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Abstract

In this master thesis the Quantum Double anyon model for the
Alternating group A4 is constructed. In the first part, we present
an overview of the statistical properties of anyons, both abelian and
non-abelian, through the Bohm-Aharonov effect as well as their use
in quantum computation. In particular, we discuss the Braiding and
Fusion rules for anyons as they are expressed through the R-matrix,
the F-matrix and the fusion bases.

In the second part, we focus on the alternating group A4 and by
determining the superselection sectors through the conjugacy classes
and their centralizers, we present the representations of each quan-
tum double D(A4). We next compute the modular S-matrix and us-
ing the Verlinde formula we construct the fusion rules of the model.
Also, we determine the modular T-matrix as well as the charge con-
jugation operator of the theory. Due to the high complexity of the
model, we restrict the discussion to a small superselection sector
whose fusion rules are closed and we calculate explicitly the R and F
matrices. Finally, we show that the algebra D(A4) does not contain
the necessary quantum gates for universal quantum computation.

Subject Area: Topological Quantum Computation
Keywords: Anyons, Anyon model, Quantum Double, Fusion Rules,
Generalized Pentagon equation, Generalized Hexagon equation
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Mepirndm

Yty Simhwpatiy gpyaocia autr, To HOVTENO avuoviny Yo TNV o-
uddo Ag xotaoxeudleton. 1TO TEOTO XOPUITL, TEOYUATOTOLOUUE [Lot
OVOOXOTNOY TWV CTATIOTXOV WBIOTATWY Twv avuoviey, oehiovd xou
un-afBehiavd, péow tou gawvouévou Bohm — Aharonov xadoe xou
TNV YENOWOTNTE TOUG GTOUC XBaVTiXoUE UTOAOYIOTES. BUYXEXQUEVA,
TPOYUOTEVOUOIC TE TOUG XOVOVES TAEE(UOTOC X0 GUYYWVEVGTG TWV O-
vuoviey, énwe expedlovtot péow Twy mvixey R, F xo tic ouufotixée
Bdoeic.

310 8eUTEPO KOPUATL, ETUXEVIPWVOUACTE OTNV ouddo Ag xou mo-
pardétouye Tic avamapaotdoels e xdde xPavtinic dinhétac D(A4)
xadopilovtac Toug Toyelc uepemAOY TS PECL TwV Xhdoewv culuyiag
XL TWV XEVIPOTOWWY Toug opddwv. ‘Eneita, xadopllovue tov mivo-
xa S xou péow g oyéone Verlinde xatooxeud{ouge ToUC xavOVeES
oLVTNENG Tou povtélou. Emmhéov, xadopilovye tov mivaxo T xodedg
xaL Tov TeEhec T petddeons goptiouv tne Yewplag. Adyw e uPnihc
nohumhoxdtntag Tou povtéhov, meplopiloupe v oulrnon oe évay
Kb Touga LTERETIAOYHE TOV OTolou oL Xavdvee GlVTNENG elvon XAeL-
ool xau vrohoyilouye pntd Toug mivaxee R xou F'. Téhoc, delyvouyue
otL M hyeBpa D(Ayg) Bev eunepiéyel tic avaryxodes xBavtixéc mOhes yio
xodoAx) xBavTixr) UToAOYIo TIXH).

Ocpatix Ieproyn: Tonoroyxol KBavtixol Troloyiotég
AéEeic KAedud: Avuovia, Avuovind Moviéro, KPavtue Amiéta,
Kovéveg Yovining, Tevixeupévn ediowon Ieviaywvou, levixeupévn
ellowon Eaydvou
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1 Introduction

Since 1982 when Feynman first introduced the idea of a Quantum Computer
[1], there have been many different attempts to realize Quantum Computers
physically using various quantum systems, such as photons, which are best
suited for transmitting data, or weakly interacting spins, that could serve as
long lasting quantum memories [2]. Another approach that has recently shown
up due to its robustness against decoherence is that of Topological Quantum
Computation (TQC). TQC makes use of recently discovered anyonic excitations
in materials with topological properties [3]. The anyonic [4] excitations are
described by topological models which are fully determined by the fusion and
braiding rules which correspond to the F' and R matrices.

In sections 2 and 3 we give a short overview of the algebraic equations
satisfied by the F' and R matrices and we present a brief outline of their use in
TQC in section 4. In section 5 we work out in detail the quantum double algebra
by determining the superselection sectors, the braiding and the fusion rules for
the group Ay. Finally, in section 6 we calculate the R and F matrices for a
specific small superselection sector of the model and we show that this sector
is not enough to enable Universal Quantum Computation. It is known that the
smallest group for non-abelian anyons enabling universal classical computation
is A5 [5]

2 Anyons

Suppose we have a pair of identical particles on the plane. By interchanging
them once, in a counter-clockwise manner, the state of the system is multiplied
by a phase factor e (often called exchange phase) as interchanging identical
particles should not have any measurable difference on our state. Interchanging
them once more returns us to the starting configuration. This double inter-
change is equivalent to a counter-clockwise rotation of one particle around the
other and the resulting phase does not depend on the particular path of the
rotation as long as there is no other particle around. If we now had access to
the third spatial dimension we could make use of it and deform our path "up-
wards" or "downwards" so that it passes "above" or "below" the other particle
and by doing so in a continuous fashion the result of the rotation should remain
the shame. Now it is a simple matter to continuously deform that path to the
trivial path that always leaves the initial particle where it is. As such in three
dimensions, the state of the system W(y;) after a rotation of one particle on a
path 71 around the other needs to be equal to the state ¥(v3) corresponding to
the trivial path s:

U(7) = ¥(r) (1)

Given that a rotation is equivalent to two consecutive interchanges, the square
of the phase factor has to equal 1 in order for (1) to hold

€2i9 -1



which leads to # = 0 and 6 = 7 that correspond to bosons and fermions respec-
tively.
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Figure 1: Exchanging a pair of particles in three dimensions.

If we don’t have access to the third spatial dimension, to "bend" our path
through, we cannot continuously deform a path 1, that revolves around the
second particle, to the trivial path v5. As a result, if we are locked in two
dimensions, (1) cannot be extrapolated. As a result, since the square of the
phase factor e?’ needs not equal 1, the variable # does not have to equal 0 or
m. Such two-dimensional particles that when interchanged do not multiply the
state of the system by a simple +1 or —1 are called Anyons.

2.1 Abelian, non-abelian

Given a system of N identical anyons, interchanging pairs of them could poten-
tially be more complicated if some states were degenerate. Suppose our system
has m < N degenerate states |[i), ¢ = 0,1,...,m — 1 under a measurement
A, meaning Ali) = ali) Vi=0,1,...,m — 1. Now interchanging a pair of
anyons need not transform a state |7) into €’? |i) but it could in theory give a
superposition of all m degenerate states

|i') = Z cili)

since we cannot differentiate between them by measuring A. In this case the
state of the system transforms into U i) where U is a unitary matriz instead of
e?1i), e # —1,1. Anyons that when interchanged give rise to simple com-
plex phases are called abelian as consecutive interchanges of different anyons
commute, since complex phases are numbers, whereas anyons that give rise to
unitary matrices are called non-abelian since matrices in general do not com-
mute.



2.2 Use of anyons in quantum computing

One of the main hurdles encountered in the realisation of Quantum Computers
are errors accrued by the decoherence of our system, through its inevitable
interaction with the environment. We can encode information non-locally in
a system of anyons that can only be accessed when they are brought close
together providing a decoherence resistant system as long as the anyons are
kept far apart. Furthermore, those anyons can be used to efficiently simulate
a quantum circuit allowing for fault-tolerant quantum computation. Although
abelian anyons are easier to realise in practise, it is the non-abelian anyons that,
given their greater computational power, are the most promising in constructing
a Quantum Computer, were they to be realised experimentally [5].

2.3 Anyons through the Bohm-Aharonov effect

Consider the two dimensional plane and a magnetic field B confined in an area
V perpendicular to the plane. It is known that if a charged particle moving on
the plane, circulates the area V (counter-clockwise), ending up at the starting
position, the state of the system acquires a phase

eia® (2)

where ¢ is the charge of the particle and ® is the magnetic flux passing through
the area circulated by the particle. This is called the Aharonov-Bohm effect.
It is important to note that the phase is not dependant on the exact path
the particle follows around the area V but only on the number of rotations it
performs, also called the winding number.

