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ABSTRACT 

 

The United States subprime mortgage crisis of 2007/8as well as the European 

sovereign debt crisis of 2009/10, revealed the weaknesses of financial institutions 

worldwide and the crucial role financial interconnectedness plays in the transmission 

of financial distress. Although interconnectedness contributes to efficient risk sharing, 

it may lead to contagious episodes of default following an initial shock in the financial 

system. 

The complexity of the financial system has led many academics to utilize the network 

theory to study the effects of interconnectedness and network topology on financial 

stability. Studying the financial system as a network is one of the methods that have 

been used to investigate the emergence of systemic risk through the connections of 

banks. 

In this thesis, we argue that a proper assessment of systemic risk should include a 

thorough analysis of the network of financial linkages that exist between the various 

financial institutions. In such network structure, every node represents a bank and the 

connections between banks are represented by edges. A robust interbank market plays 

an important role in the stability of the financial system. Through the interbank 

market, banks which suffer liquidity shortages can borrow from banks with liquidity 

surpluses. Thus, the interbank market can have a stabilizing effect on the financial 

system by redistributing funds in an effective way among banks, however, at the same 

time, it can make the system prone to financial contagion through the existing 

interbank linkages.  

The role connectivity plays in the stability of the interbank network depends also on 

how the structure of the network interacts with additional factors which are specific to 

the interbank market. Heterogeneity on banks' balance sheet sizes or in degree 

distributions (incoming and outgoing links) among them can change the role played 

by connectivity within the financial system.  

For decades, among the various suspects for destabilizing the financial system were 

large financial institutions whose failure would be disastrous to the greater economic 

system (“t   b   t  fa l” theory). Such financial institutions must be supported by the 

government when they face financial distress due to their systemic importance and 

interconnectedness. However, smaller financial institutions but with lots of 
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connections in the interbank market can have an even larger impact on the financial 

system if they fail. Higher interconnectedness of the interbank network can reduce the 

probability of default due to the fact that transmission of a shock can be shared by 

many counterparties and thus it dissipates faster. On the other hand, when the 

magnitude of the shock has crossed a critical threshold, due to increased 

interconnectedness the shock will spread into a large part of the system which can 

cause a large cascade of defaults. This is the so-call d “  b  t-yet-f a  l ” p  p  ty 

that financial systems exhibit (Haldane, 2009;Acemoglu et al., 2015). 

In this Thesis, we develop a better understanding of systemic risk according to 2 basic 

pillars/dimensions: 

 The analysis of the interplay between interbank contagion and several crucial 

drivers such as network topology, leverage, interconnectedness, heterogeneity 

and homogeneity across bank sizes and interbank exposures 

 Appl cat        th  c  t al ba k ’ p l cy a d th  m   t       f  y t m c    k. 
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1. Introduction 

 

1.1. Motivation of Thesis 

 “And the lessons from the global financial crisis are of course many and 

varied. But among the most important is also perhaps the simplest: to 

safeguard against systemic risk, the financial system needs to be managed as 

a system.” 

   th   p  ch “R th  k    th  f  a c al   tw  k” by A d  w G Halda  , 

Executive Director, Financial Stability, Bank of England, at the Financial 

Student Association, Amsterdam, 28 April 2009. 

The global financial turmoil that occurred in 2007 has highlighted the crucial role that 

existing linkages among banks and financial institutions plays in channeling and 

amplifying shocks once an initial shock hits the system. The bankruptcy of Lehman 

Brothers and the sequence of events which unfolded in 2008 forced public sectors to 

intervene in order to bail out many financial institutions and restore financial stability. 

This action, though, put pressure on public finances in many countries. The high costs 

associated with those interventions demonstrated the need for a clear understanding of 

interconnected financial systems and their potential to induce/facilitate systemic crises 

(May, 2008;Haldane, 2009).  

A starting point to study and analyze systemic risk among the agents in a financial 

system is to pay attention to the interaction structure among banks and financial 

institutions in the propagation of an initial shock that hits the system. A better analysis 

of such a structure should therefore help regulators to better evaluate systemic risk 

and prevent financial distress and domino effects in the market.  

To address these fundamental issues concerning the complexity of the interactions 

among banks and the dynamics of an initial shock propagating into the system, 

network theory comes into play. This is so, because the skeleton of any complex 

system can be described by a network arising from the interactions of the parts that is 

consisted of. Indeed, the connections between the agents of the interbank system can 

be studied as a network and be represented as a graph where banks are the nodes and 

edges represent the existence of lending/borrowing relationships between any two 

agents. Directionality identifies the borrower and the lender while the weight of the 

link represents the loan amount. In general, the interbank market is much richer and 

complex than a simple weighted graph. However, network theory provides useful 

tools to characterize the structure of such graphs, to identify systemically significant 

nodes and test the effectiveness of macro-prudential policies. 

According to Upper (2011), interbank contagion can take place through a multiple of 

channels. The channels through which a shock spread can be broken down into two 

groups: indirect and direct contagion channels. Direct contagion channel results from 

the direct interbank linkages between banks and can happen when an idiosyncratic 
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shock travel through the network of banks and affect the balance sheets of multiple 

agents while indirect contagion is created by indirect linkages between banks. 

The Thesis is organized as follows. Chapter 1 deals with the systemic risk and 

contagion in financial systems with a special focus on interbank markets from a 

theoretical perspective. In Chapter 2, we discuss the scope of this Thesis and the 

related literature. Empirical findings on the structure of interbank networks and 

aspects such as heterogeneity in bank sizes and interbank exposures are analyzed in 

order to obtain a clear understanding of systemic risk in such financial networks. 

In Chapter 3, we introduce our basic methodological tools we are going to use in the 

next chapters. This chapter involves basic concepts from network theory and our 

simulation methodology that we follow. 

In Chapter 4 we develop an interbank network model and demonstrate how contagion 

p  pa at     d   va       c  a     c  c       th  d       f th   y t m’  

heterogeneity, the balance sheet composition and the level of connectivity among 

ba k . Th   chapt      ba  d    th  pap   “S m lat    f  a c al c  ta     dy am c     

 a d m   t  ba k   tw  k ”, wh ch    a j   t w  k w th M  Vassilios G. 

Papavassiliou and has previously been published as Leventides et al. (2019). Under 

this particular framework, we assume that the network structure in our model is 

arbitrary, that is, the network of interbank claims/obligations forms randomly. The 

assumption of randomness in the network structure has the advantage that our model 

contains any possible structure that may emerge in the real world and this is what 

makes our analysis distinct from the earlier literature. We use a direct channel of 

contagion resulting from the direct interbank linkages among banks which takes effect 

when an idiosyncratic shock travels through the network of banks and affects the 

balance sheets of multiple agents. Our findings show that heterogeneity in bank sizes 

and interbank exposures matters a great deal in the stability of the financial system, as 

its absorption capacity is enhanced. Also, the level of interconnectedness hugely 

 mpact     th   y t m’      l   c ,   p c ally     mall   a d h  hly   t  c    ct d 

interbank networks. Finally, we provide evidence that highly leveraged banks form 

the main channel through which financial shocks propagate within the system and 

such effect is more pronounced in large interbank networks than in smaller ones. 

In Chapter 5, we extend the model developed in Chapter 4 to include a wide variety of 

network topologies and provide a better understanding of the relation between 

  tw  k  t  ct   , ba k ’ cha act    t c  a d   t  ba k c  ta    . Wh l  th  f c    f 

the previous chapter is on the various factors that affect interbank contagion such as 

bank capital ratios, leverage, interconnected     a d h m      ty ac     ba k ’   z  , 

the model lacks flexibility as far as the variability of the networks links is concerned. 

I    d   t  c  c mv  t th   p  bl m, w    t  d c  th  E dő -Ré y  p  bab l  t c 

network model in our study to provide a wider vicinity of scenarios concerning the 

network structure of the interbank system and study how homogeneity within the 

interbank network affects the propagation of financial distress from one institution to 

the other parts of the system through bilateral exposures. Our findings indicate a non-

monotonic relation between diversification and interbank contagion across the 
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different sizes of interbank networks for all scenarios tested. While for small or 

medium interbank networks, connectivity can act as an absorbing barrier, such that 

interbank systems of these sizes can withstand the initial shock, for large network 

systems connectivity does not seem to provide an effective shield against capital 

losses. Our results, for the four scenarios tested, indicate that small and thus more 

concentrated interbank network systems are more prone to contagion. In these cases, 

we observe that the size of total capital losses is, in most cases, larger than that 

documented in medium and large sized systems, which is in line with the findings of 

Nier et al.(2007). As far as heterogeneity is concerned, our results clearly suggest that, 

it plays a significant role in the stability of the financial system. Similar to Leventides 

et al. (2018), we still find that when heterogeneity is introduced with respect to the 

  z   f  ach ba k, th   y t m’   h ck ab   pt    capac ty      ha c d. I  add t   , 

when we allow for heterogeneity on interbank exposures in our model, we observe 

additional resilience to the interbank network as an initial shock dissipates more easily 

than in the case of homogeneous interbank claims. 

Chapter 6 provides applications of complex network analysis for systemic risk 

monitoring and policy formulation while Chapter 7 concludes this Thesis. 

1.2 Background 

1.2.1 Contagion: The spread of systemic risk in financial networks 

The recent financial crisis has brought to the fore the need for a better understanding 

of systemic risk and an immediate reform of the financial regulatory framework. It 

became clear that unregulated systemic risk can pose a real threat to the global 

financial stability
1
 and economic growth. However, according to ECB(2009) and IMF 

(2009) there is no commonly accepted definition of systemic risk. The European 

Central Bank (ECB,2009) defines systemic risk as the risk inherited with the 

possibility of an institution failing to meet its obligations, prompting the same failure 

on other agents in the system causing wider effects due to illiquidity and credit 

constraints. In its Financial Stability Review in December (2009), ECB states for 

 y t m c    k that “ one perspective is to describe it as the risk of experiencing a 

strong systemic event. Such an event adversely affects a number of systemically 

important intermediaries or markets (including potentially related infrastructures). 

The trigger of the event could be an exogenous shock (idiosyncratic, i.e. limited in 

scope, or systematic, i.e. widespread), which means from outside the financial system. 

Alternatively, the event could emerge endogenously from within the financial system 

or from within the economy at large. The systemic event is strong when the 

                                                           
1Financial stability    f  mally d f   d by ECB “as a condition in which the financial system – which comprises 

financial intermediaries, markets and market infrastructures – is capable of withstanding shocks and the 

unravelling of financial imbalances. This mitigates the prospect of disruptions in the financial intermediation 

process that are severe enough to adversely impact real economic activity”. 
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intermediaries concerned fail or when the markets concerned become dysfunctional 

(in theoretical terms this is often a non-linearity or a regime change).” 

Billio et al. (2012) state that although most regulators and policymakers believe that 

systemic events can be identified after the fact, a precise definition of systemic risk 

seems remarkably elusive. However, Billio et al. (2012) suggest that systemic risk 

involves the financial system, a collection of interconnected institutions that have 

mutually beneficial business relationships through which illiquidity, insolvency, and 

losses can quickly propagate during periods of financial distress. 

A rec  t d f   t     f  y t m c    k c m   f  m C   tâ c    t al. (2019)    a  ECB 

 cca    al pap   wh     y t m c    k    d f   d a  “ the risk that financial instability 

significantly impairs the provision of the financial products and services required by 

the financial system to a point where economic growth and welfare may be materially 

affected.” Th  a th    al   h  hl  ht th   mp  ta c   f   tw  k   t  d p  d  c    

analysis in order to properly assess and evaluate systemic risk.  

As Georg (2011) states, one of the lessons from the recent Global Financial Crisis is 

that systemic risk can take many forms. Systemic risk can take the form of financial 

contagion in the interbank market, where due to interconnectedness among banks, an 

initial shock that hits one bank can trigger and amplify contagious defaults to other 

banks in the market. Furthermore, there has been observed that the fear of interbank 

contagion may reduce interbank lending and, in turn, impair liquidity provision 

among banks. This fear has been detected over this period with the drying up of 

liquidity in the interbank market due to the counterparty default risk in the recent 

financial crisis. Liquidity dry-ups not only impact the banking sector but also the real 

economy since banks no longer fulfill their role as financial intermediaries facilitating 

the circulation of money in the market. 

1.2.2 The interbank market 

The interbank lending market allows financial institutions to lend or borrow money in 

order to meet their liquidity requirements. Borrowing in the interbank market is the 

most immediate source a bank can resort to in meeting its liquidity needs (e.g funding 

outflows or investment opportunities) while the smooth functioning of this market is a 

key function in ensuring the stability of the banking system and the global financial 

system as well.  

The majority of trading in the interbank market takes place over-the-counter (OTC), 

directly between any two banks. Banks lend or borrow funds and repay them over a 

short period of time, usually overnight. At any point in time, a bank may be involved 

in multiple lending or borrowing relationships thus forming multiple connections with 

different counterparties. According to the seminal paper of Allen and Gale (2000), in 

equilibrium banks will optimally use interbank market to insure themselves against 

liquidity risk by keeping deposits at other banks. However, this insurance comes with 

an additional risk, the counterparty default risk. Thus, for a bank holding 
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interconnections with other banks always implies dealing with the trade-off between 

risk sharing and risk of contagion. 

The default of a single bank with multiple borrowing connections may jeopardize the 

functioning of the interbank market in case the creditors of the bank defaulting are 

unable to absorb the losses. In this case, the initial shock of the defaulting bank may 

potentially spread into the whole system and cause serious default cascades. Interbank 

markets therefore may represent an important channel of contagion through which 

problems affecting one bank or one country may spread to other banks or other 

countries. 

Should the initial distress from a bank propagates into the banking system, several 

policy responses need to be made. According to Leitner (2004) financial agents in the 

system may be willing to bail out other agents to prevent the collapse of the whole 

network, therefore avoiding the intervention of the financial authorities or the 

regulatory institutions. However, according to Elliott, Golub and Jackson (2013), 

default cascades introduce a moral hazard problem. Financial organizations have an 

incentive to bail out a large failed bank in order to avoid failure costs to themselves, 

which then incentivizes failing firms to increase these costs in order to be bailed out. 

Another policy response is the mandatory recapitalization of the shareholders by 

  j ct      w  q  ty t  th  ba k    t    ll pa t  f th  ba k’  a   t  t  pay  ff c     t 

liabilities. However, as Gaffeo and Mollinary (2014) state this practice is hardly 

feasible in time of systemic crisis and is subject to problems of inter-temporal 

inconsistency. This is why in many cases distressed institutions have been bailed out 

by cash injections or explicit guarantees financed by the government. The American 

International Group (AIG) bailout by the US authorities in September 2008 was 

motivated by the fear that its default would have significant repercussions in the 

global financial system since many of the biggest financial institutions had become 

exposed to it via derivative contracts, the Credit Default Swaps (CDS). This action, 

though, put pressure on public finances in many countries. The high costs associated 

with those interventions demonstrated the need for a clear understanding of 

interconnected financial systems and their potential to induce/facilitate systemic crises 

(May, 2008;Haldane, 2009). Thus, one of the main issues that academics and 

regulators had to fully understand, deal with and regulate was interconnectedness.  

1.2.3Looking at systemic risk through a network lens 

A starting point to study and analyze systemic risk among the agents in a financial 

system is to pay attention to the complex interaction structure among banks and 

financial institutions. This complex structure of the banking system can be captured 

particularly well by a network representation of financial systems. The use of network 

models can be instrumental in capturing the externalities that the risk related with a 

financial institution may create for the entire financial system. Indeed, such models 

provide useful insights for financial policy and supervision. The analysis of interbank 

systems under the prism of network theory can identify systemic importance or 
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vulnerability of financial institutions and thus provide a useful tool to the regulators 

for prudent and efficient supervision. Huser (2015) highlights the ability of network 

m d l  t  capt    th  “f  a c al f a  l ty hyp th    ” that D  Ba dt  t al. (2012) p t 

forward, arguing that systemic risk and potential contagion effects are of special 

concern in the financial system. This hypothesis outlines three interrelated features of 

the financial system that can threaten financial stability. These are: (a) the complex 

network of exposures among banks, (b) the importance of balance sheet composition 

due to the maturity transformation role played by banks and (c) the informational and 

control intensity of financial contracts. 

Network theory has gained significant momentum in the field of financial stability, 

supervision and regulation during the last decade. The rapid advances in computing 

power and the increasing availability of data concerning the exposures of the market 

players has helped central bankers and market practitioners to identify systemic 

vulnerabilities and design appropriate measures and policies to safeguard financial 

stability. Networks can capture the structural features of financial systems; exposures 

can be visualized by links where the direction represent lending-borrowing 

relationships and the weight of each link is associated with monetary quantities and 

transaction volumes. Finally, network theory can also describe the different types of 

links between financial institutions. As Huser (2015) and Langeld and Soramaki 

(2014) highlight, there are hundreds of different type of transactions that financial 

institutions engage in, such as deposits, derivatives, foreign exchange exposures, etc. 

In order to encapsulate the different kinds of possible connections among banks, 

recent empirical literature focus on multilayer networks where each layer of the 

system represent a particular kind of transaction and is characterized by its own 

topology and its own propensity for the propagation of eventual shocks (Aldasoro and 

Alves (2015), Montagna and Kok (2013) and Bargigli et al.(2014) ). 
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2. Scope of the Thesis and Literature Review 

 

2.1 Scope of the Thesis 

In this Thesis, we focus our attention on the direct contagion channel and study the 

effectiveness of various drivers on interbank contagion. The flourishing literature 

which ensued in recent years has developed theoretical models aimed at addressing 

the various issues concerning systemic risk. Counterfactual simulations on data have 

been employed to study interbank contagion under different scenarios related to the 

topology of the interbank network, the size of interbank exposures, the degree of 

heterogeneity and interconnectedness within the network. In what follows, we 

develop two distinct models with banks linked to one another by their interbank 

claims and investigate by means of Monte Carlo simulations how complexity of an 

interbank network structure affects interbank contagion under different testable 

scenarios. Our analysis belongs to the strand of the theoretical literature as we employ 

computer simulations to construct a large number of bank networks involving entities 

with interlocking interbank claims/obligations. Using tools from complex network 

theory, we model how shocks of an initial default may spread from one institution to 

another (simulated financial networks to study contagion phenomena have also been 

employed by Nier et al., 2007 and Gai and Kapadia, 2010).  

This Thesis contributes to the literature in a number of ways. First, we study the 

interplay of several crucial drivers on interbank contagion, such as bank capital ratios, 

l v  a  ,   tw  k t p l  y,   t  c    ct d     a d h m      ty ac     ba k ’   z  . 

Along these lines, we address the following questions: Does heterogeneity, network 

topology, leverage and interconnectedness matter for systemic risk and the 

propagation of contagion? If so, in what respect? In order to answer these questions, 

we build two interbank network models and demonstrate how contagion propagates 

under va       c  a     c  c       th  d       f th   y t m’  h t        ty, th  

balance sheet composition and the level of connectivity among banks. 

S c  d, w   t l z    ly tw  c mp    t  f  m a ba k’  bala c   h  t, that   ,  q  ty 

and interbank loans in order to construct a parsimonious regression model. Our 

regression model is used for testing the impact of crucial drivers recorded in our 

simulation experiments on interbank contagion. Regression analysis has also been 

used by Krause and Giasante (2012) to as     th    l  play d by th    tw  k’  

topological features and balance sheet positions in the transmission of bank failures. 

The authors utilize a scale-free network model to study interbank contagion with large 

parameter ranges and many parameters to initialize a balance sheet. However, their 

model becomes inflexible in operation as it is difficult to compare simulations by 

varying one of the parameters. On the contrary, our models are easily explainable, 

reproducible and more amenable to analysis and interpretation. 

Third, unlike most studies in the recent literature (Nier et al., 2007; Gai and Kapadia, 

2010; Chinazzi et al., 2015; Amini et al., 2016)we define the term contagion as the 

situation in which the initial failure of a bank leads to the failure of at least one other 



8 
 

bank, while the extent of contagion is measured by the total capital loss in the banking 

system due to the failure of at least one bank. In other words, we are mostly interested 

in detecting the magnitude of capital losses in the banking network rather than the 

number of banks that were adversely affected.  

Our analysis also differs from networks based on entropy methods which are able to 

capture unidimensional features of the network structure only, and not dynamic and 

multifaceted network patterns. Maximum entropy (ME) approaches may also not be 

very reliable in assessing the severity of financial contagion as, depending on the 

interbank market structure, can lead to undervaluation or overvaluation of the extent 

of contagion (Mistrulli, 2011). Moreover, we circumvent the problem of data 

unavailability as real data on interbank exposures are generally only available to 

central bankers and regulators, thus rendering the empirical analysis of networks 

problematic.  

The first model, which is part of the paper Leventides et al. (2019), examines the 

knock-on effects an initial default can bring into the interbank network under the 

assumption of randomness in the link formation. The assumption that the network of 

interbank claims and obligations forms randomly, enables us to capture all possible 

scenarios that may appear in real-world situations.  

The second model extends the study presented in Leventides et al. (2019) to include a 

wide variety of network topologies and provide a better understanding of the relation 

b tw      tw  k  t  ct   , ba k ’ cha act    t cs and interbank contagion. While the 

focus of this paper is on the various factors that affect interbank contagion such as 

ba k cap tal  at   , l v  a  ,   t  c    ct d     a d h m      ty ac     ba k ’   z  , 

the model lacks flexibility as far as the variability of the networks links is concerned. 

