. Narrative consists of events
that were defined with the happensAt/2 predicate and their notation is that they define
the input of the dataset. Annotation consists of High Level Events(HLEs) of interest that
are defined by holdsAt/2 predicates and declare the ground truth atoms of the event of
interest, that the generated theory should satisfy.

2.3 Inductive Logic Programming

Inductive Logic Programming(ILP)[4] is a combination of inductive machine learning and
logic programming and its purpose is to induce a theory which contains first order rules
from observations. The main components that are involved in ILP are the following:

• The ground facts which are a set of positive examples E+ and a set of negative
examples E−.

• The resulting theory H, which is set of rules.

• Background knowledge base B, which ia a set of rules that we consider them true.

• Language Bias(mode declarations) M which is used to make the ILP learners more
efficient because they declare the literals-and their format- that can be used in the
head and the body of the rules that the learned theory H should contain.

Therefore, the purpose of ILP learners are to find a theory H that satisfies all positive
examples E+ and none of the negative ones of set E−. In order to achieve that, ILP
learners work with a divide-and-conquer manner. Firstly, they construct rules that satisfy
some of the positive examples and afterwards they apply their algorithm to the rest of the
examples until every positive example is satisfied.

OLED uses ILP in order to learn new rules. Given a background knowledge B and mode
declarationsM , OLED’s purpose is to find with a single-pass over the training set, domain-
specific initiatedAt/2 and terminatedAt/2 rules that fit to training data and have good per-
formance on test set. In Tables 2.3 and 2.4 example lines of the background knowledge
and mode declarations file are shown. In the mode declaration file the first three lines at
most times are used to declare the event of interest by declaring the format of the head of
the resulting rules. The + symbol declares that the instance that will be put in there is in-
put instance and after that declares on what class it belongs. The# symbol declares that
areaType is a constant. The last two lines are the format of the literals that would be put
in the body of the resulting rules. Specifically, in this case would be placed in the body of
the resulting rules only proximity and withinArea rules. In the background knowledge file
it is declared that the instance that would be put inside the first parameter of loitering atom
belongs in vessel1 class and that one of the value that can take the constant areaType
is anchorage. Thus constant fields works as enumeration that their different values are
defined in the background knowledge file.

Table 2.3: Background Knowledge example lines

fluent(loitering(X)) :- vessel1(X).
areaType(anchorage).

E. Lykos 14

Robustness evaluation of Online Inductive Logic Programming Methods against Noisy Maritime Data

Table 2.4: Mode Declarations example lines

modeh(initiatedAt(loitering(+vessel1),+time))
modeh(terminatedAt(loitering(+vessel1),+time))
examplePattern(holdsAt(loitering(+vessel1),+time))
modeb(happensAt(proximity(+vessel1, +vessel1),+time))
modeb(happensAt(withinArea(+vessel1,#areaType),+time))

OLED applies in an Learning from Interpretations(LfI)[3] setting where each training ex-
ample is a set of ground atoms, an interpretation. Generally speaking, in OLED, each
resulting clause started from a general clause with empty body and was specialized as
the learning process continued by gradually adding literals to its body.

2.4 Maritime Dataset

Maritime Dataset is split into two datasets. The former contains the Critical Points that
were extracted from Trajectory Synopsis of the vessel trajectory dataset that contains the
raw AIS Signals. Trajectory Synopsis is a framework that takes as input the raw AIS Sig-
nals that was received by a receiver and compresses them by keeping the most important
points-the Critical Points- that are linked with a defined Low Level Event. This frame-
work not only achieves 95% compression of the original dataset, but also does not corrupt
the dataset much. Each Critical Point is represented by coord and velocity predicates
which are the coordination and orientation fluents, respectively. Also, every Critical Point
is attached with at least one Low Level Event(LLE) of Table 2.5 and its corresponding
attributes.

Table 2.5: Low Level Events at Synopsis

stop_start stop_end
slow_motion_start slow_motion_end

gap_start gap_end
change_in_speed_start change_in_speed_end

entersArea leavesArea
change_in_heading

For example assume these four lines of our dataset presented on the following table

Table 2.6: Critical Point Representation Example

Event Timestamp Timestamp MMSI Attributes
coord 1443650401 1443650401 228854000 -4.347 48.118
velocity 1443650401 1443650401 228854000 0.0 0.0 257.0

change_in_heading 1443650401 1443650401 228854000
gap_end 1443650401 1443650401 228854000

These lines indicate the following at time 1443650401, for vessel with Maritime Mobile
Service Identity(MMSI) number 228854000. Firstly, from the first line it is illustrated that
vessel’s current longitude and latitude are -4.347 and 48.118, respectively. Secondly, from
the second line there are illustrated the current vessel’s velocity attributes which are the
speed, course over ground and true heading, respectively. Finally, the last two lines of

E. Lykos 15

Robustness evaluation of Online Inductive Logic Programming Methods against Noisy Maritime Data

the example in Table 2.6 indicate that at time 1443650401, vessel with MMSI 228854000
participates in a change_in_heading and a gap_end event.

The latter dataset contains the High Level Event(HLE) intervals that were extracted by
executing RTEC with input the Critical Events dataset. The HLEs are presented in Table
2.7.

Table 2.7: High Level Events

withinArea gap stopped lowSpeed
changingSpeed movingSpeed underWay highSpeedNC

anchoredOrMoored loitering pilotBoarding sarMovement
sarSpeed sar sarSpeed trawlingMovement
trawlSpeed trawling tuggingSpeed tugging

The dataset that we worked upon it and did experiments with it, was retrieved by the
following workflow. Firstly, we collected the raw AIS signals from the AIS receivers from
Brest port which is located in Brest, France. Afterwards, in order to get the Critical Points
dataset we run Trajectory Synopsis on it. Finally, we got the HLE intervals by forwarding
the Critical Points dataset into RTEC.

E. Lykos 16

Robustness evaluation of Online Inductive Logic Programming Methods against Noisy Maritime Data

3. OLED BACKGROUND

3.1 Hoeffding Bound

Hoeffding Bound[8] is a statistical tool that may be used as a probabilistic estimator of the
generalization error of a model(true expected error on the entire input), given its empirical
error (observed error on a training subset)[5], which is of paramount importance in online
learning. Hoeffding Bound is defined as follows: Given a random variable X with range in
[0, 1] and an observed mean X of its values after n independent observations, the Hoeff-
ding Bound states that, with probability 1 − δ, the true mean X̂ of the variable lies in an
interval (X − ϵ,X + ϵ), where ϵ =

√
ln(1/δ)

2n
.

OLED uses the Hoeffding Bound to evaluate candidate specializations of a rule on a subset
of training interpretations and not on the whole training set. Given an evaluation functionG
with range in [0, 1] and a clause to be specialized r, OLED is using the Hoeffding Bound as
follows. Assume also that after n training instances,r1 is r’s specialization with the highest
observed mean G-score G and r2 is the second best one,i.e. ∆G = G(r1) − G(r2) > 0.
Then by the Hoeffding bound we have that for the true mean ofthe scores’ difference ∆Ĝ

it holds ∆Ĝ > ∆G − ϵ, with probability 1 − δ, where ϵ =
√

ln(1/δ)
2n

. Hence, if ∆G > ϵ

then ∆Ĝ > 0, implying that r1 is indeed the best specialization to select at this point,
with probability 1 − δ. In order to decide which specialization to select, it thus suffices to
accumulate observations from the input stream until ∆G > ϵ.

