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ABSTRACT 

In recent years, the rapid development and evolution of the Internet of Things (IoT) and 
robotics seems unstoppable. The new possibilities added to the nodes, open horizons 
for new research as well as for new uses in the daily life of people and industry. One of 
the key features is the mobility of the nodes. Most nodes are no longer static, but move 

in space and offer a wide range of new applications that can offer like the ability to make 
decisions without human intervention, their durability, the use of embedded sensors 
(temperature, pressure, humidity, etc.), as well as for their reprogrammability. Based on 
these features, mobile nodes can be used for example in cases of surveillance of areas 

and borders, for image recognition and alarm signaling, as well as for crisis 
management. For example, an unmanned land vehicle (mobile node) carrying a high-
definition sonar and a high-definition thermal camera, combined with an object 
recognition algorithm can be used to find people trapped in wreckage. 

In addition, this functionality can be enriched by the fact that two or more nodes can 
communicate with each other to work together to complete a mission. Let us consider a 

mission to find a lost hiker in a forest, with a single mobile node (unmanned aerial 
vehicle), the chances of finding him in a short time are much lower than when we have 
more than one to communicate with, exchanging images, measurements, the areas 
they have scanned, and finally if any of them have found the target. This group mode in 

the context of the Internet of Things and robotics is called a swarmi of nodes. More 
specifically, each node operates based on the knowledge of the whole team and not 
individually. This is also observed in nature, especially in insects, where they function 
on the basis of this method. 

In this thesis, it is examined whether the swarm operation is more efficient both 
temporally and qualitatively in relation to the operation of each node as independent on 

collaborative search of sensor targets with no prior knowledge of the environment. More 
specifically, a series of experiments are carried out where two robots scan the entire 
space in detail exhaustively in order to identify the points where the value from an 
existing sensor sources is maximum. These values are detected by robots with the help 

of sensors that they carry. In the first case, the robots act independently without 
knowing neither the measurements taken by the other, nor its position. In the second 
case, the robots cooperate based on the operation of the swarm, in order to find the 
optimal possible value of the source. 

The experiments were supported by the Ubuntu 16.04 operating system, the Gazebo 
and Rviz simulators, as well as two virtual TurtleBots running the ROS operating 

system, as well as a virtual XBOX Kinect sensor with a color camera and a depth 
sensor. 
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     ΠΕΡΙΛΗΨΗ 

Τα τελευταία χρόνια, η ταχεία ανάπτυξη και εξέλιξη του Διαδικτύου των πραγμάτων 
(IoT) και της ρομποτικής φαίνεται ασταμάτητη. Οι νέες δυνατότητες που προστέθηκαν 
στους κόμβους, ανοιχτούς ορίζοντες για νέα έρευνα, καθώς και για νέες χρήσεις στην 
καθημερινή ζωή ανθρώπων και βιομηχανιών. Ένα από τα βασικά χαρακτηριστικά είναι 
η κινητικότητα των κόμβων. Οι περισσότεροι κόμβοι δεν είναι πλέον στατικοί, αλλά 

κινούνται στο διάστημα και προσφέρουν ένα ευρύ φάσμα νέων εφαρμογών που 
μπορούν να προσφέρουν, όπως η ικανότητα λήψης αποφάσεων χωρίς ανθρώπινη 
παρέμβαση, η ανθεκτικότητά τους, η χρήση ενσωματωμένων αισθητήρων 
(θερμοκρασία, πίεση, υγρασία κ.λπ.) , καθώς και για τον επαναπρογραμματισμό τους. 

Με βάση αυτά τα χαρακτηριστικά, οι κινητοί κόμβοι μπορούν να χρησιμοποιηθούν για 
παράδειγμα σε περιπτώσεις επιτήρησης περιοχών και συνόρων, για αναγνώριση 
εικόνας και σηματοδότηση συναγερμού, καθώς και για διαχείριση κρίσεων. Για 
παράδειγμα, ένα μη επανδρωμένο χερσαίο όχημα (κινητός κόμβος) που φέρει ένα 

σόναρ υψηλής ευκρίνειας και μια θερμική κάμερα υψηλής ευκρίνειας, σε συνδυασμό με 
έναν αλγόριθμο αναγνώρισης αντικειμένων μπορεί να χρησιμοποιηθεί για την εύρεση 
ατόμων που έχουν παγιδευτεί σε συντρίμμια. 

Επιπλέον, αυτή η λειτουργικότητα μπορεί να εμπλουτιστεί από το γεγονός ότι δύο ή 
περισσότεροι κόμβοι μπορούν να επικοινωνούν μεταξύ τους για να συνεργαστούν για 
να ολοκληρώσουν μια αποστολή. Ας εξετάσουμε μια αποστολή να βρούμε έναν χαμένο 

πεζοπόρο σε ένα δάσος, με έναν μόνο κόμβο κινητού (μη επανδρωμένο εναέριο 
όχημα), οι πιθανότητες να τον βρούμε σε σύντομο χρονικό διάστημα είναι πολύ 
χαμηλότερες από ό, τι όταν έχουμε περισσότερα από ένα να επικοινωνήσουμε, 
ανταλλάσσοντας εικόνες , μετρήσεις, τις περιοχές που έχουν σαρώσει και, τέλος, εάν 

κάποια από αυτές έχει βρει τον στόχο. Αυτή η ομαδική λειτουργία στο πλαίσιο του 
Διαδικτύου των πραγμάτων και της ρομποτικής ονομάζεται σμήνος κόμβων. Πιο 
συγκεκριμένα, κάθε κόμβος λειτουργεί με βάση τις γνώσεις ολόκληρης της ομάδας και 
όχι μεμονωμένα. Αυτό παρατηρείται επίσης στη φύση, ειδικά στα έντομα, όπου 

λειτουργούν βάσει αυτής της μεθόδου. 

Σε αυτή την πτυχιακή εργασία, εξετάζεται εάν η λειτουργία σμήνους είναι πιο 

αποτελεσματική τόσο χρονικά όσο και ποιοτικά σε σχέση με τη λειτουργία κάθε κόμβου 
ως ανεξάρτητη στη συνεργατική αναζήτηση στόχων αισθητήρων χωρίς προηγούμενη 
γνώση του περιβάλλοντος. Πιο συγκεκριμένα, πραγματοποιείται μια σειρά πειραμάτων 
όπου δύο ρομπότ σαρώνουν λεπτομερώς ολόκληρο τον χώρο λεπτομερώς για να 

προσδιορίσουν τα σημεία όπου η τιμή από υπάρχουσες πηγές αισθητήρα είναι μέγιστη. 
Αυτές οι τιμές ανιχνεύονται από ρομπότ με τη βοήθεια αισθητήρων που μεταφέρουν. 
Στην πρώτη περίπτωση, τα ρομπότ δρουν ανεξάρτητα χωρίς να γνωρίζουν ούτε τις 
μετρήσεις που έχει λάβει ο άλλος ούτε τη θέση του. Στη δεύτερη περίπτωση, τα ρομπότ 

συνεργάζονται με βάση τη λειτουργία του σμήνους, προκειμένου να βρουν τη βέλτιστη 
δυνατή τιμή της πηγής. 

Τα πειράματα εκτελέστηκαν σε λειτουργικό σύστημα Ubuntu 16.04, στους 
προσομοιωτές Gazebo και Rviz, και χρησιμοποιήθηκαν δύο εικονικά TurtleBots που 
λειτουργούν με το λειτουργικό σύστημα ROS, καθώς και από έναν εικονικό αισθητήρα 
XBOX Kinect με έγχρωμη κάμερα και αισθητήρα βάθους. 