Let us examine a system of two composite particles each constituted of a
charged particle and a magnetic flux. By interchanging these particles each
charge is circulated half a turn around the other particle’s flux altering the
state of the system by the phase

ei(5a2+34®) _ ig® (3)

For 6 = ¢® this phase matches the phase given when two anyons interchange.

Hence when needed anyons will be considered as composite particles made of
a charge and a flux while long-range interaction between anyons will be limited
only to the Aharonov-Bohm effect. Furthermore, we assume that the flux of all
anyons in a model take values in a finite group G and the charges are unitary
irreducible representations of said group.

It is possible to define an arbitrary orthonormal basis for the vector space
that the irreducible representations act upon. It is important to note though,
that the basis needs to be defined at a certain point since moving by parallel
transport from one point to another will rotate the basis due to the Aharanov-
Bohm effect. We can label a flux with a group element g € G by transporting
a charge labeled R, with R being a unitary irreducible representation of G,
around the flux g following a certain path and noting the action U(g) that acts



on the basis of R. Since the action on the basis given a certain charge and flux
is dependent on the path, we can label the path g as we did the flux.

3 Combining anyons

Anyons interact in three main ways

e by interchanging two anyons, or equivalently circulating one around the
other, which is called Braiding because it is described by the Braid
Groups instead of the Permutation Groups that describe exchange of
fermions and bosons

e by combining two anyons to form a third, called Fusion, which can be
written as
axb=Y Nge (4)
(&

where Vg, called multiplicity is a non-negative integer that signifies the
possible distinguishable ways an anyon with charge ¢ can be obtained by
two anyons with charge a and b.

e by splitting an anyon into two, called Scattering, which is the reverse
process of fusing two anyons [6].
3.1 Braiding a pair of anyons

Consider two fluxes, prematurely labeled ¢g; and g2, and a standard basis for
the charges at a starting point O as shown in the figure 2. By moving a charged

Figure 2: A pair of fluxes with labels g; and g, on the plane

particle by parallel transport counter-clockwise around the flux g; the basis is
acted upon by U(g1), where U is a representation of the group G 3 g; where the
fluxes’ labels take values in, leading to a label of g; for both the flux it circulated



and the path it followed. Similarly, the second flux and the counter-clockwise
path around it are labeled gs. A path g1g297 ! can be constructed by the paths
g1,92 and g7 1 which is a clockwise rotation around g, where 91 b is traversed
first then go then g; as shown in figure 3. If the anyons are exchanged counter-
clockwise while continuously deforming the paths in such a way as for them to
never overlap, the path glgggfl is altered to the path ¢g; and the path g; is
altered to the path go. As such the action of a counter-clockwise interchange of
a pair of anyons, represented by the braid operator R, on the fluxes is

R:(g1,92) = (919291 ", 91) (5)

which is also known as flux metamorphosis.

Clearly, if the group G were abelian braiding a pair of anyons would simply
exchange the position of the two labels. More importantly though, if the arbi-
trary basis was chosen such that it had been transported around the flux ¢;,
when attempting to label the flux go by transporting charges around it the ef-
fect on the new basis would not be U(gz) but rather U(g;g2g; ). Consequently,
although the labels assigned on a certain flux depend on the arbitrary selection
of the basis they all belong on the same conjugacy class of the group. As such,
the conjugacy class for a flux is invariant and all observers will note the same,
which leads to anyons with equal charge whose flux belongs to the same conju-
gacy class to be considered as indistinguishable particles. Again, if the group G
were abelian, different bases would not correspond to differences in the fluxes
since each conjugacy class consists of only one element.

It is worth mentioning that the inverse of the braiding operator R~!, which
corresponds to a clockwise interchange of anyons, acts as

R™': (g1,92) = (92,95 ' 9192). (6)

Two successive counter-clockwise exchanges, which correspond to the so called
monodromy operator R?, affect the fluxes as:

R?: (g1,92) = [(9192)91(9192) ", (9192)92(g192) ] (7)

Suppose the fluxes of the pair of anyons are g; and g; . This case is special
because although the total flux of the pair is zero the total charge need not be.
We can measure that charge by circulating a third flux go around the pair. If
the action U(gs) = I for all go € G then the charge of the pair equals zero.
Carrying the flux g, around the pair though, alters the fluxes as

(91,91") = (929195 ", 9291 95 ") (8)

since a rotation of one anyon around another corresponds to two successive
interchanges, which is the monodromy operator. This action is generally non-
trivial for a non-abelian group G. Interestingly, this new state also has zero
total flux without necessarily having zero charge. In order for a state |0, I) with
trivial charge to be constructed, a uniform superposition of all class elements is
needed

1
0,I) = —— -ir 9
0, 1) mg;ggg ) 9)

[=p}
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O
(a) Paths g%, g2 and g1
gigz(g:)?
o
O

(b) Path g1gag; "

Figure 3: (b) By combining the paths g; 1 g5 and gy in that order we construct
the path glgggl_l. (a) Note that the pale parts of the paths gl_1 and go cancel
each other out since the rotation inflicted on the basis by parallel transport
along the first is undone along the second. Similarly, the effect on the basis
along the thin parts of go and g; cancel each other out.



where (| is the conjugacy class the element g belongs to and I' is a representation
of the group G. In order for a pair of anyons with zero flux to annihilate when
brought together they need to be in the aforementioned state in order for charge
conservation to be observed.

3.1.1 Superselection Sectors

Consider an anyon with a non-trivial flux 8 € G, where G is a non-abelian
Group. In a sector with non-trivial flux, global transformations can only be
implemented if they belong to the centralizer N () of the group, defined as

N(B) ={g € G|Bg = gB} (10)

and as such the charge is an irreducible representation of the centralizer of
the group. Furthermore, the centralizers of elements belonging to the same
conjugacy class are isomorphic to each other, meaning that an anyons flux is
described by a conjugacy class C; of G and its charge is described by the a-th
representation I' of the centralizer N(g)

|Cy,°T)

which also labels the superselection sectors of the theory as these need to be
conserved in any physical process.

3.2 Fusion/Scattering of anyons

Another property of anyons that needs addressing is what happens when two or
more anyons are combined, also known as fusion, which is to say what happens
to their charges and fluxes. Scattering of anyons is simply the inverse process
where an anyon splits into more. The flux of the anyon after a fusion can belong
to any of the conjugacy classes obtained by the product of the fluxes of the
constituents. The possible values of the charge are given by the decomposition
of the product of the representations of the centralizers of the components as a
direct sum of representations

T, ®T; = P T (11)
ol

where “T'; signifies the «a representation of the centralizer of the group element
h that labels the flux of the i anyon.

By labelling each sector and its conserved charge with i € {a,b,...} fusion
of anyons can more generally be described by the fusion rules that describe the
possible distinguishable ways two anyons with charges a and b respectively can
combine to give an anyon with charge ¢

axb=Y Nge (12)
c



where N, is a non-negative integer called multiplicity. Since combining an
anyon with charge a with an anyon with charge b is the same as combining an
anyon with charge b with an anyon with charge a in both equations (11) and
(12) the products are commutative. If N, = 0 then an anyon with charge c
cannot be obtained when combining anyons with charge a and b, if N, = 1 then
the charge ¢ can be obtained in a unique way and if N > 2 then the charge
¢ can be obtained in N¢, distinguishable ways. For abelian anyons > N¢, is
always equal to one whereas for non-abelian anyons ) N& > 2.

The N¢, distinguishable ways ¢ can arise from the fusion of a and b, can be
considered a basis of an N¢,-th dimensional Hilbert space, called fusion space.
The basis elements can be symbolized as:

{la,b = c;p), p=1,2,...,N5} (13)

For an anyon |i) = |Cy, “T') we can define the quantum dimension d; = |Cy4||*T.

=lab-cw =(ab - cp

Figure 4: The fusion basis of M¢, diagrammatically.
Abelian anyons always have a quantum dimension of one whereas non-abelian

anyons have d; > 1, not necessarily integer. For anyons with fusion rules (12),
the quantum dimensions satisfy:

dadb = ZN;bdc (14)
C
Finally, a quantum dimension of an anyon model can be defined as

D= a2 (15)

where the sum runs over all anyon types in a model.



3.3 R-matrix, F-matrix, n anyon basis

Although, the braiding and fusion processes are described by the R and F oper-
ators accordingly, during calculations they are usually represented by matrices,
namely the R-matrix and F-matrix accordingly, that act on a fusion state.