In order to circumvent this problem, we introduce th  E dő -Ré y  p  bab l  t c 

network model in our study to provide a wider vicinity of scenarios concerning the 

network structure of the interbank system and study how homogeneity within the 

interbank network affects the propagation of financial distress from one institution to 

the other parts of the system through bilateral exposures. 

Finally, our findings have interesting implications for policymaking and further 

research. Useful insights resulting from this study can provide early alert signs of 

weakness of the interbank system, identifying vulnerabilities of the system as a whole. 

2.2. Literature Review 

There is an increasing number of studies that investigate the numerous facets of 

contagion in the interbank network. Many researchers showed that the structure of the 

network plays a crucial role in the generation and propagation of systemic risk in the 

interbank market. 

In their influential work, Allen and Gale (2000) using a simple network model of four 

banks, show that in equilibrium banks hold interregional claims on other banks to 

provide insurance against liquidity risk. These interbank connections, however, can 

make them vulnerable to counterparty default risk. The failure of one bank can cause 
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the default of other banks and several contagious events, thus jeopardizing the whole 

financial system. The authors distinguish three structures: (i) the complete structure, 

(ii) the incomplete market structure and (iii) the disconnected incomplete market 

structure. In the case of a complete structure the bank has symmetric linkages with all 

other banks in the interbank network system while in the case of incomplete structure 

the linkages that are observed are among the neighboring banks. Finally, in the case of 

disconnected structure, there are regions that are particularly disconnected or isolated. 

Allen and Gale (2000)show that a financial system with a complete network structure 

is more robust to contagion than incomplete structures. The reason for the above 

conclusion is that when the network is fully connected (complete network) the amount 

of interbank deposits held by each bank is evenly spread over all other banks. Thus, in 

case a negative shock hit the network, its impact is gradually fade away since every 

bank in the network share a small loss and there is no contagion. However, in case of 

an incomplete network structure, the system seems to be more fragile since the impact 

of the shock is concentrated among neighboring banks. Allen & Gale (2000) conclude 

that the interconnection in the interbank market always implies a trade-off between 

risk sharing and risk of contagion. 

Babus (2007) builds on the framework proposed by Allen and Gale (2000) and 

develops a model with endogenous formation of network where banks form links with 

each other as an insurance mechanism to reduce the risk of contagion. The authors 

agree with Allen and Gale (2000) that better connected networks are more resilient to 

contagion. 

Nier et al.(2007) study the extent to which the resilience of an interbank network 

d p  d     a c mb  at     f va  abl   cha act   z    th    tw  k t p l  y, ba k ’ 

characteristics in terms of net worth and interbank exposures, and market 

concentration. Using Monte Carlo simulation experiments in random graphs, they find 

that the effect of the degree of connectivity is non-monotonic. Specifically, a small 

initial increase in connectivity increases the chance of contagion defaults. However, 

after a certain threshold value, connectivity improves the capacity of a banking 

system to withstand shocks. In addition, the authors find that the banking system is 

more resilient to contagious defaults if its banks are better capitalized and this effect is 

non-linear. Finally, the size of interbank liabilities tends to increase the risk of default 

cascades, even if banks hold capital against such exposures and more concentrated 

banking systems are shown to be prone to larger systemic risk. 

Thus, interconnectedness acts first to strengthen contagion as it increases the number 

of channels (i.e. interbank links) through which an idiosyncratic shock can propagate 

through the network of counterpart exposures. Nonetheless, the residual shock passed 

on to any interconnected single institution becomes necessarily smaller as the number 

of links increases. Hence, interconnectedness also contributes to risk-sharing. As a 

matter of fact, beyond a certain threshold (or tipping point), this latter effect prevails 

and eventually enhances the resilience of the system. There is, however, a downside 

to the interconnectedness of the banking system. As the burst of the last financial 
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c       h w d,   t  ba k ma k t  d  play what Halda   (2009) d   t   a  a “  b  t-

yet-f a  l ”    “k  f - d  ” p  p  ty, specifying in a more precise way how 

connectivity influences stability. In normal times, interconnectedness may lead to an 

enhanced liquidity allocation and an increased risk sharing between banks but in times 

of a crisis interconnectedness can amplify shocks and propagate the crisis all over the 

network. Thus, connections can serve at the same time as shock-absorbers and shock-

amplifiers. Higher interconnectedness may reduce the probability of default when 

contagion has not started yet. However, when contagion begins, higher 

interconnectedness amplifies initial shocks and increases the probability of having 

large default cascades. 

Battiston et al. (2012) study also the trade-off between risk sharing (diversification) 

and network externalities (contagion)  d  t fy   , f     m  val     f th    m d l’  

parameters, a U-shaped relation linking connectivity and probability of default. The 

authors argue that the stabilizing role of risk diversification prevails only when 

connectivity is low. If connectivity is already high, a further increase may have the 

perverse effect of amplifying the shock due to distress propagation and financial 

accelerator. Thus, for a bank, being interconnected with other banks always implies 

dealing with the trade-off between risk sharing and risk of contagion.  

A more interconnected network scheme implies that a negative shock can be more 

easily absorbed when there are multiple counterparties. In addition, connectivity may 

induce banks to bail out each other in order to prevent contagion-avoiding thus the 

intervention of government or the central bank. However, a highly interconnected 

bank will also face the risk of being hit by a large negative shock through one of its 

neighbors. Thus, studying the role of the level and form of connectivity in the 

interbank market is crucial to understand how direct contagion works. 

Gai and Kapadia (2010) using a network model of a banking system study how the 

probability and potential impact of contagion is influenced by aggregate and 

idiosyncratic shocks, network structure and liquidity. The authors agree with Haldane 

(2009) c  c       th  “  b  t-yet-f a  l ” p  p  ty that th  f  a c al  y t m  xh b t. 

Even when the probability of contagion is very low, its effects can have tremendous 

consequences to the financial system. Higher connectivity may reduce the probability 

of default when contagion has not started yet but it may also increase the probability 

of having large default cascades when contagion begins. 

We have seen that the level of connectivity plays a crucial role on the stability of the 

financial system. However, the role played by connectivity depends also on how the 

structure of the network interacts with some other factors such as the heterogeneity of 

banks, liquidity, capital requirements, incentives to misbehave and indirect contagion 

via price changes on common assets. All these can modify the role played by 

connectivity within the financial system. 
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2.2.1 The role of heterogeneity in the interbank network structure 

The role connectivity plays in the stability of the interbank network depends also on 

how the structure of the network interacts with additional factors which are specific to 

the interbank market. Heterogeneity on banks' balance sheet sizes or in degree 

distributions (incoming and outcoming links) among them can change the role played 

by connectivity within the financial system.  

Iori et al. (2006), for instance, use a simulation model of 400 banks (banking systems 

with homogeneous banks, as well as systems in which banks are heterogeneous) in the 

interbank market in which the lending and borrowing are endogenously generated. In 

this model, each bank faces fluctuations in liquid assets and stochastic investment 

opportunities that mature with delay, creating the risk of liquidity shortages. Thus, the 

banks resort to overnight interbank borrowing only when facing a temporary liquidity 

shortage. The authors find that contagion probability is lower in case the 

interconnected institutions are homogeneous, i.e. they have similar characteristics 

such as size or investment opportunities, as thus no institution becomes significant for 

either borrowing or lending. Finally, Iori et al. (2006) conclude that with 

heterogeneity, knock-on effects become possible, but the stabilizing role of interbank 

lending remains so that the interbank market can play an ambiguous role. The authors 

also suggest, as Allen and Gale (2000), that as the connectivity increases the system 

becomes more stable. 

Sachs (2010) assesses the interaction between completeness, interconnectedness and 

equality of distribution of interbank claims (as measured by entropy) finding that high 

levels of completeness, together with an equal distribution of exposures, can stabilize 

the interbank system. Studying different structures of interbank connections (the 

complete network, a network where banks form their linkages randomly and a money 

center model), Sachs (2010) finds that within a money center model, an increasing 

concentration of assets on core banks decreases the stability of the system. Comparing 

the above structures of interbank connections, the author concludes that money center 

systems with asset concentration among core banks are more unstable than networks 

with banks of homogeneous size that form their links randomly. 

Caccioli et al. (2012) study the role of heterogeneity in degree distributions (the 

number of incoming and outgoing links), balance sheet size and degree correlations 

between banks. They study the probability of contagion conditional on the failure of a 

random bank, the most connected bank and the biggest bank. They find that networks 

with heterogeneous degree distributions are shown to be more resilient to contagion 

triggered by the failure of a random bank, but more fragile with respect to contagion 

triggered by the failure of highly connected nodes. The authors analyze the 

comparison in the interbank network literature between the "too big to fail" and the 

"too interconnected to fail" by comparing the probability of contagion conditional on 

the failure of the most connected versus the biggest bank for a system with power law 

degree distributions of connectivity versus asset size. Caccioli et al. (2012) show that 

when average degree (connectivity) is low, the probability of contagion due to failure 
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of the highly connected bank is higher than that due to the failure of the biggest node. 

However, when average degree is high, the opposite holds. Since the second scenario 

seems to be more realistic (networks with high connectivity), it seems that having 

"too big to fail" banks is more effective in the elimination of a shock. 

Ladley(2013) develops a partial equilibrium model of a closed economy in which 

heterogeneous banks interact with borrowers and depositors through the interbank 

market. Banks in the model are subject to regulation and the aim of the model is to 

qualitatively show how regulation and network structure can constrain or enhance the 

risk of contagion. The results show that for high levels of connectivity the system is 

more stable when the shock is small, while the contagion effects are amplified in case 

of larger initial shocks. However, in the case of small shocks, higher interbank 

connections promote risk sharing. Finally, as far as regulatory actions are concerned, 

Ladley (2013) finds that increases in the equity ratio seem to reduce contagion while 

increases in the reserve ratio have the opposite effect as banks use the interbank 

market more to meet their liquidity needs creating stronger interbank linkages. He 

also considers how constraints on the amount a lender may lend to a particular 

borrower can help stabilizing the interbank system. For larger shocks this policy tends 

to reduce contagion but for smaller shocks the effect is increased. If this constraint is 

very tight, bankruptcies are uniformly reduced but so is lending to non-bank 

borrowers. 

Amini et al. (2013) assess the role of heterogeneity due to connectivity in the network. 

They focus on bank heterogeneity not in terms of their size but in terms of their 

number and size of their interconnections with other banks. (heterogeneous node 

degree and exposures). They conclude that the most heterogeneity is introduced, the 

least the resilience of the network. Contrary to the findings of Amini et al. (2013) is 

the study from Georg and Poschmann (2010) who don't find any significant evidence 

that the heterogeneity of the financial system has a negative impact on financial 

stability. 

Montagna and Lux (2013) study systemic risk in scale-free interbank networks. They 

contsruct a Monte Carlo framework features, taking into account various stylized facts 

from the recent empirical literature, via what is called a fitness algorithm. With a 

particular choice of such a function as a generating mechanism they construct an 

artificial banking sector which displays a power law degree distribution, disassortative 

b hav    a d h t        ty    th  ba k ’   z  . M  ta  a a d L x (2013)  h w h w 

the percentage of net worth and the percentage of interbank assets (both on total 

assets) affect the spread of an idiosyncratic shock in the system. Their results indicate 

a shell structure in the diffusion of losses in the network, i.e. creditors banks of the 

defaulted entity fail mostly before the others, and it is possible to classify defaults of 

the different shells in the cascade events. Finally, they also find that random networks 

or networks constructed on the base of a maximum entropy principle lead to fewer 

contagious defaults than their scale-free networks which is justified by the 

underestimation of the contagion risk that these networks usually exhibit. 
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Chinazzi et al. (2015) make a significant contribution to the debate on macro-

prudential regulation concerning which structure of the financial system is more 

resilient to exogenous shocks, and which conditions, in terms of balance sheet 

compositions, capital requirements and asset prices, guarantee the higher degree of 

stability. In order to explore the interplay between heterogeneity, network structure 

and balance sheet composition in the spreading of contagion, the authors develop two 

distinct models of contagion: a benchmark model and an extended model. The 

benchmark model is based on a simple framework where the financial system is 

modeled as a static network of credit exposures between banks while in the extended 

model, the interbank market is composed of two layers: a network of long-term 

exposures and a network of short-term exposures and banks can dynamically adapt 

their short-term exposures in response to liquidity shocks. For the above models, the 

authors consider different parametrizations where they let vary: capital requirements, 

ba k ’ bala c   h  t c mp   t   , f   -sale prices, network topology and types of 

shocks hitting the system. By analyzing the five scenarios chosen (homogeneous 

banks with homogeneous exposures, homogeneous banks with heterogeneous 

exposures, heterogeneous banks with homogeneous exposures where the system is 

generated using a fitness model and heterogeneous banks with heterogeneous 

exposures), the authors show how different features characterize the financial system 

and its stability. 

As far as heterogeneity is concerned and it regards the link weights, the authors 

observe a widening of the interval of connectivity levels in which contagion may 

occur. When heterogeneity concerns the size of the banks, which means that there are 

big banks which act as shock absorbers then the original shock fades away making 

contagion a less likely phenomenon. Heterogeneity in connectivity provides 

additional resilience to the system when the initial default is random. However, this is 

not always the case when highly connected or large institutions get distressed and this 

can raise the possibility of contagion risk. 

Furthermore, Chinazzi et al. (2015) prove that the too-connected-to-fail banks are 

more dangerous than the too-big-to-fail ones and should be the primary concern for 

policy makers since their distress can trigger systemic breakdowns. Finally , the 

authors also find that larger capital requirements are effectively able to stabilize the 

system, while larger liquid reserves, despite providing a buffer in case of liquidity run, 

induce banks to keep lower capital buffers, thus making them vulnerable to contagion. 

2.2.2 Empirical findings on the structure of interbank networks 

Empirical studies now provide a plethora of valuable stylized facts on the interbank 

network topology which can be used  for theoretical modeling of contagion risk. 

The first feature is the degree distribution of the nodes that represents the number of 

incoming and/or outgoing links per node, i.e the number of bank's counterparties. 

There is a lot of evidence that many interbank networks often exhibit a scale-free 

topology, i.e. they are characterized by the presence of hubs, that are nodes with a 
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degree that is much higher than the mean degree of the other banks. Thus, in a scale-

free network, there is a high probability that many transactions would take place 

through one of the high-degree nodes-often called as money center bank- of the 

network. As we have seen before, the presence of such highly interconnected hubs 

make systems in general more prone to a break-down in case of targeted attacks.  

Scale-free degree distributions have been frequently reported in many interbank 

markets. Some examples are Boss et al. (2004) for the Austrian interbank market, 

Inaoka et al. (2004) for the Japanese interbank market, Soramaki et al. (2007) for the 

US Fedwire system, Alves et al. (2013) for the European interbank market for large 

banks, while there exist conflicting findings for the Italian interbank market (Iori et al. 

(2008), Fricke and Lux (2015a)). 

Furthermore, Bech and Atalay ( 2010) found for the US Federal Funds market that the 

number of interconnections per bank follows a fat-tailed distribution, with most banks 

having many interconnections. 

According to Iori et al. (2008) and Fricke and Lux (2015a), the degree distribution is 

not necessarily best represented by a power law distribution. More specifically, Iori et 

al. (2008) and Fricke and Lux (2015b) find no evidence in favor of scale-free 

networks in the e-MID
2
  market. Iori et al. (2008), for example, find that the degree 

distribution, may not be a scale-free but it  is still heavier tailed than a purely random 

network while Fricke and Lux (2015b) find that the e-MID market data are best 

described by negative binomial distributions. 

Since evidence concerning the degree-distribution seems to be mixed, it hasn't be 

settled yet whether real-world interbank networks fall into the category of scale-free 

networks. 

Knowing the degree distribution is of paramount importance for policy makers who 

could identify the systemic and vulnerable nodes and take actions on the knock on 

effects of turbulent banks. One step towards this action could be the availability of 

more granular data and a sound statistical analysis of the distributional properties of 

interbank data. 

Empirical evidence shows also that banks tend to be organized in communities and 

the networks, they form, tend to be disassortative (Bech and Atalay, 2010; Soramäk  

et al., 2007). In a disassortative network, less connected nodes have a tendency to be 

connected with higher connected nodes. This often reflects the economic rationale 

that smaller banks, rather than transacting with each other, typically use a small set of 

money center banks as intermediaries.  

A simple way to identify such a behavior is to study the distribution of the average 

degree of the neighbours of the vertices belonging to the network. In the case of 

                                                           
2
The e-MID is an electronic trading platform for unsecured deposits based in Milan and mainly usedby Italian banks for 

overnight interbank credit.It started offering multilateral trading for interbank deposits in Italy in 1990 and now it connects to the 

market 170 banks from 28 countries, including 30 viewers among Central Banks and Ministries of Finance. 
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disassortative structure, this distribution should be a decreasing function in the degree 

of the nodes, as a consequence of the attitude of high-degree vertices to link with low-

degree ones, and vice versa. The empirical evidence of the disassortative behavior 

include Boss et al. (2004) for the A  t  a    t  ba k ma k t, S  amäk   t al. (2006) 

for the US Fedwire Network and Iori et al. (2008) for the Italian interbank market. 

Due to lack of data availability, many researchers either disregarded the heterogeneity 

of interbank relations or focused only on one type of transaction, implicitly assuming 

that the network of the selected type of credit transactions is a good proxy for the 

networks of other types. Data from the overnight unsecured market have been 

extensively used to study interbank contagion (Iori et al. (2008), Furfine (2003), 

Gabrieli (2010) ). According to Bargigli et al. al. (2013), focusing only in one type of 

the various transactions that banks engage in, may provide biased results. Instead of 

focusing only on one type of transaction -layer-, an analysis which could consist 

different types of transactions could be a more realistic representation of the interbank 

market. In order to encapsulate the different kinds of possible connections among 

banks, recent empirical studies focus on multilayer networks. A multilayer network is 

a system where the same set of nodes belong to different layers, and each layer is 

characterized by its own kind of edge, topology and its own dynamics in the spread of 

the initial shock.  

2.2.3Tiering in the interbank market 

According to Craig and von Peter (2014), an interbank market is tiered, operating in a 

hierarchical fashion, when few banks (core banks) intermediate between other banks 

(periphery banks) that do not transact with each other. Tiering is considered to be a 

structural property of the network, not a property of any individual bank. Recent 

empirical studies find evidence that a lot of interbank markets have a core-periphery 

structure.  

Craig and von Peter (2014), for example, find a core-periphery structure in the 

German banking network , in which the core comprises only 2% of the banks in the 

system. This core-periphery structure appears to be stable over time. The authors also 

find that bank-level features such as connectedness and balance sheet size reliably 

predict which banks position themselves in the core and which remain in the 

periphery. The finding that big and well-connected banks are more likely to be located 

in the core strengthens the notion that core-periphery structure is more realistic for 

banking systems. 

Fricke and Lux (2015), using a dataset of the overnight interbank transactions on the 

e-MID trading platform from January 1999 to December 2010, find distinct core–

periphery structure in the Italian interbank network. The identified core is very 

persistent over time, consisting of approximately 28 % of sample banks. The authors 

compare their findings with these of Craig and von Peter (2014), the substantial 

differences in the German and Italian interbank market data and conclude that the 

finding of a structure close to a core–periphery network is unlikely to be a 
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coincidence. Instead, they expect that other interbank markets display a similar 

hierarchical structure, which might be classified as a new "stylized fact" of modern 

interbank networks. 

Aldasoro and Alves (2016) using data on exposures between large European banks 

broken down by both maturity and instrument type find also a core periphery structure 

which comprises a large core and positively correlated multiplexity. They also argue 

that these results highli ht th   mp  ta c   f a     t t t   ’    l     th  cha   l  f 

transmission in determining the global importance of such institution. 

Other empirical studies that report a core-periphery structure for various interbank 

markets are: Langfield et al.(2014) for the UK interbank system, and Veld and van 

Lelyveld (2014) for the Dutch interbank market. In case of a core-periphery structure, 

system's fragility depends largely on the position of the affected node within the 

system. Intuitively, the failure of a core bank rather than the failure of a periphery 

bank can be detrimental in the stability of the whole system. Thus, it is of paramount 

importance for researchers and policy makers to be able to identify the systemically 

important banks. 
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3. Theoretical Framework 

 

3.1 Introduction 

The global financial system can be represented as a large complex network in which 

banks, hedge funds and other financial institutions are interconnected to each other 

through direct and indirect financial linkages. In normal times, institutions’ 

connections may result in efficient risk sharing but in turbulent periods these 

connections can harm financial stability and facilitate contagion as initial shocks may 

lead to chains of defaults or liquidity shortages with repercussions on the real 

economy. During the last decade, a lot of attention has been paid to the understanding 

of the structure of this network and the extent to which it contributes to systemic 

fragility. Broadly speaking, the system becomes fragile and breaks down when 

existing financial links turn from being a means of risk diversification to channels for 

the propagation of risk across financial institutions.  

3.2 Financial Linkages and Contagion 

According to Upper (2011), interbank contagion can take place through a multiple of 

channels. The channels through which a shock spread can be broken down into two 

groups: indirect and direct contagion channels. 