 

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Αναζήτηση Περιεχομένου 

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ:  Συνεργασία Ρομποτ, Αναζήτηση περιεχομένου, σχεδιασμός 

μονοπατιών, ROS, turtlebot, Particle Swarm Optimization  
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1 INTRODUCTION 

During the last years a significant evolution has been noticed regarding the Internet of 

Things (IoT). IoT refer to the network of physical objects that have sensors and software 
and connect with each other, via the Internet, in order to collect and exchange 
information. Nowadays everything can be turned into a part of the IoT. The connection 
of multiple different devices with sensors on them lead to an IoT with a great level of 

intelligence. In this thesis, we will focus on unmanned vehicles, UxVs, as parts of IoT.  
UxVs (UxVs- x stands for different type of environment, i.e. ‘s’ for sea, ‘a’ for air and ‘g’ 
for ground) are mobile nodes that can navigate in the environment an react in specific 
events. The key characteristic of the UxVs is the autonomous decision making without 

human intervention. Additionally, some other UxVs’ capabilities are endurance, 
multimedia streaming and payload carrying. Rapid technological advancements that 
occurred in the last decade expanded the possible uses of UxVs. Some of the most 
recent use cases are surveillance, security monitoring, and supporting crisis 

management activities. For instance, UGV with a thermal camera can locate, recognize 
and possibly rescue an errant hiker. 

In several missions, the search area cannot be covered by a single device or the time is 
a critical factor therefore the researchers need to find efficient methods to overcome 
these barriers like the collaborative operation of the vehicles. During a collaborative 
operation￼ multiple UxVs communicate with each other in order to complete efficiently 

and successfully a same mission. Additionally, for the collaboration of the unmanned 
vehicles, the Particle Swarm Optimization theory will be studied in this Thesis. Swarm 
technology is inspired by swarm intelligence, which draws inspiration from the lives of 
social insects or birds      ￼Swarm intelligence (SI) provides the possibility of SI 

behavior through collaboration in individuals that have limited or no intelligence [1]. Its 
potential parallelism and distribution characteristics can be used to realize global 
optimization and solve nonlinear complex problems. Swarms of UxVs 

The goal of this Thesis is to examine if that collaboration through SI is more time and 
resource efficient than just letting the robots execute the mission extensively without 
communicating with each other. To achieve this goal, we use UGVs that aim to locate 

some sensor sources that are located at unknown positions in their ‘world’. The sensor 
sources transmit measurements that UGV sensors can collect. For instance, in real life 
missions, these sources could be a source of a fire or an SOS signal indicating a human 
trapped under the ground. Firstly during our research, we develop an algorithm that 

scans exhaustively the environment using multiple UGVs. The UGVs will not 
communicate with each other regarding the environment exploration for points of 
interest. The exploration of the environment is based only on the local knowledge of 
each UGV’s sensor’s measurements. In addition, we develop an algorithm for 

collaborative operation of UGVs based on PSO theory. In this case multiple UGVs 
communicate with each other, via a master, and they constantly know each other’s 
status. This knowledge can lead to a faster context discovery rather than exhaustively 
scan an unknown world.  The results are presented in section X based on different case 

studies comparing the time and utility efficiency of the both methods. 
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2 BASIC ELEMENTS OF UNMANNED VEHICLES 

2.1 Definition of Unmanned Vehicles 

An unmanned vehicle is defined as a vehicle that operates with no person in it. The 
control of the unmanned vehicles can be guided by the commands from a remote 
source. For example, a person in a computer room could send commands through a 
message bus like Kafka. An unmanned vehicle can also operate autonomously by 

running special designed algorithms. In this Thesis we will analyze the second type of 
unmanned vehicles.  

The autonomous vehicles are capable of sensing their environment either with the use 
of sensors, or the use of maps that describe the environment. The use of a map, 
however, requires previous knowledge of the environment, meaning that the unmanned 

vehicle or some other device has to explore the world and create the needed map 
before the unmanned device can operate autonomously in this environment. On the 
other hand, unmanned vehicles can explore their environment with a variety of different 
sensors, such as cameras, lidar and temperature sensors. In the last years many 

scientists are trying to develop new algorithms or optimize existing ones for unmanned 
vehicles to act autonomously and explore their environment with sensors. In this Thesis 
we will run experiments in which we do not have previous knowledge of the world or the 
obstacles that it might contain. The navigation and the obstacle avoidance is based only 

on sensors of the unmanned vehicle.  

The types of the unmanned vehicles are UAVs, meaning unmanned aircraft aerial 
vehicles commonly known as drones, UGV, that are unmanned ground vehicles and 
USV, unmanned surface vehicles, also known as surface drones that operate on the 
surface of the water.  

2.1.1 Unmanned aerial vehicle 

Unmanned aerial vehicles (UAV) [2], commonly known as drones, are aircraft that do 
not have a human pilot boarded. The UAV’s flight can be fully autonomous, or controlled 
from a human operator usually on the ground. The use of drones was initially aimed to 

help the military missions, however nowadays drones are used for plenty of reasons, to 
simplify many professions or even as games for children. In Figures 1 and 2 examples 
of UAVs are shown. 

 

Figure 1 - Drone (UAV) used for photography and videos 
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Figure 2 - Military UAV 

2.1.2 Unmanned ground vehicles 

Unmanned ground vehicles (UGVs) operate on the ground with no human on board. 
The operation of the vehicle can be controlled by human actors remotely or it can be 
autonomous due to specifically implemented algorithms. The use of the UGVs is 
considered necessary in cases where the human presence is dangerous. UGVs are 

used in many professions. For instance the exploration of Mars would have been 
impossible without the specially designed UGV. In Figure 3 the UGV used in Mars 
exploration is shown. 

 

Figure 3 - UGV used in Mars exploration 

Nowadays scientists all over the world focus their study on unmanned cars that will 

work autonomously and will be used for transportation as a normal car. The initial idea 
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in 1921 was to construct a remotely controlled car and during the last years the idea 
became to create a self driving car which will be used for transportation of humans. The 
safety of humans on board a self driving car is of great importance. Hence the 

development of the algorithm especially for navigation must be well designed. For these 
algorithm sensors like lidar, gps and cameras are necessary.  

As most unmanned vehicles, UGVs are used for military purposes as well. A military 
UGV is shown in the following figure (Figure 4). 

 

Figure 4 - military UGV 

2.1.3 Unmanned surface vehicles 

Unmanned surface vehicles (USVs) [3] are boats that operate autonomously without 
humans on board. In most cases USVs are controlled remotely by a human actor that 
usually is on the ground. USVs can be used in military missions, in oceanography and 
seaweed farming. In Figure 5 an example of a USV is shown. 

 

Figure 5 – Unmanned Sea Vehicle 
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2.2 Robotic Operating System – ROS 

The progress noticed in the robotics community during the last years is impressive, both 
at hardware and software development. Nowadays, more reliable and inexpensive robot 
hardware is widely available. Many efficient algorithms have been developed that 
provide the robots with a certain level of autonomy. Even if a significant progress has 

been noticed, software development has still many challenges to deal with. The most 
crucial challenges have to do with the distribution of computations, the testing 
necessary to check the correctness of an algorithm and the reuse of the code. A 
proposed solution to these difficulties is a software platform called Robot Operating 

System (ROS).  

2.2.1 Definition of ROS 

Robot Operating System (ROS), is a Linux based software framework for operating 
robots [4] [5]. It is an open-source, meta-operating system, which means that it runs 
alongside with the operating system. It provides the services you would expect from an 
operating system, including hardware abstraction, low-level device control, 

implementation of commonly-used functionality, message-passing between processes, 
and package management. It also provides tools and libraries for obtaining, building, 
writing, and running code across multiple computers [4]. 

ROS [5] s a collection of tools, libraries and conventions that aims in the simplification of 
the procedures for creating complicated and robust robot behavior across a wide variety 
of robotic platforms. It is important to highlight that ROS, as it is not an operating 

system, has to work alongside with a traditional operating system like Linux. 