3.3.1 R-matrix

Given the state |b,a — ¢; ) in the Hilbert space Mj, and the canonical basis
{la,b = c; 'y, 1/ =1,2,...,NE,} of MS,, the state |b,a — ¢;v) in the Hilbert
space M¢, can be attained by braiding a and b, which corresponds to a counter-
clockwise exchange of the two anyons. The braid operator can in this case be

described by the unitary matrix

R:lb,a—cip) = (Rl lasb — eipr) (16)
w
where the sum runs over all the basis states {|a,b — ¢; /), 1/ =1,2,..., NS, }.

Figure 5: The R-matrix diagrammatically.

The braid operator obeys the same rules as the generators 7; of the braid
group B,
TiTj:Tj’Ti, ‘Z—]‘ZQ (].7)

TiTi+1Ti = Ti+1TiTi+1 » 1= 1,2,...,’[7,—2 (18)

where (17) states that braiding of strands commute as long as different strands
are involved and (18) is called the Yang-Baxzter equation.

10



3.3.2 F-matrix

Suppose we have a system of three anyons with general labels a,b and ¢ that
fuse giving an anyon d

axbxc=d. (19)

Fusion of anyons, as well as scattering, are always considered pair processes,
meaning that exactly two anyons combine to give a third in a single fusion and
an anyon will always split into two in a single scattering. As such, a fusion
of three anyons is simply a fusion of two of them followed by a fusion of the
resulting anyon with the third. Similarly, a scattering of an anyon into more
than two products is achieved by successive scatterings of the products of each
previous scattering.

o X:
(@]
(@]
o

Figure 6: Another representation of the two bases shown in figure 7, ignoring
multiplicities [7]. It is obvious that fusing two anyons, that is labeling them
with a single label that signifies their total charge, need not require them to be
brought close together only that they need to be aligned side by side along the
line.

A fusion of anyons corresponds to a labeling of that subsystem with a single
label that signifies their total charge; no interaction needs to occur between those
anyons, the only requirement is for the subsystem to be able to be isolated from
the rest of the system, as can be clearly seen in figure 6. Consequently, fusing
the anyons a and b to a product ¢ and that with ¢ or b and ¢ to a product 5 and
that with a, will both yield the same final charge d, since the total charge of a
system is independent of our unintrusive selection of fusion order

(axb)xec=ax(bxc). (20)

The selection of fusion order corresponds to a selection of a basis in the fusion

11



j#fv!
Ak

= Z(Fd

abc

ju'v!

Figure 7: The F-matrix diagrammatically.

space:

|(ab),c = i,¢ — d; p,v) = |(ab), ¢ — d;i, p,v) = |a,b — 45 u) @ |i, e — d;v)
la, (be) = jic = dip', /) = la, (be) = dij, p', V') = |a, b — Gi ) @ |, e — div/)

The two bases are related by the unitary matrix F

(ab),c = diimv) = D (Fapo) it las (be) = dsj, !, v (21)

Ik v’

which is simply called the F-matriz.

3.3.3 Standard basis

During the actual implementation of a topological quantum computer a sizeable
number of anyons need to be controlled, making the generalization of anyon
combination processes necessary for any number N of anyons. From now on, all
anyons of a system will be considered to have been arranged in a line.

Consider a system of N anyons carrying labels ay, as, . ..,ay where the two
first anyons fuse giving a label i1, then 4, is fused with ag giving i and so on
until i 5o is fused with the last anyon a giving a total charge b. This selection
of fusion order corresponds to a fusion basis, also called the standard basis,

{la1,a2; 11, 1) ® |1, a3;99, o) @ ... @ |in—2,an; b, un—1)} (22)
b

a1,a2,...,aN"?

of the topological Hilbert space M with 71,49, ...iy_2 symbolising

the intermediate labels and {y;} being the basis of the fusion space M

2j—1,a5+41°

12



Figure 8: The standard basis diagrammatically. The N anyons to be fused to
total charge c are labeled with labels a;, the intermediate charges are labeled
with ¢; and the multiplicities are labeled with ;.

In a system with more than two anyons, braiding by use of the operator R,
can only be accomplished between anyons that can be isolated into a subsystem
with a certain total charge, which for a state in the standard basis, corresponds
to them being in the same fusion channel. In order to braid two anyons of
a system, that belongs to the standard basis, when they are not in the same
fusion channel, enough F moves (Fusion operator acting on the state) need to
be applied on the state to bring the two anyons under the same channel, then
an R move (Braiding operator acting on the state) to perform the actual braid
and finally the inverse of the F moves (by applying the F~!-matrices on the
state) to return to the standard basis state. This operation on the standard
basis is performed by the so called B-matriz, which is composed by the needed
F-matrices followed by an R-matrix followed by the inverse F~!-matrices.

The B-matrices that braid pairs of anyons of a system of n anyons form
representation of the Braid group on n strands. In the special case where the
braiding operation is performed on the first pair of anyons the B-matrix is simply
the R-matrix for that pair.

3.3.4 Pentagon and Hexagon equations

For a set of fusion rules with fusion coefficients N, < 1, there are two con-
sistency conditions that need to be observed. Firstly, if two different fusion
states of a system can be connected through different F moves, then those sets
of moves need to correspond to the same process. By applying this condition
on four anyons with the labels 1,2,3,4 and total charge 5, as seen in figure 9, it
gives rise to the so called Pentagon equation, which can be used to calculate the
F-matrices.

Secondly, if two different fusion states of a system can be connected through
different F and R moves, then again those sets of moves need to correspond to

13



IL‘ a ¢ 1'

V4
12 3 4 |
5 \}'4 iL/i
1 2 3 4 1
\V F
ﬁ
b

Figure 9: The Pentagon equation diagrammatically [5]. The label 5 corresponds
to some set total charge of the system whereas the labels a,b,c,d and e take all
possible allowed values.

the same process. The resulting equation when the aforementioned condition is
imposed on three anyons, labeled 1,2,3 and total charge 4, as seen in figure 10,
is called the Hexagon equation, which gives a way of calculating the R-matrices
given the F-matrices.

A specific anyon model can finally be defined, in an unambiguous way, given
a certain set of fusion rules and the corresponding F-matrices and R-matrices.

4 Quantum computation with anyons

Through the operations of Fusion/Scattering and Braiding, a topological quan-
tum computation with anyons is performed in three general phases:

e Initialization: A system of anyons in a known fusion state is constructed.
Perhaps the simplest way to do so is by scattering the vacuum into pairs
of anyons anti-anyons. Since the topological charge of each pair is zero
the total charge of the system must also be zero. It is worth noting that
depending on the fusion rules of an anyon model, the pair of anyon anti-
anyon could potentially be a pair of the same particle, as seen for example
in the Fibonacci anyon model.

e Quantum Gates: Anyons are braided, while being kept far apart to avoid
decoherence, in a pattern that replicates the effect of certain quantum
gates. If for a specific anyon model those quantum gates are universal then
it can be used to perform universal quantum computation. For anyons in
the standard basis, the braiding is accomplished by combination of R and
F-moves.

14



R \&

Figure 10: The Hexagon equation diagrammatically [5]. The label 4 corresponds
to some set total charge of the system whereas a,b and c take all possible allowed
values.

o Measurement: Finally, the pairs are brought together again and it is ob-
served whether they annihilate completely, that is to say whether or not
their charge has remained trivial.

In the case where N pairs of anyons anti-anyons are prepared in the standard
basis, the Hilbert space of the system is
(23)

1103 tn—20an

My =EPME L, @ME, @0 M
ij

where a; are the labels of the starting anyons, i; are the intermediate anyons
and n = 2N is the total number of anyons created. The dimension of the space
is

d(M. )= > NZ,NZ. .. N}

a1,a2,...,an araz” 'ijaz in—20n

(24)

01,02;5000y0n —3

where N¢, are the multiplicities. In the case of non-abelian anyons the dimension
of the space d(M)  d increases exponentially for each anyon a added to a
system of n anyons, which makes this topological Hilbert space suitable for
quantum information processing.

