

i

Master Thesis

Development of a Tower Defense Game
with Reinforcement Learning Agents

Maria Manolaki

(RN: 2015511)

Athens

November 2020

Department of Physics

Section of Electronic Physics and Systems

Master’s Degree on Control and Computing

ii

Supervisors

Dionysios Reisis, Associate Professor

Dr. Nikolaos Vlassopoulos, Research Associate

Evaluation Committee

Dionysios Reisis, Associate Professor

Ektoras Nistazakis, Associate Professor

Dr. Nikolaos Vlassopoulos, Research Associate

Acknowledgements

I gratefully acknowledge the invaluable assistance of Assoc. Prof. D. Reisis

for his support during all my studies. Ι would like to extend my deepest

gratitude to Dr. N. Vlassopoulos for his very helpful suggestions, generous

support, encouragement and patience throughout the duration of this

Thesis’ project.

iii

Contents

1 Abstract ...1

2 Machine Learning ..2

2.1 Types of Machine Learning ..2

2.1.1 Supervised Learning...3

2.1.2 Unsupervised Learning ...3

2.1.3 Reinforcement Learning...5

3 Neural Networks ..7

3.1 Introduction to Neural Networks ...7

3.1.1 Learning Process of Artificial Neural Network with Backpropagation .. 11

3.1.2 Parameters ... 12

3.1.3 Hyperparameters .. 13

3.2 Architectures of Neural Networks .. 14

3.2.1 Feed Forward .. 14

3.2.2 Recurrent Neural Network .. 15

3.2.3 Long Short-Term Memory (LSTM) .. 17

3.2.4 Gated recurrent unit (GRU) ... 18

3.2.5 Convolutional Neural Network (CNN) ... 19

4 Reinforcement Learning ... 21

4.1 Principles, Basic Terms and Definitions .. 21

4.2 Basic Reinforcement Learning algorithms ... 25

4.2.1 Dynamic Programming (DP) ... 26

4.2.2 Temporal Difference Methods (TD Methods) .. 27

4.2.3 Sampling, Monte Carlo and TD (λ) methods ... 29

4.2.4 Policy Search methods ... 29

4.2.5 Actor-Critic Methods ... 30

4.3 Deep Reinforcement Learning .. 31

4.3.1 Deep Q-Learning (DQN) .. 32

iv

4.3.2 Asynchronous Advantage Actor-Critic (A3C) and Advantage Actor-Critic (A2C)................... 33

5 The Game... 36

5.1 Tower Defense... 36

5.2 Tools ... 36

5.3 Game description ... 37

5.4 Training the enemy to win the player ... 41

5.4.1 Setting up the actor and the critic .. 41

5.4.2 Taking an action .. 42

5.4.3 Reward logic .. 42

5.4.4 Learning logic.. 43

5.4.5 Run Tests ... 44

6 Conclusions .. 48

References .. 49

Appendix ... 52

Tower_defence.py .. 52

Entities.py .. 60

1

1 Abstract

The aim of this Master Thesis is to develop a Tower Defense game and to equip it with

computational intelligence. A Deep Reinforcement Learning technique, more specifically the

Advantage Actor-Critic (A2C), is implemented and tuned in order to provide the enemy with

intelligence assisting him to reach the final goal by avoiding the obstacles.

The enemy is trained online. The A2C method, due to its actor-critic part, benefits from the

characteristics of both policy search and Q value methods, while the use of a deep neural

network permits the handling of large action spaces by reducing the dimension of the problem.

The reinforcement learning is a trial-and-error general method letting the agent to learn via

the rewards he is receiving from the environment in response to his actions.

By enriching the game with an artificial intelligence component, it is becoming more

interesting for the player. In addition, the game served as a means to study and deepen our

knowledge further in the field of deep reinforcement learning.

Chapter 2 is discussing aspects and principles of Machine Learning.

Chapter 3 covers the topic of Neural Networks by presenting their basic components,

characteristics, learning/training methods and the most important architectures.

The subject of reinforcement learning is discussed in chapter 4. The fundamental terms,

definitions and principles are addressed in the beginning of the chapter, then the basic

reinforcement learning algorithms are briefly presented. Deep reinforcement learning and two

relevant algorithms are covered at the end of the chapter.

Chapter 5 deals with the game, more specifically with the design, development,

implementation and the reinforcement learning component. The approach followed and the

design characteristics, the tools that were employed for the development and the issue of

tuning the training parameters are presented in detail. The chapter ends with a presentation

and discussion of the results obtained after running the game.

The thesis is finishing with the Conclusions, whereas the full code that has been developed is

presented in the Appendix.

2

2 Machine Learning

Machine Learning (ML) is a subset of artificial intelligence (AI) that provides systems the

ability to automatically learn and improve from experience and to become more accurate at

predicting outcomes without being explicitly programmed. It relies on underlying hypothesis

of creating the model and tries to improve it by fitting more data into the model over time. The

primary aim is to allow the computers learn automatically without human intervention or

assistance and adjust actions accordingly. ML is applied in many areas, but it is mostly

significant in data mining.

Formal Definition given by Mitchel [1]: “A machine is said to learn from experience E with

respect to some class of tasks T and performance measure P if its performance at tasks in T, as

measured by P, improves with experience E.”

2.1 Types of Machine Learning

Machine learning approaches can be classified into 3 broad categories, depending on the

nature of the "signal" or "feedback" available to the learning system:

• Supervised machine learning

• Unsupervised machine learning

• Reinforcement learning

Figure 1 demonstrates machine learning types combined with their main applications.

Figure 1. Diagram of Machine Learning subcategories 1

1 https://medium.com/swlh/types-of-machine-learning-algorithms-62608e83d709

3

2.1.1 Supervised Learning

Supervised machine learning requires a human supervisor and training data which is a set of

input-output pairs. The input consists of data sample, typically a vector, used to make

prediction, whereas the output part is the expected outcome, called label or the supervisory

signal. The human supervisor is necessary to assign the labels to the pairs. While training a

supervised learning algorithm, data is searched for a pattern that correlates with the desired

outputs. After the training phase, the supervised learning model is expected to predict the

correct label for a newly presented input data.

Supervised learning can be additionally categorized into: Classification and Regression.

Classification is the process of predicting the class (also called target, label, category) of given

data points. Classifiers themselves can be divided in two groups based on the number of

classes that they work with:

• Binary classifiers: have only two classes (e.g. spam mail or not)

• Multiclass classifiers: have multiple classes (e.g. whether an image is apple or orange or

banana)

Regression analysis is a form of predictive modelling technique which investigates the

relationship between a dependent variable, the target, and an independent variable, the

predictor. Both dependent and independent variable are real values. This technique can be

used in various areas such as: Forecasting or Predictive analysis, Optimization, Error

correction, Economics, Finance, etc.

Typically, there are 3 types of Regression: Linear Regression, Non-Linear Regression and

Logistic Regression. The objective of the first one is to determine the slope and the constant

term (intercept) of the line that fits best the data. Similarly, in the non-linear case the goal

is to determine the characteristics of a curve that best fits the data, e.g. Polynomial

regression. Finally, the logistic regression uses a logistic function, which will be analyzed

later, to model the probabilities and has two modes: the binary and the multinomial.

Logistic regression is widely used in classification problems.

2.1.2 Unsupervised Learning

Unsupervised learning is a process where neither class labels or structure of the data are

provided for each sample. The training data is of a set of input vectors only i.e. there are no

corresponding labels. The goal may be to discover groups of similar examples within the data.

4

This process is called clustering. Another case is to reduce the dimensions of the dataset; for

example, to reduce the number of columns of the dataset matrix, or to convert sphere-shaped

data to circle. This process is called dimensionality reduction.

Clustering ‘s goal is to discover a structure in a collection of raw data (without any label). It

could be described as the process of “organizing objects into groups whose members are

similar in some way” [2]. A set of points, with a notion of distance between the points, are

grouping into a number of clusters with the following rules:

• Internal distances should be small (members of the same cluster)

• External distances should be large (members of different clusters)

Figure 2. Clustering 2

In dimensionality reduction, the goal is to reduce the dimensions of a feature set. If the

training of a machine learning model is based on many features, this model becomes

dependent on the data used for training (overfitting). In many cases overfitting results in

low performance when the model is applied on real data. Dimensionality reduction is an

approach towards eliminating overfitting effect, improving model accuracy, minimizing

computational burden and storage, and giving possibility to use algorithms which

otherwise could not be used for large dimensions.

2: https://rocketloop.de/en/clustering-with-machine-learning/

5

2.1.3 Reinforcement Learning

Reinforcement Learning (RL) deals with learning via acting and getting rewards as feedback.

Two basic notions are the agent(s) and the environment, and the reward which is received as

feedback from the environment. An agent can perceive its environment, can take actions and

interact with it. The goal is to find a suitable action model that would maximize the total

cumulative reward of the agent. The action-reward feedback loop of a generic RL model is

demonstrated in the following figure.

Figure 3. Action-Reward Feedback loop3

The basic elements of a Reinforcement Learning algorithm are:

• Environment: the world where an agent is trained how to make correct decisions for

his actions.

• Agent: an entity that learns and makes decisions.

• Action: a status change in the environment caused by the agent.

• Reward: a signal sent from the environment to the agent evaluating an action.

Some other important parts of this technique are:

• Policy: a function that makes the decisions of the agent, which actually maps the agent’s

state to actions.

• State: a set of variables which describe the internal part of the environment (not always

fully observable).

• Value function: a function that returns a real number corresponding to a specific state

after following a particular policy. The returned value is used as the long-term reward.

• Model: how the agent perceives the environment, i.e. a map of state-action pairs to

probability distributions. Not all RL agents use models of their environment.

3 https://towardsdatascience.com/reinforcement-learning-101-e24b50e1d292

6

Reinforcement algorithms can be applied in multiple areas such as:

• Resources management in computer clusters

• Traffic Light Control

• Robotics

• Web System Configuration

The key difference between reinforcement and supervised learning lies in the feedback

provided to the agent. In supervised learning the feedback is a set of actions to perform

correctly a task, whereas in RL rewards and punishments are used as feedback to train the

agent.

In comparison to unsupervised learning, RL differs in the goals to be achieved. In unsupervised

learning the goal is to find differences and similarities in dataset points, while in RL the aim is

to search for an action model which would lead to maximum total cumulative reward.

• Personalized Recommendations

• Bidding and Advertising

• Games

• Chemistry

7

3 Neural Networks

3.1 Introduction to Neural Networks

The idea of Artificial Neural Networks (ANN) or simply Neural Networks (NN) was introduced

in 1943 by Warren McCullough and Walter Pitts [3] who proposed a model, called threshold

logic, for neural networks based on mathematics and algorithms. Later in 1958 Rosenblatt

developed the perceptron, a pattern recognition supervised learning algorithm, that was using

two-layer network [4]. The research on NN slowed down after 1969 when Marvin Minsky and

Seymour Papert discovered the limitations due to lack of sufficient computational power at

that era demanded by large NN which would lead to very long run time [5]. In the mid of 70’s

the interest for NN reflated due to both the development of computers with much higher

processing ability and the effectiveness of the proposed backpropagation algorithm [6]. After

a decade of low interest, a forceful comeback is taking place the last ten years, mainly because

of the highly increased processing power provided by graphics chips.

A neural network is a network of artificial neurons which simulates the functionality of human

brain. Their ordinary use is in clustering and classification. They present notable ability to cope

with complex and raw data and conclude a meaning from them which is very useful for pattern

recognition. They can derive trends from this data which cannot be discovered by other

computer methods or even sensed by humans. The main advantages are:

• Use as an expert. ANN can be perceived as an expert in the area it has been trained for. It

can analyze raw data and provide predictions when new situations arise.

• Adaptive learning. They present learning ability on how to perform actions based on

training data.

• Self-Organization. They are capable to develop their own representation of the information

provided during the learning period.

A typical ANN architecture includes three layers: input, hidden and output layer.

• Input Layer: it receives the raw information.

• Hidden Layer: the output of each unit (neuron/node) in this layer is a weighted

combination of the inputs.

• Output Layer: similarly, the behavior of each unit in the output layer is a weighted

combination of the outcomes of the hidden neurons.

