
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

THESIS

Distributed Online Learning of Probabilistic Logical
Theories for Complex Event Recognition

Evangelos M. Neamonitis

Supervisors: Panagiotis Stamatopoulos Assistant Professor(N.K.U.A.),
Nikolaos Katzouris Associate Researcher(N.C.S.R. Demokritos)

ATHENS

SEPTEMBER 2020

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Κατανεμημένη Online Μηχανική Μάθηση Πιθανοτικών
Λογικών Θεωριών για Αναγνώριση Σύνθετων Γεγονότων

Ευάγγελος Μ. Νεαμονίτης

Επιβλέποντες: Παναγιώτης Σταματόπουλος Επικ. Καθηγητής(Ε.Κ.Π.Α.),
Νικόλαος Κατζούρης Συνεργαζόμενος Ερευνητής(Ε.Κ.Ε.Φ.Ε. Δημόκριτος)

ΑΘΗΝΑ

ΣΕΠΤΕΜΒΡΙΟΣ 2020

BSc sTHESIS

Distributed Online Learning of Probabilistic Logical Theories for Complex Event
Recognition

Evangelos M. Neamonitis
S.N.: 1115201400123

Supervisors: Panagiotis Stamatopoulos Assistant Professor(N.K.U.A.),
Nikolaos Katzouris Associate Researcher(N.C.S.R. Demokritos)

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Κατανεμημένη Online Μηχανική Μάθηση Πιθανοτικών Λογικών Θεωριών για
Αναγνώριση Σύνθετων Γεγονότων

Ευάγγελος Μ. Νεαμονίτης
Α.Μ.: 1115201400123

Επιβλέποντες: Παναγιώτης Σταματόπουλος Επικ. Καθηγητής(Ε.Κ.Π.Α.),
Νικόλαος Κατζούρης Συνεργαζόμενος Ερευνητής(Ε.Κ.Ε.Φ.Ε. Δημόκριτος)

ABSTRACT

Complex Event Recognition (CER) systems detect occurrences of complex events (e.g
meeting, moving, dangerous driving) in a streaming time-stamped input of simple events
using known event patterns. Logic-based approaches that are able to learn Event Calcu-
lus theories are of particular interest in CER, as they can effectively deal with uncertainty
and noise in data streams, thus being a robust alternative to the costly process of manually
crafting event pattern theories. In this context WOLED has been presented [19]. WOLED is
a system that is based on Answer Set Programming (ASP). In recent years, the amount of
data produced has seen an unprecedented increase. CER systems, ought to be able to
cope with this and scale to the need of a given application. We focus on ways to tackle this
rising problem by attempting to perceiveWOLED in a distributed learning scenario with mul-
tiple learners. In this study, we compare and evaluate different possible communication
protocols for sharing learned complex event patterns between learners.

SUBJECT AREA: Complex Event Recognition

KEYWORDS: Inductive Logic Programming ,Event Calculus, Distributed Systems, Com-
plex Event Recognition, Geometric Monitoring

ΠΕΡΙΛΗΨΗ

Τα Συστήματα Ανανώρισης Σύνθετων Γεγονότων εντοπίζουν συμβάντα σύνθετων γεγονό-
των (π.χ: συνάντηση, ομαδική κίνηση, επικίνδυνη οδήγηση κλπ) σε συγκεκριμένες χρονι-
κές στιγμές σε ροή δεδομένων εισόδου, χρησιμοποιώντας γνωστά απλά γεγονότα. Συστή-
ματα Αναγνώρισης σύνθετων γεγονότων βασιμένα στη λογική πρώτης τάξης που μαθαί-
νουν θεωρίες Λογισμού Γεγονότων (Event Calculus) παρουσιάζουν ιδιαίτερο ενδιαφέρον
στον τομέα Αναγνώρισης Σύνθετων Γεγονότων, καθώς μπορούν να ανταπεξέλθουν απο-
τελεσματικά σε ροές δεδομένων με θόρυβο και αβεβαιότητα. Έτσι τα συστήματα αυτά είναι
μια ισχυρή εναλλακτική στην κοστοβόρα διαδικασία της χειροκίνητης παραγωγής θεωριών
από μοτίβα γεγονότων. Σε αυτό το πλαίσιο ο αλγόριθμος WOLEDπαρουσιάστηκε στο [19].
Ο WOLED είναι βασισμένος σε Answer Set Programming (ASP). Τα τελευταία χρόνια, έχει
παρατηρηθεί μια πρωτοφανής αύξηση στην ποσότητα των παραγώμενων δεδομένων. Τα
Συστήματα Αναγνώρισης Σύνθετων Γεγονότων θα πρέπει να ανταπεξέρχονται στην αύ-
ξηση αυτή και να προσαρμόζονται στις απαιτήσεις ζητούμενων εφαρμογών. Στην εργασία
αυτή εστιάζουμε σε τρόπους προσαρμογής του WOLED σε ένα σενάριο κατανεμημένης
μηχανικής μάθησης με πολλαπλούς κόμβους μάθησης (learners). Συγκρίνουμε και αξιο-
λογούμε διαφορετικά προτόκολα επικοινωνίας για τη διαμοίραση μεταξύ των κόμβων των
παραγόμενων μοτίβων σύνθετων γεγονότων.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Αναγνώριση Σύνθετων Γεγονότων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Επαγωγικός Λογικός Προγραμματισμός, Λογισμός Γεγονότων Κατα-
νεμημένα, Συστήματα, Αναγνώριση Σύνθετων Γεγονότων, Γεωμετρι-
κή Επίβλεψη

CONTENTS

1 INTRODUCTION 15

2 BACKGROUND AND RELATED WORK 17

2.1 Complex Event Recognition . 17
2.1.1 First-order Logic . 17
2.1.2 The Event Calculus for CER . 17
2.1.3 The CAVIAR dataset . 19

2.2 The structure & learning process of WOLED . 20
2.2.1 Overview of the Learning process . 20
2.2.2 Weighted complex event patterns . 20
2.2.3 WOLED’s learning process using ASP tools 21

2.2.3.1 Getting the inferred state . 21
2.2.3.2 Weight learning . 21
2.2.3.3 Learning New CE patterns . 22
2.2.3.4 Updating the CE patterns’ Structure 23

2.3 Functional Geometric monitoring . 24
2.3.1 Approximate query monitoring . 24
2.3.2 Functional Geometric Monitoring for distributed data streams 25

2.4 Related work . 26

3 DISTRIBUTED LEARNING APPROACH FOR WOLED 29

3.1 Distributed Machine Learning Systems . 29
3.1.1 Model based Distributed online learning scenario 29
3.1.2 WOLED as a distributed learning system 30
3.1.3 The Actor Model . 30
3.1.4 WOLED’s actor based implementation . 31
3.1.5 Our Data parallelism approach with Kafka 32

4 COMMUNICATION PROTOCOLS 35

4.1 Remote learning without communication . 35

4.2 Synchronous theory merging after a fixed number of batches 35

4.3 Continuous theory averaging after every batch . 36

4.4 Functional Geometric Monitoring (FGM) protocol for learning 36
4.4.1 WOLED’s adaptation to the FGM online learning protocol 37

5 EXPERIMENTAL EVALUATION 41

5.1 Execution environment . 41
5.1.1 Goal . 41
5.1.2 Experiment structure . 41
5.1.3 Computing environment . 42
5.1.4 Result structure . 42

5.2 Results for Meeting and Moving . 42

6 CONCLUSIONS AND FUTURE WORK 45

6.1 Synopsis . 45

6.2 Result Conclusions . 45

6.3 Future Work . 46

ABBREVIATIONS - ACRONYMS 47

REFERENCES 50

LIST OF FIGURES

2.1 Frame from a video in the Caviar dataset. Yellow boxes refer to activities
of a single person such as walking, active etc, whereas green boxes refer
to activities that include multiple people such as meeting, moving together
etc. People in the image that are not included in a box are not moving . . . 19

2.2 A subsumption lattice . 24

3.1 An overview of the actor model . 31
3.2 Example of an Apache Kafka cluster with three topics, each having three

partitions. In our case we use producer applications to distribute the dataset
between topics. The learners are conxumer applications that can then in-
dividually read input data from the topics at their own pace. 33

LIST OF TABLES

2.1 (a), (b) The basic predicates and the EC axioms. (c) Example CAVIAR data.
For example, at time point 1 person with id1 is walking, her (X,Y) coordi-
nates are (201, 454) and her direction is 270◦. The query atoms for time
point 1 ask whether persons id1 and id2 are moving together at the next
time point. (d) An example of two domain-specific axioms in the EC. E.g.
the first rule dictates that moving together between two persons X and Y
is initiated at time T if both X and Y are walking at time T , their euclidean
distance is less than 25 pixel positions and their difference in direction is
less than 45◦. The second rule dictates that moving together between X
and Y is terminated at time T if one of them is standing still at time T and
their euclidean distance at T is greater that 30. 18

5.1 Meeting Results . 43
5.2 Moving Results . 44

Distributed Online Learning of Probabilistic Logical Theories for Complex Event Recognition

1. INTRODUCTION

Complex event recognition (CER) systems [4] detect occurrences of specific complex
events of interest when given as an input sequences of simple events written in the form
of first-order logic rules. For example a CER system can recognize when two people are
meeting by observing simpler data such as each person’s orientation and the distance
between them. Machine learning algorithms with the ability to either construct or update
such patterns, are of great importance as their manual development is proven to be a dif-
ficult and time consuming task. Such algorithms, are most beneficial when working in an
online learning fashion, using a set of Complex Event patterns for inference and labeled
streaming data for updating the aforementioned Complex event set.