4.1 A qubit made of anyons

In order to perform a quantum computation, qubits need to be encoded in
anyons. Since a qubit is a two-level quantum mechanical system, its Hilbert
space dimension is equal to two. As such, in order to encode k qubits, the
dimension of the fusion space must be

d(M?

al,ag,...,an)

= > NZ,NZ....N} =92k (25)

aiaz” "11a3 In—30n
11,82, in—3
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where b labels the total charge of the system. The above mentioned dimension,
is a function not only of the number of anyons n but also the types of anyons
a; and the end result b.
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5 Constructing an anyon model of the group A,

In this section, the first step of constructing an anyon model, that is finding
the fusion rules, for the alternating group on four elements A4 will be covered.
First, a brief overview of the structure of the group is given followed by the
character tables of all centralizers of the group. The characters will then be
used in calculating the modular S-matrix [8] and finally the multiplicities will
be evaluated through the Verlinde formula [9].

5.1 Alternating group on four elements

The alternating group on four elements A4 consists of all even permutations
on four elements and as such has 4!/2 = 12 elements. Those elements are the
identity, eight 3-cycles and three double-transpositions

Ay = {e, (123), (134), (124), (234), (132), (143), (142), (243),
(12)(34), (13)(24), (14)(23)}

using cyclic notation. There are four conjugacy classes:

e={e},
'O ={(12)(34), (13)(24), (14)(23)},
20 ={(123),(134), (142), (243)},
3C =1{(124),(132), (143), (234)}

5.1.1 Centralizers

The centralizer N(g) of a single element ¢ in a group G, consists of all group
elements that commute with g:

N(g) = {a € Glag = ga} (26)

For a single element the centralizer and the normalizer are equivalent. Moreover,
the centralizers of elements that belong to the same conjugacy class correspond
to groups that are isomorphic to one another.

In the case of the group Ay, the centralizer of the identity element °C' is
obviously the whole group since every element of the group commutes with the
identity element. The elements in 'C give rise to groups that are isomorphic to
the Klein four group K, which is an abelian group with elements a, b, c and the
identity, where ab = ¢ and each element is its own inverse. The elements of the
other two conjugacy classes 2C' and 3C all have centralizers that are isomorphic
to the cyclic group of order three Z3. In the table 1 the conjugacy classes and
the centralizers of their elements are collected.
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Conjugacy class | Centralizer
{6} A4
o Ky
2C Zs
3C Z3

Table 1: The four conjugacy classes of the group A4 and the respective central-
izers of their elements.

5.1.2 Character table of Z3

The group Z3 = {e, g,g*} has three conjugacy classes {e}, {g} and {g?} and as
such must have three irreducible representations T, T'* and I'2. Since |Z3| =
3 =12 4 12 4 12, the three irreducible representations are one dimensional and
must equal their characters; this in turn leads to the characters having to obey
group multiplication. The yet to be filled character table is:

(Zs]le] g [g]
FO 1 K1 K2
Fl 1 K3 R4
F2 1 K5 Kg

Given that ¢g> = e the characters (as they obey group multiplication) must
belong to the 3rd roots of unity, meaning «; € {1,exp 22, exp 2} Vi=1,...,6
and k; = /@?_1 V j = 2,4,6. If T° is the trivial representation then x; = 1
and ko = 1. Due to character orthogonality we have k3 = exp % = w and

K5 = exp %7 which gives the filled character table:

[ Zs [[e] g | o* |
oijr|]1]1
1] w|w?
21w | w

5.1.3 Character table of K4

The group Ky is of order four and since it is abelian has four conjugacy classes,
one for each element e,a = (12)(34),b = (13)(24),c = (14)(23). As a result
is has four one-dimensional irreducible representations fo, f‘l, I'2 and I'®. The
character table is of the form

[ Zsfle[ a b [ c |
10 1| N\ Ao A3
It 1| M\ As A6
12 1| N Ag Ao
I3 1] Ao | M1 | Az
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with \;’s to be determined.

Similarly to the group Zs, since all representations are one-dimensional their
characters must obey the rules of group multiplication and given that the square
of any element is equal to the identity element, the square of each character must
in turn equal one. If we take I'° to be the trivial representation, Ay = Ay =
A3 = 1. Since the rows need to be orthogonal to each other the character table
takes the form:

[ Zs [ e [ (12)(34) | (13)(24) [ (14)(23) |
o1 1 1 1
It 1 -1 -1
2|1 -1 1 -1
|1 -1 -1 1

5.1.4 Character table of Ay

The group A4 has four conjugacy classes e, 1C,2C and 3C meaning that it must
have four irreducible representations 'Y, T'',I'? and I'®. Since the group is of
order twelve, three of the representations must be one-dimensional and one must
be three-dimensional, in order for the relation dim(T'°)2+dim(T'!)?+dim(I'?)?+
dim(I'3)? = 12 = |A4|. The character table is of the form

[Asf[e[TC[°C]°C |
01 ] H2 H3
DU ] s [ s | e
T2 11| g | ps | po
D33 ] pao [ pan [ pao

where I'? is assumed to be the three-dimensional one.

First of, if T'° is to be the trivial representation then p; = po = pz = 1.
Since p;, © = 4,5,...,9 are characters of one-dimensional representations they
must obey group multiplication given by the multiplication table of the group
(Table 10). As such the following relations need to be obeyed:

pi=pa and pi=1

P2 =pr and pE=1

2: 3: d 3:1
M5 = He, Hs = Ha ana s
pg = po, pi=pr and pd=1

Given the above equation and since rows need to be orthogonal to one another
we get ug = pr = 1, us = g = exp % = w and g = pg = w?. The characters
W10, p11 and w1 can be obtained by the orthogonality of columns. Finally, the

character table is:
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[As[[e[IC[2C[°C|
I 1 1 1 1
Ttf1] 1 w | w?
T2 1 w? w
& 3| -1 0 0

5.2 Constructing the representations of the algebra D(A,)

The representation of the group algebra D(A4) can be constructed using the con-
jugacy classes of the group and the irreducible representations of the centralizers.
As a result we have the following 14 inequivalent irreducible representations of
D(A4)Z

1=]e, T, 2 =le, T, 3 =le,T?), (27)
4=|e, T3, 5='C,1%, 6=|'c,TY, 7=|'C,I?), 8=|'C,I?%),

(28)
9=2C,T%, 10=%C,TY), 11=*C,T?), (29)
12=3C,T%, 13=C, 1Y), 14=3CT1? (30)

Among those, there are three one-dimensional (27), five three-dimensional (28)
and six four-dimensional ones (29)-(30) that satisfy 3124532 +6-42 = 144 =
122 = |D(Ay)|, where |D(A4)| = |A4]? is the order of the algebra.

The state 1 = |e,T'%) corresponds to the trivial sector. The purely mag-
netic flux sectors are |1C,T?), |2C,T%) and [3C,T°). The purely electric sectors
are the pairs of trivial magnetic flux and a non-trivial representation, which
are |e,I't), |e,T'2?) and |e,I'3). The remaining sectors, being combinations of
non-trivial fluxes and non-trivial representation of the centralizers, are dyonic
sectors, that is to say they correspond to non-trivial magnetic fluxes and electric
charges.

5.3 The S-matrix

In order to calculate the fusion rules of the anyon model we must first compute
the modular S-matrix. This S-matrix is one of two generators of the modular
group, the other being the T-matrix which contains the spin factors of the
anyons in the model. For two given representations of D(A4), |*C,T®) and
|BC,T?) it takes the form [6]

M=o X Gttt ety 6D
Ag7€ ACf7 nge BC
[Agz'»ng]=€
where A, B € {0,1,2,3}, T € {TI',I,T'} and a = a(A), b = b(B). The function
X5 signifies the complex conjugate of the character of the argument for the
representation with label a. It is important to note that although the characters
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have only one label they also depend on the conjugacy class A, since a is a
function of A. The group elements “z; are representatives of the equivalence
classes of the quotient group A,/ AN, with 4N being the centralizer of the first
element of the conjugacy class 4C.

The representatives are chosen as follows

1. Set an arbitrary ordering of the elements in each conjugacy class, 4C =
{Aglv A927 .. }

2. For a certain conjugacy class AC' calculate the centralizer of the first ele-
ment N(4g;).

3. Determine the quotient group A4/N(“g;) = A4/AN.

4. Finally, compute the representatives 4z; through the relation

Agi =2zt (32)
where it is always assumed that 4z; = e.

