
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

BSc THESIS

Deep Learning for cryptocurrency assets: Employing
series forecasting models for price prediction and

uncertainty quantification

Dimitrios A. Gangas

Supervisor: Ioannis Emiris, Professor

ATHENS

August 2020

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Βαθιά μάθηση για κρυπτονομίσματα: Χρησιμοποιώντας
μοντέλα πρόβλεψης σειρών για εκτίμηση τιμών και

ποσοτικοποίηση αβεβαιότητας

Δημήτριος A. Γάγγας

Επιβλέπων: Ιωάννης Εμίρης, Καθηγητής

ΑΘΗΝΑ

Αύγουστος 2020

BSc THESIS

Deep Learning for cryptocurrency assets: Employing series forecasting models for price
prediction and uncertainty quantification

Dimitrios A. Gangas
S.N.: 1115201400024

SUPERVISOR: Ioannis Emiris, Professor

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Βαθιά μάθηση για κρυπτονομίσματα: Χρησιμοποιώντας μοντέλα πρόβλεψης σειρών για
εκτίμηση τιμών και ποσοτικοποίηση αβεβαιότητας

Δημήτριος A. Γάγγας
Α.Μ.: 1115201400024

ΕΠΙΒΛΕΠΩΝ: Ιωάννης Εμίρης, Καθηγητής

ABSTRACT

Price prediction is one of the main challenges of quantitative finance. Within the realm of
time series, cryptocurrencies are some of the most volatile and speculative, which makes
the task of predicting them evenmore troublesome. This thesis presents a series of Neural
Networks to provide a deep machine learning solution to the price prediction problem.
Despite the difficulties, this research is concerned with two separate applications. The first
focuses on predicting the next day’s Opening, High, Low and Closing prices for Bitcoin
and Litecoin; whilst the second one estimates prediction intervals for Bitcoin’s Closing
price. For the first application, a wide range of networks were tested and among them the
one that gave the best results overall, proved to be a hyperparameter Bayesian optimized
Long Short TermMemory (LSTM) network. For the second task, an approximate Bayesian
Neural Network was created to provide an uncertainty estimation for Bitcoin. Uncertainty
in this case is represented using prediction intervals, estimating the range within which
future outcomes will fall. The research focuses specifically on Bitcoin for both tasks and
Litecoin for the first, but could easily be extended for any other cryptocurrency or stocks
using the methodologies that are presented.

SUBJECT AREA: Machine Learning

KEYWORDS: Deep Learning, Neural Networks, Bayesian Neural Networks, LSTM,
Bayesian optimization, Cryptocurrencies

ΠΕΡΙΛΗΨΗ

Ηπρόβλεψη τιμής θεωρείται μια από τις μεγαλύτερες προκλήσεις στον κλάδο της χρηματο-
οικονομικής και ποσοτικής ανάλυσης. Στο πλαίσιο των χρονοσειρών, τα κρυπτονομίσματα
είναι από τα πλέον πιο ασταθή και ριψοκίνδυνα, γεγονός που καθιστά το έργο της πρό-
βλεψης τους ακόμη πιο προβληματικό. Η παρούσα πτυχιακή παρουσιάζει μια σειρά από
νευρωνικά δίκτυα με σκοπό την επίλυση του προβλήματος της πρόβλεψης των τιμών τους
βασισμένη στη Βαθιά Μάθηση. Παρά τις όποιες δυσκολίες, η συγκεκριμένη έρευνα εστιά-
ζεται σε δύο ξεχωριστές εφαρμογές. Η πρώτη εφαρμογή αφορά την πρόβλεψη τόσο των
αυριανών υψηλότερων και χαμηλότερων τιμών όσο και των αυριανών τιμών με τις οποίες
ανοίγει και κλείνει το Bitcoin και το Litecoin. Ειδικότερα, σε αυτή την εφαρμογή, δοκιμά-
στηκαν μια ευρεία γκάμα από νευρωνικά δίκτυα και μεταξύ αυτών, εκείνο που έδωσε τα
καλύτερα αποτελέσματα συνολικά, αποδείχθηκε ότι είναι η αρχιτεκτονική ανατροφοδοτού-
μενου νευρωνικού δικτύου γνωστή ως LSTM, της οποίας οι υπερ-παράμετροι ρυθμίστη-
καν από τον αλγόριθμο Μπαεζιανής Βελτιστοποίησης. Η δεύτερη εφαρμογή προσπαθεί
να εκτιμήσει το διάστημα διακύμανσης της αυριανής τιμής κλεισίματος του Bitcoin. Για την
επίλυση της, δημιουργήθηκε ένα προσεγγιστικό Μπαεζιανό νευρωνικό δίκτυο με σκοπό
την παροχή εκτίμησης της αβεβαιότητας για το Bitcoin. Η αβεβαιότητα σε αυτήν την πε-
ρίπτωση προσδιορίζεται με τη χρήση διαστημάτων πρόβλεψης, εκτιμώντας το εύρος στο
οποίο θα εντοπιστούν τα μελλοντικά αποτελέσματα. Η έρευνα της παρούσας πτυχιακής,
παρόλο που επικεντρώνεται κυρίως για το Bitcoin και το Litecoin, θα μπορούσε εύκολα να
επεκταθεί για οποιαδήποτε άλλο κρυπτονόμισμα ή μετοχή χρησιμοποιώντας τις μεθοδο-
λογίες που παρουσιάζονται.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Μηχανική μάθηση

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Bαθιά μάθηση, Νευρωνικά Δίκτυα, Μπαεζιανά Νευρωνικά Δίκτυα,
LSTM, Μπαεζιανή Βελτιστοποίηση, Κρυπτονομίσματα

To my beloved parents and grandmother for their invaluable support.

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor Professor Emiris I. not only for
his guidance in selecting the subject for this thesis, but also for his immediate response
whenever I needed further advice and feedback. I would also like to thank my second su-
pervisor PhD candidate Christoforou E. for his continuous support in providing me with
advice, suggestions and invaluable sources throughout the research project.

CONTENTS

1 INTRODUCTION 14

2 Financial and Cryptocurrency Background 16
2.1 Efficient Market Hypothesis . 16
2.2 Blockchain Technology . 17

3 Deep Learning Background 18
3.1 Feed-forward Neural Networks . 18
3.2 Activation function . 19
3.3 Loss function . 21
3.4 Back-propagation algorithm . 21
3.5 Optimizer . 22
3.6 Recurrent neural networks . 23
3.7 Long Short-Term Memory network . 24
3.8 Bayesian Neural Networks . 26
3.9 Generalization methods . 27

3.9.1 Model selection . 27
3.9.2 Regularization techniques . 28

3.9.2.1 Early stopping . 29
3.9.2.2 Dropout . 29
3.9.2.3 L2-regularization . 29

3.10 Hyperparameter Optimization . 30

4 Application A: Cryptocurrency Price prediction for BTC, LTC 32
4.1 Objective . 32
4.2 Dataset . 32
4.3 Models . 34

4.3.1 LSTM . 34
4.3.2 Bayesian optimized LSTM . 35
4.3.3 LSTM-FCN . 37

4.4 Results . 38
4.4.1 Loss Plots . 38
4.4.2 Comparing ARIMA . 39
4.4.3 Evaluation metrics . 39
4.4.4 Prediction plots . 40

5 Application B: Estimating one-step Prediction Intervals 44
5.1 Objective . 44
5.2 Dataset . 44

5.2.1 Correlated assets . 44
5.2.2 Technical Indicators . 46

5.3 Bayesian Neural Network model . 47

5.4 Results . 48
5.4.1 Loss plot . 48
5.4.2 Prediction plots . 49

6 Discussion and future work 52
6.1 Conclusion . 52
6.2 Future Work . 52

ABBREVIATIONS - ACRONYMS 53

APPENDICES 53

A Models architectures 54

B Application A: Hyperparameters tried by Bayesian optimizer 57

C Application B: Top 50 Hyperparameters tried by Bayesian optimizer 58

REFERENCES 60

LIST OF FIGURES

3.1 A Multilayer perceptron with 4 input units corresponding to the input vec-
tor x = (x0, x1, x2, x3), 2 hidden layers with 4 and 3 units for each layer
respectively and 2 output units corresponding to the output vector ŷ = (ŷ1, ŷ2) 18

3.2 a simple RNN that maps an input sequence of x values to a corresponding
sequence of output o values in its folded and unfolded version for t time steps 23

3.3 Representation of an LSTM cell: Cells do have internal cell state, often
abbreviated as ”c”, and cells output is what is called a ”hidden state”, ab-
breviated as ”h” . 24

3.4 Long Short-term Memory Cell illustrating the Gates, source: Graves [1] . . 25
3.5 Left: deterministic Neural Networks have a fixed value of their paramet-

ers,as provided by classical backpropagation. Right: In Bayesian Neural
Networks each weight is assigned a distribution. 26

3.6 Typical relationship between capacity and error, source: Goodfellow et al.[2] 29
3.7 Bayesian optimization, source: Brochu et al.[3] 31

4.1 Training, validation and test sets for BTC and LTC prices in line graph form 32
4.2 Data Visualization charts with volume and moving average(3,6,9) 33
4.3 Flowchart of the Bayesian optimization algorithm at a superficial level . . . 36
4.4 Partial Dependence plots for the 50 hyperparameter configurations tried by

Bayesian optimizer . 36
4.5 Loss plots in each NN . 38
4.6 Closing Price Prediction for BTC in test set 40
4.7 Closing Price Prediction for LTC in test set 41
4.8 BTC OHLC predictions . 42
4.9 LTC OHLC predictions . 43

5.1 Cryptocurrencies Correlation Matrix . 45
5.2 Dataset features: Bitcoin Closing prices (blue), its 7 and 21-days moving

average (dashed green and red lines) and its lower and upper Bollinger
bands (light orange) . 46

5.3 Partial Dependence plots in matrix format 48
5.4 Loss plots of Bayesian optimized BNN . 49
5.5 BTC Closing price prediction intervals with +/-σ 50
5.6 BTC closing price prediction intervals with +/-1.5×σ 50
5.7 BTC Closing price prediction intervals with +/-2×σ 51

A.1 LSTM and Bayesian optimized LSTM . 54
A.2 LSTM-FCN . 55
A.3 MC-dropout BNN . 56

LIST OF TABLES

3.1 Non-linear activation functions. 20

4.1 Training, validation and test sets for application A 33
4.2 Average performance metrics in both BTC, LTC on the test set 39
4.3 Average performance metrics in OHLC prices for each BTC, LTC on the

test set . 39
4.4 MSE loss for all the OHLC of the models on the test set for BTC and LTC . 40

5.1 Training, validation and test sets for application B 44

B.1 The 50 search results tried for the LSTM by Bayesian optimizer 57

C.1 Top 50 out of 100 search results tried for the BNN by Bayesian optimizer . 58

PREFACE

This thesis is my final project as an undergraduate student in the Department of Informat-
ics and Telecommunications of the National and Kapodistrian University of Athens. This
dissertation has been my main focus during my final year. The thesis subject was a chal-
lenge for me because its content was beyond the scope of knowledge that I had attained
during my degree. The entire process opened up a completely new realm of knowledge
which has led me into the field of Deep Learning and time series analysis.