In many cases, events are represented by first-order rules that follow specific patterns,
defined by a knowledge base. A number of Logic-based CER systems have been pro-
posed in recent years([2], [3], [21]), that deal effectively with noise and uncertainty in data
streams. [19] presented WOLED (Online Learning of Weighted Event Definitions), an al-
gorithm based on answer set programming (ASP), that learns CE patterns in the form of
weighted rules in the Event Calculus. WOLED was proven to be particularly efficient over
other similar implementations. An obvious next step, is to adapt this system to real world
application circumstances.

It is evident, that in recent years, with the massive quantity of data produced every mo-
ment,it is getting harder and harder for machine learning application executed in a single
compute node to cope with real world circumstances, albeit their capabilities. As a result,
the use of distributed learning systems are already a commonplace solution for big data
applications. Distributed learning systems, can either split the data or the model to multi-
ple compute nodes and thus significantly reducing the time needed even for computation-
heavy learning processes.

The main purpose of this work, is to expand and utilize WOLED’s effectiveness in a dis-
tributed learning scenario in which the dataset is split among multiple learners. Each
learner, by processing input data, produces new Complex Event patterns, updates the
weights of the already existing Complex Event pattern set and shares its updates with the
rest of the learners. We try and evaluate different communication protocols for gathering
all pattern sets to a communication hub so as to merge them into a global one that will be
sent back to each learner in order to resume its learning process.

15 E. Neamonitis

Distributed Online Learning of Probabilistic Logical Theories for Complex Event Recognition

E. Neamonitis 16

Distributed Online Learning of Probabilistic Logical Theories for Complex Event Recognition

2. BACKGROUND AND RELATED WORK

2.1 Complex Event Recognition

2.1.1 First-order Logic

We assume a first-order language where atoms, literals (possibly negated atoms), rules
and logic programs are defined as in [12] and not denotes negation as failure. Rules,
atoms, literals and programs are ground if they contain no variables. Rules are denoted by
α← δ1, . . . , δn, where α is an atom and δ1, . . . , δn a conjunction of literals. An interpretation
I is a set of true ground atoms. I satisfies a ground literal a (resp. not a) iff a ∈ I (resp.
a /∈ I) and it satisfies a ground rule iff it satisfies the head, or does not satisfy the body. I
is a minimal (Herbrand) model of a logic program Π iff it satisfies every ground rule in Π
and none of its strict subsets has this property. I is an answer set of Π iff it is a minimal
model of the program that results from the ground instances of Π, after removing all rules
with a negated literal not satisfied by I, and all negative literals from the remaining rules.

2.1.2 The Event Calculus for CER

The Event Calculus [23] is a logic programming formalism for representing events and
their effects. As mentioned in [27] : ”The Event Calculus is a logical mechanism that infers
what’s true when given what happens when and what actions do. The what happens when
part is a narrative of events, and the what actions do part describes the effects of actions.”

. Its underlying ontology is made up of three main parts:

1. Time points: time is measured in time points, integers that denote a specific mo-
ment.

2. Fluents: also known as variables. They are properties that have a certain value in
a given time point

3. Events: occurrences in time that may affect fluents and alter their value

Its axioms incorporate the commonsense law of inertia, according to which fluents persist
over time, unless they are affected by an event. Its basic predicates and axioms are
presented in Table 2.1(a), (b). Axiom (1) states that a fluent F holds at time T if it has
been initiated at the previous time point, while Axiom (2) states that F continues to hold
unless it is terminated. Definitions of initiatedAt/2 and terminatedAt/2 predicates are provided
in a application-specific manner.

Using the Event Calculus in a CER context allows to reason with CEs that have duration
in time and are subject to commonsense phenomena, via associating CEs to fluents. In
this case, a set of CE patterns is a set of conditions that initiate/terminate a target CE, i.e.,
a set of initiatedAt/2 and terminatedAt/2 rules.

17 E. Neamonitis

Distributed Online Learning of Probabilistic Logical Theories for Complex Event Recognition

Table 2.1: (a), (b) The basic predicates and the EC axioms. (c) Example CAVIAR data. For example,
at time point 1 person with id1 is walking, her (X,Y) coordinates are (201, 454) and her direction is
270◦. The query atoms for time point 1 ask whether persons id1 and id2 are moving together at the
next time point. (d) An example of two domain-specific axioms in the EC. E.g. the first rule dictates
thatmoving together between two personsX and Y is initiated at time T if bothX and Y are walking
at time T , their euclidean distance is less than 25 pixel positions and their difference in direction is
less than 45◦. The second rule dictates thatmoving together between X and Y is terminated at time
T if one of them is standing still at time T and their euclidean distance at T is greater that 30.

(a)
Predicate Meaning
happensAt(E, T) Event E occurs at time T .
initiatedAt(F, T) At time T , a period of time for

which fluent F holds is initiated.
terminatedAt(F, T) At time T , a period of time for

which fluent F holds is terminated.
holdsAt(F, T) Fluent F holds at time T .
(b)
The axioms of the Event Calculus

holdsAt(F, T + 1)← (1)
initiatedAt(F, T)

holdsAt(F, T + 1)← (2)
holdsAt(F, T),
not terminatedAt(F, T)

(c) (d)
Observations I1 at time 1: Weighted CE patterns:
happensAt(walk(id1),1) 1.234 initiatedAt(move(X,Y), T)←
happensAt(walk(id2),1) happensAt(walk(X),T),
coords(id1,201,454,1) happensAt(walk(Y),T),
coords(id2,230,440,1) close(X,Y,25,T),
direction(id1,270,1) orientation(X,Y,45,T)
direction(id2,270,1)
Target CE instances at time 1: 0.923 terminatedAt(move(X,Y), T)←
holdsAt(move(id1, id2), 2) happensAt(inactive(X),T),
holdsAt(move(id2, id1), 2) not close(X,Y,30,T)

E. Neamonitis 18

Distributed Online Learning of Probabilistic Logical Theories for Complex Event Recognition

2.1.3 The CAVIAR dataset

Figure 2.1: Frame from a video in the Caviar dataset. Yellow boxes refer to activities of a single
person such as walking, active etc, whereas green boxes refer to activities that include multiple
people such as meeting, moving together etc. People in the image that are not included in a box are
not moving

The task of activity recognition, as defined in the CAVIAR project1 is to detect occurances
of CEs as combinations of simple events and additional domain knowledge, such as a
person’s position and direction. The CAVIAR dataset consists of videos taken in a public
space, where actors perform given activities. These videos have beenmanually annotated
by the CAVIAR team to provide the ground truth for two types of activity. The first type,
corresponding to simple events, consists of knowledge about a person’s activities at a
certain video frame/time point (e.g. walking, standing still and so on). The second type,
corresponding to CEs/fluents, consists of activities that involve more than one person, for
instance two people moving together, meeting each other and so on.

Table 2.1(c) presents an example of CAVIAR data, consisting of observations for a partic-
ular time point, in the form of an interpretation I1. A stream of interpretations is matched
against a set of CE patterns (initiation/termination rules – see Table 2.1(d)), to infer the
truth values of CE instances in time, using the Event Calculus axioms as a reasoning en-
gine. We henceforth call the atoms corresponding to CE instances whose truth values are

1http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/

19 E. Neamonitis

http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/

Distributed Online Learning of Probabilistic Logical Theories for Complex Event Recognition

to be inferred/predicted, target CE instances. Table 2(c) presents the target CE instances
corresponding to the observations in I1. Note that at time t the corresponding target CE
instances refer to t+ 1, in accordance to the Event Calculus axioms, which infer the truth
value of a CE instance at a time point, base on what happens at the previous time point.