We demonstrate with the conjugacy class of the double transpositions:
'O ={lg1 = (12)(34), 'g2 = (13)(24), 'g3 = (14)(23)}
The centralizer of the first element 'g;, is the conjugacy class itself:
IN = 'N['g; = (12)(34) = C

The equivalence classes of the quotient group are:

{{"NV},{(123)" N}, {(124) N} = {{*C}, {20}, PChy
Through (32) we find the representatives:

{tz) = e, wy = (124), 23 = (123)}

Similarly, for

20 ={2g; = (123),%go = (134), %93 = (142),%g4 = (243)}
3C = Pg1 = (124),3g2 = (132),3g3 = (143),3g4 = (234)}

we find:

{221 = e,%xy = (234), %3 = (143), %4 = (124)}
{321 = e,3xy = (134),3x3 = (243), 34 = (123)}

Obviously, for the trivial conjugacy class °C' = {%g; = e}, there is only one

representative %z, = e.

21



To summarize, the elements of the four conjugacy classes are ordered as
follows

0C ={%; =e}
0= {g1 = (12)(34), g2 = (13)(24), ' g3 = (14)(23)}
20 = {29, = (123),2%gy = (134),%g5 = (
30 = {Pg1 = (124),%g2 = (132),%g3 = (

and the representatives are collected in the table 9. Using these and the values
of all the characters of the representations of the centralizers, the S-matrix can
now, through (31), be determined.

5.3.1 Computing the S-matrix

Before we begin the express calculations, it is worth noting which of the group
elements commute, since only those are summed in (31). Other than the identity
element, that obviously commutes with any element of the group, the elements
of the conjugacy class 'C' commute amongst themselves whereas each element
in 2C or 3C commutes only with itself and its inverse in the other conjugacy
class.

Starting off, for an initial state |°C,T'*) and any final state, the elements of
the S-matrix that connect them are

1 * * -
25525 > xilePgiexi(PaytePay) (33)
Bg,eBC
1 * *
:EXb(e) Z Xa(ng> VBvavb(B) (34)
Bg,eBC

since °C' = {e}. In this case B =0,1,2,3, a = 0,1,2,3 and [b(0) =0,1,2,3 ,
b(1) =0,1,2,3, b(2) =0,1,2, b(3) = 0,1,2]. Depending on the combination
of indices (B, b) we have two possible values of x} (e):

wo-{ 1 e

Summing over the characters of the representations °I" for all Bg; € BC we
get the S-matrix elements for [°C, %) — |BC,T?), TP e {I'?, T, T} shown in
Table 2 below:

Moving on, for an initial state |1C, f‘“) the S-matrix can have non-zero ele-
ments only for final states with indices B=0,1 since no element of 'C' commutes
with any element of 2C' or 3C. For final states |°C,T?) the S-matrix elements
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(SP[1 ]2 ]3[4[5]6]7[8[9]10]11]12[13]14]
L1 [1]1[3]3[3[3[3[4]4[4]4]4]4
2 1 1 1 31313 ]3] 3 4wy 4w? 4 dw | 4w | 4w
3 1 1 1 3131333 |4w|dw| dw| 4w? 4? 402
4[3[3[3]9]-3][3[3[3[0[]0o]o]Jo0o]o0]O

Table 2: The modular S-matrix of D(A4) for initial states |°C,T%) up to an

overall factor 1—12

are

1 * *
oSy 12 Z xa(e)xs (19:)
lg;elC
1 * *
=5 Xa(e) > xi('g) (35)
lg,€elC
1 *
=5 > xi('g) Ya=01,23
lg;elC

since x4 (e) = 1 for any pair of indices (A, a) # (0,3). For final states |*C,T?)
the elements are of the form:

=g S e () eitey)
lgi€lC, gjetC
= 530 (12)(34)x3(12)(34)) + x:((14)(28))x3 (13) (24) +
Xa((13)(24)) x5 (14)(28))

The results of both (35) and (36) are collected in Table 3.

(36)

(ISP 1] 2]3[4[5]6]7[8[9]10]11[12[13]14]
5 [3][3[3]-3 B3[3][3][]0J0[0oJoJoTJoO
6 [3[3[3[3][3[9]3[3]oJoJo]o]Jo]oO
T3]3 [3[3[3[3]3[9]0[0[0]0]O0]oO
8 33 [3[3][3[3]9][3[0[]0o[0o[]0o]o0]oO

Table 3: The modular S-matrix of D(A4) for initial states [*C,T%) up to an

overall factor 1—12 .

In the case where the initial state is one of {|*C, %)}, the S-matrix elements
will be zero for a final state in the set {|*C,I'%)} since the elements of these
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conjugacy classes do not commute. For a final state |°C,T)* the S-matrix is

1 * *
S =15 > Xalexi ()
2g;€2C (37)

1 * * * *
= 75 X6 (123) + 2, (134) + x5 (142) + x;, (243)]

given that y.(e) = 1V (A4,a) # (0,3). For a final state among {|?, C,T?)} the
S-matrix elements are

1 _ -
Si=15 D xalCer )% (e ) i)
2g:€2C, 2g;€2C

:% Yo (G NG (Co )% (38)
2g,€2C, 2g;€2C
= AN ((123)x; (123))

since 2gj =3, 2gi5§, as within the conjugacy class 2C, elements commute only
with themselves. Finally, for a final state [3C, f‘b> the elements of the S-matrix
take the form

1 w2 — w3 —
Si=13 2 Xa(Cer )Y xg (Cry ) er)
2gi€2C, 3g;€2C (39)

[xa ((132))x5 ((142))]

—4
12
where the only element 3g; € 3C that commutes with 2g; € 2C' is its inverse.
These results are collected in Table 4.

(2Pl 12 ]3]4]5]6][7[8][9]10][11][12[13]14]
9 4 [ 40 dw| 0Ol O]O0O]O0] 0] 440 dw]| 4 |47 4w
0[] 4474 [0 [0 000 [4w]dw| 4 [dw] 4 |47
114 44| 0]0]0]0]0|4dw]| 4[4 4w? dw] 4

Table 4: The modular S-matrix of D(A4) for initial states [2C,T%) up to an

overall factor 1—12 .

Similarly to [2C,T?), for an initial state [3C,T?), depending on the final
state, we have the elements of the S-matrix

1 * *
251? 12 E Xa(e)Xb(Sgi)
3g,€30 (40)

1 * * * *
=13 X6 (124) + x5 (132) + X}, (143) + x5 (234)]
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Si=m 2 xalCeretexi (Coy ) Y)

— A (132))x (142))

. 1 _ _
2S; =7 > Xa(Cr )25 %) xg (Cey ) %0i%)
3g,€3C, 3g;€3C

:T Z XZ(( ) gi Iz)Xb(( )39131'1)

8g,€3C, 3g;€3C

(42)

:%4%((124»%((124))1

that are collected in the Table 5.

(SP[1 ]2 ]3[4[5]6]7[8[9]10]11]12[13]14]
R4 [4w[4J0J0J0J0]0][4 [4w]4] 4[] 4u?
B4 [4w[4? 0] 0] 0] 0] 0|40y 4 [4dw]|dw]| 4 4
4[4 [4w[4 [ 00000 [4w]| 4wy 4 |47 4 |4w

Table 5: The modular S-matrix of D(A4) for initial states [2C,T'?) up to an
overall factor

Combining all the previous results the whole S-matrix can be constructed
(Table 6).