The main advantages of ROS are: 

1 Distributed computation: ROS provide a simple and reliable mechanism for 
communication between multiple processes on the same or on different 

computers. This feature is necessary for robot systems’ software, considering the 
fact that in most cases these algorithms span many processes that run in 
different computers. 

2 Software Reuse: Due to the progress of robotic research, many effective 
algorithms have been developed for most of the common tasks of a robot (e.g. 
navigation, motion planning, mapping). ROS’s standard package provides 

implementations of the most important algorithms of these tasks. In addition, 
several ROS packages with multiple useful algorithms are publicly available. All 
these can lead to even more rapid progress in robotics because developers can 
focus on new ideas and not spend their energy reinventing the wheel. 

3 Rapid Testing: Most of the times, testing a robot’s algorithm is time consuming 
and error-prone. Sometimes a physical robot is not available, or even if it is, 

running an experiment with it might be slow or expensive. Also testing extreme 
cases might be tricky. For these cases, ROS provide mechanisms that improve 
the testing process. Firstly, there are simulators specifically developed for 
running robot algorithms. ROS also provide a simple way of recording data. With 

these features the aforementioned issues are resolved and the testing process 
becomes easier and less time consuming. 

ROS is not the only platform that has been developed to serve these purposes. The 
reasons that lead us and many other software developers to choose ROS over the other 
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platforms for software environments are plenty. All these reasons come from the fact 
that ROS differs from other platforms because the robot community widely supports it. 
Nowadays, commercial companies develop their product in a way that they will be 

compatible with ROS. ROS uses the concept of packages, nodes, topics, messages 
and services. 

 

Figure 6 - ROS Package System 

2.2.2 ROS Packages 

ROS software is separated into packages. A package is folder that contains multiple 
files that serve a specific purpose. Such files are executables and supporting files like 
ROS nodes, a ROS-independent library, a dataset, configuration files, a third-party 
piece of software. Packages are the minimum ROS unit of build and release. As a 

result, the ROS package is considered as the the smallest structure that a ROS 
program requires. ROS packages provide in an easy to consume way, very useful 
functionalities. The also contribute to software reuse. A ROS package must contain only 
the necessary in order to have the required functionality so that it can be used, and so 

that it is not heavyweight and difficult to use from other software. Packages can be 
created by hand or with tools like catkin_create_pkg. 

2.2.3 ROS Stack 

A stack is a collection of packages. The goal of collecting these packages is to simplify 
the process of code sharing. All packages in stack cooperate in such way to provide a 
certain functionality. Unlike the traditional software libraries, ROS stacks can add 

http://wiki.ros.org/catkin/commands/catkin_create_pkg
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functionalities during the execution of the robot’s program through topics and services. 
ROS has numerous stacks. Stacks have versions and sometimes can declare 
dependencies to other stacks. 

Generally, a stack is a directory that among others it has a stack.xml file. Each package 
in this directory is considered as a part of the stack. 

Every stack has a Stack manifest, which is a file with necessary information for the 
stack and the dependencies to other stacks. 

2.2.4 ROS Catkin 

Catkin is the ROS build system. It is the set of tools that ROS uses to create executable 
programs, interfaces, libraries, and scripts that other code can use. 

2.2.5 ROS Nodes 

ROS’s philosophy is to organize the code into small independent pieces of code that run 
at the same time, in such way to simplify the debugging and to increase the reuse of the 

code. To achieve this goal, ROS has nodes. A node basically is the process in which 
computation is performed. In most of the cases, a node serves a specific purpose, for 
example one controls the navigation of the robot and another processes sensor 

measurements. Nodes cooperate with one another mostly through topics.   

The use of nodes is beneficial to the overall system. As it is widely known, creating 
many independent code pieces has the advantage that the crashes are isolated. As a 
result, creating nodes that each one of them acts independently, if an error occurs at 
one node, it might not cause any damage to the whole system. Also, code complexity is 

reduced in comparison to monolithic systems. 

A running node is uniquely identified to the rest of the system by its name. The type of a 
node has to be defined. The type of the node simplifies the process of referring to an 

executable node on the filesystem. 

2.2.6 ROS Topics 

Topics are named buses over which nodes communicate with each other. Basically, 
topics are the means to transmit ROS messages between nodes. Each topic has 
subscriber and publisher nodes. In general, a subscriber node is not aware of which 
node will consume its messages. The same applies for the publisher node. What 

happens in particular is that a node that is interested in data subscribes to a topic that 
provides the data. Respectively nodes that generate data, publish them to the relevant 
topic. Each topic can have multiple subscribers and publishers as soon as they have 
different names. 

Every topic has a specific type. The type of the topic indicates the message type that 
the topic can transmit. 

2.2.7 ROS Messages 

Nodes communication with each other happens by exchanging messages through 
topics. A message is created by the publisher node and is published to a topic. Another 
or maybe the same node subscribes to the topic and consumes the message.  



Robot Collaborative context exploration and path planning 

 

C.Katsarlinou                   21 

 

Each message has a specific type. The type of a message is defined in a .msg file 
which contains the description of the type. There are standard message types in ROS 
but one can create others simply by declaring an .msg file and building the type.  

 
Table 1: Standard ROS message types 

 

2.2.8 Master Node 

As we analyzed previously, ROS software contains many files, nodes and topics. A very 
important issue that occurs at this point is how all nodes that run at the same time, are 
exchanging messages and perform computations synchronously. This happens 

successfully with the use of the ROS master. Before any code can start its execution, 
the command “roscore” must be used so that the master node will start. Master node 
has to be running for the entire time that we use ROS. 

2.2.9 ROS Service 

Services are another means of communication between two nodes. A service is defined 
by a pair of messages, one for the request and one for the reply.  A node provides a 
service through a string name. A node requires a message and waits for the reply. A 
service is defined in a srv file.  

Services also have types. The name of the type is the same as the name of the srv file 
that defines the service.  

2.2.10 Launch files 

ROS provides a mechanism to start many nodes all at once, using files called launch 
files. Launch files are xml files with the .launch extension. Using launch files is 
necessary in order to have an easy to use ROS set of packages. They also simplify the 
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process of executing the code and run nodes. Launch files have to be associated with a 
specific package. That is the reason why the launch file should be stored in the package 
directory. Although, the place of the launch files is not that important because when 

running roslaunch, the search of the file will extend to all the directory and the 
subdirectories as well.nThe command to execute a launch file is roslaunch 
package_name launch_file_name. 

2.2.11 World Files 

ROS simulators use world files to specify the characteristics of the environment that the 
turtlebots “live” in and interact with. Basically world files create the physical world in 
which the turtlebot moves. World files are xml files with the .world extension. These files 
contain detailed description of all obstacles that the world has. Some of the most 

important information for the obstacles are the name of the obstacle, its the exact 
position and its size. In each launch file it is necessary to define a world file because 
that is the only way to inform the simulator of what to show. In Figure 7 there is an 
example of such definition. 

 

Figure 7 - Launch mud.world file 

2.3 Sensors 

Unmanned vehicles need sensors to be able to understand their environment and 

execute specific tasks. For instance, for the robot's navigation, several sensors are 
necessary, such as a lidar or kinect, maybe combined with a camera. In this thesis we 
use Kinect sensor for obstacle avoidance. In a real world experiment we would use 
another sensor for the measurements that we want to keep track of.  