3.2 OLED

Before, the clause evaluation function is defined we should firstly define when an atom is
True Positive(TP), False Positive(FP) and False Negative(FN). Let B is a set of domain-
independent axioms, r be a clause and I an interpretation. narrative(I) and annotation(I)
are the narrative and annotation part of I, respectively. We denote by M r

I an answer set
of B ∪ narrative(I) ∪ r. Given an anotation atom α we say that:

• α is a true positive(TP) atom w.r.t. clause r iff α ∈ annotation(I) ∩M r
I .

• α is a false positive(FP) atom w.r.t. clause r iff α ∈M r
I but α /∈ annotation(I).

• α is a false negative(FN) atom w.r.t. clause r, iff α ∈ annotation(I) but α /∈M r
I .

Now that we know how TPs, FPs and FNs are derived we can define the clause evaluation
function G. Given the TP, FP and FN counts of clause r, TPr, FPr and FNr respectively
the clause evaluation function G with range in [0, 1] is the following:

G(r) =


TPr

TPr+FPr
,if r is an initiatedAt clause

TPr

TPr+FNr
,if r is an terminatedAt clause

Generally speaking, when OLED encounters a False Predicted atom, either expands the
theory by generating new rules, either specializes an existing rule based on the following
cases:

E. Lykos 17

Robustness evaluation of Online Inductive Logic Programming Methods against Noisy Maritime Data

• FN case. At least one FN atom α encountered. This may happen because:

– No initiatedAt/2 clause becomes true, failing to initiate the complex event that
corresponds to α, when it should. Thus, generating a new initiatedAt/2 clause
, eliminates the FN atom turning it into a TP.

– One or more terminatedAt/2 clauses are over general, terminating the complex
event that corresponds to α early. Thus, specializing the over-general termin-
atedAt/2 clauses, the FN atom will be turned into a TP atom.

• FP case. At least one FP atom α encountered. This may happen because:

– No terminatedAt/2 clause becomes true, failing to terminate the complex event
that corresponds to α, when it should, so α persists by inertia. Thus, generating
a new terminatedAt/2 clause eliminates the FP atom.

– One or more initiatedAt/2 clauses are over-general, re-initiating a correspond-
ing complex event when they should not. Thus, specializing the existing over-
general initiatedAt/2 clauses the FP atom will be eliminated.

Therefore, the evaluation function G(r) was defined that way because both initiatedAt/2
and terminatedAt/2 clauses affect the TP count of a theory H, therefore TP counts per
clause are taken into account for the evaluation of both types of clauses. Moreover, spe-
cializing existing clauses further improves the quality of H by eliminating FPs in the initi-
atedAt/2 case and FNs in favor of in favor of TPs in the terminatedAt/2 case. Therefore,
FPs(resp. FNs) should also be taken into account when evaluating initiatedAt/2(resp. ter-
minatedAt/2) clauses. On the other hand, the total FP(resp. FN) count of a theory H is
not affected by its existing terminatedAt/2(resp. initiatedAt/2) clauses, but instead requires
new clauses to be generated.

The OLED algorithm for every incoming interpretation does the following:

1. New clauses are created in order to satisfy the most of the atoms that derived from
the current interpretation and are not satisfied by the existing rules. The new rules
,initially, have empty body and they are getting specialized in the future.

2. Existing clauses are getting specialized by adding literals to their body using the
Hoeffding Bound to choose the best specialization among the candidate specializa-
tions, with the way that was mentioned before.

3. Because some rules cannot be improved and have bad performance, OLED prunes
these rules from theory with the use of Hoeffding Bound if rule’s G-Score is lower
than the quality threshold with probability 1− δ.

E. Lykos 18

Robustness evaluation of Online Inductive Logic Programming Methods against Noisy Maritime Data

4. WOLED BACKGROUND

4.1 Online Structure Learning

Online Structure Learning with Background Knowledge Axiomization(OSLα)[13] builds on
the OSL[9] algorithm for online learning of Markov Logic Networks(MLN). An MLN is a
set of weighted first-order logic rules. Along with a set of domain constants, it defines a
ground Markov network containing one feature for each grounding of a rule in the MLN,
with the corresponding weight. Learning an MLN consists of learning its structure(the
rules in the MLN) and their weights. OSLα works by constantly updating the rules in an
MLN in the face of new interpretations that stream-in, by adding new rules and updating
the weights of existing ones. To infer query atoms’ truth values, given an interpretation,
OSLα uses Maximum Aposteriori(MAP) inference[9], which amounts to finding the truth
assignment to the query atoms that maximizes the sum of the weights of theory’s rules
satisfied by the interpretation. Specifically, given an interpretation I and a logic program Π
that contains rules associated with real-valued weights, firstly, we find the maximal subset
RI of the weighted rules in Π that are satisfied by I. Then is assigned to the interpretation
I a weightWΠ(I) which is analogous to the sum of the weights of the rules in RI , if I is an
answer set of Π, else zero weight is assigned. Afterwards, these weights are normalized,
in order to create a probability distribution over different answer sets. More formally, given
that wr denotes the weight of rule r and ans(Π) is the set that contains the answer sets of
RI , WΠ(I) is defined as

WΠ(I) =

exp (
∑
r∈RI

wr), if I ∈ ans(Π)

0, otherwise
(4.1)

PΠ(I) =
WΠ(I)∑

J∈ans(Π)

WΠ(J)
(4.2)

.Therefore, in MAP inference computes the most probable answer set of logic program Π
which from equations (4.1) and (4.2), corresponds to finding an answer set A of Π such
that

A = arg
I∈ans(Π)

maxPΠ(I) = arg
I∈ans(Π)

maxWΠ(I) = arg
I∈ans(Π)

max
∑
r∈RI

wr (4.3)

But, this technique has the drawback that it only generates new rules, thus, many useless
rules are present in the theory. Therefore, OSLα relies on L1-regularized weight learning,
which in the long run, pushes the weights of non-useful rules to zero. Weight learning
is also OSLα’s way to handle FP query atoms in the inferred state, which are due to er-
roneously satisfied rules in the current theory. OSLα penalizes existing rules by using
AdaGrad-based[6] weight learning technique, which supports L1-regularization.

OSLα might use specialize techniques for pruning the search space of the hypergraph
structure to enhance efficiency, but the rule generation technique remains a bottleneck
because searching for paths in the hypergraph is an expensive operation and blindly gen-
erating large sets of rules, which result in the increased cost of MAP inference during
learning.

E. Lykos 19

Robustness evaluation of Online Inductive Logic Programming Methods against Noisy Maritime Data

4.2 WoLED

WoLED is an OLED’s extension and aims to improve the efficiency of online learning with
the Event Calculus in MLN. Also, WoLED combines effectively OLED’s rule learning with
OSLα’s weight learning technique to jointly optimize together the rule’s structure and its
weight, contrary to OSLα which a rule’s structure is fixed and improvement in quality can be
done only by changing its weight. To learn weights, WoLED replaces OLED’s crisp logical
inference with MAP inference and uses OSLα’s mistake-driven weight learning technique,
which updates a rule’s weight based on the query atoms that the rule misclassifies in the
MAP-inferred state.