5.4 Determining the Fusion Rules

Now that we have evaluated the modular S-matrix of D(A4), we can input it in
the Verlinde formula [9] to determine the fusion rules of the model:
ACBCe c 2821y STlE ()]
NabgCC Nﬁg = Z 4= 8;5 : (43)
D,d

Specifically, since the conjugacy classes °C' and 'C' have three representations
and the conjugacy classes 2C and 3C have two, the sums take the form:

NABe _ ZS: { [2S9] [5;92]0[5 (S*)gl n [2‘831][55&]1[9 (S*)al }
’ d=0 OSd OSd
2 A B * A B *
+Z{ 253l ng[ (573 , lasdl Sgn <S>1} ()

d=0
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(St J2 3 J4]5]6 [7 [8 ]9 [10[11][12[13]14]
11 J1 1 [3 33 3 3 ]4 147474 474
2 1 1 1 3 3 3 3 3 4w? 4w 40? dw | dw | dw
3 1 1 1 3 3 3 3 3 dw | 4w | dw | 40 4w? 40?2
43 [3 [3 9 [3][3[3[-3]0]0 o o o o
503 [3 [3[-3]9 [3[-3[-3]0 100 0o ][]0 o0
6 (3 [3 |3 [3[-3]9 [-3[-3]0 0 0o 0o o o0
703 3 |3 [-3[-3][3[-3[]9 0o 0o 0o 0o ][0 O
8 [[3 [3 |3 [3[-3[3]9 [-3]0 [0 0o 0o o O
9 4 407 4w | 0 0 0 0 0 4 407 4w | 4 407 4w
10 || 4 407 4w | 0 0 0 0 0 dw? 4w | 4 4w | 4 402
114 (40 4w|0 [0 [0 [0 [0 [dw] 4 | 4w? 40? 4w | 4
1214 4wl 40?0 [0 [0 [0 [0 [4 [4dw] 4wy 4 | 4w ]| 4w?
13 || 4 dw | 40?0 0 0 0 0 4w? 4 dw | 4w | 40? 4
4[4 4wl 4?20 [0 O [0 [0 [dw]| 4wy 4 |40 4 | 4w

Table 6: The modular S-matrix of D(A4) up to an overall factor -5

12°

In order to better present the fusion rules we redefine the representations of

D(A,) as follows:
1= le,T%) = ®
o, =101, a=1,2

U = |9C, T3) fori=0
T PO T fori=1,2,3,4

AF=PC T, 1=0,1,2
Ay =PoTh, 1=0,1,2

(47)

(48)
(49)

First of all, the fusion of any anyon in the model with the trivial 1, leaves
the anyon unchanged. Also, the fusion of anyons as a process is symmetric, that

is to say a x b = b x a, which leads to N®* = N2® for the multiplicities.
That being said, the fusion rules for at least one initial anyon ®, are

(I)aX(I)a:q)b, CbaX(I)b:].
¢, x A? = A?a+l)mod3 Py x Wy =Wy

where a,b=1,2 a#b, | =0,1,2 and 0 € {+,—}.
For at least one initial anyon ¥; they are

\I!ix\Ili:1+Z<I>a+2\I/i
U x Uy = Y Wy

k#i,j
U x A7 = A7,
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where 4,5,k =0,1,2,3,4, i #j, a=1,2, Iim=0,1,2and o € {4, —}.
The fusion rules for the A7 are

Al+ x A;’_L = ZAT_I + A(l+m)mod3 (55)
A; x A;L = Z A:lr + AZ;er)modS (56)
4
A X A = (s mymoas + Y, Vs (57)
1=0

where [, m,n =0,1,2 and &5 = 1.

It is worth noting that, for the pure electric states, the fusion process does
correspond to a tensor product of the two representations since there is no flux
metamorphosis involved. As such, the fusion rules for the pure electric states
can be obtained by reducing the tensor product into a direct sum of irreducible
representations.

Also, we see that fusion, being a decomposition of products of representation,
can only generate representations of dimension equal or lower than the maximum
dimension of the representations being fused.

5.4.1 Anyon model dimension

Having calculated all the different multiplicities, we can now calculate the the
quantum dimensions of the anyons in the model through (14) by taking a = b =
1,2,...,14

dy =1 (58)
d%zdgcmddg:dg — dy=d3=1 (59)
di=dy +dy+dz+2dy = di—2d,—3=0 = (60)
dy =3 =ds =dg=d; =dg
8
d2=d1—|—2di — d9g =4 =dig = di1 (61)
i=4
diy =2dg + dio + di1 => dio =4 =di3=d4 (62)

since d; € RT. Given the individual quantum dimensions the dimension of the
anyon model is determined through (15) to be:

(63)

5.5 The T-matrix

The modular T-matrix is the second generator of the modular group. It is a
diagonal matrix with the spin factors of the different anyons in the model on
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the diagonal:
T;?,B = 6‘4"36@,17 exp (2718 (4,q)) (64)

This expression can be simplified by noting the following. The element 4¢g, € 4C
commutes by definition with all elements in its centralizer 4N and as such in
the representation a its proportional to the unit matrix

a(Agl) = exp (27i5(4,a)) Ld, xd, (65)

where d, is the dimension of the representation a. Since anyons in the same
superselection sector (AC,a) are described by the same spin factor, that is to
say they gain the same phase under a counter-clockwise rotation of 2w, (65)
describes all of them. Given the above, the T-matrix can take the form:

1 1
T;ZB = (5A’B5a’bd—t7‘(a(‘4g1)) = 6A’B(5a7bd—xa(Agl) (66)

Using the character tables in section 6.1 the matrix can now be easily cal-
culated and the results are collected in Table 7.

| |
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(=] R Kol Hen] fen] o) Hen] Hen] Hen) Hen] Nen] Ren] N en) Hen)
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Table 7: The modular T-matrix of D(Ay).

5.5.1 Charge conjugation operator

The S and T matrices, being generators of the modular group, satisfy the fol-
lowing relations:

(ST)% = S2 (67)
St=1 (68)
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They are also unitary and symmetric:

S* =gt St=9 (69)
T*=7"" T'=T (70)
Through the relation (67), the matrix C that represents the charge conjugation

operator can be defined as:
C=(ST) (71)

Charge conjugation gives the anti-particle C(AC,a) = (AC, @) of each particle
(AC,a). The matrix C is given in Table 8. The following particle - anti-particle

[ c[1]2]3]4]5[6]7[8]9]10]11[12]13]14 |
IL[t]oJoJoJoJoJoJoJoJoJo[oJoT]oO
2 Jo[o[1]oJofofoJoJo[o[oJo]o0]oO
3[fof1JoJofofofJoJoJoJo[oJo]o0]oO
4 foJoJo]t]of[ofJoJoJoJo[oJo]o0o]oO
5 JofofJoJoJ1]of[oJoJo[o[oJo 0O
6 [oJoJoJoJo[1JoJoJo[o[oJo]o0]oO
7JofofJoJoJofo[1JoJo[o[oJo 0o
g [[oJoJoJoJof[ofJoJ1]oJo[oJo]o0]o0O
9 [[oJoJoJoJof[ofJoJoJo[o[o 1|00
10jJojofofoJoJofofJoJoJoJo[o]o]1
imjjofofofJoJoJofofoJoJoJo[o[1]oO
2]ofofofJoJoJofofof1Jo]Jo[o0o]o0o]oO
BJojojoJoJoJo]ofoJoJo][1[O0]O0]O
jJoJofofJoJoJoJofJoJoJ1T]JofJoJo]oO

Table 8: The charge conjugation matrix of D(Ay).

relations can be read off the matrix C immediately

“c,1) = (°c,2) (72)
c,0) = (3C,0) (73)
e 1) =(c,) (74)
C.2) = (*C,2) (75)

and in the other cases each particle is its own anti-particle.

6 F-matrix, R-matrix, quantum gates
In this final section, we will demonstrate the calculation of the R and F matrices,

for a specific subset of particles of the D(A4) theory whose fusion rules are closed,
meaning that no possible fusion of those can result in one of the other particles
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of the theory. Finally, we will attempt to construct specific quantum gates
through those matrices and see whether or not they are sufficient to support
universal quantum computation.

6.1 Generalized Pentagon and Hexagon equations

Now that we have all the fusion rules of the model in our hands we can determine,
up to a choice of gauge, all the possible R and F matrices. One way to do so is
by solving all the allowed Pentagon and Hexagon equations. Since in our model
we have a set of fusion rules (52) with multiplicities N&f’ﬂl, = 2, we will have
to construct the Pentagon and Hexagon equations for any multiplicity NS, € N
which we will call the generalized Pentagon and Hexagon equations.

b

1 2 3 4 1 2 3 4
ﬂ IL' ﬂ
O, =d

>
iy

Figure 11: The generalized Pentagon equation diagrammatically for any N,.
The label 5 corresponds to some set total charge of the system whereas the
labels a,b,c,d and e take all possible allowed values.