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

1. INTRODUCTION

In the wake of the 2008 financial crisis, trust in banks, financial institutions and gov-
ernments has melted away amongst the population; this is especially true for the younger,
more tech-savvy demographic. It is from this group of people that Bitcoin emerged. A
central tenet of cryptocurrencies is to avoid using banks or established financial institu-
tions to route money or accept payments. Hence, it eliminates the need for banks as
third-party guarantors of transactions, and restricts the ability of governments to interfere
or regulate payments. In 2010, one bitcoin was worth only $0.06, whereas 50 BTC would
have been enough for a coffee. At its peak in 2017, those same 50 BTC would have been
worth $850k. Was this rapid growth predictable?

Cryptocurrency and stock price forecasting in general, is one of the most important tasks
of quantitative finance. It goes without saying that profits are the guiding force behind most
investment choices. However, stock market prices and especially these newly-popped-
up virtual currencies do not behave as simply as time series do, making it much harder
to make robust and consistent predictions. The theory of cryptocurrency price prediction
has not only been a major discussion topic in Finance recently, but has also fueled in-
terest within the scientific community [4][5][6]. Cryptocurrencies have faced periodic rises
and sudden plunges during specific time periods, and therefore the cryptocurrency trading
community has a need for a standardizedmethod to accurately predict the fluctuating price
trends as much as possible. Traditional time series prediction methods include univariate
Autoregress-ive (AR), Univariate Moving Average (MA), Simple Exponential Smoothing
(SES), and Autoregressive Integrated Moving Average (ARIMA). Unfortunately, mainly
due to the lack of seasonality and their high volatility in the cryptocurrencies market, these
methods are under-performing [7]. On the contrary, Machine Learning methods seem
promising for this task. Examples of studies within the scope of Machine Learning to
predict Bitcoin prices include random forests [8], neural networks [9] and the Bayesian
neural network [10]. Deep Learning models, particularly deep feedforward neural net-
works, which have recently sparked the interest of new investors on the financial market,
have already found numerous applications in quantitative finance, such as volatility fore-
casting, financial investment problems and price prediction.

In a supervised learning scheme, in contrast to the traditional time series models such as
ARIMA and its extensions, neural networks are a useful tool for price prediction since no
strong assumption is needed for their application and consequently, they are able to catch
patterns with an important generalization power. In addition, more complex deep learning
methods such as RNNs and LSTM networks seem more appropriate for sequential data
and should yield substantially higher prediction accuracy. Indeed, many studies in the field
[9][11] have compared RNN’s and LSTM models to forecast Bitcoin pricing with traditional
multilayer perceptron (MLP) and other statistical models, and found significantly lower
mean absolute error (MAE) in LSTM prediction, supporting the aforementioned statement.
In the same manner, my supervisor has done similar research work, where he indicated
that RNNs provide the most promising results in both cryptocurrency trend classification
and regression setting [12].

D. Gangas 14

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

In the scope of this thesis, we first provide an overview of the theory behind EMH in fin-
ance and in following, the theory behind Deep Learning, RNN, LSTM and BNN models
by explaining the basic concept of neural networks, their components and architectures.
Finally, we present our two applications and their results. The purpose of the first is to
implement a series of Deep Learning models to predict the price of next day’s LTC and
BTC price in a regression setting; whereas, in the second we implement an approxim-
ate Bayesian Neural Network to provide confidence intervals for the Closing BTC price to
accompany the predictions of the first application.

D. Gangas 15

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

2. FINANCIAL AND CRYPTOCURRENCY BACKGROUND

This chapter provides an introduction to the financial aspects of the thesis. We aim to
describe the efficient market hypothesis and its implications for predicting futures’ returns.
We continue by discussing the role of Blockchain technology at its most basic level, which
is considered to be the backbone of the new virtual currencies.

2.1 Efficient Market Hypothesis

Since the purpose of this thesis can be summarized as attempting to predict tomorrow’s
asset movement using only assets’ past prices and consequently, market movements as
input, a discussion of the efficient market hypothesis (EMH) seems relevant. The EMH
has been an important concept in the theory of financial markets since its formalization by
Eugene Fama [13] and can be broken down as a set of assumptions about the predict-
ability of future market prices. It derives its name from the definition of efficient markets;
prices fully reflect all available information. The three forms of efficient market hypothesis
are the following:

• Weak Form: The weak form of the EMH states that current prices fully reflect the
information to be gained from historical prices. This implies that it is impossible
to consistently outperform the market using investment strategies that rely on past
prices, such as attempted in this thesis. The claim has been widely discussed and
has gone from being generally accepted in earlier studies [13] to being generally
dismissed and even disproven in certain settings [14][15][16].

• Semi-strong Form: The EMH in its semi-strong form loosens the restriction of re-
lying on past prices and includes all publicly available information. This form of the
hypothesis therefore infers that one can not consistently outperform themarket using
any investment strategy based on public information.

• Strong Form: In this strictest form of EMH, the available information is generalized
to include all information including insider information not known to the general pub-
lic. The semi-strong form as well as the strong form include the weak form and make
even further assumptions.

Since even the weak form has been the target of some debate, the two stronger forms
of the EMH are generally accepted as unfeasible. In support of that, with the appear-
ance of Behavioral Finance, many financial economists believe that stock prices are at
least partially predictable on the basis of historical stock price patterns, which reinvigorate
Fundamental and particularly Technical analysis as tools for price prediction.

D. Gangas 16

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

2.2 Blockchain Technology

Understanding how the blockchain works with bitcoin will allow us to see how the tech-
nology can be transferred to many other real-world use cases. Satoshi’s innovation, that
powers Bitcoin and all cryptocurrencies that came after it, is called Blockchain. A block-
chain is basically a ledger of transactions, much like a bank maintains, but copies of
that ledger are distributed among computers all over the world, automatically updating
with every transaction. Always up-to-date and 100% verified. Maintaining this distributed
ledger demands a lot of work, but no one is required to do this task. Instead, the system
pays out cryptocurrency to those who volunteer to do it, known as miners. For the first
time, we can have a distributed network come to consensus on what transactions took
place on the network. This allows for a ”trust-based network”. A ledger where there isn’t
a single central authority maintaining it, but rather a decentralized system in which a net-
work of people maintain it. Nakamoto didn’t just solve the cash problem on the internet;
he had a solution for the problem of trust on the internet, too, thus facilitating a new type
of interaction. The true identity of Nakamoto is still unknown, but his/their vision was laid
out in a 2009 whitepaper called ”Bitcoin: A Peer-to-Peer Electronic Cash System” [17].
Historically, Bitcoin was blockchain’s first trial run. However, despite the great potential of
blockchain, it faces numerous challenges which limit its wide usage. The most prominent
drawback it faces is the lack of scalability. With the amount of transactions increasing day
by day, the blockchain becomes bulky. An example that supports this statement is the fact
that the Bitcoin blockchain can only process roughly 7 transactions per second [18]; whilst
Visa’s payment network is capable of performing 24.000 transactions per second. We still
have a long way towards mainstream adoption, but many industries have been adopting
blockchain systems as of late. Over the next few years we will likely see businesses and
governments experimenting with new applications to find out where blockchain technology
adds the most value.

D. Gangas 17

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

3. DEEP LEARNING BACKGROUND

Deep learning is a subfield of Machine Learning based on artificial neural networks with
representation learning. Learning can be supervised, semi-supervised or unsupervised.
Even though deep learning is a fairly old field, it only gained significant attention in the
early 2010s. In the few years since then, it has achieved remarkable results in various
fields such as image recognition, Natural Language Processing and Reinforcement Learn-
ing, involving skills that seem natural and intuitive to humans but have long been elusive
for machines. With the latest developments in optimization, learning algorithms and hard-
ware, it’s fair to say that neural networks will continue to gain momentum for the next years
to come. It’s a new approach to learning representations from data that puts an emphasis
on learning successive layers of increasingly meaningful representations. In a neural net-
work, we don’t specify for the computer how to solve our problem. Instead, it learns from
observational data, figuring out its own solution to the problem at hand.

The adjective ”deep” in Deep Learning stands for this idea of successive layers of rep-
resentations, or in other words, refers to the use of multiple layers stacked on top of one
other in the neural network. The number of layers that contribute to the model of the data is
called the depth of the neural network. The term neural networks is a reference to neuro-
biology, however, while some of the central concepts in deep learning were inspired from
brain neuron functioning, there is no evidence that the brain works in the same manner
and the current conclusions are far from completely explaining the complex functioning
of the brain, while still offering very effective solutions to many problems. Thus, for our
purpose, deep learning is a sophisticated mathematical framework for learning represent-
ations from the data.

A neural network is a parametric model that aims to approximate the mapping f : X → Y,
given a data set D = {xi, yi} ⊂ (X,Y). The set of the parameters of the neural network is
called weights w, and the problem of finding the set of weights that best approximate the
mapping f is solved via Maximum Likelihood Estimation (MLE).

wMLE = argmax
w

log p(D | w)). (3.1)

3.1 Feed-forward Neural Networks

x1

x2

x3

x4

Input
layer

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4

Hidden
layer 1

h
(2)
1

h
(2)
2

h
(2)
3

Hidden
layer 2

ŷ1

ŷ2

Output
layer

Figure 3.1: A Multilayer perceptron with 4 input units corresponding to the input vector
x = (x0, x1, x2, x3), 2 hidden layers with 4 and 3 units for each layer respectively and 2 output units

corresponding to the output vector ŷ = (ŷ1, ŷ2)

D. Gangas 18

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

The most basic type of neural net is the feed-forward network, which is a generaliza-
tion of the linear perceptron, where layers of artificial neurons are stacked together, with
non-linearities applied between each layer. The reason behind the various successful ap-
plications of neural networks is due to the universal approximation theorem [19]. It proves
that feed-forward neural networks with non-linear activation functions and at least one hid-
den layer are universal function approximators. The universal approximation theorem has
also been proved for a wider class of activation functions, such as ReLU [20].

Given an input vector x ∈ Rp and an output vector y ∈ Y, a feed-forward neural network
with m hidden layers and hi nodes in each layer and weights w, bias b and non-linear
activation function ϕ, produces a prediction by:

h(1) = ϕ(w(1)x+ b(1)),

h(2) = ϕ(w(2)h(1) + b(2)),

...
y∗ = g(w(m)h(m−1) + b(m))

where w(i) ∈ Rhi×hi−1 and b(i) ∈ Rhi.The function g can be a soft-max in the case of
classification or linear, which often is in the case for regression problems. However, a
myriad other choices for g exist.

3.2 Activation function

As discussed in brief, to enable neural networks to approximate complex non-linear trans-
formations, we must introduce some form of non-linearities to the model. On the contrary,
if the activation functions were linear, no matter how many layers the neural network has,
all would collapse into one. This occurs because a linear combination of linear functions is
still a linear function. Thus, non-linear activation functions are essential to enable neural
networks to approximate complex non-linear transformations from complex data, such as
images, video, audio, and data sets which are non-linear or have high dimensionality. Al-
most any process imaginable can be represented as a functional computation in a neural
network, provided that the activation function is non-linear. Traditionally, two widely used
non-linear activation functions are the sigmoid and hyperbolic tangent activation functions.
Of course, a plethora of other possible choices exist for the activation function, but for the
scope of this thesis we will consider these three different functions, the two being the hy-
perbolic tangent and sigmoid or also known as logistic function. Hyperbolic tangent maps
x to the interval (-1,1), whereas the output values in sigmoid function bound between 0
and 1.