Figure 4.1: WoLED’s High Level Strategy

WoLED’s high level strategy is illustrated in Figure 4.1. Specifically, for each incoming
interpretation WoLED does the following:

1. Given the current interpretation and the background knowledge WoLED does MAP
inference in order to get the inferred interpretation atoms. TheMAP inference is done
to ”mature” rules, rules that were evaluated on a minimum number of examples to
avoid change in weight to new rules that have not been tested thoroughly.

2. If a FN atom exists, the no rule in the current theory entails it, thus we should proceed
to the Theory Expansion step to add a new rule r in the theory. This is done by using
the FN atom α as a seed to generate the new rule r with combination to the given
language bias.

3. Afterwards, the weight of each rule is updated based on their mistakes that were
generated from the MAP inference that was previously done using the AdaGrad
weight-updating technique.

4. The theory’s rules that passed the Hoeffding test are getting specialized the same
way that is done in OLED.

E. Lykos 20

Robustness evaluation of Online Inductive Logic Programming Methods against Noisy Maritime Data

5. Low-quality rules that remained unchanged for a long period of time, set to the aver-
age number of O(1

ϵ2
ln 1

δh
) examples for which the Hoeffding test has succeeded so

far, and there is enough confidence, via an additional Hoeffding test, that its mean
G-score is lower than a minimum acceptable G-score, are getting pruned from the
theory.

4.3 WoLED ASP

The simple approach of WoLED that uses MLNs has the problem that the non-monotonic
semantics of Event Calculus are incompatible with the open-world semantics of MLNs.
Thus, the inference operation on Event Calculus-based MLN theories invokes superflu-
ous operations, such as computing the completion of a theory[14], in order to endow the
first-order logic representations on which MLNs rely with a non-monotonic semantics. This
problem is addressed by WoLED’s Answer Set Programming(ASP)[15] version by trans-
forming WoLED’s probabilistic inference with MLNs into an ASP optimization task -which
naturally supports non-monotonic and commonsense reasoning- by using ASP solvers.
Furthermore, this version of WoLED has the advantage that its methodology incorporates
machine learning by learning the structure and the weights of the rules by using ASP tools.
WoLED’s ASP version has the same functionality as the MLN one, but they differ on the
way that they generate the inferred state and learning new Complex Event patterns.

To generate the inferred state, WoLED uses MAP probabilistic inference which amounts to
determine the most probable answer set A of a logic program Π = B ∪Ht ∪ It, where B is
static background knowledge, Ht is the current theory that WoLED learned at time t, and
It is the interpretation(e.g. the input data) that WoLED received at time t. Therefore, we
need to determine an answer set A of Π that satisfies equation (4.3), respectively, to find
an answer set that maximizes the sum of weights of the satisfied rules, which is a classic
weighted MaxSat problem that could be solved by traditional ASP solvers. However, we
should transform the rules of current theory Ht, in order to be ready to handled by ASP
solvers and produce optimal results. Firstly, because ASP solvers can optimize integer
valued functions, the weights of the rules are converted to integers by firstly multiplying
by some factor and afterwards they get normalized. Secondly, we produce a new theory
T (Ht) which is derived by transforming each Ht’s rule in a form that is illustrated in[15]
and gives to the solver the choice to satisfy some rules and not all of them. Finally, the
optimal answer set A is determined from logic program Π = B ∪ T (Ht) ∪ It.

To expand the current theoryHt by adding new rules to it, this version of WoLED proceeds
to the following steps. Firstly, a set of bottom rules is generated, using the constants in the
erroneously predicted atoms to generate ground initiatedAt/2 and terminatedAt/2 atoms,
which are placed in the head of initially empty-bodied rules. The bodies of these rules are
afterwards populated by literals, grounded with constants that appear in the head, that are
true in current data interpretation It, and are constraint to the language bias. Afterwards,
constants in bottom rules are replaced with variables and are getting compressed, so
the set of bottom rules H⊥ will not have duplicates. Subsequently, the current theory
Ht is transformed the same way it was on MAP inference, the set of bottom rules H⊥ is
transformed with a way illustrated in[15] and the new sets T (Ht) and T (H⊥) are generated,
respectively. Eventually, using ASP solvers, we determine the best answer set for logic
program Π, which contains some optimization rules and B ∪ It ∪ T (Ht) ∪ T (H⊥). Finally,
from H⊥, the rules and literals that are not used to the returned answer set are deleted
from H⊥ and Hnew is the new H⊥, while the current theory equals to Ht ∪Hnew. After, the

E. Lykos 21

Robustness evaluation of Online Inductive Logic Programming Methods against Noisy Maritime Data

generation of new patterns, their weights are updated based on their groundings in It and
the true state. Moreover, each new rule r is associated with the bottom rules from H⊥,
which are θ-subsumed by ri. These bottom rules are used as a pool of literals for further
specializing r over time.

Note, that in the experiments that will be presented afterwards this version of WoLED is
used.

E. Lykos 22

Robustness evaluation of Online Inductive Logic Programming Methods against Noisy Maritime Data

5. NOISE INJECTION

5.1 Noise Injection Method

The authors of [16] at section 8.2, in order to inject noise to the dataset, propose the idea
that every received Critical Point is not getting retrieved with complete certainty, thus the
points that are received with a certainty lower than a certain standard should be getting re-
moved from the dataset. Although we incorporated that idea in our noise injection method,
this exact method has two drawbacks. Firstly, this method was intended to be applied in
the CAVIAR dataset which probably have different form than the Maritime dataset that we
currently work with. Secondly, this method defines a global certainty standard, such as
70% and just for each point, takes a random number in [0, 1] and if that number is less than
0.7, then the point gets deleted. But, by deleting Critical Points that way is not very realistic
bacause every point has its own attributes on how it is derived, thus it is not necessary that
all the points have the same retrieval uncertainty. Therefore, we need to define a realistic
way to attach every Critical Point to its own level of uncertainty.

One factor that we thought that was decisive enough to inform about the level of uncer-
tainty of a given Critical Point, was the distance of that point from the coastline because
every AIS receiver has a specific distance range. Thus, when a specific receiver receives
a signal from a great distance, like from the Atlantic Ocean, probably that signal might be
corrupted because it might took much time to reach the receiver. Initially, we thought to
define the uncertainty of a given signal by making distance levels. For example if a signal
has distance in [0, 1000] meters will be completely certain, if the signal has distance in
[1000, 5000] meters then will have certainty equal to 0.8, etc. However, this method does
not provide continuity to the certainty value, and in order to evaluate our method’s effect-
iveness we might need to tune every interval of each distance level, where in fact will be a
painstaking process because there are millions of possible intervals and certainty values
to attach to them. Instead, we thought to produce the certainty of every Critical Point in a
dynamic and continuous way by defining an increasing and continuous function that takes
as input the distance of the Critical Point from the coast and returns its uncertainty. This
function will be analyzed afterwards.