Direct contagion channel results from the direct interbank linkages between banks and 

can happen when an idiosyncratic shock travel through the network of banks and 

affect the balance sheets of multiple agents. This shock can be due to inability of 

some banks to meet their obligations (failures of some banks which had lost funds due 

to defaults by their debtors) or -to put it more simply-when interbank exposures are 

la      lat v  t  th  l  d  ’  cap tal.  

The possibility of the occurrence and spread of direct contagion depends mainly on 

the structure and size of the interbank market. According to the recent literature on 

interbank contagion, there are three major types of interbank market structure. Allen 

and Gale (2000) state that the interbank structure can be complete or incomplete, with 

contagion being less likely in the case of a complete structure, i.e the case where the 

bank has symmetric linkages with all other banks in the banking system. There is also 

a third type of interbank market structure which is defined as the money center 

structure
3
.  

On the other hand, indirect contagion is created by indirect linkages between banks. 

Allen and Babus (2008) argue that these linkages in interbank network include 

identical assets, portfolio returns and overlapping portfolios. If, for example, a bank 

                                                           

3
This structure which ha  b    d v l p d by F   xa   t al. (2000)  mpl    a  ymm t  cal l  ka    f a “m   y c  t  ” ba k t  

other banks, but without any mutual links among other (peripheral) banks. In this network structure, the failure of a money centre 

bank-the core bank- can cause interbank contagion, while the failure of a peripheral bank can only affect the neighboring banks.  
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holds identical assets with other banks the correlation between their portfolios can 

cause fire sales in the market during a crisis period, depressing thus overall prices in 

the market and inducing significant losses for all the participants. The fear of losses 

on interbank loans or the uncertainty of the counterparty can make banks hesitant to 

extent credit and even induce them to hoard liquidity. With liquidity hoarding, it 

becomes harder for banks that were previously borrowing from other banks to comply 

with their own liquidity requirements.  

Distinguishing between the various contagion channels is crucial if the intention is to 

prevent contagion, since this will affect which policy measures are likely to be 

effective. Since bailouts are undesirable because of moral hazard considerations, ex 

ante measures should be considered in order to limit the possibility of contagion in 

case any shocks hit the interbank system. 

3.3 Network Theory 

A promising approach to study and assess systemic risk in various financial systems 

originates from network theory and has been widely applied to ecology, neuroscience, 

statistical physics, epidemology, sociology and computer science. Applications of 

network theory include logistical networks, the World Wide Web, Internet, metabolic 

networks, etc. 

The foundation of the field of network theory dates back to the 18
th

 century when 

Swiss mathematician Leonhard Euler (1707-1783) solved the problem of how best to 

c  c m av  at  th  B  d     f  ö    b   . Th    w      v  al c  t  b t        th  

la t tw  c  t      w th th  m  t p  m    t b     that  f E dő -Ré y  (1960). The two 

H   a  a  math mat c a   Pa l E dő  a d Alf  d Ré y      tabl  h d   tw  k th   y 

with papers on random graphs and paved the way for further development on the 

network theory.  

Continuous development of complex network theory research and computing power 

since the late 1990s has offered a whole new dimension for studying connections in 

large, complex and dynamically evolving network systems and has already started to 

be applied to fields like physics, biology, computer science, sociology, epidemiology, 

and economics among others. Even though many relationships exist between financial 

institutions, we focus on banks and the connections that form between other banks 

through interbank lending or borrowing.  

During the last decade, many researchers have applied the tools of network theory that 

is ideally suitable for the analysis of interconnected systems and the study of systemic 

events. An interbank network can be described by a set of nodes-one for each bank- 

and a set of weighted and directed links representing the various interbank 

relationships between those banks.  

Among the many relationships between banks, lending relationship plays an 

important liquidity insurance tool and facilitates the flow of credit between them. For 

the lending bank the loan will be on the asset side of its balance sheet, while for the 
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borrowing bank the loan will be on the liability side of its balance sheet. The 

representation of this relationship can be done through a link, for example an outgoing 

link of bank A to bank B and this means that bank A lends money to bank B and bank 

B borrows money from bank A. In the same way, the weight attributed to each edge is 

equal to the size of the loan.  

In order to describe the network topology of a banking system, one can resort to 

measures from network theory. There are four properties that are usually used to 

describe a network. The first one is the size of the network, given by the number of 

nodes in the network and the edges which represent the existence of credit/lending 

relationship between two parties. The weight of each edge might be proportional to 

the magnitude of the exposure between two banks, while the directionality of each 

edge shows who is the creditor and who is the lender.  

The second measure is the connectivity of the interbank market. Connectivity or 

connection level is described as the fraction of actual edges to possible edges between 

nodes. It can range from 0 (no interconnections) to 1 (every bank is connected to 

every other bank). In normal times a high connection level can lead to an enhanced 

liquidity allocation and increased risk sharing in the banking system. 

The third quantity that is used to determine the structure of the interbank system is the 

average path length, which is defined as the average number of connections that is 

needed to transfer liquidity from one bank to another (or the average distance of a 

node to every other node in the network-or the average length of shortest paths for all 

pairs of nodes). In normal times a small average path length indicates a well 

connected system, where liquidity can easily be transferred from one bank to another. 

In times of crises, however, a short average path length also implies that an exogenous 

contagious event can spread faster through the system. 

Finally, the fourth measure of the network topology is the clustering coefficient4, 

which is defined as the probability of two banks being exposed to each other, if both 

of them are exposed to a common third bank. A high clustering coefficient indicates a 

well connected interbank system where in normal times banks can distribute liquidity 

and share risk widely in the system while in times of crises, high clustering coefficient 

amplify the contagion effects and increases the risk of joint bank defaults. 

The flourishing literature which ensued has developed two distinct methodologies that 

use complex networks to analyze issues related to financial stability and shock 

propagation. The first methodology applies counterfactual simulations to assess the 

danger of contagion in a range of national banking systems while the other analyses 

the topological structure of interbank networks in order to assess their stability. Over 

the last few years, the network structure of banking systems in different countries has 

been studied by many academics. Iori et al. (2008) studied the network topology of 

the Italian banking system, Boss et al.(2004) studied the network structure of the 

Austrian interbank market and Wells (2002) analyzed the UK interbank system. The 

                                                           
4
According to Husser (2015), clustering coefficients measure the tendency of linked nodes to have common neighbors. 
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second methodology that describes the topological structure of a network tries to 

explain how bank and market characteristics such as bank heterogeneity, moral 

hazard, price changes and capital requirements interact with network connectivity in 

determining the stability and resilience of the financial system.  

3.4 Network Formation models 

Analyzing and fully understanding the network formation processes is of paramount 

importance for someone who wants to study the implications of interbank contagion 

risks. Understanding the emergence process of the interbank networks can be critical 

to control and mitigate these risks. According to the recent interbank networks 

literature, there are three ways to model network formation. 

The first area of the literature, which will monopolize our attention, uses random link 

formation which is based on network growth models. These growth models which are 

randomly produced are based on the notion that new nodes are generated over time 

and form attachments to nodes that already exist when they are generated. Thus, an 

empty network with no links between the nodes is given and then nodes are connected 

in a random manner following a stochastic process or a process that takes account 

some characteristics of the nodes. In this category, one can discern four network 

m d l : E dő –Ré y   a d m   aph m d l, th   mall w  ld m d l, th   cal -free 

model and the -recently introduced in the relative literature-fitness model.  

E dő –Ré y   a d m   aph m d l wh ch         f th   a l   t th    t cal   tw  k 

models was introd c d by E dő  a d Ré y  (1960). I  th    a d m   aph,  ach 

possible link between any two nodes can occur with a certain independent and 

identical probability-th  E dő  a d Ré y  p  bab l ty. Th  E dő  a d Ré y  (1960) 

random graph model is a model in which has been extensively applied for the study of 

contagion in financial networks, e.g. in the contributions from Nier et al. (2007), Gai 

and Kapadia (2010), Iori et al. (2006) and Montagna and Kok (2013). A number of 

alternatives models have been recently developed that differ in the probability law 

governing the distribution of links between nodes. 

The small world model which was introduced by Watts and Strogatz (1998) is a graph 

network model that has two main features: small average shortest path length and a 

clustering coefficient significantly higher than expected by random chance. More 

spesifically, this model has the so called "small world property" which refers to 

networks where, although the network size is large and each node has a small number 

of direct neighbors, the distance between any two nodes is very small compared to the 

network size. The small world model is a model in which has been extensively 

applied for the study of contagion in financial networks, e.g. in the contributions from 

Boss et al. (2004), Gai and Kapadia (2011) and Pegoraro (2012). 

The property of a fat tail in the degree distribution has been observed in many types of 

networks and has led to the development of scale-f    m d l  by Ba abá   a d Alb  t 

(1999). Scale free networks exhibit a degree-distribution that follows a power law and 

are often characterized by growth and preferential attachment. It has been observed 
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that the number of nodes in these models increases over time and each of them enter 

th    tw  k add      w  d    (“   wth”) wh ch a   th   l  k d t  th   x  t      d   

according to a particular pattern –usually referred as preferential attachment. 

Preferential attachment by banks could result from the wish to interact with the most 

reliable counterparties. Banks who initially have the largest number of interactions 

will attract more linkages over time.  

The distinctive feature of a scale free network is the existence of nodes with very 

different degree, and in particular the existence of hubs with a large number of 

connections. This property can have a large impact on the resilience of the system in 

the case of the failure of a hub. However, scale free networks are generally more 

resilient than other network models, but are extremely fragile if the most connected 

institution is in distress. In the literature, it is often argued that a more adequate model 

of a financial system is a scale-free network (see, for example, Boss et al. (2004) and 

S  amäk   t al. (2007)).  

Differently from the other network formation models belonging in the first category, 

the fitness model generates a network structure where the attachment rules are 

governed by intrinsic node attractiveness, usually termed fitness. This fitness is a 

measure of attractiveness of a node and so of the probability of forming a link. 

Spescifically, every node in the network is endowed with a fitness parameter and then 

connections are formed between nodes with a probability which is a function of the 

fitness of the nodes. Thus, fitness-based models can mimic a variety of network 

topologies and subject to some constraints, they can be tuned to reproduce a given 

type of degree distributions and even degree correlation functions. The fitness model 

has been used by De Masi et al. (2006) and Montagna and Lux (2013) in order to 

match the empirical features of real interbank networks. 

The second area of the literature uses strategic network formation, where financial 

institutions form links at once, taking into account the repeated nature of interactions 

over links and the discounted value of future gains obtained through these links. A 

game theoretical modeling and analysis requires that agents know the game they play. 

In other words, players need to be aware of the shape of the network they belong to 

and the impact of the network on their gains. The models that use network game 

techniques may be useful in understanding how banks decide on the level of mutual 

exposures towards each other, for a given pattern of interconnections. Some of these 

decisions are rollover decisions(e.g rollover a loan after receiving a signal about the 

solvency of the borrower) by banks which are often modeled using game theory tools. 

Farboodi (2014) and Acemoglu et al. (2015), using game theoretical modeling, show 

how equilibrium networks may exhibit excessive counterparty risk.  

Finally, in the third area of the existing literature, network formation is based on the 

grounds of portfolio optimization by banks. The basic notion is that banks allocate 

their interbank exposures while balancing the return and risk of counterparty default 

risk and then links are generated taking into account funding diversification benefits. 
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Thus, links emerge endogenously from the interaction of banks' borrowing and 

lending decisions.  

3.5 Simulation methodology 

A starting point for someone who wants to study interbank contagion is to describe 

the links along which contagion may take place. In the banking system these links 

represent credit exposures between the various banks in the system. The structure of 

these exposures can be represented either graphically or in a matrix form via an 

exposure matrix.  

An exposure matrix is a N x N representation of bilateral exposures in the interbank 

market with zeros on the diagonal due to the fact that banks do not lend to themselves. 

For example, the issuance of a loan from bank i to bank j is denoted as the loan size in 

row i and column j. Owing to the limitations of data sources, interbank exposure 

matrices can only be estimated indirectly. 

Some sources of this information on bilateral exposures can be found in reports 

provided by banks to their supervisors or credit registers or in balance sheet data. 

Another way bilateral exposures can be estimated is through payment data. This 

approach introduced in the literature by Furfine (2003) and it is based in the idea that 

any loan with a maturity of, say, one day, involves both a transfer of funds from the 

lender to the borrower on day zero and a payment of opposite sign on day one. Thus, 

one has to search all transactions of a payment database for possible repayments and 

then identify whether there has been a payment of the same amount minus interest but 

the opposite sign on the previous day. Using payment databases, one is able to 

determine the complete matrix of interbank exposures while in balance sheet data (for 

each bank) the only information that can be obtained is the aggregate amount lent to 

or borrowed from all banks. 

On the other hand, when using balance sheet data the maximum entropy estimation is 

the most widely used method in determining the interbank exposure matrix. In this 

method, the aggregated interbank assets and liabilities disclosed in balance sheets are 

the only input information and the exposure matrix can be derived by maximizing its 

entropy. Some authors claim that this method is the least biased given that only 

limited information of the interbank market structure, namely the aggregated 

interbank assets and liabilities are available. To draw inferences on bilateral 

exposures, one has to make assumptions on how banks spread their interbank lending 

across their counterparties. The most common assumption in the literature according 

to Upper (2007) is to assume that banks spread their lending as evenly as possible 

given the assets and liabilities reported in the balance sheets of all other banks. 

Technically, this amounts to the maximization of entropy of the network's linkages. 

The concept for the maximization of entropy is exactly the same as in an Bayesian 

estimation. When the researcher is agnostic about a parameter, he tends to use a 

uniform distribution. The selection of a uniform distribution is to provide no 

information that would influence the estimates.  
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However, there are some drawbacks from using the entropy maximization tool. Some 

of these are the inability to reproduce some properties of real world interbank markets 

which tend to underestimate the possibility of contagion. The entropy maximization 

approach assumes that banks aim to maximize the dispersion of their interbank 

activity. This framework could alter the original market structure, i.e a concentrated 

money centre structure towards a complete structure. Another drawback from 

maximum entropy is that it requires access to the balance sheets of all potential 

counterparties. Practically, this limits maximum entropy tool to domestic exposures 

only, since the data collected by central banks tend to give a full picture only of 

domestic institutions. On the other hand, commercial datasets tend to include large 

banks only and thus neglect other potential counterparties. To assume that contagion 

is only driven by domestic exposures leads again to an underestimation of both the 

possibility and severity of contagion.  

Some of the above drawbacks, according to Upper (2007), can be mitigated by 

combining the method of maximum entropy with other sources of information. 

Additional information that can be incorporated has to do with particular elements of 

the exposure matrix that are known exactly. This information include the maximum 

size of particular elements of exposure matrix that are also known due to regulatory 

constraints and finally the overall idea of the structure of the market e.g. the presence 

of tiering. The latter which cannot be illustrated in terms of simple equality 

constraints can arise if balance sheets cover different types of exposures rather book 

loans only without distinguishing between collateralized and uncollateralized 

exposures.   

After having estimated the exposure matrix, the next step is the simulation process. 

The simulation starts by assuming a bank is unable to repay its obligations in the 

interbank market. The losses of the creditor banks are calculated. Contagious defaults 

generally arise when the losses as a result of the exposures to the defaulting banks 

exceed the capital (Tier I capital) of a creditor bank. After a bank in the interbank 

network defaults, the effects on other banks are calculated. The size of the effect 

depends on the size of the exposures between the banks represented by the value and 

the loss rate. Many researchers use a range of loss rates between 0 and 1 and compare 

the differing results while others endogenize the loss rate in their models ( Elsinger et 

al. 2006). As each bank failure weakens the banks that survived in the first step, it 

may end up causing a chain reaction of defaults, resembling the fall of domino pieces. 

To estimate the number of banks that will default due to contagion is a difficult task 

because any further defaults reduce the value of assets and the losses given default of 

the defaulted banks. Eisenberg and Noe (2001) and Furfine (2003) develop default 

algorithms to deal with this problem. 

According to Upper (2007), counterfactual simulations help to identify which banks 

are critical to the stability of the interbank system. This criticality is determined by the 

bank's size, the structure of their balance sheet and their location in interbank 

network. However, performing counterfactual simulations involves a lot of simplistic 
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assumptions (e.g. bank's limited liability, equal share across the lenders of losses on 

interbank assets, seniority of nonbank liabilities to interbank liabilities), some of 

which might bias downwards or upwards the results. As we have discussed above, 

insufficient data poses also a strong obstacle in the application of simulations. Finally, 

as many researchers would say, the counterfactual simulation methodology lacks 

behavioural foundations which makes it less suited for the analysis of policy options 

in contagion defaults. Better quality of data and robustness tests of the models would 

allow researchers to obtain more accurate and reliable estimates. 
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4. Simulating Financial Contagion Dynamics in Random Interbank Networks 

 

This Chapter is part of the paper Leventides et al. (2019) “S m lat    F  a c al 

C  ta     Dy am c     Ra d m I t  ba k N tw  k ” published in the Journal of 

Economic Behavior and Organization. The purpose of this study is to assess the 

resilience of financial systems to exogenous shocks using techniques drawn from the 

theory of complex networks. We investigate by means of Monte Carlo simulations the 

fragility of several network topologies using a simple default model of contagion 

applied on interbank networks of varying sizes. We trigger a series of banking crises 

by exogenously failing each bank in the system and observe the propagation 

mechanisms that take effect within the system under different scenarios. Finally, we 

add to the existing literature by analyzing the interplay of several crucial drivers of 

interbank contagion, such as network topology, leverage, interconnectedness, 

heterogeneity and homogeneity across bank sizes and interbank exposures.  

4.1 Set up 

Our model is tailored to simulate default cascades triggered by an exogenous shock in 

an interbank network, in which the various financial institutions are randomly linked 

to one another by their bilateral claims. We first introduce the interbank network 

model, describe the default cascades initiated by a random negative shock on this 

network and analyze the parameters that affect interbank contagion. 

4.1.1 The interbank network 

We assume that the banking system contains i=1,...,N  banks. Every bank has its own 

balance sheet and the accounting equation holds at all times. Total assets are divided 

in three categories: interbank assets 
IB

iA , other assets 
OT

iA  and cash reserves iC . On 

the liabilities side of the balance sheet we have included: interbank liabilities 
IB

iL , 

other liabilities 
OT

iL  and equity capital iE . A schematic overview of the balance sheet 

is given in Table 4. 1.  Although the proposed balance sheet structure does not capture 

all elements of a bank balance sheet, it includes all those positions that are relevant to 

our study.  

L t’  c    d   a f   t    t  1 2, ,..., nV v v v  of unspecified elements and let V V  be 

the set of all ordered pairs ,i jv v    of the elements of V , where a relation on the set 

V  is any subset E V V  .  Following Gutman and Polanski (1987), we define a 

simple interbank network as the pair  ,G V E , where V  is a finite set of nodes and 

E  is a symmetric relation on V .  We consider the Hilbert space of squared summable 

functions on the set of nodes V of the network  2:H l V , and let  ,i i V  be a 
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complete orthonormal basis of  2l V . Estrada (2011) shows that the adjacency 

operator of the network acting in  2l V  is defined as:  

     
,

: ,     ,   
u v E

f u f v f H i V


     (4. 1) 

 

Assets iA  Liabilities iL  

Interbank Assets 

 IB

iA  

Interbank Liabilities 

 IB

iL  

Other Assets  OT

iA  Other Liabilities  OT

iL  

Cash  iC  Equity Capital  iE  

Table 4. 1: Stylized Balance sheet structure. 

The table presents a stylized balance sheet structure in the 

interbank network. Total assets are divided in three categories: 

Interbank assets 
 IB

iA
, other assets 

 OT

iA
, and cash reserves

 iC
. 

Total liabilities include: Interbank liabilities 
 IB

iL
, other 

liabilities 
 OT

iL
, and equity capital 

 iE
. It is assumed that the 

accounting equation holds at all times. 

We further consider   as a V V matrix. For our network ( , )G V E the entries of 

the adjacency matrix are defined as 

     
            
            

  

The uth row or column of   has uk  entries, where uk  is the degree of the node u , 

which is simply the number of nearest neighbours that u  has. Denoting by 1 a 1V   

vector, the column vector of node degrees   is given by  

  1 1
T

T      (4. 2) 

We define the indegree as the number of links pointing toward a given node, and the 

outdegree as the number of links departing from the corresponding node. Specifically: 

  1
T

in T    (4. 3) 

 1out    (4. 4) 

Thus, our interbank network of credit exposures between n  banks can be visualized 

by a graph  ,G V E  where V  represents the set of financial institutions – nodes, 

and E  is the set of the edges linking the banks, that is, the set of ordered couples 

 ,i j V V  indicating the presence of a loan made by bank i  to bank j . The 
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number of nodes defines the size of the interbank network. Every edge  ,i j  is 

weighted by the face value of the interbank claim and the representation of interbank 

claims is made by a single weighted N N  matrix  : 

1 1

1

1

0

0

0

j N

i iN

N Nj

x x

x x

x x

 
 
 
  
 
 
 
 

 

 

where ijx  is the credit exposure of bank i  vis-à-vis bank j  and N  is the number of 

banks in the network.  Interbank assets are represented along the rows while columns 

represent interbank liabilities. Once X is in place, the interbank entries of each bank 

are given according to the following rules:  

(i) 
1

N

i ij

j

A x


 (horizontal summation), where iA  is the total interbank assets of bank 

i . 