A common drawback with both the sigmoid and tanh functions is that they tend to satur-
ate. This means that large values snap to 1 and small values snap to -1 or 0 for tanh and
sigmoid respectively. For very high or very low values of x, there is almost no change to
the prediction, causing the well-known problem of vanishing gradient because it causes
the gradients to converge to 0. Vanishing gradients make it difficult to know which direc-
tion the parameters should move to improve the cost function [2]. This leads the network
to refuse to learn further, or to be too slow to reach an accurate prediction. To overcome
these problems, the Rectified Linear Unit (ReLU) activation function was introduced. This
has become a widely used approach in recent machine learning research, mostly due to

D. Gangas 19

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

its computation efficiency (allows the network to converge very quickly) and strong per-
formance in many tasks. Although it looks like a linear function, ReLU has a derivative
function and allows backpropagation.

Table 3.1: Non-linear activation functions.

Name Function Derivative Figure

Sigmoid σ(x) = 1
1+e−x σ′(x) = σ(x)(1− σ(x))

1

0

Tanh tanh(x) = ex−e−x

ez+e−z tanh′(x) = 1− tanh(x)2

−1

1

ReLU R(x) =

{
0 if x ≤ 0

x if x > 0.
R′(x) =

{
0 if x < 0

1 if x > 0.

0

D. Gangas 20

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

3.3 Loss function

To control something, first we need to be able to observe it. To control the output of a neural
network, we need to be able to measure how far this output is from what we expected.
This is the task of the loss function of the network, also known as the objective function.
The loss function takes the predictions of the network ŷ and the true target y and computes
a distance score, capturing how well the network has done on this specific example. We
are concerned with finding the set of weightsW that is able to fit to the training data, while
also providing generalization to new data.

Given the fact that we are modelling a continuous response variable (crypto’s next day
price), we are faced with a regression problem. As with activation functions, here as well
a myriad of possible loss functions exist. For our task, a natural loss metric is the mean
squared error (MSE). This measures the squared average distance between the real data
and the predicted data.

MSE =
1

N

N∑
i

(yi − ŷi)
2 (3.2)

where yi is the actual outcome and ŷi is the model’s prediction. Due to squaring, predic-
tions which are far away from actual values are penalized heavily in comparison to less
deviated predictions. Using MSE as loss function is equivalent to maximum likelihood es-
timation using a Gaussian likelihood for the data given the model’s parameters.
Other well-known loss functions for regression tasks are the Mean Absolute Error (MAE),
Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE).

3.4 Back-propagation algorithm

So far we have specified how a neural network can be universal function approximator,
and we have also defined an objective function that determines how well our current model
actually fits the data. The last question that remains to be answered is how we adjust the
weights parameters in the neural network to minimize the loss function and hence, to best
approximate the mapping Y. The way this is generally done is by utilizing an algorithm
called backpropagation with the help of gradient descent.

• Forward pass: In feed-forward networks, when we feed an input x, information
propagates forward through the hidden layers in the network to exit through the
output layer and produce ŷ. This forward propagation step is called forward pass.
To be able to update the weights of the network correctly, we need to be able to
propagate the information from the loss, backward in the network, during a second
step called the backward pass.

• Backward pass: The back-propagation algorithm or backprop [21], allows this feed-
back of information that enables the computation of the gradient. It is the most pop-
ular method for supervised training of MLPs. Backprop is not a learning algorithm; it
is only a computation method that allows the network to learn, utilizing an optimiza-
tion algorithm such as gradient descent. Basically, it is an algorithm that expresses
the error gradient with respect to quantities of a given neuron as a function of its out-
going neurons. This is possible thanks to the chain rule of calculus that computes

D. Gangas 21

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

the derivatives of the composition of several functions. Therefore, we are now able
to calculate how much the weights that resulted in those values should be changed
and then alter them accordingly.

This entire cycle of forward and backward pass through the full training data set is known
as an epoch. Since one epoch is too big to feed into the neural network at once, we divide
it into several smaller batches. We can think of a for-loop over the number of epochs where
each loop proceeds over the training data set. Within this for-loop is another nested for-
loop that iterates over each batch of samples, where one batch has the specified ”batch
size” number of samples.

3.5 Optimizer

The simplest algorithm is known as gradient descent where we repeatedly take small steps
in direction of the negative error gradient of the parameter θ. For each iteration we get the
following update:

θ = θ − η∇Q(θ) (3.3)

where η is the learning rate and ∇Q(θ) is the gradient of the loss function w.r.t the para-
meter. Generally, a large learning rate allows the model to learn faster, at the cost of
arriving at a sub-optimal final set of weights. A smaller learning rate may allow the model
to learn a more optimal or even globally optimal set of weights but may take significantly
longer to train.

There are three variants of gradient descent, which differ in how much data we acquire
to compute the gradient of the objective function. Depending on the amount of data, we
make a trade-off between the accuracy of the parameter update and the time it takes to
perform an update. The three variants are the following:

• Batch gradient descent or aka vanilla gradient descent optimizer updates the
parameters of the model after each epoch. So, if the dataset is too large it may take
a lot of time to converge to the minima. Batch gradient descent can be very slow
and is impractical for datasets that don’t fit in memory.

• Stochastic gradient descent (SGD) optimizer, in contrast, performs a parameter
update for each training example (xi, yi). Counter-intuitively SGD usually performs
much faster and can also be used to learn online. On the downside due to frequent
updates the steps taken towards the minima are very noisy. Hence, it often leads
the gradient descent to overshoot into other directions.

• Mini-batch gradient descent finally takes the best of both worlds and performs
an update for every (xi, yi) mini-batch of n training examples where the size of the
minibatches is determined by the batch size. This ensures that the following ad-
vantages of both stochastic and batch gradient descent are used thus, Mini-Batch
Gradient Descent is most commonly used in practice. For a given iteration, we get
the following update:

θ = θ − η∇
n∑
i

Q(θ, xi, yi) (3.4)

D. Gangas 22

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

SGD is the basis for many other learning algorithms, such as AdaGrad or RMSProp, where
the difference lies in the adaptive learning rate that the latter optimizers sustain. The per-
formance of the model on the training dataset can be monitored by the learning algorithm
and the learning rate can be adjusted in response, leading to a more robust strategy in
avoiding local minima or flat regions. Another adaptive algorithm that nowadays is one of
the most used optimization algorithms, is the Adaptive Moment Estimation (Adam) [22].
Adam can be looked at as a combination of RMSprop and Stochastic Gradient Descent
with momentum. In all the proposed models In this dissertation, the Adam optimizer is
used.

3.6 Recurrent neural networks

In the feedforward neural networks that we have discussed so far, we considered MLPs
without any cyclic connection, which makes MLP a static model in the sense that the
input-output pairs are mutually independent [23]. This seems inefficient if we want to
model sequential data, where the input features are interdependent. If we form such
cyclic connections, we obtain a recurrent neural network (RNN), which can model dynamic
processes as such are the time series.

Recurrent networks are now used in various applications such as stock price forecasting,
audio, speech or even language processing, where in order to predict the next word in a
sentence, the previous words are required and there’s a need for our neural network to
remember them.

Each cycle makes it possible for a neuron to follow a path back to itself, allowing informa-
tion feedback. These cycles, or recurrent edges, allow the network’s hidden units to see
their own previous output, so they give the network memory [24] and introduce the no-
tion of time into the model. The recurrent neurons are sometimes referred to as context
neurons or state neurons. The structure of a simple recurrent neural network is shown in
Figure 3.2 with its folded and unfolded representation.

h0 h1 h2 ht
Unfold
=h

o0

x0

o1

x1

o2

x2

ot

xt

ot

xt …
Figure 3.2: a simple RNN that maps an input sequence of x values to a corresponding sequence of

output o values in its folded and unfolded version for t time steps

For the RNN to be effective on real problems, two major issues needed to be resolved for
the network to be useful: (a) How to train the network with Back propagation and (b) How
to stop gradients vanishing or exploding during training.
For the first issue unfortunately, the backpropagation that was discussed in the previ-
ous section breaks down in a recurrent neural network, because of the recurrent or loop
connections. This was addressed with a modification of the backpropagation technique
called Backpropagation Through Time(BPTT). Instead of performing backpropagation on

D. Gangas 23

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

the recurrent network as stated, the structure of the network is unrolled, where copies of
the neurons that have recurrent connections are created. For example, a single neuron
with a connection to itself (A → A) could be represented as two neurons with the same
weight values (A → B). This allows the cyclic graph of a recurrent neural network to be
converted into an acyclic graph like a classic feedforward neural network, and then Back-
propagation can be applied. Consequently, unrolling recurrent neural networks can create
a very deep neural network that could potentially, in the Backpropagation step, lead the
gradients, which are calculated in order to update the weights, to become unstable.

These can be very large numbers or very small numbers, consequently causing the ex-
ploding or vanishing gradients problem as noted. These large numbers, in turn, are used
to update the weights in the network, making training unstable and the network unreliable.
To prevent this, a new type of architecture called the Long Short-Term Memory Networks,
introduced gates to force the derivatives of the loss to lie within a pre-defined range.

3.7 Long Short-Term Memory network

Long short-term memory (LSTM) is an RNN architecture introduced in 1997 by Hochreiter
and Schmidhuber [25] in order to provide a viable solution to the long term dependency
problem and the vanishing gradient problem that traditional RNNs possessed. LSTM net-
works, with the Gated Recurrent Unit (GRU) are the most popular and effective neural
network models for sequence learning. Both are gated recurrent neural networks. The
idea behind GRU and LSTM units is to create connections through time with a constant
error flow, thus the gradient neither explodes nor vanishes. They are explicitly designed to
mitigate the long-term dependency problem. Remembering information for long periods
of time is practically their default behaviour, making them suitable for sequence learning.

σ σ Tanh σ

× +

× ×

Tanh

c⟨t−1⟩

Old cell state

h⟨t−1⟩

Old cell output

x⟨t⟩New cell input

c⟨t⟩

New cell state

h⟨t⟩

New cell output

h⟨t⟩New cell output

Figure 3.3: Representation of an LSTM cell: Cells do have internal cell state, often abbreviated as
”c”, and cells output is what is called a ”hidden state”, abbreviated as ”h”

Instead of neurons, LSTM networks have memory blocks that are connected in layers.
A block has components that make it more sophisticated than a classical neuron and
a memory for checking recent sequences. A block also possesses gates that manage
the block’s state and output. A unit operates upon an input sequence and each gate
within a unit uses the sigmoid activation function to control whether they are triggered or
not, making the change of state and addition of information flowing through the unit in a

D. Gangas 24

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

conditional manner. Cell state is the central feature. It is referred to as a constant error
carousel (CEC) in Hochreiter and Schmidhuber work [25]. The cell state produces only
some minor linear transformations, achieving a constant error flow through the memory
block and thus acting as the ”memory” of the network. As the gates are concerned, there
are 3 types of them inside a memory unit:

• Input Gate: has the responsibility to update the cell state. First, it passes the pre-
vious hidden state and current input into a sigmoid function. That decides which
values will be updated by transforming the values to be between 0 and 1. 0 means
not important whereas 1 means important. It also passes the hidden state and cur-
rent input into the tanh function to squish values between -1 and 1 in order to regulate
the network. Then it multiplies the tanh output with the sigmoid output. The sigmoid
output will determine which information is important to keep from the tanh output.

• Output Gate: The output gate figures out what the next hidden state should be. Note
that the hidden state contains information on previous inputs. The hidden state is
also used for predictions. First, we pass the previous hidden state and the current
input into a sigmoid function. Then we pass the newly modified cell state to the
tanh function. We multiply the tanh output with the sigmoid output to decide what
information the hidden state should carry. The output is the hidden state. The new
cell state and the new hidden is then carried over to the next time step.