In order to apply the aforementioned method, firstly, we attached to each coord1 atom a
probability, which denotes how likely is to delete its corresponding LLE atoms from the
data, because the coord atom was attached with some LLEs. As we mentioned before,
in order to completely define our method we have to declare an increasing function f :
(0,+∞) → [0, 1] that takes as argument the distance of the current point from the coast
and returns the probability that this point’s LLEs will be deleted. The function that we
thought is the following:

f(x) =

{
0, if c ≥ x

1− c
x
, else

where the parameter c ∈ (0,+∞) denotes the max distance that surely a transmitter’s
message is not noisy, so it will not get deleted.

1The coord atom contains information about the location of a vessel in some time.

E. Lykos 23

Robustness evaluation of Online Inductive Logic Programming Methods against Noisy Maritime Data

(a) Noise Function with c = 1000 (b) Noise Function with c = 10000

Figure 5.1: Noise Function

We chose this function for the following reasons. Firstly, because we can declare a dis-
tance threshold, such as, when the distance is below that threshold, the AIS signal that
was received was not noisy, which is realistic because every AIS receiver within some
distance range receives completely clear signals. Secondly, as we can see in Figure 5.1a
and 5.1b ,as the parameter c increases, the growth rate of the function decreases, which
we claim that it is realistic because if one receiver can receive a clear signal within a greater
range than some other, then the former receiver is more robust to corrupted signals that
came from a distance greater than the distance threshold. Finally, contrary to our first
suggestion about setting uncertainty, that we not only have to define the intervals but also
their corresponding uncertainty values this method has only one parameter to tune, which
is the distance threshold. Therefore, we can make easier and more experiments because
it will be understandable on why we chose these values for our parameter and what that
parameter actually means.

After we attached to each coord atom a probability, we take for each of them a random
number from [0, 1] with uniform distribution and if the generated number is below the at-
tached probability we delete the coord atom and all the atoms that have the same MMSI
and Timestamp because these atoms were attached with the deleted coord atom because
they form a critical point2 in the dataset.

5.2 Technical Notes

In order to be able to inject the noise we wrote a Python3 script and we used the following
libraries:

• Fiona, which is a Python package that helps programmers to read and write geospa-
tial data from various file formats, in order to be integrated into programs and work
harmonically with other packages that handle geospatial data, such as Shapely. In
the present noise injectionmethod, Fiona is used to read the shapefile that contained
the European Coastline, in order to extract its corresponding Linestring.

• Shapely, which is a Python package that works as a wrapper for Java Topology
2critical point of a trajectory is a point where we recognized an LLE in it.

E. Lykos 24

Robustness evaluation of Online Inductive Logic Programming Methods against Noisy Maritime Data

Suite(JTS), is used to create and manipulate planar geometrical objects, in order to
answer effectively spatial queries. In the present noise injection method, Shapely is
used to find the nearest point of the coastline or from a set of points, from the current
location of the vessel’s trajectory. This is achieved by saving the coastline and the
set of points as LineString and MultiPoint objects, respectively.

• Geopy is a client for geocoding web services. Geopy is used by Python developers
to locate the coordinates of addresses, cities, countries, and landmarks across the
globe using third-party geocoders and other data sources. In the present method,
Geopy is used to find the Great Circle Distance between the current location of the
vessel’s trajectory and its nearest coastline point.

• Sklearn, is a Python library that is used for machine learning because it contains
implementations for all the popular machine learning algorithms such as Random
Forest Regression and Classification, K-Means Clustering, Principal Component
Analysis etc. Sklearn is used in the optimization step of the present method, be-
cause the Mini-Batch K-Means[1] is used.

Applying naively that method, we encountered the problem that it took too much time to be
applied in the whole dataset. Thus, there was a need to make that method more efficient
by applying an optimization. Visualizing the data on a map, we observed that there were
many points close to each other, probably because the AIS signals were frequent and
there were present many vessels on the sea. Thus, we probably made almost the same
nearest points query many times because two points that are close to each other probably
have almost the same nearest coastline point. Therefore, we developed an optimization
to our noise injection method whose main concept is that points which are in some defined
range from its nearest center point have the same nearest coastline point with this center
point. In practice, this optimization helps us do the nearest points query between the
current point and the coastline fewer times, which makes the execution of the method
faster because the aforementioned query is very costly because the European coastline
is large. Specifically, the optimized method to find the distances works as follows.

Firstly, runs in the whole dataset the Mini Batch K-Means algorithm(because in huge
datasets this algorithm is efficient), in order to have K good initial centers, so the afore-
mentioned query will be done fewer times than just incrementally adding the centers into
the data structure. Afterwards, these initial centers are stored into a hash table with keys
the coordinates of the centers and values their nearest coastline point.

Then, for each incoming point, we determine its nearest neighbor from the keys of the hash
table(by asking a query between a point and a MultiPoint instance) and if their distance is
less than the defined threshold the current point, we will assume that its nearest coastline
point is the same as its nearest neighbor. Else, we do the nearest point query between the
given point and the coastline and find their distance. If the hash table has fewer records
than a user-defined limit then the point-nearest coastline point pair is inserted into the
hash table. This is done because when the hash table is huge the optimization algorithm
is useless.

Finally, we attach to the coord atom a probability based on the distance found, then, we
generate a random number, and if it is less than the given probability the coord atom and its
respective LLEs are deleted from the dataset. Last but not least, it is worth mentioning that
the presented optimization algorithm will have a trade-off between precision and speed,
but, as we mentioned above, if it is not applied, the noise injection script will take even
days to finish because the maritime dataset is huge. A pseudocode of the mentioned

E. Lykos 25

Robustness evaluation of Online Inductive Logic Programming Methods against Noisy Maritime Data

method is illustrated below, but note, that it is assumed that each critical point contains all
the LLEs that are happening at it, so we do not need to check whether it is a coord atom.

Algorithm 1 Noise Injection Method
Input: Set of critical points P , Coastline as MultiLineString CL, Maximum number of
Hash Table keys kmax, number of initial centers kinit, Proximity threshold dmax, AIS Re-
ceiver range drange
Returns: A new set of critical points after noise injection Pnew

CurrHashTableRecords = 0
Pnew = ∅
PointCoastlineNearestMap = HashMap < Point, Point > ()
Cinit = MiniBatchKMeans(kinit, P)

for all c ∈ Cinit do
NearestCLPoint = NearestPoint(c, CL)
PointCoastlineNearestMap[c] = NearestCLPoint
CurrHashTableRecords = CurrHashTableRecords+ 1

end for

for all p ∈ P do
NearestCenterPoint = NearestPoint(p, PointCoastlineNearestMap.keys())
CurrentDistance = Distance(p,NearestCenterPoint)

if CurrentDistance ≤ dmax then
PointDistance = Distance(p, PointCoastlineNearestMap[NearestCenterPoint])

else
NearestCLPoint = NearestPoint(p, CL)
PointDistance = Distance(p,NearestCLPoint)

if CurrHashTableRecords < kmax then
PointCoastlineNearestMap[p] = NearestCLPoint
CurrHashTableRecords = CurrHashTableRecords+ 1

end if

if PointDistance < drange then
Pnew = Pnew ∪ {p}

else
DeleteProbability = 1− drange/PointDistance

if Random() ≥ DeleteProbability then
Pnew = Pnew ∪ {p}

end if
end if

end if
end for

return Pnew

E. Lykos 26

Robustness evaluation of Online Inductive Logic Programming Methods against Noisy Maritime Data

6. RTEC EVALUATION

In order to evaluate OLED’s and WOLED’s robustness against noisy data, firstly, we
should inject noise to the Critical Points Dataset -which is described in Section 2.4-, using
the method described in the previous chapter. Afterwards, we should run RTEC with the
aforementioned dataset and the HLE patterns as input to recognize the new HLE intervals
that were derived from the noisy dataset. Finally, we pass to the Inductive Programming
learners the clean Critical Points dataset and the HLE intervals dataset -which is described
in Section 2.4-, in order to evaluate their robustness, by applying in an online manner our
noise injection method.

