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ABSTRACT

As the complexity of Neural Network architectures increases so does our need to develop
better algorithmic solutions and infrastructures for distributed training. Data parallelism is
a popular approach for distributing the workload of the training process to multiple workers.
However, the gradient exchange that needs to take place between the workers requires
extensive network communication which often causes a bottleneck.

Compressed communication tackles this issue by reducing the volume of the communic-
ated data. A wide range of gradient compression algorithms have been developed for
this purpose and each one of them is usually followed by some properties regarding the
network throughput, as well as the model’s ability to converge under this method.

In this work, we step on various sparsification techniques and perform an even more ag-
gressive reduction of the gradients’ size by applying several lossless or lossy encoding
methods. More specifically, we employ ideas like curve fitting or the widely-known bloom
filter data structures. While doing that we also develop a comprehensive framework that
enables the integration of new experimental encoding methods.

SUBJECT AREA: Distributed Training of Deep Neural Networks

KEYWORDS: compressed communication, deep learning, distributed systems



ΠΕΡΙΛΗΨΗ

Όσο οι αρχιτεκτονικές των νευρωνικών δικτύων γίνονται ολο και πιο πολύπλοκες τόσο
αυξάνεται και η ανάγκη μας για καλύτερες αλγοριθμικές λύσεις και υποδομές για κατα-
νεμημένη βαθιά μάθηση. Η "παραλληλία των δεδομένων" είναι μια διάσημη προσέγγιση
για την κατανομή του φόρτου της διαδικασίας μάθησης σε πολλά μηχανήματα. Ωστόσο, η
ανταλλαγή των διανυσμάτων κλίσης μεταξύ αυτών απαιτεί εκτεταμένη επικοινωνία μέσω
δικτύου κάτι το οποίο συχνά προκαλεί επιβάρυνση στο χρόνο εκτέλεσης.

Η συμπιεσμένη επικοινωνία αντιμετωπίζει αυτό το πρόβλημα μειώνοντας το μέγεθος των
δεδομένων που επικοινωνούνται. Μια μεγάλη ποικιλία από αλγορίθμους συμπίεσης έχει
αναπτυχθεί για αυτό το σκοπό και κάθε αλγόριθμος συνήθως συνοδεύεται από κάποιες
ιδιότητες σχετικά με την απόδοση του δικτύου καθώς και την ικανότητα του μοντέλου να
συγκλίνει παρουσία αυτής της μεθόδου.

Σε αυτήν την εργασία, βασιζόμαστε σε ποικίλες τεχνικές που "αραιώνουν" τα διανύσματα
κλίσης και πραγματοποιούμε μια πιο επιθετική μείωση των μεγεθών τους εφαρμόζοντας
διάφορες μεθόδους που είτε επιτρέπουν είτε όχι την απώλεια πληροφορίας. Πιο συγκε-
κριμένα, χρησιμοποιούμε ιδέες όπως "παλινδρόμηση" ή τις ευρέως γνωστές "bloom filter"
δομές δεδομένων. Στην προσπάθεια αυτή, στοχεύουμε, επιπλέον, στην ανάπτυξη ενός
κατανοητού εργαλείου που επιτρέπει την εύκολη υλοποίηση καινούριων τέτοιων πειραμα-
τικών μεθόδων συμπίεσης.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Κατανεμημένη εκπαίδευση νευρωνικών δικτύων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: συμπιεσμένη επικοινωνία, βαθιά μάθηση, κατανεμημένα συστήματα
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PREFACE

The work discussed in this thesis took place during my internship at King Abdullah Uni-
versity of Science and Technology in Saudi Arabia. As part of a team that is active in the
area of distributed, large-scale networked systems, I was involved in an ongoing research
around the topic of compressed communication in distributed deep learning frameworks.

My main focus was to investigate ways of minimizing the network traffic during the distrib-
uted training of deep neural networks by building various compression techniques on top
of some already existing gradient sparsification methods.



Sparse Communication for Deep Learning

1. INTRODUCTION

1.1 Main Concept

In recent years, deep learning has been established as a major research area in the sci-
entific community. The more we step into the future, building continuously upon our new-
est advances and repeatedly pushing the state of the art, the limitation of our tools and
computational resources becomes a bottleneck and slows down our progress.

Neural network architectures become more complex and sophisticated. Our abundance
of training data as well as our need for larger models with more trainable parameters
has made us crave for more computational power, better algorithmic solutions and more
powerful systems that will accelerate training.

Most current deep learning frameworks mitigate these issues by employing a variety of
techniques. Exploiting the inherent parallelism of training computations and distributing
workload among multiple workers are only a few of those.

Within the scope of this thesis, we focus on the later technique and one particular instan-
tiation of it, widely-known as the data parallelism approach.

As the title implies, this method suggests that we split the data into multiple partitions and
feed them to different replicas of the model that is to be trained. Those replicas usually
reside in different nodes and work separately on their designated partition.

Similar to the divide and conquer paradigm, however, these workers need to communicate
with each other and merge their local results in order to progress training in a collective
way. In this setting, local results are considered to be the gradients computed during the
backward pass of each iteration of the backpropagation algorithm. At each step, every
worker constructs an aggregated version for each of those gradients (e.g. average) and
uses them to update its parameters according to the underlying optimization rule (optim-
izer). Intuitively, this allows the worker to accumulate and consider all the “knowledge” that
has been separately collected by all the other workers while at the same time contributing
similarly by broadcasting its own “knowledge”.

This gradient exchange, however, imposes a great performance overhead, not only be-
cause of the synchronization that needs to happen between workers, but also because of
the network limitations that often cause a bottleneck.

This has led to the development of various lossy compression techniques that aim to
reduce the size of the gradients passed between workers and thus, the network traffic.
Every such compression technique is usually followed by some properties and guarantees
regarding convergence of the model, as well as performance.

In this work, we step on various of these already existing compression techniques and
try to achieve an even more aggressive reduction of the size of the gradients by applying
several lossless or lossy encoding methods.

C. Kostopoulou 12
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1.2 Motivation

1.2.1 Communication Efficiency

Communication over the network might often impose a bottleneck for the overall train-
ing process. While there has been a great focus on increasing the processing power for
devices such as GPUs and TPUs, the actual development of better network communic-
ation infrastructures has been disproportionately small. Tackling this issue by employing
strategies that will reduce the size of the messages communicated over the network and
thus, alleviate the network’s workload seems like the most straightforward and reason-
able solution for now. Compressing and decompressing the gradients, however, does not
come without a cost. The trade-off that one needs to consider before turning to such meth-
ods, is the extra computational cost that is imposed on the side of the workers. In some
cases, it might be better in terms of performance to avoid this computational overhead
and compromise with the one induced by the network.

1.2.2 Redundancy in Gradients Exchange

There have been some studies suggesting that a great percentage of the information car-
ried in the gradient vectors is redundant for the training process [8]. This was a key point
for our work, since many of the encoding methods that we used on top of the aforemen-
tioned gradients compression, were also lossy in nature. The knowledge that training can
progress despite the lack of some information, is what enabled us to experiment with these
ideas on the first place.

1.2.3 Federated Learning

Federated learning, also known as collaborative learning, is an alternative approach for
training a model. It takes place in a decentralized setting where multiple client devices
help in the training process not only by putting into use their own processing power but
by also exploiting their own local data. The endgame is to build a single, robust machine
learning model that will be trained on all of this decentralized data without sharing it to the
outside world. This idea resembles a lot the distributed training setting that we described
earlier where multiple models train independently in different nodes and share their local
gradients. Network communication also takes place here and the more popularized this
training technique becomes the more we need to focus on communication efficiency [7].

1.2.4 Research Purposes

A great portion of this work is dedicated to an encoding method that uses bloom filters.
As we will describe later when we formulate the encoding and decoding algorithms, the
setting under which these bloom filters operate is very unique. We build an interesting
use-case for these data structures and we try to come up with novel ideas for minimizing
the false positive rate under these circumstances.

C. Kostopoulou 13
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1.3 Structure of Thesis

The rest of the thesis is organized as follows:

Background provides basic, fundamental knowledge about the concepts that are being
dealt with throughout the entire thesis.

Compressing the tensor indices provides an in-depth description of our bloom filter en-
coding/decoding method.

Fitting the tensor values describes yet another encoding/decoding algorithm that is based
on the idea of approximating the local gradients using some exponential basis functions.

Implementation provides some technical information about our experimentation setup.

Evaluation presents our results in terms of performance and accuracy from training some
deep neural networks

Future work & Conclusions discusses ideas that could possibly extend and improve our
current work and provides some final conclusions.