 

(ii) 
1

N

i ij

i

L x


  (vertical summation), where iL is the summation of the total interbank 

liabilities of bank j .  

 

One can observe that the diagonal line contains zeros due to the fact that banks do not 

lend to themselves. In this framework, a random direct network of interbank loans is 

generated, in which we let vary the outdegree (number of outgoing links) of each 

node in the system. The outdegree of a bank corresponds to the number of debtors, the 

indegree corresponds to the number of creditors, while the sum of these two measures 

gives the degree of each node. The degree of a node is a measure of connectivity 

which can be both a risk sharing and a risk amplification device
5
. An example of an 

interbank network, consisting of n=20 banks is provided in Figure 4. 1.  

                                                           
5
F ll w    S ma äk   t al. (2007), c    ct v ty (p) can be defined as the unconditional probability that 

two nodes share a link and equals p=m/n(n-1) for a directed network, where n is the number of nodes 

and m the number of links within the network.  
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Figure 4. 1. The graph of an interbank network consisting of N=20banks and two outgoing/incoming 

links across banks in the network. 

The network structure has been generated randomly and the arrows in the graphindicate the 

directionoflinks: incoming links represent assets,outgoinglinks representliabilities. 

4.1.2 Shock propagation & contagion dynamics 

The failure of a bank can affect other banks through their interbank connections. 

Below, we describe the mechanism through which an initial shock affecting a bank 

propagates onto its counterparties along the network. Contrary to the recent literature, 

the term contagion here translates into total capital losses due to multiple default 

cascades. The cascade dynamics we use in this study are straightforward to implement 

and enable us to run a great number of simulations on a variety of different scenarios.   

The default procedure starts with an exogenous shock being simulated, typically by 

setting to zero the equity of one randomly chosen bank i and the cascade of defaults 

proceeds on a timestep-by-timestep basis, assuming zero recovery for shock 

transmissions. The zero recovery assumption, which is a realistic one in the short run, 

is often used in the literature to analyze worst case scenarios and refers to a situation 

where creditor banks lose all of their interbank assets held against a defaulting bank 

(Ga  a d  apad a, 2010; Ch  azz   t al., 2015). A ba k’  d fa lt  mpl    that  t       

longer able to meet its interbank liabilities to its counterparties. Since these liabilities 

c   t t t   th   ba k ’ a   t , th  ba k  that   t   t  t   bl  aff ct   m lta     ly 

their counterparties, leading to write-downs in their balance sheets. The interbank 

asset loss due to failure of bank i is subtracted from the bank's j  capital. Bank j  will 

fail if its exposure against bank i  exceeds its equity. A second round of bank failure 

occurs if bank s creditors cannot withstand the losses realized due to its default and 

eventually, contagion stops if no additional bank goes bankrupt, otherwise a third 

    d  f c  ta     tak   plac . A     t al  h ck ca  b  ampl f  d th    h ba k ’ 

interconnections and further transmitted to other institutions, such that the overall 

effect on the system goes largely beyond the original shock. As Upper and Worms 

(2004) demonstrate, in response to a liquidity shock banks prefer to withdraw their 

deposits at other banks instead of liquidating their long-term assets, creating further 

instability and liquidity dry-ups in the financial system.  
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A general mathematical description of the dynamical system expressing the shock 

propagation mechanism is presented hereafter. We consider a network consisting of N 

banks numbered from 1 to N. We define bi as the capital possessed by bank i in the 

network and  

  0 1 2, ,..., Nb b b b
 

(4. 5) 

stands for the initial vector of bank capital. X is defined as a N×N matrix with entries: 

i jx  the credit exposure of bank i vis-à-vis bank j in the network 

i i ix b  (4. 6) 

We consider the case where some of the banks (one or more) collapse. We wish to 

study how the crisis travels through the bank network and when exactly it comes to a 

fixed point. The collapse of banks i1, i2, ..., ik (wh    k≤N), ca  b  d  c  b d    th  

following way. Consider the element  
2
 

0   0,1
N

Nx Z   which has zero entries 

everywhere except the positions i1, i2, ..., ik where 0x takes on the value 1.Then, 

 
1 0 0X·b b x   (4. 7) 

is the new vector of capital of the N banks.We now take  

 
1

1

1

( ) 01,
( )

0,

;

( ) 0.

b i

b i
x i








 
(4. 8) 

Then 1 2

Nx Z  and 1x  indicates the banks that have collapsed after the bankruptcy of 

the first k banks. The vector 1x takes on the value 1 in the positionsi1, i2, ..., ik . If 

1 0x x , this indicates that the collapse of the first k banks has adversely affected other 

banks leading them to bankruptcy. Similarly, from 1x we take:  

 
1 0 1X·b b x   (4. 9) 

and then 

 
2

2

2

( ) 01,
( )

0,

;

( ) 0.

b i

b i
x i








 
(4. 10) 

The vector 2x  indicates the banks that collapse after the bankruptcy of the banks of 1x . 

Therefore, we have a map: 

 
2 2F:  N N  (4. 11) 
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    0F X·x x f b x    (4. 12) 

The map F(x) defines a dynamical system  1 Fn nx x  which describes the evolution 

of contagion in the interbank network. 

The mechanics of contagion can be illustrated by a simple example. We assume that 

we work with an interbank network consisting of 1,2,3,4i   four banks, which are 

equipped with a simple internal structure representing their balance sheet. The balance 

sheet information for each bank and the interbank relationships among banks can be 

represented in matrix form. We assume that the banks' equity is given by a random 

vector ,  1,...,4ib i   and their interbank exposure by a squared matrix with zeros 

off the diagonal due to the fact that banks do not lend to themselves. We also assume 

that the outdegree for each bank is 2, which is set randomly among banks.  

10 0 20 0 10

20 20 0 30 0
,    

30 0 30 0 10

40 20 0 10 0

b

   
   
     
   
   
   

 

The above matrix forms a stylized interbank network that allows the representation of 

a system of interbank claims by a single weighted 4 4  matrix, in which interbank 

assets are shown along the rows and interbank liabilities along the columns. The total 

capital of the system is defined as the summation of vector b  and all magnitudes are 

expressed in money terms, e.g. euros.  

We initially assume that a negative shock wipes out the equity of the first bank – bank 

1. Banks that are interconnected with this bank immediately record losses as bank 1 is 

unable to repay its liabilities, represented by the summation of the first column of the 

 q a  d mat  x. N t  that ba k 1 ha  b    w d th  am   t  f 20€ f  m ba k 2, 

d   t d by th    t y    th  f   t c l m  a d   c  d   w, a d th  am   t  f 20€ f  m 

bank 4 denoted by the corresponding entry in the first column and the fourth row. 

Thus, both banks 2 and 4 record losses that reduce their equity. The interbank loans of 

bank 1 that cannot be repaid represent the loss of capital as a percentage of the total 

cap tal    th   y t m, wh l  ba k’  1  q  ty       a d d a  th     t al l    ofcapital in 

the network.  

S b  q   t t  ba k’  1 d fa lt, ba k 2 b c m       lv  t wh l  th  am   t  f 20€    

  bt act d f  m ba k’  4  q  ty (40€-20€=20€) mak     t m    v l   abl  t  

subsequent shocks. 

Thus, the updated vector of equity is now given by vector: 

0

0
'

30

20

b

 
 
 
 
 
 
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The distress caused from the initial default of bank 1 continues to propagate within 

th    t  ba k   tw  k d   t  ba k ’   t  c    ct d    . Ba k 2 ha  b    w d m   y 

from bank 1 and bank 3 that cannot be repaid, thus, the amount that bank 2 owes to 

ba k 3 ha  t  b    bt act d f  m th   q  ty  f ba k 3 (30€-30€=0€). Th   d m    

 ff ct c  t      w th th  d fa lt  f ba k 3, a  ba k’  2 d fa lt ha  w p d   t  t  

equity.  

The updated vector of equity is now given by vector: 

20

0
''

0

20

b

 
 
 
 
 
 

 

Bank 3 has borrowed funds from bank 2, which has already gone bankrupt, and from 

ba k 4. Th  am   t b    w d f  m ba k 4 (10€) ca   t b    pa d a d ha  t  b  

  bt act d f  m th   pdat d  q  ty  f ba k 4 (20€-10€=10€) 

A new updated vector b''' of banks' equity is: 

20

30
'''

0

10

b

 
 

 
 
 
 

 

Th  d fa lt  f ba k 1 ha  ca   d a t tal l     f 60€    60%  f th  t tal cap tal    th  

system. The initial loss of capital by defaulting bank 1 is 10% of the total capital in 

the system while the loss of capital at the first stage (interbank loans that cannot be 

  pa d) by d fa lt    ba k 1 a  p  c  ta    f th   y t m’  t tal cap tal is 40%. The 

leverage of the network system, which is defined as total interbank exposure over the 

total capital in the interbank network, is 1.50 or 150% which explains the default 

cascades in this network (20+10+20+30+30+10+20+10/100).  

In the above example, banks rely heavily on interbank borrowing which makes the 

network more vulnerable to a random financial shock. We have described how 

exactly the default of a single bank can propagate through the interbank network and 

cause other banks to fail due to contagion effects. The same procedure is repeated for 

the n  bank in the interbank network which is impacted by the initial random shock.  

4.2 Monte Carlo simulations 

In this section we apply Monte Carlo simulations in four different stages. In the first 

stage, we specify the model that will be used. Moreover, we choose the probability 

d  t  b t     p c f  d f   th        . W  hav    l ct d t  w  k   d   a  t d  t’  t

symmetric distribution. The second stage involves estimating the parameters of 

interest, i.e. the value of the coefficients in the regression model. In the third stage the 

test statistics of interest are saved, while in the fourth stage we go back to the first 

stage and repeat N  times.  
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The quantity N is the number of replications which should be as large as is 

feasible. As Monte Carlo is based on random sampling from a given distribution (with 

results equal to their analytical counterparts asymptotically), setting a small number of 

replications will yield results that are sensitive to odd combinations of random 

number draws. Generally speaking, the sampling variation is measured by the 

standard error estimate, denoted  var( ) /xS x N , where x  denotes the value of the 

parameter of interest and var( )x  is the variance of the estimates of the quantity of 

interest over the N replications.  

In order to provide a general assessment of the various parameters that affect 

financial stability and can trigger contagion in an interbank network, we consider four 

different scenarios, in line with Chinazzi et al. (2015), where we let vary the degree of 

heterogeneity in the system, the balance sheet composition and the connectivity 

among banks.  The four scenarios tested are as follows:  

Scenario 1: 
• Heterogeneous banks with homogeneous exposures. In this 

scenario, we construct interbank networks where banks have 

different equity size and their interbank claims are evenly 

distributed among the outgoing links. 

Scenario 2: 
• Heterogeneous banks with heterogeneous exposures. In this 

scenario, the interbank networks allow for heterogeneous bank 

sizes and heterogeneous interbank claims among banks.  

Scenario 3: 
• Homogeneous banks with heterogeneous exposures. In this 

scenario, we construct interbank networks where banks have 

the same equity size and unevenly distribute their exposures 

across creditor banks.  

Scenario 4: 
• Homogeneous banks with homogeneous exposures. In this 

last scenario, we construct interbank networks where banks 

have the same equity size and interbank claims are evenly 

distributed across creditor banks.  

In each case, we allow the connectivity among banks to vary and the number of 

outgoing links of each bank lies within the range of 2 to 4 links. We examine banking 

systems consisting of small banks with low, medium and large interbank exposures, 

as well as systems of large banks with corresponding exposure levels.   

W  c    d   a ba  c m d l that        ly tw  c mp    t  f  m a ba k’  bala c  

sheet, that is, equity and interbank loans – in the words of May and Arinaminpathy 

(2010) ‘a caricature for banking ecosystems’. We generate our model in two separate 

steps. First, we construct a model structure of N  nodes representing the banks in our 

system and randomly assign directed edges to represent lending-borrowing 

relationships, while in a second step, we assign each node to a stylized balance sheet 
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structure. Once the banking networks are created, the default propagation dynamics 

are implemented to examine the effects of an idiosyncratic shock hitting one bank.  

The effect of a shock is simulated, typically by setting to zero the equity of the 

affected bank. We estimate the initial loss of capital by letting the first bank default 

and subsequently record the loss as percentage of the total capital in the system. 

Consequently, the defaulted bank will be unable to repay its creditors and the 

interbank loans that were granted will be written-off, as we have selected to work 

under a zero recovery assumption. This bad debt will be recorded and expressed as 

percentage of the total capital in the system. Moreover, the creditors of the defaulted 

bank will experience a shock on their balance sheets and the recorded losses will be 

subtracted from their equity.  

If at any time the total losses realized by a bank exceed its net worth, the bank is 

deemed in default and is removed from the network. Note that timesteps are modeled 

as being discrete and there is the possibility that many banks default simultaneously in 

each timestep. These shocks propagate to their creditors and take effect in the next 

timestep. When no further failures are observed, the default procedure terminates and 

the total losses are recorded and expressed as percentage of the total capital in the 

financial system. Figures 4.A.1 and 4.A.2 in the Appendix formalize the 

aforementioned mechanism in a pseudocode which simulates the default cascade in 

the interbank network.    

4.3 Computer experiments 

Having generated banking systems via a network structure framework and balance 

sheet allocation, the dynamics of an initial shock affecting a bank within the interbank 

network can be investigated. Given the complexity of the interbank network outlined 

above, it is extremely difficult to derive analytical solutions. In order to obtain data to 

describe the variables that affect contagion, we employ several Monte Carlo 

simulations. In each realization, we construct an interbank network with 

 20,50,80,100N
 
nodes. In a second step, we test the four scenarios mentioned 

before by varying the equity size of banks and the interbank exposure structure across 

creditor banks.    

For each scenario tested we let the depth of connectivity across banks to vary, such 

that each bank can have two, three or four outgoing links with other banks. When 

homogeneity across bank sizes is considered, all banks are assumed to have the same 

equity size and thus, each bank is endowed with a balance sheet that consists of 100 

units of equity. On the other hand, when homogeneity is present with respect to 

interbank exposures, interbank claims are randomly allocated within the interbank 

network and are categorized as follows: small loans granted (10 units), medium loans 

(20 units) and large loans (35 units). With respect to scenarios tested where 

heterogeneity of bank size is introduced, the amount of equity of each bank is drawn 

from a uniform distribution in the range:  0,100ib  ,whereas when heterogeneity is 
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introduced with respect to interbank claims, credit is allocated in the following 

ranges:      0,10 ,  0,20 ,  0,35ij ij ija a a  
6
. Then balance sheets are assigned to 

each node, consistent with each specific scenario tested. We randomly choose a single 

bank in the system to default due to an exogenous shock and the default cascades 

proceed sequentially, assuming zero recovery. When no further failures are observed, 

results are recorded and another realization may begin soon after. We then impose 

another shock on the second bank in the network and this procedure continues until all 

banks in the interbank network are hit by an exogenous shock.  

For each scenario tested and for each network size we have nine cases in which we 

allow the number of outgoing links  2,3,4i  and the weight of outgoing links 

(small, medium and large interbank claims)to vary among banks. Each case gives us 

2,000 realizations or, to put it differently, 2,000 banking crises. We deem that 2,000 

realizations provide a satisfactory number of runs and robustness to our analysis. 

Thus, for each scenario tested and each network size we employ 2,000 x 9 =18,000 

realizations using the following variables in each realization: 

 Total loss of capital due to contagion as percentage of total capital in the 

system (CATEND). This variable can be written in algebraic form as follows:  

1

1

N

i i

i

N

i

i

CATEN

b l

b

D 







, where il  is either 1 or 0 depending on whether bank I 

defaults at the end of the contagion process. 

 Initial loss of capital by defaulting bank i  as percentage of total capital in the 

system (CATIN1),  . . ba k’  i depleted equity divided by the total equity in 

the network:

1

1 i

N

i

i

b

b

CATIN






, where ib , i=1,...,N is a random vector 

representing ba k’  equity. 

 Loss of capital at the first stage (interbank loans that cannot be repaid) by 

defaulting bank i  as percentage of total capital in the system (CATIN2), i.e. 

total amount of loans granted to bank i that cannot be repaid divided by the 

total equity in the network: 1

1

2

N

i i

N

ij

i
i

i

x
L

CATIN

b
b





 



, where iL  is the 

summation of the total interbank liabilities of defaulting bank i. Due to zero 

  c v  y a   mpt    , th    l ab l t    that c   t t t   th   ba k ’ a   t  a   

written-down from their balance sheets and are removed from the interbank 

                                                           
6
Although those ranges have been selected arbitrarily, they are not sensitive to any regression model 

employed in the following analysis and thus, our regression results will be unaffected in a qualitative 

manner if different ranges are used. 
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network. One could say that this is the loss of capital at the first stage of the 

contagion process. 

 Leverage of the interbank network (LEVIN), i.e. total interbank exposures as 

m a    d by th    m  f mat  x’  A  l m  t , d v d d by th  t tal cap tal    th  

network
1 1

1

N N

ij

i j

N

i

i

x

LEVIN

b

 








 ,where ijx  is the credit exposure of bank i vis-à-vis 

bank j . 

 Number of outgoing links of bank i  (NOUTGOING), i.e. the degree of a 

banki which corresponds to the number of its creditors in the network. It is 

defined as the summation of the ith column of the adjacency matrix A. 

 Shock propagation variable (COUNT) which measures the number of rounds 

needed until no further bank defaults. 

 Variance of capital (equity) (VARCAP) used in those scenarios tested where 

only heterogeneous bank sizes are considered  

 Variance of interbank loans (VARLOANS) used in those scenarios tested 

where only heterogeneous interbank loan exposures are considered 

Our selection of variables is motivated by economic intuition and by the findings of 

previous studies on the dynamics of systemic risks (Nier et al., 2007). In order to 

study the effect the aforementioned variables have on contagion risk, we estimate the 

following ordinary least squares (OLS) models: 

 
1 2 3 4 5

6

1 2CATEND CATIN CATIN LEVIN NOUTGOING COUNT

VARCAP

    



    


 

(4. 13) 

 
1 2 3 4 5

6 7

1 2CATEND CATIN CATIN LEVIN NOUTGOING COUNT

VARCAP VARLOANS

    

 

    

 
 

(4. 14) 

 
1 2 3 4 52CATEND CATIN LEVIN NOUTGOING COUNT VARLOANS          (4. 15) 

 
1 2 3 42CATEND CATIN LEVIN NOUTGOING COUNT        (4. 16) 

The model described in equation (4.13) is applied to scenarios involving 

heterogeneous bank sizes with homogeneous exposures in the network structure, 

equation (4.14) refers to a situation where emphasis is placed on heterogeneous 

interbank loan exposures combined with heterogeneous bank sizes, equation (4.15) 

takes into account homogeneous banks with heterogeneous exposures while equation 

(4.16) considers only homogeneous bank sizes and interbank claims. The variable 

CATIN1 has been omitted from equations (4.15)-(4.16) due to the fact that banks in 

the interbank system are homogeneous, i.e. we keep constant the equity of each bank 

and thus CATIN1 remains stable during our simulation runs.      
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4.4 Simulation results 

In this section, we discuss the regression results of all four scenarios. Since our 

variables are measured on different scales, we cannot directly infer which independent 

variable has the largest effect on the dependent variable. In order to circumvent this 

problem we standardize our series to have zero mean and unit variance. Table 4.3 

presents the regression results of the first scenario using the OLS model described in 

equation (4.13), where heterogeneous banks distribute evenly their interbank claims 

across the outgoing links of a network consisting of N = 20, 50, 80 and 100 banks. All 

regressor coefficients are found to be statistically significant in all cases regardless of 

the size of the network.  R-squared coefficients take on large values ranging from 72 

to 76 percent and highlight the ability of our selected variables to explain financial 

distress in interbank networks.   

The variable CATIN1 captures the initial effect defaulting bank i  exerts on the 

network, whereas the magnitude of interconnectedness across the banks that comprise 

the interbank network is measured through parameter CATIN2. Financial shocks will 

p  pa at    t  th  d fa lt    ba k’  c   t  pa t    al    th    tw  k,    de their 

capital and make them more vulnerable to subsequent shocks. The magnitude of the 

positive relationship between the parameter CATIN2 and CATEND – the dependent 

variable - seems to decrease as the size of the interbank network increases. This 

finding implies that as we move from smaller to larger network settings, systemic risk 

and the likelihood of contagion declines. Figure 4.2 visually illustrates the extent of 

c  ta     a  a f  ct     f th  p  c  ta   l     f cap tal d   t  ba k’  i  default. It is 

shown that as the network size increases capital losses decline, confirming the 

findings from the regression model.   

As expected, we also find that there is a positive relationship between the leverage 

of the network and the capital losses due to contagion. This result is in line with the 

findings of Nier et al. (2007) who provide evidence that systemic risk increases when 

system-wide leverage increases. Highly leveraged banks in the interbank network are 

clearly more exposed to the risk of default on interbank loans. The greater the size of 

default on debt is, the larger the losses are that banks transmit to their neighbors, other 

things being equal. Thus, highly leveraged banks contribute more to systemic risk as 

they become a vehicle for transmitting shocks within the network. Moreover, it is 

 h w  that th  ma   t d   f th  p   t v    lat    h p b tw    th    tw  k’  l v  a   

and contagion risk increases as we move from smaller to larger interbank networks 

(illustrated in Figure 4.3).   