But, before we execute our experiments in OLED and WOLED it is useful to compare the
clean HLE intervals-that are used as ground truth intervals- with the noisy ones and ob-
serve how different they are, for three reasons. Firstly, because we should check if our
noise injection method actually works by producing reasonable results,thus, by observing
how the values of evaluation metrics are changing by getting through different values of
the distance threshold. Secondly, we can observe how much the aforementioned noise
injection method affects the recognized intervals of different types of HLEs, such as HLEs
with more complex patterns or, HLEs that are defined as Statically Determined or Simple
Fluents. Finally, the experiments that will be performed on OLED and WOLED, will eval-
uate their robustness against noisy data. This attribute will be tested by observing how
good are the patterns learned by some HLEs of interest on different variations of noisy
dataset. But, in order to check if the learners are really robust, we ideally want to choose
HLEs that their recognized intervals were actually changed much by noise injection, be-
cause if not, then it will be like to executing the learner twice with the clean dataset, which
is something we do not want, because we will think that the learner is robust, but actually
the noise that will be applied to the clean dataset will not be detrimental at learning the
pattern of the event of interest.

Before we show the results of our work, note that each HLE interval’s time unit(in our
approach, time unit is equal to a millisecond) that is in the noisy or clean HLE intervals
dataset can be classified as true positive, false positive and false negative by the fol-
lowing rules:

• true positive is an interval’s millisecond that belongs to the clean dataset interval
and in some of its corresponding 1 noisy dataset intervals.

• false positive is an interval’s millisecond that belongs to the noisy dataset interval
but does not belong in some of its corresponding clean dataset intervals.

• false negative is an interval’s millisecond that belongs to the clean dataset interval
but does not belong in some of its corresponding noisy dataset intervals.

The results presented have different values of the noise function’s parameter c and we
found 350 initial centroids while the Hash Table can hold 500 entries and dnear equals ten
thousand meters.

The approximate results for different values of c that we got, running this experiment, are
the following:

1corresponding intervals are two intervals that represent the same fluent, the same MMSI, the same
argument(if exists) and the same value.

E. Lykos 27

Robustness evaluation of Online Inductive Logic Programming Methods against Noisy Maritime Data

Table 6.1: anchoredOrMoored

c TPs FPs FNs Precision Recall F1-Score
1000 25.46 107 66.61 106 43.81 106 0.7920 0.8527 0.8212
2500 28.59 107 14.37 106 11.53 106 0.9521 0.9612 0.9567
5000 29.56 107 99.57 105 18.18 105 0.9674 0.9939 0.9805
7500 29.74 107 10.91 106 0 0.9646 1.0 0.9820
10000 29.74 107 69.35 105 0 0.9772 1.0 0.9885
12500 29.74 107 18.51 103 0 0.9999 1.0 0.9999
15000 29.74 107 54.61 103 0 0.9998 1.0 0.9999
17500 29.74 107 0 0 1.0 1.0 1.0
20000 29.74 107 0 0 1.0 1.0 1.0

Table 6.2: gap

c TPs FPs FNs Precision Recall F1-Score
1000 67.95 108 25.14 108 22.2 109 0.7299 0.2344 0.3548
2500 99.29 108 28.24 108 19.07 109 0.7785 0.3424 0.4756
5000 13.29 109 34.62 108 15.71 109 0.7933 0.4582 0.5809
7500 14.96 109 32.49 108 14.03 109 0.8216 0.5161 0.6340
10000 16.64 109 36.32 108 12.36 109 0.8208 0.5738 0.6754
12500 17.92 109 35.54 108 11.08 109 0.8345 0.6179 0.7100
15000 18.65 109 36.91 108 10.35 109 0.8348 0.6432 0.7266
17500 19.4 109 31.86 108 95.95 108 0.8590 0.6691 0.7522
20000 19.99 109 34.25 108 90.07 108 0.8537 0.6894 0.7628

Table 6.3: loitering

c TPs FPs FNs Precision Recall F1-Score
1000 26.88 107 17.37 108 36.9 107 0.1340 0.4214 0.2034
2500 34.2 107 12.13 108 29.58 107 0.2199 0.5363 0.3119
5000 39.2 107 10.85 108 24.57 107 0.2654 0.6147 0.3707
7500 41.89 107 89.54 107 21.89 107 0.3187 0.6568 0.4292
10000 44.58 107 71.03 107 19.19 107 0.3856 0.6990 0.4970
12500 51.28 107 83.14 107 12.5 107 0.3815 0.8040 0.5175
15000 52.89 107 72.87 107 10.88 107 0.4206 0.8294 0.5581
17500 42.64 107 63.57 107 21.14 107 0.4015 0.6685 0.5017
20000 52.92 107 55.69 107 10.86 107 0.4872 0.8297 0.6139

Table 6.4: lowSpeed

c TPs FPs FNs Precision Recall F1-Score
1000 12.2 107 14.15 108 26.72 107 0.0794 0.3135 0.1267
2500 18.56 107 10.27 108 20.36 107 0.1530 0.4769 0.2317
5000 20.48 107 91.12 107 18.44 107 0.1835 0.5263 0.2722
7500 23.75 107 78.76 107 15.17 107 0.2317 0.6102 0.3358
10000 24.58 107 62.72 107 14.34 107 0.2816 0.6317 0.3895
12500 28.64 107 68.21 107 10.28 107 0.2957 0.7358 0.4219
15000 29.99 107 64.92 107 89.34 106 0.3159 0.7705 0.4481
17500 23.48 107 53.22 107 15.44 107 0.3061 0.6032 0.4061
20000 30.63 107 47.64 107 82.91 106 0.3913 0.7870 0.5227

Table 6.5: pilotOps

c TPs FPs FNs Precision Recall F1-Score
1000 22.83 103 14.25 103 11.57 103 0.6157 0.6637 0.6388
2500 33.48 103 81.3 101 91.4 101 0.9763 0.9734 0.9749
5000 34.4 103 34 0 0.9990 1.0 0.9995
7500 34.4 103 31 0 0.9991 1.0 0.9995
10000 34.4 103 38 0 0.9989 1.0 0.9994
12500 34.4 103 28 0 0.9992 1.0 0.9996
15000 34.4 103 0 0 1.0 1.0 1.0
17500 34.4 103 0 0 1.0 1.0 1.0
20000 34.4 103 28 0 0.9992 1.0 0.9996