2.2 The structure & learning process of WOLED

2.2.1 Overview of the Learning process

The main purpose of WOLED is to learn the structure and weights of initiatedAt/2 and ter-
minatedAt/2 CE patterns, while using their current version at each point in time to perform
CER in the streaming input. The learning process that is concisely described by Algorithm
1 consists of the following steps:

1. At each time t the learner maintains a theory Ht (weighted CE pattern set, as in
2.1(c)). For each pattern in Ht the learner also stores predictive statistics namely:
TPs (True Positives), TNs (True Negatives), FPs (False Positives) and FNs (False
Negatives). The learner also has access to some static background knowledge B
(e.g. the axioms of the Event Calculus – 2.1(a)) and receives an interpretation It (as
in 2.1(b)), which is composed by a mini-batch of observations.

2. The learner performs inference on the interpretation It which results in a number
of inferred holdsAt/2 instances of the target complex event predicate. This step is
analogous to the prediction step of a traditional Machine Learning algorithm.

3. For all the predicates of the inferred state, the true value is revealed and the learner’s
mistakes are identified.

4. Mistakes in the inferred state are used by the learner to update the weights and
statistics of the already existing CE patterns in Ht

5. The learner attempts to produce new CE patterns that combined with the updated
weights of Ht give a new theory Ht+1

2.2.2 Weighted complex event patterns

In WOLED, the CE patterns included in a logic program Π are associated with real-valued
weights, defining a probability distribution over answer sets of Π. An answer set of a
program with weighted rules may satisfy subsets of these rules, and these rules’ weights
determine the answer set’s probability. Based on this observation, [24] propose to assign
probabilities to answer sets of a program Π with weighted rules as follows:

• For each interpretation I, first find the maximal subset RI of the weighted rules in Π
that are satisfied by I.

E. Neamonitis 20

Distributed Online Learning of Probabilistic Logical Theories for Complex Event Recognition

• Then, assign to I a weight WΠ(I) proportional to the sum of weights of the rules in
RI , if I is an answer set of RI , else assign zero weight.

• Finally, define a probability distribution over answer sets of Π by normalizing these
weights.

Formally, let wr be the weight of rule r and ans(Π) the set of all interpretations I which
are answer sets of RI and which, moreover, satisfy all hard-constrained rules in Π (rules
without weights). Then

WΠ(I) =

 exp

(∑
r∈RI

wr

)
if I ∈ ans(Π)

0 otherwise
(2.1)

PΠ(I) =
WΠ(I)∑

J∈ans(Π)

WΠ(J)
(2.2)

2.2.3 WOLED’s learning process using ASP tools

In this section we describeWOLED’s learning process steps in more detail using ASP tools.

2.2.3.1 Getting the inferred state

When an interpretation It ,formed by a mini-batch of observations , arrives, WOLED gen-
erates the inferred state (predicts detections of the given complex event) by using MAP
(Maximum A Posteriori) probabilistic inference. This corresponds to finding a most prob-
able answer set A of Π = B ∪Ht ∪ It. It is evident from equations 2.1, 2.2 that

A = argmax
I∈ans(Π)

PΠ(I) = argmax
I∈ans(Π)

WΠ(I) = argmax
I∈ans(Π)

∑
r∈RI

wr (2.3)

which means that a most probable answer set in one that maximizes the weights of satis-
fied rules.As this is a MaxSat problem it is assigned to an answer set solver. The inferred
state is the number of target events in the optimal, answer set.

2.2.3.2 Weight learning

For weight learning, after getting the inferred state from the interpretation It, the available
true state labels are revealed and the weights of the CE patterns in Ht are updated by
comparing their true groundings in the inferred state and the revealed true state. A true

21 E. Neamonitis

Distributed Online Learning of Probabilistic Logical Theories for Complex Event Recognition

grounding of an initiatedAt/2 or terminatedAt/2 CE pattern ri is a grounding of ri such that
holdsAt(α, t+ 1) is true for initiatedAt/s2 patterns and false for terminatedAtpatterns.

Using the AdaGrad algorithm [8], an alternate version of the Gradient Descent that dynam-
ically adapts the promotion/demotion of learned patterns by considering each pattern’s
past performance (TPs, TNs, FPs, FNs). The weights of CE patterns, that contributed
to getting correct predictions are increased while the weights of CE patterns giving erro-
neous predictions are decreased. This algorithm, updates a weight vector which in our
case is a vector containing the weights of the CE patterns as in Table 2.1(d).

2.2.3.3 Learning New CE patterns

In order to expand the current theory Ht, WOLED tries to generate new initiatedAt./2 patterns
from FN predictions and terminatedAt/2 patterns from FP predictions respectively. Generat-
ing new patterns, can prevent similar mistakes in future interpretations. To illustrate the
possible need for new complex event patterns,a FN means that at time t a complex event
instance was predicted as false where in reality it was labeled as true. This could have
been prevented if there existed an initiatedAt/2 pattern for the target complex event at a
time prior to t. Generating patterns from all mistakes in the inferred state, would result
in very large theories at some point. Most of the rules added would not contribute to in-
crease WOLED’s predictive performance. In this context, WOLED follows this strategy for
generating new CE patterns:

1. A set of bottom clauses (rules) [5] is generated using the constants of the mistakes
in the inferred state to create new ground initiatedAt/2 and terminatedAt/2 atoms, which are
placed in the head of a set of initially empty-bodied rules.

2. The bodies of these rules are then populated with literals, grounded with constants
that appear in the head and are true in the current data interpretation It.

3. Constants in the bottom rules are replaced by variables and the bottom rule set is
“compressed” to a bottom theoryH⊥, which consists of unique, w.r.t. θ-subsumption,
variabilized bottom rules. The new CE patterns are chosen among those that θ-
subsume H⊥.

4. The generalization technique of [26], [20]), which allows to search into the space of
theories that θ-subsume H⊥, is combined via inference with the existing weighted
CE pattern set Ht, yielding a concise set of CE patterns Hnew , such that an optimal
answer set of B ∪Ht∪Hnew ∪ It best-approximates the true state associated with It.

5. Εach bottom rule ri ∈ H⊥ is “decomposed” in the following way. The head of ri
corresponds to an atom use(i, 0) and each of its body literals, δji , to a try/3 atom,
which, via the try/3 definitions provided, may be satisfied either by satisfying δji and
an additional use(i, j) atom, or by “assuming” not use(i, j)

6. Choosing between these two options is done via ASP optimization

E. Neamonitis 22

Distributed Online Learning of Probabilistic Logical Theories for Complex Event Recognition

7. New rules are “assembled” from the bottom rules in H⊥, by following the prescrip-
tions encoded in the use/2 atoms of an optimal answer set of the resulting program

8. Once the new CE patterns are generated, their weights are updated based on their
groundings in It and the true state. Moreover, each new pattern r is associated with
the bottom rules from H⊥, which are θ-subsumed by ri. These bottom rules are
used as a pool of literals for further specializing r over time, as described in the next
section.

2.2.3.4 Updating the CE patterns’ Structure

WOLED updates the structure of the existing patterns via a hill-climbing search process,
by generating a bottom clause (rule) ⊥α from a CE instance α and then searches for a
high-quality CE pattern into the subsumption lattice of ⊥α as shown in Figure 2.2. For the
process of finding a high-quality CE pattern WOLED :

1. Starts from an empty body clause (parent rule) r′ as at the top of Figure 2.2

2. At each time point t it evaluates a parent rule and its specializations on the incoming
interpretation It via a scoring function G . Specializations are generated by adding a
single literal to the parent rule r′. The scoring function G provides the gain, in terms
of predictive performance on the inferred state, of a specialization rule r over the
parent rule r′

3. The highest quality specialization r1 is found by a Hoeffding test [14].

4. Once the test succeeds, the parent rule r′ is replaced by r

5. The process continues as long as new specializations of the current parent rule
improve the rule’s performance.

Algorithm 1: WOLED(B,M, I)
input: background knowledge B; mode declarationsM ; a stream of interpretations I

1 Ht := ∅.
2 foreach interpretation It ∈ I do
3 IMAP

t := MAPInference(B,Ht, It).
4 Receive I truet .
5 Mistakes := I truet \ IMAP

t .
6 Ht ← SpecializePatterns(Ht).
7 Hnew := LearnNewPatterns(B,M, It, I

MAP
t , I truet).

