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ABSTRACT

In recent years, the rapid development and evolution of the Internet of Things (loT) and
robotics seems unstoppable. The new possibilities added to the nodes, open horizons
for new research as well as for new uses in the daily life of people and industry. One of
the key features is the mobility of the nodes. Most nodes are no longer static, but move
in space and offer a wide range of new applications that can offer like the ability to make
decisions without human intervention, their durability, the use of embedded sensors
(temperature, pressure, humidity, etc.), as well as for their reprogrammability. Based on
these features, mobile nodes can be used for example in cases of surveillance of areas
and borders, for image recognition and alarm signaling, as well as for crisis
management. For example, an unmanned land vehicle (mobile node) carrying a high-
definition sonar and a high-definition thermal camera, combined with an object
recognition algorithm can be used to find people trapped in wreckage.

In addition, this functionality can be enriched by the fact that two or more nodes can
communicate with each other to work together to complete a mission. Let us consider a
mission to find a lost hiker in a forest, with a single mobile node (unmanned aerial
vehicle), the chances of finding him in a short time are much lower than when we have
more than one to communicate with, exchanging images, measurements, the areas
they have scanned, and finally if any of them have found the target. This group mode in
the context of the Internet of Things and robotics is called a swarmi of nodes. More
specifically, each node operates based on the knowledge of the whole team and not
individually. This is also observed in nature, especially in insects, where they function
on the basis of this method.

In this thesis, it is examined whether the swarm operation is more efficient both
temporally and qualitatively in relation to the operation of each node as independent on
collaborative search of sensor targets with no prior knowledge of the environment. More
specifically, a series of experiments are carried out where two robots scan the entire
space in detail exhaustively in order to identify the points where the value from an
existing sensor sources is maximum. These values are detected by robots with the help
of sensors that they carry. In the first case, the robots act independently without
knowing neither the measurements taken by the other, nor its position. In the second
case, the robots cooperate based on the operation of the swarm, in order to find the
optimal possible value of the source.

The experiments were supported by the Ubuntu 16.04 operating system, the Gazebo
and Rviz simulators, as well as two virtual TurtleBots running the ROS operating
system, as well as a virtual XBOX Kinect sensor with a color camera and a depth
sensor.

SUBJECT AREA: Context exploration

KEYWORDS: collaborative, context exploration, path planning, ROS, turtlebot, Particle

Swarm Optimization



NEPIAHWH

Ta TeAeutaia xpovia, n Taxeia avamTuén kar €€EAIEN Tou AIadIKTUOU TwV TTPAYUATWYV
(IoT) ka1 TNG popTToTIKNAG @aiveTal acTapdtntn. O1 véeg duvaTdTNTEG TTOU TTPOCTEBNKAV
OTOUG KOMPBOUG, avOoIXTOUG OPICOVTEG YIa vEQ €peuva, KABWG Kal yia VEEG XPNOEIG OTNV
KaBnuepivl Cwr avBpwTiwyv Kai Blounxaviwy. ‘Eva atrd 1a Bacikd XapakTnpIoTIKA €ival
n KivnTiKOTATA Twv KOUBwv. O1 TTEPIocOTEPOI KOUPBOI dev €ival TTAEOV OTATIKOI, aAAG
KIvoUVTal OTO OIACTNPA KAl TTPOCPEPOUV Eva €UupU QACHA VEWV EQAPUOYWYV TTOU
MTTOpOUV va TTIPOC@EPOUV, OTTWG N IKAVOTNTA ARWNG aTToOPACEWV XWPIC avBpwTrivn
TapéPpacn, N avOekTIKOTNTG TOug, N XPAON EVOWHATWHEVWY  alobnTApwyv
(Beppokpaoia, Trieon, vuypaacia K.ATT.) , KABWG KAl yIa TOV ETTAVATIPOYPOUUATIONS TOUG.
Me Bdon autd Ta XOpaKTNPEIOTIKA, O KIVATOi KOUBOI JTTOPOUV va Xpnoiyotroinbouv yia
TTOPAdEIYUO O€ TIEPITITWOEIC ETTITAPNONG TTEPIOXWYV KAl CuvOpwYv, YIa avayvwpion
€IKOVOG Kal onuaTtoddtnon ouvayepuou, Kabwg kal yia dlaxeipion kpicewv. lMNa
TAapPAdEIyUa, €va un €TTAVOPWHEVO XEPOaio Oxnua (KIvnNTog KOUBOG) TTou @épel éva
odévap UYNAAG EUKPIVEIAG Kal HIa BEPUIKA KAPEPO UWNAAG EUKPIVEIAG, 0€ CUVOUAOHO HE
évav aAyopiBuo avayvwpliong avTIKEIMEVWY UTTOPEI va XPNOIKMOTTOINGEI yia TV eUPEON
ATOMWYV TTOU €XOUV TTAYIOEUTEI O€ OUVTPIUUIA.

EmmA€ov, autr) n AEITOUPYIKOTNTA WTTOPEI va €UTTAOUTIOTEI ATTO TO yeyovog Ot dUo 1
TEPIOCOTEPOI KOUBOI UTTOPOUV VA ETTIKOIVWVOUV HPETAEU TOUG VIO VA CUVEPYAOTOUV YIa
va OAOKANPWOOUV WIa atTooTOAR. AG €€€TACOUNE WIa ATTOOTOAN va BPOoUpE £vav XAPEVO
medommopo o €va OAoO0G, Pe €vav POVO KOPBO KivnToU (un eTTavOpwPEVO eVAEPIO
oxnua), ol TeavétnTeg va Tov Bpouue O OUVTOPO XPOovIKG OidoTnua eival TToAU
XOMNAOTEPEG aTTO 6, TI OTAV £XOUME TTEPICOOTEPA ATTO €va VA ETTIKOIVWVAOOULE,
avTaAAGoooVTaG EIKOVEG , METPNOEIG, TIG TTEPIOXESG TTOU £XOUV CAPWOEl Kal, TEAOG, €AV
Katrola a1rd autég €xel Bpel Tov OTOX0. AUTH n opadikr) AsiToupyia OTO TTAQICIO TOU
AlodIKTUOU TWV TIPAYUATWY KAl TNG POMTIOTIKAG OvopdadeTal ourivog KOuBwyv. Mo
OUYKEKPIMEVA, KABe KOuBOg Aciroupyei ye Baon TIG yVWoelG OAOKANPNG TG ouadag Kal
OxXl Medovwpéva. Autd TrapaTnpeital €mmiong OTn QUOnN, €10IKA OTAa €VToud, OTToU
Aeiroupyouv BAoel authg TG HEBOGDBOU.

2€ QUTH TNV TITUXIOKNA €pyaocia, €geTaletal €Av n Asmoupyia opAvoug €ival TTo
QATTOTEAECUATIKH) TOOO XPOVIKG 000 Kal TToIOTIKG o€ oxéon JE Th Asimoupyia KABe KSuBou
WG aveLAPTNTN OTN CUVEPYATIKA avadntnon oToxwyv aiobnTApwyv XwpEIig TTPOonNyouuEvn
yvwaon Tou TePIBAAAOVTOG. M0 OCUYKEKPIYEVA, TTPAYUATOTIOIEITAI PIO OEIPA TTEIPAUATWY
O1ToU dUO PONTIOT CAPWVOUV AETITOPEPWS OAOKANPO TOV XWPO AETTTOUEPWG YIa va
TTPoodIopicouV Ta onueia OTToU N TIUA aTTd UTTAPXOUCEG TTNYEC aloBnThpa eival PEyioTn.
AUTEG o1 TINEG aviXveUovTal aTTd POWPTTOT WE TN PorBeia aloBNTAPWY TTOU PETAPEPOUV.
2TV TIPWTN TTEPITITWON, TA POUTTIOT dPOUV aveLdpTNTA XWPIG va yvwpifouv ouTe TIG
METPAOEIG TTOU £xel AABEI 0 AAAOG oUTE Tn BE0n Tou. TN BeUTEPN TTEPITITWON, TA POUTTOT
ouvepyalovTal he BAon TN AEIToupyia TOU OUVOUG, TTIPOKEIMEVOU va Bpouv Tn BEATIOTN
oduvaTtA TINA TNG TTNYNG.