C. Kostopoulou 14
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2. BACKGROUND

2.1 Distributed machine learning and SGD

As we already discussed, inducing parallelism during the training phase of deep neural
networks has become mandatory. Apart from exploiting the inherent parallelism of train-
ing computations by employing dataflow-graph representations and incorporating multi-
threading mechanisms, there are also methods for distributing this computational work-
load in more than one nodes. A lesser known method is the so-called “model parallelism”
approach which proposes the partition of the model to multiple workers. The model is one
unique replica spanning across a number of different nodes that communicate with each
other in order to send and receive tensors. Whereas most deep learning frameworks sup-
port this kind of partitioning and are equipped with some naive node-placement mechan-
isms that try to come up with ideal partitioning options, this method is not usually favored.
Obtaining good partitions is often challenging and also, not all models benefit from this
mode of execution on the first place. Data parallelism is a widely-known alternative ap-
proach which proposes the replication of the model in multiple workers. Those replicas
will be trained separately on different partitions of the training dataset. The local, interme-
diate gradients that are computed at each iteration of the backpropagation algorithm, will
be exchanged between the workers and an aggregated version of them will be used for
the update of the corresponding model-parameters. This process will be repeated for all
the training epochs.

The backpropagation algorithm that generates those gradients is typically an instantiation
of the Stochastic Gradient Descent (SGD) optimizer [10]. SGD is a variation of the gradi-
ent descent method and computes the gradients from arbitrarily selected subsets of the
dataset instead of the entire portion of it. Those gradients, thereby, are considered to be
stochastic approximations of the actual ones and they are significantly easier to calculate.

2.2 Compressed communication [15]

The gradient exchange between workers through the network creates a bottleneck for the
overall training. Compressed communication aims to alleviate this issue by introducing
lossy compression on the transferred data. The stochastic nature of training, induced by
the selection of the SGD optimizer, allows the model to converge despite the small loss of
gradients information. This has enabled the emergence of various compression methods
all of whom can be classified in the following categories:

• Quantization Methods reduce the size of the gradient by diminishing the number
of bits needed to represent the gradient components. For example, a “float-16”
compression method receives a tensor of type “float-32” and converts it to “float-
16”, representing this way each gradient component using 16 fewer bits.

• Sparsification Methods aim to encode the gradient by converting it to a sparsed
tensor. Those methods choose to keep only a subset of the gradient components
as well as their respective positions in the initial tensor. For example, Top-r keeps
only the top r absolute components of the gradient whereas Random-r keeps only
r randomly selected values.

C. Kostopoulou 15
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• Low-Rank Methods decompose the gradient tensor into low rank matrices. That
is, matrices that require less space for their storage.

There are also hybrid methods which are combinations of the above but discussing them
would be outside the scope of this work.

2.2.1 Sparsification Methods

This family of compression methods is essential for our work, therefore, it is mandatory
to elaborate more on it. Following the formalization proposed in [15], let g be a stochastic
gradient of size N that we want to compress and let b be a bitmask vector thas has the
same size. Every bit b[i] inside the bitmask is then set to either 1 or 0 depending on whether
the corresponding value of g in position i is selected by the sparsification method or not.
The element-wise product of b and g is the sparsified tensor and can be represented in
various ways. The simplest representation would be to use two separate vectors, one for
the selected gradient components and one for their corresponding positions, also known
as indices. Note that, the indices are the positions in b that have a 1 bit-value.

• In Top-r sparsification method [3], [4], we select a bitmask b so that for every b[i] = 1
we have that g[i] is a value that belongs in the set of top r largest absolute values of
g.

• In Random-r sparsification method we select randomly a subset of r indices for
which the corresponding values in the bitmask are all set to 1.

Both Top-r and Random-r are fixed-dimension sparsificationmethods since the sizes of the
encoded tensors that they yield are fixed and controlled by r. Now, r can be either hard-
coded and explicitly specified by the user or can be defined implicitly by the “compress
ratio” parameter. This is usually a percentage that indicates how sparse we want the
gradient to become after compression. For example, if the initial gradient has a size of
100 values then a compress ratio of 0.1 would set the r equal to 10.

2.2.2 Memory Compensation

Memory Compensation is a mechanism that compensates for errors accumulated due to
the lossy nature of most compression methods [13]. We keep track of those errors and
accumulate them in a memory vector m which we update right after the compression of a
gradient takes place with the following rule:

mt+1 := mt + gt − compression(gt)

Then, we compensate for these errors by updating the gradient of the next iteration as
follows:

gt := βmt + γgt

where β > 0 is the memory decay factor and γ > 0 weighs the relevance of the latest
stochastic gradient.

C. Kostopoulou 16
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2.3 Bit compression

Every kind of information is represented in machines as a stream of bits. Reducing the
size of those streams by compressing them is highly desired in many applications. There
exist various bit-level methods for encoding these raw sequences of ones and zeros and
they are classified as either lossless or lossy. We call lossless those compressionmethods
that yield encodings which we can precisely decode without losing any part of the initial
information. On the contrary, lossy methods allow some loss of information.

2.3.1 Run length encoding

Run Length Encoding is a very simple and popular bit-level compression method that
replaces sequences of continues ones or zeros with integers representing their lengths
[9]. Note that, those integers are represented in an efficient way. For example, a common
32/64-bit integer representation may not be good in cases where the lengths are small as
it would consume much more space than the one actually needed. Instead, code-blocks
of user-defined size are used depending on the characteristics of the given bit-stream.

This encoding method is inefficient when the ones and zeros are uniformly distributed
inside the bit-streams. On the contrary, when there are large and continuous repetitions
of the same bits in the stream this method performs well.

For example, consider the following bit-streams, A and B:

• Bit-stream A: [0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1], Lengths: [1, 2, 2, 1, 1, 1, 3, 2]

• RLE using 2-bits per integer: [0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0]

• Bit-stream B: [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1], Lengths: [6, 7]

• RLE using 3-bits per integer: [1, 1, 0, 1, 1, 1]

Note that, for each case we used the ideal size of code-blocks for representing the in-
tegers. Still, the encoding of A has a size of 16 which is larger than the size of the initial
bit-stream representation. In the second case, however, we have a gain of 7 bits.

Figure 1: Run Length Encoding of a bit-stream, counting only the zeros

Run Length Encoding has itself a lot of variations. For example, one could count only the
zeros and not the ones, as shown in figure 1, or vice versa. In this figure, we are counting
only the continuous zero-bits. When two continuous one-bits occur, then we imply that a
zero-bit sequence of length zero exists between them.

We have created a variety of RLE implementations that we use as baselines for evaluating
our own bloom filter method, as we will discuss in the evaluation section.
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2.3.2 Bloom Filters

Bloom Filters are the most common and widely-known probabilistic data structures. They
belong in the greater family of Approximate Membership Query Data structures (AMQ)
and provide probabilistic answers about whether an element exists in a particular set or
not. They are usually stored in memory and their tremendous space-efficiency properties
have made them extremely popular for a variety of applications. One common use-case
for bloom filters is when we want to avoid searching slow-mediums (e.g. hard disks) for
records that are not actually stored there.

When a bloom filter is queried for a given element, it can return either a definitely negative
answer or a positive one with some degree of uncertainty. Any non-negative answer is
usually assumed by the user as a positive one, however, there is no guarantee that the
answer is not actually negative. This gives birth to the popular false positive rate (FPR)
metric that is used for evaluating the performance of those filters, as it measures the
probability that they provide a false-positive answer.

AMQ data structures have been studied extensively since their conception andmore soph-
isticated versions of them are continuously developed. We continue by providing a more
formal description of what they are and how they operate.

Figure 2: Bloom Filter

A bloom filter B is commonly an array of m bits that is built on the r elements of the
set S = {x1, x2, · · · xr} that we wish to represent. At construction phase, all bits are
initialized to zero. We insert every element of S in the array by using k hash functions,
all independent to each other. Every hash function maps an item x ∈ S to a position
inside the bloom filter. The bit that corresponds to every such position is then set to one.
Consequently, every insertion of an element x ∈ S inside the bloom filter causes a side
effect to at most k different bits. Note that, in practice, only the first bit-change at each
location has effect. That is, if a bit-location is already set to 1 from a previous hashing,
any other changes at that bit-location due to consequent hashing have no effect.
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Algorithm 1: Building a Bloom Filter on the set S
1 Input : Bloom Filter B with m bits all set to 0,

k-hash functions hi,
a set of r elements S;

2 for each xi ∈ S do
3 for j = 1, 2, · · · , k do
4 Set the bit in location hj(xi) to 1;

end
end

5 Output : A Bloom filter B.

Algorithm 2: Querying an element by using Bloom filter
1 Input : Bloom filter B, k-hash functions hi, an element

x;
2 for i = 1, 2, · · · , k do
3 Use hash function hi on x;
4 if hi(x) = 0 for any i then
5 x /∈ S and Break;

else if hi(x) = 1 for all i then
6 x may or may not be in S;

end
end

end

Once the filter is constructed, we say that it represents the set S in the sense that it can
provide probabilistic answers about whether an element exists in S or not. For querying
an element x ∈ S we must pass it through the k different hash functions and check the
value of the bits in the corresponding positions. If at least one bit is set to zero then the
filter returns a negative response and we definitely know that x does not belong in S.
Otherwise, x may or may not belong in S.

