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ABSTRACT

Hate Speech consists the use of abusive or stereotyping speech against a person or a
group of people, based on their race, religion, sexual orientation and gender. In modern
days the Internet and social media made the spread of hatred a lot more easy and fast
than the past, as well as gave people the ability to do so anonymously. The purpose of
this Thesis is to create a model that can detect such content in social media with the use
of Machine Learning.

Firstly, we will define the problem of hate speech detection and discuss about existing
research in this field. Then, we will expand on the necessary theoretical background
information regarding Machine Learning, focusing particularly on the neural networks that
will later be used. Following that, we will implement and train our own model built with
LSTM neural networks. Finally, we will present and discuss the results of our model.

SUBJECT AREA: Natural Language Processing

KEYWORDS: Hate Speech, Classification, Natural Language Processing, Neural
Networks, Recurrent Neural Networks



ΠΕΡΙΛΗΨΗ

Η ρητορική μίσους αφορά τη χρήση υβριστικού ή στερεοτυπικού λόγου εναντίον ενός ατό-
μου ή μίας ομάδας ανθρώπων, βασισμένου σε χαρακτηριστικά όπως η φυλή, η θρησκεία,
ο σεξουαλικός προσανατολισμός και το φύλο. Στις μέρες μας το Διαδίκτυο και τα Μέσα Κοι-
νωνικής Δικτύωσης έχουν καταστήσει τη μετάδοση μίσους πολύ πιο εύκολη και γρήγορη
από το παρελθόν, ενώ έδωσαν επίσης στον κόσμο την ευκαιρία να το κάνει ανώνυμα.
Ο σκοπός αυτής της πτυχιακής είναι η δημιουργία ενός μοντέλου το οποίο θα μπορεί να
ανιχνεύσει έκφραση ρητορικής μίσους στα μέσα κοινωνικής δικτύωσης με τη χρήση της
Μηχανικής Μάθησης.

Αρχικά, θα ορίσουμε το πρόβλημα της ανίχνευσης ρητορικής μίσους και θα συζητήσουμε
για την υπάρχουσα έρευνα στο πεδίο αυτό. Έπειτα, θα παραθέσουμε το απαραίτητο θεω-
ρητικό υπόβαθρο αναφορικά με τη Μηχανική Μάθηση, εστιάζοντας ιδιαίτερα στα νευρω-
νικά δίκτυα τα οποία και θα χρησιμοποιήσουμε αργότερα. Στη συνέχεια, θα υλοποιήσουμε
και θα εκπαιδεύσουμε το δικό μας μοντέλο χρησιμοποιώντας Μακροχρόνια Βραχυχρόνια
Μνήμη. Τέλος, θα παρουσιάσουμε και θα σχολιάσουμε τα αποτελέσματα μας.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Επεξεργασία φυσικής γλώσσας

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Ρητορική μίσους, Tαξινόμηση, Eπεξεργασία φυσικής γλώσσας,
Nευρωνικά δίκτυα, Επαναλαμβανόμενα Νευρωνικά Δίκτυα
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Hate Speech Detection Using Neural Networks

1. INTRODUCTION

The technological advancement of the recent era has affected modern life and society all
over the world greatly. In recent years, accessibility to sectors such as education, medi-
cine, industry, transportation etc. has become a lot easier. Due to the convenience and
efficiency provided by technology, our lives have improved significantly. Communications
have also been affected by the continuous advance of technology. Nowadays, social
media and social networking seem to have turned into an irreplaceable part of our lives,
making communication easier than it ever was. According to a research in 2019 [15], only
in USA, 79% of the population keep an online profile, while this percentage was only 8%
in 2005 and 35% in 2010 [6]. Teenagers have an even higher percentage, also logging in
their profiles in daily basis.

Human interactions have dramatically changed with the increase of social media use.
Teenagers and adults from all over the world have the opportunity to communicate with
each other and share ideas and thoughts very easily using their online profiles. Moreover,
anonymity makes things even easier, since it gives people the ability to express them-
selves without being tracked. It becomes obvious that this evolution brings a multitude of
advantages, but as most things, it harbors some disadvantages as well. In this work we
will focus on a specific disadvantage; the spread of Hate Speech through the Internet and
social media platforms.

Social media platforms should not be blamed for this, since hatred is apparent in many
modern life aspects. However, they stand as a platform for people to come out and spread
Hate Speech easily and anonymously. In an attempt to control Hate Speech, modern so-
cieties, such as USA and EU, have voted against such kind of public speech making it
illegal. As a result, social media platforms are also putting a lot of effort in order to comply
with this legislation and effectively eliminate comments that promote hatred. One way to
eliminate Hate Speech is to review only posts reported by other platform users. Although,
due to the massive use of social media the amount of data distributed through them is
exceedingly high making it impossible for humans to track problematic and offensive con-
tent. This is also ineffective, because it relies on users’ subjectivity and trustworthiness,
as well as depending on their ability to thoroughly track and flag such content. For all
the above reasons, it becomes obvious that for all social media platforms which wish to
comply with global and EU laws against hatred (anti-racist laws etc), but also to protect
their users that belong to a minority group and make their experience in the platform more
pleasant, an automatic tool to detect hate speech is really important.

In this chapter we reviewed the importance of dealing with Hate Speech and why using
humans to detect such content is inefficient. Our goal for this our work, is to develop an
automatic tool that can detect effectively such kind of content. In order to create such a tool
we first need to transform the text of user comments into a form that is understandable by
a computer program, more specifically a classifier in our case. Then we have to train the
aforementioned classifier with an annotated dataset. In chapter 2, we introduce the Hate
Speech detection task, we provide a formal definition of what constitutes Hate Speech,
we present related work and research in the field and finally we give a detailed description
of Neural Networks and how they work since they are a core concept of this Thesis. In
chapter 3, we provide a detailed description of our model and the techniques we employed
to achieve our goals, while in chapter 4 we present our results and compare them with
other relevant work. Finally, we will conlude this Thesis in chapter 5 by giving a summary
of our findings and discussing future work.