Ta Treipduara  ekTeAEOTNKAV 0 AgIroupyikd ouoTtnua  Ubuntu  16.04, oToug
TpooouoiwTéG Gazebo kal Rviz, kKal xpnoiyotroi®nkav duo €ikovikd TurtleBots Tou
Aeiroupyouv pe 1o Asiroupyikd cuotnua ROS, kabwg Kal atrd £vav eIKOVIKO alobnTthpa
XBOX Kinect pe £yxpwun kapepa kai aiodntipa Ba6oug.

OEMATIKH NEPIOXH: AvaliTtnon lMepiexouévou
AEZEIX KAEIAIA: 2uvepyaoia Poptror, Avalnitnon TIEPIEXOPEVOU, OXEDIAOUOG
povottaTiwyv, ROS, turtlebot, Particle Swarm Optimization



H epyaaoia auti aQiepwveETal OTNV UNTEPA LIOU YIA TV OUVEXN KAl abIGKOTTn OoTNpién TNG

KaB’ 6An tnv dIGpKEIa TWV TTTOUOWYV [IOU.



EYXAPIXTIEZ

MNa tn diektTepaiwon Tng Tmapouoag MNTuxiakAg Epyaciag, Ba nBsAa va suxaplioTAow
Tov emPBAETTOVTO KABNYNTA Mou, EuoTtdBio Xat¢neuBuuiddn, TTou pou £dwoE Tnv
EUKQIPIa v aOXOANBW PE TOV TOPEQ TNG POMTIOTIKNG KOI PE EPTTIOTEUTNKE PE TO BEPQ
TNG TTapoucag TITuxIokng. Etriong Ba nésAa va suxapiothiow TV dIdAKTWP Kupiakni
Mavayidn yia Tnv ouvexn uttooTAPIEN Kal Pondeid Tng kKab® OAn tnv didpKeia
EKTTOVNONG TNG £pyaaciag.
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Robot Collaborative context exploration and path planning

1 INTRODUCTION

During the last years a significant evolution has been noticed regarding the Internet of
Things (IoT). IoT refer to the network of physical objects that have sensors and software
and connect with each other, via the Internet, in order to collect and exchange
information. Nowadays everything can be turned into a part of the IoT. The connection
of multiple different devices with sensors on them lead to an loT with a great level of
intelligence. In this thesis, we will focus on unmanned vehicles, UxVs, as parts of IoT.
UxVs (UxVs- x stands for different type of environment, i.e. ‘s’ for sea, ‘a’ for air and ‘g’
for ground) are mobile nodes that can navigate in the environment an react in specific
events. The key characteristic of the UxVs is the autonomous decision making without
human intervention. Additionally, some other UxVs' capabilites are endurance,
multimedia streaming and payload carrying. Rapid technological advancements that
occurred in the last decade expanded the possible uses of UxVs. Some of the most
recent use cases are surveillance, security monitoring, and supporting crisis
management activities. For instance, UGV with a thermal camera can locate, recognize
and possibly rescue an errant hiker.

In several missions, the search area cannot be covered by a single device or the time is
a critical factor therefore the researchers need to find efficient methods to overcome
these barriers like the collaborative operation of the vehicles. During a collaborative
operation<e: multiple UxVs communicate with each other in order to complete efficiently
and successfully a same mission. Additionally, for the collaboration of the unmanned
vehicles, the Particle Swarm Optimization theory will be studied in this Thesis. Swarm
technology is inspired by swarm intelligence, which draws inspiration from the lives of
social insects or birds weiSwarm intelligence (SI) provides the possibility of S
behavior through collaboration in individuals that have limited or no intelligence [1]. Its
potential parallelism and distribution characteristics can be used to realize global
optimization and solve nonlinear complex problems. Swarms of UxVs

The goal of this Thesis is to examine if that collaboration through Sl is more time and
resource efficient than just letting the robots execute the mission extensively without
communicating with each other. To achieve this goal, we use UGVs that aim to locate
some sensor sources that are located at unknown positions in their ‘world’. The sensor
sources transmit measurements that UGV sensors can collect. For instance, in real life
missions, these sources could be a source of a fire or an SOS signal indicating a human
trapped under the ground. Firstly during our research, we develop an algorithm that
scans exhaustively the environment using multiple UGVs. The UGVs will not
communicate with each other regarding the environment exploration for points of
interest. The exploration of the environment is based only on the local knowledge of
each UGV’s sensor's measurements. In addition, we develop an algorithm for
collaborative operation of UGVs based on PSO theory. In this case multiple UGVs
communicate with each other, via a master, and they constantly know each other’s
status. This knowledge can lead to a faster context discovery rather than exhaustively
scan an unknown world. The results are presented in section X based on different case
studies comparing the time and utility efficiency of the both methods.

C.Katsarlinou



Robot Collaborative context exploration and path planning

2 BASICELEMENTS OF UNMANNED VEHICLES

2.1 Definition of Unmanned Vehicles

An unmanned vehicle is defined as a vehicle that operates with no person in it. The
control of the unmanned vehicles can be guided by the commands from a remote
source. For example, a person in a computer room could send commands through a
message bus like Kafka. An unmanned vehicle can also operate autonomously by
running special designed algorithms. In this Thesis we will analyze the second type of
unmanned vehicles.

The autonomous vehicles are capable of sensing their environment either with the use
of sensors, or the use of maps that describe the environment. The use of a map,
however, requires previous knowledge of the environment, meaning that the unmanned
vehicle or some other device has to explore the world and create the needed map
before the unmanned device can operate autonomously in this environment. On the
other hand, unmanned vehicles can explore their environment with a variety of different
sensors, such as cameras, lidar and temperature sensors. In the last years many
scientists are trying to develop new algorithms or optimize existing ones for unmanned
vehicles to act autonomously and explore their environment with sensors. In this Thesis
we will run experiments in which we do not have previous knowledge of the world or the
obstacles that it might contain. The navigation and the obstacle avoidance is based only
on sensors of the unmanned vehicle.

The types of the unmanned vehicles are UAVs, meaning unmanned aircraft aerial
vehicles commonly known as drones, UGV, that are unmanned ground vehicles and
USV, unmanned surface vehicles, also known as surface drones that operate on the
surface of the water.

2.1.1 Unmanned aerial vehicle

Unmanned aerial vehicles (UAV) [2], commonly known as drones, are aircraft that do
not have a human pilot boarded. The UAV’s flight can be fully autonomous, or controlled
from a human operator usually on the ground. The use of drones was initially aimed to
help the military missions, however nowadays drones are used for plenty of reasons, to
simplify many professions or even as games for children. In Figures 1 and 2 examples
of UAVs are shown.

Figure 1-Drone (UAV) used for photography and videos

C.Katsarlinou
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Robot Collaborative context exploration and path planning

< ) ) '.l'::;‘. bt v
Figure 2 - Military UAV
2.1.2 Unmanned ground vehicles

Unmanned ground vehicles (UGVs) operate on the ground with no human on board.
The operation of the vehicle can be controlled by human actors remotely or it can be
autonomous due to specifically implemented algorithms. The use of the UGVs is
considered necessary in cases where the human presence is dangerous. UGVs are
used in many professions. For instance the exploration of Mars would have been
impossible without the specially designed UGV. In Figure 3 the UGV used in Mars
exploration is shown.

Figure 3- UGV used in Mars exploration

Nowadays scientists all over the world focus their study on unmanned cars that will
work autonomously and will be used for transportation as a normal car. The initial idea

C.Katsarlinou 16
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in 1921 was to construct a remotely controlled car and during the last years the idea
became to create a self driving car which will be used for transportation of humans. The
safety of humans on board a self driving car is of great importance. Hence the
development of the algorithm especially for navigation must be well designed. For these
algorithm sensors like lidar, gps and cameras are necessary.

As most unmanned vehicles, UGVs are used for military purposes as well. A military
UGV is shown in the following figure (Figure 4).

Figure 4 - military UGV

2.1.3 Unmanned surface vehicles

Unmanned surface vehicles (USVs) [3] are boats that operate autonomously without
humans on board. In most cases USVs are controlled remotely by a human actor that
usually is on the ground. USVs can be used in military missions, in oceanography and
seaweed farming. In Figure 5 an example of a USV is shown.