The process for building a bloom filter on a set S or querying an element using the bloom
filter is described in Algorithms 1 and 2, respectively.

2.3.2.1 Bloom Filter Specifications

[14] Given m the size of the bloom filter and r the number of items inserted in it, the
number of hash functions that minimizes the probability of false positives is computed as:
k = m

r
log 2. This k results in the probability of false positive, ϵ as: log ϵ = −m

r
(log 2)2. In

practice, we need to calculate the bits in the filter by using the relation m = −r log ϵ
(log 2)2 and the

number of hash functions by k = − log ϵ
log 2 .
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2.4 Curve Fitting

Regression is considered to be a large sub-category of supervised learning. Curve fitting,
which is an example of regression, is the process of constructing a curve that can fit to a
series of data points in an N-dimensional space. This curve is defined by a mathematical
function that our goal is to specify. Curve fitting can be categorized as either interpolation
or smoothing depending on whether we wish to create a curve that precisely fits the data or
simply approximates it. It is common to assume that the function has a specific parametric
form and then try to estimate the unknown coefficients that fully define the curve.

In figure 3, we have a set of points (xn, yn), n = 1, 2 . . . , N that lie in the R2 space and
we adopt the following parametric functional form: y = a + bx, which denotes a simple,
straight line.

In order to measure how well the curve matches the data points we can employ a variety of
loss functions. The loss function commonly quantifies the deviation between the estimated
values of y and the true y values (ground truth). This deviation is also called “error” and
we ideally want to minimize it as much as possible.

Figure 3: Curve Fitting

One example is the Least Squares (LS) loss function which is defined as follows:

L(a, b) =
∑N

n=1(yn − fa,b(xn))
2

and measures the sum of the squared distances between the true values and the estim-
ated ones. The straight-line regression is one of the simplest regression models, how-
ever, many more exist. We characterize regression as linear or non-linear depending
on whether the model is linear in the coefficients or not. We can employ more complex,
non-linear parametric functional forms in order to capture non-linear, curved relationships
between the dependent variable Y , and one or more independent variables X and we
can also apply a variety of different loss functions, every one of them leading to a different
optimization problem and thus, different techniques for finding the optimal coefficients.

As we will discuss, curve fitting is used in our setting for compressing the values of the
gradient components, however, a more extended analysis of the theory behind regression
would be outside the scope of this thesis.
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3. COMPRESSING THE TENSOR INDICES

As we already discussed, sparsification is a compression method that can be used to
reduce the size of gradients exchanged between workers. Out of the d components that
comprise a stochastic gradient we select only a subset of them to communicate to the
network. Let r be the number of components that we choose to send, where r < d. These
r elements can be selected via a variety of different methods (e.g Top-r, Random-r etc) and
the information they carry is strictly tied to their positions inside the initial gradient vector.
Therefore, these positions must be conveyed as information to the workers alongside the
values of the sparsified gradient. Only this way the workers receiving the message will
be able to correctly perform the decompression process. However, a representation of
these positions must now be employed and an idea that we entertain and explore the
most, throughout this thesis, for achieving space-efficient representations is that of using
bloom filters. We are also experimenting with a variety of more simple approaches that
we eventually use as baselines for the bloom filter approach. However, we will discuss
those in a later chapter.

3.1 Encoding/Decoding

Let g ∈ Rd be the stochastic gradient and g̃ ∈ Rd be the sparsified gradient with ∥g̃∥0 = r.
For distributed training, one has to send the tuple (g̃[i], i), where g̃[i] ̸= 0. Let S be the
set of r indices corresponding to the sparsified gradient components and we use a Bloom
filter to send those indices. Note that, S ′ would now be the set of all the rest d− r indices
that correspond to zero gradient values. The union of S and S ′ is finite and constitutes
the universe U of the bloom filter. Consider a bit string S of m bits all set to 0, initially.
Let there be k hash functions hi, each of which hashes each index i ∈ S and yields a
bit-location in S and changes the corresponding bit 0 at that bit-location to 1. We note that
only the first bit-change in a location of S has effect, that is, if a bit-location is already set
to 1 from a previous hashing, any other changes at that bit-location due to consequent
hashing have no effect. Finally, we send the modified bit array S along with the set of
nonzero gradient values {g̃[i]}i∈S. For decompression, one needs to use membership
queries for all the elements inside U to check which of those (in our case, the indices of
the sparsified gradient components) belong to the set of indices, S. To check whether
an element yj belongs to the set of indices, S, one has to use k hash functions on it. If
hi(yj) = 0 for any i = 1, 2, · · · , k, then we surely know that element does not belong to
S. On the other hand, if hi(yj) = 1 for all i = 1, 2, · · · , k, then that element may or may
not belong to S. The querying process for a given element is described in Algorithm 2.
Once the querying is done, a new set P will be created containing all those elements that
correspond to the non-negative responses. Our set S is a subset of P and the elements
included there are the True Positive responses of the bloom filter. Consequently, P − S
contains all the False Positive ones. A policy must now be adopted for drawing r elements
from P . Ideally, we would want that policy to select the r elements of our set S and discard
the false positive ones but this will rarely be the case under the existence of many false
positives. For every index chosen a nonzero value from {g̃[i]}i∈S is assigned to reconstruct
the sparse vector. For the rest of the indices inside U we assign a zero value. Note that,
the mapping between the nonzero values and the chosen indices is not arbitrary. As
long as the given policy selects indices in a deterministic manner, we can ensure that the
values in {g̃[i]}i∈S will be assigned in an optimal way. It is readily seen, however, that a
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Algorithm 3: Decompressing a sparsified gradient by using Bloom filter
1 Input : Bloom filter B, k-hash functions hi, a set U , an empty set P , a policy P, r,

{g̃[i]}i∈S;
2 for each yj ∈ U do
3 Query the element yj using S and the k-hash functions;
4 if yj is in S then
5 Insert yj in P ;

end
end

6 Draw r indices from P using the policy P;
7 for each yj in drawn indices do
8 Assign a value from {g̃[i]}i∈S to the position yj of the reconstructed

vector ;
end

9 for each yj in U − P do
10 Assign zero to the position yj of the reconstructed vector ;

end

completely correct reconstruction of the sparsified vector cannot be guaranteed under the
current setting. That is because the selection of one or more indices corresponding to
false positive responses will disrupt the mapping process and will cause re-arrangements
and shifts of the reconstructed gradient components with respect to their true positions.
The decompression process is described in Algorithm 3.

3.2 Tuning the Bloom Filter Parameters

Tuning appropriately the bloom filter parameters like its size m or the number of hash
functions k, is a matter of great importance. Those have an immediate impact to the
bloom filter’s performance both in terms of accuracy and throughput. In our bloom filter
compression approach, we let the user define the false positive rate that suits their needs
and the m and k parameters are automatically derived by the mathematical formulas [14]
we discussed in an earlier section.

More specifically, given a false positive rate ϵ, we define the bloom filter size as:

m = −r log ϵ
(log 2)2

and the number of hash functions as:

k = − log ϵ
log 2

3.3 Reconstruction Errors

Representing the set S using a Bloom Filter is more space-efficient compared to other ap-
proaches, however, the inevitable occurrence of false positive responses creates a variety
of errors while reconstructing the sparsified gradient. In this section, we investigate the
nature of these errors, as well as their actual impact on the reconstruction process.
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Algorithm 4: Mapping the sparsified gradient values to the selected indices
1 Input : Selected Indices S̃, values {g̃[i]}i∈S sorted by i;
2 for each g̃[i] ∈ {g̃[i]}i∈S do
3 Find next smaller index i from S̃;
4 Map g̃[i] to i ;
end

As we discussed earlier, {g̃[i]}i∈S denotes the sparsified gradient components that we
wish to decode and P is the set of elements from the universe U that correspond to non-
negative bloom filter responses. Let S̃ be the set of the r indices selected from P by a
specified policy P. One method to evaluate how good P is, would be to measure the
similarity between S̃ and our true set of indices, S. That is, to measure the number of
elements by which those two sets differ.

For the decompression, we use a mapping M that assigns each element from S̃ to a
unique element from {g̃[i]}i∈S. It is only logical that M must at least guarantee a correct
reconstruction under the complete absence of false positive responses. We can choose
a very simple mapping process that achieves the above, given the assumption that the
values of the sparsified gradient are communicated through the network in a very specific
order. Note that, during the compression phase we have total control over the form of the
message that is to be sent and therefore, the order of the values. That said, we make the
convention that all values in {g̃[i]}i∈S are sorted by their position i inside the initial gradient
in an increasing order. This allows the mapping process M to do the very simple job of
visiting the values from start to end and assigning them one by one to the next smaller
index inside the selected set of indices, S̃.