Let us start off with the generalized Pentagon equation. The basis shown
furthest to the left in Figure 11 is {|left;a,b, u,v,7)}, where anyons 1 and 2
fuse first in the p-th distinguishable way to give a, which is fused with anyon
3 giving anyon b in the v-th distinguishable way and finally b is fused with 4
giving total charge 5 in the 7-th distinguishable way. Similarly, the right most
basis in the figure is {|right; ¢, d, x, N, 7"")}, where in this case anyons labeled 3
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and 4 fuse in the k-th distinguishable way to give ¢, which is fused with anyon
2 giving d in the \'-th distinguishable way and then anyons d and 1 are fused in
the 7”-th distinguishable way giving the total charge 5 of the system. These two
bases are connected by two F-moves across the top and three F-moves across
the bottom giving in each case accordingly

leftiabpv.m)y = Y (Fly)ier (Fh)ir [right;e,d, s, X, ") (76)

! "
c,d,k A\, T T

and

‘left; a) b? M? V? T> =
Z (Flbzrs)egy/ (F15e4)d”” (F2d34)zg§\/ [right; c,d, k, N, 7") . (77)

apv bv'r
e,d,c,E,\,
kTN
As we have discussed in section 4.3.4 these set of moves need to correspond to
the same process and as such by equating (76) and (77) we get

5 T’ 5 \dir"” b ! 5 \dAT" d Y
Z(Fa34)1§57 (F12c)ap,7" = Z (FIQS)ZiVV (Fle4)b1/’r (F234)Z§/\ (78)
T/ e, &, v\
since the basis elements of a set are orthogonal amongst themselves. This is the
Generalized Pentagon equation (GPE).

In a similar manner the generalized Hexagon equation can also be calculated.
Once again, we have the left most basis in Figure 12 {|left;a.u,v)}, where

2 R2 ; 1
) * )

Figure 12: The generalized Pentagon equation diagrammatically for any INS,.
The label 5 corresponds to some set total charge of the system whereas the
labels a,b,c,d and e take all possible allowed values.
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anyons labeled 1 and 2 fuse to a in the p-th distinguishable way and then it
is fused with 3 in the v-th distinguishable way giving the total charge 4. The
right most basis in the figure is {|right;c, ', """}, where anyons 3 and 1 fuse to
¢ in the x’-th distinguishable way and then it is fused with anyon 2 in the v"”-th
distinguishable way giving the total charge 4 of the system. These two bases
are connected by two F-moves and an R-move across the top and two R-moves
and an F-move across the bottom, giving

leftia, vy = Y (Fs)ons (RE)L (Pl Irightse, s’ v™)  (79)

!
b,c,k,K',
’ 17 117

v,

and

leftiamv) = Y (R (Fha)en " (RSs)m |right; e,/ ,v™)  (80)

C,M/,H”7f€/,l/'//
accordingly. By equating the two expressions (79) and (80) for the same reason
as before we get

Y (R (Bl (Rig)in = Y (Fss)an (Biy)l (Fiys)iyn (81)

! 1" ! 12
W bk, v

which is the Generalized Hezagon equation (GHE).

At this point, it is worthwhile to mention some of the characteristics of these
two consistency conditions. First off, each arrangement of starting anyons and
total charge (which in figures 9 and 10 we have labeled with numbers) both in
different particles used and permutations of the same particles, defines a dif-
ferent system of equations, for each consistency condition, compromised by a
number of equations equal the square of the dimension of the topological Hilbert
space (dim?(M3,3,) for the GPE and dim?(M{,,) for the GHE) since we have
one equation for each combination of basis elements from the left and right most
bases. These equations are constructed by choosing different allowed combi-
nations of the non-summed over labels in (78) and (81) for the GPE and GHE
accordingly (labels {c,d, b, a, k, \,v, u, 7, 7'} in the GPE and {a, ¢, k', p,v, "'}
in the GHE).

Secondly, as the GPE involves many different F-matrices, the system of
equations that it generates is in general indefinite and in order for the F-matrices
to be determined, all equations for every allowed combination and permutation
of the numbered labels (1,2,3,4 and 5) will need to be combined to construct
a solvable system of equations. Similarly, for the GHE different R-matrices
appear in a single generated system of equations but since only three initial
anyons are used to determine this consistency condition the only F-matrices
that are involved are Fyj5, Fasy and Fih; which is a detail that we will make
use of later on.

Based on the above, it is straightforward to see that as the number of differ-
ent anyons in our model or their dimension increases, the number of equations
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that are generated by the GPE and GHE and need to be solved greatly in-
creases, which is why this method of determining the R and F matrices of the
model is usually only applied for the two simplest non-abelian models, those
being the Fibonnaci and Ising anyon models.

In the case of our D(Ay) theory, the number non-trivial systems of equations
that would need to be solved together only for the GPE are between 1.001 and
24.024 depending on how many arrangements of the different labels are allowed
by the fusion rules of our model.

6.2 Determining the F and R matrices for a subset of the
model

As the number of equations needed to be solved is great and since we are ulti-
mately interested in simulating a quantum computer we will limit ourselves to
a certain process involving the subset of the spectrum of the theory, containing
the representations 1, ®1, @5 and one of the ¥;, whose fusion is closed. As can
be seen in fusion rules (50) , (51) and (52) by fusing multiple ¥; anyons together
the result can only ever be the vacuum 1, the abelian anyons ®; and ®5 or ¥,
itself since the abelian anyons are absorbed into ¥; and no other non-abelian
anyons can be created. Even by limiting ourselves to these particles, in order
to calculate the F-matrices involved we would have to solve the GPE for every
allowed arrangement of five particles in the subset which would lead to a system
with a number of equations of order 102. In order to avoid solving these, we
will deduce the R-matrices involved, by taking advantage of the fact that the
only non-abelian fusion in the subset, is of two same particles ¥;. Afterwards,
we will compute the needed F-matrices through the GHE.

6.2.1 Hilbert space dimension

As a topological quantum computation is performed by creating pairs of anyons -
anti-anyons out of the vacuum, we seek to fuse enough anyons with a total charge
of 1 whose topological Hilbert space dimension is enough to encode qubits. Out
of the particles in the subset, the abelian anyons ®; and ®5 which form a pair
of particle - anti-particle cannot be used to encode a qubit since no matter how
many abelian anyons are fused the dimension of the space is equal to one as
the result is deterministic. That leaves the non-abelian anyon ¥;, which forms
a particle - anti-particle pair with itself. For a system of ¥; anyons we have the
following dimensions of the Hilbert spaces:

dim(My,y,) = Ny,g, =1 (82)

dim(MYy g, ¢,) = Z N3 o Nig, =Ngig Nyg, =2-1=2 (83)

i

J
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; 1 _ § Ji J2 1 _ E J1 v, 1
dlm(M‘l/l‘Pl\I’z‘lh) - N‘Pi‘l’ile‘l’iNb‘l’i - N\IH‘I’INM:I’IN‘IH‘M
J1,J2 Ji
et w; 1 D, v, 1
=Ny, v, Ny, No,w, + Nojw,No, v, N, v, (84)
do v, 1 v, v, 1
+ Ny, Nogo, No,w, + Nojw, No/v, N, v,

=1+1+4+142-2=7

; 1 _ J1 J2 J3 1
dzm(Mwiwi\pi\piwi)— E N\Ili\I/,ilellliNjZ\I/iNjg\I’i

J1,J2,73
_ J1 J2 v, 1
- Z N‘I’iq’i leq"i Nj2\1"i N\II’LlI/L
J1.J2
_ 1 v, v, (o3 v, v,
—Z [N\m\piNllpiN\I/i\vi + Ngw,Now,Nu)w, (85)
J2
do v, v, v, J2 v, 1

=6+2 (N&/\I/Ngﬁ +Nyly Ny,
+ N Noty, + Nita Ny, ) =6+2:7=20

In order to encode a single qubit we need a system with two states that
span a 2D subspace of a certain energy, which in our case of anyonic systems,
corresponds to equal total charge. As such, we see that we can encode a qubit
onto a system with three ¥; anyons with trivial total charge but we require at
least five W, with trivial total charge in order to encode three qubits.

6.2.2 Encoding a single qubit

As we showed above, a single qubit can be encoded in the fusion states of
a system of three ¥, particles with trivial total charge. The standard basis
for this process is {|(¥;¥;)¥; — 1;¥;, u)} where the two basis elements |0) =
[(T,9,)¥; — 1;0,;,1) and |1) = [(¥;P,)P; — 1;;,2) correspond to the two
distinguishable ways the first two W; particles can fuse to another W;.