8 Hnew ← UpdateWeights(Ht ∪Hnew,Mistakes).
9 Ht ← Ht ∪Hnew.

23 E. Neamonitis

Distributed Online Learning of Probabilistic Logical Theories for Complex Event Recognition

initiatedAt(meet(X ,Y),T)←

initiatedAt(meet(X ,Y),T)←
happensAt(inactive(X),T)

initiatedAt(meet(X ,Y),T)←
happensAt(active(X),T)

initiatedAt(meet(X ,Y),T)←
happensAt(active(X),T),
orientation(X ,Y , 45),T)

initiatedAt(meet(X ,Y),T)←
happensAt(active(X),T),
close(X ,Y , 25),T)

initiatedAt(meet(X ,Y),T)←
happensAt(active(X),T),
close(X ,Y , 25),T),
orientation(X ,Y , 45),T)

initiatedAt(meet(X ,Y),T)←
happensAt(active(X),T),
close(X ,Y , 25),T),
happensAt(inactive(X),T)

. . .

. . .

. . .

Bottom Rule

.

Figure 2.2: A subsumption lattice

2.3 Functional Geometric monitoring

The need to execute continuous queries over vast quantities of streaming data in dis-
tributed systems has been in focus in recent years’ research. The Geometric Method, a
communication protocol intended to be used in a distributed scenario for monitoring non-
linear functions has been introduced in [28] and has proved to be an efficient solution for
this rising problem. The appearance of the Geometric method, resulted in a series of re-
search resulting in updates over the basic idea. Notably, the functional geometric monitor-
ing (FGM) proposed in [1] was a substantial improvement over the Geometric Method. We
provide the basic idea for the FGM as we used a monitoring approach for machine learn-
ing scenarios, proposed in [22], in the communication protocols implemented for WOLED
as a distributed learning system.

2.3.1 Approximate query monitoring

Considering k remote compute nodes (sites) and a communication hub (coordinator). A
local stream is either created or generated at each site. A stream can be denoted as a
high dimensional vector V = RD. Each site updates V as stream updates arrive. Let
Si(t), i = 1...k be the local state vector of each site i. All sites communicate with the
communication hub where users can pose queries on the global data stream. We assume
that at time t the global stream state is the average of the state vectors held at each site:
S(t) = 1

k

∑k
i=1 Si(t).

A continuous query Q(S(t)) is conventionally a non-linear function of the global stream

E. Neamonitis 24

Distributed Online Learning of Probabilistic Logical Theories for Complex Event Recognition

state S. In this context, communication can be significantly reduced between the coordi-
nator and the sites by tolerating some small bounded error to the answer given to the user.
At time t the coordinator possesses a close estimate of the global stream state E(t) which
can be used to give an approximate answer to a given query Q(E(t)), with a guarantee
that for a given error ϵ the continuous query on the global stream QS(t)):

Q(S(t)) ∈ (1± ϵ)Q(E(t)) (2.4)

The sites periodically publish their local updated state vectors Si to the coordinator. Sites
respect the guarantee given for the bounded error by monitoring a local condition. If Ei
denotes the local vector that was last sent by site i to the coordinator, and E = 1

k

∑k
i=1Ei,

then no local site needs to publish its local updates as long as the true unknown global
stream state S(t) is within the admissible region

A = {x ∈ V |Q(x) ∈ (1± e)Q(E)} (2.5)

So the problem of approximately tracking the continuous query Q(S(t)) is analogous to
monitoring the geometric condition S(t) ∈ A. Only when this condition is violated, the
estimate E needs to be updated so as to restore the system invariant of equation 2.4.

2.3.2 Functional Geometric Monitoring for distributed data streams

Here we provide a basic explanation of the FGMprotocol whosemain purpose is tomonitor
the invariant of equation 2.4. This protocol, works in rounds where each round starts when
a new estimate E is generated by the coordinator. At each time t a drift vector from the
current estimate Xi(t) is held at each site. The system is considered to be in a safe state
as long as 1

k

∑k
i=1Xi = S ∈ A where A is an admissible region.

A function ϕ : V → R is safe for an admissible region A, if for all Xi ∈ V, i = 1...k,

k∑
i=1

ϕ(Xi) ≥ 0⇒
∑k

i=1Xi

k
∈ A

Given an admissible region A and a reference point E, a safe zone function ζ is a concave
function which is safe for A and ζ(A) > 0.

The following steps describe the FGM protocol which monitors the threshold condition∑k
i=1 ζ(Xi) ≥ 0. This condition is equivalent to equation 2.4:

1. At the beginning of a round, the estimateE held by the coordinator is the true state of
the system E = S. It selects a safe function ϕ. Let ψ =

∑k
i=1 ζ(Xi). The coordinator

broadcasts ζ to all sites (the coordinator can also send E as A can be determined
from it). The sites initialize their drift vectors to E. Thus at the start of each round
ψ = kζ(E).

25 E. Neamonitis

Distributed Online Learning of Probabilistic Logical Theories for Complex Event Recognition

2. After all sites have received the current estimate E a number of subrounds start. At
the end of all subrounds ψ > ϵψkζ(E), for some small user specified ϵψ and a new
round should start.

3. The Coordinator ends the round by collecting the local drift vector of each site and
updating the current estimate E.

For the subrounds, the FGM protocol needs to monitor that ψ ≤ 0 with a precision of
almost θ by engaging as less communication as possible:

1. At the beginning of a subround, the coordinator is aware of the value of ψ. It com-
putes the subround’s quantum θ = − ψ

2k
which is shiped to all sites. Additionally

the coordinator initializes a counter c = 0. Each local site records its initial value
zi = ϕ(Xi), where 2kθ = −

∑k
i=0 zi. Finally each site initializes a local counter ci = 0.

2. A drift vector Xi is maintnained at each site i. When Xi gets updated, site i updates
its counter ci = max{ci, ⌊ϕ(Xi)−zi

θ
⌋}. If the counter is increased, the site informs the

coordinator for the increase to ci.

3. When the coordinator receives an increment of a local counter ci, it adds the incre-
ment to his global counter c. If c > k the coordinator collects all ζ(Xi) from all sites
and recomputes ψ. If psi ≥ ϵψkζ(E), the current subround ends, or else another
subround starts.

It is proven that as long as the global counter c ≤ k then
∑k

i=1 ζ(Xi) > 0.

2.4 Related work

In recent years, a vast amount of research has been carried out on distributed systems.
Communication protocols in distributed system (either static or dynamic), especially in the
field of online machine learning, have been an important part of contemporary research. It
is obvious that as the scale of such system grows with today’s enormous amounts of data,
effective communication protocols can ensure that performance will not be hindered.

Earlιer research on distributed online learning ([6], [29], [25], [7]) focused on static com-
munication protocols. Such protocols update the global model after a fixed-size batch of
data has been processed by the learners.

Michael Kamp proposed in [16], proposed the first dynamic model synchronization pro-
tocol for distributed online prediction that aimed further decrease the elevated communi-
cation cost in machine learning applications. Communication is engaged only in system
states where the variance of the local models is high enough. This is accomplished by
monitoring local conditions in each compute node. Further work based on this protocol
was done in [17], [18], [15].

E. Neamonitis 26

Distributed Online Learning of Probabilistic Logical Theories for Complex Event Recognition

The Geometric Monitoring communication protocol for distributed systems was proposed
in [28],provided a robust solution for monitoring complex queries over large scale dis-
tributed data streams using convex analysis theory. The Geometric monitoring protocol
monitors a threshold function which is reduced to a set of local constraints monitored by
the local sites. Later work ([10], [11], generalized the GMmethod by monitoring geometric
constraints on distributed succinct summaries of streams, such as histograms or generally,
high-dimensional vectors. Finally the Functional Geometric Monitoring proposed in [1] an
improvement over the GM method, was adapted as a general communication protocol to
be used in machine learning applications was proposed in [22].

27 E. Neamonitis

Distributed Online Learning of Probabilistic Logical Theories for Complex Event Recognition

E. Neamonitis 28

Distributed Online Learning of Probabilistic Logical Theories for Complex Event Recognition

3. DISTRIBUTED LEARNING APPROACH FOR WOLED

In this chapter, we perceive WOLED as a distributed learning system. We start deviating
from the single learner approach that was described in 2.2. we examine how to extend
the already existing learning process so as to be parallelized. First, for the execution of
multiple learners, the actor model implementation of WOLED is presented. Moving on, for
the distribution of the dataset we set up an Apache Kafka cluster. Finally the communi-
cation protocols between the learners are described in the next chapter as they represent
the core of this work.