We describe the mapping process M in Algorithm 4 and we demonstrate this procedure
by using the following example.

• Let {g0, g1, g2, g3, g4} be the values of the initial, stochastic gradient.

• Let {g2, g0, g4} be the sparsified gradient components that were chosen to represent
the gradient by a given sparsification method.

• Then the set of indices S is the {2, 0, 4}

• Both the values and the bloom filter representing S must be sent to the other workers.
However, in order to incorporate a simple mapping process during the decompres-
sion phase, we first sort the values {g̃[i]}i∈S by their corresponding indices i in an
increasing order. Now, the values would be communicated like this: {g0, g2, g4}.

It is readily seen that given the above mapping process and under the absence of false
positives, all the indices from S̃ = S will be assigned to their correct sparsified gradient
components.

Having formalized the decompression algorithm in more detail, we can now proceed with
the identification of three different types of errors occurring under the presence of false
positive responses. Remember that our goal during reconstruction is to take the values in
{g̃[i]}i∈S and place them in their correct positions while setting the values of all the other
indices to zero.
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Figure 4: Partitioning the Universe using a bloom filter

Reconstruction Errors:

(a) Indices from P − S are falsely assigned to non-zero values.
Those indices are normally destined by the underlying sparsification method to be
assigned to zero values during the decoding process. However now, when a “false
positive” index is selected by a policyP, it will be mapped to a non-zero value. This is
a direct consequence of the occurrence of false positive responses and the specific
formulation of the decompression algorithm.

(b) The values that indices from P − S are mapped to belong in {g̃[i]}i∈S.
In practice, this means that not only those indices are assigned to non-zero values,
as discussed in item (a) but they also take over values from {g̃[i]}i∈S which causes
the disruption of the mapping process M and leads to the next type of errors.

(c) “True Positive Indices” may not be assigned to their designated values.
This is an immediate consequence of (a) and (b). All those indices from S̃ ∩ S that
are visited after we encounter the first falsely selected index, are not assigned to the
correct values from {g̃[i]}i∈S, as those were taken over by other, precedent indices.

We observe that there is a strong correlation between those three types of errors and while
there is no way to fully mitigate (a) without dramatically increasing the sizem of the Bloom
Filter, we can probably remedy (b) and (c), as we will discuss in a later chapter. One
possible direction of this work would be to study these reconstruction errors with respect
to the properties of the Bloom Filters, understand their impact in training and examine
whether convergence can be guaranteed even under their presence. Whereas there have
been some experimental results depicting that training cannot tolerate in practice that kind
of rearrangements in the gradient components, we have selected not to focus on this
particular direction. Instead, our aim was to improve the bloom filters approach by either
integrating ideas that will reduce the false positive rate while keeping the bloom filter size
small or by trying to tackle the above reconstruction errors.

3.4 Policies for Choosing Indices

We havementioned about the policyP in the previous section. Formally speaking, a policy
P is a process that receives a set P as input and yields a subset S̃ of P that contains r
elements as output. Note that, r = ∥g̃∥0 is the number of sparsified gradient values and
thus, the number of elements in S and P is the set of indices corresponding to the bloom
filter’s non-negative responses.

The notion of policies is an integral part of the encoding and decoding algorithms in our
bloom filter approach. A poor policy will have a significantly negative impact on the gradi-
ents reconstruction and therefore, in the overall training process. We will introduce a
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formal way for evaluating different policies under some fixed bloom filter properties in the
next sections but first, we will describe some policies that we developed and used for our
experiments.

Figure 5: Set of selected indices given a policy P

3.4.1 Leftmost-r

We order the indices in P in an increasing order and we choose the first r to be our sub-
set S̃. We call it leftmost-r because the first r elements in the sorted P are its r leftmost
elements. Note that, the selection of such a policy is not as random as it may seems. Re-
member that during the decoding phase, we need to make queries for all the elements of
the universe U in order to determine all the non-negative bloom filter responses and create
P . The most straightforward way to implement this, is to iterate over U in an increasing
order. This policy implies that we create S̃ on the fly while still iterating and posing queries.
This algorithm is relatively faster compared to other policies because in practice, one does
not need to explore the full universe in order to retrieve S̃. They can simply stop as soon
as they collect the first r “false positive” elements. However, this still is considered to be
a naive approach as it ignores a lot of actual implementation aspects that could help us
decrease the selection of indices corresponding to false positive responses.

3.4.2 Random-r

We create S̃ by picking randomly r indices from P . Note that, the previous policy could
be considered as a sub-case of Random-r. Whereas this method does not tend to favor
smaller indices, it still does not fully exploit the specific characteristics of our bloom filter
setting.

3.4.3 Conflict Sets

In order to devise a better policy, we first need to realize some of the characteristics that
distinguish our bloom filter setting from its other more common applications. Notice that,
in our case, the set of elements that comprise the universe U of the bloom filter is finite
and those elements are also known to us. The fact that we strategically query every
single element of U , as part of the decompression process, is crucial. It enables us to
consider knowledge related to the bloom filter’s construction process and use it in order
to make better probabilistic choices of indices while creating S̃. That is, indices that are
more probable to correspond to true positive bloom filter responses. We achieve that by
organizing the elements inside P in a number of smaller sets that share some interesting
properties and we call them as “conflict sets”.

As the title suggests, a conflict set comprises elements that correspond to non-negative
bloom filter responses and reside at the same bit location inside the bloom filter. In the
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context of bloom filters, we say that those elements create a conflict with one another.

Formally speaking, we define a conflict set as:

Cj = {x | x ∈ P and Hi(x) = j for at least one i = 1, 2, · · · , k},

where Hi(x) is the bit location inside the filter as it is indicated by the hi hash function.

It is readily seen that the following rules apply:

(a) Every conflict set contains at least one element that corresponds to a true positive
bloom filter response.

(b) As an immediate consequence of (a), there are at most r ∗ k different conflict sets.

(c) The union
∪

Cj of all j equals to P . Notice that, for k = 1, i ̸= j =⇒ Ci ∩ Cj = 0.

Now, we can leverage this information and devise a heuristic strategy for repeatedly draw-
ing indices out of the conflict sets until we create S̃.

We develop such a method by satisfying the following objectives:

• During the selection of indices we should prioritize drawing from conflict sets for
which we are certain that (a) still holds. It is important to note that, as we start to
draw elements, our ability to know for sure whether a conflict set still contains true
positives is very limited. At each given moment, we can be sure that (a) holds only
for those sets Cj for which Cj ∩ S̃ = 0. That is sets strictly containing elements that
have not been yet selected. In other words, when we select a new index, we are
bound to assume that it is the true positive that causes the conflict sets in which it
appears to satisfy (a). As far as we know, in its absence, those conflict sets may or
may not contain true positives anymore.

• If more than one conflict sets have been favored because of the above reason, then
we prioritize those having a smaller size. Assuming that we have a good enough set
of hash functions that distribute elements uniformly inside the bloom filter, we should
not observe extreme differences between the sizes of conflict sets. However, given
our limited knowledge regarding the actual distribution of true positives inside the
conflict sets and in order to maintain the computational complexity of this method as
small as possible, we assume that true positives are also uniformly dispersed across
the sets and therefore, the probability of drawing a true positive out of a smaller set
should be higher.

The formulation of those objectives was mostly driven by one particular observation. It is
often the case that many of the true positive elements can be actually inferred rather than
guessed. This happens because some of the conflict sets may be singletons i.e. contain
only one element. As an immediate consequence of (a), we can infer that the elements
of those unit sets are true positives and thus, we can automatically add them in S̃.

Finally, if we have not finished with the construction of S̃ and we have no reason to prioritize
any conflict sets due to our lack of information about whether they still satisfy (a) or not,
we may as well interchange between them and randomly pick the remaining number of
indices.

What makes this policy more sophisticated than the ones mentioned earlier, is mostly its
ability to infer some of the true positives in case we have singleton sets. It is also unbiased
in the sense that it does not favor particular indices, like leftmost-r does.
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Imagine the following example where we consider k = 1 for simplicity:

• Let P = {0, 1,5,3,4, 6,8, 9}, where the elements in bold are the true positives.

• Now, let P be organized in conflict sets as follows: {{0, 1,5}, {3}, {4, 9}, {8, 6}}.
Notice that, now that k = 1, an element cannot exist in two different conflict sets.

• All of those conflict sets contain at least one true positive. Thus, it is only logical to
not exclude any of them from the selection process. We prioritize the conflict set
with the smallest size which in this case is a singleton. We select the element 3 for
which we can also infer that it is a true positive.

• As we already said, 3 is not included in any other set, now that k = 1, so all the
remaining conflict sets are still eligible for the next selection. Similarly, between
{0,1, 5}, {4,9} and {8,6} we give less priority to {0,1, 5} due to its bigger size. Let
us say that we draw the element 4 from the set {4,9}. Notice that, even though 4
is actually a true positive, we have no way of knowing that. We are no longer sure
whether {9} contains a true positive or not, so we will no longer prioritize this set.