Our results also suggest that connectivity, expressed in our experiments as the 

outdegree of the first bank that defaults, has a negative effect on interbank contagion. 

The fact that we have allowed connectivity in the network to vary, has provided 

additional resilience to it. Interestingly, the magnitude of connectivity decreases as the 

size of the network increases. In relatively small interbank networks, a high level of 

connectivity will allow an efficient absorption of shocks, whereas in larger networks 

the increased connectivity will spread the shock throughout the system, potentially 
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leading to market-wide collapses. Our regression analysis also shows that the COUNT 

variable which measures the number of rounds until no further bank defaults, has a 

positive impact on interbank contagion and this relationship becomes more 

statistically significant as the size of the network increases. 

The size of heterogeneity expressed as the variance of capital exhibits a negative and 

statistically significant relationship with interbank contagion, showing that size 

heterogeneity can have positive effects on the stability of an interbank network. An 

interbank network consisting of banks of various sizes can more easily withstand a 

negative shock, therefore no institution becomes significant for either borrowing or 

lending. Furthermore, in such network both smaller and larger banks can act as shock 

absorbers when an initial shock hits the banking system, making contagion a less 

likely phenomenon. This finding is in line with the results of Iori et al. (2006) 

concerning bank size heterogeneity.   
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Table 4. 2: Summary statistics 

The mean, median, and standard deviation are depicted for interbank networks consisting of 20, 50, 80, and 100 banks, respectively. Four scenarios are included: (a) Heterogeneous Banks – Homogeneous 

Exposures; (b) Heterogeneous Banks – Heterogeneous Exposures; (c) Homogeneous Banks – Heterogeneous Exposures; (d) Homogeneous Banks – Homogeneous Exposures. The variables are: CATEND, 

d f   d a  t tal l     f cap tal d   t  c  ta     a  p  c  ta    f t tal cap tal    th   y t m; CATIN1, d f   d a  ba k’  i  depleted equity divided by the total equity in the network; CATIN2, defined as the 

total amount of loans granted to bank i that cannot be repaid, divided by the total equity in the network; LEVIN, defined as the leverage of the interbank network; NOUTGOING, defined as the number of 

outgoing links of bank i , which corresponds to the number of its creditors in the network; COUNT, defined as the number of rounds needed until no further bank defaults; VARCAP, defined as the variance 

of bank capital; VARLOANS, defined as the variance of interbank loans. 

 

  HeterogeneousBanks – 

HomogeneousExposures 

 HeterogeneousBanks – 

HeterogeneousExposures 

 HomogeneousBanks – 

HeterogeneousExposures 

 HomogeneousBanks – 

HomogeneousExposures 

 Variable Mean Median SD  Mean Median SD  Mean Median SD  Mean Median SD 

N=20 banks Catend 0.15 0.06 0.26  0.06 0.06 0.04  0.13 0.05 0.24  0.34 0.05 0.44 

Catin1 0.05 0.05 0.03  0.05 0.05 0.03  0.05 0.05 0.01  0.05 0.05 0.01 

Catin2 0.06 0.05 0.05  0.03 0.02 0.03  0.06 0.05 0.06  0.13 0.10 0.11 

Levin 1.32 1.16 0.76  0.66 0.57 0.38  1.30 1.19 0.74  2.60 2.40 1.45 

Noutgoing 3.00 3.00 1.78  3.00 3.00 1.76  3.00 3.00 1.78  3.00 3.00 1.77 

Count 2.31 1.00 2.17  1.44 1.00 0.93  1.73 1.00 1.93  2.21 1.00 1.92 

Varcap 823.65 816.14 180.86  832.28 831.65 173.46  - - -  - - - 

Varloans - - -  48.24 33.08 40.86  47.63 33.19 40.16  - - - 

N=50 banks Catend 0.10 0.03 0.25  0.02 0.02 0.01  0.08 0.02 0.22  0.32 0.02 0.45 

Catin1 0.02 0.02 0.01  0.02 0.02 0.01  0.02 0.02 0.01  0.02 0.02 0.01 

Catin2 0.03 0.02 0.02  0.01 0.01 0.01  0.03 0.02 0.02  0.05 0.04 0.04 

Levin 1.31 1.20 0.74  0.65 0.59 0.37  1.30 1.20 0.73  2.60 2.41 1.46 

Noutgoing 3.00 3.00 1.86  3.00 3.00 1.87  3.00 3.00 1.86  3.00 3.00 1.88 

Count 2.61 1.00 2.92  1.44 1.00 0.98  1.94 1.00 2.78  2.61 1.00 2.57 

Varcap 833.07 828.49 106.61  832.60 828.68 106.71  - - -  - - - 

Varloans - - -  48.22 33.43 40.27  48.22 33.13 40.43  - - - 

N=80 banks Catend 0.02 0.02 0.25  0.01 0.01 0.01  0.07 0.01 0.21  0.31 0.01 0.45 

Catin1 0.01 0.01 0.007  0.01 0.01 0.007  0.01 0.01 0.01  0.01 0.01 0.01 

Catin2 0.01 0.01 0.01  0.008 0.006 0.007  0.02 0.02 0.01  0.03 0.02 0.03 

Levin 1.22 1.22 0.73  0.65 0.60 0.37  1.30 1.21 0.74  2.60 2.40 1.46 

Noutgoing 3.00 3.00 1.88  3.00 3.00 1.86  3.00 3.00 1.89  3.00 3.00 1.88 

Count 1.00 1.00 3.62  1.48 1.00 1.06  2.00 1.00 3.01  2.81 1.00 2.87 

Varcap 830.24 830.24 82.45  833.91 838.49 90.70  - - -  - - - 

Varloans - - -  47.87 32.77 40.06  47.79 33.48 39.54  - - - 

N=100 banks Catend 0.10 0.01 0.27  0.01 0.01 0.01  0.06 0.01 0.20  0.31 0.01 0.45 

Catin1 0.01 0.01 0.006  0.01 0.01 0.006  0.01 0.01 0.01  0.01 0.01 0.01 

Catin2 0.01 0.01 0.01  0.007 0.005 0.006  0.01 0.01 0.01  0.03 0.02 0.02 

Levin 1.31 1.16 0.74  0.66 0.60 0.38  1.30 1.20 0.73  2.60 2.41 1.45 

Noutgoing 3.00 3.00 1.87  3.00 3.00 1.88  3.00 3.00 1.90  3.00 3.00 1.90 

Count 3.10 1.00 4.27  1.49 1.00 1.18  2.04 1.00 3.23  2.88 1.00 3.00 

Varcap 836.04 841.54 72.45  836.40 836.88 70.78  - - -  - - - 

Varloans - - -  48.22 33.43 40.06  47.86 33.49 39.48  - - - 
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(a) N=20 banks 

 

(b) N=50 banks 

 

(c) N=80 banks 

 

(d) N=100 banks 

Figure 4. 2: Scenario 1- Heterogeneous Banks with homogeneous exposures | Extent of contagion 

(expressed as the total capital lost from the banking system due to the failure of at least one bank) as a 

function of the % loss of capital at the first stage due to default of the first bank. 

Panels (a)-(d) show the relation between the % loss of capital and the extent of contagion across 

interbank networks with different number of banks. 
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(a) N=20 banks 

 

(b) N=50 banks 

 

(c) N=80 banks 

 

(d) N=100 banks 

Figure 4. 3: Scenario 1- Heterogeneous Banks with homogeneous exposures | Extent of contagion 

(expressed as the total capital lost from the banking system due to the failure of at least one bank) as a 

function of the leverage of the system. 

Panels (a)-(d) show the relation between the leverage of the system and the extent of contagion across 

interbank networks with different number of banks. 
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 N=20 N=50 N=80 N=100 
CATIN 1 0.080 

(23.029)*** 
0.030 
(7.671)*** 

0.024 
(6.245)*** 

0.017 
(4.591)*** 

CATIN2 0.208 
(24.266)*** 

0.088 
(9.191)*** 

0.020 
(2.109)** 

0.023 
(2.568)** 

LEVIN 0.078 
(13.376)*** 

0.131 
(20.473)*** 

0.127 
(19.898)*** 

0.160 
(25.829)*** 

NOUTGOING -0.147 
(-25.061)*** 

-0.085 
(-12.220)*** 

-0.023 
(-3.212)*** 

-0.013 
(-1.963)** 

COUNT 0.721 
(152.451)*** 

0.734 
(147.324)*** 

0.762 
(155.048)*** 

0.749 
(158.296)*** 

VARCAP -0.103 
(-45.749)*** 

-0.063 
(-39.920)*** 

-0.048 
(-38.314)*** 

-0.042 
(-39.818)*** 

Adjusted R
2
 0.760 0.717 0.716 0.745 

Table 4. 3: OLS regression analysis for Scenario 1 (Heterogeneous banks with homogeneous 

exposures). 

The table presents the regression results for Scenario 1. The dependent variable is CATEND measured 

as the total loss of capital due to contagion as percentage of total capital in the network. Explanatory 

variables are CATIN1, CATIN2, LEVIN, NOUTGOING, COUNT and VARCAP. Each cell displays 

the OLS standardized coefficients along with the corresponding t-statistics (shown in parentheses). 

The sample comprises of 18,000 realizations (simulated banking crises). ** and *** denote 

significance at the 5 and 1 percent level, respectively. 

 

 N=20 N=50 N=80 N=100 

CATIN 1 0.670 
(223.788)*** 

0.727 
(271.376)*** 

0.640 
(187.087)*** 

0.592 
(177.760)*** 

CATIN2 0.121 
(20.243)*** 

0.085 
(15.635)*** 

0.064 
(9.387)*** 

0.003 
(0.524) 

LEVIN 0.014 
(2.616)*** 

-0.004 
(-0.878) 

0.068 
(9.952)*** 

0.027 
(4.186)*** 

NOUTGOING -0.119 
(-25.986)*** 

-0.081 
(-18.756)*** 

-0.089 
(-15.751)*** 

-0.060 
(-11.101)*** 

COUNT 0.530 
(145.530)*** 

0.541 
(171.862)*** 

0.579 
(147.590)*** 

0.674 
(178.780)*** 

VARCAP -0.101 
(-53.995)*** 

-0.068 
(-61.788)*** 

-0.061 
(-50.322)*** 

-0.050 
(-54.927)*** 

VARLOANS -0.057 
(-10.622)*** 

-0.023 
(-4.303)*** 

-0.080 
(-11.667)*** 

-0.034 
(-5.396)*** 

Adjusted R2 0.823 0.865 0.782 0.796 

Table 4. 4: OLS regression analysis for Scenario 2 (Heterogeneous banks with heterogeneous 

exposures). 

The table presents the regression results for Scenario 2. The dependent variable is CATEND measured 

as the total loss of capital due to contagion as percentage of total capital in the network. Explanatory 

variables are CATIN1, CATIN2, LEVIN, NOUTGOING, COUNT, VARCAP and VARLOANS. 

Each cell displays the OLS standardized coefficients along with the corresponding t-statistics (shown 

in parentheses). The sample comprises of 18,000 realizations (simulated banking crises). *** denotes 

significance at the 1 percent level. 

Table 4.4 presents the regression results of the second scenario using the model 

described in equation (4.14), where banking institutions with heterogeneous bank 

sizes are linked to one another via heterogeneous interbank claims. The regressor 

coefficients are statistically significant in almost all cases and the R-squared values 

are quite high and lie in the vicinity of 78 to 86 percent, highlighting the good 

explanatory power of the model. CATIN1 impacts in a statistically significant 

manner the dependent variable in all network segments and the magnitude of 

standardized coefficients exceeds the corresponding magnitude of those derived from 

the first scenario. In other words, an initial shock from defaulting bank i  will 

dissipate more easily and will not spillover in the network as intensively as in the first 
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scenario.Again, CATIN2 has a large positive impact on contagion risk, however, its 

magnitude fades away as we move from smaller to larger networks – in the last case 

of 100N   banks it becomes statistically insignificant.It should also be highlighted 

that the CATIN2 coefficients are smaller than those recorded in the first scenario 

when it comes to small and medium-sized networks, while the reverse holds for 

larger interbank markets. An initial shock following the default of bank i does not 

seem to contribute much to a banking crisis scenario within small and medium-sized 

networks and the size of total capital losses is smaller than that documented in the 

first scenario. Figure 4.4 depicts the extent of contagion as a function of the 

percentage loss of capital due to default of the first bank and confirms the results 

recorded in Table 4.4.   

The results also show that there still exists a positive relationship between leverage 

and contagion, however, the coefficient estimates are much smaller than those 

recorded in the previous scenario. Moreover, the magnitude of the leverage 

coefficients increases as the number of banks in the interbank network increases, with 

the only exception being the 50 bank network segment which follows an autonomous 

path and is inversely related to contagion (although statistically insignificant). Results 

on connectivity are qualitatively similar to those of the first scenario, showing that 

connectivity negatively impacts contagion risk especially in larger interbank 

networks. The number of rounds until no further bank defaults positively impacts 

contagion risk and contributes the most to total capital losses in the banking system 

when large interbank networks are formed.  

Under this scenario, the heterogeneity allowed on both bank sizes and interbank 

exposures has had a great impact on the resilience of the network system. 

Heterogeneity impacts negatively on interbank contagion although its intensity 

decreases as the size of the network increases. Moreover, we provide evidence that 

heterogeneity of bank size contributes more to the resilience of the interbank network 

than heterogeneity of interbank exposures. The heterogeneity of interbank exposures 

acts as a diversification tool and contributes to a smaller extent to an unfolding crisis 

compared to the scenario where homogeneous banks are interconnected via 

heterogeneous exposures (shown in Table 4.5).  

 N=20 N=50 N=80 N=100 

CATIN2 0.238 

(51.837)*** 

0.166 

(31.641)*** 

0.124 

(21.978)*** 

0.085 

(15.126)*** 

LEVIN 0.053 

(11.723)*** 

0.080 

(15.699)*** 

0.084 

(15.145)*** 

0.089 

(15.489)*** 

NOUTGOING -0.186 

(-61.481)*** 

-0.162 

(-44.323)*** 

-0.147 

(-37.350)*** 

-0.133 

(-33.313)*** 

COUNT 0.875 

(258.811)*** 

0.901 

(247.480)*** 

0.911 

(232.873)*** 

0.927 

(241.892)*** 

VARLOANS -0.199 

(-41.960)*** 

-0.229 

(-41.527)*** 

-0.235 

(-39.356)*** 

-0.232 

(-37.024)*** 

Adjusted R2 0.887 0.856 0.834 0.835 

Table 4. 5:OLS regression analysis for Scenario 3 (Homogeneous banks with heterogeneous 

exposures). 

The table presents the regression results for Scenario 3. The dependent variable is CATEND measured 

as the total loss of capital due to contagion as percentage of total capital in the network. Explanatory 
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variables are CATIN2, LEVIN, NOUTGOING, COUNT and VARLOANS. Each cell displays the 

OLS standardized coefficients along with the corresponding t-statistics (shown in parentheses). The 

sample comprises of 18,000 realizations (simulated banking crises). ** and *** denote significance at 

the 5 and 1 percent level, respectively. 

Table 4.5 depicts the results of the third scenario as described in equation (4.15). 

In this scenario, we construct network systems where banks have the same equity size 

and unevenly distribute their exposures across creditor banks. We note that an initial 

shock fades away with the failure of the first bank and does not spillover to other 

banks within the network. This is mainly due to our choice of parameters regarding 

the equity of each bank, the links among banks and the interbank claims among 

creditor banks. In order to observe default cascades we relax our initial assumptions 

and lower the equity of each bank in the network system. Specifically, each bank is 

now endowed with a balance sheet that consists of 25 units of equity and interbank 

claims among creditor banks are distributed in the following ranges:

     0,10 ,  0,20 ,  0,35ij ij ija a a   . 

Similar to the previous scenarios, the regressor coefficients are statistically 

significant in most cases and the R-squared values are still large, in fact the largest of 

all three scenarios tested. Variable CATIN2 has a highly significant positive impact 

on systemic risk that fades away as the network system gets larger. The same 

observation holds for the level of connectivity in the banking system i.e. a strong 

negative impact that dissipates as N increases. The leverage of the system has a 

positive impact on systemic risk and its magnitude increases as the size of the 

network increases. The standardized coefficients are much larger than those reported 

in the second scenario, implying that highly leveraged banks are less capable of 

absorbing negative shocks, something that can amplify the initial impact of a shock 

that is transmitted to neighbor banks via interlinkages. Figures 4.6 and 4.7 illustrate 

the third scenario as a function of the percentage loss of capital due to default of the 

first bank in the network and as a function of leverage in the banking system, 

respectively. 

As in the previous cases, we find the number of rounds until no further bank 

defaults to affect contagion risk positively and statistically significantly, and such 

impact is magnified in relatively larger interbank networks. We also note that the 

standardized coefficients are more statistically significant than those reported in the 

first and second scenario. The heterogeneity of interbank exposures plays a 

significant role in the stability of the financial network and its impact declines with 

the number of banks included in the network, and such impact is stronger than that 

found in heterogeneous bank network settings.   
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(a) N=20 banks 

 

(b) N=50 banks 

 

(c) N=80 banks 

 

(d) N=100 banks 

Figure 4. 4: Scenario 2 - Heterogeneous Banks with heterogeneous exposures | Extent of contagion 

(expressed as the total capital lost from the banking system due to the failure of at least one bank) as a 

function of the % loss of capital at the first stage due to default of the first bank. 

Panels (a)-(d) show the relation between the % loss of capital and the extent of contagion across 

interbank networks with different number of banks. 
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(a) N=20 banks 

 

(b) N=50 banks 

 

(c) N=80 banks 

 

(d) N=100 banks 

Figure 4. 5: Scenario 2 - Heterogeneous Banks with heterogeneous exposures | Extent of contagion 

(expressed as the total capital lost from the banking system due to the failure of at least one bank) as a 

function of the leverage of the system. 

Panels (a)-(d) show the relation between the leverage of the system and the extent of contagion across 

interbank networks with different number of banks. 
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(a) N=20 banks 

 

(b) N=50 banks 

 

(c) N=80 banks 

 

(d) N=100 banks 

Figure 4. 6: Scenario 3 - Homogeneous banks with heterogeneous exposures (expressed as the total 

capital lost from the banking system due to the failure of at least one bank) as a function of the % loss 

of capital at the first stage due to default of the first bank. 

Panels (a)-(d) show the relation between the % loss of capital and the extent of contagion across 

interbank networks with different number of banks. 
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(a) N=20 banks 

 

(b) N=50 banks 

 

(c) N=80 banks 

 

(d) N=100 banks 

Figure 4. 7: Scenario 3 - Homogeneous banks with heterogeneous exposures | Extent of contagion 

(expressed as the total capital lost from the banking system due to the failure of at least one bank) as a 

function of the leverage of the system. 

Panels (a)-(d) show the relation between the leverage of the system and the extent of contagion across 

interbank networks with different number of banks. 
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(a) N=20 banks 

 

(b) N=50 banks 

 

(c) N=80 banks 

 

(d) N=100 banks 

Figure 4. 8: Scenario 4 - Homogeneous banks with homogeneous exposures | Extent of contagion 

(expressed as the total capital lost from the banking system due to the failure of at least one bank) as a 

function of the % loss of capital at the first stage due to default of the first bank. 

Panels (a)-(d) show the relation between the % loss of capital and the extent of contagion across 

interbank networks with different number of banks. 
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(a) N=20 banks 

 

(b) N=50 banks 

 

(c) N=80 banks 

 

(d) N=100 banks 

Figure 4. 9: Scenario 4 - Homogeneous banks with homogeneous exposures | Extent of contagion 

(expressed as the total capital lost from the banking system due to the failure of at least one bank) as a 

function of the leverage of the system. 

Panels (a)-(d) show the relation between the leverage of the system and the extent of contagion across 

interbank networks with different number of banks. 
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Finally, Table 4.6 depicts the results of the fourth scenario as described in equation 

(4.16). In this scenario, we construct network systems where banks have the same 

equity size and interbank claims are evenly distributed across creditor banks. We 

acknowledge the fact that this scenario is a bit unrealistic as banks in real-world 

interbank networks do not have the same equity size and do not necessarily distribute 

their interbank claims evenly across their creditors. However, by varying the 

topology of the interbank market and the degree of heterogeneity of the system we 

are in a position to effectively examine the effect of different calibrations on systemic 

risk. Thus, although this scenario can be regarded as a special case with magnifying 

effects, it provides useful insights on interbank market resiliency during periods of 

stress. 