Figure 5—Unmanned Sea Vehicle

C.Katsarlinou 17
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2.2 Robotic Operating System — ROS

The progress noticed in the robotics community during the last years is impressive, both
at hardware and software development. Nowadays, more reliable and inexpensive robot
hardware is widely available. Many efficient algorithms have been developed that
provide the robots with a certain level of autonomy. Even if a significant progress has
been noticed, software development has still many challenges to deal with. The most
crucial challenges have to do with the distribution of computations, the testing
necessary to check the correctness of an algorithm and the reuse of the code. A
proposed solution to these difficulties is a software platform called Robot Operating
System (ROS).

2.2.1 Definition of ROS

Robot Operating System (ROS), is a Linux based software framework for operating
robots [4] [5]. It is an open-source, meta-operating system, which means that it runs
alongside with the operating system. It provides the services you would expect from an
operating system, including hardware abstraction, low-level device control,
implementation of commonly-used functionality, message-passing between processes,
and package management. It also provides tools and libraries for obtaining, building,
writing, and running code across multiple computers [4].

ROS [5] s a collection of tools, libraries and conventions that aims in the simplification of
the procedures for creating complicated and robust robot behavior across a wide variety
of robotic platforms. It is important to highlight that ROS, as it is not an operating
system, has to work alongside with a traditional operating system like Linux.

The main advantages of ROS are:

1 Distributed computation:. ROS provide a simple and reliable mechanism for
communication between multiple processes on the same or on different
computers. This feature is necessary for robot systems’ software, considering the
fact that in most cases these algorithms span many processes that run in
different computers.

2 Software Reuse: Due to the progress of robotic research, many effective
algorithms have been developed for most of the common tasks of a robot (e.g.
navigation, motion planning, mapping). ROS’s standard package provides
implementations of the most important algorithms of these tasks. In addition,
several ROS packages with multiple useful algorithms are publicly available. All
these can lead to even more rapid progress in robotics because developers can
focus on new ideas and not spend their energy reinventing the wheel.

3 Rapid Testing: Most of the times, testing a robot’s algorithm is time consuming
and error-prone. Sometimes a physical robot is not available, or even if it is,
running an experiment with it might be slow or expensive. Also testing extreme
cases might be tricky. For these cases, ROS provide mechanisms that improve
the testing process. Firstly, there are simulators specifically developed for
running robot algorithms. ROS also provide a simple way of recording data. With
these features the aforementioned issues are resolved and the testing process
becomes easier and less time consuming.

ROS is not the only platform that has been developed to serve these purposes. The
reasons that lead us and many other software developers to choose ROS over the other

C.Katsarlinou
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Robot Collaborative context exploration and path planning

platforms for software environments are plenty. All these reasons come from the fact
that ROS differs from other platforms because the robot community widely supports it.
Nowadays, commercial companies develop their product in a way that they will be
compatible with ROS. ROS uses the concept of packages, nodes, topics, messages
and services.

ROS Package System

Bepository

Package e : Stack

\

" Stack . < BOS unlverse™,
;/ Package P:c::g. \\‘ / .\Reposltory/} > ’/Reposim R A\
( Nodes Messages | & Y A \ \
|| Messages Sarvices | | e / \
W* Package A [ stack Stack \| |
Jovm y -  \ .

\

. | Repository :\"\\ "

b \ 4

N——

\
\

Taken from Sachin Chitta and Radu Rusu (Willow Garage)

Figure 6 - ROS Package System
2.2.2 ROS Packages

ROS software is separated into packages. A package is folder that contains multiple
files that serve a specific purpose. Such files are executables and supporting files like
ROS nodes, a ROS-independent library, a dataset, configuration files, a third-party
piece of software. Packages are the minimum ROS unit of build and release. As a
result, the ROS package is considered as the the smallest structure that a ROS
program requires. ROS packages provide in an easy to consume way, very useful
functionalities. The also contribute to software reuse. A ROS package must contain only
the necessary in order to have the required functionality so that it can be used, and so
that it is not heavyweight and difficult to use from other software. Packages can be
created by hand or with tools like catkin create pkg.

2.2.3 ROS Stack

A stack is a collection of packages. The goal of collecting these packages is to simplify
the process of code sharing. All packages in stack cooperate in such way to provide a
certain functionality. Unlike the traditional software libraries, ROS stacks can add
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functionalities during the execution of the robot’'s program through topics and services.
ROS has numerous stacks. Stacks have versions and sometimes can declare
dependencies to other stacks.

Generally, a stack is a directory that among others it has a stack.xml file. Each package
in this directory is considered as a part of the stack.

Every stack has a Stack manifest, which is a file with necessary information for the
stack and the dependencies to other stacks.

2.2.4 ROS Catkin

Catkin is the ROS build system. It is the set of tools that ROS uses to create executable
programs, interfaces, libraries, and scripts that other code can use.

2.25 ROS Nodes

ROS’s philosophy is to organize the code into small independent pieces of code that run
at the same time, in such way to simplify the debugging and to increase the reuse of the
code. To achieve this goal, ROS has nodes. A node basically is the process in which
computation is performed. In most of the cases, a node serves a specific purpose, for
example one controls the navigation of the robot and another processes sensor
measurements. Nodes cooperate with one another mostly through topics.

The use of nodes is beneficial to the overall system. As it is widely known, creating
many independent code pieces has the advantage that the crashes are isolated. As a
result, creating nodes that each one of them acts independently, if an error occurs at
one node, it might not cause any damage to the whole system. Also, code complexity is
reduced in comparison to monolithic systems.

A running node is uniguely identified to the rest of the system by its name. The type of a
node has to be defined. The type of the node simplifies the process of referring to an
executable node on the filesystem.

2.2.6 ROS Topics

Topics are named buses over which nodes communicate with each other. Basically,
topics are the means to transmit ROS messages between nodes. Each topic has
subscriber and publisher nodes. In general, a subscriber node is not aware of which
node will consume its messages. The same applies for the publisher node. What
happens in particular is that a node that is interested in data subscribes to a topic that
provides the data. Respectively nodes that generate data, publish them to the relevant
topic. Each topic can have multiple subscribers and publishers as soon as they have
different names.

Every topic has a specific type. The type of the topic indicates the message type that
the topic can transmit.

2.2.7 ROS Messages

Nodes communication with each other happens by exchanging messages through
topics. A message is created by the publisher node and is published to a topic. Another
or maybe the same node subscribes to the topic and consumes the message.
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Each message has a specific type. The type of a message is defined in a .msg file
which contains the description of the type. There are standard message types in ROS
but one can create others simply by declaring an .msg file and building the type.

Table 1: Standard ROS message types

Primitive Type Serialization C++ Python2 Python3
bool unsigned 8-bit int uint8_t bool
int8 signed 8-bit int int8_t int
uint8 unsigned 8-bit int uint8_t int
intl6 signed 16-bit int intl6_t int
uintl6 unsigned 16-bit int uintl6_t int
int32 signed 32-bit int int32_t int
uint32 unsighed 32-bit int uint32_t int
int64 signed 64-bit int int64_t long int
uinte4 unsigned 64-bit int uint64_t long int
float32 32-bit IEEE float float float
floate4 64-bit IEEE float double float
string ascii string std::string str bytes
time sgct«"/nsecs unsigned 32- ros::Time rospy.Time
bit ints
duration f:;s/nsecs signed 32-bit ros::Duration rospy.Duration

2.2.8 Master Node

As we analyzed previously, ROS software contains many files, nodes and topics. A very
important issue that occurs at this point is how all nodes that run at the same time, are
exchanging messages and perform computations synchronously. This happens
successfully with the use of the ROS master. Before any code can start its execution,
the command “roscore” must be used so that the master node will start. Master node
has to be running for the entire time that we use ROS.

2.2.9 ROS Service

Services are another means of communication between two nodes. A service is defined
by a pair of messages, one for the request and one for the reply. A node provides a
service through a string name. A node requires a message and waits for the reply. A
service is defined in a srv file.

Services also have types. The name of the type is the same as the name of the srv file
that defines the service.