8

Figure 4. Neural Network with Input layer, Hidden layer, Output layer.4

Of course, there are architectures that include none or more than one hidden layer and

more than one units in the output layers. Deep is a term to characterize a NN that has at

least one hidden layer.

Figure 5. An Architecture with 2 hidden layers and n units in the output layer 5

The fundamental unit in a neural network is called neuron and it is represented as a node in

the architecture diagrams. The neuron is fed with inputs by other nodes (in the case of hidden

and output layers) or by an external source (in the case of input layer) and derives its output.

4 https://www.researchgate.net/figure/Architecture-of-a-multilayer-neural-network-with-one-hidden-layer-The-
input-layer_fig3_270274130
5 https://towardsdatascience.com/a-beginners-guide-to-neural-nets-5cf4050117cb

9

Each node is connected with the other nodes with some associated weight (w) which

represents the relative importance, as it can be seen in Figure 6.

Figure 6. NN with 2 hidden layers and two output nodes 6

Figure 7. Model of a neuron 7

Figure 7 illustrates the model of the kth neuron in a layer. The function of the neuron is

described by the following equations:

6 https://www.researchgate.net/figure/Diagram-of-a-NN-with-two-hidden-layers_fig4_235308454
7 Neural Networks and Learning Machines, Simon Haykin, Prentice Hall

10

𝑢𝑘 = ∑ 𝑤𝑘𝑗 𝑥𝑗

𝑚

𝑗=1

𝑦𝑘 = 𝜑 (𝑢𝑘 + 𝑏𝑘)

Where

xi is the jth input

wkj is the synaptic weight of input j of neuron k

uk is the result of the linear weighted sum operation

φ() is the activation function or squashing function as it is used to limit the amplitude

of the output.

bk is the bias which performs an affine transformation to the adder output uk. Its main

role is to provide an extra trainable constant value to neuron k.

The activation functions in the most common cases are non-linear. Introducing non-linearity

in the neuron output, helps the neuron to learn since most real-world data are not linear.

Some of the main activation functions are shown in the table below:

Table 1. Indicative activation functions

Name What it does Plot 8,9 Function

Sigmoid limits the output to the range [0, 1]

𝜎(𝑥) =
1

1 + 𝑒−𝑥

tanh* limits the output to the range [- 1, 1]

𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

ReLU
Rectified Linear Unit. Permits only

positive values, otherwise 0

𝜑(𝑥) = {
0, 𝑖𝑓 𝑥 ≤ 0
𝑥, 𝑖𝑓 𝑥 > 0

ELU

Exponential Linear Unit. For positive

values y = x, otherwise a small

negative number
𝜑(𝑥) = {

𝑎 (𝑒𝑥 − 1, 𝑖𝑓 𝑥 ≤ 0
𝑥, 𝑖𝑓 𝑥 > 0

Softmax* Limits the output to the range (0,1)

𝑓𝑖(𝑥) =

𝑒𝑥𝑖

∑ 𝑒𝑥𝑖
𝐽
𝑗=1

, 𝑖 = 1, … . . 𝐽

*used in this master thesis.

8 Images taken from https://en.wikipedia.org/wiki/Activation_function
9 https://www.researchgate.net/figure/Softmax-activation-function_fig2_319121953

11

There are several other activation functions like Identity, Threshold, Binary Step, GELU, SELU,

SQNL, Gaussian, arctan. Each activation function is designed to face specific application

problems.

The selection of an appropriate activation function is part of the architecture design of an NN,

and it is considered as a hyperparameter, i.e. it is a parameter relating to the architecture and

specified during the design phase of a NN. More details about hyperparameters is going to be

discussed in the next pages.

Universal Approximation Theorem proves that any mathematical function y = f(x) can be

approximated, to an acceptable error magnitude, by a neural network, that includes one

hidden layer containing a finite number of neurons, under the condition that employs the

appropriate activation function. George Cybenko proved it only for sigmoid activation

functions in 1989 and Kurt Hornik extended the proof for all the activation functions in 1991.

The key element to achieve performance is the structure of the neural network, not the type of

the activation function. As a conclusion, the Universal Approximation Theorem states there is

a type of universality in NNs, i.e. there is a neural network that can achieve an approximation

of any given function.

3.1.1 Learning Process of Artificial Neural Network with Backpropagation

Training a neural network means that the values of weights wkj and biases bk must be adjusted

in that way that the neural network obtains the desired behavior. This is an iterative learning

process achieved by forward propagating the information of the inputs and by

backpropagating the error.

In forward propagation all input data pass through all neurons of the network which apply

their transformation and finally the output layer will produce estimates for this specific

training data. Then, a loss function is used to estimate the magnitude of the error, i.e. the

difference from the desired response. Of course, the ideal value of cost function should be close

as possible to zero. For this purpose, the synaptic weights and the bias of each neuron must

gradually be tuned.

The output error will be propagated backwards (backpropagation). Each hidden layer

neuron k receives only a part of the error ej measured in output yj. Specifically, if neuron k

contributed with a weight wkj to the output yj, then ej will be weighted with the same weight

when it is propagated backwards to node k, that is:

ekj = ej * wkj

where ekj is the part of error in neuron k contributed by the subsequent layer neuron j.

12

The total error of the hidden layer neuron k received backwardly from all output layer neurons

is:

𝑒𝑘 = ∑ 𝑒𝑗 𝑤𝑘𝑗
𝑛
𝑗=1

where n is the number of the output layer neurons.

This information passes in the same way through all neurons starting from the output layer

and going backwards layer by layer. So, all neurons will obtain backwardly a signal assessing

their contribution to the final error. Then an optimization method can be applied, such as

Gradient Descent, in order to minimize the output layer error by tuning all the network’s

synaptic weights. Other optimization methods are SGD, RMSprop, Adagrad, Adadelta, Adam,

Adamax and Nadam.

Feeding again the same training data to the network, a better performance should be observed

as the weights have been adjusted. Then, the new and smaller error is propagated backwards

again and so on. This process is done iteratively in batches of data of all the dataset that is

passed to the network.

Training error is the error observed when training data are used, whereas test error is the error

observed on the new input data. The aim of a machine learning algorithm is to make both the

training error, and the difference between training error and testing error small. The term

under-fitting means that the model cannot attain a low training error, while over-fitting means

that the difference between training error and test error is large.

One of the approaches to avoid overfitting is to train the network in more examples. Another

approach, called regularization, tries to constrain/regularize the coefficient estimates in very

small values otherwise to shrink (simplify) the model/structure. L1 and L2 are two well-

known regularization methods. L1 regularization (Lasso regression) limits the size of the

coefficients and yields sparse models as some coefficients can become zero and be eliminated.

L2 (Ridge regression) is not yielding sparse models as no coefficient is eliminated but all of

them are weakened by the same factor. Dropout is a new regularization approach where a

simpler structure/model is obtained by randomly “dropping out”, i.e. omitting, one or more

units during the training phase.

3.1.2 Parameters

Parameter is a variable internal to the model which is used to configure the NN. A value of a

parameter could be changed according to the data used during the program iterations. More

13

specifically, the weights of the connections between the neurons and the biases are such

parameters.

Weight initialization: Initially the weights are set to small random values which should be

different from neuron to neuron. Otherwise, if two neurons start with the same initial weight

values, their values will be identical during the following iterations, which means canceling

their ability to learn different characteristics. Setting random values to initialize synaptic

weights is not enough to obtain an efficient NN and generally the type of activation function

should be taken into account in order to define the initial values heuristically.

3.1.3 Hyperparameters

The term hyperparameter, in contrast to parameters, refers to variables external to the model

and they are specified during the design phase by the programmer. A number of such variables

relate to the structure and topology of the NN (type of activation functions, number of layers,

number of neurons, etc.) whereas other of them relate to the learning algorithm (learning rate,

momentum, batch size, epochs, optimization method etc.).

Learning Rate: In backpropagation with gradient descent, in order to update each synaptic

weight wkj of a neuron in the network, the following formula is used:

𝑤𝑘𝑗 = 𝑤𝑘𝑗 − 𝑎
𝑑𝑒𝑘

𝑑𝑤𝑘𝑗

where

𝑑𝑒𝑘

𝑑𝑤𝑘𝑗

Expresses the error change with respect to weight

a Is a scalar value denoting the learning rate, otherwise called step size.

For example, if the learning rate magnitude a is 0.01 and the gradient is 2, then the

new weight wkj will be reduced by 0.02.

Epochs: It is the number of times (iterations) the training data pass through the NN during

training phase.

Batch size: Usually the training data are split in batches to feed the NN. Batch size is the size

of one batche

Momentum: It is based on the weighted average of the gradient of the previous steps. It is a

method that accelerates the learning rate when its vector has the same direction with

14

the current gradient and in the opposite case it helps to avoid local minima of the loss

function.

Figure 8. GD with momentum 10

Figure 9. Stuck at a local minimum 11

There are no simple and straight-forward methods to define the optimal values of the

hyperparametres, especialy the learning rate, momentum, batch size, type of activation

function, number of layers and neurons etc. Expertise and usage of extensive trial-and-error

are key elements for defining the optimal values of these parametres.

3.2 Architectures of Neural Networks

3.2.1 Feed Forward

The Feed Forward (FF) constitutes the first type of NN structure invented. In this network type, the

information proceeds only forward as there are no circular connections.

The simplest form is called Single-Layer Perceptron (SLP) and consists only of an input and an output

layer. Figure 10 demonstrates an SLP where the output is derived after applying an activation-

squashing function (usually a sigmoid) to the weighted sum of the inputs. An SLP is a linear classifier.

Figure 10. Single- Layer Perceptron 12

10 https://medium.com/ai%C2%B3-theory-practice-business/hyper-parameter-momentum-dc7a7336166e
11 https://towardsdatascience.com/learning-process-of-a-deep-neural-network-5a9768d7a651
12 https://www.allaboutcircuits.com/technical-articles/how-to-perform-classification-using-a-neural-network-a-simple-
perceptron-example/

15

Another and more complete form of FF network is the Multi-layer Perceptron (MLP) which adds at least

one hidden layer between input and output layer. MLP structure is depicted in the next figure.

Figure 11. Multi- Layer Perceptron13

Since there are no circles in the connections of an FF, the output is determined by the current input

dataset. Past inputs do not influence the output of current data.

3.2.2 Recurrent Neural Network

Figure 12 shows the typical chain-like recurrent neural network (RNN) architecture:

Figure 12. Folded and unfolded representations of an RNN14

The difference from the FF is that RNN include a loop in the hidden layer. The consequence of

this is that the current output depends on both the current input vector and on the previous

output. So, the RNN has memory. In contrast in an FF network, the output is not affected by the

previous input data it handled and its memory is restricted only in things learnt during the

training period.

13 https://medium.com/@AI_with_Kain/understanding-of-multilayer-perceptron-mlp-8f179c4a135f
14 https://towardsdatascience.com/understanding-rnn-and-lstm-f7cdf6dfc14e

16

In RNN the output is affected by both the weighted sum of the input and by a hidden “state

vector” which is determined by the prior inputs. This can be described in a mathematical

context as:

𝑎𝑘 = 𝑏1 + 𝑉ℎ𝑘−1 + 𝑈𝑥𝑘

ℎ𝑘 = 𝜑(𝛼𝜅)

𝜊𝑘 = 𝑏2 + 𝑊ℎ𝑘

Where,

𝑥𝑘 denotes the input layer vector at time k

ℎ𝑘 denotes the hidden layer vector at time k

𝜊𝑘 denotes the output layer vector at time k

𝑎𝑘 is an assisting vector

φ() indicates the activation function (usually a sigmoid function σ ())

𝑏1, 𝑏2 are the bias vectors

𝑈, 𝑊, 𝑉 are the weighting matrices of the input-to-hidden connection, hidden-to-

output connection and hidden-to-hidden (loop) connections respectively

There are applications that their output depends on the total input sequence (preceding and

succeeding data vectors as it refers to a specific datapoint). However, RNN’s output depends

only on the past sequence so the standard RNN cannot give optimal results. A solution to this

problem was proposed by M. Schuster [7] who introduced the Bidirectional Recurrent Neural

Network (BRNN). BRNN employs two RNNs, one for each time direction. More specifically, the

first one evolves forward from the beginning of the data sequence, while the second starts from

the end and moves backwards, see Figure 13.