3.1 Distributed Machine Learning Systems

Distributed machine learning systems, use multiple compute nodes for the execution of a
machine learning algorithm. The purpose of such systems is to increase the performance
and accuracy of the single threaded version of an existing algorithm while also managing
to deal with a much larger dataset [9]. Being able to handle large amounts of data can be
equal in many cases to learning the given task more effectively. The steps for creating a
distributed machine learning algorithm involve a mechanism to feed data to each node and
the challenge of parallelizing the algorithm. This consists of establishing communication
protocols that will enable the individual progress of each node to be shared among all
nodes and averaging methods to combine the shared progress. In distributed machine
learning systems one of two architectures can be followed: model parallelism and data
parallelism. In model parallelism, each node has a part of the parameter vector of a neural
network for example. In data parallelism, each node has the whole parameter vector and
is responsible for a part of the dataset. The distinction is not strict as hybrid parallellism
scenarios can exist.

3.1.1 Model based Distributed online learning scenario

Considering a network of k remote learners (compute nodes) and a Coordinator, In ma-
chine learning model based algorithms following the data parallelism paradigm, a copy of
the model’s parameters w ∈ RD resides in each Learner, where D is the dimension of the
parameter vector. Learners receive batches of data ,as an input, from the dataset and
update their local copy of the parameter vector. When a learner updates the model’s pa-
rameters, the updated parameter vector is delivered to the coordinator. This can be done
in either a synchronous or an asynchronous way. The Coordinator is then responsible
to gather the updates and integrate them into a global model via an averaging method.
This scenario is presented as our communication protocols for WOLED’s logic based ma-
chine learning will be executed in similar conditions that will be analyzed in the following
sections.

29 E. Neamonitis

Distributed Online Learning of Probabilistic Logical Theories for Complex Event Recognition

3.1.2 WOLED as a distributed learning system

We approach learning using the same network topology where the network consists of k
Learners and a Coordinator. First we take a look into the data distribution mechanism.
The Caviar dataset, consists of a number of videos in the form of first order logic narrative
as in 2.1(c). The videos are distributed across the learners in a round robin fashion via
a Kafka topic with k partitions. As for the parellization, a core difference from a classic
model based Machine Learning algorithm, as described above, is the absence of a fixed
size parameter vector. The equivalent of the parameter vector of a Learner i in a given time
point t is the theoryHit consisting of weighted initiatedAt/2 and terminatedAt/2 CE patterns as
described in 2.2. However in each tj after t, it is possible that new rules are added and so
the size of the theory could be extended. The coordinator needs to not only average the
weights of already existing rules, but to also integrate newly created ones to the new global
theory and thus this approach does not clearly fall in the category of either data parallelism
or model parallelism. The communication between the learners and the coordinator is
accomplished using the actor model as described further below. In the next chapter, we
try and evaluate different methods concerning the communication and merging between
the learners and the coordinator.

3.1.3 The Actor Model

To provide a way for learners to share their updated CE pattern theory with the coordinator,
the actor model has been used. The actor model is a is a mathematical model of concur-
rent computation that was introduced by [13]. Actors, the fundamental computation unit,
interact with each other by exchanging messages. They are unable to intervene directly
to the other actors’ execution flow and can only alter their own private state. The only way
an actor can influence the functionality of other actors is by sending a messages. This
model, can be utterly beneficial in modern applications especially for the development of
distributed systems and consequently distributed machine learning. By encapsulating the
state of each actor and eliminating the need for shared memory, one can focus on the
development of the system rather than low-level protocols.

The means for actors to exchange messages are each actor’s private mailbox. Actors
knowing the address of a mailbox, can directly send different kinds of messages to it. An
actor can process messages he receives in its mailbox in a FIFO order (by default). A
behavior is set to control how and what kinds of messages will be processed. Upon re-
ceiving a message an actor can take action and manipulate its current state by depending
on what kind of message was delivered. The most common actions an actor can perform
are:

1. Send messages to other known actors . Each actor has a unique id and can be
identified by other actors that are aware of this id.

2. Execute other actors. A parent child relationship is established whenever an actor

E. Neamonitis 30

Distributed Online Learning of Probabilistic Logical Theories for Complex Event Recognition

starts another actor. In this case, child actors can automatically identify their parent
and can easily communicate.

3. Choose a different behavior for handling following messages. A behavior, is a loop
function that repeatedly checks for messages in the actor’s mailbox and is respon-
sible for what messages will be processed and actions will be taken upon receiving
new messages.

Figure 3.1: An overview of the actor model

3.1.4 WOLED’s actor based implementation

To implement the distributed learning network consisting of the learners and the coordi-
nator, the actor model proved to be a convenient solution as the messaging system can
cover the communication needs between the learners and the coordinator, while each pro-
cess can run individually without the need for resource access locks. Having a resilient
communication system established, we can focus on protocols oriented to how and when
communication will happen(i.e when should a learner send updates of its local theory and
how the coordinator will merge the local theories and distribute back the updated theory.)
The structure of this actor based implementation is as follows:

• The Coordinator is the first actor to be executed. In the beginning the coordinator
forks k child actors representing the learners.

• By sending an initiation message to each learner, the coordinator signals the learn-
ers to start processing batches. In the meantime the coordinator waits for update
messages from the learners.

31 E. Neamonitis

Distributed Online Learning of Probabilistic Logical Theories for Complex Event Recognition

• Depending on the communication protocol applied in each case when enough up-
dated have been made to a learner’s local theory, a message containing weight up-
dates of the rules and/or newly derived rules is sent to the parent (the coordinator).
The learners then wait for a message containing the updated theory.

• The Coordinator averages the weights of existing rules, integrated the new rules and
assembles a global theory that is then distributed to all learners.

• When the learners receive the merged theory the learning process continues.

At this point, it is worth mentioning that for theory sharing, learners and the coordinator do
not broadcast entire clause objects for each Complex Event pattern in the theory. A string
representation of each pattern accompanied by the pattern’s statistics (TPs, TNs, FPs,
FNs) is contained in each message with respect to avoiding unneeded communication
cost.

3.1.5 Our Data parallelism approach with Kafka

To split the dataset to multiple learners, Apache Kafka is a fault-tolerant high throughput
publish-subscribe based messaging system. In Kafka terminology a topic is a ”category”
where messages (called records) can be sent. Each topic can be split into multiple parti-
tions. Producers are applications that can send messages to a specific topic by subscrib-
ing to it. Consumers are the exact opposite. They are applications that can readmessages
from the topic. There are multiple ways in which the whole process of message exchange
can be configured. In our case, we used a topic consisting of k partitions (one partition
per learner). The WOLED learners are consumers subscribed to the topic, where each one
is assigned a partition. All messages in a specific partition are consumed by the same
learner. As mentioned above, The CAVIAR dataset is a collection of videos. To equally
distribute the videos to the learners each video is split to mini-batches (Interpretations)
and sent as records to the topic in a round robin fashion. In this way all batches created
from the same video are processed by the same learner. Considering future updates,
Apache Kafka is a fitting platform as it can easily scale to handle a substantial amount of
data and simultaneous producers/consumers.

E. Neamonitis 32

Distributed Online Learning of Probabilistic Logical Theories for Complex Event Recognition

Figure 3.2: Example of an Apache Kafka cluster with three topics, each having three partitions. In
our case we use producer applications to distribute the dataset between topics. The learners are
conxumer applications that can then individually read input data from the topics at their own pace.

33 E. Neamonitis

Distributed Online Learning of Probabilistic Logical Theories for Complex Event Recognition

E. Neamonitis 34

Distributed Online Learning of Probabilistic Logical Theories for Complex Event Recognition

4. COMMUNICATION PROTOCOLS

Our main goal is to apply different possible protocols for the coordinator to collect and
merge the local theories during the learning process in order to reach a satisfactory level
of predictive performance in the fastest way while also minimizing the communication cost.
All methods follow the distributed learning scenario described in 3.1. All communication
protocols follow the same basic principle:

• At each time point, the coordinator holds a global theory consisting of CE patterns
in the form of first order logic rules.

• The learners start updating their local copy of the global theory until, depending on
the protocol applied, the local updates are sent to the coordinator

• The coordinator merges the local updates and integrates them to the global theory.

• The new global theory is sent back to all learners and the learning process is re-
sumed in the same way.

We compare four different communication protocols taking into consideration the com-
munication cost and prediction error against the standard single Learner implementation.
The results of the three methods as well as their execution environment are described in
the next chapter.