2.2.10 Launch files

ROS provides a mechanism to start many nodes all at once, using files called launch
files. Launch files are xml files with the .launch extension. Using launch files is
necessary in order to have an easy to use ROS set of packages. They also simplify the
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process of executing the code and run nodes. Launch files have to be associated with a
specific package. That is the reason why the launch file should be stored in the package
directory. Although, the place of the launch files is not that important because when
running roslaunch, the search of the file will extend to all the directory and the
subdirectories as wel.nThe command to execute a launch file is roslaunch
package name launch_file_name.

2.2.11 World Files

ROS simulators use world files to specify the characteristics of the environment that the
turtlebots “live” in and interact with. Basically world files create the physical world in
which the turtlebot moves. World files are xml files with the .world extension. These files
contain detailed description of all obstacles that the world has. Some of the most
important information for the obstacles are the name of the obstacle, its the exact
position and its size. In each launch file it is necessary to define a world file because
that is the only way to inform the simulator of what to show. In Figure 7 there is an
example of such definition.

k?xml version="1.8"2>
<launch>

<!-- We resume the legic in empty_world.launch, changing only the name of the world to be launched -->
<include file="$(find gazebo_ros)/launch/empty_world.launch"s

<arg name="world_name" wval worlds/mud.world" /> <!-- Note: the world_name is with respect to GAZEBO_RESOURCE_PATH environmental wariable --

<arg name="paused" value="false"/=>
<arg name="use_sim_time" value="true"/>
<arg name="guil" value="true"/>

<
<

arg name="headless' Tlue="false" /> <!-- Inert - see gazebo_ros_pkgs issue #491 -->
arg name="recording" value="false"/>
<arg name="debug" value="false"/>

</include>

</launch=
Figure 7 - Launch mud.world file

2.3 Sensors

Unmanned vehicles need sensors to be able to understand their environment and
execute specific tasks. For instance, for the robot's navigation, several sensors are
necessary, such as a lidar or kinect, maybe combined with a camera. In this thesis we
use Kinect sensor for obstacle avoidance. In a real world experiment we would use
another sensor for the measurements that we want to keep track of.

24 Turtlebot

TurtleBot [6] is a low-cost, personal robot kit with open-source software. TurtleBot is a
small robot used by many developers for experiments and new software development. It
belongs in the category of unmanned ground vehicles. It consists of a mobile base used
for the movement of the robot and many sensors like distance sensors and cameras.
Turtlebot does not have a processor. Turtlebot’'s operation need an external unit that
runs ROS, for example a laptop or Raspberry Pi. The algorithms that control the
turtlebot are executed on this unit. Moreover, all necessary sensors needed for a
mission have to be connected on the operating unit. A turtlebot is shown in Figure 8.
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Figure 8 - Turtlebot

2.5  Simulators (Gazebo, rviz)

A well-designed simulator is essential for any robot development. Gazebo helps the
developers to easily test their algorithms, design new robot models and new
environments to navigate. It also provides convenient programmatic and graphical
interfaces. Another important feature that we made use of in this thesis is the ability to
accurately and efficiently simulate populations of robots in complex indoor and outdoor
environments. Gazebo is considered as the leader in robot simulation.

In order to connect the Gazebo simulator with ROS we have to create some ROS
packages. This set of packages is called gazebo ros pkgs and contains the necessary
files to simulate the robot and the environment in which we will test the algorithms. As
always the communication between ROS and Gazebo happens through ROS
messages, services and dynamic reconfigure. At the installation of ROS,
gazebo_ros_pkgs comes with some default files and at most cases the developer does
not need to modify at all.

The process to start the Gazebo simulator with the default files is first to run the roscore
command to start the Master ROS node and then the command roslaunch
turtlebot_gazebo turtlebot_world.launch. The roscore command is not necessary, as
each roslaunch command will initialise the Master node if it is not already initialized.

For the causes of this thesis we also used Rviz as a simulator. The main reason that led
us to the use of Rviz in this thesis is the need to load a map to the simulator. Gazebo on
the other hand, does not give us the opportunity to visualize a map. Also, in this thesis
we used laser scan data for most of the development parts andRviz is considered to be
an effective free tool for the visualization of these laser scans. Moreover, Rviz has a
graphic section that shows the environment and the turtlebots and a section with the
topics used for the simulation. That is very useful during the development of the
algorithms as we can check these topics.

Running Rviz simulator is simple, just run the command roslaunch rviz rviz.
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251 Map

Rviz gives us the opportunity to visualize a map for the turtlebot to navigate. A Map can
be used in ROS simulators by combining two files. First of all we need a .png file that is
the image of the map and a .yaml file that describes the map features. To open the map
in the simulator the only thing necessary is to provide the map server through the
launch file that initializes the simulators. As shown in the next figure (Figure 9), we
initialize the map server and provide the yaml file that describes the map.

Figure 9- Launch file to open map in Rviz
2.6  Obstacle detection

Obstacle detection is the process of using sensors, data structures, and algorithms to
detect objects or terrain types that impede motion [7]. Obstacle detection is generally a
crucial issue of any unmanned vehicle that needs to navigate by making decisions on its
own. Every unmanned vehicle must have the ability to identify obstacles during its
moving it the world. In order to do that it uses many different types of sensors. The most
common sensors for obstacle detection are kinect, lidar and cameras. These sensors
make it possible for the robot to identify an obstacle and if necessary create clusters of
the different types of obstacles.

Obstacle detection is necessary in plenty of robot’s functionalities. Mapping, navigation
and path planning would have been impossible to be performed without the detection of
the obstacles inside the world. After an obstacle has been detected, the robot should
move in such way to avoid it.

2.7 Collision Avoidance

Collision Avoidance is the process in which an unmanned vehicle tries not to crash on
any obstacles. During a mission the robots travel from one point to another, it has to
make sure that the path is clean of obstacles. If an obstacle is detected in this path, the
robot has to update and replan the path to its destination. The process of replanning the
path is not always easy. It is possible that the robot will not be able to find a path that
ends on the desired destination. These are the trickiest cases that the developer of the
collision avoidance algorithm has to take into consideration. Collision avoidance is a
field of study in robotics that many developers and generally scientists find interesting.
The optimization of obstacle avoidance is still an ongoing process. In the last few years,
more and more scientists are trying to turn all moving objects into autonomous vehicles.
Drones, cars, military devices are some of the basic examples of items that have to
become autonomous. Unmanned vehicles of all kind must have well designed
algorithms of collision avoidance to be considered safe. That is the reason why in the
last years this field of study is attracting the robotics community interest.
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3 RELATEDWORK

3.1 UxV Path Planning

When dealing with unmanned vehicles, a very important issue is the path planning.
Many years now, scientists have developed algorithms for path planning in static and
dynamic environments. Real-time path planning is a necessary layer for the movement
of the unmanned vehicle in an unknown environment. Firstly, the robot has to detect
potential obstacles and avoid them. A proposed approach [8] is use the Voronoi
diagram-based algorithm. This algorithm separates the world into cells and creates a
grid. In this grid each cell contains an empty area or an obstacle. The Voronoi algorithm
has been used in other research works [9], for the initial path planning of unmanned
vehicles. It has been improved by adding utility function for each suggested path so that
the unmanned vehicles create an optimal path eventually.

Another suggested algorithm is the D* [10] algorithm, which is an algorithm for path
planning depending on sensors and a map with full, littte of none knowledge of the
environment. Like the A* algorithm [11], this algorithm constructs a directive graph with
cost functions for every path. The important part of this D* algorithm, and what
differentiates it from the A*, is that during the motion of the unmanned vehicle, the graph
is constantly updated. As a result, the vehicle will come up with an optima path.

3.2 Maze challenge[12] — Touching the wall

Lately the robotics community has inserted a new challenge, the maze solving
challenge. In this challenge a robot is placed in an unmapped maze and it tries to find a
way out of it. Many algorithms have been developed to solve this maze challenge. The
most popular ones are the random mouse and the wall follower [12]. The first algorithm
can be applied in every maze and does not have specific requirements. The second one
can be applied on mazes that are ‘simply connected’ or ‘perfect’, meaning that they do
not contain loops.