Table 6.6: rendezVous

c TPs FPs FNs Precision Recall F1-Score
1000 69.29 105 17.62 104 83.32 103 0.9752 0.9881 0.9816
2500 70.02 105 15.26 103 10.99 103 0.9978 0.9984 0.9981
5000 70.11 105 54.84 102 12.94 102 0.9992 0.9998 0.9995
7500 70.12 105 58.04 102 10.81 102 0.9992 0.9998 0.9995
10000 70.12 105 4 10.81 102 0.9999 0.9998 0.9999
12500 70.12 105 0 10.81 102 1.0 0.9998 0.9999
15000 70.12 105 0 10.81 102 1.0 0.9998 0.9999
17500 70.12 105 11 54.4 101 0.9999 0.9999 0.9999
20000 70.13 105 40 7 0.9999 0.9999 0.9999

Table 6.7: stopped

c TPs FPs FNs Precision Recall F1-Score
1000 63.41 107 61.22 107 25.33 107 0.5088 0.7146 0.5944
2500 74.92 107 25.27 107 13.82 107 0.7478 0.8443 0.7931
5000 81.11 107 20.33 107 76.31 106 0.7996 0.9140 0.8530
7500 81.34 107 13.14 107 73.94 106 0.8609 0.9167 0.8879
10000 83.8 107 10.34 107 49.4 106 0.8902 0.9443 0.9164
12500 85.31 107 18.53 107 34.3 106 0.8216 0.9613 0.8860
15000 86.74 107 11.15 107 19.95 106 0.8861 0.9775 0.9296
17500 81.02 107 11.99 107 77.19 106 0.8711 0.9130 0.8916
20000 84.51 107 11.76 107 42.3 106 0.8778 0.9523 0.9136

Table 6.8: withinArea

c TPs FPs FNs Precision Recall F1-Score
1000 52.64 108 84.91 108 49.54 108 0.3827 0.5152 0.4392
2500 59.45 108 72.43 108 42.73 108 0.4508 0.5818 0.5080
5000 63.4 108 62.07 108 38.78 108 0.5053 0.6205 0.5570
7500 67.02 108 58.24 108 35.16 108 0.5350 0.6559 0.5893
10000 70.45 108 50.77 108 31.73 108 0.5812 0.6895 0.6307
12500 72.99 108 45.77 108 29.19 108 0.6146 0.7143 0.6607
15000 73.33 108 43.35 108 28.85 108 0.6285 0.7176 0.6701
17500 78.26 108 42.55 108 23.92 108 0.6478 0.7659 0.7019
20000 79.04 108 36.93 108 23.14 108 0.6816 0.7735 0.7246

Table 6.9: Total results

c TPs FPs FNs Precision Recall F1-Score
1000 31.93 109 35.68 109 70.76 109 0.4722 0.3109 0.3750
2500 41.08 109 33.54 109 61.6 109 0.5505 0.4001 0.4634
5000 48.75 109 32.96 109 53.93 109 0.5966 0.4747 0.5287
7500 54.43 109 31.83 109 48.25 109 0.6310 0.5301 0.5761
10000 58.43 109 30.97 109 44.25 109 0.6536 0.5690 0.6084
12500 62.88 109 29.3 109 39.8 109 0.6821 0.6124 0.6454
15000 65.29 109 28.07 109 37.4 109 0.6993 0.6358 0.6661
17500 68.18 109 26.79 109 34.5 109 0.7180 0.6640 0.6899
20000 70.0 109 25.38 109 32.69 109 0.7339 0.6817 0.7068

Therefore, we can easily observe that as c decreases, then the F1-Score also decreases.
This is obvious because when we delete Low Level Event atoms then the recognized
intervals might be different, thus there would be error, and as the number of atoms deleted
increases, the error will get increased. Hence, we can conclude that the noise injection
method indeed works because the results are reasonable.

E. Lykos 28

Robustness evaluation of Online Inductive Logic Programming Methods against Noisy Maritime Data

Observing, the F1-Scores of each event individually we observe that the noise does not
affect negatively event’s F1-Score to the same degree. For example the rendezVous event
keeps an almost perfect F1-Score even for c = 1000, but pilotOps event for c = 20000 keeps
an almost perfect F1-Score, while for c = 1000 has a low F1-Score. We theorize that this
happens because each High Level Event(HLE) definition has not the same complexity,
therefore have not the same robustness to noise. Furthermore, we observe that Simple
Fluents are less robust than Statically Determined Fluents. For instance, the lowSpeed
fluent which has the following definition,

initiatedAt(lowSpeed(V essel) = true, T)←
happensAt(slow_motion_start(V essel), T).

terminatedAt(lowSpeed(V essel) = true, T)←
happensAt(slow_motion_end(V essel), T).

terminatedAt(lowSpeed(V essel) = true, T)←
happensAt(start(gap(V essel) = _Status), T).

,is a Simple Determined Fluent and we could think that this HLE is not very robust-because
it depends on the truth value of an LLE which might be deleted-, which indeed is not,
because we can see in the corresponding table that its F1-score begins from 0.52 and falls
to 0.12, so the F1-Score begins with a low value and as we decreasing c it becomes even
lower. On the contrary, the rendezVous fluent, which has the following definition

holdsFor(rendezV ous(V essel1, V essel2) = true, I)←
holdsFor(proximity(V essel1, V essel2) = true, Ip),

not oneIsTug(V essel1, V essel2),

not oneIsP ilot(V essel1, V essel2),

holdsFor(lowSpeed(V essel1) = true, Il1),

holdsFor(lowSpeed(V essel2) = true, Il2),

holdsFor(stopped(V essel1) = farFromPorts, Is1),

holdsFor(stopped(V essel2) = farFromPorts, Is2),

union_all([Il1 , Is1], I1b),
union_all([Il2 , Is2], I2b),
intersect_all([I1b , I2b , Ip], If), If ̸= [],

holdsFor(withinArea(V essel1, nearPorts) = true, Iw1),

holdsFor(withinArea(V essel2, nearPorts) = true, Iw2),

holdsFor(withinArea(V essel1, nearCoast) = true, Iw3),

holdsFor(withinArea(V essel2, nearCoast) = true, Iw4),

relative_complement_all(If , [Iw1 , Iw2 , Iw3 , Iw4], I).

,is a Statically Determined Fluent and we could think that this HLE is very robust because
it is pretty complex, which indeed is, because we can see that even with the ultimate form

E. Lykos 29

Robustness evaluation of Online Inductive Logic Programming Methods against Noisy Maritime Data

of noise the F1-Score is 0.98 which is almost perfect. Furthermore, this might happen
because the definition of Simple Fluents-by initiatedAt/2 and terminatedAt/2 predicates-
contain happensAt/2 or holdsAt/2 predicates that check the presence of an LLE atom
that appears on a critical point-at a particular time point- which can be directly deleted by
the aforementioned noise injection method, while the definition of Statically Determined
Fluents-by holdsFor/2 predicates-contain holdsFor/2 predicates that check the value of a
HLE Fluent in a particular time interval, and interval handling predicates, thus it is more
difficult to change these intervals because the underlying LLEs that determine the truth
value of that HLE should be deleted.