Figure 13. The BRNN structure 15

15 https://towardsdatascience.com/understanding-bidirectional-rnn-in-pytorch-5bd25a5dd66

17

Speech, handwriting and image recognition are examples of applications that take advantage

of the BRNN architecture.

3.2.3 Long Short-Term Memory (LSTM)

Instability problems have been observed during RNN training because long term dependencies

are covered by short term dependences. More specifically, for long term the gradient

magnitudes frequently become smaller and smaller or sometimes explode which leads to

instability [8]. A first proposal towards eliminating or moderating this problem came from

Hochreiter and Schmidhuber [9] and it is an evolution of the classic RNN called long short-

term memory (LSTM). Later a new variant of the recurrent structure was proposed by Cho et.

Al. [10] called Gate Recurrent Unit (GRU), which will be discussed in the subsequent

subsection.

The innovation of LSTM is the introduction of a memory component called cell. There are three

other components: the input gate, the forget gate and the output gate, see Figure 14.

The function of each component is:

• Cell: Monitors the dependencies between the elements in the input data sequence.

• Input gate: Defines the part of the new value which will flow into the cell.

• Forget gate: Defines the part of the new value which will remain into the cell.

• Output gate: Determines the part of the new value in the cell which will be used to

calculate the output.

The term “new value” refers to the sum of the input and the previous output. The commonly

activation function used in the LSTM gates is the logistic sigmoid function.

In this way, the LSTM earns the capability to keep learning long-term dependencies and to

remember information for long periods.

Although the LSTM variant of RNN solves the problem of long-term memory dependencies, it

does not solve sufficiently the exploding gradient problem.

18

Figure 14. The Long Short-Term Memory structure 16

3.2.4 Gated recurrent unit (GRU)

Gated recurrent unit (GRU) is a simpler variation of the RNN. It is very similar to LSTM but

without an output gate, so it has fewer parameters. It tries also to solve the vanishing gradient

problem. The main components of its structure are the update gate and the reset gate, Figure

15.

The role of these gates (vectors) is to determine what information will be transferred to the

output. More specifically:

• Update gate: Determines the amount of information coming from the past that needs be

transferred to the future

• Reset gate: Defines the amount of information coming from the past that needs to be

forgotten.

16 Main part of the figure based on Yan, S. Understanding LSTM and Its Diagrams. Available online:
https://medium.com/mlreview/
understanding-lstm-and-its-diagrams-37e2f46f1714 (accessed on 26 June 2018)

19

Figure 15. GRU structure 17

GRU and LSTM have similar performance on tasks like polyphonic music modeling, speech

signal modeling and natural language processing, whereas GRU outperforms the latter for

some smaller and rare datasets. However, GRU is not efficient in learning simple languages

while LSTM is capable to learn them [11]. Moreover, LSTM units persistently exhibit better

performance than GRU cells in "the first large-scale analysis of architecture variations for

Neural Machine Translation” [12].

3.2.5 Convolutional Neural Network (CNN)

CNN is a feedforward NN with convolutional layers, pooling layers and fully connected layers,

mostly applied to visual processing. They were inspired by the operation of visual cortex in

human and animal brains. Their architecture follows the neurons’ connectivity pattern of this

area.

17 https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-
44e9eb85bf21

20

Figure 16. CNN architecture 18

• Convolutional layer: Firstly, a filter is used to view a small part of the broader image

each time, e.g. a frame of 4x4 pixels. It starts from the beginning and moves until it

parses all the width. The convolution is performed by a dot product of the input pixel

values with the filter’s weight matrix. The result is a scalar value representing all the

pixels observed by the filter. In this way, the convolution layer produces a matrix which

is much smaller than the original. The activation function applied is usually a ReLU

function.

• Pooling layer: The purpose of this layer is to further reduce the size of the matrix. This

is achieved by combining the outputs of the previous layer into one single node in the

current layer. Pooling could be applied locally (where small clusters, e.g. 2x2, are

processed) and globally (all neurons’ outputs of convolutional layer are processed at

once). Furthermore, there are two types of pooling that are used: max pooling, that uses

the maximum value in each cluster, and average pooling, where the average value of

each cluster is selected.

• Fully connected layer: Like in the typical multi-layer perceptron, all neurons in one

layer are connected to all neurons in another layer. The goal of this layer is to classify

the flattened matrix derived from the above-mentioned layers.

CNNs are very effective in applications such: image classification, image and video recognition,

medical image analysis, natural language processing.

18 https://missinglink.ai/guides/convolutional-neural-networks/convolutional-neural-network-tutorial-basic-
advanced/

21

4 Reinforcement Learning

It is a common perception that we learn by interacting with our environment. When an infant

play, there is no explicit teacher, but it is directly observing the environment. If for some action

it receives positive feedback (reward) from the environment, it repeats this action, otherwise

it stops. In this way, an abundance of information is produced about the consequences of

actions and what to do in order to achieve goals. All theories of learning and intelligence

consider ‘learning from interaction’ as the fundamental principle.

An aim in artificial intelligence (AI) is to develop computational methods so that machines will

become capable of learning from interaction with their environment, improving continuously

through trial and error. Reinforcement learning (RL) is a mathematic framework for

experience-driven autonomous learning.

4.1 Principles, Basic Terms and Definitions

The core principle of RL is learning through interaction. An agent acts, then observes the

consequence of its action and learns to adjust its own behavior based on the

reward/punishment it receives from the environment. The root of this trial-and-error learning

approach comes from the behavioral psychology – behaviorism and constitutes one of the main

foundations of RL [13]. Optimal control is the second key influencer on RL, which borrowed its

mathematical formalism in this field.

An agent observes a state st of its environment at time t. Then the agent takes an action at that

is affecting the environment which transitions to a new state st+1, which could be expressed as:

𝐬𝑡+1 = 𝑓 (𝐬𝑡 , 𝐚𝑡)

 i.e. the new state is a function of the current state and the action chosen by the agent.

The state st condenses all the sufficient information of the environment up to time t, so the

agent, being provided with this, can choose an optimal action. It should be noticed here that in

optimal control literature, state is denoted by xt and actions by ut.

Each time the environment progresses to a new state st+1 it also sends a reward rt+1 to the agent

as a feedback. The reward is a scalar value. The aim of the algorithm controlling the behavior

of the agent is to learn a policy (control strategy) π that will lead to a maximum value of the

expected return (cumulative, discounted reward). Under this view, the problem of finding the

optimal policy in RL is similar to optimal control problems. However, in optimal control there

exists a model of the state transition dynamics which is not holding for the general RL case,

where the agent does not have such a model for the environment dynamics so it can only apply

22

trial-and-error in order to learn though the consequence of its actions. Figure 12 presents this

perception-action learning loop.

Figure 17. The perception-action-learning loop 19

Markov Decision Processes (MDP)

The following notation is used:

𝐬𝑡 State of the environment at time t

𝒮 A set of states

𝐚𝑡 Action taken by the agent at time t

𝒜 A set of actions

𝒯(𝐬𝑡+1|𝐬𝑡 , 𝐚𝑡) Transition dynamics. The new state and its distribution are derived on

the basis of the current state and action.

π Policy. Generally, it is a mapping from states, 𝒮, to a probability

distribution of the actions, that is 𝜋 ∶ 𝒮 → 𝑝(𝒜 = 𝒂|𝑆).

π* Optimal Policy.

𝑟𝑡 Reward. A scalar value returned to the agent at time t, indicating how

well or bad is doing at step t.

γ Discount factor. As lower is the value of γ as much emphasis is given

on immediate rather on future rewards, 𝛾 ∈ [0, 1]

R Cumulative Reward

19 Reference [15]

23

Cumulative Reward in Episodic systems

Episodic system means that the state is reset after each episode of length T steps. In an episode,

the sequence of actions, states and rewards composes a policy trajectory, otherwise rollout or

horizon. In every policy rollout, the environmental rewards are accumulated in the return

value, R, that is:

𝑅 = ∑ 𝛾𝑘 𝑟𝑡+𝑘+1 = 𝑟𝑡+1 + 𝛾1 𝑟𝑡+2 + 𝛾2 𝑟𝑡+3 + ⋯ .
𝑇−1

𝑘=0

Cumulative Reward R in non-Episodic systems (continuous)

Non-episodic system means that there is no reset of the state at specific time intervals, so

T = ∞, in other words the trajectory is a complete one. In this case, having discount γ < 1 does

not let an infinite sum of rewards to accumulate. However, non-episodic methods are no longer

applicable.

𝑅 = ∑ 𝛾𝑘 𝑟𝑡+𝑘+1
∞

𝑘=0

Aim of the RL algorithm is to find an optimal policy, π*, otherwise a series of state-action pairs

{ (s1, a1), (s2, a2), …..(st, at),.. }, so that the expected cumulative return from all states will be

maximum, i.e.

𝜋∗ = argmax
𝜋

𝔼[𝑅|𝜋]

Markov Decision process (MDP)

Reinforcement Learning is described formally as a Markov Decision Process, with transition
dynamics 𝒯(𝐬𝑡+1|𝐬𝑡 , 𝐚𝑡) that maps state-action pair (st, at) to new state st+1

Markov property

A state st+1 has the Markov property if and only if

 𝑝[𝐬𝑡+1|𝐬𝑡] = 𝑝[𝐬𝑡+1|𝐬0, 𝐬1, … 𝐬𝑡],

i.e. that the probability distribution characteristics of the current state st is enough to predict

the state of the next step st+1. All the past sequence s0, s1, … st-1 is not necessary any more. It can

also be expressed as: The state of a system at time t+1 depends only the state at time t. So, the

decision for the action at time t+1 can be based only on state st. For the majority of RL

algorithms this assumption is valid but it requires fully observability of the states.

24

Partially Observable MPD (POMD)

A more generalized form of the MDP is the partially observable MPD (POMD), where the agent

receives an observation vector ot, whose probability distribution depends on the current state

and the previous action, i.e.:

 𝑝𝑡(𝐨𝑡| 𝐬𝑡 , 𝐚𝑡−1) ,

Usually, POMDP algorithms update a belief of the current state, given the current observation,

the action taken and the belief state of the previous step.

However, in deep learning an approach followed more frequently, is to employ Recurrent

Neural Networks (RNN) which, as discussed before, are dynamical systems i.e. they have an

internal memory and are suitable to handle sequencies of data in contrast to feedforward

neural networks who are restricted to use independent data only.

Reinforcement learning main characteristics and challenges

• There is no supervisor. A reward signal is used for training. The optimal policy has to

be concluded by trial and error.

• Time matters because data are processed in sequential form.

• An action of the agent influences the subsequent data it receives, in other words the

observations it receives depend on its previous actions and can contain temporal

correlations. Consequently:

o Feedback is not instantaneous, but delayed.

o Agents must cope with long term dependencies: Frequently, the consequence of

an action appears only after many transition steps of the environment. This is the

credit assignment problem [13].

Some Basic RL terms

Prediction problem or problem evaluation: refers to the computation of state value function or

action value (quality) function for a policy.

Control problem: is to find the optimal policy.

Planning: is to construct a value function for policy with a model.

On-policy methods: they assess or improve the behavior policy. An example is State-Action-

Reward-State-Action (SARSA) algorithm which tries to improve the

estimate of action value function using samples derived by the same policy.

Off-policy methods: In these methods the agent learns an optimal value function unrelated to

the followed behavior policy. Such a method is Q-learning which tries to find

25

state-action values for the optimal policy without trying to fit to the policy

generated the data.

Exploration vs exploitation: It refers to the dilemma faced, i.e. what is better to do in short time?

Seek an immediate maximum reward by using the currently -not optimal

yet- best action or to continue exploring the environment looking for an

optimal action so the long-term cumulative reward will maximum.

Model free methods: The transition model is not known and the agent learns with trial-and -

error.

Model based methods: They rely on a model of the environment. The model could be known or

learned.

Bootstraping: An estimate (state or action value) is updated in the next step from subsequent

estimates.

4.2 Basic Reinforcement Learning algorithms

Two main approaches are used: methods based on Value Functions (such as Dynamic

Programming, SARSA and Q-Learning) and on Policy Search. A third approach called Actor-

Critic is hybrid as it combines both value functions and policy search.

Value Function methods

They use a function to estimate the expected cumulative return of being in a given state.