V. Spithas 11
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2. BACKGROUND AND RELATED WORK

In chapter 1, we discussed that the increase of the use of Hate Speech in Social Media
is a major problem and we signified the importance of the design of an automated tool to
point out such content. In section 2.1 we will formally describe the task of detecting Hate
Speech. The classifier, which we will build in order to find out such content, needs to be
trained and tested on an already annotated dataset. In Section 2.2 we provide a formal
definition of Hate Speech as it is given by the European Committee of Ministers and we
will also extend it. In section 2.3 we will discuss about relevant work that has been done
in the field. Finally, in section 2.4, we will provide some background knowledge needed
regarding Neural Networks.

2.1 Hate Speech detection

The goal of a Hate Speech Detection model is, given an input text T, to output True, if T
contains Hate Speech and False otherwise. In order to perform this we will construct a
model that will be trained with an already annotated dataset and then will be tested on
unseen data in order to evaluate it.

Firstly, we will transform the input text in a format that can be understood and processed
by our model via a text transformation method. The transformed data will then be fed
into the machine learning algorithm, a Neural Network in our case, which will decide in
which of two classes each element belongs. The process consists of a training phase
and an evaluation phase. During the training phase, the classifier will be trained with the
annotated data. Finally, after the training process is over, the classifier will be tested with
data not encountered yet, in order to measure its accuracy. This will be done by counting
how many correct predictions it achieved.

As we mentioned above, an annotated dataset is required in order to be used as input
for our classifier. One way to obtain such a dataset is to have human annotators to label
the dataset. A problem that can arise is that the annotators can interpret the Tweets
objectively based on their personal education and background, due to absence of a formal
and widely accepted definition of Hate Speech, and therefore conclude in annotations that
do not agree with each other.

There has been done plenty of research regarding this problem. In their work Waseem
2016 [23], used 6,909 tweets annotated by amateurs in CrowdFlower in order to research
the difference between amateur and expert annotators. For that reason, except from ama-
teurs, they also had experts, such as feminist and anti-racist activists, annotate the tweets
that failed a test. They also gave them the option to skip a tweet or to annotate it as noise.
Eventually, they concluded in a low percentage of agreement between the two annotat-
ors group. A possible way to obtain decent annotation from amateurs is if only the data
with high level agreement are taken into account . Compared to Waseem and Hovy 2016
[24], the aforementioned technique performs worse, which is caused by a high number of
false positive results. It is also worth noting that this number is high even in the dataset
annotated by experts.

V. Spithas 12
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2.2 Hate Speech Definition

As we discussed above, an annotated dataset is needed in order to construct our classifier.
It is common practice to have humans annotate our data in order to find such a dataset
. However, this process can be problematic as the labeling is based on each annotator’s
perception. Because of that, it is important for a formal definition to exist. Such a definition
is provided by the European Committee of Ministers (Brown, 2017 [4]) as follows, “it covers
all forms of expressions that spread, incite, promote or justify racial hatred, xenophobia,
antisemitism or other forms of hatred based on intolerance”. Furthermore, we can expand
this definition by including speech that can be “insulting, degrading, defaming, negatively
stereotyping or inciting hatred, discrimination or violence against people by targeting their
race, ethnicity, nationality, religion, sexual orientation, disability, gender identity”. In this
work we will use already annotated datasets.

2.3 Related Work

In this section we will present related work in the field of Hate Speech detection. The most
notable papers in the field are Davidson et al. 2017 [8] and Badjatiya et al. 2017 [1]. We
will describe the features they used and the classification methods they employed, as well
as present their results.

2.3.1 Automated Hate Speech Detection and the Problem of Offensive Language

The first work to be presented is Davidson et al. 2017 [8]. In this work, the authors
aim to classify user comments as offensive language, expression of severe hate speech
or neither. As a result, they label their dataset into the following three categories: hate
speech, offensive language, or neither.

They argue that the bag-of-words approach, while it tends to have high recall it also leads
to high rates of false positives because the appearance of offensive words to tweets not
classified as hate speech can lead to their misclassification. In order to better identify
the targets and intensity of hate speech they employed syntactic features, while other
approaches, unfortunately, have been found to not be able to distinguish hate speech
from offensive language.

They gathered their data by using the Twitter API and by searching for hate speech
keywords from the Hatebase.org. Their datatset was then annotated with the use of
CrowdFlower. They performed preprocessing to their data by making them to lower case,
stemmed them with the Porter stemmer and then created unigram, bigram, and trigram
features, each weighted by its TF-IDF value. In addition, they have used a sentiment lex-
icon for social media to include sentiment analysis as a feature. They experimented with
various algorithms such as logistic regression with L1 and L2 regularization, naive Bayes,
decision trees, random forests and linear SVM for the classification of their dataset. Their
source code is publicly available on their GitHub page 1.

From their experiments, they concluded that the best technique is logistic regression with
L2 regularization. They tested with 5-fold cross validation. Their final model achieved a
precision of 0.91, a recall of 0.90 and a F1-score of 0.90. However, they found out that

1https://github.com/t-davidson/hate-speech-and-offensive-language

V. Spithas 13
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40% of actual hate speech is wrongly classified and only 5% of their offensive language
was labeled as hate.

As future work, the authors want to study different uses of hate speech, such as the dif-
ferent target groups for it, and also delve into the characteristics of people expressing
it.

2.3.2 Deep Learning for Hate Speech Detection in Tweets

The second work we will present is Badjatiya et al. 2017 [1]. In their work they used a
dataset provided by Waseem and Hovy 2016 [24], which classifies tweets as racist, sexist
or neither. For the representation of the text they tried various techniques. They used char
n-grams, TF-IDF as well as Bag of Words vectors (BoWV). They also experimented with
various classification techniques such as Logistic Regression, Random Forest, SVMs,
Gradient Boosted Decision Trees (GBDTs) and Deep Neural Networks(DNNs).

They tested three neural network architectures, each initialised with random word embed-
dings or embeddings by GloVe. The three arcitectures they used are CNN, LSTM(RNN)
and FastText with word vectors similar to BoW, except they were updated through back-
propagation. Additionally, they attempted to use some other methods as well, such as
SVMs and GBDTs. For the evaluation of their models they used 10-Fold cross validation
and for their metrics they used weighted macro precision, recall and F1-scores. Their
source code is also publicly available on their GitHub page 2.

They concluded that the best method was “LSTM + Random Embedding + GBDT” which
was initialized to random vectors, trained the LSTM network, and then learned embed-
dings were used to train a GBDT classifier. For future work, they wish to test the import-
ance of the network of the users.