The variable CATIN2 has a strong positive impact on systemic risk that dissipates 

as the network system gets larger. Simulations show that this scenario yields 

qualitatively similar results with the previous three scenarios in relation to the 

leverage of the network, that is, leverage positively and significantly affects 

contagion risk and such effect becomes stronger progressively when the number of 

constituent banks in the network increases. Figure 4.8 illustrates that the more 

leveraged a banking system is, the less resilient it becomes once a  

 N=20 N=50 N=80 N=100 
CATIN2 0.513 

(136.409)*** 
0.484 
(122.675)*** 

0.471 
(122.258)**

* 

0.465 
(121.843)*** 

LEVIN 0.006 
(2.250)*** 

0.021 
(8.188)*** 

0.027 
(11.317)**

* 

0.024 
(10.425)*** 

NOUTGOING -0.340 
(-

143.844)*** 

-0.335 
(-

129.911)*** 

-0.331 
(-

129.930)*** 

-0.326 
(-

128.265)*** 
COUNT 0.652 

(255.154)*
** 

0.660 
(246.926)*** 

0.668 
(257.520)**

* 

0.676 
(262.331)**

* 
Adjusted R

2
 0.933 0.929 0.932 0.934 

Table 4. 6: OLS regression analysis for Scenario 4 (Homogeneous banks with homogeneous 

exposures). 

The table presents the regression results for Scenario 4. The dependent variable is CATEND measured 

as the total loss of capital due to contagion as percentage of total capital in the network. Explanatory 

variables are CATIN2, LEVIN, NOUTGOING and COUNT. Each cell displays the OLS standardized 

coefficients along with the corresponding t-statistics (shown in parentheses). The sample comprises of 

18,000 realizations (simulated banking crises). *** denotes significance at the 1 percent level. 

random shock hits. For instance, for the less leveraged network systems (0.5% - 

1.5%) and as the number of banks increases the total loss of capital due to contagion 

as percentage of total capital in the system drops to nearly 0%. 

Figure 4.9 illustrates that the extent of contagion as a function of the percentage 

loss of capital in the network is magnified in this last scenario as capital losses exceed 

those documented in the previous scenarios. Connectivity impacts negatively on 

interbank contagion and follows a similar pattern to that of previous scenarios and 

dissipates as the number of banks in the network increases, although at a much slower 

rate than in previous cases. Finally, the number of rounds until no further bank 
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defaults affects contagion risk in a statistically significant manner especially when 

large interbank networks are considered. 

The main intuition behind these results is that higher interconnectedness of a 

homogeneous interbank network can reduce the probability of contagion in case the 

first bank defaulting is less leveraged, as the shock will be absorbed by many 

counterparties and will dissipate at a faster rate. However, if the first bank defaulting 

is highly leveraged, the shock absorption capacity of the network will decrease and 

default cascades will prevail. 

Tables 4.7–4.10 depict robustness tests on all four scenarios based on random 

sampling. We have performed second run Monte Carlo simulations in order to 

examine whether the new results differ from the previous ones, thus checking how 

random sampling affects our main conclusions. We observe qualitatively similar 

results in all four cases to those from the first run providing evidence that our 

findings are stable across different simulation scenarios. 

 N=20 N=50 N=80 N=100 
CATIN 1 0.082 

(22.879)*** 
0.026 

(6.695)*** 
0.025 

(6.463)*** 
0.016 
(3.958)*** 

CATIN2 0.195 
(22.067)*** 

0.114 
(11.875)*** 

0.036 
(3.733)*** 

0.034 
(3.453)*** 

LEVIN 0.071 
(11.675)*** 

0.094 
(14.620)*** 

0.140 
(21.751)*** 

0.141 
(21.143)*** 

NOUTGOING -0.133 
(-21.911)*** 

-0.090 
(-12.822)*** 

-0.030 
(-4.168)*** 

-0.039 
(-5.291)*** 

COUNT 0.717 
(146.422)*** 

0.744 
(150.589)*** 

0.746 
(151.926)*** 

0.748 
(149.410)*** 

VARCAP -0.103 
(-44.718)*** 

-0.057 
(-34.856)*** 

-0.047 
(-37.580)*** 

-0.040 
(-34.388)*** 

Adjusted R
2
 0.747 0.722 0.715 0.709 

Table 4. 7: Robustness tests: OLS regression analysis for Scenario 1(Heterogeneous banks with 

homogeneous exposures). 

The table presents the regression results for Scenario1 applied on a second run of Monte Carlo 

simulations based on random sampling as robustness test. The dependent variable is CATEND 

measured as the total loss of capital due to contagion as percentage of total capital in the network. 

Explanatory variables are CATIN1, CATIN2, LEVIN, NOUTGOING, COUNT and VARCAP. Each 

cell displays the OLS standardized coefficients along with the corresponding t-statistics (shown in 

parentheses). The sample comprises of 18,000realizations (simulated banking crises).∗∗∗ denotes 

significance at the 1% level. 

 N=20 N=50 N=80 N=100 
CATIN 1 0.632 

(190.142)*** 
0.578 

(175.421)*** 
0.631 

(194.298)*** 
0.787 

(278.811)*** 
CATIN2 0.146 

(21.936)*** 
0.040 

(6.178)*** 
0.065 

(9.922)*** 
0.103 

(18.207)*** 
LEVIN 0.043 

(6.901)*** 
0.033 

(5.275)*** 
0.023 

(3.447)*** 
0.031 

(5.694)*** 
NOUTGOING -0.134 

(-26.504)*** 
-0.081 

(-15.491)*** 
-0.082 

(-15.340)*** 
-0.087 

(-18.819)*** 
COUNT 0.522 

(126.635)*** 
0.664 

(174.035)*** 
0.630 

(168.235)*** 
0.440 

(136.971)*** 
VARCAP -0.101 

(-47.761)*** 
-0.073 

(-55.374)*** 
-0.059 

(-53.394)*** 
-0.047 

(-52.748)*** 
VARLOANS -0.091 

(-15.361)*** 
-0.049 
(-7.591)*** 

-0.042 
(-6.088)*** 

-0.036 
(-6.457)*** 

Adjusted R
2
 0.781 0.796 0.804 0.853 

Table 4. 8: Robustness tests: OLS regression analysis for Scenario 2 (Heterogeneous banks with 

heterogeneous exposures). 
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The table presents the regression results for Scenario2 applied on a second run of Monte Carlo 

simulations based on random sampling as robustness test. The dependent variable is CATEND 

measured as the total loss of capital due to contagion as percentage of total capital in the network. 

Explanatory variables are CATIN1, CATIN2, LEVIN, NOUTGOING, COUNT, VARCAP and 

VARLOANS. Each cell displays the OLS standardized coefficients along with the corresponding t-

statistics (shown in parentheses). The sample comprises of 18,000 realizations (simulated banking 

crises). ∗∗∗ denotes significance at the 1% level. 

 N=20 N=50 N=80 N=100 
CATIN2 0.239 

(51.293)*** 
0.128 

(26.334)*** 
0.108 

(19.087)*** 
0.104 

(17.898)*** 
LEVIN 0.061 

(13.241)*** 
0.040 

(8.251)*** 
0.073 

(13.123)*** 
0.085 

(14.721)*** 
NOUTGOING -0.183 

(-60.118)*** 
-0.138 

(-41.188)*** 
-0.137 

(-34.767)*** 
-0.138 

(-33.711)*** 
COUNT 0.865 

(251.275)*** 
0.936 

(271.463)*** 
0.921 

(240.695)*** 
0.914 

(230.058)*** 
VARLOANS -0.199 

(-41.179)*** 
-0.198 

(-38.059)*** 
-0.227 

(-37.398)*** 
-0.235 

(-37.253)*** 
Adjusted R

2
 0.884 0.874 0.836 0.825 

Table 4. 9:Robustness tests: OLS regression analysis for Scenario 3 (Homogeneous banks with 

heterogeneous exposures). 

The table presents the regression results for Scenario3 applied on a second run of Monte Carlo 

simulations based on random sampling as robustness test. The dependent variable is CATEND 

measured as the total loss of capital due to contagion as percentage of total capital in the network. 

Explanatory variables are CATIN2, LEVIN, NOUTGOING, COUNT and VARLOANS. Each cell 

displays the OLS standardized coefficients along with the corresponding t-statistics (shown in 

parentheses). The sample comprises of 18,000 realizations (simulated banking crises).∗∗∗denotes 

significance at the 1%level. 

 N=20 N=50 N=80 N=100 
CATIN2 0.510 

(135.692)*** 
0.489 

(123.998)*** 
0.466 

(123.931)*** 
0.463 

(121.890)*** 
LEVIN 0.007 

(2.899)*** 
0.018 

(7.392)*** 
0.021 

(9.066)*** 
0.038 

(15.968)*** 
NOUTGOING -0.340 

(-143.814)*** 
-0.337 

(-129.913)*** 
-0.327 

(-130.803)*** 
-0.327 

(-130.132)*** 
COUNT 0.652 

(254.600)*** 
0.661 

(248.526)*** 
0.678 

(266.148)*** 
0.668 

(262.001)*** 
Adjusted R

2
 0.933 0.929 0.936 0.934 

Table 4. 10: Robustness tests: OLS regression analysis for Scenario4 (Homogeneous banks with 

homogeneous exposures). 

The table presents the regression results for Scenario4 applied on a second run of Monte Carlo 

simulations based on random sampling as robustness test. The dependent variable is CATEND 

measured as the total loss of capital due to contagion as percentage of total capital in the network. 

Explanatory variables are CATIN2, LEVIN, NOUTGOING and COUNT. Each cell displays the OLS 

standardized coefficients along with the corresponding t-statistics (shown in parentheses).The sample 

comprises of 18,000 realizations (simulated banking crises).∗∗∗ denotes significance at the 1% level. 

4.4 Conclusions 

This chapter investigates how complexity of an interbank network structure affects 

interbank contagion. In particular, we explore the interplay between heterogeneity, 

network structure and balance sheet composition in the spreading of contagion using 

four basic scenarios. Our findings clearly indicate that heterogeneity plays a 

significant role in the stability of the financial system. In our numerical simulations, 

we observe that when heterogeneity is introduced with respect to the size of each 

ba k, th   y t m’   h ck ab   pt    capac ty      ha c d. A    t  ba k   tw  k 

consisting of banks of different sizes can more easily withstand a random shock, 
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making contagion a less likely phenomenon. Furthermore, when we allow for the 

presence of heterogeneous interbank exposures in our model, we observe additional 

resilience to the interbank network as an initial shock dissipates more easily than in 

the case of homogeneous interbank claims. We also find that the likelihood of 

contagion declines as we move from smaller to larger network settings. As far as 

connectivity is concerned, our analysis reveals that interconnectedness has a large 

impact on the resilience of the interbank network. Financial shocks will be absorbed 

more efficiently in relatively small and highly interconnected interbank networks, 

where as in larger systems increased connectivity will spread the shock into a large 

part of the system causing a cascade of defaults. Highly leveraged banks are more 

exposed to default risk and thus contribute more to systemic risk, especially to that of 

large interbank networks. 

Avenues for future research can include the study of non-performing loans (NPLs) in 

relation to contagion risk in a unified framework. A second objective within this 

setting would be to test how asset devaluations and haircuts depicted on bank balance 

sheets can affect interbank contagion. Under such setting various weaknesses of 

network systems can be identified and additionally, the role systemic banks play in 

causing market-wide effects can be further explored. This becomes extremely 

relevant to the case of the European sovereign debt crisis whose aftermath is still 

fresh in the financial system. 
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Appendix 

 

Simulation algorithm:-Set up of the interbank network 

 

 Define the number of banks (n) in the interbank network system 

 Define the complexity (number of outgoing links of each bank) of the network 

system 

 Assign directed edges to represent lending-borrowing interbank relationships 

(link formation follows a uniform distribution) 

 Allocate balance sheet components among banks (equity and interbank loans) 

 Generate the interbank matrix of bilateral exposures(consistent with each 

scenario tested)  

 Generate the banks' equity vector (consistent with each scenario tested) 

 
 

Figure 4.A. 1: Simulation algorithm: Set up of the interbank network 
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Simulation algorithm:-Contagion procedure 

for each of the T realizations  

 Set up the interbank network; 

 Estimate the leverage of the interbank network;(levin) 

 Estimate the variance of capital of the interbank network (used in those 

scenarios tested where only heterogeneous bank sizes are considered); 

(varcap)  

 Estimate the variance of interbank loans (used in those scenarios tested 

where only heterogeneous interbank loan exposures are 

considered);(varloans)  

 Shock the system with the exogenous default of bank i; 

 Estimate the initial loss of capital by defaulting bank i as percentage of 

total capital of the system; (catin1) 

 Estimate the loss of capital at the first stage (interbank loans that cannot be 

paid back) by defaulting bank i as percentage of total capital of the system; 

(catin2) 

 Estimate the number of outgoing links(outdegree) of bank i; (noutgoing) 

While at least one bank defaulted do 

for every bank i do 

if counterparty losses occuredthen 

update equity of defaulting bank's creditors (subtract losses from creditors' 

equity); 

end 

if equity < =0 then 

default bank i; 

end 

end 

end 

-Estimate the total loss of capital due to contagion as percentage of total capital of 

the system; (catend) 

- Estimate the shock propagation variable which measures the number of rounds 

needed until no further bank defaults; (count) 

-Record levin, varcap, varloans, catin1, catin2, noutgoing, count, catend; 

end 

*After performing a satisfactory number of realizations for each scenario tested, regression 

analysis is employed in order to test the effect of the aforementioned variables on contagion 

risk.  

 

Figure 4.A. 2: Simulation algorithm: Contagion Procedure 



56 
 

5. The case of Erdős-Rényi network model 

 

In this chapter, we extend the model developed in the previous chapter to include a 

wide variety of network topologies and provide a better understanding of the relation 

b tw      tw  k  t  ct   , ba k ’ cha act    t c  a d   t  ba k c  ta    . Wh l  th  

focus of the previous chapter is on the various factors that affect interbank contagion 

such as bank capital ratios, leverage, interconnectedness and homogeneity across 

ba k ’   z  , th  m d l lack  fl x b l ty a  fa  a  th  va  ab l ty  f th    tw  k  l  k  

   c  c    d. I    d   t  c  c mv  t th   p  bl m, w    t  d c  th  E dő -Ré y  

probabilistic network model in our study to provide a wider vicinity of scenarios 

concerning the network structure of the interbank system and study how homogeneity 

within the interbank network affects the propagation of financial distress from one 

institution to the other parts of the system through bilateral exposures. 

5.1 Introduction 

Th    t  d ct     f th  E dő -Ré y  p  bab l  t c   tw  k m d l p  v d      w th a 

wider vicinity of scenarios concerning the network structure of the interbank system. 

Under this framework, we build up multiple scenarios of various network structures 

that include a satisfactory number of cases via Monte Carlo simulations. In every 

single network that we construct, we investigate the dynamics of cascading defaults 

f  m a     t al  a d m  h ck that h t  th   y t m. E dő –Ré y   a d m   aph m d l 

which is one  f th   a l   t th    t cal   tw  k m d l  wa    t  d c d by E dõ  a d 

Ré y  (1960). I  th    a d m   aph,  ach p    bl  l  k b tw    a y tw    d   ca  

occur with a certain independent and identical probability-th  E dő  a d Ré y  

p  bab l ty. Th  E dő  a d Ré y  (1960)  a d m   aph m d l    a m d l    wh ch 

has been extensively applied for the study of contagion in financial networks, e.g. Iori 

et al. (2006), Nier et al. (2007), Gai and Kapadia (2010), May and Arinaminpathy 

(2010) and Amini et al. (2016). However, a number of alternatives have been recently 

developed that differ in the probability law governing the distribution of links 

b tw      d  . U     th  E dő –Ré y    tw  k  t  ct   , th  d      d  t  b t       

the connectivity among banks can vary with respect to the chosen probability p. Thus, 

each random network generated with the same parameters N, p looks slightly 

different. Not only the detailed wiring network graph changes between realizations, 

but so does the number of links. Random graphs or E dő -Ré y    aph  a      f l f   

modeling, analysis, and solving of structural and algorithmic problems arising in 

mathematics, theoretical computer science, statistical mechanics, natural sciences, 

and even in social sciences. However, the utility of an E dő -Ré y  m d l l    ma  ly 

in its mathematical simplicity, not in its realism. Virtually, the comparison with real-

world networks indicates that the random network model does not capture the degree 

distribution of real networks but it provides a useful baseline for more complicated 

network models. One significant property of the real networks that is not captured by 

th  E dő -Ré y   a d m m d l    th   x  t  c   f h b . I    al   tw  k , th       
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often observed a significant number of highly connected nodes and large differences 

in node degrees. 

5.1.1Related Literature 

The most common network structures that are either found in real-world data or 

   d      m  th    t cal  t d     f   t  ba k c  ta     a   th  E dő -Ré y   a d m 

network structure, introduc d    E dő -Ré y  (1960), th   mall-world structure, 

introduced in Watts and Strogatz (1998) and the scale-free structure, introduced in 

Barabasi and Albert (1999). 

Th  E dő -Ré y    tw  k  t  ct   , wh ch    appl  d         t dy, ca  b   bta   d 

by connecting any two nodes with a fixed and independent probability p. Thus, in an 

E dő -Ré y    tw  k  t  ct    th  d         th    mb    f l  k   f a   d     p( -1). 

The expected degree distribution for such networks is Binomial, converging to 

Poisson for large  . Th  E dő -Ré y (1960)  a d m   aph m d l    a m d l    wh ch 

has been extensively applied for the study of contagion in financial networks, e.g. in 

the contributions from Iori et al. (2006), Nier et al. (2007), Gai and Kapadia (2010), 

May and Arinaminpathy(2010) and Amini et al. (2016). A number of alternatives 

models have been recently developed that differ in the probability law governing the 

distribution of links between nodes. 

Nier et al.(2007) study the extent to which the resilience of an interbank network 

d p  d     a c mb  at     f va  abl   cha act   z    th    tw  k t p l  y, ba k ’ 

characteristics in terms of net worth and interbank exposures, and market 

c  c  t at   . U     M  t  Ca l    m lat     xp   m  t     E dő -Ré y   a d m 

graphs, they find that the effect of the degree of connectivity is non-monotonic. 

Specifically, a small initial increase in connectivity increases the chance of contagion 

defaults. However, after a certain threshold value, connectivity improves the capacity 

of a banking system to withstand shocks. In addition, the authors find that the 

banking system is more resilient to contagious defaults if its banks are better 

capitalized and this effect is non-linear. Finally, the size of interbank liabilities tends 

to increase the risk of default cascades, even if banks hold capital against such 

exposures and more concentrated banking systems are shown to be prone to larger 

systemic risk. 

Gai and Kapadia (2010) using a network model of a banking system study how the 

probability and potential impact of contagion is influenced by aggregate and 

idiosyncratic shocks, network structure and liquidity. The authors agree with Haldane 

(2009) c  c       th  “  b  t-yet-f a  l ” p  p  ty that th  f  a c al  y t m  xh b t. 

Even when the probability of contagion is very low, its effects can have tremendous 

consequences to the financial system. Higher connectivity may reduce the probability 

of default when contagion has not started yet but it may also increase the probability 

of having large default cascades when contagion begins. 

May and Arinaminpathy (2010) apply an Erdos-Renyi network structure of which 

they build on the models of Nier et al. (2007) and Gai and Kapadia (2010) and study 
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the interplay between the characteristics of individual banks and the overall behavior 

of the network. The authors consider that banks interact through different asset 

classes and study contagion between those asset classes. May and Arinaminpathy 

(2010) find that increasing the level of  connectivity is beneficial only when the 

initial shock has been caused by a default on interbank loans. However, by contrast, 

the opposite  holds in case of liquidity shocks since they do not experience 

attenuation and for a given asset class, they tend to grow as more and more banks 

hold the failing asset. Finally , the authors emphasize the importance of having large 

capital buffers that will make for greater robustness both of individual banks and of 

the system as a whole. 

Amini et al. (2016) test the impact of heterogeneity in an interbank network 

structure and the relation between resilience and connectivity using three different 

network models; a scale-free network with equal and heterogeneous weights and an 

E dő -Ré y    tw  k w th  q al w   ht . Th  ma       lt  f th    t dy is that the 

most heterogeneity is introduced, the least the resilience of the network.  

The small world model which was introduced by Watts and Strogatz (1998) is a 

graph network model that has two main features: small average shortest path length 

and a clustering coefficient significantly higher than expected by random chance. 

More spesifically, this model has the so called "small world property" which refers to 

networks where, although the network size is large and each node has a small number 

of direct neighbors, the distance between any two nodes is very small compared to 

the network size. The small world model is a model in which has been applied for the 

study of contagion in financial networks, e.g. in the contributions from Boss et al. 

(2004), Gai and Kapadia (2011) and Pegoraro (2012). 

However, the property of a fat tail in the degree distribution has been observed in 

many types of real networks and has led to the development of scale-free models by 

Ba abá   a d Alb  t (1999). Scal  f      tw  k  exhibit a degree-distribution that 

follows a power law and are often characterized by growth and preferential 

attachment. It has been observed that the number of nodes in these models increases 

over time and each of them enter the network adding new edges (“   wth”) wh ch a   

then linked to the existing nodes according to a particular pattern –usually referred as 

preferential attachment. Preferential attachment by banks could result from the wish 

to interact with the most reliable counterparties. For example, banks who initially 

have the largest number of interactions will attract more linkages over time. The 

distinctive feature of a scale free network is the existence of nodes with very different 

degree, and in particular the existence of hubs with a large number of connections. 