2.4 Turtlebot 

TurtleBot [6] is a low-cost, personal robot kit with open-source software. TurtleBot is a 

small robot used by many developers for experiments and new software development. It 
belongs in the category of unmanned ground vehicles. It consists of a mobile base used 
for the movement of the robot and many sensors like distance sensors and cameras. 
Turtlebot does not have a processor. Turtlebot’s operation need an external unit that 

runs ROS, for example a laptop or Raspberry Pi. The algorithms that control the 
turtlebot are executed on this unit. Moreover, all necessary sensors needed for a 
mission have to be connected on the operating unit. A turtlebot is shown in Figure 8.   
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Figure 8 - Turtlebot 

2.5 Simulators (Gazebo, rviz) 

Α well-designed simulator is essential for any robot development. Gazebo helps the 
developers to easily test their algorithms, design new robot models and new 

environments to navigate. It also provides convenient programmatic and graphical 
interfaces. Another important feature that we made use of in this thesis is the ability to 
accurately and efficiently simulate populations of robots in complex indoor and outdoor 
environments. Gazebo is considered as the leader in robot simulation.  

In order to connect the Gazebo simulator with ROS we have to create some ROS 
packages. This set of packages is called gazebo_ros_pkgs and contains the necessary 

files to simulate the robot and the environment in which we will test the algorithms. As 
always the communication between ROS and Gazebo happens through ROS 
messages, services and dynamic reconfigure. At the installation of ROS, 
gazebo_ros_pkgs comes with some default files and at most cases the developer does 

not need to modify at all.   

The process to start the Gazebo simulator with the default files is first to run the roscore 
command to start the Master ROS node and then the command roslaunch 
turtlebot_gazebo turtlebot_world.launch. The roscore command is not necessary, as 
each roslaunch command will initialise the Master node if it is not already initialized. 

For the causes of this thesis we also used Rviz as a simulator. The main reason that led 
us to the use of Rviz in this thesis is the need to load a map to the simulator. Gazebo on 
the other hand, does not give us the opportunity to visualize a map. Also, in this thesis 

we used laser scan data for most of the development parts andRviz is considered to be 
an effective free tool for the visualization of these laser scans. Moreover, Rviz has a 
graphic section that shows the environment and the turtlebots and a section with the 
topics used for the simulation. That is very useful during the development of the 

algorithms as we can check these topics.   

Running Rviz simulator is simple, just run the command roslaunch rviz rviz.  
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2.5.1 Map 

Rviz gives us the opportunity to visualize a map for the turtlebot to navigate. A Map can 
be used in ROS simulators by combining two files. First of all we need a .png file that is 
the image of the map and a .yaml file that describes the map features. To open the map 
in the simulator the only thing necessary is to provide the map server through the 

launch file that initializes the simulators. As shown in the next figure (Figure 9), we 
initialize the map server and provide the yaml file that describes the map.  

 

Figure 9- Launch file to open map in Rviz 

2.6 Obstacle detection  

Obstacle detection is the process of using sensors, data structures, and algorithms to 
detect objects or terrain types that impede motion [7]. Obstacle detection is generally a 
crucial issue of any unmanned vehicle that needs to navigate by making decisions on its 
own. Every unmanned vehicle must have the ability to identify obstacles during its 

moving it the world. In order to do that it uses many different types of sensors. The most 
common sensors for obstacle detection are kinect, lidar and cameras. These sensors 
make it possible for the robot to identify an obstacle and if necessary create clusters of 
the different types of obstacles. 

Obstacle detection is necessary in plenty of robot’s functionalities. Mapping, navigation 
and path planning would have been impossible to be performed without the detection of 

the obstacles inside the world. After an obstacle has been detected, the robot should 
move in such way to avoid it.  

2.7 Collision Avoidance  

Collision Avoidance is the process in which an unmanned vehicle tries not to crash on 
any obstacles. During a mission the robots travel from one point to another, it has to 

make sure that the path is clean of obstacles. If an obstacle is detected in this path, the 
robot has to update and replan the path to its destination. The process of replanning the 
path is not always easy. It is possible that the robot will not be able to find a path that 
ends on the desired destination. These are the trickiest cases that the developer of the 

collision avoidance algorithm has to take into consideration. Collision avoidance is a 
field of study in robotics that many developers and generally scientists find interesting. 
The optimization of obstacle avoidance is still an ongoing process. In the last few years, 
more and more scientists are trying to turn all moving objects into autonomous vehicles. 

Drones, cars, military devices are some of the basic examples of items that have to 
become autonomous. Unmanned vehicles of all kind must have well designed 
algorithms of collision avoidance to be considered safe. That is the reason why in the 
last years this field of study is attracting the robotics community interest.   
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3 RELATED WORK 

3.1 UxV Path Planning 

When dealing with unmanned vehicles, a very important issue is the path planning. 
Many years now, scientists have developed algorithms for path planning in static and 
dynamic environments. Real-time path planning is a necessary layer for the movement 
of the unmanned vehicle in an unknown environment. Firstly, the robot has to detect 
potential obstacles and avoid them. A proposed approach [8] is use the Voronoi 

diagram-based algorithm. This algorithm separates the world into cells and creates a 
grid. In this grid each cell contains an empty area or an obstacle. The Voronoi algorithm 
has been used in other research works [9], for the initial path planning of unmanned 
vehicles. It has been improved by adding utility function for each suggested path so that 

the unmanned vehicles create an optimal path eventually.  

Another suggested algorithm is the D* [10] algorithm, which is an algorithm for path 

planning depending on sensors and a map with full, little of none knowledge of the 
environment. Like the A* algorithm [11], this algorithm constructs a directive graph with 
cost functions for every path. The important part of this D* algorithm, and what 
differentiates it from the A*, is that during the motion of the unmanned vehicle, the graph 

is constantly updated. As a result, the vehicle will come up with an optima path.   

3.2 Maze challenge[12] – Touching the wall 

Lately the robotics community has inserted a new challenge, the maze solving 
challenge. In this challenge a robot is placed in an unmapped maze and it tries to find a 

way out of it. Many algorithms have been developed to solve this maze challenge. The 
most popular ones are the random mouse and the wall follower [12]. The first algorithm 
can be applied in every maze and does not have specific requirements. The second one 
can be applied on mazes that are ‘simply connected’ or ‘perfect’, meaning that they do 

not contain loops. 

In the random mouse algorithm, the unmanned vehicle picks a path randomly every 

time and it follows it until it reaches a dead-end. In this case, it picks a path again and 
follows it. It repeats this process until it finally gets out of the maze. This method uses 
no intelligence and the robot is acting like a mouse, hence the name. This algorithm will 
sourly find the exit of the maze eventually but the time that it will need cannot be 

calculated or even estimated.  

The wall follow algorithm is considered the best algorithm so far for solving the maze 

challenge. This algorithm guarantees a solution to the problem, if the maze is ‘perfect’. 
In this algorithm the unmanned vehicle walks in the maze while ‘touching’ the wall with 
one hand. It is also called ‘left-hand’ or ‘right-hand’ algorithm depending on the hand 
that touches the wall. The advantage of this algorithm is that if an exit does not exist, 

then the robot will return at its initial position and it will have traversed every corridor in 
the maze.  

3.3 Search of unknown environment 

The research of searching for specific points of interest using unmanned vehicles 
started many years before. In 1940 Koopman [13] focused his work on exploring an 
environment using sensors to find an object that was placed in a random position, using 
random search patterns. In latter research works  [14], the studies are focused in the 
optimization of the searching process and developing algorithm that use more 
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intelligence and decision making. Finally, in a research for the mathematical modeling of 
the searching problem [15], the searching process is considered as a probabilistic 
phenomenon. The objects that the unmanned vehicles try to find, are placed in the 

environment according a known spatial likelihood. With this theory in mind, each 
position of the environment becomes a searching cell and each searching path is a 
sequence of multiple searching cells. In order to process these searching structures, 
advanced computers are necessary.  