E. Lykos 30

Robustness evaluation of Online Inductive Logic Programming Methods against Noisy Maritime Data

7. LEARNING EXPERIMENTS

7.1 Data Preparation

In order to be able to run the experiments, we had to convert our data to OLED’s and
WOLED’s desired format. Furthermore, instead of having to run our Python3 script in
order to inject the noise and waiting extra time to run our experiments, we incorporated
our noise injection method into our program that reads the datasets and converts it to
the desired format. Also, note that, that in this program there was no need to apply the
optimization of our noise injection method, because it was seen that it was not detrimental
to learners’ performance, probably because it was applied in an online manner. Moreover,
before the learners start, they read the HLE intervals dataset and save them into an interval
tree, which is a data structure that handles intervals.

Therefore, the algorithm that retrieved each interpretation(or batch) of size n is the follow-
ing:

• Reads the Critical Points dataset until it had read n different timestamps, and for
each coord atom that encounters, the noise injection method is applied in order to
check if its corresponding LLEs will be deleted.

• The LLEs that will not get deleted, are converted into happensAt/2 predicates and
are added to the narrative.

• Assume that batchLow and batchHigh are the lowest and greatest timestamps of the
current batch respectively. Thus, we make a query into the interval tree to get the
HLE intervals that intersect the [batchLow, batchHigh] interval.

• Then for each HLE interval, we convert it into happensAt/2 or holdsAt/2 predicate
if it should be on narrative or annotation-in which they will be added-, respectively,
unless they should be on narrative and should be deleted. This is done for all the
batch’s timestamps that are in the current HLE interval.

• Finally, the final narrative and annotation lists are returned.

7.2 Performance Evaluation

As in everymachine learningmodel, we should evaluate its performance on validation data
that are used as the testing set. In this current experiment we use k-fold cross validation,
in order to evaluate the performance of our model.

E. Lykos 31

Robustness evaluation of Online Inductive Logic Programming Methods against Noisy Maritime Data

Figure 7.1: k-Fold Cross Validation

In order to split our dataset into k folds we follow these steps:

• Firstly, we get the n different timestamps that are present on our Critical Points data-
set.

• Then, we split these discrete timestamps into k equal-sized parts and each part
is represented by an interval which starts at its first timestamp(except the first fold
which starts at 0) and ends at the first timestamp of its next fold(except the last fold
which never ends)

• Finally, every HLE interval from the corresponding dataset, if it completely falls into a
specific fold is kept into that fold, else it was split properly, so every part of it belongs
to the right fold.

The aforementioned split method might show the problem that some fold might not have
many annotation samples of an event that the learners tried to learn, but, in practice, it
was shown that even the HLE intervals of the event of interest were evenly splitted, thus,
we never encountered this problem.

In this learning experiment, we used the dataset’s initial segment of 1,500,000 time points
for training and testing.

The experimental setting was a 5-fold cross-validation process. At each fold, and for
each complex event in the experiment, we formed a training set by sampling 30,000 data
batches of size 50 from the entire dataset. A size-50 training batch consists of data corres-
ponding to 50 consecutive time points sampled from some region of the dataset where the
target complex event occurs (i.e. it is initiated, terminated or holds continuously). Note that
although these training batches certainly contain positive examples for the target complex
events (e.g. for its initiation/termination), they almost always contain negative examples
as well, as they reference pairs of vessels for which the target complex event does not
hold. To form a testing set for each fold of the cross-validation process we sampled 10,000
data batches of size 50 (with no overlap with the training batches) in a fashion similar to
that of the training set. The F1-scores that we report are micro-averages from the 5-fold
cross-validation process, meaning that TPs, FPs and FNs from the testing sets of all 5
runs where aggregated and an F1-score was calculated from these values.

At each fold, we compare OLED’s and WOLED’s performance in the noisy and the non-
noisy case. Exactly the same training and testing sets were sampled in both cases (non-
noisy, noisy), i.e. at each fold we have a noise-free training-testing pair and its noisy
versions for different values of the c constant that controls the amount of noise.

E. Lykos 32

Robustness evaluation of Online Inductive Logic Programming Methods against Noisy Maritime Data

At each run of each fold the training batches were treated as a stream, therefore both
OLED and WOLED were allowed a single pass of these data.

7.3 Experimental Setting and Results

Now that we evaluated the influence of noise injection and defined our evaluation meth-
ods to the recognition of HLE intervals we are ready to evaluate the robustness of the
learners against the noisy datasets. The learning experiments are performed with three
complex events, namely the anchoredOrMoored, pilotOps and rendezVous. These events
are chosen for the following reasons.

First, two of these events (pilotOps and rendezVous) are relational, therefore, their cor-
responding rule-based patterns involve more than one vessel. Moreover, they are the
only definitions in the maritime complex event library that have been developed with this
property. Performing learning experiments with these complex events were particularly
useful, since dealing with relational knowledge is one of the important relative strengths
of logic-based learning methods, as the ones that we investigate in this work. Finally, as
we could see in the previous chapter, that the noise, generally, does not change much
the recognized intervals, except the ultimate form of noise with distance threshold equals
1000, but these patterns are good for the experiments because they are pretty complex.

Learning non-relational patterns is also useful, however, most of the remaining complex
event definitions have a number of drawbacks that renders learning them either ”too easy”,
or impractical. Many complex events, such as withinArea, gap, stopped, etc. fall in the first
category. These events are mostly used in the library as intermediate-level events, useful
for defining higher-level ones, and their definitions are straightforward. On the other hand,
several complex events with challenging definitions (from a learning perspective) such
as movingSpeed, drifting, tuggingSpeed, trawlSpeed, trawlingMovement and sarSpeed,
heavily involve learning numerical thresholds, a task that is not particularly well-handled
by the logic-based learning algorithms that we study in this work. Extending the learn-
ing algorithms for efficiently dealing with such forms of threshold learning is an important
direction for future work.

As a proof of concept, we experimented with one non-relational pattern learning, anchore-
dOrMoored, in addition to pilotOps and rendezVous (the relational ones).

To ease the learning effort only vessels that were close enough to each other (particip-
ating in a proximity event) were considered. This significantly reduces the ASP solver’s
grounding and solving cost during processing each data batch.

E. Lykos 33

Robustness evaluation of Online Inductive Logic Programming Methods against Noisy Maritime Data

The following results are for four different values of c. Training times are in seconds and
they are averages from the five folds.

Table 7.1: Learning results

Event Noise Type OLED WOLED
F1-Score Time F1-Score Time

anchoredOrMoored

no-noise 0.823 2834 0.878 3745
noise with c = 1000 0.815 3188 0.872 3792
noise with c = 5000 0.865 2945 0.767 3827
noise with c = 10000 0.833 2986 0.858 3844
noise with c = 20000 0.814 3022 0.877 3819

pilotOps

no-noise 0.743 3667 0.812 4212
noise with c = 1000 0.742 3662 0.788 4143
noise with c = 5000 0.712 3723 0.783 4202
noise with c = 10000 0.712 3718 0.788 4218
noise with c = 20000 0.713 3729 0.788 4308

rendezVous

no-noise 0.805 4122 0.886 5528
noise with c = 1000 0.805 4224 0.878 5542
noise with c = 5000 0.788 4332 0.878 5430
noise with c = 10000 0.788 4348 0.860 5582
noise with c = 20000 0.770 4345 0.871 5612

Observing, Table 7.1 we can observe the following.Firstly, F1-scores are comparable and
relatively good, either with noise or without noise, which is what was expected, since
noise injection did not affect the recognition of these complex events dramatically, as in-
dicated by the RTEC results. Also, note that, even for c = 1000 were it is seem that
noise influences much the anchoredOrMoored and pilotOps event, OLED and WOLED
perform really well, which indicates that these learners are robust. However, and this is
the important finding, WOLED out-performs OLED in almost all cases, even marginally, or
significantly (e.g. rendezVous). There are cases where a learner performs slightly better
with noise than without noise. We attribute that to the randomness related to the selection
of training/testing set pairs.