In the random mouse algorithm, the unmanned vehicle picks a path randomly every
time and it follows it until it reaches a dead-end. In this case, it picks a path again and
follows it. It repeats this process until it finally gets out of the maze. This method uses
no intelligence and the robot is acting like a mouse, hence the name. This algorithm will
sourly find the exit of the maze eventually but the time that it will need cannot be
calculated or even estimated.

The wall follow algorithm is considered the best algorithm so far for solving the maze
challenge. This algorithm guarantees a solution to the problem, if the maze is ‘perfect’.
In this algorithm the unmanned vehicle walks in the maze while ‘touching’ the wall with
one hand. It is also called ‘left-hand’ or ‘right-hand’ algorithm depending on the hand
that touches the wall. The advantage of this algorithm is that if an exit does not exist,
then the robot will return at its initial position and it will have traversed every corridor in
the maze.

3.3 Search of unknown environment

The research of searching for specific points of interest using unmanned vehicles
started many years before. In 1940 Koopman [13] focused his work on exploring an
environment using sensors to find an object that was placed in a random position, using
random search patterns. In latter research works [14], the studies are focused in the
optimization of the searching process and developing algorithm that use more
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intelligence and decision making. Finally, in a research for the mathematical modeling of
the searching problem [15], the searching process is considered as a probabilistic
phenomenon. The objects that the unmanned vehicles try to find, are placed in the
environment according a known spatial likelihood. With this theory in mind, each
position of the environment becomes a searching cell and each searching path is a
sequence of multiple searching cells. In order to process these searching structures,
advanced computers are necessary.

During the last years many researchers have focused their work on algorithms for
cooperative unmanned vehicles that try to explore the environment or navigate in it
while sensing measurements. There are many other different approaches for the use of
collaboration on unmanned vehicles. In the research mentioned before, the
effectiveness of the unmanned vehicle collaboration is tested. The collaboration of the
unmanned vehicles offers a probabilistic estimation of the gain that an unmanned
vehicle will have by searching in a previously visited cell. In this way, the decision
whether the unmanned vehicle should visit or not the specific cell can be made before
the vehicle actually visits the cell. Another interesting approach [16] for the collaborative
unmanned vehicles focuses on the decentralization of the control in order to split the
risk of failure. This research was developed for UAVs. In this case the control of the
collaborative team of vehicles is based on the real-time creation of tasks from the user.
The unmanned vehicles allocate tasks using onboard computation and UAV to UAV
communication. Each UAV allocates a task only if it can complete its mission with lower
cost than all the other UAVs. The aim of this research is to minimize the time until the
last vehicle has completed its tasks. The allocation of the tasks has two steps. Firstly,
the UAV finds the possible tasks depending on its local knowledge. Secondly, it checks
the time that other UAVs have stated that they need to complete each task, and if it can
accomplish less time, it allocates some extra tasks as well.

In many researches the collaboration of unmanned vehicles is based on Particle swarm
optimization method (PSO). PSO can be used for a team of vehicles [17] [18] or for all
available vehicles. This method is useful in cases when a team of vehicles is trying to
explore an unknown environment or search for specific objects. At first all vehicles are
moving in the world according to some limitations regarding their position. When a
vehicle indicates that its position is better than the others, then all other vehicles have to
move towards it. In cases of world exploration, each vehicle takes into consideration the
knowledge of all the vehicles and not only the local knowledge. As a result, the
unmanned vehicles complete their missions faster and more accurately.
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4 COLLABORATIVESEARCHPLANNING FORMULTIPLE VEHICLES
IN IOT ENVIRONMENT
4.1 Problem Definition

In this Thesis, we focused our research on developing effective algorithms for scanning
a previously unknown world and at the same time, try to detect sources of
measurements (context awareness) using autonomous ground vehicles that collaborate
with each other. For our experiments we used two turtlebots although the algorithms
developed can be used in experiments with more robots of any kind.

4.2  Challenges

The problem stated previously can be splitted in different smaller parts. Firstly, the
unmanned vehicles have to be able to navigate in a previously unknown environment
without crashing on each other or on other obstacles. Secondly, it tries to optimize the
the context aware process, i.e. trying to find the best measurement of a sensor in the
minimum time.

4.2.1 Context exploration

In this Thesis the turtlebots used for the experiments do not have any information about
the environment in which they operate. The exploration of the environment can be
separated into two tasks. Firstly, the task of finding which positions of the world are
available and which are not, meaning that they have obstacles. Secondly, for the
purposes of this Thesis, in the tasks of context exploration, we develop path planning
algorithms in order to find the possible sensor sources in the world efficiently. The two
turtlebots have to move in the world and trace the sensor sources and as a result at the
end of the experiments they will have collected information about the level of
measurements in each position.

4.2.2 Obstacle avoidance

In our experiments, given the fact that the turtlebots do not have a map of the world, we
have to manage the cases in which the turtlebot's path is blocked by an obstacle.
Another important issue is that our world is surrounded by walls, and the turtlebots do
not know where these walls are located. Lastly, the algorithms are developed for more
than one turtlebot that operate as a team. As a result, we have to take into
consideration the possibility of one turtlebot’'s path crosses the others. For all these
purposes, we used the laser scan data from a ROS topic and we created custom topics
that will be analyzed in later chapters.

4.2.3 Efficiency and complexity

In the problem stated, on the one hand the turtlebots in order to find the best sensor’s
measurement have to explore all the environment and at the end decide in which
position they found the optimal solution. On the other hand this algorithm will consume
much time but will surely find the optimal solution. The main question that we will try to
answer in this Thesis is whether there is a way to ensure a good enough solution in a
more acceptable time. In our first algorithm we will try to explore the most possible
positions to find the best measurement and in our second algorithm we will program the
turtlebots to follow the measurements collaboratively. Our experiments test these two
scenarios.
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4.3 Proposed Solution

4.3.1 Simulation setup

For the purposes of this Thesis, we created algorithms that run on simulators. For the
experiments that test our research we created a custom map of measurements, in order
to simulate the measurements that the robot could have been receiving from sensors.
The basic idea is that in any position of the world corresponds a number that indicates
the measurement of the sensor. Hence the map of measurements has the same
structure as the map of the world. In Figure 10 there is the map of the world and
example of the maps of measurements that we build depending on the map of the
turtlebot’'s world is shown in the Figures 11 and 12.

Figure 10 - Map of the world
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Figure 11 - Map of measurements with one source

Figure 12 - Example of created map of measurements with one source

In the diagrams above, one source of measurements is depicted. The measurements
follow the normal distribution and that is why in the second diagram we see the source
as a circle.

We developed a matlab function that creates gaussian sensor sources that follow the
normal distribution. These sources are randomly distributed in the map of the turtlebot’s
world. The input of our function is a generic map of the turtlebot and the output is a csv
containing the sensor sources in space.

These measurements have to be published in a topic so that the turtlebots can have
access to. This is the main purpose that the node “ Publish Metrics” serve. We
created a topic called “/metrics” of type Num. The type of this topic was inspired from
the /map’ topic of ROS. The node opens the csv file that was created from the matlab
program and is constantly publishing the measurements to the ‘/metrics’ topic. The
turtlebots are able to subscribe to this topic and read the measurements. In a real-life
experiment the turtlebots will also read the sensor's measurements from a topic, that
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In Figure 14 the measurement read from the turtlebot in a certain position is shown.
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Figure 14 - Turtlebot's measurements in specific position

4.3.2 Create custom message types

Most of the software developers have faced the need to build custom message types. In
this thesis we created two message types as well. In the following figures (Figure 15
and Figure 16) these messages are shown.
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chriskina *» catkin_ws » src » multiple_turtlebots_nav
uint32 height

uint32 width

float32[] data

Figure 15 - Custom message type. The message type name is Num and it contains an array of
integers and two integers, one for each dimension of the array

The ‘Num’ message type is used for publishing the measurements on the ‘/metrics’
topic. The first two integers, the height and the width shows the dimensions of the world.
In our experiments the world has 400 points height and 400 points width. These two
integers have to be equal to the height and width of the map of the world otherwise the
turtlebot might go to a point where no measurement is defined.