During the last years many researchers have focused their work on algorithms for 
cooperative unmanned vehicles that try to explore the environment or navigate in it 

while sensing measurements. There are many other different approaches for the use of 
collaboration on unmanned vehicles. In the research mentioned before, the 
effectiveness of the unmanned vehicle collaboration is tested. The collaboration of the 
unmanned vehicles offers a probabilistic estimation of the gain that an unmanned 

vehicle will have by searching in a previously visited cell. In this way, the decision 
whether the unmanned vehicle should visit or not the specific cell can be made before 
the vehicle actually visits the cell. Another interesting approach [16] for the collaborative 
unmanned vehicles focuses on the decentralization of the control in order to split the 

risk of failure. This research was developed for UAVs. In this case the control of the 
collaborative team of vehicles is based on the real-time creation of tasks from the user. 
The unmanned vehicles allocate tasks using onboard computation and UAV to UAV 
communication. Each UAV allocates a task only if it can complete its mission with lower 

cost than all the other UAVs. The aim of this research is to minimize the time until the 
last vehicle has completed its tasks. The allocation of the tasks has two steps. Firstly, 
the UAV finds the possible tasks depending on its local knowledge. Secondly, it checks 
the time that other UAVs have stated that they need to complete each task, and if it can 

accomplish less time, it allocates some extra tasks as well. 

In many researches the collaboration of unmanned vehicles is based on Particle swarm 

optimization method (PSO). PSO can be used for a team of vehicles [17] [18] or for all 
available vehicles. This method is useful in cases when a team of vehicles is trying to 
explore an unknown environment or search for specific objects. At first all vehicles are 
moving in the world according to some limitations regarding their position. When a 

vehicle indicates that its position is better than the others, then all other vehicles have to 
move towards it. In cases of world exploration, each vehicle takes into consideration the 
knowledge of all the vehicles and not only the local knowledge. As a result, the 
unmanned vehicles complete their missions faster and more accurately.   
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4 COLLABORATIVE SEARCH PLANNING FOR MULTIPLE VEHICLES 
IN IOT ENVIRONMENT 

4.1 Problem Definition 

In this Thesis, we focused our research on developing effective algorithms for scanning 
a previously unknown world and at the same time, try to detect sources of 
measurements (context awareness) using autonomous ground vehicles that collaborate 
with each other. For our experiments we used two turtlebots although the algorithms 

developed can be used in experiments with more robots of any kind.  

4.2 Challenges 

The problem stated previously can be splitted in different smaller parts. Firstly, the 
unmanned vehicles have to be able to navigate in a previously unknown environment 

without crashing on each other or on other obstacles. Secondly, it tries to optimize the 
the context aware process, i.e. trying to f ind the best measurement of a sensor in the 
minimum time. 

4.2.1 Context exploration 

In this Thesis the turtlebots used for the experiments do not have any information about 
the environment in which they operate. The exploration of the environment can be 
separated into two tasks. Firstly, the task of finding which positions of the world are 
available and which are not, meaning that they have obstacles. Secondly, for the 

purposes of this Thesis, in the tasks of context exploration, we develop path planning 
algorithms in order to find the possible sensor sources in the world efficiently. The two 
turtlebots have to move in the world and trace the sensor sources and as a result at the 
end of the experiments they will have collected information about the level of 

measurements in each position. 

4.2.2 Obstacle avoidance 

In our experiments, given the fact that the turtlebots do not have a map of the world, we 
have to manage the cases in which the turtlebot’s path is blocked by an obstacle. 

Another important issue is that our world is surrounded by walls, and the turtlebots do 
not know where these walls are located. Lastly, the algorithms are developed for more 
than one turtlebot that operate as a team. As a result, we have to take into 
consideration the possibility of one turtlebot’s path crosses the others. For all these 

purposes, we used the laser scan data from a ROS topic and we created custom topics 
that will be analyzed in later chapters. 

4.2.3 Efficiency and complexity 

In the problem stated, on the one hand the turtlebots in order to find the best sensor’s 
measurement have to explore all the environment and at the end decide in which 
position they found the optimal solution. On the other hand this algorithm will consume 
much time but will surely find the optimal solution. The main question that we will try to 
answer in this Thesis is whether there is a way to ensure a good enough solution in a 

more acceptable time. In our first algorithm we will try to explore the most possible 
positions to find the best measurement and in our second algorithm we will program the 
turtlebots to follow the measurements collaboratively. Our experiments test these two 
scenarios. 
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4.3 Proposed Solution 

4.3.1 Simulation setup 

For the purposes of this Thesis, we created algorithms that run on simulators. For the 
experiments that test our research we created a custom map of measurements, in order 
to simulate the measurements that the robot could have been receiving from sensors. 
The basic idea is that in any position of the world corresponds a number that indicates 
the measurement of the sensor. Hence the map of measurements has the same 

structure as the map of the world. In Figure 10 there is the map of the world and 
example of the maps of measurements that we build depending on the map of the 
turtlebot’s world is shown in the Figures 11 and 12. 

 

Figure 10 - Map of the world 
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Figure 11 - Map of measurements with one source 

 

Figure 12 - Example of created map of measurements with one source 

 

In the diagrams above, one source of measurements is depicted. The measurements 

follow the normal distribution and that is why in the second diagram we see the source 
as a circle.  

We developed a matlab function that creates gaussian sensor sources that follow the 
normal distribution. These sources are randomly distributed in the map of the turtlebot’s 
world. The input of our function is a generic map of the turtlebot and the output is a csv 
containing the sensor sources in space.  

These measurements have to be published in a topic so that the turtlebots can have 
access to. This is the main purpose that the node “     Publish Metrics” serve. We 

created a topic called “/metrics” of type Num. The type of this topic was inspired from 
the ‘/map’ topic of ROS. The node opens the csv file that was created from the matlab 
program and is constantly publishing the measurements to the ‘/metrics’ topic. The 
turtlebots are able to subscribe to this topic and read the measurements. In a real-life 

experiment the turtlebots will also read the sensor’s measurements from a topic, that 
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means that the algorithms developed for this research could be used in real life with the 
minimum changes. In the following figure (Figure 13) a part of the topic’s data is shown.  

 

Figure 13 - metrics_topic sample data 
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In Figure 14 the measurement read from the turtlebot in a certain position is shown. 

 

Figure 14 - Turtlebot's measurements in specific position 

4.3.2 Create custom message types 

Most of the software developers have faced the need to build custom message types. In 
this thesis we created two message types as well. In the following figures (Figure 15 

and Figure 16) these messages are shown. 
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Figure 15 - Custom message type. The message type name is Num and it contains an array of 

integers and two integers, one for each dimension of the array 

The ‘Num’ message type is used for publishing the measurements on the ‘/metrics’ 

topic. The first two integers, the height and the width shows the dimensions of the world. 
In our experiments the world has 400 points height and 400 points width. These two 
integers have to be equal to the height and width of the map of the world otherwise the 
turtlebot might go to a point where no measurement is defined.  

The array of floats stands for the actual measurements that the world has at each 
position. The array has only one dimension and it has size equal to height * width.   

 

Figure 16 - Custom message type. 

The message type name is Best_Metric and it contains two integers, position_x and 
position_y and one float number named metr 

‘Best_metric’ message type was built to store the best measurements noted in a certain 
position. The integers position_x and position_y are the coordinates of this position and 
the float metr stands for the measurement in this position. These messages are 
published in a custom topic, called robotX/local_best. The first turtlebot can store its 

local best value in the topic robot1/local_best and read the other turtlebot’s local best 
value from the topic robot2/local_best. In the following figure (Figure 17) the 
measurements published in these topics are shown. At the bottom left area of the figure 
is the best measurement that the turtlebot has found so far and at the bottom right area 

we see an instance of the robot1/local_best topic. 
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Figure 17 - best_metrics data 

4.3.3 Create launch files 

For the causes of this thesis we implemented many launch files. The main files created 
are the launch file used for the navigation of the turtlebots and the execution of the 
simulators.  

In this Thesis we need to start both simulations at the same time. Also, we have to add 
two turtlebots in the simulators. For this cause we have implemented a launch file. The 
launch file used in this thesis is shown in Figure 18. 