2.4 Neural Networks

Artificial Neural Networks (ANN), or simply Neural Networks (NN), are inspired by their
biological counterparts and they attempt to learn and process information. The core com-
putational unit of the networks is the artificial neuron or simply neuron. NNs are comprised
of a collection of connected neurons [16].

2.4.1 Neurons

The basic unit of computation in Neural Networks is the neuron. A neuron takes as input
the weighted sum of a number of real values and then possibly adds a number to that sum,
usually called the bias. Afterwards, a function is applied to the result of the sum, which
is called the activation function, and the result of this function is the output of the neuron.
The sum can be formally described as:

z =
∑
i

wixi + b

where xi is each element of an input vector x⃗ and wi is the weight for the corresponding
input value. We can describe all the weights with a vector called w⃗. The dot product of

2https://github.com/pinkeshbadjatiya/twitter-hatespeech

V. Spithas 14
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the sum can be written as:
z = w⃗ · x⃗+ b

If we call our activation function f then the output of the neuron can be written as:

y = f(z) = f(w⃗ · x⃗+ b)

Figure 2.1: A depiction of a neuron

2.4.2 Layers

A neural network is comprised of multiple layers, each of which is comprised by one or
more neurons. Every neural network has exactly one input layer, exactly one output
layer and zero or more hidden layers.
The input layer receives the initial data, and the number of its neurons is usually equal to
the number of features of the input data. The output layer can have one or more neur-
ons and its output is the output of the network. The number of neurons of the output
layer is dependent on the task. Between the input and the output layers there can be any
number of layers, called the hidden layers. Networks that contain multiple hidden layers
are called deep networks and as a result the subfield of Machine Learning that employs
their use is called Deep Learning. Networks without a single hidden layer are only cap-
able of representing linear separable functions or decisions (for example, the “AND” and
“OR” problems but not the “XOR” problem). Although, these problems are rather trivial
and usually they can be solved with simpler methods than NNs like Support Vector Ma-
chines (SVMs). Networks with exactly one hidden layer can approximate any function that
contains a continuous mapping from one finite space to another, while two layers suffice
to represent an arbitrary decision boundary to arbitrary accuracy with rational activation
functions and can approximate any smooth mapping to any accuracy [12].

While there is not a specific formula for the number of neurons to use in a hidden layer,
it is important to decide them properly so we can ensure our model would perform well.
If too few neurons are used then we can end up in underfitting, that is our model is not
complex enough to capture the underlying structure of the data effectively. On the other
hand, if too many neurons are used, we can end up in overfitting. In this case our model
will not be able to generalise for unseen data because it learned too close to the training
data.

V. Spithas 15
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There are actually many rule-of-thumb methods for a good decision for the amount of
neurons for the hidden layers, such as the following [11]: The number of hidden neurons
should be between the size of the input layer and the size of the output layer. The number
of hidden neurons should be 2/3 the size of the input layer, plus the size of the output
layer. The number of hidden neurons should be less than twice the size of the input layer.
In the end, finding an appropriate number for the hidden layers, in order to find the right
balance between underfitting and overfitting, comes down to trial and error.

2.4.3 Activation Function

The output of the activation function f of a neuron is the output of that neuron. For starters,
the activation function must be a non linear function because it has been proven that a
network of only linear activation functions can be reduced to network with a single layer.
Such a network, unfortunately, is only able to solve linearly separable functions [7]. As a
result, we desire the activation function to be non-linear. Furthermore, it is also needed
to be differentiable. This is required by the optimization algorithm called backpropagation
which will be used to train our model. We will explain it later.

The most frequently used ones are the following:

Figure 2.2: Frequently used activation functions

2.4.3.1 The sigmoid function

The sigmoid function, aka a special case of the logistic function, is σ(x) = 1
1+e−x . The

sigmoid function squashes non-linearly its input into the range [0, 1].

2.4.3.2 Tanh

A similar function to the sigmoid is tanh(x) = ex−e−x

ex+e−x . Here the input values are squashed
non-linearly into the range [−1, 1]

2.4.3.3 ReLU

Another simple non-linearly activation function is ReLU(x) = max(0, x)
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2.4.3.4 Softmax

The softmax function is usually used in normalizing the output of a network to a probability
distribution over predicted output classes. Softmax is frequently used as it is very common
for neural networks to produce probabilities as output.

softmax(zi) =
ezi∑d
j=1 e

zi

2.4.4 Training

Neural Networks, in order to be able to perform their respective task, are trained with the
use of a training set. Each element of the training set is comprised by an input vector x⃗
and a label y. The goal of the training phase is to find the values of parameters Wi and
bi for each layer i that lead to predictions ŷ as close as possible to the actual label y with
respect to a loss function L, that we will explain next.

2.4.4.1 Loss Function

In order to measure how close a prediction ŷ is to y, we will use a function called the
loss function, aka the cost function. The lowest the value of this function the highest
the similarity of the prediction and the actual label. Therefore, the goal of training is to
minimize the loss function over our training set.

One of the most common loss functions is Mean Square Error (MSE) and is computed
as:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2

Another very common loss function is cross-entropy loss. This function is the difference
between two probability distributions for a given random variable or set of events. In a
binary classification problem, the cross-entropy loss for a certain training instance x with
predicted class ŷ and actual class y is:

LCE(y, ŷ) = − log p(y|x⃗) = −[y log ŷ + (1− y) log(1− ŷ)]

In a multiclass problem, where we have C classes, the label y⃗ is a vector over the C
classes of the true output probability distribution. In this case the cross-entropy loss for
each prediction ⃗̂y from a training instance x⃗ is calculated by

LCE(⃗̂y, y⃗) = −
C∑
i=1

yi log ŷi

2.4.4.2 Gradient Descent

As we mentioned above, we want to minimize our loss function. In order to do that we will
use an algorithm called Gradient Descent (GD)
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Gradient descent is an iterative algorithm for finding a local minimum. In order to find
the local minimum of a function we start with a random point and calculate the derivative
(gradient) there and then we move towards the direction of the negative gradient. We
repeat this process until either the gradient is 0, in which case we found our minimum, or
until the gradient changes sign, in which case we decrease the step even more and keep
moving towards the minimum. Even though this iterative algorithm does not guarantee
that we will find the global minimum, and in fact it is very likely that we will not, it has been
proven that if we can find a local minimumwe can end up with good enough results without
a very big amount of computations.