The array of floats stands for the actual measurements that the world has at each
position. The array has only one dimension and it has size equal to height * width.

christina » catkin_ws » src * multiple_turtlebots_nav

[
Hlnatﬂz metr

uint32 position x
uint32 position_y

Figure 16 - Custom message type.

The message type name is Best Metric and it contains two integers, position_x and
position_y and one float number named metr

‘Best_metric’ message type was built to store the best measurements noted in a certain
position. The integers position_x and position_y are the coordinates of this position and
the float metr stands for the measurement in this position. These messages are
published in a custom topic, called robotX/local_best. The first turtlebot can store its
local best value in the topic robot1/local_best and read the other turtlebot’s local best
value from the topic robot2/local _best. In the following figure (Figure 17) the
measurements published in these topics are shown. At the bottom left area of the figure
is the best measurement that the turtlebot has found so far and at the bottom right area
we see an instance of the robotl/local_best topic.
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christina@moka: ~ 89x18 =] christina@moka: ~ 88x17

Figure 17 - best_metrics data

4.3.3 Create launch files

For the causes of this thesis we implemented many launch files. The main files created
are the launch file used for the navigation of the turtlebots and the execution of the
simulators.

In this Thesis we need to start both simulations at the same time. Also, we have to add
two turtlebots in the simulators. For this cause we have implemented a launch file. The
launch file used in this thesis is shown in Figure 18.

ind multiple turtlebot

" default="

launch-prefi

Figure 18 - launch file to start simulators
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In the figure above, the lines 24-25, are responsible to mount two turtlebots in the
simulators. The file robots.launch.xml defines how many and which turtlebot specifically
will be shown in the simulators. In order to begin more turtlebots in the simulators we
have to add code lines in the <group> tag at the end of this file and change the initial
position of the third turtlebot, by changing the values in the <arg> tags . In Figure 19 a
screenshot of this file is shown.

ns="robotl"

file="$(find
name="1ini
name="1ini
name="1ini
name="1n1
name="rok

ns="robot2"

file="g%(f
name="1
name="3
name="1
name="1ini
name="robo

Figure 19 - Launch file to begin turtlebots

Finally, the xml file robot.launch.xml has the detailed characteristics of the turtlebot that
will be shown at the simulator. In this file we firstly indicate which urdf file will be used
for the turtlebot description. The turtlebot description is basically the external
characteristics that the turtlebot has. In the installation of the gazebo simulation, a
default urdf file is being downloaded, so we use that one for our simulations. There is no
need to change the turtlebot description because it only affects the image of the robot.
Some additional important information that we define in the robot xml file are the 3D
sensor that the robot will use for its navigation, the name of the topics used for the
navigation, the frequency that the robot will publish its position at the right topics, and
the name of the laser scan topic. Some parts of this file is shown below (Figure 20 and
21).
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' name="robot state publisher’ |

from="

Figure 21- Robot.launch.xml file: Initial position, sensor definition and urdf file import
4.3.4 Single Vehicle Path Planning

The first algorithm that we developed for this Thesis is an heuristic path planning
algorithm based on meanders. It basically is a simple world scan algorithm. Turtlebot is
not aware of the world around. Therefore, it is needed to scan the space and define the
border limits of the world. The turtlebot at first tries to find a random wall. It starts
moving forward until it reaches an obstacle. The detection of an obstacle is based on
the laserscan data from the topic ‘robotX/scans’, where X stands for 1 or 2. In the next
step of the algorithm the turtlebot turns 90 degrees left, so that it has the wall at it’s right
hand. Based on the “Wall follow” algorithm, the turtlebot follows the wall while “touching
it” with its right hand, until it reaches its initial position. In Figure 22 is the path followed
by the turtlebot.
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Figure 22 - Turtlebot follows wall with right hand

During the process described above, the node ‘Publish Metrics’ is also running. The
turtlebot is subscribing to this topic and reads the measurement that its current position
contains.

After the turtlebot scans the surrounding world, it starts scanning the inner world. The
path that the turtlebot follows creates a meander, hence the name of the algorithm. As
shown in the following figure (Figure 23), starting from the position A, it moves to the
position B. When the turtlebot reaches the wall in position B, it turns 90 degrees left,
then moves 5 meters ahead, reaching position C. Then it turns 90 degrees left again
and goes forward until it reaches a wall once again (position D). Following the same
logic, it turns right 90 degrees, goes 5 meters ahead and turns 90 degrees right again.
The turtlebot repeats this process until it reaches the top or bottom wall of the world. At
the inner scan part of the algorithm, we chose not to scan every possible position in the
world. Specifically when the turtlebot reaches one of the side walls, it turns and moves
ahead 5 meters and then turns again and moves towards the other wall. In this way,
many of the inner points of the world are not examined regarding the measurements
that they contain. We made this agreement based on two reasons. Firstly, the number
of meters that the turtlebot will move have an important impact on the time consuming
for the algorithm execution. Increasing the meters of the movement of the turtlebot
reduces the times that the turtlebot will have to go from one wall to the other. On the
other hand if we increase the number of meters beyond an ideal limit will reduce the
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possibility to find an acceptable source of measurements. Also, if we consider the fact
that the measurements follow the Normal Distribution, it is understandable that
measurements cannot be separated in the world of the turtlebot. This allows us to skip
some points of the world, without risking to miss a source of measurements. Although
we may not find the best measurement of the source, but for the purposes of this
Thesis, this is considered acceptable. We decided that moving 5 meters gives us
acceptable results and the algorithm is effective considering the time consumed.

Top Wall of World

Bottom Wall of World

Figure 23 - Inner world scan

When the turtlebot reaches the “end” of the world (meaning the top or bottom wall), it
reruns the algorithm explained before, but this time it goes in the reverse direction.
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4.3.4.1 Two turtlebots running meander algorithm

The experiments contain tow turtlebots, which raises the need of a mechanism to make
sure that these two turtlebots will not crash on each other. In this algorithm the two
turtlebots do not have to communicate with each other except for this reason. In order to
prevent a crash of the tow turtlebots, each turtlebot, when it scans an obstacle with
laserscan data, they check the position of the other turtlebot. If the other turtlebot is
blocking its path, then the turtlebot A tries to move around the turtlebot B, while the
turtlebot B is staying still. In the following figure, Figure 24, the process of avoidance is
shown.

Figure 24 - Turtlebot crash avoidance

It has to be noticed that the crash avoidance could not depend only on laser scan data
because both turtlebots move. This means that the position of each obstacle changes
every moment, so the one turtlebot could not just move around the other turtlebot, in
order to avoid it, because its position might have changed. A more sophisticated
algorithm for moving obstacles avoidance could have been used, however this is not the
purpose of this thesis.

4.3.5 Particle Swarm Optimization (PSO)

In computational science, particle swarm optimization (PSO) [18] is a computational
method that tries to find the best solution by constantly improving the current solution.
For each solution found a quality measure is been corresponded. In this way, the best
solution is the one with the greader quality. This method is applicable to problems with
plenty of possible solutions that have a certain quality.
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The inventors of the PSO are Kennedy, Eberhart and Shi [19] who firstly used it for the
simulation of social behavior. After the simplification of the algorithm it has been noticed
that it performs optimization.

PSO can be characterized as metaheuristic as it makes a few or no assumptions about
the problem that tries to optimize. Also, it can search in large spaces of candidate
solutions. As all metaheuristic algorithms PSO does not guarantee that the final solution
will be the optimal solution.