 

Figure 18 - launch file to start simulators 
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In the figure above, the lines 24-25, are responsible to mount two turtlebots in the 
simulators. The file robots.launch.xml defines how many and which turtlebot specifically 
will be shown in the simulators. In order to begin more turtlebots in the simulators we 

have to add code lines in the <group> tag at the end of this file and change the initial 
position of the third turtlebot, by changing the values in the <arg> tags . In Figure 19 a 
screenshot of this file is shown.  

Figure 19 - Launch file to begin turtlebots 

Finally, the xml file robot.launch.xml has the detailed characteristics of the turtlebot that 
will be shown at the simulator. In this file we firstly indicate which urdf file will be used 
for the turtlebot description. The turtlebot description is basically the external 

characteristics that the turtlebot has. In the installation of the gazebo simulation, a 
default urdf file is being downloaded, so we use that one for our simulations. There is no 
need to change the turtlebot description because it only affects the image of the robot. 
Some additional important information that we define in the robot xml file are the 3D 

sensor that the robot will use for its navigation, the name of the topics used for the 
navigation, the frequency that the robot will publish its position at the right topics, and 
the name of the laser scan topic. Some parts of this file is shown below (Figure 20 and 
21). 
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Figure 20 - Robot.launch.xml file: Odometry estimator, name of topics for robot’s position 

 

Figure 21- Robot.launch.xml file: Initial position, sensor definition and urdf file import 

4.3.4 Single Vehicle Path Planning  

The first algorithm that we developed for this Thesis is an heuristic path planning 
algorithm based on meanders. It basically is a simple world scan algorithm. Turtlebot is 
not aware of the world around. Therefore, it is needed to scan the space and define the 

border limits of the world. The turtlebot at first tries to find a random wall. It starts 
moving forward until it reaches an obstacle. The detection of an obstacle is based on 
the laserscan data from the topic ‘robotX/scans’, where X stands for 1 or 2. In the next 
step of the algorithm the turtlebot turns 90 degrees left, so that it has the wall at it’s right 

hand. Based on the “Wall follow” algorithm, the turtlebot follows the wall while “touching 
it” with its right hand, until it reaches its initial position. In Figure 22 is the path followed 
by the turtlebot. 
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Figure 22 - Turtlebot follows wall with right hand 

During the process described above, the node ‘Publish Metrics’ is also running. The 

turtlebot is subscribing to this topic and reads the measurement that its current position 
contains. 

After the turtlebot scans the surrounding world, it starts scanning the inner world. The 
path that the turtlebot follows creates a meander, hence the name of the algorithm. As 
shown in the following figure (Figure 23), starting from the position A, it moves to the 
position B. When the turtlebot reaches the wall in position B, it turns 90 degrees left, 

then moves 5 meters ahead, reaching position C. Then it turns 90 degrees left again 
and goes forward until it reaches a wall once again (position D). Following the same 
logic, it turns right 90 degrees, goes 5 meters ahead and turns 90 degrees right again. 
The turtlebot repeats this process until it reaches the top or bottom wall of the world. At 

the inner scan part of the algorithm, we chose not to scan every possible position in the 
world. Specifically when the turtlebot reaches one of the side walls, it turns and moves 
ahead 5 meters and then turns again and moves towards the other wall. In this way, 
many of the inner points of the world are not examined regarding the measurements 

that they contain. We made this agreement based on two reasons. Firstly, the number 
of meters that the turtlebot will move have an important impact on the time consuming 
for the algorithm execution. Increasing the meters of the movement of the turtlebot 
reduces the times that the turtlebot will have to go from one wall to the other. On the 

other hand if we increase the number of meters beyond an ideal limit will reduce the 
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possibility to find an acceptable source of measurements. Also, if we consider the fact 
that the measurements follow the Normal Distribution, it is understandable that 
measurements cannot be separated in the world of the turtlebot. This allows us to skip 

some points of the world, without risking to miss a source of measurements. Although 
we may not find the best measurement of the source, but for the purposes of this 
Thesis, this is considered acceptable. We decided that moving 5 meters gives us 
acceptable results and the algorithm is effective considering the time consumed. 

 

Figure 23 - Inner world scan 

When the turtlebot reaches the “end” of the world (meaning the top or bottom wall), it 
reruns the algorithm explained before, but this time it goes in the reverse direction. 
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4.3.4.1 Two turtlebots running meander algorithm 

The experiments contain tow turtlebots, which raises the need of a mechanism to make 
sure that these two turtlebots will not crash on each other. In this algorithm the two 
turtlebots do not have to communicate with each other except for this reason. In order to 
prevent a crash of the tow turtlebots, each turtlebot, when it scans an obstacle with 

laserscan data, they check the position of the other turtlebot. If the other turtlebot is 
blocking its path, then the turtlebot A tries to move around the turtlebot B, while the 
turtlebot B is staying still. In the following figure, Figure 24, the process of avoidance is 
shown. 

 

Figure 24 - Turtlebot crash avoidance 

It has to be noticed that the crash avoidance could not depend only on laser scan data 
because both turtlebots move. This means that the position of each obstacle changes 

every moment, so the one turtlebot could not just move around the other turtlebot, in 
order to avoid it, because its position might have changed. A more sophisticated 
algorithm for moving obstacles avoidance could have been used, however this is not the 
purpose of this thesis.  

4.3.5 Particle Swarm Optimization (PSO) 

In computational science, particle swarm optimization (PSO) [18] is a computational 
method that tries to find the best solution by constantly improving the current solution. 
For each solution found a quality measure is been corresponded. In this way, the best 

solution is the one with the greader quality. This method is applicable to problems with 
plenty of possible solutions that have a certain quality. 
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The inventors of the PSO are Kennedy, Eberhart and Shi [19] who firstly used it for the 
simulation of social behavior. After the simplification of the algorithm it has been noticed 
that it performs optimization.  

PSO can be characterized as metaheuristic as it makes a few or no assumptions about 
the problem that tries to optimize. Also, it can search in large spaces of candidate 

solutions. As all metaheuristic algorithms PSO does not guarantee that the final solution 
will be the optimal solution.  

4.3.5.1 Algorithm 

PSO algorithm works in a population (swarm) of feasible solutions (particles). The 
particles are navigating in the search environment based on the local and global 
knowledge of the environment. The local knowledge is the knowledge that the specific 
particle has gained on its own and the global knowledge is the knowledge that other 
particles shared. When a new better solution is found from a particle, the whole swarm 

is guided towards it. This process is constantly repeating and the particles are 
constantly improving the current solution. At the end of the algorithm, hopefully an 
acceptable solution will have been found. 

Figure 25 – PSO algorithm 

In the algorithm above, f stands for the cost function that must be minimized. The goal 

of the algorithm is to find a solution a for which f(a) ≤ f(b) for all b in the search 
environment. This will mean that a is the optimal solution. S stands for the number of 
particles in the swarm. The values blo and bup represent the lower and upper 
boundaries of the search-space respectively.  

The algorithm ends when an acceptable solution is found, or a certain number of 
iterations has been performed. The parameters ω, φp, and φg are selected by the 

practitioner and control the behaviour and efficacy of the PSO method. Lr represents 
the learning rate (0 ≤  lr ≤ 1.0), which is the proportion at which the velocity affects the 
movement of the particle (where lr = 0 means the velocity will not affect the particle at 
all and lr = 1 means the velocity will fully affect the particle).  

In our problem PSO can be applied so that the turtlebots work cooperatively to find the 
best measurement in their world. A basic variant of PSO can be used for this cause. In 
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this algorithm we have a population of candidate solutions (swarm), that in our case is 
the total of the positions in the world and the robots (particles) that try to find the best 
solution. The particles are moving around the world guided by the measurements that 

they receive in the position that they stand at each time and the measurements that the 
other robot has found. When a better solution has been discovered, meaning a better 
measurement in a position, all the particle-robots will move towards this new optimized 
position. This process is being repeated until the robots cannot find a better solution. 