• Forget Gate: This gate allows the memory block to reset itself, thanks to a sigmoid
activation function. It decides what information should be thrown away or kept. In-
formation from the previous hidden state and information from the current input is
passed through the sigmoid function. Values come out between 0 and 1. The closer
to 0 means to forget, and the closer to 1 means to keep. Historically, Forget Gate
was added 3 years after the first publication of LSTMs to remedy the lack of resets
in the internal states that could potentially cause the breakdown of the network [26].

Figure 3.4: Long Short-term Memory Cell illustrating the Gates, source: Graves [1]

To recapitulate, the forget gate decides what is relevant to keep from prior steps. The
input gate decides what information is relevant to add from the current step. The output
gate determines what the next hidden state should be.

Let xt be one observation at time t of the input vector, the LSTM cell is implemented [1]
by the following equations:

D. Gangas 25

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi), (3.5)
ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf), (3.6)
ct = ftct−1 + ittanh(Wxcxt +Whcht−1 + bc), (3.7)
ot = σ(Wxoxt +Whoht−1 +Wcoct + bo), (3.8)
ht = ottanh(ct) (3.9)

where σ is the logistic sigmoid activation function; i, f , o and c are respectively the input
gate, forget gate, output gate, cell and cell input activation vectors, all of which are the
same size as the hidden vector h. The weight matrix subscripts have the obviousmeaning,
for example Whi is the hidden-input gate matrix, Wxo is the input-output matrix etc. The
weight matrices from the cell to gate vectors (e.g. Wci) are diagonal, so elementm in each
gate vector only receives input from element m of the cell vector. The bias terms (which
are added to i, f , c and o) have been omitted for clarity.

3.8 Bayesian Neural Networks

Figure 3.5: Left: deterministic Neural Networks have a fixed value of their parameters,as provided
by classical backpropagation. Right: In Bayesian Neural Networks each weight is assigned a

distribution.

Bayesian Neural Networks (BNN), in contrast to its frequentist counterparts, are networks
whose weights or parameters are expressed as a distribution rather than a deterministic
value and learned using Bayesian inference. The capability of simultaneously learning
complex non-linear representations from the data and quantifying uncertaintiesmake them
very appealing in certain domains. In Neural networks we showed that finding the set
of parameters w is solved via Maximum Likelihood Estimation (MLE). This is often not
desirable because it does not guarantee that our model will perform well in unseen data,
leading to overconfidence in predictions. Bayesian approach, on the other hand, provides
a more principled path in creating inferences from the data.

More precisely, Bayesians impose a prior distribution on the network’s weight which re-
flects original beliefs about the parameters and then attempt to compute the posterior
posterior density of w given the data D using Bayes rule:

p(w|D) =
p(D|w)p(w)

p(D)
=

p(D|w)p(w)∫
p(D|w)p(w)dw

(3.10)

D. Gangas 26

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

where p(w|D) is the posterior of w given data D, p(D|w) is the likelihood of parameters w
in our model, p(w) is the prior and

∫
p(D|w)p(w)dw is the evidence.

This operation returns a probability distribution over all possible configurations of the para-
meters, giving more weight on settings which probably have generated the data better.
This distribution encodes our uncertainty about what values we should place in these
parameters. Therefore, predictions for new datapoints X∗ = {x∗

1..x
∗
n} are made through

marginilization, which yields the posterior predictive distribution:

p(Y ∗|X∗, D) =

∫
p(Y ∗|X∗, w)p(w|D)dw (3.11)

In this fashion, uncertainty in models parameters is translated into uncertainty in predic-
tions, allowing to create reliable error bounds and avoid overfitting. Intuitively BNN’s treat
the prediction process expressed in Equation 3.11 as a weighted average of an ensemble
of an infinite amount of networks trained in dataset D.

Unfortunately, the non-linearities in NN’s make the computation of the integral in Equa-
tion 3.11 intractable. Analogously, the integral for the model evidence (denominator in
Equation 3.10) is also intractable.

Various ways to approximate the posterior have been developed which yields us with a
wide variety of BNNs today. Well-knownmethods among them are Laplace Approximation
[27], Variational Inference [28] and Markov Chain Monte Carlo (MCMC).

Approximate Bayesian Inference by Monte Carlo Dropout
In this work, we make use of the relatively new approach called MC-Dropout [29][30].
The authors proved that using dropout during test time is identical to Variational Inference
in Gaussian processes and as a result can lead to Bayesian Inference approximation,
providing good uncertainty estimates. Monte Carlo Dropout offers a new and handy way
to estimate uncertainty with minimal changes in the existing networks. We just need to
keep our dropout on at test time, then forward pass the data for T times and store all
the predictions. The posterior predictive distribution is now facilitated by averaging the
predictions of those stochastic forward passes. Consecutively, the prediction intervals
can now be estimated for every prediction via their sample variance.

3.9 Generalization methods

The central challenge in Machine Learning is that our algorithm must perform well on new,
previously unseen data and not only on those which our model was trained on. The ability
to perform well on previously unobserved inputs is called generalization. In this section,
we present some problems that deep neural networks can face concerning generalization
and some solutions.

3.9.1 Model selection

Model selection in the context of Machine Learning can have different meanings, corres-
ponding to different levels of abstraction. Before diving into the details of different ap-
proaches to model selection, and when to use them, there is “one more thing” we need to
discuss: model evaluation. Model evaluation aims at estimating the generalization error

D. Gangas 27

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

of the selected model, i.e., how well the selected model performs on unseen data. Obvi-
ously, a good machine learning model is a model that not only performs well on data seen
during training, but also on unseen data. Otherwise the machine learning model could
simply memorize the training data. Hence, before shipping a model out for production, we
should be fairly certain that the model’s performance will not degrade when it is confronted
with new data.

Holdout selection procedure
The holdout method is arguably the simplest model evaluation technique. We take our
labeled dataset and split it into three sets: A training set, a validation set and a test set.
We then use the training set to fit different learningmachines and we apply thesemodels to
the validation set. We select the model which has the best performance on the validation
set and apply this model to the test set in order to measure the generalization error. For our
regression task the evaluation metric will be the Mean Square Loss function as discussed
in the previous chapter.

So far, what we have described is simply an optimization problem. What separates ma-
chine learning from optimization is that we want the generalization error, also called the
test error, to be low as well. The generalization error evaluates the prediction power of
a model on unknown data, here the test set, which was not used for the training of the
model.

Underfitting vs Overfitting
The factors determining how well a machine learning algorithm will perform are its ability
to (a) make the training error small and (b) make the gap between training and test er-
ror small. These two factors correspond to the two main challenges in machine learning:
underfitting and overfitting. Note that in Statistics and Machine Learning, this challenge
is known as the bias–variance dilemma or bias–variance problem, because it’s trying to
simultaneously minimize these two sources of error that prevent supervised learning al-
gorithms from generalizing beyond their training set.

• Underfitting occurs when the model is not able to learn the underlying structure of
the data and obtain a sufficiently low training error.

• Overfitting occurs when the gap between the training error and test error is too
large. Hence, the model will have good performance on the training set, but not on
the test set due to poor generalization.

We can control whether a model is more likely to overfit or underfit by altering its capacity
(or complexity). Informally, a model’s capacity is its ability to fit a wide variety of functions.
Models with low capacity may struggle to fit the training set, whereas models with high
capacity can overfit by memorizing properties of the training set that do not serve them
well on the test set.

3.9.2 Regularization techniques

In neural networks, due to the high complexity, they have a tendency to overfit the given
training data, which yields poor generalization for unseen data points. To overcome this
problem, several regularization techniques have been proposed. Overall, regularization is

D. Gangas 28

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

Figure 3.6: Typical relationship between capacity and error, source: Goodfellow et al.[2]

a technique to avoid the overfitting of models with a large learning capacity. The regular-
ization techniques increase the bias and reduce the variance of the model. In this section,
I will try in short to explain those that I utilized in my models.

3.9.2.1 Early stopping

An alternative to regularization as a way of controlling the effective complexity of a network
is the procedure of early stopping (Optimal Capacity in Figure 3.6). Early stopping is a
method that stops training when a monitored quantity has stopped improving. Indeed, if
the performance of the model on the validation dataset starts to degrade (e.g. loss begins
to increase, or accuracy begins to decrease), then the training process is stopped. The
model at this stage has low variance and is known to generalize the data well. Training
the model further would increase the variance of the model and lead to overfitting. This
regularization technique is called “early stopping”. Early stopping is one of the most used
regularization techniques in deep learning, because of its simplicity and its effectiveness
in reducing training time.

3.9.2.2 Dropout

Dropout is also one of the most common techniques for addressing the problem of over-
fitting in deep neural networks. The key idea is to randomly drop units (along with their
connections) from the neural network during training with a given probability p as a hyper-
parameter. This prevents units from co-adapting too much [31]. It basically creates an
ensemble of sparse networks, which can significantly increase the model’s ability to gen-
eralize and prevent overfitting. At test time, it is easy to approximate the effect of averaging
the predictions of all these thinned networks by simply using a single unthinned network
that has smaller weights.

3.9.2.3 L2-regularization

L2-regularization, also known as Ridge regression, penalizes large weights by adding a
penalty to the model’s loss function, multiplied by a regularization parameter λ ∈ R+.

L(y∗|x∗, w) + λ∥W∥2 (3.12)

D. Gangas 29

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

where L(y∗|x∗, w) denotes the network’s loss function of a new prediction, given data and
its trained weights W . Large values of λ yield to heavy regularization, whilst small val-
ues result in light to no regularization. From a probabilistic perspective, L2 regularization
equals introducing a Gaussian prior on the weights of the network.

3.10 Hyperparameter Optimization

There are plenty of parameters you can select when setting a Neural Network before train-
ing begins. These are often called hyperparameters and in comparison with parameters,
which are learned by themodel during training, hyperparameters are set by the user before
the learning process. Hyperparameters, for example, could be the number of layers, the
number of neurons in each layer, the batch size, the type of activation function and optim-
ization to use, etc. The optimization method also has one or more hyperparameters you
can select, such as the learning rate and learning decay. One way of searching for good
hyperparameters is by hand, where you try one set of parameters and see how they per-
form, then you try another set of parameters and check if they improve performance and
so on. You try to build an intuition for what works well and guide your parameter-search
accordingly. Not only is this extremely time-consuming, but the optimal parameters are
often counter-intuitive to conceive of.

Another way of searching for good hyperparameters is the Grid Search technique. Grid
Search can be thought of as an exhaustive search for selecting a model. It basically di-
vides each parameter’s valid range into evenly spaced values, and then simply have the
computer try all combinations of parameter values. Although the flowchart becomes auto-
mated since it is run entirely by the computer, it quickly becomes obvious that it suffers
from the Curse of Dimensionality problem. Adding more hyperparameters increases ex-
ponentially the number of parameters-combinations, making it extremely time-consuming.
If you have, for example, 5 hyper-parameters to tune and each of them can take 10 differ-
ent possible values, then there are a total of 105 different combinations of parameters. In
the event of adding just one more hyperparameter, then there are 106 different parameter
combinations, resulting in exponential space increase.

In contrast to Grid Search, Random Search is a technique where random combinations
of the hyperparameters are used to find the best solution for the built model. It is similar
to Grid search, and yet it has proven, given the same resources, to yield better results
comparatively [32].