The state-value function starting from state s, and when policy π is followed, is

 𝑉𝜋(𝐬) = 𝔼 [𝑅|𝐬, 𝜋]

The optimal state-value function V*, when optimal policy π* is followed, is

𝑉∗(𝐬) = max
𝜋

𝑉𝜋 (𝐬) , ∀ 𝐬 ∈ 𝒮

If V*(s) was available, the optimal policy could be retrieved by picking up among all available

actions at st.

However, in RL environments, the transition dynamics 𝒯 are not known, so another function

value is used, that is the state-action or quality function Q (). It is similar to V(s) but it differs

in that now the initial action is provided and the policy is followed only from the succeeding

state forward:

26

 𝑄𝜋(𝐬, 𝐚) = 𝔼[𝑅|𝐬, 𝐚, 𝜋]

which is defined by the expected return for selecting action a in state s and following policy π.

The best policy π*, given Qπ(s,a) can be found by choosing action a greedily at every state:

argmaxa Qπ(s,a). Then, Vπ(s) could be defined by maximizing Qπ(s, a): Vπ(s)= maxa Qπ(s, a).

4.2.1 Dynamic Programming (DP)

Dynamic Programming is a general method to solve problems that present optimal

substructure and overlapping subproblems. Of course, perfect knowledge of the transition

model, as an MDP, is required. Due to their demand for high computational power and the fact

that most of the environments fail to meet the requirement of a perfect model, in practice, they

are of limited use in RL. However, the concepts introduced create the foundation for

understanding other RL algorithms, actually most RL algorithms could be seen as

approximations of DP.

For MPDs that meet these properties, Bellman equation [14] can be used to derive a recursive

decomposition.

 𝑉𝜋(𝐬𝑡 , 𝐚𝑡) = 𝔼𝜋 [𝑟𝑡+1 + 𝛾𝑉𝜋(𝐬𝑡+1| 𝐬𝒕))]

Policy Iteration (PI) is used to obtain an optimal solution. In every step it has two phases that

are used alternatively: policy evaluation which evaluates a given policy π (that is the prediction

problem) and policy improvement which is aiming to find an optimal policy (that is the control

problem). The state value function converges to υ* and the policy value function to π*. In

Generalized Policy Iteration (PGI) any policy evaluation and any policy improvement can be

used. Figure 18 and Figure 19 clarify PI and PGI.

Figure 18. The two alternating phases of Policy Iteration to achieve optimal state values and policies20

20 https://medium.com/gradientcrescent/fundamentals-of-reinforcement-learning-navigating-gridworld-
with-dynamic-programming-9b98a6f20310

27

Figure 19. Generalized policy iteration21

4.2.2 Temporal Difference Methods (TD Methods)

Temporal Difference plays a central role in RL with value function evaluation [15]. Both SARSA

and Q-learning are TD control methods. TD learning is a prediction problem. The action value

function is:

 𝑄𝜋(𝐬𝑡 , 𝐚𝑡) = 𝔼𝐬𝑡+1
 [𝑟𝑡+1 + 𝛾𝑄𝜋(𝐬𝑡+1, 𝜋(𝐬𝑡+1))]

The above equation can be written in a recursive form as

 𝑄𝜋(𝐬𝑡 , 𝐚𝑡) ← 𝑄𝜋(𝐬𝑡 , 𝐚𝑡) + 𝛼 𝛿 = 𝑄𝜋(𝐬𝑡 , 𝐚𝑡) + 𝛼 (𝛶 − 𝑄𝜋(𝐬𝑡 , 𝐚𝑡))

Where

α is the learning rate

𝛿 = 𝛶 − 𝑄𝜋(𝐬𝑡 , 𝐚𝑡) is the Temporal Difference (TD) error.

Y is the TD target as it represents an estimate for the true value of

Qπ (st, at) at the new iteration

So, a bootstraping method as mentioned above can be used to improve iteratively the estimate

by using the current value of the estimate of Qπ. Bootstrapping methods advantages are that

they are fast in learning and the learning process is performed on line and continual.

This recursive form is the fundamental of Q-learning [16] and the state-action-reward-state-

action (SARSA) algorithm [17].

21 https://medium.com/gradientcrescent/fundamentals-of-reinforcement-learning-navigating-gridworld-with-
dynamic-programming-9b98a6f20310 (taken from Sutton 2018)

28

SARSA is an on-policy learning algorithm developed to give improved estimates of Qπ by using

transitions derived by the policy generated from Qπ (same policy), where

𝑌 = 𝑟𝑡+1 + 𝛾𝑄𝜋(𝐬𝑡+1, 𝐚𝑡+1)

𝛿 = 𝑟𝑡+1 + 𝛾𝑄𝜋(𝐬𝑡+1 , 𝐚𝑡+1) − 𝑄𝜋(𝐬𝑡 , 𝐚𝑡)

𝑄𝜋(𝐬𝑡 , 𝐚𝑡) ← 𝑄𝜋(𝐬𝑡 , 𝐚𝑡) + 𝛼 (𝑟𝑡+1 + 𝛾𝑄𝜋(𝐬𝑡+1, 𝐚𝑡+1) − 𝑄𝜋(𝐬𝑡 , 𝐚𝑡))

The last equation could be described as: the new estimate of Qπ derives from the previous Qπ

plus a correction/difference defined by the reward and the value of Q for the new state, both

of them being scaled appropriately by learning rate α and discount γ.

Q-learning is an off-policy learning algorithm developed to give improved estimates of Qπ by

using transitions generated not necessarily by the derived policy. Now the TD error is

 𝛿 = 𝑟𝑡 + 𝛾 max
𝐚

 𝑄𝜋 (𝐬𝑡+1, 𝐚𝑡+1) − 𝑄𝜋(𝐬𝑡 , 𝐚𝑡)

 𝑄𝜋(𝐬𝑡 , 𝐚𝑡) ← 𝑄𝜋(𝐬𝑡 , 𝐚𝑡) + 𝛼 (𝑟𝑡+1 + 𝛾 max
𝐚

𝑄𝜋 (𝐬𝑡+1 , 𝐚𝑡+1) − 𝑄𝜋(𝐬𝑡 , 𝐚𝑡))

which directly approximates Q*.

The main difference from SARSA is that Q-learning is an off-policy method, so it does not follow

the current policy to choose the next action at+1, while in SARSA an action a is chosen by

following a certain policy. It directly estimates Q∗ out of the best Q values and a* is chosen by

simply taking the max of Q over it. In the next step, Q-learning may not follow a∗.

Figure 20. SARSA and Q-Learning approaches22

22 https://lilianweng.github.io/lil-log/2018/02/19/a-long-peek-into-reinforcement-learning.html (replotted
based on Fig 6.5 in [15]

29

4.2.3 Sampling, Monte Carlo and TD (λ) methods

An alternative to the bootstraping dynamic programming and TD value function methods is to

use Monte Carlo methods. These methods estimate the 𝔼[𝑅|𝐬, 𝐚, 𝜋] by averaging the return

after running many rollouts of a policy adding random errors in the sequence. Due to this,

Monte Carlo methods can be applied in non-Markovian environments. One drawback is that

they can be applied only in episodic MDPs because the rollout must have finite number of steps

in order to be possible to calculate the expected return after its end.

It is possible to combine both methods, i.e Temporal Difference methods and Monte Carlo

methods in order to get the best of them, as it is done in the TD(λ) algorithm [13]. The λ is used

to interpolate between bootstrapping and Monte Carlo evaluation.

Monte Carlo and TD methods (SARSA and Q-Learning) and are model-free methods while

Dynamic Programming requires the transition model.

TD methods and Dynamic Programming use bootstraping while Monte Carlo does not use it.

4.2.4 Policy Search methods

Policy search methods search directly for optimal π* (with function approximation) instead of

maintaining a value function. A parameterized policy πθ is chosen and then either gradient-

based or gradient-free optimization methods are applied in order to update the parameters

and maximize the 𝔼[𝑅|𝜃]. Policy-based methods in comparison to value-based methods,

usually present better convergence, are effective in high-dimensional spaces and are suitable

to learn stochastic processes. However, usually they suffer from converging to local optimum,

present inefficiency to evaluate and encounter high variance [18].

Policy Gradients: The gradients provide a strong learning signal on how to improve a

parameterized policy. The most known estimator of the gradient is the REINFORCE [19].

Neural Networks designed to encode policies have been successfully trained for policy search.

[20]

30

Figure 21The Policy Gradient Method for Optimal Policy Search23

4.2.5 Actor-Critic Methods

These methods are hybrid as they combine both the value function approach and an explicit

representation of the policy as it is shown in the next figure. The critic realizes the value

function component while the policy component is implemented in the actor. The actor has as

learning inputs the state, received as feedback from the environment, and the Temporal

Difference error from the critic. The actor is not receiving any reward directly but instead the

reward is fed to the critic. The other input to the critic is the state. The actor-critic methods

utilize a learned value function and this is the main difference in comparison with the other

baseline methods used in classic policy search methods. The role of the critic is to update

action-value function parameters while the actor updates the policy parameters [21] .

23 https://jonathan-hui.medium.com/rl-policy-gradients-explained-9b13b688b146

31

Figure 22. Actor -Critic Structure 24

4.3 Deep Reinforcement Learning

Although RL had already shown some successful applications in the past, the first approaches

had inherent limited applicability to low-dimensional problems and were suffering from lack

of scalability due to memory, computational and sampling complexity [22]. The development

of deep learning, witnessed in recent years due to the powerful function approximation and

representation learning properties of deep neural networks, supplied new tools towards

overcoming these problems.

The most important property of deep learning is the ability of deep neural networks to

significantly reduce the dimensions of the problem by finding low-dimensional

representations (features) of high-dimensional data (e.g., audio, text and images, text). The

use of deep learning algorithms within RL defined the field of deep reinforcement learning

(DRL) and a significant accelerated progress occurred in the area of RL [23]. Deep learning

provides tools enabling to cope with decision-making problems that were previously

unmanageable, i.e., problems with high-dimensional state and action spaces. For example,

Convolutional Neural Networks (CNN) can be part of RL agents permitting them to learn

directly from high-dimensional visual raw inputs. In general, basic element of DRL is the

24 in [31] recreated from [13]

32

utilization of deep neural networks which are trained to approximate the optimal policy π∗,

and/or the optimal value functions such as V∗(), Q∗().

4.3.1 Deep Q-Learning (DQN)

The manifesting difference between deep and “shallow” RL derives from the type of function

approximator that is used. Neural networks are used for function approximation in deep RL,

while linear and non-linear functions, decision trees (that may be non-linear), tile coding etc.,

are used in “shallow” RL. There have been reported divergence and instability problems when

bootstraping and function approximation (either linear or non-linear) have been combined

[24]. However, subsequent works like deep Q-network [25] stabilized the learning and achieve

outstanding results.

Mnih et. Al [25] introduced DQN and started the field of Deep RL. DQN uses a CNN with fully

connected layers and ReLU activation function to approximate the function of optimal action

value Q*(st, at) .

 𝑄𝜋(𝐬𝑡 , 𝐚𝑡) ← 𝑄𝜋(𝐬𝑡 , 𝐚𝑡) + 𝛼 (𝑟𝑡+1 + 𝛾 max
𝐚

𝑄𝜋 (𝐬𝑡+1 , 𝐚𝑡+1) − 𝑄𝜋(𝐬𝑡 , 𝐚𝑡))

The DQN network uses the reward to update its estimate of Q, and backpropagates the error

between the previous estimate and the new estimate.

Figure 23 The structure of DQN with a CNN. (from [25])

33

Figure 24. Q-Learning and Deep Q Learning (DQN)25

DQN solved the instability and divergence problems mentioned above by using experience

replay and target networks.

4.3.2 Asynchronous Advantage Actor-Critic (A3C) and Advantage Actor-Critic

(A2C)

Asynchronous Advantage Actor-Critic (A3C) was proposed by Mnih et al. [26] as a simple

architecture to exploit parallel processing and it is one of the most popular DRL techniques in

recent years. A3C perform much more efficiently in comparison to the other asynchronous

methods presented in [26], specifically the one-step SARSA, one-step Q-learning and n-step Q-

learning.