This property can have a large impact on the resilience of the system in the case of 

the failure of a hub. However, scale free networks are generally more resilient than 

other network models, but are extremely fragile if the most connected institution is in 

distress. In the literature, it is often argued that a more adequate model of a financial 

system is a scale-f      tw  k (   , f    xampl , B     t al. (2004) a d S  amäk   t 

al. (2007)). 
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5.1.2 Erdős–Rényi random graph Model 

The random graph model which is one of the earliest theoretical network models 

wa    t  d c d by E dő  a d Ré y  (1960). I  th    a d m   aph,  ach p    bl  l  k 

between any two nodes can occur with a certain independent and identical 

probability, p. This model is typically denoted G(n, p) and has two parameters: n the 

number of vertices and p, the probability that each simple edge (i, j ) exists, which is 

constant for each pair nodes. 

The adjacency matrix of a random graph is given by   

               
                                    

                                       
  

In other words, each edge is included in the graph with probability p, independent 

from every other edge. The probability to create randomly a graph with n nodes and 

m edges is given by         
 
    . Furthermore, the probability p serves as the 

parameter of our model and as p increases, the graph is more likely to have more 

edges. 

The restriction of     appears because edges are undirected or to put it differently, 

the adjacency matrix is symmetric across the diagonal, and there are no self loops. In 

th    tw  k th    a     (  − 1) p    bl  l  k  t  b  c  at d,     lt       a   xp ct d 

  mb    f  d       th    tw  k  q al t  p  (  − 1),    that th  ( xp ct d) av  a   

d         p(  − 1). Th  , th  d      d  t  b t     f   ch a   aph      v   by  

       
   

 
              (5. 1) 

The mean degree, c, in the G(n,p) graph model is given by  

          (5. 2) 

In other words, each vertex has (n-1) possible partners and each of these exist with 

the same independent probability p. Asymptotically, as    , the degree distribution 

of a random graph converges to a Poisson (c) distribution 

 
     

     

  
 

(5. 3) 

D   t  th  ab v  p  p  ty, th  E dő –Ré y   a d m   aph m d l      m t m   

referred as Poisson random graph or random graph. The E dő –Ré y  (1960)   aph 

model results in networks with small diameters and short average path lengths, 

capturing very well the "small-world" property, observed in many real networks. The 

cl  t      c  ff c   t  f a  E dő –Ré y    aph m d l     q al t  th  probability of an 

 d  '   x  t  c  b tw    tw    d  , p. Th  E dő –Ré y  (1960)  a d m   aph m d l 

is a model in which has been extensively applied for the study of contagion in 
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financial networks, e.g. in the contributions from Iori et al. (2006),Nier et al. 

(2007),Gai and Kapadia (2010) and Montagna and Kok (2013). 

I  a  E dő  –Ré y  m d l w  b     w th      lat d   d   a  p     t d    th  f   t 

snapshot in Figure 1. Then, with probability p>0 each pair of nodes is connected by a 

link. Therefore, in this model the network is determined only by the number of nodes 

, , a d  d   , m, a d    ally a  E dő  –Ré y   a d m   aph    w  tt   a  G( , m)    

G( , p). I  F      1 w  p     t   m   xampl    f E dő  –Ré y   a d m   aph  w th 

the same number of nodes and different linking probabilities. It is easy to understand 

that if we repeat the process for the same number of nodes and the same probability, 

we will not necessarily get the same network. 

However, a number of alternatives models have been recently developed that 

differ in the probability law governing the distribution of links between nodes. Since, 

th  E dő -Ré y  p  bab l ty, p,    a   m d t  b   q al a d c   ta t ac     all pa     f 

nodes, the resulting network structure does not present marked heterogeneity. Thus, 

m d l      t  ba k   tw  k        th  E dő -Ré y   t  ct    fa l  t  m m c th  

heterogeneity observed in real interbank network systems. 

 

p=0.00 

 

 

p=0.10 

 

p=0.50 

 

p=1.00 

Figure 5. 1. E dő  –Ré y   a d m   tw  k : E dő  –Ré y   a d m   tw  k  w th t     d   a d 

different probabilities of connecting a pair of nodes. 
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In order to fully understand the heterogeneity of an E dő -Ré y  random network, 

we now consider one particular random realization of an E dő  –Ré y   a d m 

network with 1.000 nodes and p=0.04, that is G(n=1000,p=0.04) and plot the 

probability p(k) of finding a node of degree k, versus the degree, we obtain Figure 2, 

where it can be seen that the maximum of the distribution is about the 

val  k=( −1)p=39. Obv    ly, the probability p(k)follows a binomial distribution of 

the form represented in equation (5.1). As we explained above, for large values of n, 

the degree distribution of a random graph converges to a Poisson (c) distribution. 

Figure 2 displays the heterogeneity plot for G(1000,0.04), where two characteristic 

features of the E dő  –Ré y    tw  k  a    b   v d. Th  f   t    a typ cal d  p       

of the points around the value x=0, and the second is the very small value of 

ρ(G),wh ch    this case is 0.0066. 

 

Figure 5. 2. Heterogeneity of E dő  –Ré y random networks. A typical Poisson degree distribution of 

an E dő  –Ré y random network with 1,000 nodes and p=0.04 (left), and the characteristic 

heterogeneity plot for the same network. (Source: Estrada (2011) ) 

5.2 The mathematical description of the contagion model 

I  th     ct    w   t dy th  ca    f a  E dő -Ré y    tw  k m d l    wh ch, as we 

stated earlier, all nodes have the same probability of being connected to another node 

in the network. Our model is tailored to simulate default cascades triggered by an 

exogenous shock in an interbank network as in Leventides et al. (2019). We first 

introduce the interbank network model, describe the default cascades initiated by a 

random negative shock on this network and analyze the parameters that affect 

interbank contagion. 

5.2.1The interbank network 

As in Leventides et al. (2019), we assume that the banking system contains 

i=1,...,N banks. Every bank has its own balance sheet and the accounting equation 

holds at all times. Total assets are divided in three categories: interbank assets 
IB

iA , 

other assets 
OT

iA  and cash reserves iC . On the liabilities side of the balance sheet we 
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have included: interbank liabilities 
IB

iL , other liabilities
OT

iL  and equity capital iE . A 

schematic overview of the balance sheet is given in Table 1. Although the proposed 

balance sheet structure does not capture all elements of a bank balance sheet, it 

includes all those positions that are relevant to our study.  

Assets 
iA  Liabilities 

iL  

Interbank Assets  IB

iA  Interbank Liabilities  IB

iL  

Other Assets  OT

iA  Other Liabilities  OT

iL  

Cash  iC  Equity Capital  iE  

Table 5. 1: Stylized Balance sheet structure. 

The table presents a stylized balance sheet structure in the 

interbank network. Total assets are divided in three categories: 

Interbank assets    
   , other assets    

   , and cash reserves 

      . Total liabilities include: Interbank liabilities    
   , other 

liabilities    
   , and equity capital       . It is assumed that 

the accounting equation holds at all times. 

We introduce a standard notation for our model and we define a simple interbank 

network as  ,G V E , where V represents the nodes of the graph while E represents 

the edges. We further consider  , the adjacency matrix of the graph, defined as  

               
                                                                             

                            
  

The uth row or column of  has uk entries, where uk is the degreeof the node u , which 

is simply the number of nearest neighbours thatu has.Denoting by 1 a 1V  vector, 

the column vector of node degrees is given by 

  1 1
T

T T      (5. 4) 

 

We define the indegree as the number of links pointing toward a given node, and the 

outdegree as the number of links departing from the corresponding node. 

Specifically: 

  1 1
T

in T T      (5. 5) 

 1out    (5. 6) 

Thus, our interbank network of credit exposures between n banks can be visualized 

by a graph  ,G V E whereV represents the set of financial institutions – nodes, and

E is the set of the edges linking the banks, that is, the set of ordered couples

 ,i j V V  indicating the presence of a loan made by bank i to bank j .The number 
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of nodes defines the size of the interbank network. Every edge  ,i j  is weighted by 

the face value of the interbank claim and the representation of interbank claims is 

made by a single weighted N N  matrix : 

1 1

1

1

0

0

0

j N

i iN

N Nj

x x

x x

x x

 
 
 
  
 
 
 
 

 

where ijx is the credit exposure of bank i vis-à-vis bank j and N is the number of 

banks in the network.Interbank assets are represented along the rows while columns 

represent interbank liabilities. Once X is in place, the interbank entries of each bank 

are given according to the following rules:  

(iii) 
1

N

i ij

j

A x


 (horizontal summation), where iA  is the total interbank assets of bank 

i . 

(iv) 
1

N

i ij

i

L x


 (vertical summation), where iL is the summation of the total interbank 

liabilities of bank j .  

One can observe that the diagonal line contains zeros due to the fact that banks do not 

lend to themselves. In this framework, a random network is generated based on two 

parameters, the size of the network (number of nodes/banks) and the probability 

pijthat there is a lending/borrowing link between two nodes/banks. Thus, each 

possible link between two nodes exists with an independent and identical probability, 

wh ch     ft   call d th  E dő  –Ré y  p  bab l ty.  

Although, we have undirected edges in this framework, we cannot really speak of 

undirected links, since the two directions of the same link are given different weights.  

5.2.2 Shock propagation & contagion dynamics 

The failure of a bank can affect other banks through their interbank connections. 

Below, we describe the mechanism through which an initial shock affecting a bank 

propagates onto its counterparties along the network. Contrary to the recent literature, 

the term contagion here translates into total capital losses due to multiple default 

cascades. The cascade dynamics we use in this study are straightforward to 

implement and enable us to run a great number of simulations on a variety of 

different scenarios.   

The default procedure starts with an exogenous shock being simulated, typically by 

setting to zero the equity of one randomly chosen bank i and the cascade of defaults 

proceeds on a timestep-by-timestep basis, assuming zero recovery for shock 
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transmissions. The zero recovery assumption, which is a realistic one in the short run, 

is often used in the literature to analyze worst case scenarios and refers to a situation 

where creditor banks lose all of their interbank assets held against a defaulting bank 

(Gai a d  apad a, 2010; Ch  azz   t al., 2015). A ba k’  d fa lt  mpl    that  t       

longer able to meet its interbank liabilities to its counterparties. Since these liabilities 

c   t t t   th   ba k ’ a   t , th  ba k  that   t   t  t   bl  aff ct   m lta  ously 

their counterparties, leading to write-downs in their balance sheets. The interbank 

asset loss due to failure of bank i is subtracted from the bank's j  capital. Bank j  will 

fail if its exposure against bank i  exceeds its equity. A second round of bank failure 

occurs if bank ’ creditors cannot withstand the losses realized due to its default and 

eventually, contagion stops if no additional bank goes bankrupt, otherwise a third 

    d  f c  ta     tak   plac . A     t al  h ck ca  b  ampl f  d th    h ba k ’ 

interconnections and further transmitted to other institutions, such that the overall 

effect on the system goes largely beyond the original shock. As Upper and Worms 

(2004) demonstrate, in response to a liquidity shock banks prefer to withdraw their 

deposits at other banks instead of liquidating their long-term assets, creating further 

instability and liquidity dry-ups in the financial system.  

A general mathematical description of the dynamical system expressing the shock 

propagation mechanism is presented hereafter. We consider a network consisting of 

N banks numbered from 1to N. We define bi as the capital possessed by bank i in the 

network and  

  0 1 2, ,..., Nb b b b
 

(5. 7) 

stands for the initial vector of bank capital. X is defined as a N×N matrix with entries: 

i jx  the credit exposure of bank i vis-à-vis bank j in the network 

 
i i ix b  (5. 8) 

 
i i ix b  (5. 9) 

We consider the case where some of the banks (one or more) collapse. We wish to 

study how the crisis travels through the bank network and when exactly it comes to a 

fixed point. The collapse of banks i1, i2, ..., ik(wh    k≤N), ca  b  d  c  b d    th  

following way. Consider the element  
2
 

0   0,1
N

Nx Z   which has zero entries 

everywhere except the positions i1, i2, ..., ik where 0x takes on the value 1.Then, 

 
1 0 0X·b b x   (5. 10) 

is the new vector of capital of the N banks. We now take  
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(5. 11) 

Then 1 2

Nx Z  and 1x  indicates the banks that have collapsed after the bankruptcy of 

the first k banks. The vector 1x takes on the value 1 in the positions i1, i2, ..., ik . If 

1 0x x , this indicates that the collapse of the first k banks has adversely affected 

other banks leading them to bankruptcy. Similarly, from 1x we take:  

 
1 0 1X·b b x   (5. 12) 

and then 

 
2

2

2

( ) 01,
( )

0,

;

( ) 0.

b i

b i
x i








 
(5. 13) 

The vector 2x  indicates the banks that collapse after the bankruptcy of the banks of 

1x . Therefore, we have a map: 

    
 
 

  
 
 

 (5. 14) 

    0F X·x x f b x    (5. 15) 

The map F(x) defines a dynamical system  1 Fn nx x   which describes the evolution 

of contagion in the interbank network. 

5.3 Monte Carlo simulations 

In this section we apply Monte Carlo simulations in four different stages. As in 

Leventides et al.(2019), we introduce randomness in three areas: amount of capital, 

interbank claims and network structure. The stochasticness introduced in our model 

provides us with a wide vicinity of scenarios that may come across in real world. 

U     th  E dő –Ré y    tw  k structure, the degree distribution or the connectivity 

among banks can vary with respect to the chosen probability p. Thus, each random 

network generated with the same parameters N, p looks slightly different. 

The second stage involves estimating the parameters of interest, i.e. the value of 

the coefficients in the regression model. In the third stage the test statistics of interest 

are saved, while in the fourth stage we go back to the first stage and repeat N  times. 

The quantity N is the number of replications which should be as large as is feasible. 

As Monte Carlo is based on random sampling from a given distribution (with results 

equal to their analytical counterparts asymptotically), setting a small number of 
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replications will yield results that are sensitive to odd combinations of random 

number draws. Generally speaking, the sampling variation is measured by the 

standard error estimate, denoted  var( ) /xS x N , where x  denotes the value of the 

parameter of interest and var( )x  is the variance of the estimates of the quantity of 

interest over the N replications. 

Similar to Leventides et al.(2019), we consider four different scenarios, in line 

with Chinazzi et al. (2015), where we let vary the balance sheet composition, the size 

of the network and the link probability among banks which is held constant for each 

pair of nodes. The four scenarios tested are as follows:  

 

Scenario 1: 
• Heterogeneous banks with homogeneous exposures. In this 

scenario, we construct interbank networks where banks have 

different equity size and their interbank claims are evenly 

distributed across the outgoing links. 

Scenario 2: 
• Heterogeneous banks with heterogeneous exposures. In this 

scenario, the interbank networks allow for heterogeneous bank 

sizes and heterogeneous interbank claims among banks.  

Scenario 3: 
• Homogeneous banks with heterogeneous exposures. In this 

scenario, we construct interbank networks where banks have the 

same equity size and unevenly distribute their exposures across 

creditor banks.  

Scenario 4: 
• Homogeneous banks with homogeneous exposures. In this 

last scenario, we construct interbank networks where banks 

have the same equity size and interbank claims are evenly 

distributed across creditor banks.  

In each case, we do not control the number of outgoing links as in Leventides et 

al.(2019) but for each network that is generated a random probability, which is 

constant for each pair of nodes, defines the lending/borrowing relation of each bank. 

The probability pijis assumed to be equal and constant across all pairs (i,j). For 

  mpl c ty, w  d   t  th  p  bab l ty, t  m d a  th  E dő -Ré y  p  bab l ty, by p. 

Since the probability of forming a link is homogeneous, the resulting network 

structure does not present marked heterogeneity. 

We examine banking systems consisting of small banks with low, medium and large 

interbank exposures, as well as systems of large banks with corresponding exposure 

l v l . W  c    d   a ba  c m d l that        ly tw  c mp    t  f  m a ba k’  

balance sheet, that is, equity and interbank loans–in the words of May and 

Arinaminpathy(2010) ‘a caricature for banking ecosystems’. We generate our model 

in two separate steps. First, we construct a model structure of N  nodes representing 
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the banks in our system and randomly choose the probability p of forming a link 

between each of the 
2

N 
 
 

 possible links.  

For all the possible couples of nodes, a link is created with probability p which 

represent lending/borrowing relationship, while in a second step, we assign each node 

to a stylized balance sheet structure. Once the banking networks are created, the 

default propagation dynamics are implemented to examine the effects of an 

idiosyncratic shock hitting one bank. The effect of a shock is simulated, typically by 

setting to zero the equity of the affected bank. We estimate the initial loss of capital 

by letting the first bank default and subsequently record the loss as percentage of the 

total capital in the system. Consequently, the defaulted bank will be unable to repay 

its creditors and the interbank loans that were granted will be written-off, as we have 

selected to work under a zero recovery assumption. This bad debt will be recorded 

and expressed as percentage of the total capital in the system. Moreover, the creditors 

of the defaulted bank will experience a shock on their balance sheets and the recorded 

losses will be subtracted from their equity. 

If at any time the total losses realized by a bank exceed its net worth, the bank is 

deemed in default and is removed from the network. Note that timesteps are modeled 

as being discrete and there is the possibility that many banks default simultaneously 

in each timestep. These shocks propagate to their creditors and take effect in the next 

timestep. When no further failures are observed, the default procedure terminates and 

various contagion indicators
7
 are calculated based on the contagion map as described 

in subsection 5.3. 

5.4. Main findings 

This section discusses the main findings of this study. Subsection 5.4.1 describes in 

full detail the computer experiments conducted while subsection 5.4.2 discusses the 

simulation results of all four scenarios considered. 

5.4.1 Computer experiments 

Hav         at d ba k     y t m  v a a  E dő -Ré y    tw  k  t  ct    f am w  k 

and balance sheet allocation, the dynamics of an initial shock affecting a bank within 

the interbank network can be investigated. Given the complexity of the interbank 

network outlined above, it is extremely difficult to derive analytical solutions. In 

order to obtain data to describe the variables that affect contagion, we employ several 

Monte Carlo simulations. In each realization, we construct an interbank network with 

 20,50,80,100N nodes under the rewiring process of the E dő -Ré y  

                                                           

7
We refer the interested reader to Appendix in Leventides et al.(2019) for a formalization of the aforementioned 

mechanism in a pseudocode which simulates the default cascade in the interbank network. 
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methodology. In a second step, we test the four scenarios mentioned before by 

varying the equity size of banks and the interbank exposure structure across creditor 

banks. For each scenario tested we check a wide range of link probabilities, such that 

we can observe dense or sparse interbank network systems. Since the probability of 

forming a link is homogeneous, the resulting network structure does not present 

marked heterogeneity. 

When homogeneity across bank sizes is considered, all banks are assumed to have 

the same equity size and thus, each bank is endowed with a balance sheet that 

consists of 100 units of equity. On the other hand, when homogeneity is present with 

respect to interbank exposures, interbank claims are randomly allocated within the 

interbank network and are categorized as follows: small loans granted (4 units), 

medium loans (8 units) and large loans (14 units). With respect to scenarios tested 

where heterogeneity of bank size is introduced, the amount of equity of each bank is 

drawn from a uniform distribution in the range:  0,100ib  ,whereas when 

heterogeneity is introduced with respect to interbank claims, credit is allocated in the 

following ranges:      0,4 ,  0,8 ,  0,14ij ij ija a a   8
. Interbank exposures are set 

60% lower than these in Leventides et al.(2019). This is due to the fact that we cannot 

control the connectivity across banks since the link probability in randomly selected. 

The interbank exposure decrease was set by trial and error in order not to observe 

enormous high leveraged systems. In addition, we control the leverage of the system 

by setting the rule that the maximum leverage ratio of each network system cannot 

exceed five. Then, balance sheets are assigned to each node, consistent with each 

specific scenario tested. We randomly choose a single bank in the system to default 

due to an exogenous shock and the default cascades proceed sequentially, assuming 

zero recovery. When no further failures are observed results are recorded before 

another realization begins. We then impose another shock on the second bank in the 

network and this procedure continues until all banks in the interbank network are hit 

by an exogenous shock. 

For each scenario tested and for each network size we have three cases in which we 

allow the weight of outgoing links (small, medium and large interbank claims)to vary 

among banks. Each case gives us 6,000 realizations or, to put it differently, 6,000 

banking crises. We deem that 6,000 realizations provide a satisfactory number of runs 

and robustness to our analysis. Thus, for each scenario tested and each network size 

we employ 6,000 x 3 =18,000 realizations using the following variables in each 

realization: 

 Total loss of capital due to contagion as percentage of total capital in the 

system (CATEND) 

                                                           
8
Although those ranges have been selected arbitrarily, they are not sensitive to any regression model employed in 

the following analysis and thus, our regression results will be unaffected from a qualitative point of view if 

different ranges are used. 
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 Initial loss of capital by defaulting bank i  as percentage of total capital in the 

system (CATIN1),  . . ba k’  i depleted equity divided by the total equity in 

the network 

 Loss of capital at the first stage (interbank loans that cannot be repaid) by 

defaulting bank i  as percentage of total capital in the system (CATIN2), i.e. 

total amount of loans granted to bank i that cannot be repaid divided by the 

total equity in the network 

 Leverage of the interbank network(LEVIN), i.e. total interbank exposures as 

m a    d by th    m  f mat  x’  A  l m  t , d v d d by th  t tal cap tal    

the network 

 Number of outgoing links of bank i  (NOUTGOING), i.e. the outdegree of a 

bank i which corresponds to the number of creditors in the network. It is 

defined as the summation of the ith column of the adjacency matrix A. 