However, Grid and Random Search are relatively inefficient because they do not choose
the next hyperparameters to evaluate based on previous results. Both search techniques
are completely uninformed by past evaluations, and as a result, often spend a significant
amount of time evaluating ”bad” hyperparameters.

Bayesian Search, on the other hand, solves the above problem. It’s an another well-
known method for hyperparameter optimization. This technique is particularly suited for
optimization of high-cost functions, situations where the balance between exploration and
exploitation is important. It is based upon Bayes Rule and considers previously known
knowledge to help narrow down the search space of good hyperparameter combinations.
It works by building a probabilistic model of the objective function, called the surrogate
function. Then to sample efficiently, Bayesian optimization uses an acquisition function
to determine the next candidate samples (location), before evaluating them on the real
objective function [33][3]. A common choice for acquisition function is the Expected Im-

D. Gangas 30

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

provement (EI).

Figure 3.7: Bayesian optimization, source: Brochu et al.[3]

Τhe Figure 3.7 shows an example of using Bayesian optimization over a hyperparameter.
The Gaussian process (GP) approximation of the objective function over four iterations of
sampled values of the objective function is depicted in purple.

The Figure also shows the acquisition function in the lower green shaded plots. We can
easily observe that the acquisition is high (a) where the Gaussian Process predicts a high
objective (high accuracy in classification or low loss in regression setting problems) fol-
lowing the exploitation discipline and (b) where the prediction uncertainty is high following
the exploration discipline. Obviously, locations with both characteristics are sampled first.
Another interesting observation is that the area on the left remains unsampled with a low
score in acquisition function, as while it has high uncertainty, correctly predicted that it
will not offer any improvement over the highest observation. Lastly, as the number of ob-
servations grows, the posterior distribution (or the surrogate function) improves, and the
algorithm becomes more certain of which regions in parameter space are worth exploring
and which are not. Therefore, Bayesian optimization can bring down the time spent to get
to the optimal set of parameters and bring better generalization performance on the test
set making it an excellent choice for hyperparameter tuning.

D. Gangas 31

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

4. APPLICATION A: CRYPTOCURRENCY PRICE PREDICTION FOR
BTC, LTC

4.1 Objective

For this application, our goal is quite straightforward and is to predict the next day’s OHLC
1 cryptocurrency price in USD for BTC and LTC. Hence, for the purpose of this task a
plethora of models were trained in a range of different datasets. In the context of this
thesis, I chose to mention solely the ones that offered the best results in accordance with
their simplicity under Occam’s razor law.

The selection of Litecoin 2 wasn’t chosen randomly. It provided quite good results when
Bitcoin and Litecoin were forecasted combined. This probably occurs due to its (a) high
correlation with bitcoin in accordance with the Pearson correlation coefficient method,
where the fluctuation of the one coin affects the other (b) and the fact that for both as-
sets we have enough data, since they were the first that were released (2009 and 2011
respectively).

4.2 Dataset

This section introduces the data that was used to train and test all models. This includes
preprocessing of data such as scaling and normalization. We used a dataset consisting of
daily opening and closing prices, as well as daily high and low prices. In addition we have
included the Market Capitalization and Volume indicators for both BTC and LTC. The data
contains 2650 samples in total and are ranging from 2013-04-28 to 2020-07-29.

(a) BTC Close price (b) LTC Close price

Figure 4.1: Training, validation and test sets for BTC and LTC prices in line graph form

We should note that many different datasets for the task were utilized such as Blockchain
features (captured from CoinMetrics.io), other correlated cryptocurrencies, dimensionality
reduction technique (PCA) and technical indicators but many of them didn’t surpass the
results of the presented dataset or the results showed aminimal improvement that couldn’t
justify the additive complexity.

1OHLC stands for Open-High-Low-Close
2Founder’s intention behind Litecoin was to create a ”lite version of Bitcoin,” and its developers have

always stated that Litecoin can be seen as the ”silver” to Bitcoin’s ”gold”

D. Gangas 32

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

Table 4.1: Training, validation and test sets for application A

Time Period
Training from 2013-04-30 to 2019-02-17
Validation from 2019-02-18 to 2019-11-08

Test from 2019-11-09 to 2020-07-29

The data is split into a training set, a validation set and a final test set following the holdout
procedure as discussed in the previous chapter. We train the models on the training set
and test their performance on the validation set, where we select the best hyperparameter
configuration that fits the data and check the generalization capability in the test set. To
train, validate and test models for time series prediction, we must maintain the temporal
structure of the data to avoid any forward-looking bias. The training set must therefore be
chronologically before the test set. The data is split as depicted in Table 4.1.

It is important to note here that we apply a sliding window with stride 1 and length K = 3
(is also called lag) in the dataset, where K is the number of previous time steps to use
as input variables to predict the next time period, which in our case are the daily crypto
prices.

(a) Candlestick chart for BTC (b) OHLC chart for LTC price

Figure 4.2: Data Visualization charts with volume and moving average(3,6,9)

Data normalization
Choosing the type of method for normalizing a time series, especially financial ones is
never easy. In most cases, the data take relatively large values, or are heterogeneous
(referring to time-series that have different scales). If we feed these kinds of data into our
NN, they can potentially trigger large gradient updates that will prevent the network from
converging. To make learning easier for the network and speed up the training process,
data should (a) take small values (b) be homogeneous (all features should take values at
roughly within the same range). Therefore, normalization in our data should be applied.
The most common normalization methods used during data transformation include:

• Min-Max Scaling, where the data inputs are mapped on a number from 0 to 1:

xnew = x−xmin

xmax−xmin

D. Gangas 33

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

• Mean Normalization, which makes data have values between -1 and 1 with a mean
of 0:

xnew = x−µ
xmax−xmin

• Z-Score (Standardization), where the features are redistributed with their mean of 0
and standard deviation of 1:

xnew = x−µ
σ

, where xmin, xmax, µ, σ stand for minimum and maximum data points, the sample mean
and standard deviation respectively.
For our problem, we use Min-Max Scaling and adjust features on a scale from 0 to 1 given
that most of our time-series have a peak, therefore we could argue we know the maximum
of the series, in which case Min-Max Scaling does a good job.

4.3 Models

As with the datasets, the same policy was followed for the model architecture selection
with the many different models that were tested. Therefore, following the experiments, I
decided to include only those with the best performance and those that showed no overfit-
ting issues. Within the neural networks, I decided to exclude the LSTM Autoencoder and
Composite LSTM Autoencoder [34] as well. Since I had opted for a low-number feature
dataset, there wasn’t any need for the dimensionality reduction that they provide. Inter-
estingly, the LSTM Autoencoder, due to the 2 decoders that consist of (reconstructing the
input and predicting the future) had better performance than a plain Autoencoder or an
LSTM with PCA in high dimensional datasets.

4.3.1 LSTM

A plain LSTM was used for our baseline model of the list, where the hyperparameter
configuration was chosen by hand after some custom trial and error and tuning. The
general architecture of the model consists of an input layer of dimension (time steps ×
number of features = 3 × 8), the inner structure and an output layer of dimension (time
steps × number of prices to predict = 1 × 8). Indeed, we apply at each future time step a
ReLU layer with eight neurons, one OHLC vector for each of the two crypto. We change
the inner structure of the model to test different architectures of neural networks. The inner
structure in our base model consists of 3 layers with 50 neurons in each one. To improve
the generalization capability of the model, after each layer a Dropout layer is immediately
followed with a rate of 20% to combat potential overfitting issues during training. We also
utilized the early stopping generalization technique with 20 epochs patience, meaning that
if the validation loss for the 20 epochs in a row is not improved, then the model training
process halts. Last but not least, the batch size was set to 32 and the Adam optimizer was
chosen with a 0.001 learning rate. The architecture of the model in plot format is shown
in Appendix Figure A.1.

D. Gangas 34

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

1 ...
2 early_stopping_monitor = EarlyStopping(monitor='val_loss',
3 mode='min',patience=20, restore_best_weights=True)
4 # design network
5 model = Sequential()
6 model.add(LSTM(units=50, input_shape=(train_X.shape[1], train_X.shape[2]),

return_sequences=True))
7 model.add(Dropout(0.2))
8 # Adding a second LSTM layer and some Dropout regularization
9 model.add(LSTM(units=50, input_shape=(train_X.shape[1], train_X.shape[2]),

return_sequences=True))
10 model.add(Dropout(0.2))
11 # Adding a third LSTM layer and some Dropout regularization
12 model.add(LSTM(units=50))
13 model.add(Dropout(0.2))
14 model.add(Dense(units=num_features_to_predict))
15

16 model.compile(loss='mse', optimizer='adam')
17

18 # fit network
19 history = model.fit(train_X , train_y , epochs=500, batch_size=32,
20 validation_data=(val_X , val_y),shuffle=False , callbacks=[

tensorboard , early_stopping_monitor , model_checkpoint_callback])

Listing 4.1: snippet code of LSTM implemented in Keras

4.3.2 Bayesian optimized LSTM

As discussed in theory a great alternative for finding a good hyperparameter combina-
tion is the Bayesian Optimization technique. Before we begin with the actual search for
hyperparameters, we first need to define the valid search ranges for each of these para-
meters. The hyperparameters with their selection thresholds that were set for tuning are
the following:

• learning rate: [10−6, 10−2]

• layers: [2, 5]

• number of units in each layer: [5, 512]

• dropout rate: [0.1, 0.9]

• batch size: [5, 100]

The flowchart for finding the best configuration is shown in Figure 4.3.

The process was run for 50 iterations and it took around 2 hours in Google Colab to finish.
The Table B.1 in Appendix shows all the hyperparameters tried by the Bayesian optimizer
and their associated validation MSE loss sorted so the best models are shown first.

Since we can not infer much information from a plain table, showing the Partial Depend-
ence plots in Figure 4.4 seem a much better way of visualizing high-dimensional spaces
and indicate a better intuition.

The plot on the left shows the last surrogate model built by the Bayesian optimizer where
yellow regions are better and blue regions are worse. The black dots show where the

D. Gangas 35

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

Figure 4.3: Flowchart of the Bayesian optimization algorithm at a superficial level

Figure 4.4: Partial Dependence plots for the 50 hyperparameter configurations tried by Bayesian
optimizer

optimizer has sampled the search space and the red star shows the best parameters
found.

On the right is another type of matrix plot. Here the diagonal shows histograms of the
sample distributions for each of the hyperparameters during Bayesian optimization. The
plots below the diagonal show the location of samples in the search space and the colour-
coding shows the order in which the samples were taken. Even though we have only 50
samples, we can likely see that the samples eventually become concentrated in a certain
region of the search space, where it chooses to exploit rather than explore.

D. Gangas 36

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

From the first partial Dependence plot we can clearly observe that regardless of the value
of the other hyperparameters, the learning rate region that produces the best results is
between 10−4 and 10−3. Another interesting inference we can derive from both Table B.1
and the secondmatrix-plot, is that the Bayesian framework shows a preference for 2 LSTM
layers instead of more, as opposed to the base hand-tuned model, which has 3 layers.
This makes sense, given that the best 16 out of the 50 models have 2 layers.

After the 50 iterations the best model was shown to be the one with the following hyper-
parameters:

• learning rate: 0.00076

• layers: 2

• number of units in each layer: 222

• dropout rate: 0.1

• batch size: 100

The architecture of the model is also shown in Figure A.1.