For a multi variable function F (x) in order to go from a point a towards the local minimum
we move to the direction of the negative gradient of F at a, −∇F (a). It follows that, if
an+1 = an − γ∇F (an) for γ ∈ R+ then F (an) ≥ F (an+1). In other words the term γ∇F (a)
is subtracted from a because we want to move against the gradient, towards the local
minimum. The term γ is called the learning rate and can be a constant or change in each
iteration. The bigger the γ the faster we will converge towards the local minimum but it
could also lead us to overshoot the minimum. A very little γ, on the other hand, can lead
us more safely to the local minimum but it will take more time. Therefore, it is common to
begin the learning rate at a higher value, and then slowly decrease it.

Figure 2.3: Simulation of Gradient Descent’s convergence after multiple iterations

In practice, we use the whole dataset each time before updating the weights when we
use GD to train an NN. As a result, we end up performing numerous calculations in each
iteration for a single improvement.

For that reason variations of GD have been introduced, and in fact they are the ones
that are mainly used. Two of the most popular are Stochastic Gradient Descent (SGD)
and Minibatch Gradient Descent. SGD randomly shuffles all the training samples and
updates the weights once after each full iteration, while Minibatch Gradient Descent splits
the training data randomly into smaller subsets, called batches, and updates once after
each batch. Both of them lead into converging faster than GD, but the odds of resulting in
worse minimizations are higher.
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2.4.4.3 Backpropagation

So far we have only talked about data going forward in a NN. That is, data entering in
the input layer, passing through all the hidden layers and finally exiting through the output
layer. That path is called the forward pass or forward propagation.

On the other hand, at the end of each iteration, that is when all the data of a batch have
passed through the network, we can compute the gradient of the loss function with respect
to the weights and the biases of the network and update them accordingly. Our goal is to
update the weights and biases while trying to minimize the loss, and we achieve this with
the gradient descent method mentioned above. This process is called backpropagation.
Neural networks can be described as a combination of function composition and matrix
multiplication:

ŷ(x) = fL(WLfL−1(WL−1 · · · f 1(W 1) · ··))

For a training set there will be a set of input-output pairs (xi, yi). The loss of the model is
the cost of the difference between the predicted output ŷ(xi) and the target output yi:

C(yi, ŷ(xi))

During the backpropagation process each weight can be calculated as w′
i = wi − γ ∂C

∂wi

where wi is the last value of the weight and ∂C
∂wi

is the partial derivative calculated with
gradient descent and can be computed with the chain rule.

2.4.4.4 Training Risks

While training our model we usually split our data into two subsets, the training set that
we use to train our model and the test set that we use after the training process in order
to calculate its success rate. While training our model we want to avoid either overfitting
or underfitting

Figure 2.4: Examples of underfitting (left), overfitting (right) and the optimal balance between them
(center).

Overfitting is when our model adapts too closely, or even exactly, to the training data
and therefore fails to generalise and provide good predictions on unseen data despite the
fact it achieves high accuracy for the training data. This usually happens as a result of
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overtraining the model and/or it being more complex than can be justified by the structure
of the training data. As a result, the model ends up with low accuracy in the test set.

Underfitting, on the other hand, occurs when our model is unable to adequately capture
the underlying structure of the training data. This can be the result of undertraining the
model or of it being too simple to fit the data for the task. Underfitting is reflected by low
accuracy on both training and test sets.

Finding the right balance between the two is always important. In order to try and tackle
these problems a technique named Regularization is utilized. One of the easiest and
simplest regularizationmethods that are almost always applied, is to stop training when the
test error starts increasing, despite the fact that the training error can be further minimized,
in order to avoid overtraining our model. This technique is called early termination.

Figure 2.5: The ideal point to stop training based on the training error and the test error.

Another regularizationmethod that is commonly applied is called dropout [22]. Thismethod
randomly deactivates neurons and/or connections between neurons during the training of
a neural network, as shown in the image below.

Figure 2.6: A FNN before (a) and after (b) applying dropout

This will make the network to not rely on specific neurons or connections in order to extract
specific information during the training. After the training is finished, all the deactivated
neurons and connections will be restored.

It is worth mentioning that the use of dropout layersmake the training of models take longer
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because more epochs are required to converge. Although, the training time of each epoch
will be shorter because there are less neurons and connections [22].

2.4.5 Types of Neural Networks

Since we have discussed about all the major concepts of neural networks we will now
introduce some kinds of neural networks that are widely used.

2.4.5.1 Feedforward Neural Networks

Feedforward Neural Networks (FNN) are the most common types of NNs. In these, the
data moves only towards one direction since the neurons of one layer are only connected
with neurons of the next layer. The data enters the network in the input layer, pass through
all the hidden layers and exits the network from the output layer. The output of the output
layer is the output of the network. An FNN containing at least one hidden layer (in addi-
tion, of course, to the input and the output layers) is more specifically called a Multilayer
Perceptron (MLP).

2.4.5.2 Convolutional Neural Networks

A special case of Neural Networks is Convolutional Neural Networks (CNN). CNNs are
regularized versions of MLPs. As their name implies convolutional networks employ the
mathematical operation called convolution. These types of networks are very useful be-
cause they apply various filters and regularization techniques in order to decrease the
number of parameters of the network. A simple example use of CNNs is for image recog-
nition. Images are usually a number of pixels where each one has three colour planes,
Red, Green and Blue. For a 48× 48 image, we get 48 · 48 · 3 = 6912 of parameters for the
input layer which is a reasonable number. However, for a higher resolution image, such
as a 4k image, whose resolution is 3840× 2160, we will need 3840 · 2160 · 3 = 3 · 24883200
input parameters which is an exceptionally high number and definitely not manageable.
Other uses of CNNs include image classification as well as video recognition.