E. Lykos 34

Robustness evaluation of Online Inductive Logic Programming Methods against Noisy Maritime Data

8. CONCLUSIONS AND FUTURE WORK

8.1 Summary

In the current thesis, we evaluated the robustness of online ILP learners, OLED and
WOLED, against noisy variations of the Maritime Dataset. In order to achieve that, we
proposed a novel noise injection method that can be applied in a realistic setting, because
it incorporates the uncertainty of the received Critical Point with the distance from the
coast. Afterwards, we illustrated an optimization for that particular noise injection method
in order to be applicable when we have a huge dataset. Then, in order to evaluate our
method and the learners’ robustness our experimental evaluation was split into two parts.
Firstly, because the noise was injected into the Critical Points, it was mandatory to run
RTEC in order to get the noisy HLE intervals. For that reason, we checked how our pro-
posed method changes the clean HLE intervals, in order to know what to expect when we
forward these datasets to learners. Moreover, we compared all recognized events with
each other to determine how and why the HLE intervals are affected, which was seen that
the noise affects most the HLEs that are defined as Simple Determined Fluents or have
a very simple definition. Secondly, we executed OLED and WOLED with the clean data-
sets, in order to determine their robustness against the online generated noisy dataset.
As it was expected from the previous experiment these learners were proved to be robust,
even against the datasets that were subjected to the ultimate form of noise. Furthermore,
not only it was shown that WOLED out-performed OLED in terms of F1-Score, but also
it was proven more robust to noise. In conclusion, we illustrated that OLED and WOLED
are robust and accurate about finding event definitions even in the noisy maritime dataset.

8.2 Future Work

The research paths for future work are many. Firstly, one bottleneck shown in our re-
search was that the learners are not made to learn numerical threshold or interval length
predicates, thus we could not experiment with events that involved them, consequently
our range experimentation was limited to specific events. Moreover, the learning times
of WOLED are greater than the ones of OLED mostly because of the probabilistic MAP
inference that WOLED performs at every step, but WOLED yields a small improvement
at predictive performance. Thus, someone can make the predictive performance even
better or optimize the MAP inference. Finally, someone can focus on the evaluation of the
robustness of OLED and WOLED against concept drift, which is the phenomenon of an
event that changes its behavioral pattern through the course of time.

E. Lykos 35

Robustness evaluation of Online Inductive Logic Programming Methods against Noisy Maritime Data

ABBREVIATIONS - ACRONYMS

ILP Inductive Logic Programming

MMSI Maritime Mobile Service Identity

OLED Online Learning of Event Definitions

LfI Learning from Interpretations

WoLED Weighted Online Learning of Event Definitions

CAVIAR Context Aware Vision Using Image-Based Active Recognition

AIS Automatic Identification System

RTEC Run-Time Event Calculus

HLE High Level Event

LLE Low Level Event

ASP Answer Set Programming

TP True Positive

FP False Positive

FN False Negative

OSL Online Structure Learning

OSLα Online Structure Learning with Background Knowledge Axiomization

MAP Maximum Aposteriori

MLN Markov Logic Network

JTS Java Topology Suite

E. Lykos 36

Robustness evaluation of Online Inductive Logic Programming Methods against Noisy Maritime Data

BIBLIOGRAPHY

[1] Web-scale k-means clustering. pages 1177–1178, 01 2010.

[2] A. Artikis, M. Sergot, and G. Paliouras. An event calculus for event recognition. IEEE Transactions on
Knowledge and Data Engineering, 27(4):895–908, 2015.

[3] Hendrik Blockeel, Luc De Raedt, Nico Jacobs, and Bart Demoen. Scaling up inductive logic program-
ming by learning from interpretations. Data Mining and Knowledge Discovery, 3, 09 2000.

[4] Luc De Raedt. Logical and relational learning. page 1, 01 2008.

[5] Amit Dhurandhar and Alin Dobra. Distribution-free bounds for relational classification. Knowledge and
Information Systems, 31:55–78, 04 2012.

[6] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 07 2011.

[7] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Answer set solving in
practice. Synthesis Lectures on Artificial Intelligence and Machine Learning, 6:1–238, 12 2012.

[8] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the Amer-
ican Statistical Association, 58(301):13–30, 1963.

[9] Tuyen Huynh and Raymond Mooney. In online structure learning for markov logic networks. pages
81–96, 09 2011.

[10] Nikos Katzouris, Alexander Artikis, and Georgios Paliouras. Online learning of event definitions, 2016.

[11] Nikos Katzouris, Evangelos Michelioudakis, Alexander Artikis, and Georgios Paliouras. Online learning
of weighted relational rules for complex event recognition. In ECML/PKDD, 2018.

[12] Robert Kowalski and Marek Sergot. A logic-based calculus of events. New Generation Computing,
4:67–95, 01 1985.

[13] Evangelos Michelioudakis, Anastasios Skarlatidis, Georgios Paliouras, and Alexander Artikis. Osla:
Online structure learning using background knowledge axiomatization. volume 9851, pages 232–247,
09 2016.

[14] E.T. Mueller. Commonsense reasoning: An event calculus based approach: Second edition. Com-
monsense Reasoning: An Event Calculus Based Approach: Second Edition, pages 1–482, 01 2014.

[15] Katzouris N. and Artikis A. Woled: A tool for online learning weighted answer set rules for temporal
reasoning under uncertainty. 17th Int. Conf. on Principles of Knowledge Representation & Reasoning
(KR), 2020.

[16] ANASTASIOS SKARLATIDIS, ALEXANDER ARTIKIS, JASON FILIPPOU, and GEORGIOS PALI-
OURAS. A probabilistic logic programming event calculus. Theory and Practice of Logic Programming,
15(2):213–245, May 2014.

E. Lykos 37

	CONTENTS
	INTRODUCTION
	BACKGROUND
	First-Order Logic
	Event Calculus
	Inductive Logic Programming
	Maritime Dataset

	OLED Background
	Hoeffding Bound
	OLED

	WOLED Background
	Online Structure Learning
	WoLED
	WoLED ASP

	NOISE INJECTION
	Noise Injection Method
	Technical Notes

	RTEC EVALUATION
	LEARNING EXPERIMENTS
	Data Preparation
	Performance Evaluation
	Experimental Setting and Results

	CONCLUSIONS AND FUTURE WORK
	Summary
	Future Work

	ABBREVIATIONS - ACRONYMS
	REFERENCES