4.3.3 LSTM-FCN

A promising model that seems to learn the representation of the data efficiently in various
complex classification tasks is the LSTM-FCN3 and its variations with attention mechan-
ism LSTM-FCN [35]. The proposed models have been tested on all 85 UCR time series
datasets and have shown to outperform most of the well-known models providing state-
of-the-art results, while requiring minimum preprocessing, time and memory consumption
during training time. The aforementioned benefits, combined with the wide ranging applic-
ability on several sequence modelling tasks, make it appealing for our price forecasting
problem. For the scope of this thesis we will use the LSTM-FCN variation. LSTM-FCN
model consists of 2 parts: (a) a LSTM block with a high rate of dropout to combat overfitting
and (b) a FCN part with 3 temporal convolution layers, followed by batch normalization.
The output of the global pooling layer and the LSTM block is concatenated and passed
onto a Dense layer output layer of dimension (timesteps × number of prices to predict = 1
× 8). To convert the model from a classification task to a regression one, the last activation
function was set to ReLU and the cross entropy loss function was changed to the MSE.
Other than that, the early stopping generalization method was added with patience=20 to
prevent overfitting. Lastly, a trivial change from the proposed model took place, which is
the reduction of the dropout rate by 10% (from 80% to 70%). All the other hyperparamet-
ers remained the same as was proposed in the research work. The architecture of the
model is shown in Figure A.2 in the Appendix.

3FCN stands for Fully convolutional neural networks

D. Gangas 37

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

4.4 Results

4.4.1 Loss Plots

(a) LSTM (b) Bayesian optimized LSTM

(c) LSTM-FCN

Figure 4.5: Loss plots in each NN

We can observe that in all of our models both training and validation loss are steadily
decreasing, as it is the gap between them. This is a clear indication that the models are
not overfitting the dataset. An interesting finding is the fluctuation of the validation loss
in the LSTM-FCN model. A guess concerning this phenomenon is the high dropout rate
in the LSTM block. However, even with the high frequency peaks and lows, the model
is still able to learn and produce quite a good representation of the data. To get the best
model weights out of the training process, ModelCheckpoint callback from the Keras library
was applied to all the 3 models. Rather than saving the weights of the last model in our
training process, we monitor the model after each epoch and we only keep the one that
has achieved the ”best performance”. For our research purposes, the best model is the
one that achieves the minimum Mean Square Error in the validation set.

D. Gangas 38

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

4.4.2 Comparing ARIMA

To support the claim that the Deep Learning models provide better results than the clas-
sical statistical models, a non-seasonal Autoregressive integrated moving average (AR-
IMA) model was also created for forecasting the Closing price of the Bitcoin. ARIMA mod-
els are generally denoted ARIMA(p,d,q) where parameters p, d, and q are non-negative
integers, (a) p stands for the number of time lags of the autoregressive model, (b) d is the
degree of differencing (the number of times the data have had past values subtracted),
and (c) q is the order of the moving-average model. The best parameters were set by the
Grid Search tuning technique and the combination (0,2,1) gave the best performance. Not
surprisingly, the MSE for the Closing price in ARIMA was lower than the other DL models.
Specifically, the MSE error in real data in ARIMA was 110364.988 whereas the baseline
hand-tuned LSTM achieved much better results with a score of 108227.23. Hence, given
the better results that DL models provide, for our evaluation, we are focusing solely on the
networks that were presented in section Models.

4.4.3 Evaluation metrics

In this section we measure the performance of the models on the test set with different
evaluation metrics. It’s very important to check the quality of the models with the use of
multiple evaluation metrics. This is because a model may perform well using one meas-
urement from one evaluation metric, but may show poor performance using another meas-
urement from another evaluation metric. Therefore, inspecting different metrics is critical
in ensuring that our models are operating correctly and optimally. In regression setting
problems, the most common metrics that also seem appropriate for the evaluation are the
MSE, which is also the loss function of our models, RMSE, MAE, MAPE and MPE.

We consolidate the evaluations in three metric evaluation tables starting from top to bot-
tom. Table 4.2 presents the averaged losses of the OHLC daily predictions including
both Bitcoin and Litecoin cryptocurrencies. Table 4.3, on the other hand, separates the
cryptocurrencies and evaluates them individually. Table 4.4, which is the 3rd and last one,
breaks down the previous table and measures the MSE loss for every OHLC entity.

Table 4.2: Average performance metrics in both BTC, LTC on the test set

Network MSE RMSE MAE MAPE (%) MPE (%)
LSTM 0.00083 0.02895 0.02308 14.4 −12.57

Baeysian opt. LSTM 0.00028 0.01676 0.0116 5.32 1.31
LSTM-FCN 0.00056 0.02366 0.01857 7.58 4.48

Table 4.3: Average performance metrics in OHLC prices for each BTC, LTC on the test set

Cryptocurrency Network MSE RMSE MAE MAPE (%) MPE (%)
LSTM 0.00042 0.02054 0.01381 3.43 0.21

BTC Baeysian opt. LSTM 0.00042 0.02056 0.01383 3.43 −0.12
LSTM-FCN 0.00092 0.03041 0.02563 6.15 5.78

LSTM 0.00125 0.03542 0.03235 25.37 −25.36
LTC Baeysian opt. LSTM 0.00013 0.01179 0.00937 7.21 2.73

LSTM-FCN 0.00019 0.01398 0.01151 9.01 3.18

Several interesting conclusions can be extracted. From the first table, it is obvious that
the Bayesian optimized LSTM is overall the best model among the three. In the second

D. Gangas 39

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

Table 4.4: MSE loss for all the OHLC of the models on the test set for BTC and LTC

BTC LTC

NN
Price Open High Low Close Open High Low Close

LSTM 0.00028 0.00036 0.00053 0.00051 0.00058 0.0011 0.00184 0.00149
Baeysian opt. LSTM 0.00028 0.00033 0.00056 0.00051 0.00022 0.0001 0.00012 0.00011

LSTM-FCN 0.00009 0.00118 0.00095 0.00147 0.00012 0.00015 0.0002 0.00031

table, we observe that, overall, the LSTM is the model with the worst performance as Table
4.2 reveals, basically due to the systematic poor performance in predicting Litecoin’s daily
price. In contrast, for the plain LSTM, the performance in Bitcoin along with the Bayesian
optimized network is excellent. In the third and last table, the LSTM-FCN model appears
to display exceptionally good predictions for the daily Opening prices in both Bitcoin and
Litecoin. We can easily deduce that each network has its own strong and weak spots
beyond the Bayesian optimized LSTM, which seems to provide consistently good results.

4.4.4 Prediction plots

In the face of coronavirus pandemic, the Bitcoin and cryptocurrency markets have fallen
sharply over the last few weeks, plummeting along with traditional markets. While LSTM-
FCN didn’t produce the best results for bitcoin according to the evaluation metrics, in the
plots it appears that predicted surprisingly well the sudden plunge of bitcoin in the period
March 12-14 2020 in comparison to the other LSTM models.

(a) LSTM (b) Bayesian opt. LSTM

(c) LSTM-FCN

Figure 4.6: Closing Price Prediction for BTC in test set

D. Gangas 40

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

(a) LSTM (b) Bayesian opt. LSTM

(c) LSTM-FCN

Figure 4.7: Closing Price Prediction for LTC in test set

D. Gangas 41

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

(a) LSTM in val. set (b) LSTM in test set

(c) Bayesian opt. LSTM in val. set (d) Bayesian opt. LSTM in test set

(e) LSTM-FCN in val. set (f) LSTM-FCN in test set

Figure 4.8: BTC OHLC predictions

D. Gangas 42

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

(a) LSTM in val. set (b) LSTM in test set

(c) Bayesian opt. LSTM in val. set (d) Bayesian opt. LSTM in test set

(e) LSTM-FCN in val. set (f) LSTM-FCN in test set

Figure 4.9: LTC OHLC predictions

D. Gangas 43

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

5. APPLICATION B: ESTIMATING ONE-STEP PREDICTION
INTERVALS

5.1 Objective

This chapter introduces the methodology that was used to apply Bayesian neural networks
to the problem of estimating prediction intervals for Bitcoin’s daily Closing price. The goal
here is not to find the best price predictions as it was in the first application, but to estimate
sufficient upper and lower price range levels. For this purpose, we first introduce the data
that was used, along with the various techniques for preprocessing that were necessary.
After this, we introduce our BNN model that was tuned by the Bayesian optimization tech-
nique, with respect to the mean MSE loss for maximum results and lastly, we present the
results of our model.

5.2 Dataset

For this application, the data differ from the previous one, since here we include also some
well-known technical indicators for Bitcoin and a small portfolio of correlated cryptocurren-
cies as features. Even in this application, blockchain features didn’t improve the model’s
performance so were excluded for simplicity. The data is split into a training set, a valid-
ation set and a final test set following the holdout procedure. The rolling window has size
3 and as far as normalization is concerned, a Min-Max Scaling approach was applied.

Table 5.1: Training, validation and test sets for application B

Time Period
Training from 2017-07-25 to 2019-12-24
Validation from 2019-12-25 to 2020-04-11

Test from 2020-04-12 to 2020-07-29

Our final dataset consists of 1100 samples in contrast to 2650 samples in the first applic-
ation’s dataset. A drawback in adding more cryptocurrencies with later release dates is
the shrinking of the dataset since our policy is to eliminate the days where we don’t have
all the values available. This is a trade-off that we took into consideration while building
the dataset.

5.2.1 Correlated assets

Unlike Modern portfolio theory (MPT), where the goal is to achieve diversification and
reduce the correlation between the returns of the assets selected for the portfolio, in our
dataset we desire to build a basket of correlated cryptocurrencies. To calculate that we will
use from statistics the Pearson correlation coefficient. The Pearson Correlation Coefficient
is a very useful measure of finding out the correlation between two random variables (in
our case cryptocurrencies) by summarizing the strength of their linear relationship over a
specific period of time.

D. Gangas 44

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

The correlation coefficient (ρ) is determined by dividing the covariance by the product of
the two variables’ standard deviations. So, given a pair of random variables (X,Y), the
formula for ρ is:

ρX,Y =
cov(X,Y)

σXσY

(5.1)

where cov(X,Y) denotes the covariance of the variablesX and Y and σX , σY the respect-
ive standard deviations.

The value of the correlation coefficient ranges between -1 and +1, due to the normalization
of the covariance. Values close to 1 indicate a strong positive linear correlation between
X and Y , while values close to -1 indicate a strong negative correlation. In the same
manner, values close to 0 show neutral and therefore no correlation between the random
variables.

Figure 5.1: Cryptocurrencies Correlation Matrix

To test the correlation between Bitcoin with other cryptocurrencies, a correlation matrix
was built. A correlation matrix investigates the dependence between multiple variables at
the same time. The result is a table containing the correlation coefficients between each
cryptocurrency and is shown in Figure 5.1.

Only the coins that satisfied the 3 criteria were included in our dataset. Those that (a)
were in the top 20 by Market Capitalization (b) were released not after 2018 (c) had a
coefficient correlation with bitcoin above 0.75 or below -0.75.

Following that rule, aside from Bitcoin, the virtual coins correlated portfolio is composed
of ethereum (eth), litecoin (ltc), binance-coin (bnb), eos (eos), monero (xmr). For
each of these coins, their Closing price, Volume and Market Capitalization were added
as features in our dataset. As an exception only for Bitcoin, we also incorporated the
Opening, High, Low daily prices.