Actor-Critic Part: In a typical Deep Convolution Q-Learning model, the output is a Q-value to be

used for the candidate actions that the agent could pick for a given state. However, in A3C,

the NN involved produces two outputs: one is the Q-values for the different actions and the

second is the state value V(s) which shows how good the action taken is. As mentioned

previously, actor critic methods are combining characteristics of both policy methods and

value function methods. The value function part is used for bootstrapping, i.e. to reduce

25 https://www.analyticsvidhya.com/blog/2019/04/introduction-deep-q-learning-python/

34

variance and accelerate learning via updating the state according to subsequent estimates

[15].

.

Figure 25. A3C schematic diagram26

Asynchronous Part: In typical DQN there is a single agent represented by a single NN to interact

with the environment. However, A3C employs more than one agents in parallel, being

initialized differently, employing different exploration policies and sharing their

experiences between them during the execution. The result of this asynchronous

parallelism is a faster stabilized training with more accuracy-efficiency. Asynchronous

methods are designed to run in distributed processing structures, however A3C has been

developed to be implemented in both distributed and single multi-core CPU settings.

26 https://medium.com/analytics-vidhya/reinforcement-learning-with-a3c-20837aafe0ca

35

Figure 26 . A3C asynchronous parallel structure27

Advantage Part: The role of this component of A3C is to calculate the advantage equation, i.e.

 𝐴(𝐬𝑡 , 𝐚𝑡) = 𝑄(𝐬𝑡 , 𝐚𝑡) − 𝑉(𝐬𝑡)

The advantage function value expresses the amount of improvement that there is in a

certain action Q() in comparison to the expected value V() of the state that was based on.

The aim of the model is to maximize A().

The algorithm of A3C may be implemented without the asynchronous part, i.e. with just one

agent, and in that case, it is called advantage actor-critic (A2C) [27].

27 https://medium.com/@shagunm1210/implementing-the-a3c-algorithm-to-train-an-agent-to-play-breakout-
c0b5ce3b3405

36

5 The Game

The game developed in this thesis belongs to the tower defense genre of games combined with

RL.

5.1 Tower Defense

Tower defense games is a subcategory of real-time strategy games as the player’s goal is the

protection of his base against enemies by strategically placing defensive obstructions in the

area that they are moving.

Usually, the enemies move in the area through a path, trying to reach a destination (base)

which is significant for the player, e.g. house, possessions, loved ones etc. They can also follow

multiple paths, can be damaged and killed, and can appear in waves, each of which usually has

a certain number and type of enemies.

On the other hand, the player aims to prevent the enemies from achieving their goal by

stopping, attacking or destroying the enemies. For that case, the defensive obstructions, e.g. a

tower, can be placed everywhere in the game area, except from the enemies’ path, and could

damage the enemy. In modern tower defense games, some features are introduced in order to

make the game more intriguing and engaging for the player. That could be the player’s ability

to upgrade or repair the obstruction and to collect virtual money (game-currency) or points in

order to purchase advanced features for defeating the enemy.

Notable examples of tower defense games are: Flash Element TD, Iron Grip: Warlord, Facebook

platform’s Bloons TD.

5.2 Tools

Before the game development, many decisions had to be determined regarding the

programming language as well as the libraries to both be convenient in developing the game

as well as connecting the machine learning. The following choices have been made:

• Python: was found to be a great choice as is the major programming language for AI and ML.

It has a great library ecosystem as well as numerous documentation and examples for RL

algorithms.

• ML Libraries:

o Tensorflow: is an open source machine learning and deep learning platform which can set

up and train ANNs. Tensorflow was developed by Google.

37

o Keras: is a library that focuses on modern machine learning and allows calculations at high

speed because it combines both CPU and GPU for processing.

• Pygame: is a cross-platform set of Python modules, designed for video games development.

Operation System Windows 10,

GPU: INTEL

Programming Language Python 3.8.4

Libraries Pygame 1.9.6

Keras 2.4.3

Tensorflow 2.3.1

NumPy 1.18.5

5.3 Game description

The game of this thesis was designed to have two perspectives of view. The first one is the

perspective of the user, where, as in any tower defense game, the goal is to add defensive

obstacles in order to prevent the enemy to reach the castle. The second perspective, on the

other hand, is that of the enemy who wants to reach the castle. In order to achieve this goal,

the enemy has to stay alive through the towers’ attacks and to reach the castle. For that case,

the enemy is trained in real-time with the A2C deep learning algorithm.

 The basic elements are the enemy, the defensive towers and the castle. Figure 27 illustrates a

screen of the game with all the elements.

38

Figure 27. Game Elements

Before diving into the details of these elements shown in Figure 27, it is essential to state that

the screen of the game is 800 x 640 pixels. In order to have a better understanding of the

game’s physics, i.e. the movement of the objects, all distances are calculated in meters by the

following analogy: 800 x 640 pixels → 50 x40 meters.

In more detail, the elements and their functionalities in the game are:

• path: the only route that the enemy follows.

- In Figure 27 the path is the zig-zag light-greyed line.

• castle: the object the user must protect by the user

• bullets: moving element thrown by the towers to eliminate the enemy.

- It has constant velocity and heading.

• enemy: is being trained during the game (in real-time) to reach the user’s castle and to avoid

the bullets.

- The training is based on a Reinforcement Learning algorithm, and most specifically

the A2C.

39

- He has a constant velocity magnitude, but its direction depends on the segment of

the zig-zagged path.

- He has a health indication which is decreased every time a bullet hits him. As the

enemy’s health reduces, his color changes to a more lighter color. For example, if it

turns to white color it needs just one more bullet hit to die.

- The enemy can know always the 2 closest bullets to him, i.e. bullets that are in a

distance less than 5 meters.

Figure 28. The enemy moving in the path.

• observer tower: is an automatically shooting tower. It always succeeds on dummy target, i.e.

an object following a linear constant speed motion.

- The user strategically places the observer tower in a position, which remains the

same during the game session.

- It can be created by right clicking the desired position.

- Ιt shoots one bullet per 1.5 seconds against the enemy.

- Τhe tower knows the exact position, the direction and magnitude of the speed of

the enemy. It assumes that the enemy is moving in a linear motion with no

acceleration and estimates in which direction to throw the bullet in order to

collide with the enemy and consequently to reduce his health.

40

Figure 29. Observer Tower predicting the collision point and fires a bullet

• user’s tower: is a tower that fires upon user’s request.

- The user strategically places “his” tower in a position, which remains the same

during the game session.

- It can be created by right clicking the desired position.

- It fires the bullets when the user clicks on the screen. The bullet is heading towards

the position that the user clicked.

Figure 30. User tower fires upon click

• Game coins: are collected by the user and can be used to buy a new observer castle.

- The coins are collected when the enemy is killed. (1 point per kill)

41

- When the game starts the user is able to buy one observer and one user’s tower.

- One observer tower cost 100 coins.

Another point is that the enemy can be hit by the bullet, but a collision cannot exist between

other objects, i.e. towers with bullet, bullets with bullets and tower with tower. The collision

check is done by a continuous loop for all bullets and the enemy. The time complexity of this

operation is O(#enemy × #bullets). Since there is only one enemy, the time complexity depends

only on the number of bullets.

Moreover, it should be noted that a tower is prohibited to be placed in the path of the enemy.

So, the user cannot place any of them in such a position.

To sum up, when the game starts, the enemy starts learning to move forward. When the player

adds a tower and bullets are fired at the enemy, the latter learns to avoid them. The player gets

a coin for every killed enemy, so that every time that he collects 100 coins he can buy an

observer tower.

5.4 Training the enemy to win the player

The enemy is trained online in order to stay alive by avoiding the bullets and to reach the castle.

Despite the fact that A3C could be the best RL algorithm for this case, it could add delays and

make the game heavier and more unresponsive during the real-time training. For that reason,

the A2C algorithm was chosen for this game.

5.4.1 Setting up the actor and the critic

The model used is that the actor and critic components utilize two feedforward NNs that share

a hidden network. After multiple tests, it was observed that the optimal size of layers for the

hidden network is 16 units. Moreover, it was found that the best combination of the activation

functions for the actor and common hidden layer is the softmax and the tanh respectively.

inputs = layers.Input(shape=(num_inputs,))

common = layers.Dense(num_hidden, activation="tanh")(inputs)

action = layers.Dense(num_actions, activation="softmax")(common)

critic = layers.Dense(1)(common)
Code segment 1. Initializing the NNs

42

5.4.2 Taking an action

The enemy has two options of acting: going forward (0) or going backwards (1).

#going forward or backward in the path.

0 : going forward

1 : going backwards
num_actions = 2

Code segment 2. Definition of actions.

The enemy moves along the path and his position is defined by the distance he covered from

the starting point. This path distance is affected by the actions decided by the actor. In the

program, it is indicated as property “p” in the enemy class.

In more detail, in order the actor (enemy) to take a decision, he requires to know the state st

of the environment at that moment which in our case consists of the following:

• The position and speed of the two closest bullets. A bullet is considered to be a threat

if it is closer to him than 5 meters.

• His own path distance, his coordinates and his speed in the game window.

tc_bullets = e.find_two_closest_bullets(all_bullets)

action = eb.take_an_action(tc_bullets)

the distance path is affected by the action
e.p += ((-1)** action) * e.r_and_u.u.magnitude *dt

Code segment 3. Action effect in distance path

Because the state of the environment, that the enemy needs to know, is not requiring to

“seeing” the whole picture of the game, a CNN is not needed in this implementation.

To sum up, the state is an array of 13 variables [enemy_p, enemy_x, enemy_y, enemy_speed_x,

enemy_speed_y, bullet1_x, bullet1_y, bullet1_speed_x, bullet1_speed_y, bullet2_x, bullet2_y,

bullet2_speed_x, bullet2_speed_y].

5.4.3 Reward logic

The action is rewarded:

• Highly, if the enemy reached the castle.

• Lightly, if he moves forwards, as the castle is forwards.

The action, though, can receive a penalty:

• Very small, if he is going backwards.

• Medium, when he is being hit.

43

• Medium, when he dies.

Going backwards is a move absolutely acceptable and necessary to avoid bullets and initially

it was intended to have a zero or a very small positive reward. After an amount of trials, the

phenomenon of exploitation vs. exploration was observed, especially when the enemy had

been hit many times or/and the hit penalty was slightly big. What happened was that, in order

to stay alive, he made small steps back and forth in the same spot, and sometimes he even

moved backwards all the way back to the starting point. After this oscillating behavior, a

decision was taken to have very small negative reward when moving backwards.

In addition, many other tests were performed to determine the penalty values in case of hit

and death of the enemy. Big negative values in death and hit lead to exploitation behavior. Also,

please note, that when he dies, he is first hit so in that case the death penalty is additive to hit

penalty.

After multiple value combinations, the set of the reward and penalty values that resulted in

giving the best behavior is:

reward_reach_the_castle = 100

reward_moving_forward = 2

reward_moving_backwards = -0.1

penalty_hit = -10

penalty_death = -10
Code segment 4. Reward and penalty values

5.4.4 Learning logic

The enemy learns, otherwise updates his mind, when:

• The episode ends

• The enemy is killed

When something of the above occurs, the critic is evaluating the actions that were taken during

that period and updates the probability of the actions. For this purpose, firstly the critic

calculates the expected values form the rewards, then the loss values to update the network

with the Mean Squared Error metric and, subsequently, backpropagates the results with the

Adam optimizer, which is an extension of stochastic gradient descent. Additionally, the

discount factor of future rewards is γ = 0.99 and the learning rate is a = 0.05.

An episode is defined by a specific number of steps which, in the case of this game, is defined

by each time (dt) the enemy must take an action to move. The number of steps resulting to

optimal behavior is 200.

44

5.4.5 Run Tests

The game was executed 20 times in order to visualize the reward evolution per episode and

per step for the total number of 50 episodes, which need totally 10000 steps. In order to have

more consistent results, the observer tower is placed in the same position in every run:

Figure 31. Observer tower's constant position in tests

The following figures [Figure 32, Figure 33] illustrate the average accumulated reward and

average cumulative accumulated reward per episode, while [Figure 34, Figure 35] show the

average rewards and average cumulative reward per step.