4.3.5.1 Algorithm

PSO algorithm works in a population (swarm) of feasible solutions (particles). The
particles are navigating in the search environment based on the local and global
knowledge of the environment. The local knowledge is the knowledge that the specific
particle has gained on its own and the global knowledge is the knowledge that other
particles shared. When a new better solution is found from a particle, the whole swarm
is guided towards it. This process is constantly repeating and the particles are
constantly improving the current solution. At the end of the algorithm, hopefully an
acceptable solution will have been found.

for each particle 1 =1, ..., 5 do
Initialize the particle's position with a uniformly distributed random vector:
Xi ~ U(brg, byp)
Initialize the particle's best known position to its initial position: p; « xj
if f(p;) < f(g) then
update the swarm's best known position: g - p;
Initialize the particle's velocity: w; ~ U(-|byp-byg|, |byp-byal)
while a termipation criterion is not met do:
for each particle i =1, ..., 5 do
for each dimension d =1, ..., n do
Pick random numbers: rp, rg ~ U(0,1)
Update the particle's velocity: Vi 4 « W Vi, g + @5 I (Pi,a-Xi,d) + @y Iy
(Qd-Xi,d)
Update the particle's position: x; « X3 + 1r v;
if f(x;) < f(p;y) then
Update the particle's best known position: p; « X;
if f(pi) =< flg) then
Update the swarm's best known position: g - p3

Figure 25 -PSO algorithm

In the algorithm above, f stands for the cost function that must be minimized. The goal
of the algorithm is to find a solution a for which f(a) < f(b) for all b in the search
environment. This will mean that a is the optimal solution. S stands for the number of
particles in the swarm. The values b, and b,, represent the lower and upper
boundaries of the search-space respectively.

The algorithm ends when an acceptable solution is found, or a certain number of
iterations has been performed. The parameters w, @p, and ¢g are selected by the
practitioner and control the behaviour and efficacy of the PSO method. Lr represents
the learning rate (0 < Ir < 1.0), which is the proportion at which the velocity affects the
movement of the particle (where Ir = 0 means the velocity will not affect the particle at
all and Ir =1 means the velocity will fully affect the particle).

In our problem PSO can be applied so that the turtlebots work cooperatively to find the
best measurement in their world. A basic variant of PSO can be used for this cause. In
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this algorithm we have a population of candidate solutions (swarm), that in our case is
the total of the positions in the world and the robots (particles) that try to find the best
solution. The particles are moving around the world guided by the measurements that
they receive in the position that they stand at each time and the measurements that the
other robot has found. When a better solution has been discovered, meaning a better
measurement in a position, all the particle-robots will move towards this new optimized
position. This process is being repeated until the robots cannot find a better solution.
However, it is not guaranteed that the found solution will be the optimized solution.

4.3.6 Multi-Vehicle Path Planning based on PSO

The second algorithm that we developed for this Thesis is a combination of the
meandre algorithm described before and the PSO logic. The basic logic of the algorithm
is the following. At first the two turtlebots start executing the meander algorithm. When a
turtlebot finds a source, it tries to follow the measurements with the purpose to find the
best measurement of this source. In the meanwhile, it informs the other turtlebot that a
measurement has been found. When the other turtlebot sees that the first turtlebot has
found a source, it starts moving to its position in order to go as close as it can get.

This algorithm also uses the node ‘Publish Metrics’. To implement the second algorithm,
we additionally created 2 different nodes for each turtlebot. Firstly, it is easily
understandable that for this algorithm to work it is necessary for each turtlebot to know
the exact position of the other and the best measurement noted. For this purpose, we
created the nodes 'robot1’ and ‘robot2’. Each node runs a program that reads the
position of the turtlebot from the topic ‘robotX/odom’ (where X is 1 or 2 respectively) and
finds the measurement in this position using the topic ‘/metrics’. Finally, if the metric
found in this position is better than the previous measurements, it publishes a new
message of type Best Metric to the topic ‘robotX/local_best'(where X is 1 or 2
respectively). The message that it publishes contains the measurement found and the
position. As a result, this program makes it easy to access the best measurement that a
turtlebot had and the position that the measurement was found, simply by subscribing to
a topic.

The second node that was implemented contains all the other parts of the algorithm.
The nodes ‘Meandre1’ and ‘Meandre2’ run a program that at first is similar to the
meander without PSO. The differences are noticed when one turtlebot finds a
measurement greater than 0. In this case it tries to go as close to the source as
possible. In order to do that, it finds the best measurement among the front right and left
measurements. If the best metric is in front of the turtlebot, it simply continues going
forward. If the best measurement is right or left, then the turtlebot turns right or left
respectively and then goes straight. At this point it is important to comment on the fact
that there is a possibility that the turtlebot will not find the best measurement of the
source that it examines. This is because the turtlebot scans only three of the possible
positions and goes to the one with the best measurements. However, we can say surely
enough that the turtlebot will find an acceptable measurement of the source.

While trying to approach the source, the turtlebot has to consider the possibility of the
other turtlebot being in the position that it wants to go. In this case, the first turtlebot
takes into account only the other two available positions. That means that if for example
the turtlebot A is looking for the best measurement and the turtlebot B is at the position
exactly in front of the turtlebot A, then the turtlebot A will check only the right and left
positions. Maybe the best measurement would have been in the unavailable position,
where the turtlebot B was standing, but this does not have an effect on the result of the
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algorithm because the turtlebots work as a team and we do not mind which turtlebot will
eventually find the best source.

The turtlebot that found the measurement, informs the other turtlebot to follow it. The
second turtlebot then reads from the ‘robotX/local best' topic the position of the first
turtlebot. It calculates the orientation needed to face the other turtlebot and starts
moving forward. During its motion towards the other turtlebot, it still keeps track of the
measurements found in its path. If it finds a measurement greater than O, it stops
following the first turtlebot, and it tries to reach the source on its own. In this way, if
there are many sources in the world, we have the opportunity to explore at least two of
them and eventually find which one is the best. Moreover, while turtlebot A is going to
the position that the turtlebot B pointed, it keeps reading the measurements posted by
the turtlebot B. If turtlebot B publishes a measurement significantly better than the
previous one, then the turtlebot A updates it's goal destination with the new position of
the turtlebot B.In Figure 25 the path of the tow turtlebots is shown.

Figure 25 - The path of turtlebot
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5 EXPERIMENTS

5.1  Set up Experiments
5.1.1 Create custom world

For the purposes of this thesis we created a custom world file, using Gazebo tools.
Although the default ROS package for gazebo contains a variety of different world files,
we decided to build one on our own so that it suits perfectly our needs and it tests our
algorithms in all possible cases.

Building a custom world in gazebo is simple. We launch the gazebo simulator with the
default world, using the command roslaunch turtlebot_gazebo turtlebot world.launch.
After the gazebo simulator is loaded completely, the screen of the computer looks like
Figure 26

Figure 26- Gazebo simulator with default world file

The next step is to delete the items of the world that we do not need in our new world,
simply by selecting the item and pressing Delete button. In our case we do not need any
obstacle of the default world so we deleted them all. Insert new obstacles from the
menu and place them at the desired positions. When the world is completed save the
world using the menu of the gazebo. In this way, gazebo creates a .world file that we
can use for our later gazebo launches. In this thesis, the world used for out experiments
is the one shown in Figure 27.
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Figure 27 - gazebo simulator with the custom world file

5.1.1.1 Map the custom world

For experiments needed for this Thesis, a map of the world that the simulators launch is
necessary. As mentioned before, the map of the world will be used as a base on which
we will build a map of measurements. This map of measurements represent the
measurements that a sensor on the turtlebot could receive. The reasons that lead us to
create this map of measurements are firstly that as the experiments are executed in the
simulators, real measurements of turtlebot’s sensors could not be used and secondly
the measurements contained in the map are created to follow a normal distribution.
Controlling how the measurements are shared in the room is essential for the research
and the final results of this Thesis.

The mapping of the world that we built is based on the gmapping package of ROS. The
gmapping package provides laser-based SLAM (Simultaneous Localization and
Mapping), as a ROS node called slam_gmapping. Generally, in order to build a map, we
need to transform the laserscan and pose data that the turtlebot receives and transform
them in such way to create a 2-D occupancy grid map. Slam_gmapping does all this
work. We launch the gmapping package simply by typing in a terminal the command
‘roslaunch gmapping slam_gmapping scan:=scan’. In another terminal we launch
gazebo with our custom world and drive around the turtlebot, using the turtlebot_teleop
package. When we cover all the world with the turtlebot, we save the map using the
map_server, by typing the command ‘rosrun map_server map_saver -f <mpa_name>’.
The map of our custom world is shown in Figure 28.
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Figure 28 - Map of the custom world
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5.2  Experiment execution

The performance of our two developed algorithms has to be tested under many different
circumstances. For this reason we carefully designed different cases in which the
algorithms should work. We executed experiments with different sources of
measurements and different initial poses of the turtlebots. In some experiments the
source of the measurements was not reachable from the turtlebots and they had to try
to go as close as possible without crashing on any obstacle. In other experiments we
added multiple sources with different measurements to check how the turtlebots will act
and whether the turtlebots will explore more than just one source.