However, it is not guaranteed that the found solution will be the optimized solution. 

4.3.6 Μulti-Vehicle Path Planning based on PSO 

The second algorithm that we developed for this Thesis is a combination of the 
meandre algorithm described before and the PSO logic. The basic logic of the algorithm 

is the following. At first the two turtlebots start executing the meander algorithm. When a 
turtlebot finds a source, it tries to follow the measurements with the purpose to find the 
best measurement of this source. In the meanwhile, it informs the other turtlebot that a 
measurement has been found. When the other turtlebot sees that the first turtlebot has 

found a source, it starts moving to its position in order to go as close as it can get.  

This algorithm also uses the node ‘Publish Metrics’. To implement the second algorithm, 
we additionally created 2 different nodes for each turtlebot. Firstly, it is easily 
understandable that for this algorithm to work it is necessary for each turtlebot to know 
the exact position of the other and the best measurement noted. For this purpose, we 
created the nodes 'robot1’ and ‘robot2’. Each node runs a program that reads the 

position of the turtlebot from the topic ‘robotX/odom’ (where X is 1 or 2 respectively) and 
finds the measurement in this position using the topic ‘/metrics’. Finally, if the metric 
found in this position is better than the previous measurements, it publishes a new 
message of type Best_Metric to the topic ‘robotX/local_best’(where X is 1 or 2 

respectively). The message that it publishes contains the measurement found and the 
position. As a result, this program makes it easy to access the best measurement that a 
turtlebot had and the position that the measurement was found, simply by subscribing to 
a topic. 

The second node that was implemented contains all the other parts of the algorithm. 
The nodes ‘Meandre1’ and ‘Meandre2’ run a program that at first is similar to the 

meander without PSO. The differences are noticed when one turtlebot finds a 
measurement greater than 0. In this case it tries to go as close to the source as 
possible. In order to do that, it finds the best measurement among the front right and left 
measurements. If the best metric is in front of the turtlebot, it simply continues going 

forward. If the best measurement is right or left, then the turtlebot turns right or left 
respectively and then goes straight. At this point it is important to comment on the fact 
that there is a possibility that the turtlebot will not find the best measurement of the 
source that it examines. This is because the turtlebot scans only three of the possible 

positions and goes to the one with the best measurements. However, we can say surely 
enough that the turtlebot will find an acceptable measurement of the source.  

While trying to approach the source, the turtlebot has to consider the possibility of the 
other turtlebot being in the position that it wants to go. In this case, the first turtlebot 
takes into account only the other two available positions. That means that if for example 
the turtlebot A is looking for the best measurement and the turtlebot B is at the position 

exactly in front of the turtlebot A, then the turtlebot A will check only the right and left 
positions. Maybe the best measurement would have been in the unavailable position, 
where the turtlebot B was standing, but this does not have an effect on the result of the 
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algorithm because the turtlebots work as a team and we do not mind which turtlebot will 
eventually find the best source.  

The turtlebot that found the measurement, informs the other turtlebot to follow it. The 
second turtlebot then reads from the ‘robotX/local_best’ topic the position of the first 
turtlebot. It calculates the orientation needed to face the other turtlebot and starts 

moving forward. During its motion towards the other turtlebot, it still keeps track of the 
measurements found in its path. If it finds a measurement greater than 0, it stops 
following the first turtlebot, and it tries to reach the source on its own. In this way, if 
there are many sources in the world, we have the opportunity to explore at least two of 

them and eventually find which one is the best. Moreover, while turtlebot A is going to 
the position that the turtlebot B pointed, it keeps reading the measurements posted by 
the turtlebot B. If turtlebot B publishes a measurement significantly better than the 
previous one, then the turtlebot A updates it’s goal destination with the new position of 

the turtlebot B.In Figure 25 the path of the tow turtlebots is shown. 

 

 

Figure 25 - The path of turtlebot 
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5 EXPERIMENTS 

5.1 Set up Experiments 

5.1.1 Create custom world 

For the purposes of this thesis we created a custom world file, using Gazebo tools. 
Although the default ROS package for gazebo contains a variety of different world files, 
we decided to build one on our own so that it suits perfectly our needs and it tests our 

algorithms in all possible cases.  

Building a custom world in gazebo is simple. We launch the gazebo simulator with the 
default world, using the command roslaunch turtlebot_gazebo turtlebot_world.launch. 
After the gazebo simulator is loaded completely, the screen of the computer looks like 
Figure 26 

 

 

Figure 26- Gazebo simulator with default world file 

The next step is to delete the items of the world that we do not need in our new world, 
simply by selecting the item and pressing Delete button. In our case we do not need any 

obstacle of the default world so we deleted them all. Insert new obstacles from the 
menu and place them at the desired positions. When the world is completed save the 
world using the menu of the gazebo. In this way, gazebo creates a .world file that we 
can use for our later gazebo launches. In this thesis, the world used for out experiments 

is the one shown in Figure 27. 



Robot Collaborative context exploration and path planning 

 

C.Katsarlinou                   43 

 

 

Figure 27 - gazebo simulator with the custom world file 

5.1.1.1 Map the custom world 

For experiments needed for this Thesis, a map of the world that the simulators launch is 
necessary. As mentioned before, the map of the world will be used as a base on which 
we will build a map of measurements. This map of measurements represent the 

measurements that a sensor on the turtlebot could receive. The reasons that lead us to 
create this map of measurements are firstly that as the experiments are executed in the 
simulators, real measurements of turtlebot’s sensors could not be used and secondly 
the measurements contained in the map are created to follow a normal distribution. 

Controlling how the measurements are shared in the room is essential for the research 
and the final results of this Thesis.  

The mapping of the world that we built is based on the gmapping package of ROS. The 
gmapping package provides laser-based SLAM (Simultaneous Localization and 
Mapping), as a ROS node called slam_gmapping. Generally, in order to build a map, we 
need to transform the laserscan and pose data that the turtlebot receives and transform 
them in such way to create a 2-D occupancy grid map. Slam_gmapping does all this 

work. We launch the gmapping package simply by typing in a terminal the command 
‘roslaunch gmapping slam_gmapping scan:=scan’. In another terminal we launch 
gazebo with our custom world and drive around the turtlebot, using the turtlebot_teleop 
package. When we cover all the world with the turtlebot, we save the map using the 

map_server, by typing the command ‘rosrun map_server map_saver -f <mpa_name>’. 
The map of our custom world is shown in Figure 28. 
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Figure 28 - Map of the custom world 
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5.2 Experiment execution 

The performance of our two developed algorithms has to be tested under many different 
circumstances. For this reason we carefully designed different cases in which the 

algorithms should work. We executed experiments with different sources of 
measurements and different initial poses of the turtlebots. In some experiments the 
source of the measurements was not reachable from the turtlebots and they had to try 
to go as close as possible without crashing on any obstacle. In other experiments we 

added multiple sources with different measurements to check how the turtlebots will act 
and whether the turtlebots will explore more than just one source.  

The first experiment was designed to check the most common case, in which we have 
only one source and it is reachable from both turtlebots. The initial position of the two 
turtlebots is at the middle of the world and they were pointed at different walls. The 
initial state of this first experiment is shown in the next figure (Figure 29) and the red 

circle show where the source is. 

 

 

Figure 29 - Initial state of first experiment 

In the second experiment the case of a hidden source was tested. The measurement 
map contains two sources and one of them is partly hidden. In this case the turtlebots 

are able to reach all measurements from one source and some, but not the best one of 
the second. The turtlebots have to try to find the best reachable measurement and of 
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course not crash on any obstacle. The initial state of the experiment is shown in the 
following figure (Figure 30). The red circle stands for each source.  