45

Figure 32. Average reward per episode

Figure 32 shows that in first episode the rewards are better than the next ones. The reason for

this behavior is that the enemy has not yet found out the best direction to go, as the observer

assumes that the enemy will continue to move in the same direction and speed. So, the average

reward for almost the first 17 episodes demonstrated exactly what the enemy is trying to learn;

going forward is a profitable action. On average around episode 17 the reward starts to reduce.

This is the first indication that the agent has learnt to go right, as now the observer can make

a correct estimation of the collision point. After that the reward is unstable and reaches a low

value around episode 36. Though the next episodes indicate a promising slow reward

increment, which means that the agent is starting to find ways to avoid the bullets. The low

responsive to the bullet hit is expected as the bullets can approach the enemy from many

angles and the training needs more time.

100

120

140

160

180

200

220

240

0 5 10 15 20 25 30 35 40 45 50

A
cc

u
m

u
la

te
d

 R
ew

ar
d

Episodes

Average Accumulated Reward
from 20 runs

46

Figure 33. Average Cumulative rewards pes episode

The cumulative reward, seen in Figure 33, demonstrates the same result, as from

approximately episode 20 the slope of the line is smaller.

Figure 34. Average reward per step

Figure 34 shows that the gained rewards per step are widely variant. Similarly, to the previous

plots, it has the same behavior after the 3500 steps like the reward per episode. Figure 35

demonstrates an almost linear increase of the reward.

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30 35 40 45 50

C
u

m
m

u
la

ti
ve

 A
cc

u
m

u
la

te
d

 R
ew

ar
d

Episodes

Average Cumulative Accumulated Reward
from 20 runs

-0.5

0

0.5

1

1.5

2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
ew

ar
d

Steps

Average Reward per step
from 20 runs

47

Figure 35. Average cumulative reward per step

An example of a well-trained agent can be seen in Figure 36 where the agent has passed very

close to the observer tower and managed to trick him and avoid his bullet. After the predicted

collision point 2, though, the enemy is repeatedly hit. The cause of this “failure” is that he had

not been trained yet to avoid bullets with small angle, like th2 or smaller.

Figure 36. Well-trained enemy passes the observer tower

0

2000

4000

6000

8000

10000

12000

0 2000 4000 6000 8000 10000

C
u

m
u

la
ti

ve
 R

ew
ar

d

Steps

Average Cumulative Reward per step
from 20 runs

48

6 Conclusions

The tower defense game that was developed herein employed the A2C reinforcement learning

algorithm to provide the enemy with intelligence to reach the castle by avoiding the bullets.

The chosen development environment is composed by Python, TensorFlow, Keras and

Pygame. The combination of them proved to be very efficient in developing the code, running

and testing the algorithms of the game. The values of the algorithm’s parameters were tuned

after multiple tests. The algorithm implemented performs sufficiently but there is a lot of space

for improvement.

There could be more research to determine the most efficient parameter and network

configuration to help enemies learn better. In the spirit of making the enemies more clever, an

LSTM NN could also be used to help the agents to make decisions based on their memory.

An additional improvement would be to have more enemies which would be trained

asynchronously to reach the castle. This would be achieved with the A3C algorithm. Four of

the enemies (agents) would be trained simultaneously and their “brain” would be updated

every time an episode ends by exchanging their experience. This algorithm would have quicker

training response and would advance the enemies’ knowledge and capability, making thus the

game more interesting to play. Of course, more than four enemies could try to reach the castle,

but not all of them could be trainable, as there are limitations depending on the CPU’s number

of cores/maximum threads.

The need for another improvement would emerge in the case of having many agents/enemies,

that is the enhancement of the collision detecting process. As it was mentioned before, the time

complexity of the current implementation is O(#enemies × #bullets). This issue could be

tackled with python’s sprites.

An interesting idea regards the enemies’ path which could be defined by splines in order to be

a smooth curve instead of zig-zag.

Another game improvement would be to train the observer tower as well. In that way, the

game would have two elements with trainable brain competing each other. It will be very

interesting to see what defense mechanisms and tricks each opponent part will develop to gain

more rewards. This training would require a CNN as the tower would have to analyze images

from the game screen.

49

References

[1] T. M. Mitchell, Machine Learning, 1997.

[2] R. Bhardwaj, V. S. Dixit and A. Upadhyay, "A Fuzzy Intra-Clustering Approach for Load

Balancing in Peer-to-Peer System," Journal of Information and Computing Science, vol. 7,

no. 1, pp. 19-24, 2011.

[3] W. McCulloch and W. Pitts, "A Logical Calculus of Ideas Immanent in Nervous Activity,"

Bulletin of Mathematical Biophysics, vol. 5, pp. 115-133, 1943.

[4] F. Rosenblatt, "The Perceptron: A Probalistic Model For Information Storage And

Organization In The Brain," Psychological Review, p. 386–408, 1958.

[5] M. Minsky and S. Papert, An Introduction to Computational Geometry, MIT Press, 1969.

[6] P. Werbos, Beyond Regression: New Tools for Prediction and Analysis in the Behavioral

Sciences, Thesis (Ph. D.)-Harvard University, 1975.

[7] M. Schuster and K. K. Paliwal, "Bidirectional recurrent neural networks," IEEE

Transactions on Signal Processing, vol. 45, no. 11, p. 2673–2681, 1997.

[8] Y. Bengio, P. Simard and P. Frasconi, "Learning long-term dependencies with gradient

descent is difficult," IEEE Transactions on Neural Networks, vol. 5, no. 2, p. 157–166, 1994.

[9] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Computation, vol.

9, no. 8, p. 1735–1780, 1997.

[10] K. Cho, B. v. Merrienboer, D. Bahdanau and Y. Bengio, "On the properties of neural

machine translation: Encoder-decoder approaches," In Machine Learning and Knowledge

Discovery in Databases, 2014.

[11] G. Weiss, Y. Goldberg and E. Yahav, "On the Practical Computational Power of Finite

Precision RNNs for Language Recognition," in ACL, 2018.

[12] D. Britz, A. Goldie, M.-T. Luong and Q. Le, "Massive Exploration of Neural Machine

Translation Architectures," in 2017 Conference on Empirical Methods in Natural

Language Processing, 2017.

[13] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, MIT Press, 1998.

50

[14] R. Bellman, "On the Theory of Dynamic Programming," PNAS, vol. 38, no. 8, pp. 716-719,

1952.

[15] R. Sutton and A. G. Barto., Reinforcement Learning: An Introduction (2nd Edition), MIT

Press, 2018.

[16] C. J. Watkins and P. Dayan, "Q-Learning," Machine Learning, vol. 8, no. 3-4, pp. 279-292,

1992.

[17] G. A. Rummery and M. Niranjan, On-Line Q-Learning Using Connectionist Systems,

Cambridge University, 1994.

[18] D. Silver, "UCL reinforcement learning course," [Online]. Available:

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html. [Accessed 10 10 2020].

[19] R. Williams, "Simple Statistical Gradient-Following Algorithms for Connectionist

Reinforcement Learning," Machine Learning, vol. 8, no. 3-4, pp. 229-256, 1992.

[20] F. Gomez and J. Schmidhuber, "Evolving Modular Fast-Weight Networks for Control,"

2005, ICANN.

[21] J. Schulman, P. Moritz, S. Levine, M. Jordan and P. Abbeel, "High-Dimensional Continuous

Control using Generalized Advantage Estimation," in ICLR, 2016.

[22] A. Strehl, L. Li, E. Wiewiora, J. Langford and M. Littman., "PAC Model-Free Reinforcement

Learning," in IICML, 2006.

[23] Y. Li, "Deep Reinforcement Learning: An Overview," 2017. [Online]. Available:

arXiv:1701.07274. [Accessed 09 10 2020].

[24] J. Tsitsiklis and B. V. R. , "An analysis of temporal-difference learning with function

approximation," IEEE Transactions on Automatic Control, vol. 42, no. 5, pp. 674-690,

1997.

[25] V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Bellemare, A. Graves, M.

Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie and A.Sadik, "Human-Level

Control through Deep Reinforcement Learning," Nature, vol. 518, no. 7540, pp. 529-533,

2015.

[26] V. Mnih, A. P. Badia, M. Mirza, A.Graves, T. Lillicrap, T. Harley, D. Silver and K.

Kavukcuoglu., "Asynchronous Methods for Deep Reinforcement Learning," in ICLR, 2016.

51

[27] J. Wang, Z.Kurth-Nelson, D. Tirumala, H. Soyer, J. Leibo, R. Munos, C. Blundell, D. Kumaran

and M. Botvinick, "Learning to Reinforcement Learn," in CogSci 2017, 2017.

[28] S. Mishra, "Unsupervised Learning and Data Clustering," 20 05 2017. [Online]. Available:

https://towardsdatascience.com/unsupervised-learning-and-data-clustering-

eeecb78b422a.

[29] J. Chung, C. C. K. Gulcehre and Y. Bengio, "Empirical Evaluation of Gated Recurrent Neural

Networks on Sequence Modeling.," in NIPS : Deep Learning and Representation Learning

Workshop, 2014.

[30] W. Feng, N. Guan, Y. Li, X. Zhang and Z. Luo, "Audio visual speech recognition with

multimodal recurrent neural networks," pp. 681-688, 2017.

[31] K. Arulkumaran, M. P. Deisenroth, M. Brundage and A. A. Bharath, "A Brief Survey of Deep

Reinforcement Learning," IEEE Signal Processing Magazine, vol. 34, no. 6, pp. 26-38,

2017.

52

Appendix

The code of this thesis was developed in two files:

• tower_defence.py: it is the main file in which the game starts, and every action of the

game is taken, and where the development of A2C is located. The part of the code that

is merely the latter’s development is annotated.

• entities.py: a file where all classes of the objects (enemy, physics, bullets etc) of the

game are placed.

Tower_defence.py

import math

import random

import pygame

import entities

import numpy as np

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers

import sys

myscreen = entities.Screen_attridutes()

RIGHT = 3

LEFT = 1

screen = pygame.display.set_mode((myscreen.width, myscreen.height),pygame.DOU

BLEBUF)

pygame.display.set_caption('Tower Defence')

A2C #######################

#A2C: setting up the nn networks and parametres

random.seed(42)

gamma = 0.99 # Discount factor for past rewards

max_steps_per_episode = 200

eps = np.finfo(np.float32).eps.item() # Smallest number such that 1.0 + eps

!= 1.0

actor critic network

num_inputs = 1 + (2 + 2) + (2 + 2) + (2 + 2)

#going forward or backward in the path.