D. Gangas 45

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

5.2.2 Technical Indicators

Before feeding our dataset in our network, technical indicators were created for Bitcoin’s
Closing price. Technical indicators can be useful variables for time series modeling. In
the forecast of cryptocurrencies prices, we decided to use some major technical indicators
with a different days setting.

Let St be the Closing price of Bitcoin at time t. We define the simple moving average of
order q as:

MA =
1

q

q∑
t=1

St (5.2)

and the rolling standard deviation of order q as:

σ =

√√√√1

q

q∑
t=1

(St −MA)2 (5.3)

Now we are able to define Bollinger bands’ volatility indicator. The three components of
Bollinger bands correspond to MA, the central band, MA + δσ, the upper band and MA
- δσ the lower band, where δ is a fixed parameter typically equals 2.

Both Moving Average and Bollinger Bands features are shown in Figure 5.2.

Figure 5.2: Dataset features: Bitcoin Closing prices (blue), its 7 and 21-days moving average
(dashed green and red lines) and its lower and upper Bollinger bands (light orange)

Even thoughwe often consider recent observations to bemore relevant, the simplemoving
average weights all observations equally. Conversely, the exponential moving average
decays the weights of older observations. This can be defined recursively as:

D. Gangas 46

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

EMA = αSt + (1− α)EMAprev (5.4)

for any α ∈ [0, 1].

The 12-day and 26-day exponential moving averages (EMAs) are often the most quoted
and analyzed short-term averages. They are also used to create indicators like the moving
average convergence divergence (MACD). The MACD is calculated by subtracting the 26-
period Exponential Moving Average (EMA) from the 12-period EMA. All these feautures
were also included in our dataset. As a last feature, the percentage change between the
current and its prior price was incorporated in our dataset.

To sum up, the newly created features in our dataset are: (a) a 7 and 21-day MA, (b)
the Bollinger bands volatility indicator with 21-dayMA and δ=2, (c) a MACD(26,12) trend
indicator and (d) the percentage difference in a 1-day span. Besides these, as in the
previous dataset this one also includes Bitcoin’s Market Capitalization and Volume.

5.3 Bayesian Neural Network model

The Dropout NN model does not require any alteration from a standard frequentist neural
network, thus all methodology presented in the previous section also applies here with
minor changes. We only add L2 weight regularisation term which corresponds to choosing
a prior. Modeling uncertainty with Monte Carlo dropout works simply by running multiple
forward passes through the model with different dropout masks every time.

To tune themodel, given its superiority in application A, I decided to opt for Bayesian optim-
ization to obtain the model setting with the minimum MSE in the validation set. For each
prediction 50 forward stochastic passes were made, leading to 50 different predictions.
By computing the average and the variance of this sample we get an ensemble predic-
tion. For the evaluation we compare the MSE between the real data and the ensemble
averaging of the predicted data. Τhe process was run in Google Colab for 100 iterations
and took roughly 2.15’ hours to finish. This time, the dropout rate was excluded from
the process and the probability was set to p=0.1. In addition, for an appropriate setting,
weight-decay λ and prior length-scale l were added as hyperparamaters in our Bayesian
optimization framework. More information about them can be found in the paper [29]. It is
a big relief that these are the only parameters to optimize when using the MC Dropout ap-
proach, considering the fact that sampling methods like MCMC and HMC usually require
many parameters to optimize.

The Table C.1 in Appendix presents the top 50 tunedmodels out of the 100 sorted w.r.t their
MSE loss. A better intuition could be inferred though, by looking at the partial Dependence
plots that are shown in Figure 5.3.

D. Gangas 47

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

Figure 5.3: Partial Dependence plots in matrix format

The best hyperparameters configuration resulting from Bayesian optimization is the fol-
lowing:

• learning rate: 0.0004489

• layers: 2

• number of units in each layer: 369

• batch size: 100

• λ: 0.000001

• l: 0.9

The architecture of the model is also depicted in Appendix Figure A.3 in a plot format.

5.4 Results

5.4.1 Loss plot

In the left subfigure, we can observe the loss of the different models that Bayesian optim-
izer tested, whereas in the right we observe the loss of our best model that the optimizer
chose. It started with a setting that had a validation error of an order of magnitude of over
−3 and it ended up after 100 iterations, with a model with an order of magnitude of −4 and
specifically a validation loss of 47 × 10−4. Interestingly, after 80 iterations the optimizer
seems to have found a good hyperparameter subspace with models similar to each other
in performance.

D. Gangas 48

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

(a) Convergence after 100 iteration in Bayesian opt.
framework

(b) BNN’s loss plot

Figure 5.4: Loss plots of Bayesian optimized BNN

5.4.2 Prediction plots

Presented below are our prediction intervals that were estimated from our BNN model
with a standard deviation multiplied by factors of 1, 1.5 and 2 respectively. Unfortunately,
our test dataset includes only 108 samples, making it difficult to infer safe assumptions of
how well our model estimates the prediction intervals. However, we will make an effort to
extract some interesting information from the results.

Clearly, in Figure 5.5 with the strict configuration of +/- the standard deviation from the
ŷmean, we can observe that on days with small volatility, the predicted intervals correctly
contained the price. Yet, the intervals fail to predict the price range in sharp, extreme
movements. A solution is to multiply the predicted volatility by factors more than one
(like the Bollinger Bands). Indeed, the multiplying factors of 1.5, 2 increase the correct
predictions at the cost of loosened price prediction ranges. It’s a trade-off that has to be
made. Tighter prediction intervals means higher risk of failure, whereas broader ranges
means looser price prediction thresholds. It’s up to the user to choose which type of
intervals suits him better.

One last point that I would like to outline is that prediction intervals could also be used for
the detection of outliers. Anomaly detection and volatility estimation are key components
in financial markets and are even more essential now in the cryptocurrency markets, given
their highly volatile nature. A policy that could be followed, for example, is that every
price that exceeds the predicted ranges in 1.5 × σ configuration will be categorized as
high movement, whilst every price that exceeds the predicted barriers in 2 × σ setting
will be categorized as extreme movement. Extreme movements often create bargains in
the markets. High and extreme price movements, consequently, could trigger a trading
signal to an agent to take action. A simple policy could be for example, the oft heard ”Buy
Low, Sell High” Strategy. Of course, this project was not made for investment and trading
purposes. Nevertheless, predicting the market is very risky and a realistic investment
system should be implemented by taking into account the active environment which is
ever-evolving.

D. Gangas 49

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

Figure 5.5: BTC Closing price prediction intervals with +/-σ

Figure 5.6: BTC closing price prediction intervals with +/-1.5×σ

D. Gangas 50

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

Figure 5.7: BTC Closing price prediction intervals with +/-2×σ

D. Gangas 51

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

6. DISCUSSION AND FUTURE WORK

6.1 Conclusion

In this thesis, we started by presenting a general introduction to the Efficient Market Hypo-
thesis, while we introduced blockchain technology in short. We continued by showing all
the components and methods derived from the domain of Machine Learning, in a compre-
hensive theoretical manner, which we then applied to a financial time series. Moving on to
our first application, we showed how neural networks, especially LSTM and some of their
variations, are useful tools in price forecasting. We compared our baseline hand-tuned
LSTM model with the corresponding statistical one, and we showed its superiority over it.
Beyond the hand-tuned LSTM, we applied an LSTM network, optimized by the Bayesian
framework, and an LSTM-FCN model to our dataset, both resulting in highly intriguing
outcomes. Afterwards, we introduced the aim of our second and last task, concerning
the quantification of the uncertainty over Bitcoin’s Closing price. The quantification of the
uncertainty was handled via model averaging of multiple stochastic forward passes of an
approximate Bayesian Neural Network, implemented following the Monte Carlo Dropout
technique. This treatment allowed us to estimate the fluctuation boundaries for Bitcoin’s
next day Closing price. In contrast to the first application, this time a more sophisticated
dataset was fed into our network, in which technical indicators as well a mini portfolio of
correlated virtual coins were included. Lastly, as a final point, we illustrated how the res-
ults of the second algorithm could be interpreted in monitoring extreme price events in
cryptocurrency markets over a 24-hour time period.

6.2 Future Work

This project can expand in the future in many different directions. In this section, I will
propose 3 potential applications that can be implemented in the future. First of all, one
extension could be the exploitation of the results of the proposed BNNmodel in the second
application to perform trades based on the prediction intervals as noted in section 5.4.2.
For instance, if the lower predicted threshold is still higher than the price at which we
bought the asset, then the algorithm is triggered to sell and receive the residual gain. In
the same manner, the trading amount could be determined based on the confidence of
the algorithm. In simple linear fashion, when the algorithm is confident it could inform
the investor to increase the bet, while if not, to decrease it. Of course, several different
strategies could be followed as well. Moreover, the networks in both applications could
be extended to perform multi-step predictions rather than only a single one. It would be
interesting to attempt to predict the t + k cryptocurrency movements, where k could be
for example 5. Multi-step predictions, however, are very challenging, due to the error
accumulation at each step. Effective ways have been introduced to partially alleviate
this, such as with the Recursive Multi-step Forecast method, where the prediction at each
step is used as input for the next one, meaning that the network is always attempting a
one-step prediction but the final result is a multi-step forecasting. A final extension could
be the forecasting of multiple different cryptocurrencies instead of only two. This can be
implemented in various ways. One would be to create a unified predictor that predicts the
prices of all the virtual coins simultaneously at each time step, whereas the 2nd approach
would utilize the Transfer Learning technique in an already pre-trained model. The latter
method should benefit the newly released coins that sustain small price historical datasets.