 

 

Figure 30 - Initial state of second experiment 

The measurement map used for the second experiment is shown in the following figure 
(Figure 31). 
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Figure 31 - Map of measurements with two sources 

The two sources are close to each other without covering one another. The two sources 
have the same best measurement, however only the one optimal measurement is 
reachable from the turtlebots. 

In the rest two experiments, we added more sources of measurement in the world. The 
expected result from the algorithm without PSO, is to explore all the sources and find 

measurements from all of them, but maybe not the best ones. The meander with PSO is 
the tricky part of this experiment. As described before, in this algorithm when the first 
turtlebot finds a measurement, despite its quality, it informs the other turtlebot to follow 
it. This means that the second turtlebot might be near a better source but not have 

reached a measurement yet, and it will not continue its way but it will follow the first 
turtlebot that might have found a weaker source. On the other hand, both turtlebots will 
explore a source in the minimum time. The following figures show the circumstances of 
each experiment (Figure 32 and 33). 

For the third experiment, we used the measurement map shown in Figure 34. The map 
contains three sources. The two of them are identical and the third is a smaller one, 

meaning that it has a smaller best measurement. The smaller source is connected with 
one of the big sources.  
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Figure 32 -Initial state of third experiment 

 

 

Figure 33 - Map of measurements with three sources 
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Figure 34 - Initial state of forth experiment 

In the final experiment we used the map of measurements shown in figure 35. The map 
contains four sources, three identical, big sources and a smaller one that is connected 
with one of the bigger ones, as in the previous experiment. The one big source is not 

reachable by any turtlebot, as it is outside the walls of the world. 

 

 

Figure 35 - Map of measurements with four sources 
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5.3 Experimental results 

In the first experiment, there is only one source of measurements in the world. The 
source is fully reachable by both turtlebots. The results of this experiment show that in 
both algorithms, meander without PSO and meander with PSO, the turtlebots eventually 

reach the optimal source measurement. We also noticed that the time that the turtlebots 
need in order to find that optimal solution is significantly smaller in the case of PSO 
algorithm. As shown in the next diagrams, the time consumed by the PSO algorithm is 
almost four times less than the time consumed by the exhaustive meander scan 

algorithm. 

 

 

Figure 36 - Utility function in space for the first experiment 
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Figure 37 -Utility function in time for the first experiment 

 

In the second experiment we have two sources in the world. In the execution of the 
exhaustive meander scan algorithm both turtlebots find measurements from both 

sources, while the PSO algorithm explores only the one source. Both algorithms find the 
optimal measurement in the end. In this experiment we noticed that the time needed to 
find the optimal solution does not differ between the two algorithms. As shown in Figure 
39, the vehicle1 in the meander without PSO algorithm finds the optimal solution at the 

same time as the vehicle2 in the meander with PSO algorithm.  
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Figure 38 - Utility function in space for the second experiment 

 

Figure 39 - Utility function in time for the second experiment 
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In the third experiment the results are similar to the second experiment. We noticed that 
the two turtlebots understand the two connected sources as one and when executing 
the PSO algorithm, the two turtlebots search for the best metric in the big and the 
smaller source. In the PSO algorithm, however the turtlebots never read measurements 

from the isolated source. This source is fully explored when executing the exhaustive 
algorithm. 

 

 

Figure 40 - Utility function in space for the third experiment 
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Figure 41 - Utility function in time for the third experiment 

 

 

In the final experiment, in both algorithms the turtlebots find the optimal solution. 
However, the time consuming by the exhaustive algorithm is around six times greater 

than the PSO algorithm. 
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Figure 42 - Utility function in space for the fourth experiment 

 

Figure 43 - Utility function in time for the fourth experiment 
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In the following figures (Figure 44 and 45) the maximum utility function for each turtlebot 
in each algorithm.  

 

 

Figure 44 - Utility function of vehicle 1 
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Figure 45 - Utility of vehicle 2 

In the exhaustive algorithm the first turtlebot finds the optimal solution in the three out of 
the four experiments, and in the third experiment, in which it does not find the optimal 

solution, it reaches an acceptable one. The second turtlebot find the best solution in the 
first and third experiment. In the other two experiments it reaches a good enough 
measurement. As a team the two turtlebots in the exhaustive algorithm always find the 
optimal solution. In the experiments with the PSO algorithm we notice that the first 

turtlebot finds the best solution only in the third experiment. Moreover, the second 
turtlebot find the optimal solution in the first two experiments. As a team the two 
turtlebots reach the best solution in the first three experiments. In the last experiment 
we notice that in the end none of the turtlebots reach the optimal solution, however both 

reach acceptable measurements.  

At this point it is important to focus on the time consuming by the two algorithms in each 

experiment. The following diagrams (Figure 46 and 47) show the time needed for each 
turtlebot to find its best measurement in every experiment. Even if the utility reached 
from noPSO and PSO methods are close enough this does not stand for the time. The 
time that PSO robots conclude in an acceptable solution is more than 1/8 of the 

exhaustive algorithm. For example, the time needed in experiment 3 from the noPSO 
robots is close to 1200s while the relevant time needed from PSO UxVs is close to 
200s.  Let us consider in larger or more complicated spaces then the PSO algorithm 
can help the UxVs to detect really fast a sensor source target. 
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Figure 46 - execution time of vehicle 1 

 

 

Figure 47 - execution time of vehicle 2 
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6 CONCLUSION 

The aim of this Thesis was to test whether the use of PSO in a collaborative UGV world 
exploration is beneficial or not. In more details, we stated the problem of finding 
randomly placed sources of measurements in an environment, using multiple UGVs. 

We tested the case where the UGVs act individually and the case where the UGVs 
collaborate and exchange messages. For this reason, we developed two algorithms, the 
noPSO and PSO algorithm. In the noPSO algorithm the UGVs scan exhaustively the 
entire environment, without communicating with each other, following a meander path. 

In the second algorithm the UGVs start by scanning the environment with the same 
logic as in the first algorithm. But when the one UGV finds a measurement, it follows it 
with the aim of finding the optimal measurement of the source. Additionally, it notifies 
the other UGVs to follow it. This is the part where the PSO theory takes place.  

To test the performance of these two algorithms, we executed multiple experiments 
under different circumstances. These experiments were executed in the Gazebo 

simulator with two virtual turtlebots. Our experiments show on the one hand, that the 
noPSO algorithm finds all the different sources and the optimal measurement. However, 
the execution time of this algorithm is in most cases unacceptable. On the other hand, 
the PSO algorithm is more time efficient and more acceptable for UxV operations, 

although it does not find the optimal solution every time, but it always ends up with a 
good enough solution. 

The algorithms presented in this Thesis have good results and can be used in many 
cases. The two algorithms have been developed with different principals in mind. The 
exhaustive meander algorithm has been developed in such way to find the best solution 
in the environment under any circumstances. On the other hand, the PSO algorithm is 

developed for cases in which the time constraints are significant. The previous diagrams 
make it clear that in the PSO algorithm the turtlebots converge much faster to a solution 
than the exhaustive algorithm. The solution given by the PSO algorithm is not every 
time the optimal but it is always an acceptable one. In an environment that amount of 

time consumed is a crucial issue, the PSO algorithm is the algorithm to go. If there are 
no time constraints and the best solution is needed, then the exhaustive algorithm 
should be chosen. However, to choose the right algorithm we have to consider that the 
time consumption in any UxV mission is a crucial issue. The more time the UxV runs, 

the more resources are used. 
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ABBREVIATIONS - ACRONYMS 

IoT  Internet of Things  

UxV  Unmanned Vehicle, x stands for aerial, ground, or sea 

UAV Unmanned Aerial Vehicle 

UGV Unmanned Ground Vehicle 

USV Unmanned Surface Vehicle 

PSO Particle swarm optimization 

ROS Robot Operating System 
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ANNEX Ι 

The source code of this thesis can be found by following the link:  

https://github.com/ChristinaKats/ROS 
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