In order to construct quantum gates we will need the matrices Ril%, Ry,
and F‘Ilfl\h\h By making use of the GHE for anyons 1,2,3 = ¥, and 4 = 1 we
get, from (81), the system

Y (Ree )i (Fal Ry )iw = Y (FN) (Ry)y ()i (86)

! 1 ’ 17
W by, v’ v

where we have defined Fy, g . = F' for simplicity’s sake. Given that the
only fusion process that can happen in more than one distinguishable way is
U, x U; = 2V, , the labels v, v/, v, """ can only take one value v = v/ =" =
V" = 1. Also the labels a, b, c need to be ¥; in order for the total charge to be
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Figure 13: The standard basis diagrammatically for three ¥; anyons fusing to
1. The different basis elements correspond to the two distinguishable ways the
first two W, particles fuse to ¥,

trivial. These simplify (86) to

D Ry ) (FYE (Ryty )i = (FYE(RY, ¢, ) (FYE (87)

that gives:
(Ryig L (FYL(RY )+ (Rif@ 2(FH3(Ry'y)f
+ Ry LFDI(RY G )S <R$@>2< D3(Ryy)s
= (FN)L(RY, ) (FY)Y + (FY)2(RY, o, ) (F)s (88)

We see that knowing the matrices Ry, y and Rgf‘lw suffices to determine

the matrix F&,I"q,q, The action of the braid operator acting on particle - anti-
particle pairs with trivial total charge is straightforward and it is

Rl = W =44 (89)

since creating a pair, exchanging and then annihilating them is equivalent to
rotating the particle a by —27. By consulting the T-matrix in section 6.5 which
contains the phase values, we can immediately read off the following:

Riyyu, = Ryyw, = Ryyu, =1 Ry,g, = Ry, =1 (90)

Computing the 2 x 2 R\%i\lu matrix is slightly more convoluted since the
total charge is non-trivial. We will do so by using arguments that only apply
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L] Wi

Wi

Figure 14: The Generalized Hexagon equation for the process ¥, ¥, ¥; — 1.

in the special case where the two particles braided are the same but which
are not quite enough to unambiguously determine the solution. As we have
talked about in section 4.3.1, the action of the braid operator on the basis state
|ba — ¢; p) in Mg, produces a state |ab — ¢; ) p in M¢,, that is in general a
linear superposition of the basis elements {|ab — ¢; )} of that space. Suppose
now, we braid the anyons a and b twice by applying two consecutive braid
operators which together are called the monodromy operator R?, then as the
particles are returned to their initial setup the final state must be the initial
state multiplied by a phase. That phase can be shown to be [5]:

C o—i0a—i0s oL
( ab) - e—ibe ( )
As such we have the following
o—10a—i0s
— = lab = c; ) = |ab — ¢; ) po
_ c \u'! Lo
_;( ab)p, |ba—>c,,u >R (92)
= D (Rl (Rig)lun lab = 5 u0')

wp!
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and by taking the inner product

—19 —10y

W(ab%c viab — ¢ p) = Z( bl (Rba) ,,(ab—>c viab — ¢; ')
W

710 —10y
A _7553 o, = Z(R bl (Rba) 0

&
“w

1
o—i0a—i0y

< Wéz = Z(R(ib)ﬁ (nga);l:”
IJ‘H
where we have used the orthogonality relation of the fusion basis:
{ab— ¢;vlab — c; p) = 8¢ oy

Supposing u, v, 1’ = 1,2 we get the system
= e (94)

which for a = b = ¢ = ¥; becomes

Ry
Ro1

(
(

(R11)* + (R12)(Ra1) = exp(—iby,)
( )(Ri2) + (RQQ) = exp(fw‘l’i) (95)
J(Ra1) + (Ro2)(Ra1) =
)(Ri2) + (Ri12)(Ra2) =

where we have defined (R\%l%)i = Ry,; to simplify the symbolism.
Taking ¥y as the anyon of choice, the system (95) becomes

(96)

since exp(—ifly,) = T} = 1, as seen in table 7. These equations together with
the condition that the R-matrix needs to be unitary, accept the solutions

1 0 -1 0 0 1
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up to a total phase. The trivial solution also gives a trivial F\;,P:\I,iq,i—matrix
whereas the other to solutions lead to the same non-trivial F-matrix. Out of
these three possible solutions we accept the one signified as R’, since it corre-
sponds to a two dimensional representation of the Braid group on three strands

[10] being of the form
-z 0
0 1

with z # —1,0 and as we know the B-matrices form irreducible representations
of the Braid group [6].

Having both of our needed R-matrices, R}I,Q\I,2 and R%;PZ, we can now go
ahead and input them in (88) for ¥; = U5 which gives the system of equations

Py = (F11)* + FiaFy
—F12 = Fi1F12 + FiaFa
—F = Fo1F11 + Foo by

Fiy = For1Fip + (F22)2

(98)

where we have again defined Fj; = (F\},I’;\I,Z\I,z)?C The solution to the system is

the F-matrix:
V3

2
F\I\EI;‘IJQ\PQ = (99)

1
2

S

(SIS

2

We can also construct the B-matrix that braids the second and third Wo
anyons, which as they are not in the same fusion channel in the standard basis
will not be in Block-diagonal form:

1 V3

BY? —pipr=| ° ° (100)
‘112\112\1/2 \/g 1
2 T2

This matrix as expected corresponds to the second two-dimensional representa-
tion of the braid group on three strands [10] since it is of the form

1
z+1 f

Z2

g Tzl

forz:landfg:%:%

Obviously, these two matrices, R\%Z‘I'z and B§§,1,2\I,2, do not span the whole
SU(2) and as such by using only ¥y anyons, or any ¥; anyons for that mat-
ter, universal quantum computation cannot be achieved. In truth, even if the
whole spectrum of particles in the theory were to be used, it would still not be
enough as the non-abelian simple group of minimal order for universal classical
computation is the alternating group on five elements A; [5].
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7 Conclusion

Putting everything together, we see that although the Quantum Double anyon
model for the alternating group on four elements D(Ay4) is described by an
anyonic particle spectrum on a fourteen dimensional Hilbert space, it is still
lacking in computational power. Given that the higher dimensional superselec-
tion sectors ¥; and Ali have dimension three (¥;) or five (Ali) accordingly, the
dimension grows much faster than 2" for every particle added.

Moreover, were we to compare this model with two of the most established
ones, the Fibonacci and Ising anyon models, we see that it lacks the computa-
tional power of the Fibonacci model while being much more complex than both
of them, as thousands of calculations are required in order to compute all of
the F and R matrices either through the Pentagon and Hexagon equations or
straight from the action of the algebra representations on the anyon states [6].

Finally, it is unlikely that in the near future anyons in the D(A4) theory
will be experimentally realized, as that has yet to be accomplished even for the
seemingly much simpler Fibonacci anyons. The full complexity and the power
for universal quantum computation presents an interesting set of problems for
future research.
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A Tables

Representatives
Ir] — €
Ty =e,toy = (124), 123 = (123
T = e, a9 = (234), 223 = (143), %74 = (124)
1 = e,3x9 = (134), 325 = (243), 374 = (123)

Table 9: The representatives of the equivalence classes of the quotient groups
144/1447144/1]\77 A4/2N and A4/3N.

[ A e (124) (132) | (134) | (142) | (143) (234) [ (12)(34) | (13)(24) [ (14)(23) |
e e (124) (132) (134) (142) (143) (234) (12)(34) | (13)(24) | (14)(23)
(123) (123) (13)(24) e (234) (143) | (14)(23) | (12)(34) (134) (243) (142)
(124) (124) (142) (134) | (13)(24) © (243) (123) (143) (132) (234)
(132) (132) (243) (123) | (12)(34) | (14)(23) | (142) (134) (234) (124) (143)
(134) (134) (12)(34) | (14)(23) | (143) (234) c (13)(24) (123) (142) (243)
(142) (142) o (13)(24) | (132) (124) [ (12)(34) | (14)(23) (243) (134) (123)
(143) (143) (123) (243) e (13)(24) | (134) (142) (124) (234) (132)
(234) (234) (134) (142) | (14)(23) | (12)(34) | (123) (243) (132) (143) (124)
(243) (243) (14)(23) | 12)(34) | (124) (132) | (13)(24) e (142) (123) (134)
(12)(34) || (12)(34) (234) (143) (142) (134) (132) (124) e (14)(23) | (13)(24)
(13)(24) || (13)(24) (143) (234) (243) (123) (124) (132) (14)(23) e (12)(34)
(14)(23) || (14)(23) (132) (124) (123) (243) (234) (143) (13)(24) | (12)(34) e

Table 10: The multiplication table of the group A4 using cyclic notation.
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