D. Gangas 52

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

ABBREVIATIONS - ACRONYMS

ML Machine Learning

DL Deep Learning

MLP Multilayer Perceptron

ANN Artificial Neural Network

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

GRU Gated Recurrent Unit

OHLC Open-High-Low-Close

FCN Fully Convolutional Networks

MSE Mean Squared Error

RMSE Root Mean Squared Error

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MPE Mean Percentage Error

MC Monte Carlo

D. Gangas 53

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

APPENDIX A. MODELS ARCHITECTURES

(a) LSTM (b) Bayesian opt. LSTM

Figure A.1: LSTM and Bayesian optimized LSTM

D. Gangas 54

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

Figure A.2: LSTM-FCN

D. Gangas 55

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

Figure A.3: MC-dropout BNN

D. Gangas 56

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

APPENDIX B. APPLICATION A: HYPERPARAMETERS TRIED BY
BAYESIAN OPTIMIZER

Table B.1: The 50 search results tried for the LSTM by Bayesian optimizer

MSE Loss learning rate layers units dropout rate batch size
0.00047 0.00076 2 222 0.10000 100
0.00048 0.00003 2 512 0.10000 5
0.00052 0.00009 2 500 0.55562 86
0.00052 0.00131 2 43 0.29225 57
0.00060 0.00005 2 375 0.23611 34
0.00062 0.00000 2 512 0.10000 5
0.00067 0.00072 2 452 0.10213 58
0.00071 0.00013 2 292 0.11264 69
0.00077 0.00048 2 18 0.11201 12
0.00078 0.00001 2 512 0.90000 5
0.00078 0.00018 2 31 0.10871 11
0.00078 0.00001 2 483 0.44433 85
0.00083 0.00008 2 501 0.89991 56
0.00095 0.00023 2 508 0.87676 99
0.00096 0.00015 2 337 0.89176 98
0.00097 0.00064 2 476 0.48830 100
0.00111 0.00023 3 70 0.31345 9
0.00121 0.00017 2 65 0.71091 99
0.00237 0.00027 4 282 0.54530 10
0.00256 0.00057 2 192 0.53066 13
0.00336 0.00035 2 440 0.86009 10
0.00473 0.00093 3 312 0.89769 89
0.00496 0.00000 2 512 0.10000 34
0.00506 0.00017 5 397 0.12212 86
0.00508 0.00001 2 309 0.10000 24
0.00527 0.01000 2 5 0.10000 17
0.00529 0.00008 3 290 0.75380 18
0.00543 0.00220 3 38 0.17832 57
0.00560 0.00000 2 397 0.10000 5
0.00570 0.00000 2 40 0.10641 12
0.00598 0.00000 2 509 0.45698 42
0.00605 0.00004 2 98 0.11765 100
0.00624 0.00057 2 8 0.55249 16
0.00641 0.00005 2 35 0.77890 12
0.00643 0.00004 4 512 0.10000 100
0.00644 0.00001 4 215 0.26522 30
0.00664 0.00039 5 113 0.80741 61
0.00669 0.00001 2 21 0.10690 68
0.00836 0.00001 5 510 0.88634 93
0.00905 0.01000 2 512 0.10000 85
0.01205 0.00000 2 456 0.86499 95
0.01323 0.00664 3 240 0.56620 13
0.01339 0.00859 2 237 0.10165 21
0.01486 0.00963 2 476 0.88146 96
0.01585 0.00078 5 510 0.10768 17
0.02257 0.00000 5 179 0.10028 97
0.02420 0.01000 5 512 0.90000 100
0.03334 0.01000 2 5 0.90000 89
0.05631 0.00000 2 42 0.43731 22
0.08367 0.00000 5 19 0.89576 12

D. Gangas 57

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

APPENDIX C. APPLICATION B: TOP 50 HYPERPARAMETERS TRIED
BY BAYESIAN OPTIMIZER

Table C.1: Top 50 out of 100 search results tried for the BNN by Bayesian optimizer

Loss learning rate layers units batch size λ l
0.0004070 0.0004489 2 369 100 0.0000010 0.9000000
0.0005231 0.0000180 2 200 5 0.0000010 0.4000000
0.0005481 0.0000167 2 235 5 0.0000010 0.4191892
0.0005510 0.0000516 3 313 91 0.0000239 0.8686223
0.0005553 0.0000716 2 512 100 0.0000018 0.9000000
0.0005706 0.0003104 2 125 100 0.0100000 0.9000000
0.0006238 0.0000530 2 63 5 0.0000010 0.9000000
0.0006577 0.0000426 3 233 100 0.0100000 0.4000000
0.0006655 0.0001651 2 512 59 0.0000010 0.4000000
0.0006761 0.0003080 2 296 100 0.0100000 0.9000000
0.0006990 0.0002468 3 66 36 0.0004539 0.7909129
0.0007309 0.0000927 5 288 67 0.0000931 0.8338927
0.0007386 0.0000061 2 234 5 0.0100000 0.9000000
0.0008954 0.0085223 2 508 69 0.0050253 0.4012996
0.0008978 0.0030425 2 122 100 0.0100000 0.9000000
0.0009239 0.0000396 2 123 55 0.0100000 0.9000000
0.0009968 0.0005845 2 512 56 0.0100000 0.9000000
0.0010383 0.0000038 2 201 5 0.0000010 0.9000000
0.0010900 0.0000117 2 372 5 0.0100000 0.9000000
0.0010953 0.0018066 2 403 100 0.0009417 0.5013540
0.0011104 0.0000281 4 427 50 0.0000292 0.6221922
0.0011246 0.0100000 2 379 100 0.0001606 0.9000000
0.0011400 0.0000020 3 299 55 0.0000010 0.4000000
0.0011606 0.0097939 2 503 97 0.0000075 0.8879425
0.0011752 0.0000156 2 135 5 0.0000010 0.9000000
0.0012275 0.0100000 2 202 100 0.0000010 0.4000000
0.0012850 0.0001962 5 94 100 0.0100000 0.9000000
0.0013481 0.0003184 2 456 100 0.0100000 0.4000000
0.0013486 0.0012116 2 40 96 0.0059321 0.4028518
0.0014282 0.0001043 2 391 51 0.0100000 0.9000000
0.0014473 0.0000150 5 231 48 0.0100000 0.4000000
0.0014515 0.0003156 2 143 66 0.0100000 0.4000000
0.0014685 0.0000028 2 35 8 0.0000042 0.4060572
0.0014980 0.0001228 2 176 60 0.0000010 0.9000000
0.0015208 0.0000139 2 512 40 0.0000010 0.4559018
0.0015304 0.0038690 4 99 62 0.0010281 0.8420395
0.0015850 0.0000114 5 133 5 0.0000479 0.9000000
0.0015952 0.0005956 5 142 100 0.0100000 0.4000000
0.0016065 0.0007609 2 222 100 0.0001000 0.8000000
0.0016711 0.0000056 2 42 5 0.0000010 0.9000000
0.0016804 0.0000638 2 177 5 0.0100000 0.9000000
0.0017834 0.0000014 2 249 39 0.0005329 0.9000000
0.0018581 0.0000340 4 114 90 0.0067404 0.5976742
0.0018907 0.0000103 2 351 100 0.0100000 0.4000000
0.0019330 0.0000042 2 137 5 0.0029115 0.9000000
0.0019399 0.0000125 2 512 51 0.0100000 0.9000000
0.0020256 0.0100000 2 5 100 0.0000010 0.9000000
0.0021096 0.0100000 2 53 100 0.0023237 0.9000000
0.0021156 0.0000010 2 307 5 0.0100000 0.4000000
0.0021652 0.0000104 2 266 50 0.0000010 0.9000000

D. Gangas 58

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

BIBLIOGRAPHY

[1] Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850,
2013.

[2] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

[3] Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv
preprint arXiv:1012.2599, 2010.

[4] Laura Alessandretti, Abeer ElBahrawy, Luca Maria Aiello, and Andrea Baronchelli. Anticipating crypto-
currency prices using machine learning. Complexity, 2018, 2018.

[5] Gerald P Dwyer. The economics of bitcoin and similar private digital currencies. Journal of Financial
Stability, 17:81–91, 2015.

[6] Rainer Böhme, Nicolas Christin, Benjamin Edelman, and Tyler Moore. Bitcoin: Economics, technology,
and governance. Journal of economic Perspectives, 29(2):213–38, 2015.

[7] Sima Siami-Namini and Akbar Siami Namin. Forecasting economics and financial time series: Arima
vs. lstm. arXiv preprint arXiv:1803.06386, 2018.

[8] Isaac Madan, Shaurya Saluja, and Aojia Zhao. Automated bitcoin trading via machine learning al-
gorithms. URL: http://cs229. stanford. edu/proj2014/Isaac% 20Madan, 20, 2015.

[9] S. McNally, J. Roche, and S. Caton. Predicting the price of bitcoin using machine learning. In 2018
26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP),
pages 339–343, 2018.

[10] Huisu Jang and Jaewook Lee. An empirical study on modeling and prediction of bitcoin prices with
bayesian neural networks based on blockchain information. Ieee Access, 6:5427–5437, 2017.

[11] Lukáš Pichl and Taisei Kaizoji. Volatility analysis of bitcoin price time series. Quantitative Finance and
Economics, 1:474–485, 12 2017.

[12] Emmanouil Christoforou, Ioannis Z Emiris, and Apostolos Florakis. Neural networks for cryptocurrency
evaluation and price fluctuation forecasting. In Mathematical Research for Blockchain Economy, pages
133–149. Springer, 2020.

[13] Eugene F Fama. Efficient capital markets: A review of theory and empirical work. The journal of
Finance, 25(2):383–417, 1970.

[14] Werner FM De Bondt and Richard Thaler. Does the stock market overreact? The Journal of finance,
40(3):793–805, 1985.

[15] Narasimhan Jegadeesh and Sheridan Titman. Returns to buying winners and selling losers: Implica-
tions for stock market efficiency. The Journal of finance, 48(1):65–91, 1993.

[16] Miljan Lekovic. Evidence for and against the validity of efficient market hypothesis. Economic Themes,
56:369–387, 11 2018.

[17] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Technical report, Manubot, 2019.

[18] Zibin Zheng, Shaoan Xie, Hongning Dai, Xiangping Chen, and Huaimin Wang. An overview of block-
chain technology: Architecture, consensus, and future trends. In 2017 IEEE international congress on
big data (BigData congress), pages 557–564. IEEE, 2017.

[19] A. R. Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans-
actions on Information Theory, 39(3):930–945, 1993.

[20] Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward networks
with a nonpolynomial activation function can approximate any function. Neural networks, 6(6):861–867,
1993.

[21] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. nature, 323(6088):533–536, 1986.

D. Gangas 59

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Deep Learning for cryptocurrency assets: Employing series forecasting models for price prediction and uncertainty quantification

[22] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[23] Andrew D Back and Ah Chung Tsoi. Fir and iir synapses, a new neural network architecture for time
series modeling. Neural computation, 3(3):375–385, 1991.

[24] Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

[25] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–
1780, 1997.

[26] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual prediction with
lstm. 1999.

[27] David JC MacKay. The evidence framework applied to classification networks. Neural computation,
4(5):720–736, 1992.

[28] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
neural networks. arXiv preprint arXiv:1505.05424, 2015.

[29] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncer-
tainty in deep learning. In international conference on machine learning, pages 1050–1059, 2016.

[30] Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of dropout in recurrent neural
networks. In Advances in neural information processing systems, pages 1019–1027, 2016.

[31] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dro-
pout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research,
15(56):1929–1958, 2014.

[32] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. The Journal
of Machine Learning Research, 13(1):281–305, 2012.

[33] Peter I Frazier. A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

[34] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudinov. Unsupervised learning of video rep-
resentations using lstms. In International conference on machine learning, pages 843–852, 2015.

[35] F. Karim, S. Majumdar, H. Darabi, and S. Chen. Lstm fully convolutional networks for time series
classification. IEEE Access, 6:1662–1669, 2018.

D. Gangas 60

	CONTENTS
	INTRODUCTION
	Financial and Cryptocurrency Background
	Efficient Market Hypothesis
	Blockchain Technology

	Deep Learning Background
	Feed-forward Neural Networks
	Activation function
	Loss function
	Back-propagation algorithm
	Optimizer
	Recurrent neural networks
	Long Short-Term Memory network
	Bayesian Neural Networks
	Generalization methods
	Model selection
	Regularization techniques
	Early stopping
	Dropout
	L2-regularization

	Hyperparameter Optimization

	Application A: Cryptocurrency Price prediction for BTC, LTC
	Objective
	Dataset
	Models
	LSTM
	Bayesian optimized LSTM
	LSTM-FCN

	Results
	Loss Plots
	Comparing ARIMA
	Evaluation metrics
	Prediction plots

	Application B: Estimating one-step Prediction Intervals
	Objective
	Dataset
	Correlated assets
	Technical Indicators

	Bayesian Neural Network model
	Results
	Loss plot
	Prediction plots

	Discussion and future work
	Conclusion
	Future Work

	ABBREVIATIONS - ACRONYMS
	APPENDICES
	Models architectures
	Application A: Hyperparameters tried by Bayesian optimizer
	Application B: Top 50 Hyperparameters tried by Bayesian optimizer
	REFERENCES