4.1 Remote learning without communication

This is a trivial method in which the Coordinator starts k Learners that do not communicate
during the learning process. Each learner receives and processes batches of Interpreta-
tions from the Kafka topic, thus resulting in each learner coming up with a different theory.
A method having no significant accuracy gains compared to this method could be con-
sidered unavailing as the added communication cost can outweigh the overall gain. Thus
this method is used to set a base performance as a comparison for the two following ones.

4.2 Synchronous theory merging after a fixed number of batches

This is a simple merging method in which the coordinator synchronously gathers the up-
dates after a predefined number of batches have been processed. Following the same
distributed scenario depicted at 3.1, at the beginning of the execution, the coordinator
starts k Learners. Each WOLED learner, starts processing batches of simple event obser-
vations, from a Kafka topic. After having processed m batches, each learner, sends its
local theory updates to the coordinator and waits for a response message with the global
merged theory containing averaged updates accumulated by all learners. Formally:

35 E. Neamonitis

Distributed Online Learning of Probabilistic Logical Theories for Complex Event Recognition

• The coordinator holds at step s the global theory Hs containing the rules, their re-
spective weights and statistics (TPs, TNs, FPs, FNs) for each rule:

Hs = r1w1, r2w2, ..., rnwn

• Hs is sent to the learners. By processing batches, a learner updates the weights and
statistics of the already existing rules and possibly adds l new rules. After having
processed m batches, the theory at learner i after step s is:

Hs(i) = r1w
′
1, r2w

′
2, ...rnw

′
n, rn+1wn+1, ..., rlwl

• Each learner i sends his updated local theory Hs(i) to the coordinator.

• After all learners have sent Hs(I) to the coordinator, the new global theory Hs+1 is
generated by:

1. Averaging the updates in each Hs (i) applied to the weight of each rule in Hs:
wj(s+1) =

∑k
i=1 wj(i)

k

2. Adding up new predictive statistics i.e. if in Hs rule r1 had 20 TPs and after the
predictions of learner i during the processing of the next m batches, in Hs(i)
rule r1 has 40 TPs, in Hs+1 rule r1 will have 40 TPs

3. append the l newly generated rules of every learner

4.3 Continuous theory averaging after every batch

This communication protocol differs to the above described Synchronous theory merging
after N batches only to the fact that each learner i sends its local theory Ht(i) to the
coordinator after processing every batch. This protocol is included to the experiments
conducted as it can provide an overview of the trade-off between communication cost and
training loss. The later we engage communication the less messages are transmitted but
new CE patterns generated by a learner are not getting across the rest of the learners until
the synchronization. The goal is to minimize the communication cost while also keeping
the accuracy close to the single learner scenario.

4.4 Functional Geometric Monitoring (FGM) protocol for learning

In 2.3 we briefly described the Functional Geometric Monitoring protocol that was in-
tended for monitoring complex queries over distributed data streams. An adaptation of
this method for distributed machine learning was introduced in [22]. Using the distributed
learning implementation described in 3.1, this framework allows for distributed online train-
ing of Machine Learning algorithms by utilizing the functional geometric monitoring proto-
col. The coordinator holds the global model which is broadcast to all sites. Sites update

E. Neamonitis 36

Distributed Online Learning of Probabilistic Logical Theories for Complex Event Recognition

their local copy of the model as data arrives as an input. By having each site monitor a
local condition, communication is engaged only when it deems necessary and thus the
communication cost of the learning process is minimized.

The concept behind this method is to have the coordinator collect updates and use an
averaging method only when the copies of the models residing in each learner have drifted
enough from the global estimate E. The global estimate E is the parameter vector of a
given training algorithm. This protocol works in rounds and subrounds similarly to the
FGM protocol for distributed data streams. For a given safe zone function ζ, as long as∑k

i=1 ζ(Xi) > 0 ,where Xi is the drift vector (i.e the updated parameter vector) held at
learner i, no communication is necessary and the round continues. The above global
condition is decomposed into a set of local conditions to be monitored by each individual
learner. It is proven that if the local conditions hold, the global condition holds as well and
the system is still within the safe zone.

When the global condition is violated, the local model parameter vectors are collected by
the coordinator, an averaging method is applied and the resulting global model is used as
the new estimate E ′. The new estimate is sent back to all learners replacing their local
model and a new round starts.

A rebalancing method has also been proposed in the aforementioned work, but here we
solely focused on the basic version of the FGM protocol for machine learning as the adap-
tation of WOLED as a distributed system is still in an experimental state. As a first step the
goal would be to adapt the existing learning process to simple communication protocols
that will bring forth the changes that need to be made to the existing algorithm before
moving on to more complex ones.

Algorithm 2. shows the adaptation of the functional geometric protocol for machine learn-
ing.

4.4.1 WOLED’s adaptation to the FGM online learning protocol

We tried to apply an adaptation of this method to WOLED’s learning process using the
variance of the model as a safe zone function ζ(Xi) =

√
T − ∥Xi − E∥ where T is a

user given threshold, Xi the weight vector of the theory held at Learner i and E The
round’s theory weight vector estimate. Themain difference to a commonmachine learning
scenario, is that while a model has a fixed size parameter vector w ∈ RD, WOLED starts
with an empty theory (the initial weight vector is of size 0) and each learner adds newly
generated rules while learning is in progress. To address this issue, we firstly use enough
batches in the warm up round to produce an adequate number of CE patterns in the
initial theory.A smaller warm up dataset, would mean more communication engaged on
the first rounds of the protocol’s execution. In addition to that, for the purpose of making
the computation of ∥Xi − E∥ possible in each learner, we expand the estimate with zero
valued weights for every newly created rule. In more detail:

• At time t the estimate E consists of k weights of rules, denoted w1, w2, .., wk.

37 E. Neamonitis

Distributed Online Learning of Probabilistic Logical Theories for Complex Event Recognition

• At time t+1, l rules are added to a learner’s theoryHt+1 and possibly some of the al-
ready existing rules’ weights are altered. SoHt+1 contains: w′

1r1, w
′
2r2, ..w

′
krk, wk+1rk..wlrl.

The current Xi is w1′, w2′, ..wk′, wk+1, .., wl.

• Clearly the estimate has k elements, whereas Xi has k + l elements. In order to
compute the difference Xi − E we extend E by adding l zeroes to the end.

One issue that arises with this logic based approach, is the absence of the concept of
convergence. New batches of simple event observations in the learning dataset can alter
the weights of existing rules of a learner’s theory significantly. Even though most occur-
rences of the target complex follow similar patterns, variations can be observed. This is
reflected to the learning process by the promotion or demotion of different rules that per-
formed better while generating the inferred state in such cases. Thus the complex event
patterns (rules) that form the existing theory can move to a different point. So considering
the nature of Complex Event Recondition, the condition indicating the safety of the system
can be often violated, resulting in growth of the communication cost . A trade-off that can
be made to reduce communication cost is to give the system a larger threshold T for the
safe zone function ζ(Xi) =

√
T − ∥Xi − E∥.

E. Neamonitis 38

Distributed Online Learning of Probabilistic Logical Theories for Complex Event Recognition

Algorithm 2: ML-FGM
Initialization at the coordinator:

Warm Up the global learner and end up with parameters winit
Set containing the Nodes that have updated their loca parameters: U ← ∅
E ←, c← 0, ψ ← kζ(E), θ ← ψ

2k

send E and θ to all learners and start the first round

A. Site i on receiving E and θ at the start of a new round:
update the local model: Xi ← E
quantum← θ, ci ← 0, zi ← ζ(E)

B. Site i on receiving θ at the start of a new subround:
ci ← 0, quantum← θ, zi ← ζ(Xi)

C. Site i on observing a batch at time t:
update the local model Xi by fitting to it batchi
BatchesObservedi ← BatchesObservedi + 1

if BatchesObservedi mod m = 0 and ⌊ zi−ζ(Xi)
quantum

⌋ > ci then
Incrementi ← ⌊ zi−ζ(Xi)

quantum
⌋ − ci

ci ← ⌊ zi−ζ(Xi)
quantum

⌋
send Incrementi to the coordinator

D. Coordinator on receiving an increment:
c← Incrementi
if c > k then

request and collect all ζ(Xi) from all sites
ψ ←

∑k
i=1 ζ(Xi)

if ψ ≤ ϵψkζ(E) then
request and collect all ∆Xi from all sites
for each ∆Xi do

if ∆Xi ̸= 0 and i /∈ U then
augment U with the site i

E ← E 1
size(U)

∑k
i=1∆Xi

U ← ∅, c← 0, ψ ← kζ(E), θ ← ψ
2k

send E and θ to all sites and start a new round (code A)
else

c← 0, θ ← ψ
2k

send θ to all sites to start a new subround (code B)

39 E. Neamonitis

Distributed Online Learning of Probabilistic Logical Theories for Complex Event Recognition

E. Neamonitis 40

Distributed Online Learning of Probabilistic Logical Theories for Complex Event Recognition

5. EXPERIMENTAL EVALUATION

We now present the results gathered from applying the communication protocols de-
scribed in chapter 4 to the actor based implementation of WOLED described in 3.1.4,
along with the setting (execution environment, dataset) in which the experiments were
conducted.