2.4.5.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are another special form of MLPs. These networks
allow the output of nodes to be fed not only in the next nodes in sequence, but also be fed
as the input to the same nodes themselves or ones in previous layers. What this means
is, that the output of each hidden layer is directed, except from the output layer, in the
hidden layer again for the next input point in order. This is known as the hidden state.
This allows them to exhibit temporal dynamic behavior. Derived from feedforward neural
networks, RNNs use their internal state (memory) to process variable length sequences
from input. This makes them useful for tasks such as speech recognition or handwriting
recognition, because the output depends on previously seen information.
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Figure 2.7: A Recurrent Neural Network, folded (left) and unfolded (right)

The normal depiction of RNNs is shown on the right in Figure 2.7. We can also depict
them as normal neural networks like the left of the figure. In this case, if for example, we
have a sequence of K words, we will have K layers, with each layer corresponding to each
word. Let us now explain the notation of RNNs:

W,V and U are weights such as all the weights of MLPs. It is important to note that these
weights are the same across all time steps. That is because they perform the same task
with each different input. The input of each time step t is xt, which would be a word in the
hate speech detection problem. As we mentioned above RNNs have a hidden state. This
is denoted by st which is the hidden state at the time step t. For the very first calculation at
the time step 0, we require s−1, which we usually initialise as 0. Finally, the network outputs
ot which is the output at time step t. In a word prediction problem, for example, that output
would be the network’s prediction for the next word. In case we are not interested about
the intermediate outputs, because we may care only about the final output of the network,
we can omit them.

A simple but commonly used extension of RNNs is that of bidirectional RNNs (figure
2.8). In practice these are two conventional RNNs stacked on top of each other. The
intuition behind them is that the input flows from both directions, left to right and right to left.
They are useful for certain problems that may require knowledge of future states. Such
problems are for example text problems where we can extract grammatical or syntactical
rules and make better predictions of the next word.

Figure 2.8: A bidirectional RNN
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A major problem with RNNs is that of the vanishing gradient. This is the phenomenon
where error gradients vanish exponentially quickly with the size of the time lag between
important events and as a result temporal dependencies that span many time steps will
effectively be discarded by the network. We will try to better illustrate this problem with an
example.

In a word prediction problem for the above example, if we want to predict the last two
words ”german” and ”shepherd”, we would need knowledge from the very beginning of
the sentence, more specifically we will have to take into account the words brown”, “black,
and “dog” which describe the german shepherd. During the training phase of the model
we would need to calculate the back propagation error of the term ”shepherd” all the way
back to ”brown”. In order to do that we need to calculate the partial derivative ∂h15

∂h2
, which

is written as ∂h15

∂h2
= ∂h15

∂h14

∂h14

∂h13
· · · ∂h2

∂h1
because of the chain rule. The problem that arises is

that when we multiply these gradients and their values are less than 1, it is possible that
the loss of “shepherd” with regards to “brown” will approach 0, therefore “vanishing”. It
becomes clear, that it is difficult to take into account words that appear near the beginning
of long sequences. As a consequence, the word “brown” may not have any impact in the
prediction of “shepherd” when doing a forward pass, since the weights were not updated
because of the vanishing gradient [17].

Another problem that may also occur, and the ”opposite” of the above in a manner, is
the problem of the exploding gradient. This issue emerges when we multiply gradients
repeatedly with values greater than 1 and resulting with values exponentially high. This
will, in turn, make the learning unstable. We can easily resolve this problem, to an extent,
by clipping the gradients if their norm exceeds a given threshold. This method is called
gradient clipping [20].

These are major problems from which RNNs suffer and because of that there has been
done a lot of research surrounding them. As a result, there have some performance
improvements in discrete cases [19]. In conventional RNN architectures, however, an
efficient way to resolve these challenges, and particularly that of the vanishing gradients,
has still not been discovered [13].

2.4.5.4 LSTM

Long short-term memory networks (LSTMs) were first proposed by Hochreiter and
Schmidhuber (1997) [14]. Their main purpose was to help overcome problems caused
by the conventional RNNs. Their key factor is that they are specialized in long-term de-
pendencies, such as words from the beginning of a sentence or even a paragraph in a
text example. Now let us delve deeper into LSTMs, as they will be our focus in this Thesis.
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Figure 2.9: An LSTM cell

The core architecture of an LSTM unit is composed by the cell state and three ”regulators”,
usually called gates, of the flow of information inside the LSTM unit: an input gate, an
output gate and a forget gate.

• The cell state is essentially the ”memory” part of an LSTM as it stores information
gathered over arbitrary time intervals. The gates regulate in what way information
will be added or removed from the cell state. This regulated flow allows the network
to learn long-term dependencies. The cell state is used for the production of the
new hidden state. It is also worth noting that LSTMs can allow gradients to flow
unchanged through the module making them able to partially solve the problem of
the vanishing gradient. However, they still suffer from the exploding gradient
problem.

• The forget gate is responsible for determining the information that should be kept
or dropped from previous steps in the cell state.

• The input gate decides which values should be left in. It, also, gives weight to the
values that will be passed, signifying their level of importance.

• Lastly, the output gate controls the extent to which the value in the cell is used to
compute the output activation of the LSTM unit.

In the equations below, the lowercase variables represent vectors. Matrices Wq and Uq

contain, respectively, the weights of the input and recurrent connections, where the sub-
script q can either be the input gate i, the output gate o, the forget gate f or the memory cell
c, depending on the activation being calculated. In this section, we are thus using a ”vec-
tor notation”. So, for example, ct ∈ Rh is not just one cell of one LSTM unit, but contains
h LSTM unit’s cells. The dimensionality of the weight matrices and the bias vector are
W ∈ Rh×d, U ∈ Rh×h and b ∈ Rh where d and h refer to the number of input features and
number of hidden units, respectively. The notation of the activation functions is as follows,
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σg is the sigmoid function, σc is the hyberbolic tangent function and σh is the hyperbolic
tangent function as well or, as the peephole LSTM paper[9][10] suggests, σh(x) = x. The
variables that we will use are xt ∈ Rd as the input vector to the LSTM unit, ft ∈ Rh as the
forget gate’s activation vector, it ∈ Rh as input/update gate’s activation vector, ot ∈ Rh

as the output gate’s activation vector, ht ∈ Rh as the hidden state vector also known as
output vector of the LSTM unit, c̄t ∈ Rh as the cell input activation vector and ct ∈ Rh as
the cell state vector. Since we cleared out the variables and the notation we will use, let
us continue with introducing the equations for the forward pass of an LSTM unit with a
forget gate.