• Suppose that the next selection is the element 6 from the set {8,6}. Still, we are
not aware that we selected a false positive index, therefore, we are bound to stop
prioritizing {8} as well, even though it contains a true positive.

• {0,1, 5} is the last set, for which we surely now that (a) still holds. Suppose that we
draw the element 0 which happens to be a true positive.

• So far, we have S̃ = {3,4, 6,0}. P is now organized as follows: {{1, 5}, {}, {9}, {8}}
and there is one more index that we need to select. As we discussed, we could now
arbitrarily choose between the remaining conflict sets or develop a more complex
strategy by taking into account the sizes of those sets.

Notice that, the probability of drawing r true positives from P using the Random-r policy
would be 1/

(
8
5

)
= 1/56, whereas now it is: 1/48.

The Conflict Sets policy could be characterized as a generalized case of Random-r. Con-
sider the scenario where we have a terrible set of hash functions all mapping the elements
in P to the same bit location. P would now be organized as one, big conflict set from which
we would randomly pick values. This is equivalent to what we do in Random-r policy.

3.5 Policy Errors Rate

Although the false positive rate is useful as a metric for evaluating a bloom filter’s per-
formance, we can see that the actual rate of selecting false positive indices during the
decompression process also depends on the underlying policy. Imagine we have a bloom
filter that produces a large number of false positive responses but we have somehow con-
structed an ideal policy than can successfully identify and select only the true positives.
Then the false positive selection rate would be 0 whereas the false positive rate of the
bloom filter would be much greater. We call this new metric policy errors rate and we
use it alongside the false positive rate metric in order to evaluate the performance of the
decompression process. More specifically, we define the policy errors rate as the number
of false positive indices selected over the total number of selections that took place. Note
that, this metric strongly depends on the FPR metric as the greater the later is the harder
it is for the underlying policy to distinguish and select the true positives.
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3.6 Second Bloom Filter built on false positives

Another idea that aims to reduce the false positive rate is that of using a second bloom
filter. The first bloom filter will be built on S as per normal and the second one will be used
to represent the set P−S of elements corresponding to false positive responses. Now, we
modify the decompression process by also consulting the second bloom filter when the
first one yields a positive response for a given element. That is, we pass the set P through
a second phase of querying with the hope that many of its true positive elements will be
identified by the second bloom filter. More specifically, if the second bloom filter returns
a negative response for an element x ∈ P then we know with complete certainty that x
does not belong in P − S, thus it is a true positive. Otherwise, the status of x continues
to be unknown. The newly identified true positives will then be inserted to S̃.

Let P2 ⊂ P be the set of the remaining indices of P after we prune it with the help of the
second bloom filter. The rest of the decompression algorithm remains the same with the
only difference being that the policy P will now select indices from P2 instead of P as
many times as necessary in order to have a total of r elements in S̃.

Figure 6: Second Bloom Filter Built on False Positives

An obvious disadvantage of this idea is that we must now communicate not one but two
bloom filters. Remember that, what makes the bloom filter approach appealing compared
to some other lossless encoding methods like run length encoding is its space efficiency.
The additional space needed to store the second bloom filter might make the overall usage
of this lossy encoding method worthless.

3.7 False Positives Aware Compression

All these ideas aim to improve the bloom filters’ performance. However, even if we focus
on reducing the FPR by employing more sophisticated versions of bloom filters there is
no guarantee that we will eliminate the occurrence of false positives. Also, decreasing the
FPR to the point that false positives no longer have real impact in training will probably
increase the bloom filters’ size which is another important constraint in our application.

As we already discussed, the decompression process is sensitive, in practice, to the occur-
rence of false positives as they tend to deteriorate training. We described three different
types of reconstruction errors and we suggested that there is a way to mitigate some of
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those. More specifically, we will now present an idea that aims to tackle the errors (b) and
(c), meaning we will try to avoid having re-arrangements of the reconstructed gradient
components with respect to their true positions under the presence of false positives.

Remember that, in our very special setting, we have the luxury of knowing while encoding
a gradient both the set of items that comprise the bloom filter’s universe and the exact
queries that are going to be posed during the decompression process. As long as the
policy P is a deterministic process that can be reproduced, we can also know at construc-
tion time the set S̃ that is going to be generated during the decoding phase.

This enables the compression process to appropriately modify the sparsified gradient that
is to be communicated as part of the message in a way that will smooth out the decoding
and eliminate disruption. More specifically, while compressing a gradient we can know
beforehand all the errors that will occur during the decompression phase by simply ex-
ecuting the decompress algorithm on the encoded gradient. This way we can detect all
bloom filter’s non-negative responses and more importantly we can acquire the set S̃ of
the future selected indices that are going to be paired with the values from {g̃[i]}i∈S. This
knowledge allows us to replace some of these gradient components with others so that all
the final values communicated over the network will be the ones that actually correspond
to the indices from S̃.

Remember that, the values in {g̃[i]}i∈S are selected by the given sparsification method.
Replacing some of those values with others, selected from the initial gradient, is like tam-
pering with the underlying sparsification method.

We demonstrate this idea using the following example:

• Let {20, 14, 13,22,21, 15, 19, 11,28, 10} be the initial gradient, where the elements in
bold are the values selected by the underlying sparsificationmethod (notice that here
we are using the Top-r sparsificationmethod). So, we have {g̃[i]}i∈S = {20,22,21,28}
and it follows that S = {0, 3, 4, 8}

• Now, let P = {0, 1,3,4, 6,8, 9}, where the elements in bold are the true positives
and let S̃ = {0,3, 6, 9} be the set of indices selected using a given policy P. Notice
that, the policy errors rate in this case is equal to 0.5, meaning that out of the 4 true
positive indices in S we managed to “guess” right only 2 of them.

• Themessage that will be sent to the workers comprises the values in {g̃[i]}i∈S as well
as the bloom filter that represents S. However, being aware of the false positives
that are going to occur during the decompression process, we can now remove the
values in {g̃[i]}i∈S that correspond to the true positive indices that are not going to
be selected. In their place, we are going to add those gradient components that
actually correspond to the false positive indices that are falsely selected. In other
words, we now send {g̃[i]}i∈S̃ instead of {g̃[i]}i∈S. That is, {20,22, 19, 18}. Notice
that, without the false positive aware compression, the decoded gradient would be:
{20, 0, 0,22, 0, 0,21, 0, 0,28}, whereas now it is: {20, 0, 0,22, 0, 0, 19, 0, 0, 10}.

The obvious drawback of this solution is that for every false positive bloom filter response
we defy the underlying sparsification method by sacrificing one of its gradient component
choices. Note that, in the absence of false positives, this method is equivalent to the given
sparsification method (e.g. Top-r) whereas it turns more and more into the Random-r
method as false positives start to occur. In this sense, we could say that the false positive
aware compression is strongly coupled with the given sparsification method and thus, can
be considered as a hybrid sparsification method itself.
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4. FITTING THE TENSOR VALUES

In the previous section, we proposed a way for compressing the indices of a sparsified
tensor as those are yielded by the underlying sparsification method. However, we never
mentioned anything about reducing the size of the tensor values. In this section, we will
turn our focus on compressing the values of the gradient components instead.

As we already mentioned before, one of the reasons we choose to sparsify the gradient
tensors on the first place, is because some of the information they carry is redundant for
the training process. It has been observed, for example, that many of the values inside
those tensors are either zero or extremely close to zero. Exchanging all these components
between workers would be a significant waste of network resources.

Figure 7: Resnet20, a gradient of size 9216 at the first step of training

Figure 8: Histogram for the values of the gradient in figure 7
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Another observation is that while the gradient values are densely distributed near zero,
they are more and more sparse as we move further away from it. This is nicely depicted
in figures 7 and 8. In figure 7 we have plotted the 9216 values of a gradient as it was
generated during the first step of training of resnet20 on the cifar10 dataset. Figure 8
also shows the histogram of this gradient. It is readily seen, that by sorting those gradient
values, we get the blue curve in figure 7 which resembles a function commonly known as
“logit” (inverse of sigmoid).

Our goal was to leverage these observations and devise a new method for compressing
the gradient values. The idea we propose involves the “curve fitting” process that was
described in a previous section.

4.1 Encoding/Decoding

Let g ∈ Rd be the stochastic gradient we want to compress and let gs ∈ Rd be the tensor
we get after sorting the components of g in an increasing or decreasing order. We, then,
construct a curve that is an exact fit of the data points (i, gs[i]), i = 1, 2, · · · , d. That is, we
adopt a functional parametric form for this curve and we try to find the optimal, unknown
coefficients for which the curve will match this series of points as well as possible. Now, let
m ∈ Rd be a tensor that keeps information about the mapping of the positions of the initial
unsorted gradient components to their new positions in gs. For example, the mapping
[1, 0, 3, 2] informs us that the value of g in the position 0 was now placed in the position 1
inside the sorted tensor gs, the value of g in position 1 was placed to the position 0 e.t.c.