5.1 Execution environment

5.1.1 Goal

In order to evaluate the efficiency of the four communication protocols that were imple-
mented, namely: No Communication, Continuous Communication, Fixed synchronization
and FGM Dynamic synchronization, we used the Complex Event Recognition task of con-
structing a set of Complex Event patterns (theory). The purpose of the theory is to detect
occurrences in the input data of 1) two people meeting and 2) two people moving together.
In each execution a target Complex Event is chosen and patterns for recognizing this spe-
cific complex event are generated.

5.1.2 Experiment structure

As mentioned in 2.1.3 we used the CAVIAR dataset as input in our tests. The CAVIAR
dataset consists of videos taken in a public space, where actors perform a given activity.
The CAVIAR team has provided annotations for these videos in the form of observations of
activities in each time point. These observations are in the form of first order logic facts. In
our case we used the part of the dataset containing the descriptions of the videos showing
people meeting and moving together.

To better evaluate the learning performance of each different online training scenario 10
fold cross validation was applied. 90% of the dataset used as a training set and 10% of
the dataset used as a testing set The training set is used for generating CE patterns and
update the weight of already existing ones, while the testing set is used to assess the
performance of the CE patterns.

The dataset was repeated five times to adequately distribute data to all learners. As each
learner processes batches of simple event observations, a batch size of 50 was used, i.e
an interpretation It containing 50 simple events was processed at each given time t.

We compare the four communication protocols applied on the distributed implementation
of WOLED with the monolithic implementation of WOLED (mentioned as Single Core in the
results) as described in 2.2. We split the dataset to 2, 4, 8 and 16 learners to incrementally
observe the performance in execution time and learning process as well as the commu-
nication cost.

41 E. Neamonitis

Distributed Online Learning of Probabilistic Logical Theories for Complex Event Recognition

5.1.3 Computing environment

All experiments were conducted on the same 3.6GHz processor (4 cores, 8 threads). In
this context it is worth mentioning that even though we did not use remote machines, with
the use of actors the distributed learning scenario can be simulated as in a real world
application actors could reside in different machines. Communication cost can still be
measured by the messages exchanged by the actors and has an impact on training times
as each time communication is engaged theory merging and thus theta-subsumption be-
tween the CE patterns (rules) is needed. The only difference is that network delay is not
taken into account for the execution times.

5.1.4 Result structure

The reported values in Table 5.1 and Table 5.2 are the averagesmeasured from the 10-fold
cross validation processmentioned above. To compare the performance of our Distributed
learning approach we evaluated the aforementioned communication protocols on:

• The communication cost between the learners and the coordinator measured in KBs.
The communication cost consists of the messages exchanged by the coordinator
and the learners containing the Complex Event patterns. This cost is be greatly
reduced by sending a string representation of the patterns accompanied by their
statistics, instead of the object used during the learning process.

• The speedup in execution time of the distributed learning approach following the
different communication protocols against the Single-core implementation:

speedup =
SingleCoreT ime

DistributedT ime

• The F1-score that was achieved by predicting occurences of the given CE (meeting
or moving) in the test set. The F1-score is the harmonic mean of the precision and
the recall:

F1 =
2

recall−1 + precision−1
=

TPs

TPs+ 1
2
(FPs+ FNs)

(WHY IS IT USED?)

• The average prequential loss , which refers to the average online error which is
computed as:

AverageLoss =
TotalMistakes

NumberOfBatches

5.2 Results for Meeting and Moving

The accumulated results are shown in the two tables below.

E. Neamonitis 42

Distributed Online Learning of Probabilistic Logical Theories for Complex Event Recognition

Table 5.1: Meeting Results

Learners Time(sec) Speed-up F1-score
(test set)

Preq. Loss Comm.
Cost

Single Core 1 1398 – 7.18 0.848 –

No Com-
munication

2 667 2.09 9.23 0.848 –
4 385 3.63 8.78 0.848 –
8 278 5.02 9.18 0.803 –
16 224 6.24 9.85 0.824 –

Cont. Com-
munication

2 982 1.42 8.12 0.824 152
4 612 2.28 7.56 0.803 423
8 443 3.15 7.87 0.834 945
16 318 4.39 8.78 0.824 2134

Fixed-sync
(every 10
batches)

2 723 1.93 9.13 0.823 134
4 421 3.32 8.92 0.823 278
8 313 4.46 9.95 0.799 506
16 296 4.72 10.48 0.808 1134

FGM
dynamic-
sync

2 575 2.43 7.98 0.838 54
4 312 4.48 8.14 0.838 123
8 223 6.26 8.34 0.824 312
16 168 8.32 8.65 0.8 423

43 E. Neamonitis

Distributed Online Learning of Probabilistic Logical Theories for Complex Event Recognition

Table 5.2: Moving Results

Learners Time(sec) Speed-up F1-score
(test set)

Preq. Loss Comm.
Cost

Single Core 1 1645 – 9.24 0.803 –

No Com-
munication

2 785 2.09 11.24 0.812 –
4 448 3.67 11.78 0.798 –
8 378 4.35 13.14 0.792 –
16 213 7.72 12.87 0.801 –

Cont. Com-
munication

2 1134 1.45 9.84 0.767 213
4 978 1.68 10.12 0.798 508
8 645 2.55 9.65 0.801 1323
16 512 3.21 11.35 0.791 3523

Fixed-sync
(every 10
batches)

2 825 1.99 10.86 0.768 152
4 482 3.41 11.35 0.768 321
8 412 3.99 12.54 0.778 718
16 357 4.6 12.67 0.763 1478

FGM
dynamic-
sync

2 812 2.02 10.78 0.802 82
4 421 3.09 10.24 0.768 176
8 318 5.1 10.3 0.768 323
16 265 6.2 11.28 0.76 533

E. Neamonitis 44

Distributed Online Learning of Probabilistic Logical Theories for Complex Event Recognition

6. CONCLUSIONS AND FUTURE WORK

At this point, we present a summary of the work that has been done in the course of writing
this thesis along with our conclusions on the results presented in the previous chapter.
Finally we recommend future work to tackle the problems and limitations we came across
as well as to enhance the results.

6.1 Synopsis

The purpose of this work was to expand WOLED functionality by approaching it in a dis-
tributed learning scenario. We started from an actor based approach of the algorithm
consisting of the learner actors and the coordinator actor. Different communication proto-
cols were applied between the learners and the coordinator in order to share the individual
learning progress of each learner. Our main goal was to minimize the communication cost
and training time while keeping the training loss as close as possible to the single learner
approach. We tried four different protocols and utilized both static and dynamic averaging.
From the implementations that were tested our interest was directed towards weather the
dynamic FGM protocol would outperform the fixed synchronization methods or vice-versa.

6.2 Result Conclusions

It is evident from observing the results in Table 5.1 and Table 5.2 that even though no
communication protocol was found to scale up the training performance (F1- score and
prequential loss) significantly, The FGM dynamic synchronization method was able to both
keep a score close to the single learner approach and minimize the communication cost
and training time.

In more detail, all distributed learning approaches do not show big differences in F1-score
and prequential loss compared to the single core approach. This happens due to the
fact that the data distributed between the learners are almost identical and thus similar
Complex Event patterns are produced. However this is a limitation of the dataset and is
probably something that can be addressed in the future. The continuous communication
was significantly slower and evidently had the biggest communication cost. This can also
be seen as an adequate measure of the time needed for the syncing of the theories. Fixed
Synchronization, as expected, was faster and required far less communication than the
continuous communication. Finally the FGM dynamic synchronization was proved to be
the best communication protocol both in terms of speedup and communication cost while
the training performance stayed closer to the Single Core than the Fixed Synchroniza-
tion. The results we got from the FGM prove that dynamic synchronization can be utterly
beneficial for WOLED in a distributed learning scenario and gives the ability for scaling the
experiments to even larger input data and more learners working cooperatively.