ft = σg(Wfxt + Ufht−1 + bf )

it = σg(Wixt + Uiht−1 + bi)

ot = σg(Woxt + Uoht−1 + bo)

c̄ = σc(Wcxt + Ucht−1 + bc)

ct = ft ◦ ct−1 + it ◦ c̄t
ht = ot ◦ σh(ct)

It becomes clear that the LSTM networks are more expensive to train, but their ability to
overcome the vanishing gradient problem makes them a very common choice for many
applications of recurrent networks. There have been introduced many variations of the
LSTM, although, the basic one, that we just introduced, is still one of the more commonly
used ones. The most notable variation of LSTM is the Gated Recurrent Unit (GRU), intro-
duced by Cho et al [5] in 2014. GRU (Figure 2.10) differs from LSTM in that it combines
the forget and input gates into a single update gate and it also merges the cell state with
the hidden state. Despite their rising popularity they still fall short compared to LSTMs
in certain tasks. It has been recently proven by Weiss et al. 2018 [25] that the LSTM is
”strictly stronger” than the GRU as it can easily perform unbounded counting, while the
GRU cannot. That’s why the GRU fails to learn simple languages that are learnable by
the LSTM. Furthermore, Britz et al. 2017 [3] have shown that LSTM cells consistently
outperform GRU cells in ”the first large-scale analysis of architecture variations for Neural
Machine Translation”.

Figure 2.10: A GRU cell
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3. HATE SPEECH DETECTION PROCESS

3.1 Task Definition

Our goal is to create an automatic tool that utilises Neural Networks, and more specifically
LSTMs, in order to detect hate speech in text. Our focus would be on data extracted from
social media, and more specifically the social media platform Twitter.

In this chapter, we will describe the dataset we used and any preprocessing we performed
on it. Moreover, we will discuss about different ways of transforming our data from text
format to a format that can be accepted by our models. Finally, we will construct LSTMs,
that we will then train with the aforementioned processed and transformed data in order
to be able to conclude whether a provided input consists hate speech or not.

3.2 Toolset

The development of the code was done in Python 3.6. We used the prominent library
Keras, which runs Google’s TensorFlow backend, in order to design and train our RNNs.
Keras makes building powerful NNs very easy and simple as it has a high level of abstrac-
tion. More specifically it allows us to specify layers, activation and loss functions, compile
and finally train a model in a matter of a few lines. Some other notable Python libraries
were also used in order to assist us in various ways, some of which are pandas that allows
easy data handling, numpy that is a high level math library and others.

3.3 Datasets

As we have mentioned above, we will need a set of annotated data that our model will
use to be trained and evaluated. In this Thesis our focus is Hate Speech in social media
so we will need data extracted from the multitude of social media platforms that exist.
The dataset we will use is the one used by Davidson et. al (2017) [8]. In their work,
the authors gathered the data using the Twitter API and by searching for hate speech
keywords from the Hatebase.org. The data was then labeled by using CrowdFlower. This
dataset contains 24, 783 Tweets, each one classified in one of three classes, hate speech,
offensive language, or neither. In this work, we will focus in binary classification, that is, we
will have only two target classes, hate speech and neutral. Therefore, in order to eliminate
the extra class we decided to combine hate speech and offensive language in one hate
speech class.

3.4 Preprocessing

When training a machine learning model, a lot of times, it is important to process the data
so as to enhance their quality. In our case we will first remove the text that indicates if a
tweet is a retweet. Moreover, we make the text to lowercase. We will, then, do what is
called unpacking contractions, that is replacing ”I’m” with ”I am” and so on. Furthermore,
we will remove stop words, dates and times. Stop words are considered words that offer
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no additional information. In this work, we used the stopwords provided by the nltk py-
thon library. In addition, we replace urls, hashtags and user names with tags. Meanwhile,
we enclose in tags censored swear words, such as words of the form f**k, repeated oc-
currences, that are also replaced by a single one, and words that appear in all capitals.
Finally, we replace all whitespaces with a single space character.

Consider for example the following tweet ”This is just an example #tweet THAT also links to
www.foo.bar!!!! F**k”. Also let us assume that the words ”it” and ”an” are stopwords. This
tweet will then be transformed to ”this just example <hashtag> <allcaps> that <\allcaps>
also links to <url> <repeated> ! <\repeated> <censored> f**k <\censored>”

3.5 Text Representation

Since we processed our text and kept only useful info, we will then need to train our model.
But in order to do that we have to transform the data in a format that our LSTM NNs can
accept and process it.

3.5.1 Bag of Words

The simplest text representation technique is Bag of Words (BoW). In this model, the text
is split into its words and then a histogram is created showing the frequency of each word
in each text. The Bag of Words method does not take into account the syntax or grammar
of the original text. A downside of BoW is that highly frequent words start to dominate in
the document but may not contain as much “informational content” to the model as rarer
but perhaps domain specific words.

Figure 3.1: Bag of Words example
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3.5.2 Term Frequency - Inverse Document Frequency

In order to anticipate the main issue of BoW, another approach has been introduced, Term
Frequency - Inverse Document Frequency (TF-IDF). TF-IDF is a numerical statistic that
is intended to reflect how important a word is to a document in a collection or corpus. It is
comprised of two statistics, term frequency and inverse document frequency.

• Term Frequency tf(t, d) is the number of times a word t appears in a text d.

• Inverse Document Frequency idf(t,D), whereD is the dataset, is a measure of how
much information the word provides, i.e., if it is common or rare across all documents.

TF-IDF is calculated as tfidf(t, d,D) = tf(t, d) · idf(t,D). The tf and idf terms, as well
as the tfidf value can be computed with other ways too, but these are the simplest and
most common ones.

Figure 3.2: TF-IDF example

While both Bow and TF-IDF are very simple to implement and to understand they come
with some shortcomings. Mainly, because they do not take into account word order they
ignore the context of a sentence. They also do not take into account word semantics.