Both the coefficients and the mapping must be included in the message that will be com-
municated to the workers. This way they will be able to reconstruct the curve that approx-
imates the tensor gs and re-order the estimated values so that they place them in their
correct positions. Note that, the parametric form of the function is known both during the
compression and the decompression phase. Let fw be this function, where w denotes
the coefficients retrieved from the message. Then, every tuple (m[i], fw(i)), i = 1, 2, · · · , d
would denote a reconstructed gradient value as well as its position inside the gradient.

It is fair to say, that this whole scheme does not actually decrease the size of the message.
On the contrary, if we would just send the gradient components of g without applying
any compression, there would be no need to send the mapping, so the message should
probably be smaller. However, this scheme is only a generalized version of how this
compression method is meant to be applied. The idea is to use the “values approximation”
approach on top of another sparsification method and more specifically, the Top-r method.
Then, instead of the r values and the r indices needed for the decompression of the
sparsified gradient, we would communicate the indices and the coefficients that define
the curve, which in practice, will be significantly less than the actual values.

The reason we first establish this more general scheme is to help us investigate how
tolerant training is to this compression method and if convergence can be achieved even
under the presence of the expected approximation errors.

We will now proceed by describing some of the different approaches we followed for im-
plementing the above encoding/decoding method.
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4.2 Linear Regression

In linear regression, we assume that the relationship between the dependent output y and
the independent inputs x1, x2, · · · , xk can be expressed via the following prediction model:

ŷ = ŵ0 + ŵ1x1 + ŵ2x2 + · · ·+ ŵkxk := ŵTx

We call this type of regression “linear” because it is indeed linear in the coefficients. How-
ever, linear regression is not limited to expressing only linear relationships between the
output and the input parameters. Indeed, if we raise an independent input variable by any
exponent then we can capture non-linear relationships, as well. This more generalized
prediction model is now written as follows:

ŷ = ŵ0 + ŵ1Φ1(x1) + ŵ2Φ2(x2) + · · ·+ ŵkΦk(xk)

where the Φj(x) are known as basis functions. The above can be re-written as:

Y =
∑k

i=0 ŵiΦi(xi)

assuming that Φ0(x) = 1 so that w0 acts as a bias.

Now, by minimizing the least-squares loss function:

Lw =
∑N

n=1(yn − wTxn)
2

we obtain the LS estimates for the parameter vector w:

ŵ = (XTX)−1XTy

A great advantage of using the LS loss function is that we are able to obtain an analytical
solution for computing the coefficients provided that the matrix XTX is invertible. This
is a key point for our implementation considering our setting. Remember that, we need
to solve a regression problem every time we need to compress a gradient and commu-
nicate it to the other workers. If we had employed more complex models that required
iterative mechanisms (e.g. gradient descent) for obtaining the optimal coefficients then
the computational overhead of this method would definitely make it unsuitable.

In figure 9, we see the graph that represents the compressor’s computations. The box “LS
Regression” abstracts away all the transpose, inverse and matrix multiplication operations
that need to take place for computing the coefficients.

Figure 9: Values Approximation Compressor
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Now, by using the LS model and alternating between different sets of basis functions we
can create a variety of implementations for the “values approximation” compressor.

As a metric for evaluating the performance of the model we use the Root Mean Squared
Error which is defined as:

RMSE =
√∑N

n=1
(yn−wT xn)2

N

4.2.1 Logit Functions

One of our first attempts was to directly fit the gradient values after those have been sorted
in an increasing order. The curves shall look like the one in figure 10, which, in this case,
was computed using linear regression and the simple method of least squares.

As basis functions we used some inverse “sigmoid” functions.
The inverse of a sigmoid is called “logit” and has the following functional form:

Φ(x) = log x

1− x

Figure 10: Gradient Approximation using Logit basis functions

Parameterizing appropriately the basis functions was not an easy task. It is a procedure
that, ideally, should be automated and take place at runtime for every given gradient that
is going to be compressed. This way the model will be more adaptive with respect to the
form and characteristics of the gradients as those are produced during training.

However, in this particular case, we selected the basis functions offline by experimenting
on a collection of gradients that we sampled while training resnet20 on the cifar10 dataset.
Consequently, the exact same set of basis functions would not produce good fits for the
gradients of other models like vgg16 or densenet40.

We provide more details regarding the training results in the “evaluation” section.
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4.2.2 Fitting Curve Segments using polynomials

Another set of experiments was conducted by using functions of a polynomial form to fit
different segments of the curve. In this case, we decided to first obtain the absolute values
of g and then apply sorting. The curve-segments would now look like those in figure 11.

Figure 11: Approximating Segments of the curve using Polynomial Basis Functions

Again, both the number of curve-segments and the degree of each polynomial should be
specified at runtime and adapt with respect to each gradient. However, in most cases we
decide to explicitly define those values after some offline experimentation on the gradient
samples. This relieves the workers from some additional computational overhead. Typ-
ically, extremely big gradients such as those produced by the VGG16 model (see figure
12) would require a larger amount of segments for achieving good approximations.

Figure 12: Fitting a VGG16 gradient using four curve-segments
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Once again, we fitted the curve-segments using the LS method and employing a set of
polynomials as basis functions (e.g. X,X2, · · · , Xk). Contrary to other approaches, like
the “double exponential” fitting that will be described next, cutting the curve into pieces
and fitting them with polynomials helps us treat more peculiar cases of gradients, as the
one in figure 13. You can see that, on the right part of this gradient, the curve-segment is
an “anomaly” compared to the same segments of other similar gradients.

Figure 13

Note that, the positive and negative values cannot be distinguished by the decompressor
at this point. A way to resolve this it to integrate the sign information of each value in the
mapping tensor. Now, every time a mapping index has a negative sign, the gradient value
it corresponds to will have be negative as well.

4.3 Non-Linear Regression

As we previously mentioned, in linear regression the coefficients can only be linear. Non-
linearity can be achieved by allowing the existence of non-linear coefficients in the func-
tional form of the curve.

For example, the following is a non-linear model:

ŷ = ŵ0 ∗ cos (x+ ŵ4) + ŵ2 ∗ cos (2 ∗ x+ ŵ1) + ŵ3

4.3.1 Double Exponential Functions

Another parametric family we chose to include in our experiments was the following:

ŷ = ŵ0 ∗ e(ŵ1∗x) + ŵ2 ∗ e(ŵ3∗x)

We call it “double exponential” and it is clearly non-linear in the coefficients. By employing
the LS loss function we can obtain, once again, an analytical solution for finding the optimal
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coefficients. Similar to the polynomial approximations, we apply the curve fitting on the
sorted, absolute values of the gradient g, as shown in figure 14.

Figure 14: Gradient Approximation using a double exponential

4.4 Fitting the Sparsified Tensor Values

Now, any of the above methods can be applied on top of a sparsification method, like Top-
r. The benefit of doing this is the reduction of the mapping tensor and thus the shrinking
of the overall message. In figure 15, we used the “double exponential” method to fit the
top-r values of the gradient, as shown on the right part of the plot. More details regarding
the accuracy and throughput of the experiments will be provided in the evaluation section.

Figure 15: Gradient Approximation using a double exponential
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5. IMPLEMENTATION

All the encoding methods discussed throughout this thesis were implemented using Horo-
vod [11]; a tool that performs data parallelism for the distributed training of deep neural
networks. Horovod provides support for various existing deep learning frameworks such
as Tensorflow, PyTorch or MaxNet.

Remember that, in most modern deep learning frameworks neural networks are repres-
ented as dataflow graphs whose nodes are commonly called operators and indicate the
computations that need to take place. Horovod works by extending those graphs with an
additional set of operators. Those perform the MPI communication for the gradients ex-
change between the workers, as well as the aggregation of them. Of course, it provides a
different implementation for every such operator depending on the underlying deep learn-
ing framework. Horovod is also responsible for replicating the model in all the different
workers, splitting the dataset into partitions, assigning these partitions to the workers and
managing their overall synchronization in general.

Figure 16: Data Parallelism

This tool provides an ideal framework for embedding our own compression and decom-
pression operators inside the computational graphs. Commonly, every operator that per-
forms anMPI communication is “sandwiched” between two operators we call “Compressor”
and “Decompressor”, respectively, so that each gradient is encoded before it is sent off to
the network and decoded after it is received by the worker.

The deep learning framework we decided to use for this research work is TensorFlow
and the various compression and decompression operations we experimented with were
implemented either by using existing TensorFlow primitive operators or by creating our
own custom operators in C++.