0 : going forward

1 : going backwards

53

num_actions = 2

num_hidden = 16

inputs = layers.Input(shape=(num_inputs,))

common = layers.Dense(num_hidden, activation="tanh")(inputs)

action = layers.Dense(num_actions, activation="softmax")(common)

critic = layers.Dense(1)(common)

model = keras.Model(inputs=inputs, outputs=[action, critic])

class eBrain:

 def __init__(self, enemy,trainable):

 self.optimizer = keras.optimizers.Adam(learning_rate=0.01)

 self.mse_loss = keras.losses.MeanSquaredError()

 self.action_probs_history = []

 self.critic_value_history = []

 self.rewards_history = []

 self.running_reward = 0

 self.episode_count = 0

 self.me_the_enemy = enemy

 self.trainable = trainable

 self.step_reward = 0

 def take_an_action (self, tc_bullets):

 bstates = []

 bcnt = 0

 for b in tc_bullets:

 bstates = bstates + b.to_state_vector()

 bcnt = bcnt + 1

 while bcnt < 2:

 bstates = bstates + [0, 0, 0, 0]

 bcnt = bcnt + 1

 estate = self.me_the_enemy.to_state_vector()

 # reset the environment

 state = [self.me_the_enemy.p] + estate + bstates

 state = tf.convert_to_tensor(state)

 state = tf.expand_dims(state, 0)

 # Predict action probabilities and estimated future rewards

 # from environment state

 action_probs, critic_value = model(state)

 if self.trainable:

 self.critic_value_history.append(critic_value[0, 0])

 # Sample action from action probability distribution

54

 action = np.random.choice(num_actions, p=np.squeeze(action_probs))

 if self.trainable:

 self.action_probs_history.append(tf.math.log(action_probs[0, acti

on]))

 return action

 def learn(self, episode_reward):

 if not self.trainable:

 return

 # Update running reward to check condition for solving

 self.running_reward = 0.05 * episode_reward + (1 - 0.05) * self.runni

ng_reward

 # Calculate expected value from rewards

 # - At each timestep what was the total reward received after that ti

mestep

 # - Rewards in the past are discounted by multiplying them with gamma

 # - These are the labels for our critic

 returns = []

 discounted_sum = 0

 for r in self.rewards_history[::-1]:

 discounted_sum = r + gamma * discounted_sum

 returns.insert(0, discounted_sum)

 # Normalize

 returns = np.array(returns)

 returns = (returns - np.mean(returns)) / (np.std(returns) + eps)

 returns = returns.tolist()

 # Calculating loss values to update our network

 history = zip(self.action_probs_history, self.critic_value_history, r

eturns)

 actor_losses = []

 critic_losses = []

 for log_prob, value, ret in history:

 # At this point in history, the critic estimated that we would ge

t a

 # total reward = `value` in the future. We took an action with lo

g probability

 # of `log_prob` and ended up recieving a total reward = `ret`.

 # The actor must be updated so that it predicts an action that le

ads to

 # high rewards (compared to critic's estimate) with high probabil

ity.

 diff = ret - value

 actor_losses.append(-log_prob * diff) # actor loss

55

 # The critic must be updated so that it predicts a better estimat

e of

 # the future rewards.

 critic_losses.append(

 self.mse_loss(tf.expand_dims(value, 0), tf.expand_dims(ret, 0

))

)

 # Backpropagation

 loss_value = sum(actor_losses) + sum(critic_losses)

 grads = tape.gradient(loss_value, model.trainable_variables)

 self.optimizer.apply_gradients(zip(grads, model.trainable_variables))

 # Clear the loss and reward history

 self.action_probs_history.clear()

 self.critic_value_history.clear()

 self.rewards_history.clear()

def append_enemies (smart_enemies, trainable_enemy_exists):

 trainable = False

 if random.random() < 0.5 and len(smart_enemies) < max_enemies:

 e = entities.Enemy((0, 0))

 # first enemy is trainable or there is no trainable agent

 if not trainable_enemy_exists :

 trainable = True

 smart_enemies.append(eBrain(e,trainable))

 return trainable or trainable_enemy_exists

def __del__ (self):

 pass

def active_bullets_after_collision_checks (tower, smart_enemies, episode_rewa

rd, steps_count, c_episode_reward, c_step_reward):

 new_bullets = []

 hit_bullets = []

 for b in tower.bullets:

 b.move(dt)

 if b.is_in_screen():

 new_bullets.append(b)

 # the first enemy is always trainable

 trainable_enemy_exists = True

 for b in tower.bullets:

 for eb in smart_enemies:

56

 e = eb.me_the_enemy

 if e.is_hit(b) and not b in hit_bullets:

 e.subtrack_health()

 eb.step_reward += penalty_hit

 if (e.health<0):

 if eb.trainable:

 eb.step_reward += penalty_death

 ed.rewards_history.append(ed.step_reward)

 episode_reward += ed.step_reward

 eb.learn(episode_reward)

 trainable_enemy_exists = False

 episode_reward = 0

 steps_count = 0

 eb.trainable = False

 smart_enemies.remove(eb)

 hit_bullets.append(b)

 for b in hit_bullets:

 if b in new_bullets:

 new_bullets.remove(b)

 #del b

 return new_bullets, trainable_enemy_exists , episode_reward, steps_count,

 c_episode_reward, c_step_reward

running = True

enemies = []

smart_enemies = []

clock=pygame.time.Clock()

FRAMES_PER_SECOND=30

stopwatch_at = 0 #secs

stopwatch_timer = 0

stopwatcht_at_bullet = 2 #sec

stopwatch_timer_bullet = 0

max_enemies = 1

reward_reach_the_castle = 100

reward_moving_forward = 2

reward_moving_backwards = -0.1

penalty_hit = -10

penalty_death = -10

observer_towers = []

user_towers = []

trainable_enemy_exists = False

57

episode_reward = 0

steps_count = 0

episodes_count = 0

target = entities.PaintableObject()

c_episode_reward = 0

c_step_reward = 0

while running :

 with tf.GradientTape() as tape:

 dt=clock.tick(FRAMES_PER_SECOND)/1000.0 # number of seconds have

passed since the previous call.

 stopwatch_timer += dt

 stopwatch_timer_bullet += dt

 for event in pygame.event.get():

 if event.type == pygame.QUIT:

 running = False

 elif event.type == pygame.MOUSEBUTTONUP and event.button == R

IGHT and not observer_towers:

 pos = pygame.mouse.get_pos()

 observer_tower = entities.Observer_tower(pos)

 if (myscreen.is_tower_possition_allowed_simple(observer_t

ower)):

 observer_towers.append(observer_tower)

 elif event.type == pygame.MOUSEBUTTONUP and not user_towe

rs:

 pos = pygame.mouse.get_pos()

 tower = entities.Tower(pos)

 if (myscreen.is_tower_possition_allowed_simple(tower)):

 user_towers.append(tower)

 elif event.type == pygame.MOUSEBUTTONUP and user_towers:

 (x,y) = pygame.mouse.get_pos()

 tower.make_bullet(x,y)

 #add a smart agent

 if stopwatch_timer >= stopwatch_at:

 trainable_enemy_exists = append_enemies(smart_enemies, traina

ble_enemy_exists)

 stopwatch_timer = 0

 new_smart_enemies = []

 two_closest_bullets = []

 for eb in smart_enemies:

 e = eb.me_the_enemy

58

 tc_bullets = []

 all_bullets = []

 for ot in observer_towers:

 all_bullets = all_bullets + ot.bullets

 for ut in user_towers:

 all_bullets = all_bullets + ut.bullets

 tc_bullets = e.find_two_closest_bullets(all_bullets)

 action = eb.take_an_action(tc_bullets)

 e.p += ((-1)** action) * e.r_and_u.u.magnitude *dt

 if e.p >= myscreen.MAX_DIST:

 eb.step_reward += reward_reach_the_castle

 if eb.trainable:

 trainable_enemy_exists = False

 eb.learn(episode_reward)

 else:

 new_smart_enemies.append(eb)

 e.route()

 if action == 0 :

 eb.step_reward += reward_moving_forward

 else:

 eb.step_reward += reward_moving_backwards

 for ot in observer_towers:

 if random.random() < 0.05 and len(ot.bullets) <ot.max

_bullets and stopwatch_timer_bullet >= stopwatcht_at_bullet:

 ot.make_bullet(e)

 stopwatch_timer_bullet = 0

 smart_enemies = new_smart_enemies

 trainable_not_deleted_ut = True

 trainable_not_deleted_ot = True

 for ut in user_towers:

 (ut.bullets, trainable_not_deleted_ut, episode_reward, steps_

count, c_episode_reward, c_step_reward) = active_bullets_after_collision_chec

ks (ut, smart_enemies, episode_reward, steps_count, c_episode_reward, c_step_

reward)

 trainable_enemy_exists = trainable_enemy_exists and trainable

_not_deleted_ut

 for ot in observer_towers:

 (ot.bullets, trainable_not_deleted_ot, episode_reward, steps_

count, c_episode_reward, c_step_reward) = active_bullets_after_collision_chec

ks (ot, smart_enemies, episode_reward, steps_count, c_episode_reward, c_step_

reward)

 trainable_enemy_exists = trainable_enemy_exists and trainable

_not_deleted_ot

59

 for ed in smart_enemies:

 if ed.trainable:

 ed.rewards_history.append(ed.step_reward)

 episode_reward = episode_reward + ed.step_reward

 steps_count +=1

 if steps_count == max_steps_per_episode :

 for ed in smart_enemies:

 if ed.trainable:

 ed.learn(episode_reward)

 episode_reward = 0

 steps_count = 0

 episodes_count += 1

 for ed in smart_enemies:

 if ed.trainable:

 ed.step_reward = 0

 ## PLOT

 screen.fill(myscreen.background_colour)

 myscreen.display_route(screen)

 for ut in user_towers:

 ut.display(screen)

 for b in ut.bullets:

 b.display(screen)

 for ot in observer_towers:

 ot.display(screen)

 for b in ot.bullets:

 b.display(screen)

 for eb in smart_enemies:

 e = eb.me_the_enemy

 e.display(screen)

 target.display(screen)

 pygame.display.flip()

pygame.quit()

60

Entities.py

import math

import pygame

class Vector:

 def __init__(self, mag, th):

 self.magnitude = mag

 self.th = th

 def to_cartesian(self):

 return (math.cos(self.th)*self.magnitude,

 math.sin(self.th)*self.magnitude)

 def from_cartesian(self, cx, cy):

 self.magnitude = math.sqrt(cx*cx + cy**2)

 self.th = math.atan2(cy, cx)

 def from_cartesian_from_screen(self, cx, cy):

 fs_cx, fs_cy = self.from_screen(cx,cy)

 self.magnitude = math.sqrt(fs_cx*fs_cx + fs_cy**2)

 self.th = math.atan2(fs_cy, fs_cx)

 def __add__(self, other):

 if not isinstance(other, Vector):

 raise Exception("Invalid add type")

 sx, sy = self.to_cartesian()

 ox, oy = other.to_cartesian()

 rx = sx + ox

 ry = sy + oy

 mag = math.sqrt(rx**2 + ry**2)

 th = math.atan2(ry, rx)

 return Vector(mag, th)

 def go_to(self, toV):

 if not isinstance(toV, Vector):

 raise Exception("Invalid add type")

 from_x, from_y = self.to_cartesian()

 to_x, to_y = toV.to_cartesian()

 rx = to_x - from_x

 ry = to_y - from_y

 mag = math.sqrt(rx**2 + ry**2)

 th = math.atan2(ry, rx)

 return Vector(mag, th)

 def __str__(self):

 return "<{}, {}>".format(self.magnitude, self.th)

 def to_screen (self):

61

 scr_attributes = Screen_attridutes()

 fToScreen = scr_attributes.factor_to_screen

 (x,y) = self.to_cartesian()

 return fToScreen*x, fToScreen*y

 def from_screen (self, cx, cy):

 scr_attributes = Screen_attridutes()

 fToScreen = scr_attributes.factor_to_screen

 return cx/fToScreen, cy/fToScreen

class PhysicsObject:

 def __init__(self, r = Vector(0, 0), u = Vector(0, 0)):

 self.r = r

 self.u = u

 def apply_force(self, f, dt):

 fx, fy = f.to_cartesian()

 ux, uy = self.u.to_cartesian()

 ux = ux + fx * dt

 uy = uy + fy * dt

 x, y = self.r.to_cartesian()

 x = x + ux*dt

 y = y + uy*dt

 self.u.from_cartesian(ux, uy)

 self.r.from_cartesian(x, y)

 def to_state_vector(self):

 r = list(self.r.to_cartesian())

 u = list(self.u.to_cartesian())

 return r + u

 def __str__(self):

 return "[r = {}, u={}]".format(self.r, self.u)

class PaintableObject:

 def __init__(self):

 rV = Vector(0.0, 0.0)

 rV.from_cartesian_from_screen(800, 640)

 self.r = rV

 self.colour = (255, 0, 38)

 self.radius = 1.5

 self.thickness = 23

 def display(self, screen):

 (x,y) = self.r.to_screen()

 scr_attributes = Screen_attridutes()

62

 to_sc = scr_attributes.factor_to_screen

 pygame.draw.circle(screen, self.colour, (int(x), int(y)), int(self.ra

dius*to_sc), self.thickness)

class Enemy:

 def __init__(self, position):

 new_rV = Vector(0.0, 0.0)

 new_rV.from_cartesian_from_screen(position[0],position[1])

 new_uV = Vector(2, 0.0) # 2 m/s

 self.r_and_u = PhysicsObject(new_rV, new_uV)

 self.radius = 0.3125

 self.colour = [(255, 214, 214), (240, 175, 175), (255, 184, 184),

 (255, 138, 138),(255, 84, 84), (222, 73, 73), (255, 54, 54), (219, 9

, 9), (194, 31, 31), (163, 7, 7)]

 self.thickness = 5

 self.p = -1

 self.health = 9 # if changed then the colour list must be extended as

 well

 def display(self, screen):