45 E. Neamonitis

Distributed Online Learning of Probabilistic Logical Theories for Complex Event Recognition

6.3 Future Work

As WOLED is a relatively new concept and is still in an experimental state, there is still a
lot to be expected in terms of future extensions. In this work, we proved that WOLED can
be extended to effectively work as a distributed learning system. However in this work we
only took the first steps needed to adapt this algorithm to real world circumstances.

It is clear from the experimental evaluation, that WOLED as a distributed learning system
can benefit from the utilization of a dynamic communication protocol such as the FGM
protocol for learning. To this end, as the FGM was our first attempt at a dynamic protocol,
more similar protocols could be applied to WOLED actor based implementation. In addition
to that as the FGM protocol involves the selection of a safe zone function which is an
important part of the algorithm’s performance, we could study and apply different functions
that would better fit WOLED’s theory weight vector update scheme.

As we only executed our test in a single machine by simulating a multi-node scenario, in
future work we ought to experiment with executing actors in different machines, as in a
real world deployment scenario. By doing so we could evaluate the added network cost
as well as find robust ways to deal with system failures.

Finally, a limitation of the data set for our current work was found. As the dataset was
relatively small the repetition of the same data among the learners in order to have a sub-
stantial amount of training data was inevitable. By providing a larger and more diverse
dataset we could evaluate with better accuracy the performance of different communica-
tion protocols.

E. Neamonitis 46

Distributed Online Learning of Probabilistic Logical Theories for Complex Event Recognition

ABBREVIATIONS - ACRONYMS

CER Complex Event Recognition

CE Complex Event

EC Event Calculus

GM Geometric Monitoring

FGM Functional Geometric Monitoring

ML Machine Learning

47 E. Neamonitis

Distributed Online Learning of Probabilistic Logical Theories for Complex Event Recognition

E. Neamonitis 48

Distributed Online Learning of Probabilistic Logical Theories for Complex Event Recognition

BIBLIOGRAPHY

[1] Functional Geometric Monitoring for Distributed Streams. Zenodo, March 2019.

[2] Elias Alevizos, Anastasios Skarlatidis, Alexander Artikis, and George Paliouras. Probabilistic complex
event recognition: A survey. ACM Computing Surveys, 50, 02 2017.

[3] Alexander Artikis, Anastasios Skarlatidis, François Portet, and Georgios Paliouras. Logic-based event
recognition. The Knowledge Engineering Review, 27(4):469–506, 2012.

[4] Gianpaolo Cugola and Alessandro Margara. Processing flows of information: From data stream to
complex event processing. ACM Comput. Surv., 44(3), June 2012.

[5] Luc De Raedt. Logical and relational learning. Springer Science & Business Media, 2008.

[6] Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal distributed online prediction using
mini-batches, 2010.

[7] Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal distributed online prediction.
In Proceedings of the 28th International Conference on Machine Learning (ICML-11), pages 713–720,
2011.

[8] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. The Journal of Machine Learning Research, 12:2121–2159, 2011.

[9] Alex Galakatos, Andrew Crotty, and Tim Kraska. Distributed Machine Learning, pages 1196–1201.
Springer New York, New York, NY, 2018.

[10] Minos Garofalakis, Daniel Keren, and Vasilis Samoladas. Sketch-based geometric monitoring of dis-
tributed stream queries. Proc. VLDB Endow., 6(10):937–948, August 2013.

[11] Minos N. Garofalakis and Vasilis Samoladas. Distributed query monitoring through convex analysis:
Towards composable safe zones. In Michael Benedikt and Giorgio Orsi, editors, 20th International
Conference on Database Theory, ICDT 2017, March 21-24, 2017, Venice, Italy, volume 68 of LIPIcs,
pages 14:1–14:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[12] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Answer Set Solving in
Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Pub-
lishers, 2012.

[13] Carl Hewitt, Peter Boehler Bishop, andRichard Steiger. A universal modular actor formalism for artificial
intelligence. In IJCAI, 1973.

[14] Geoff Hulten, Laurie Spencer, and Pedro Domingos. Mining time-changing data streams. In Proceed-
ings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’01, page 97–106, New York, NY, USA, 2001. Association for Computing Machinery.

[15] Michael Kamp, Linara Adilova, Joachim Sicking, Fabian Hüger, Peter Schlicht, Tim Wirtz, and Stefan
Wrobel. Efficient decentralized deep learning by dynamic model averaging. In Joint European Confer-
ence on Machine Learning and Knowledge Discovery in Databases, pages 393–409. Springer, 2018.

[16] Michael Kamp, Mario Boley, Daniel Keren, Assaf Schuster, and Izchak Sharfman. Communication-
efficient distributed online prediction by dynamic model synchronization. volume 1018, 09 2014.

[17] Michael Kamp, Mario Boley, Michael Mock, Daniel Keren, Assaf Schuster, and Izchak Sharfman. Adap-
tive communication bounds for distributed online learning. 01 2014.

[18] Michael Kamp, Sebastian Bothe, Mario Boley, and Michael Mock. Communication-efficient distributed
online learning with kernels, 11 2019.

49 E. Neamonitis

Distributed Online Learning of Probabilistic Logical Theories for Complex Event Recognition

[19] Nikos Katzouris. WOLED: A Tool for Online Learning Weighted Answer Set Rules for Temporal Rea-
soning Under Uncertainty. Zenodo, September 2020.

[20] Nikos Katzouris, Alexander Artikis, and Georgios Paliouras. Incremental learning of event definitions
with inductive logic programming. Machine Learning, 100(2-3):555–585, 2015.

[21] NIKOS KATZOURIS, ALEXANDER ARTIKIS, and GEORGIOS PALIOURAS. Online learning of event
definitions. Theory and Practice of Logic Programming, 16(5-6):817–833, 2016.

[22] V. B. Konidaris. Distributed machine learning algorithms via geometric monitoring, bsc thesis, 2019.

[23] Robert Kowalski and Marek Sergot. A logic-based calculus of events. In Foundations of knowledge
base management, pages 23–55. Springer, 1989.

[24] Joohyung Lee and Yi Wang. Weighted rules under the stable model semantics. In Principles of Knowl-
edge Representation and Reasoning: Proceedings of the Fifteenth International Conference, KR, pages
145–154. AAAI Press, 2016.

[25] Gideon Mann, Ryan McDonald, Mehryar Mohri, Nathan Silberman, and Daniel Walker IV. Efficient
large-scale distributed training of conditional maximum entropy models. In Neural Information Process-
ing Systems (NIPS), 2009.

[26] Oliver Ray. Nonmonotonic abductive inductive learning. Journal of Applied Logic, 7(3):329–340, 2009.

[27] Murray Shanahan. The event calculus explained. In Artificial Intelligence LNAI, 1600, 06 2000.

[28] Izchak Sharfman, Assaf Schuster, and Daniel Keren. A geometric approach to monitoring threshold
functions over distributed data streams. ACM Trans. Database Syst., 32, 11 2007.

[29] F. Yan, S. Sundaram, S. V. N. Vishwanathan, and Y. Qi. Distributed autonomous online learning:
Regrets and intrinsic privacy-preserving properties. IEEE Transactions on Knowledge and Data Engi-
neering, 25(11):2483–2493, 2013.

E. Neamonitis 50

	CONTENTS
	INTRODUCTION
	BACKGROUND AND RELATED WORK
	 Complex Event Recognition
	First-order Logic
	The Event Calculus for CER
	The CAVIAR dataset

	The structure & learning process of WOLED
	Overview of the Learning process
	Weighted complex event patterns
	WOLED's learning process using ASP tools
	Getting the inferred state
	Weight learning
	Learning New CE patterns
	Updating the CE patterns’ Structure

	Functional Geometric monitoring
	Approximate query monitoring
	Functional Geometric Monitoring for distributed data streams

	Related work

	DISTRIBUTED LEARNING APPROACH FOR WOLED
	Distributed Machine Learning Systems
	Model based Distributed online learning scenario
	WOLED as a distributed learning system
	The Actor Model
	WOLED's actor based implementation
	Our Data parallelism approach with Kafka

	COMMUNICATION PROTOCOLS
	Remote learning without communication
	Synchronous theory merging after a fixed number of batches
	Continuous theory averaging after every batch
	Functional Geometric Monitoring (FGM) protocol for learning
	WOLED's adaptation to the FGM online learning protocol

	EXPERIMENTAL EVALUATION
	Execution environment
	Goal
	Experiment structure
	Computing environment
	Result structure

	Results for Meeting and Moving

	CONCLUSIONS AND FUTURE WORK
	Synopsis
	Result Conclusions
	Future Work

	ABBREVIATIONS - ACRONYMS
	REFERENCES