More specifically, the bloom filter compressor and decompressor were implemented as
custom TensorFlow operators. The algorithms needed for creating the bloom filters, pos-
ing queries and manipulating bits are highly procedural in nature and require a lot of side
effects. Thus, dataflow was not the appropriate programming paradigm for encoding these
kind of computations.
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6. EVALUATION

6.1 Experimental Setup

The experiments were executed on a shared cluster withmachines runningUbuntu 18.04.2
and having two NVIDIA Tesla V100 GPU cards each. Moreover, they have installations
of CUDA 10.1, TensorFlow 1.14, Horovod 0.18.2, OpenMPI 4.0 and NCCL 2.4.8.

For our experimentation we use some publicly available benchmarks created for Tensor-
Flow [1]. Each experiment was ran for a fixed number of training epochs and every ac-
curacy we report is based on the test set. We use SGD with momentum as an optimizer
and we interchange between three different models called Resnet20 [5], VGG16 [12], and
Densenet40 [6] all trained on the CIFAR10 [2] dataset.

6.2 Logging Sampled Information

In order to derive information of statistical nature for every experiment, we employ a log-
ging mechanism during the training of the models. That is, the bloom filter operators as
well as some new, custom operators that we created for this purpose, record frequently
information about the compression and decompression of all the gradient vectors. In other
words, we define a parameter called “verbosity-frequency” which is normally set to 150
and sets all these operators to log information about the actual false positive rates of the
bloom filters or the sizes of the messages before and after compression every 150 training
steps. Then, after the offline processing of this information, we derive statistical results
regarding the “Policy Errors Rate” of the experiment, the total number of bits that were
sent during all these sampled steps for the communication of the indices or the bloom
filter (Initial-Bits, Final-Bits) and so on.

Having said that, we will now explain what every field stands for, in all the following exper-
iments:

• Initial-Bits is the total number of bits that are required for the communication of the
indices or the values of all the sparsified gradients for all the steps that we selec-
ted/sampled without applying any compression method.

• Final-Bits is the total number of bits needed for communicating the same information
after applying the compression method that we examine.

• Final/Initial is the ratio: Final-Bits/Initial-Bits. It measures our gain in terms of
throughput and we ideally want it to be a lot less than 1.

• Policy Errors Rate (PER) is computed as the total number of times we selected a
false positive index over the total number of selections throughout all the steps that
we selected/sampled.
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6.3 Indices Compression

In this section we will provide some experimental results for the bloom filter indices com-
pression method. For all of our experiments we used the lossless run length encoding as
a baseline and unless specified otherwise, all the bloom filter compression experiments
were tuned to be based on the Top-r sparsification method with a compress ratio of 0.01.

6.3.1 Comparison Between Different Policies

Figure 17: Resnet20, Leftmost-r, Random-r, Conflict Sets

As we previously mentioned, training seems to be sensitive to the re-construction errors in-
duced by the occurrence of bloom filter false positive responses. Without the algorithmic
modification of the “False Positive Aware Compression” none of the models seemed to
reach the baseline’s test set accuracy. In figure 17 and table 1, we demonstrate how
the selection of different policies affects the model’s ability to learn by keeping the com-
press and false positive ratios fixed and alternating between the policies we discussed in
a previous chapter.

We can see in table 1 that “Random-r” is marginally better than “Leftmost-r”, however,
both are significantly worse than the “Conflict Sets” policy which works in a more elaborate
way and selects more correct indices. None of the above policies though, can achieve an
accuracy as high as the baseline method.

Not that, in figure 17, we have not applied the “memory compensation” feature for any
of the bloom filter experiments. If we enable this without treating the re-construction er-
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rors then those will be catastrophic for training. When we compute the difference (delta)
between each tensor and its re-constructed version those errors will start to accumulate
and affect not only the current step but future steps as well.

Table 1: Bloom Filter Compression: Leftmost-r, Random-r, Conflict Sets

Resnet20, compress_ratio=0.01, Top-r

Method Policy FPR PER Accuracy

Bloom
L 0.01 56.9% 48.91%
R 0.01 51.82% 54.41%
CS 0.01 18.72% 68.42%

RLE - - 0 91.27%
This experiment was executed on 4 nodes having the aforementioned specifications. The FPR is specified

by the user and affects the size of the bloom filter as well the number of hash functions.

6.3.2 False Positive Aware Compression

6.3.2.1 Top-r / Varying FPR

In figure 18, we have re-trained resnet20 on cifar10, but this time we have applied the
algorithmic modification of the “False Positive Aware Compression”. Now, while the se-
lection of false positive indices still occurs, we do not have re-construction errors as every
index will be paired with its correct, original value either it is a true positive index or not.

In this experiment, we alternate between different false positive ratios in order to control
the size of the bloom filter and thus, the throughput. Note that, in our framework, the user
implicitly controls the bloom filter size and number of hash functions with the help of the
FPR. This is achieved by using themathematical formulas that were described in an earlier
section and letting them derive those two parameters as a relation of the false positive rate
that is given as input by the user. As the FPR gradually increases, the bloom filter size
decreases. While this creates a spike in the false positive responses, the number of bits
required to represent the indices is significantly reduced. Now, the more false positives
we have the more we “deviate” from the Top-r sparsification method since we sacrifice
some of the Top-r values by replacing them with others.

This trade-off demonstrates the flexibility of the bloom filter approach compared to the “Run
Length Encoding” baseline. The user can substantially control the size of the message
by setting the FPR accordingly. This way they can choose between better throughput or
better accuracy or they can simply come up with a tuning that satisfies both in an accepted
level. Note that, the more we deviate from the Top-r sparsification method the more we
degrade to the Random-r method which, in most cases, is not as good in terms of accuracy
as the former one [15]. Run Length Encoding, on the other hand, cannot be tuned in a
similar way, since it is not a lossless compression method.

Also, having treated the re-construction errors, we can now enable the “memory compens-
ation” feature for the bloom filter experiments, contrary to the previous set of examples.
This enables the accuracy to increase and allows the False Positive Aware Compressor
to compete with the baseline.
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Figure 18: Resnet20, False-Positive-Aware Bloom Filter Compression

Resnet20 has 269,467 training parameters and 51 gradient vectors. It was trained on 4
nodes, on the CIFAR-10 dataset for 328 epochs and with no compression at all, it reaches
a ~91% accuracy. We observe that the False Positive Aware compressor reaches the
baseline’s accuracy for FPRs up to 0.02 and it starts declining for higher values. We can
see that as the FPR increases so does the Policy Errors Rate which causes the decline
in accuracy.

Table 2: Resnet20: RLE vs FP Aware Bloom Filter Compression

Resnet20, compress_ratio=0.01, Top-r, memory_compensation

Method Policy FPR Initial-Bits Final-Bits Final/Initial PER Accuracy

Fp-Aware Bloom

CS 0.01 28867209 2817096 9.759% 19.25% 91.01%
CS 0.015 28867209 2585120 8.955% 33.97% 90.7%
CS 0.02 28867209 2409640 8.347% 44.68% 90.88%
CS 0.025 28867209 2241864 7.766% 55.32% 87.24%
CS 0.03 28867209 2128016 7.372% 63.53% 86.47%

RLE - - 28867209 2749080 9.523% 0 91.27%
Initial-Bits and Final-Bits refer to the indices and not the whole message.
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In figure 19 and table 3, we provide the results of similar experiments for the Densenet40-
K12 model.

Figure 19: Densenet40, False-Positive-Aware Bloom Filter Compression

Densenet40-K12 has 357,491 training parameters and 158 gradient vectors. It was trained
on 4 nodes, on the CIFAR-10 dataset for 328 epochs and with no compression at all, it
reaches a ~92% accuracy.

Table 3: Densenet40-K12: RLE vs FP Aware Bloom Filter Compression

Densenet40, compress_ratio=0.01, Top-r, memory_compensation

Method Policy FPR Initial-Bits Final-Bits Final/Initial PER Accuracy

Fp-Aware Bloom

CS 0.01 23594406 2331648 9.882% 18.66% 90.68%
CS 0.02 23594406 1997424 8.466% 45.36% 90.4%
CS 0.03 23594406 1745568 7.398% 62.89% 85.93%

RLE - - 23594406 2391232 10.13% 0 91.74%
Initial-Bits and Final-Bits refer to the indices and not the whole message.
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In figure 20 and table 4, we provide the results of similar experiments for the VGG16
model.

Figure 20: VGG16, False-Positive-Aware Bloom Filter Compression

VGG16 is a hugemodel having 14,982,987 training parameters and 30 gradient vectors. It
was trained on 4 nodes, on the CIFAR-10 dataset for 200 epochs and with no compression
at all, it reaches an ~89% accuracy.