 (x,y) = self.r_and_u.r.to_screen()

 scr_attributes = Screen_attridutes()

 to_sc = scr_attributes.factor_to_screen

 pygame.draw.circle(screen, self.colour[self.health], (int(x), int(y))

, int(self.radius*to_sc), self.thickness)

 def route(self):

 scr_attributes = Screen_attridutes()

 p = self.p

 dy_in_route= scr_attributes.dy_in_route #metres

 enemy_size_offset = self.radius

 # p metres

 if p<0 :

 self.p = 0

 return (0, 0)

 count_inner_set =0

 offset=0

 offset_standard = scr_attributes.width_meters #screenX_metres

 previous_height = -dy_in_route

 new_x_metres=0.0

 new_y_metres=0.0

 for check in scr_attributes.check_points:

 if(check - offset == offset_standard): #left or right

 previous_height += dy_in_route

63

 if (p>=offset and p<check):

 if count_inner_set ==0: #going right(->) -.

 new_x_metres = p-offset

 new_y_metres = previous_height

 if new_y_metres == 0:

 new_y_metres +=enemy_size_offset

 elif new_y_metres == scr_attributes.height_meters:

 new_y_metres -=enemy_size_offset

 elif count_inner_set ==1: #going down from right(|) |.

 new_x_metres = offset_standard - enemy_size_offset

 new_y_metres = previous_height + (p - offset)

 elif count_inner_set ==2: #going left(<-) .-

 new_x_metres = offset_standard - (p-offset)

 new_y_metres = previous_height

 elif count_inner_set ==3: #going down from left(|) .|

 new_x_metres = 0 + enemy_size_offset

 new_y_metres = previous_height + (p - offset)

 (x,y) =self.r_and_u.r.to_cartesian()

 dx = new_x_metres - x

 dy = new_y_metres - y

 self.r_and_u.r.from_cartesian(new_x_metres, new_y_metres)

 self.r_and_u.u.th =math.atan2(dy, dx)

 count_inner_set +=1

 if count_inner_set ==4:

 count_inner_set =0

 offset = check

 def to_screen(self, x, y, factor_to_screen):

 self.x = factor_to_screen*x

 self.y = factor_to_screen*y

 def is_hit (self, b):

 (ex,ey) = self.r_and_u.r.to_cartesian()

 (bx,by) = b.r_and_u.r.to_cartesian()

 #distance between center of enemy and bullet point left up

 #distance between center of enemy and bullet point left down

 #distance between center of enemy and bullet point right up

 #distance between center of enemy and bullet point right down

 return (math.sqrt((ex - bx)**2 + (ey - by)**2) < self.radius

 or math.sqrt((ex - bx)**2 + (ey - (by + b.r_height))**2) <

self.radius

 or math.sqrt((ex - (bx + b.r_width))**2 + (ey - by)**2) < s

elf.radius

 or math.sqrt((ex - (bx + b.r_width))**2 + (ey - (by + b.r_he

ight))**2) < self.radius)

 def subtrack_health(self):

64

 self.health -= 1

 def find_two_closest_bullets(self, bullets):

 d_close = 5

 two_closest_bullets = [] # size 2, bullet-

distance. Closest bullet is in [0], second closest in [1]

 (xe, ye) = self.r_and_u.r.to_cartesian()

 first_closest_bullet = None

 fcb_d = 5.1

 second_closest_bullet = None

 scb_d = 5.1

 for b in bullets:

 (xb, yb) = b.r_and_u.r.to_cartesian()

 d = math.sqrt((xe-xb)**2 + (ye-yb)**2)

 if (d <= d_close):

 if (d < fcb_d):

 second_closest_bullet = first_closest_bullet

 scb_d = fcb_d

 first_closest_bullet = b

 fcb_d = d

 elif d < scb_d and d is not fcb_d:

 second_closest_bullet = b

 scb_d = d

 if (first_closest_bullet is not None):

 two_closest_bullets.append(first_closest_bullet)

 if (second_closest_bullet is not None):

 two_closest_bullets.append(second_closest_bullet)

 return two_closest_bullets

 def to_state_vector(self):

 return self.r_and_u.to_state_vector()

class Screen_attridutes:

 def __init__(self):

 self.background_colour = (119,136,153)

 (self.width, self.height) = (800, 640)

 self.width_meters = 50.0

 self.height_meters = self.width_meters * self.height / self.width

 self.max_loop_sets = 5

 self.h_in_set = 2

 self.dy_in_route = self.height_meters/ (self.max_loop_sets*self.h_in_

set)

 self.MAX_DIST = (self.width_meters + self.dy_in_route) * self.h_in_se

t * self.max_loop_sets + self.width_meters

 self.factor_to_screen = self.width//self.width_meters

 self.check_points = self.calculate_checkpoints()

65

 self.x_y_checkpoints = self.calculate_x_y_checkpoints()

 def calculate_checkpoints(self):

 dy = self.dy_in_route

 dx = self.width_meters

 check_points=[]

 for i in range(self.max_loop_sets*2):

 check_points.append((i+1)*dx +i*dy)

 check_points.append((i+1)*dx +(i+1)*dy)

 check_points.append((self.max_loop_sets*2+1)*dx +self.max_loop_sets*2

*dy)

 return check_points

 def calculate_x_y_checkpoints(self):

 dy = self.dy_in_route

 dx = self.width_meters

 check_points = []

 x = 0

 y = -dy

 for i in range(self.max_loop_sets):

 for i in range(4):

 if i%2==0: #going down

 y+=dy

 elif i == 1:#goint right

 x +=dx

 else:

 x -=dx

 v= Vector(0,0)

 v.from_cartesian(x,y)

 check_points.append(v)

 y+=dy

 v= Vector(0,0)

 v.from_cartesian(x,y)

 check_points.append(v)

 x +=dx

 v= Vector(0,0)

 v.from_cartesian(x,y)

 check_points.append(v)

 return check_points

 def display_route(self, screen):

 color = (131, 148, 166)

 metre_checkpoint = self.x_y_checkpoints

 screen_check_points = []

 for v in metre_checkpoint:

 (x,y) = v.to_screen()

66

 screen_check_points.append((x,y))

 pygame.draw.lines(screen, color, False, screen_check_points, 15)

 def is_tower_possition_allowed_simple(self, tower):

 (xt, yt) = tower.r.to_cartesian()

 yt = yt - tower.symmetrical_distance #(the middle of total height o

f triangle)

 dmin = 2* tower.symmetrical_distance

 dy = self.dy_in_route

 print("xt = {} yt = {}. dmin = {} ".format(xt, yt,dmin))

 remainder = yt % dy

 if remainder < dmin or dy - remainder < dmin :

 return False

 elif xt < dmin or xt > self.width_meters - dmin:

 return False

 else: return True

 def is_tower_possition_allowed(self, tower):

 (xt, yt) = tower.r.to_cartesian()

 yt = yt - tower.symmetrical_distance #(the middle of total height o

f triangle)

 dmin = 2 * tower.symmetrical_distance

 x0e = 0

 y0e = 0

 e = Enemy((0, 0))

 ue = e.r_and_u.u.magnitude

 k = 0

 previous_distance = 100

 while k<50:

 const_a = - 2 * (yt - y0e) * ue

 const_b = 2 * (xt - x0e) * ue

 const_c = math.atan2(const_a,const_b)

 const_d = 1 / (2 * ue**2)

 th = k * math.pi - const_c

 t = const_d * (const_a * math.sin(th) - const_b * math.cos(th))

 x = x0e + ue * math.cos(th) * t

 y = y0e + ue * math.sin(th) * t

 dx = xt - x0e - ue * math.cos(th) * t

 dy = yt - y0e - ue * math.sin(th) * t

67

 d = math.sqrt(dx**2 + dy**2)

 if d < dmin:

 return False

 elif previous_distance < d:

 return True

 elif previous_distance>d:

 previous_distance = d

 x0e += ue * math.cos(th) * t

 y0e += ue * math.sin(th) * t

 k +=1

class Tower:

 def __init__(self, position):

 rV = Vector(0.0, 0.0)

 rV.from_cartesian_from_screen(position[0],position[1])

 self.r = rV

 self.colour = (204,153,0)

 self.symmetrical_distance = 0.625

 self.bullets = []

 self.max_bullets = 10

 def display(self, screen):

 (x,y) = self.r.to_screen()

 symmetrical_distance_toScreen = self.symmetrical_distance * Screen_a

ttridutes().factor_to_screen

 pointlist_3 = [(x - symmetrical_distance_toScreen, y), (x + symmetric

al_distance_toScreen, y), (x, y - 2*symmetrical_distance_toScreen)]

 pygame.draw.polygon(screen, self.colour, pointlist_3, 0)

 def make_bullet(self, to_x, to_y):

 toV = Vector(0.0, 0.0)

 toV.from_cartesian_from_screen(to_x,to_y)

 if len(self.bullets) < self.max_bullets:

 self.bullets.append(Bullet(self.r, toV

class Observer_tower:

 def __init__(self, position):

 rV = Vector(0.0, 0.0)

 rV.from_cartesian_from_screen(position[0],position[1])

 self.r = rV

 self.colour =(44, 0, 176)

 self.symmetrical_distance = 0.625

 self.bullets = []

 self.max_bullets = 10

68

 def display(self, screen):

 (x,y) = self.r.to_screen()

 symmetrical_distance_toScreen = self.symmetrical_distance * Screen_a

ttridutes().factor_to_screen

 pointlist_3 = [(x - symmetrical_distance_toScreen, y), (x + symmetric

al_distance_toScreen, y), (x, y - 2*symmetrical_distance_toScreen)]

 pygame.draw.polygon(screen, self.colour, pointlist_3, 0)

 def make_bullet(self, e):

 if len(self.bullets) < self.max_bullets:

 #(x,y) = self.r.to_cartesian()

 b = Bullet(self.r, Vector(0,0))

 (xt,yt) = self.r.to_cartesian()

 ub = b.r_and_u.u.magnitude

 (xe,ye) = e.r_and_u.r.to_cartesian()

 (uxe,uye) = e.r_and_u.u.to_cartesian()

 # after solving the motion equations of e,b

 # to find the collision point/ angle of speed of the bullet, as

e, b: eythygrammi omali kinisi

 # (yt - ye) * uxe - (xt - xe) * uye = (yt - ye) * ub * cos(th) -

(xt - xe) * ub * sin(th)

 # (yt - ye) * uxe - (xt - xe) * uye - (yt - ye) * ub * cos(th) +

(xt - xe) * ub * sin(th) = 0

 # A -B cos(th) - C sin(th) = 0

 # A - sqrt(B^2 +C^2) * sin (th + arctan(B/C)) = 0

 # th = arcsin(A/D) - E

 const_a = (yt - ye) * uxe - (xt - xe) * uye

 const_b = (yt - ye) * ub

 const_c = -(xt - xe) * ub

 const_d = math.sqrt (const_b**2 + const_c**2)

 const_e = math.atan2(const_b,const_c)

 th = math.asin(const_a/const_d) - const_e

 b.r_and_u.u.th = th

 self.bullets.append(b)

class Bullet:

 def __init__(self, fromV,toV):# ,position, to):

 r = fromV.go_to(toV)

69

 v = Vector(8,r.th)

 self.r_and_u = PhysicsObject(Vector(fromV.magnitude,fromV.th), v)

 self.r_width = 0.3125

 self.r_height = 0.3125

 self.colour = (71, 70, 57)#(1,1,3)

 self.thickness = 15

 def display(self, screen):

 (x,y) = self.r_and_u.r.to_screen()

 scr_attributes = Screen_attridutes()

 to_sc = scr_attributes.factor_to_screen

 pygame.draw.rect(screen, self.colour, pygame.Rect((x, y, int(self.r_w

idth * to_sc), int (self.r_height *to_sc))), 0)

 def move(self,dt):

 self.r_and_u.apply_force(Vector(0,0),dt)

 def is_in_screen (self):

 #upper screen limit

 scr_attributes = Screen_attridutes()

 (x,y) = self.r_and_u.r.to_cartesian()

 return (y + self.r_height >0

 and y < scr_attributes.height_meters

 and x < scr_attributes.width_meters

 and x + self.r_width >0)

 def to_state_vector(self):

 return self.r_and_u.to_state_vector()