The first experiment was designed to check the most common case, in which we have
only one source and it is reachable from both turtlebots. The initial position of the two
turtlebots is at the middle of the world and they were pointed at different walls. The
initial state of this first experiment is shown in the next figure (Figure 29) and the red
circle show where the source is.

Figure 29- Initial state of first experiment

In the second experiment the case of a hidden source was tested. The measurement
map contains two sources and one of them is partly hidden. In this case the turtlebots
are able to reach all measurements from one source and some, but not the best one of
the second. The turtlebots have to try to find the best reachable measurement and of
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course not crash on any obstacle. The initial state of the experiment is shown in the
following figure (Figure 30). The red circle stands for each source.

Figure 30- Initial state of second experiment

The measurement map used for the second experiment is shown in the following figure
(Figure 31).
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Figure 31- Map of measurements with two sources

The two sources are close to each other without covering one another. The two sources
have the same best measurement, however only the one optimal measurement is
reachable from the turtlebots.

In the rest two experiments, we added more sources of measurement in the world. The
expected result from the algorithm without PSO, is to explore all the sources and find
measurements from all of them, but maybe not the best ones. The meander with PSO is
the tricky part of this experiment. As described before, in this algorithm when the first
turtlebot finds a measurement, despite its quality, it informs the other turtlebot to follow
it. This means that the second turtlebot might be near a better source but not have
reached a measurement yet, and it will not continue its way but it will follow the first
turtlebot that might have found a weaker source. On the other hand, both turtlebots will
explore a source in the minimum time. The following figures show the circumstances of
each experiment (Figure 32 and 33).

For the third experiment, we used the measurement map shown in Figure 34. The map
contains three sources. The two of them are identical and the third is a smaller one,
meaning that it has a smaller best measurement. The smaller source is connected with
one of the big sources.
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Figure 32 -Initial state of third experiment

Figure 33- Map of measurements with three sources
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Figure 34- Initial state of forth experiment

In the final experiment we used the map of measurements shown in figure 35. The map
contains four sources, three identical, big sources and a smaller one that is connected
with one of the bigger ones, as in the previous experiment. The one big source is not

reachable by any turtlebot, as it is outside the walls of the world.

Figure 35- Map of measurements with four sources
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5.3 Experimental results

In the first experiment, there is only one source of measurements in the world. The
source is fully reachable by both turtlebots. The results of this experiment show that in
both algorithms, meander without PSO and meander with PSO, the turtlebots eventually
reach the optimal source measurement. We also noticed that the time that the turtlebots
need in order to find that optimal solution is significantly smaller in the case of PSO
algorithm. As shown in the next diagrams, the time consumed by the PSO algorithm is
almost four times less than the time consumed by the exhaustive meander scan
algorithm.

Experiment 1
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Figure 36 - Utility function in space for the first experiment
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In the second experiment we have two sources in the world. In the execution of the
exhaustive meander scan algorithm both turtlebots find measurements from both
sources, while the PSO algorithm explores only the one source. Both algorithms find the
optimal measurement in the end. In this experiment we noticed that the time needed to
find the optimal solution does not differ between the two algorithms. As shown in Figure
39, the vehiclel in the meander without PSO algorithm finds the optimal solution at the
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Figure 37 -Utility function in time for the first experiment

same time as the vehicle2 in the meander with PSO algorithm.
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In the third experiment the results are similar to the second experiment. We noticed that
the two turtlebots understand the two connected sources as one and when executing
the PSO algorithm, the two turtlebots search for the best metric in the big and the
smaller source. In the PSO algorithm, however the turtlebots never read measurements
from the isolated source. This source is fully explored when executing the exhaustive
algorithm.
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Figure 40- Utility function in space for the third experiment
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Figure 41 - Utility function in time for the third experiment

In the final experiment, in both algorithms the turtlebots find the optimal solution.
However, the time consuming by the exhaustive algorithm is around six times greater

than the PSO algorithm.
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In the following figures (Figure 44 and 45) the maximum utility function for each turtlebot

in each algorithm.
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Figure 44 - Utility function of vehicle 1
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Figure 45 - Utility of vehicle 2

In the exhaustive algorithm the first turtlebot finds the optimal solution in the three out of
the four experiments, and in the third experiment, in which it does not find the optimal
solution, it reaches an acceptable one. The second turtlebot find the best solution in the
first and third experiment. In the other two experiments it reaches a good enough
measurement. As a team the two turtlebots in the exhaustive algorithm always find the
optimal solution. In the experiments with the PSO algorithm we notice that the first
turtlebot finds the best solution only in the third experiment. Moreover, the second
turtlebot find the optimal solution in the first two experiments. As a team the two
turtlebots reach the best solution in the first three experiments. In the last experiment
we notice that in the end none of the turtlebots reach the optimal solution, however both
reach acceptable measurements.

At this point it is important to focus on the time consuming by the two algorithms in each
experiment. The following diagrams (Figure 46 and 47) show the time needed for each
turtlebot to find its best measurement in every experiment. Even if the utility reached
from noPSO and PSO methods are close enough this does not stand for the time. The
time that PSO robots conclude in an acceptable solution is more than 1/8 of the
exhaustive algorithm. For example, the time needed in experiment 3 from the noPSO
robots is close to 1200s while the relevant time needed from PSO UxVs is close to
200s. Let us consider in larger or more complicated spaces then the PSO algorithm
can help the UxVs to detect really fast a sensor source target.
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6 CONCLUSION

The aim of this Thesis was to test whether the use of PSO in a collaborative UGV world
exploration is beneficial or not. In more details, we stated the problem of finding
randomly placed sources of measurements in an environment, using multiple UGVs.
We tested the case where the UGVs act individually and the case where the UGVs
collaborate and exchange messages. For this reason, we developed two algorithms, the
noPSO and PSO algorithm. In the noPSO algorithm the UGVs scan exhaustively the
entire environment, without communicating with each other, following a meander path.
In the second algorithm the UGVs start by scanning the environment with the same
logic as in the first algorithm. But when the one UGV finds a measurement, it follows it
with the aim of finding the optimal measurement of the source. Additionally, it notifies
the other UGVs to follow it. This is the part where the PSO theory takes place.

To test the performance of these two algorithms, we executed multiple experiments
under different circumstances. These experiments were executed in the Gazebo
simulator with two virtual turtlebots. Our experiments show on the one hand, that the
noPSO algorithm finds all the different sources and the optimal measurement. However,
the execution time of this algorithm is in most cases unacceptable. On the other hand,
the PSO algorithm is more time efficient and more acceptable for UxV operations,
although it does not find the optimal solution every time, but it always ends up with a
good enough solution.

The algorithms presented in this Thesis have good results and can be used in many
cases. The two algorithms have been developed with different principals in mind. The
exhaustive meander algorithm has been developed in such way to find the best solution
in the environment under any circumstances. On the other hand, the PSO algorithm is
developed for cases in which the time constraints are significant. The previous diagrams
make it clear that in the PSO algorithm the turtlebots converge much faster to a solution
than the exhaustive algorithm. The solution given by the PSO algorithm is not every
time the optimal but it is always an acceptable one. In an environment that amount of
time consumed is a crucial issue, the PSO algorithm is the algorithm to go. If there are
no time constraints and the best solution is needed, then the exhaustive algorithm
should be chosen. However, to choose the right algorithm we have to consider that the
time consumption in any UxV mission is a crucial issue. The more time the UxV runs,
the more resources are used.
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ABBREVIATIONS - ACRONYMS

loT Internet of Things

UxVv Unmanned Vehicle, x stands for aerial, ground, or sea
UAV Unmanned Aerial Vehicle

uGv Unmanned Ground Vehicle

usv Unmanned Surface Vehicle

PSO Particle swarm optimization

ROS Robot Operating System
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ANNEXI

The source code of this thesis can be found by following the link:
https://github.com/ChristinaKats/ROS
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