Table 4: VGG16: RLE vs FP Aware Bloom Filter Compression

VGG16, compress_ratio=0.01, Top-r, memory_compensation

Method Policy FPR Initial-Bits Final-Bits Final/Initial PER Accuracy

Fp-Aware Bloom

CS 0.01 734166363 70371448 9.585% 18.83% 89.19%
CS 0.02 734166363 59781568 8.143% 45.39% 86.66%
CS 0.03 734166363 53583656 7.299% 63.23% 83.58%

RLE - - 734166363 68656144 9.352% 0 88.83%
Initial-Bits and Final-Bits refer to the indices and not the whole message.

We observe that the Final/Initial ratio as well as the policy errors rate are both invariant
to our selection of model and they depend only on the false positive rates of the bloom
filters.
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6.3.2.2 Random-r / Varying FPR

In figure 21 and table 8, we use the Random-r sparsification method instead of the Top-r
and we train again Resnet20 on 4 nodes, on CIFAR-10 for 328 epochs.

Figure 21: Resnet20, False-Positive-Aware Bloom Filter Compression

Notice that, this time, as we gradually increase the FPR we do not observe a degradation
of the accuracy with respect to the baseline. Remember that, the False Positive Aware
Compressor is a hybrid method that, under the absence of false positives, operates exactly
like the underlying sparsification method. However, when false positives start to occur, it
starts to behave more and more like Random-r. Here, we use Random-r as our underlying
compression method, so the occurrence of false positives will not have an effect.

Table 5: Resnet20: FP Aware Bloom Filter Compression on Random-r

Resnet20, compress_ratio=0.01, Random-r, memory_compensation

Method Policy FPR Initial-Bits Final-Bits Final/Initial PER Accuracy

Fp-Aware Bloom

CS 0.01 28832969 2803400 9.723% 18.83% 88.76%
CS 0.02 28832969 2395944 8.31% 44.68% 88.66%
CS 0.03 28832969 2121168 7.357% 62.46% 87.92%

RLE - - 28832969 2681248 9.299% 0 88.47%
Initial-Bits and Final-Bits refer to the indices and not the whole message.
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6.4 Values Compression

In figures 24 and 23, we provide the results of the values approximation approach for
ResNet20 and VGG16. They were both trained on the cifar10 dataset using some of the
curve fitting techniques discussed in a previous section. Note that, we apply this method
only for the convolutional layers of each model since those have a significantly large size
that we need to reduce.

Figure 22: Resnet20, Values Approximation

We observe that, ResNet20 reaches the baseline’s accuracy in all cases, however, not all
curve fitting methods provide equally good approximations. This was demonstrated in the
figures of the “Fitting the tensor values” section where we could see that depending on the
fitting technique the quality of the curves either increased or decreased. More specifically,
we have observed that fitting segments of the tensor values using polynomial functions
behaved better in terms of RMSE compared to the other approaches.

Table 6: Resnet20: Values Approximation

Resnet20, compress_ratio=0.01

Method Basis Functions Accuracy

Values Approx.

Logits 90.85%
Double Exp. 90.97%
Segm. Pol. 91.29%

No Compression - 91.32%
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Figure 23: VGG16, Values Approximation

VGG16’s gradients are large in size and thus, fitting them with such numerical curve fitting
methods was somewhat challenging. Training could halt at any point due to matrices
being non-invertible, so for this model we chose to apply only the approach where we fit
segments of the curve using polynomials. This is a generally more flexible approach and
by carefully selecting the segments offline we could manage to avoid those kind of errors
completely.

Table 7: VGG16: Values Approximation

VGG16, compress_ratio=0.01

Method Basis Functions Accuracy

Values Approx. Segm. Pol. 89.43%

No Compression - 89.85%
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6.5 TopK Values Compression

Figure 24: Resnet20, Topk Values Approximation

Table 8: Resnet20: Topk values approximation

Resnet20, compress_ratio=0.3, Top-r, memory_compensation

Method Pol.D Segs Initial-Bits Final-Bits Final/Initial RMSE Accuracy

Pol. 3 19 2569632 3648 0.141% 0.0423% 90.45%
Segm. Pol. 3 37 2569632 7104 0.276% 0.0301% 90.57%
Segm. Pol. 4 37 2569632 9472 0.368% 0.0177% 90.59%

Baseline - - 2569632 2569632 100% 0 90.77%
’Pol.D’ stands for the degree of polynomials used whereas ’Segs’ is the total number of curve segments for

all those gradients of one training step that correspond to convolutional layers. “Baseline” is the top-r
sparsification method without any additional compression of the sparsified values. We use float variables

of 32 bits to store each of those values. Final-Bits and Initial-Bits do not include the bits needed for
sending the indices. They refer to the bits needed to communicate the “coefficients” or “values” for all the

gradients that correspond to convolutional layers for one training step with or without compression,
respectively. We use 32-bit float variables to store the values without the values approximation

compression while we use 64-bit float variables to store the coefficients when we use this compression
method. Note that, these numbers are fixed throughout all the different training steps, thus we measure
them only for one step in order to compute our gain-ratio (Final/Initial). Segm. Pol. refers to the method

where we fit segments of the sparsified tensor values using polynomials. The number of segments is fixed
for each gradient (here we choose 1 or 2) depending on its size. Pol. refers to the method where we fit all
the sparsified tensor values using only one curve (no segments). Generally, as we reduce the number of

segments, as well as the polynomial degree, we also reduce the Final-Bits even further. RMSE is
computed by averaging all the RMSEs of the convolutional layer gradient fittings of one training step.
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7. FUTURE WORK & CONCLUSIONS

Below, we discuss some possible future directions of this work:

• GPU Implementations
Within the scope of this thesis, we have not considered at all the actual elapsed
time needed for training these models. We were solely focused on reducing the
volume of data communicated over the network. Our implementations for the bloom
filter compression operators run on CPU which significantly increases the elapsed
training time. GPU implementations for all these operators must also be provided
for a fair comparison.

• FPGA Implementations
Implementing GPU kernels for our operators will surely decrease the elapsed train-
ing time but will not alleviate training from the extra computational time imposed
by our methods. One idea for mitigating this overhead would be to provide FPGA
implementations for our algorithms instead.

• Compress both indices and values
So far, we have proposed ways for compressing either the indices or the values of
the sparsified gradients. The gain ratios depicted in the evaluation section do not
reflect the actual, overall gain because in each case, we were computing either the
indices or the values bits but not both. One idea that remains to explore, is combining
both the bloom filter compressionmethod for compressing the indices and the values
approximations approach for compressing the values.

In this work, we proposed the bloom filter compression method and the values approx-
imation method for encoding the indices and the values of the sparsified gradients, re-
spectively. We introduced a very unique use-case for the bloom filter data structures and
we developed ideas for increasing their performance under this specific setting. We also
achieved a massive reduction of the sparsified tensor values by compressing them with
the values approximation approach.

One of our goals while implementing these ideas was to construct a framework that sup-
ports the integration of a variety of such encoding methods. The techniques that we de-
veloped are only some examples of sparsified gradient compression. The bloom filter
compression for example might be less ideal than other approaches even though it cre-
ates a very interesting setting for the usage of bloom filters.
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ABBREVIATIONS - ACRONYMS

KAUST King Abdullah University of Science and Technology
NKUA National and Kapodistrian University of Athens
GPU Graphics Processing Unit
TPU Tensor Processing Unit
AMQ Approximate Membership Query data structure
FPR False Positive Rate
RLE Run Length Encoding
LS Least Squares
SGD Stochastic Gradient Descent
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ANNEX A. VALUES APPROXIMATION COMPRESSION

Resnet20 - first step of training - convolutional layers - linear regression using logit basis
functions

Figure 25: LS regression using logit basis functions
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# Definition of the Bloom filter operators in tensorflow

using namespace tensorflow;

REGISTER_OP("BloomCompressor")
.Attr("T: {int32, int64, float16, float32, float64}")
.Attr("false_positives_aware: bool")
.Attr("policy: string")
.Attr("hash_num: int")
.Attr("bloom_size: int")
.Attr("bloom_logs_path: string")
.Attr("gradient_id: int")
.Attr("rank: int")
.Attr("verbosity_frequency: int")
.Attr("verbosity: int")
.Input("values: T")
.Input("indices: int32")
.Input("initial_tensor: int32")
.Input("step: int64")
.Output("compressed_tensor: int8")
.Doc(R"doc(Receives the values and the indices,

build a bloom filter on the indices
and returns the values concatenated with the filter)doc");

REGISTER_OP("BloomDecompressor")
.Attr("policy: string")
.Attr("mem_mode: int")
.Attr("hash_num: int")
.Attr("bloom_size: int")
.Attr("bloom_logs_path: string")
.Attr("gradient_id: int")
.Attr("rank: int")
.Attr("suffix: int")
.Attr("verbosity_frequency: int")
.Attr("verbosity: int")
.Input("compressed_tensor: int8")
.Input("decompressed_size: int32")
.Input("step: int64")
.Output("decompressed_tensor: int32")
.Doc(R"doc(Splits the compressed tensor into

values and bloom filter, decodes the indices and
returns the re-constructed gradient)doc");
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