3.5.3 Word Embeddings

Word Embeddings is a very common representation technique, that maps each word in
a language’s vocabulary to a vector of real numbers. This method allows to represent
similar words with similar vectors and take into account word semantics. While used in
conjunction with RNNs, each word’s vector can be fed sequentially to it and as a result
take into consideration word order.
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Figure 3.3: Word Embeddings example

There are many ways to generate embeddings for words. In this Thesis we will use the
already trained GloVe [21] word embeddings with 200 dimensions. In case a word does
not exist in the the GloVe embeddings we generate a random embedding for it.

Another technique, that we will also use, is to produce word embeddings by adding an
embedding layer as the input layer of an LSTM model. What this layer does, is to take
a word id as input and produce embeddings for it. In order to implement this technique,
we map each word to an id and then feed to the network a sequence of ids instead of a
sequence of words. This layer is then trained along with the rest of the model and learns
to produce word embedings.

3.6 Model Design

Since we have prepared our data, it is now time to train the model. We will experiment
with one and two LSTM layers. Having multiple LSTM layers can help identify and learn
complex relations between the data, but the more layers are added the more likely is to
end up overfiting our model. Because of that we will compromise with a small amount of
LSTM layers. In general, we can experiment with the number of LSTM layers and pick the
best.

Another technique, we will attempt, is building bidirectional models. As mentioned earlier,
in bidirectional models we process data both from left to right and from right to left. This is
useful in text data because it can help us better understand the full context of a sequence.

After the last LSTM layer, we add a dropout layer. This is a common practice in order to
avoid overfitting. We, then, average the outputs of each time step in order to get a single
vector for each tweet and in turn feed this in a fully connected layer of 32 nodes. Lastly,
the output of those 32 nodes are passed to our output layer, which is comprised by two
neurons, each of which outputs the probability of the input belonging in one of our two
classes. In addition, when we will not use prepared embeddings, another layer will be
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added before the first LSTM layer, that will be trained and learn to produce embeddings
for the words.

The model will use the Adam (Adaptive Moment Estimation) [18] optimizer, which is a
modification of the stochastic gradient descent we mentioned earlier. For the loss function
the cross-entropy loss function was used.
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4. RESULTS

In this chapter we will provide the results of our models and compare them in order to find
which one performs the best. We will also compare our work with other similar works.

In order to measure how good a model is we will need some metrics that can help us
identify when a model performs good or not. The first metric we will use is accuracy.
Accuracy is one of the most common metrics used in ML and is defined as correct predictions

total predictions .
However, sometimes accuracy is not the best choice. We will portray how accuracy can
fall short in the following example.

Assume the following confusion matrix

Figure 4.1: An example to portray the shortcomings of accuracy

In this example the accuracy is 99.9% which is incredibly high. One can believe that this is
a very good model that almost never fails. Although, that is not the case, as it can be seen
that its performance for classifying positive elements is not as good. More specifically,
while in this task it misclassified a single element, this might important in some tasks. It
becomes obvious that accuracy is not always the best choice for a metric.

For that reason wewill use a secondmetric as well called F1-score. F1-score is calculated
from the precision and recall of the test, where the precision is the number of correctly
identified positive results divided by the number of all positive results, including those
not identified correctly, and the recall is the number of correctly identified positive results
divided by the number of all samples that should have been identified as positive. The F1
score is given by the following type:

F1 = 2
precision · recall
precision+ recall

Wewill all also look how well our classifier performs with regards to each class individually.
We will do that by examining the precision and the F1-score for each class.

Below we present the results for all the different models we tried. We highlight with green
the best results in each column.
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Table 4.1: Accuracy and F1-score of models with one LSTM layer and glove embeddings

Layers Epochs Bi-directional Accuracy F1-score
1 5 Yes 92.38 84
1 10 Yes 93 84
1 15 Yes 93.98 84
1 20 Yes 93.8 84
1 5 No 93.32 93
1 10 No 93.59 88
1 15 No 94.64 90
1 20 No 94.88 92

Table 4.2: Precision and F1-score for each class for models with one LSTM layer and glove
embeddings

Layers Epochs Bi-
directional Hate precision Hate

F1-score
Neutral
precision

Neutral
F1-score

1 5 Yes 84 91 0 0
1 10 Yes 84 91 0 0
1 15 Yes 84 91 86 11
1 20 Yes 84 91 0 0
1 5 No 95 96 82 77
1 10 No 88 93 84 44
1 15 No 97 94 64 74
1 20 No 95 95 76 76

Table 4.3: Accuracy and F1-score of models with two LSTM layers and glove embeddings

Layers Epochs Bidirectional Accuracy F1-score
2 5 Yes 83.59 84
2 10 Yes 83.86 84
2 15 Yes 83.90 81
2 20 Yes 95.27 95
2 5 No 90.74 84
2 10 No 93.71 84
2 15 No 92.53 65
2 20 No 94.96 94
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Table 4.4: Precision and F1-score for each class for models with two LSTM layers and glove
embeddings

Layers Epochs Bidirectional Hate precision Hate
F1-score

Neutral
precision

Neutral
F1-score

2 5 Yes 84 91 0 0
2 10 Yes 84 91 0 0
2 15 Yes 87 89 40 36
2 20 Yes 98 97 81 86
2 5 No 84 91 0 0
2 10 No 84 91 0 0
2 15 No 100 73 32 48
2 20 No 98 94 67 76

Table 4.5: Accuracy and F1-score of models with one LSTM layer and an embeddings layer

Layers Epochs Bidirectional Accuracy F1-score
1 5 Yes 83.67 84
1 10 Yes 83.71 84
1 15 Yes 83.43 84
1 20 Yes 83.86 84
1 5 No 92.81 93
1 10 No 93.59 88
1 15 No 93.82 94
1 20 No 83.78 84

Table 4.6: Precision and F1-score for each class for models with one LSTM layer and an
embeddings layer

Layers Epochs Bidirectional Hate precision Hate
F1-score

Neutral
precision

Neutral
F1-score

1 5 Yes 84 91 0 0
1 10 Yes 84 91 0 0
1 15 Yes 84 91 0 0
1 20 Yes 84 91 0 0
1 5 No 97 96 74 79
1 10 No 84 91 0 0
1 15 No 97 96 79 81
1 20 No 84 91 0 0

V. Spithas 33



Hate Speech Detection Using Neural Networks

Table 4.7: Accuracy and F1-score of models with two LSTM layers and an embeddings layer

Layers Epochs Bidirectional Accuracy F1-score
2 5 Yes 83.71 84
2 10 Yes 83.86 84
2 15 Yes 83.55 84
2 20 Yes 83.86 84
2 5 No 83.71 84
2 10 No 92.73 93
2 15 No 93.86 94
2 20 No 83.78 84

Table 4.8: Precision and F1-score for each class for models with two LSTM layers and an
embeddings layer

Layers Epochs Bidirectional Hate precision Hate
F1-score

Neutral
precision

Neutral
F1-score

2 5 Yes 84 91 0 0
2 10 Yes 84 91 0 0
2 15 Yes 84 91 0 0
2 20 Yes 84 91 0 0
2 5 No 84 91 0 0
2 10 No 96 96 77 78
2 15 No 96 96 84 81
2 20 No 84 91 0 0

We notice, that in many cases, the F1-score and precision of the Neutral class are zero.
This is because the specific models classify everything in the hate speech class. Mean-
while, we see that the overall accuracy and F1 scores of those models are relatively high.
One possible reason, for this, is because there are a lot more tweets in the hate speech
class than the neutral speech class in our dataset. So, even if everything ends up classi-
fied as hate the the overall accuracy is not affected that much.

Looking into our dataset we see that there are 24, 783 tweets in total, of which 20, 620
are classified as hate speech and 4, 163 are classified as neutral speech. Our training
data consists of 80% of our dataset, and more specifically 16, 489 tweets classified as
hate speech and 3, 337 tweets classified as neutral speech. The tweets classified as hate
speech consist around 80% of our training set. Because of this large difference some of
our models ended with poor performance when detecting neutral speech. One way to
eliminate this problem is to find a more uniform dataset where the amount of elements in
each class will not have such big difference. We can also try and make more complex
models that can capture the underlying structure of the data better, but if we make it too
complicated we risk overfitting our model as mentioned earlier.

Another thing, to point out, is the fact that the models that used GloVe embeddings per-
formed in general better than the models that trained a layer to generate embeddings.
This could possibly happen due to the fact that GloVe embeddings are in general better
and more fitting for our task compared to the ones generated by our model.

The best overall model is the one that uses two bidirectional LSTM layers, GloVe em-
beddings and was trained for 20 epochs. This model has the best overall accuracy and

V. Spithas 34



Hate Speech Detection Using Neural Networks

F1-score, as well as the best or near best precision and F1-score in each individual class.
This was in general expected as this model uses two LSTM layers that allow it to learn
more complex patterns. It is also bi-directional which allows it to have a better view of the
full context of each tweet, while we also trained it for 20 epochs allowing it more time to
learn.

4.1 Comparison to similar works

The first work we will compare to ours is by Akanksha et al. 2020 [2]. In their work
they used the same dataset with ours but they also expanded it with another dataset
of 15k tweets in order to balance it. Eventually they used 9600 tweets as the training
set, 3600 for each of the three original classes and 800 tweets as the test set. They tried
deep learning models with one and three LSTM bi-directional and non bi-directional layers
followed by three fully connected layers and finally the output layer. Their models achieved
an accuracy between 83% and 86%. As we can see our best model outperformed theirs
since the best accuracy we achieved was 95%.

Another work we will consider for our comparisons is that of Zhang et al. 2018 [26]. In
their architecture, the first layer was a word emeddings layer that mapped the input to
embeddings of 300 dimensions. They then added a dropout layer and its output was fed
into a 1-D convolutional layer with 100 filters. This convolves the input into a 100 × 100
representation which is further downsampled by a 1-D max pooling layer. They, then,
use a GRU layer followed by another 1-D max pooling layer which essentially flattens the
output. Finally, a softmax layer predicts the probability for each class. They used various
datasets for their experiments including the same as us which is the one in our interest.
They used F1 score as a metric for their model and achieved a score of 94%, almost as
much as our best F1 score of 95%.
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5. CONCLUSION AND FUTURE WORK

5.1 Conclusions

In this study, we discussed why it is important to deal with the Hate Speech phenomenon.
The massive use of the Internet, accompanied with the increase of hatred against minor-
ities in modern societies, has led to an influx of Hate Speech within online platforms. The
large amount of data that is shared through the Internet has made the detection of Hate
Speech by humans very difficult. Therefore, it becomes clear that other methods should
be employed in order to effectively detect Hate Speech. For that reason it is important for
automatic tools to be created that can effectively tackle this problem.

As part of this thesis we implemented and compared various classifiers that classify tweets
as neutral speech or hate speech. These classifiers are LSTM neural networks and were
trained with a dataset of 24, 783 tweets. We concluded that the best one was built with
two bi-directional LSTM layers, used GloVe embeddings and was trained for 20 epochs.
We consider this model to be quite successful, as not only it had the best overall accuracy
and F1-score, but it performed very well in deciding between the two classes.

5.2 Future Work

A potential future improvement is to include more features such the contribution of word
roles (e.g. POS tags) or twitter specific features and combine them with improved pre-
processing, to avoid possible noise in the related features. We can further expand on this
and instead of single words utilize n-grams, that is sequences of n consecutive tokens. In
practice we used one-grams, also called unigrams, in this work.

We could also experiment with adding more LSTM layers or another dense layer before
the output one in the hopes that a deeper network will be able to learn more complex
patterns of the data and potentially achieve better results.

Other than that, future workmay also include training a similar model on a different dataset.

Lastly, we could use characteristics of the people expressing hate speech, as mentioned
by Davidson et al. 2017 [8], as well as test the importance of the user network features, as
mentioned in Badjatiya et al., 2017 [1] in order to improve hate speech detection overall.
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ABBREVIATIONS - ACRONYMS

ANN Artificial Neural Network

BoW Bag of Words

CNN Convolutional neural network

DNN Deep Neural Network

FNN Feedforward Neural Networks

GBDT Gradient Boosted Decision Tree

GD Gradient Descent

GRU Gated Recurrent Unit

LSTM Long-short term memory

MGD Minibatch Gradient Descent

MLP Multilayer Perceptron

MSE Mean Square Error

NLP Natural Language Processing

NN Neural Network

RNN Recurrent neural network

SGD Stohastic Gradient Descent

SVM Support Vector Machine

TF-IDF Term frequency - inverse document frequency
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