 Shock propagation variable (COUNT) which measures the number of rounds 

needed until no further bank defaults 

 Variance of capital (equity) (VARCAP) used in those scenarios tested where 

only heterogeneous bank sizes are considered 

 Variance of interbank loans (VARLOANS) used in those scenarios tested 

where only heterogeneous interbank loan exposures are considered 

 E dő  –Ré y p  bab l typij(p) that there is a lending/borrowing link between 

two nodes/banks. 

Our selection of variables is motivated by economic intuition and by the findings 

of previous studies on the dynamics of systemic risks (Nier et al., 2007) and 

Leventides et al. (2019). In order to study the effect the aforementioned variables 

have on contagion risk, we estimate the following ordinary least squares (OLS) 

models: 

 
1 2 3 4 5

6 7

1 2CATEND CATIN CATIN LEVIN NOUTGOING COUNT

VARCAP p

    

 

    

 
 

(5. 16) 

 
1 2 3 4 5

6 7 8

1 2CATEND CATIN CATIN LEVIN NOUTGOING COUNT

VARCAP VARLOANS p

    

  

    

  
 

(5. 17) 

 
1 2 3 4 5 62CATEND CATIN LEVIN NOUTGOING COUNT VARLOANS p            (5. 18) 

 
1 2 3 4 52CATEND CATIN LEVIN NOUTGOING COUNT p          (5. 19) 

The model described in equation (5.16) is applied to scenarios involving 

heterogeneous bank sizes with homogeneous exposures in the network structure, 

equation (5.17) refers to a situation where emphasis is placed on heterogeneous 

interbank loan exposures combined with heterogeneous bank sizes, equation (5.18) 

takes into account homogeneous banks with heterogeneous exposures while equation 

(5.19) considers only homogeneous bank sizes and interbank claims. The variable 
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CATIN1 has been omitted from equations (5.18)- (5.19) due to the fact that banks in 

the interbank system are homogeneous, i.e. we keep constant the equity of each bank 

and thus CATIN1 remains stable during our simulation runs. There is an explanation 

in the next subsection concerning the fact that in our experiments we have selected to 

work with standardized variables—both dependent and independent variables—and 

have not included the intercept term in the regression models as it will be zero. Our 

concern is to measure effects not in terms of the original units of the dependent 

variable or the independent variables, but in standard deviation units
9
.  

5.4.2 Simulation results 

In this section, we discuss the regression results of all four scenarios. Since our 

variables are measured on different scales, we cannot directly infer which 

independent variable has the largest effect on the dependent variable. In order to 

circumvent this problem we standardize our series to have zero mean and unit 

variance. Table 5.2 presents the regression results of the first scenario using the OLS 

model described in equation (5.16), where heterogeneous banks distribute evenly 

their interbank claims across the outgoing links of a network consisting of N = 20, 50, 

80 and 100 banks. Almost all regressor coefficients are found to be statistically 

significant for all the sizes of the network. We discern only two cases where regressor 

coefficients are found to be statistically insignificant and has to do with CATIN1 

variable and one case that has to do with CATIN2. R-squared coefficients take on 

large values ranging from 74.9 to 80 percent and highlight the ability of our selected 

variables to explain financial distress in interbank networks.  
 N=20 N=50 N=80 N=100 
CATIN 1 0.051 

(16.198)*** 
-0.002 

(-0.459) 
-0.001 

(-0.347) 
-0.007 

(-2.044)** 
CATIN2 0.098 

(4.195)*** 
0.004 

(0.170) 
0.179 

(8.073)*** 
0.104 

(5.059)*** 
LEVIN 0.389 

(17.018)*** 
0.413 

(19.043)*** 
0.260 

(12.205)*** 
0.315 

(15.935)*** 
NOUTGOING -0.080 

(-3.915)*** 
0.097 

(2.773)*** 
-0.170 

(-4.933)*** 
-0.053 

(-1.534) 
COUNT 0.602 

(138.571)*** 
0.572 

(134.093)*** 
0.576 

(136.735)*** 
0.540 

(124.326)*** 
VARCAP -0.088 

(-53.348)*** 
-0.075 

(-61.005)*** 
-0.053 

(-53.890)*** 
-0.054 

(-57.165)*** 

P 
-0.101 

(-5.089)*** 
-0.080 

(-2.338)** 
0.165 

(4.885)*** 
0.107 

(3.148)*** 
Adjusted R

2
 0.800 0.763 0.756 0.749 

Table 5. 2:OLS regression analysis for Scenario 1 (Heterogeneous banks with homogeneous 

exposures). 

The table presents the regression results for Scenario 1. The dependent variable is CATEND measured 

as the total loss of capital due to contagion as percentage of total capital in the network. Explanatory 

variables are, CATIN1, CATIN2, LEVIN, NOUTGOING, COUNT, VARCAP and P, the probability 

for a link to exist between two nodes. Each cell displays the OLS standardized coefficients along with 

the corresponding t-statistics (shown in parentheses). The sample comprises of 18,000 realizations 

(simulated banking crises).*, ** and *** denote significance at the 10, 5 and 1 percent level, 

respectively.

                                                           

9
See Wooldridge(2003) for aninteresting discussion on standardization and explanation of the absence of the 

standardized intercept. 
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Table 5. 3: Summary statistics 

The mean, median, and standard deviation are depicted for interbank networks consisting of 20,50,80,and100 banks, respectively. Four scenarios are included: (a) Heterogeneous banks–homogeneous 

exposures; (b) Heterogeneous banks-heterogeneous exposures; (c) Homogeneous banks–heterogeneous exposures;(d) Homogeneous banks–homogeneous exposures. The variables are: CATEND, defined as 

total loss of capital due to contagion as percentage of total capital in thesystem;CATIN1,defined a  ba k’    d pl t d  q  ty d v d d by th  t tal  q  ty    th   tw  k;CATIN2,d f   da th t tal am   t  f 

loans granted to bank i that cannot be repaid, divided by the total equity in the network; LEVIN, defined as the leverage of the interbank network; NOUTGOING, defined as the number of outgoing links of 

bank i, which corresponds to the number of its creditors in the network; COUNT, defined as the number of rounds needed until no further bank defaults; VARCAP, defined as the variance of bank capital; 

VARLOANS, d f   d a  th  va  a c   f   t  ba k l a   a d p, th  E dő  –Ré y p  bab l typijthat there is a lending/borrowing link between two nodes/banks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Heterogeneousbanks–

homogeneousexposures 

Heterogeneousbanks–

heterogeneousexposures 

Homogeneousbanks–

heterogeneousexposures 

Homogeneousbanks–

homogeneousexposures 

    

 

Variable Mean Median Std. Dev. Mean Median Std. Dev. Mean Median Std. Dev. Mean Median Std. Dev. 

n=20 

banks 
CATEND 0.241 0.067 0.368 0.185 0.063 0.313 0.220 0.050 0.350 0.251 0.050 0.367 

 
CATIN1 0.050 0.050 0.028 0.050 0.050 0.029 0.050 0.050 0.000 0.050 0.050 0.000 

 
CATIN2 0.079 0.063 0.062 0.070 0.052 0.067 0.147 0.130 0.108 0.175 0.160 0.124 

 
COUNT 2.624 1.000 2.342 2.278 1.000 1.999 1.916 1.000 1.893 2.029 1.000 1.876 

 
LEVIN 1.572 1.273 1.193 1.406 1.081 1.241 2.935 2.679 1.888 3.510 3.510 2.046 

 
P 0.491 0.486 0.286 0.459 0.438 0.278 0.402 0.371 0.253 0.276 0.214 0.226 

 
NOUTGOING 9.303 9.000 5.729 8.701 8.000 5.595 7.601 7.000 5.139 5.228 4.000 4.603 

 
VARCAP 829.371 824.415 171.611 836.673 832.512 172.930 - - - - - - 

 
VARLOANS - - - 38.407 8.230 45.561 47.449 33.195 40.430 - - - 

n=50 

banks 

CATEND 0.364 0.034 0.459 0.352 0.033 0.453 0.177 0.020 0.348 0.215 0.020 0.367 

 
CATIN1 0.020 0.020 0.011 0.020 0.020 0.011 0.020 0.020 0.000 0.020 0.020 0.000 

 
CATIN2 0.047 0.044963 0.029 0.046 0.045 0.030 0.068 0.063 0.047 0.068 0.064 0.051 

 
COUNT 4.078 2.000 3.473 4.026 2.000 3.532 2.209 1.000 2.618 2.451 1.000 2.767 

 
LEVIN 2.330 2.320 1.365 2.310 2.336 1.347 3.380 3.392 1.996 3.401 3.240 2.002 

 
NOUTGOING 16.754 14.000 12.604 18.478 14.000 14.272 10.092 8.000 9.003 5.025 4.000 4.562 

 
P 0.342 0.290 0.250 0.377 0.270 0.286 0.206 0.159 0.176 0.103 0.079 0.084 

 
VARCAP 834.415 832.740 106.833 830.829 829.254 115.273 - - - - - - 

 
VARLOANS - - - 38.207 8.299 44.715 47.688 33.015 39.929 - - - 

n=80 

banks 

CATEND 0.383 0.022 0.469 0.359 0.021 0.460 0.180 0.012 0.362 0.198 0.012 0.3676 

 
CATIN1 0.012 0.012 0.007 0.012 0.012 0.007 0.012 0.012 0.000 0.012 0.012 0.000 

 
CATIN2 0.031 0.030 0.020 0.029 0.028 0.020 0.045 0.042 0.031 0.040 0.035 0.032 

 
COUNT 4.638 3.000 4.259 4.662 2.000 4.442 2.359 1.000 2.906 2.455 1.000 2.882 

 
LEVIN 2.461 2.429 1.464 2.365 2.297 1.430 3.623 3.595 2.099 3.209 3.120 2.065 

 
NOUTGOING 17.752 15.000 14.422 19.403 14.000 16.368 10.829 8.000 9.556 4.860 3.000 4.777 

 
P 0.225 0.196 0.178 0.246 0.164 0.203 0.137 0.104 0.115 0.061 0.046 0.055 

 
VARCAP 820.667 820.990 85.218 822.902 815.162 86.217 - - - - - - 

 
VARLOANS - - - 38.955 8.376 46.160 47.854 33.478 39.566 - - - 

n=100 

banks 

CATEND 0.370 0.017 0.468 0.382 0.018 0.468 0.149 0.010 0.332 0.220 0.010 0.385 

 
CATIN1 0.010 0.010 0.006 0.010 0.010 0.006 0.010 0.010 0.000 0.010 0.010 0.000 

 
CATIN2 0.025 0.024 0.015 0.025 0.025 0.017 0.035 0.033 0.024 0.036 0.032 0.026 

 
COUNT 4.649 3.000 4.261 4.823 3.000 4.291 2.383 1.000 3.212 2.830 1.000 3.469 

 
LEVIN 2.474 2.458 1.423 2.555 2.629389 1.515 3.539 3.615 2.006 3.600 3.552 1.967 

 
NOUTGOING 18.732 14.000 15.964 21.815 15.00000 18.283 10.898 8.000 9.488 5.267 4.000 4.565 

 
P 0.189 0.142 0.157 0.220 0.141615 0.181 0.110 0.079 0.092 0.053 0.041 0.040 

 
VARCAP 822.626 821.214 80.128 827.379 826.1881 76.812 - - - - - - 

 
VARLOANS - - - 37.755 8.359417 44.330 48.180 33.479 39.959 - - - 
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The variable CATIN1 captures the initial effect defaulting bank i  exerts on the 

network, whereas the magnitude of interconnectedness across the banks that comprise 

the interbank network is measured through parameter CATIN2. As we observe from 

Table 5.2, variable CATIN1 does not seem to affect much the dependent variable, 

whereas two regressor coefficients are found to be insignificant. Financial shocks will 

p  pa at    t  th  d fa lt    ba k’  c   t  pa t    al    th    tw  k,    d  th    

capital and make them more vulnerable to subsequent shocks. The magnitude of the 

positive relationship between CATIN2 and CATEND – the dependent variable - 

seems to increase as the size of the interbank network increases with the only 

exception being the N=50 bank network segment which follows an autonomous path 

(although statistically insignificant). The increasing magnitude of the above 

relationship seems to cease as we move from the case of n=80 banks to the case of 

n=100 banks. This finding implies that as we move from smaller to larger network 

settings, systemic risk and the likelihood of contagion increases. However, when we 

move from the case of n=80 banks to the case of n=100 banks the likelihood of 

contagion seems to decreases. Figure 5.3 visually illustrates the extent of contagion as 

a f  ct     f th  p  c  ta   l     f cap tal d   t  ba k’  i default. It is shown that as 

the network size increases from small to medium sized networks, we observe that 

capital losses rises, confirming the findings from the regression model. As we can 

observe from Figure 5.3, as we move from the n=80 interbank network scheme to 

n=100 the likelihood of contagion seems to decrease since we have very few cases 

that cause systemic break downs and defaults. 

As expected, we also find that there is a positive relationship between the leverage 

of the network and the capital losses due to contagion. This result is in line with the 

findings of Nier et al. (2007) who provide evidence that systemic risk increases when 

system-wide leverage increases. Highly leveraged banks in the interbank network are 

clearly more exposed to the risk of default on interbank loans. The greater the size of 

default on debt is, the larger the losses are that banks transmit to their neighbors, 

other things being equal. Thus, highly leveraged banks contribute more to systemic 

risk as they become a vehicle for transmitting shocks within the network. Moreover, 

 t     h w  that th  ma   t d   f th  p   t v    lat    h p b tw    th    tw  k’  

leverage and contagion risk increases as we move from smaller to larger interbank 

networks (illustrated in Table 5.2) with the only exception being the n=80 bank  
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(a) N=20 banks 

 

(b) N=50 banks 

 

(c) N=80 banks 

 

(d) N=100 banks 

 

Figure 5. 3 : Scenario 1: Heterogeneous Banks with homogeneous exposures | Extent of contagion 

(expressed as the total capital lost from the banking system due to the failure of at least one bank) as a 

function of the % initial loss of capital due to default of the first bank. 

Panels (a)-(d) show the relation between the % initial loss of capital due to default of the first bank and 

the extent of contagion across interbank networks with different number of banks. 
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(a) N=20 banks 

 

(b) N=50 banks 

 

(c) N=80 banks 

 

(d) N=100 banks 

 

Figure 5. 4 : Scenario 1: Heterogeneous Banks with homogeneous exposures | Extent of contagion 

(expressed as the total capital lost from the banking system due to the failure of at least one bank) as a 

function of the leverage of the system. 

Panels (a)-(d) show the relation between the leverage of the system and the extent of contagion across 

interbank networks with different number of banks. 
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network scheme where the magnitude of the standardized coefficients seems to 

decrease.  

Our results also suggest that connectivity, expressed in our experiments as the 

noutgoing
10

 of the first bank that defaults, has a negative effect on interbank 

contagion with the only exception being the case of n=50 banks where we can 

observe a positive relationship between contagious defaults and connectivity. 

Interestingly, as we move from small networks consisted of twenty banks to networks 

consisted of fifty banks the effect of connectivity to interbank contagion turns from 

negative to positive and after then connectivity keeps affect negatively the systemic 

risk of the network. Thus, as we move from network systems consisted of fifty banks 

to networks consisted of 100 banks this negative relationship seems to decrease. In 

relatively small interbank networks, a high level of connectivity will allow an 

efficient absorption of shocks, whereas in medium size networks the increased 

connectivity will spread the shock throughout the system, potentially leading to many 

default cascades. The link probability, that is assumed to be equal across all pairs, 

seems to contribute to the resilience of the system for small and medium size 

networks. However, as we move from medium to large size networks this effect turns 

negative to the resilience of the system as it seems to contribute positively to systemic 

risk.  

Our regression analysis also shows that the COUNT variable which measures the 

number of rounds until no further bank defaults, has a positive impact on interbank 

contagion. Heterogeneity expressed as the variance of capital exhibits a negative and 

statistically significant relationship with interbank contagion, showing that size 

heterogeneity can have positive effects on the stability of an interbank network. 

However, the positive magnitude seems to decrease as we move from small to large 

interbank networks. An interbank network consisting of banks of various sizes can 

more easily withstand a negative shock, therefore no institution becomes significant 

for either borrowing or lending. Furthermore, in such network both smaller and larger 

banks can act as shock absorbers when an initial shock hits the banking system, 

making contagion a less likely phenomenon. This finding is in line with the results of 

Iori et al. (2006) concerning bank size heterogeneity. 

Table 5.4 presents the regression results of the second scenario using the model 

described in equation (5.17), where banking institutions with heterogeneous bank 

sizes are linked to one another via heterogeneous interbank claims. The regressor 

coefficients are statistically significant in almost all cases and the R-squared values 

are quite high and lie in the vicinity of 75 to 83 percent, highlighting the good 

explanatory power of the model. 

  

                                                           

10It  h  ld b  h  hl  ht d that    th  E dő -Ré y    tw  k  t  ct    th    td       q al  th    d         c  w  

have an undirected network structure. However, in our framework, the two directions of the same link are given 

different weights. 
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 N=20 N=50 N=80 N=100 
CATIN 1 0.070 

(23.660)*** 
0.007 

(2.024)** 
0.000 

(0.047) 
-0.001 

(-0.283) 
CATIN2 0.201 

(19.541)*** 
0.113 

(11.183)*** 
0.106 

(9.669)*** 
0.071 

(6.015)*** 
LEVIN 0.653 

(58.484)*** 
0.346 

(30.847)*** 
0.321 

(26.320)*** 
0.399 

(30.132)*** 
NOUTGOING -0.136 

(-11.540)*** 
-0.150 

(-6.539)*** 
-0.052 

(-2.253)** 
0.038 

(1.575) 
COUNT 0.456 

(111.687)*** 
0.630 

(156.274)*** 
0.577 

(141.939)*** 
0.573 

(131.397)*** 
VARCAP -0.032 

(-18.897)*** 
-0.067 

(-50.848)*** 
-0.053 

(-52.027)*** 
-0.041 

(-40.597)*** 

VARLOANS -0.246 
(-45.472)*** 

-0.091 
(-14.882)*** 

-0.018 
(-3.113)*** 

-0.082 
(-12.307)*** 

P 
-0.254 

(-21.462)*** 
0.038 

(1.620) 
0.064 

(2.678)*** 
-0.110 

(-4.311)*** 
Adjusted R

2
 0.830 0.796 0.776 0.751 

Table 5. 4: OLS regression analysis for Scenario 2 (Heterogeneous banks with heterogeneous 

exposures). 

The table presents the regression results for Scenario 2. The dependent variable is CATEND measured 

as the total loss of capital due to contagion as percentage of total capital in the network. Explanatory 

variables are the constant term CATIN1, CATIN2, LEVIN, NOUTGOING, COUNT, VARCAP, 

VARLOANS and P, the probability for a link to exist between two nodes. Each cell displays the OLS 

standardized coefficients along with the corresponding t-statistics (shown in parentheses). The sample 

comprises of 18,000 realizations (simulated banking crises). *, ** and *** denote significance at the 

10, 5 and 1 percent level, respectively. 

CATIN1 does not seem to impact much the dependent variable in all network 

segments and the regressor coefficients in the relatively large interbank networks 

becomes statistically insignificant. The magnitude of standardized coefficients is 

almost the same with the corresponding magnitude of those derived from the first 

scenario. In other words, an initial shock from defaulting bank i will spill over more 

easily in the network. Thus, the first bank defaulting has the dynamics to spread the 

initial shock and contaminate the entire interbank network. CATIN2 has a large 

positive impact on contagion risk, however, its magnitude fades away as we move 

from smaller to larger networks. It should also be highlighted that the CATIN2 

coefficients are much larger than those recorded in the first scenario in all network 

sizes. An initial shock following the default of bank i  seems to contribute much to a 

banking crisis scenario within small and medium-sized networks and the size of total 

capital losses is smaller than that documented in the first scenario. Figure 5.5 depicts 

the extent of contagion as a function of the percentage loss of capital due to default of 

the first bank and confirms the results recorded in Table 5.4. 

The results also show that there still exists a positive relationship between leverage 

and contagion; however, the coefficient estimates are larger in almost all cases than 

those recorded in the previous scenario. Moreover, the magnitude of the leverage 

coefficients decreases as the number of banks in the interbank network increases, 

with the only exception being the 100 bank network segment where one can observe 

a slight increase compared to the 80 bank network segment.  

Results on connectivity are qualitatively similar to those of the first scenario, showing 

that connectivity negatively impacts contagion risk especially in small and medium 

interbank networks with the only exception being the 100 bank network segment 
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which follows an autonomous path and is positively related to contagion (although 

statistically insignificant). 

As far as the link probability is concerned, we can observe a different pattern from 

that of the first scenario. For small and large sized networks, link probability seems to 

contribute negatively to systemic risk while for medium sized networks there is a 

positive relationship between link probability and contagion. The number of rounds 

until no further bank defaults positively impacts contagion risk and contributes the 

most to total capital losses in the banking system when medium and large interbank 

networks are formed. Under this scenario, the heterogeneity allowed on both bank 

sizes and interbank exposures has had a great impact on the resilience of the network 

system. Heterogeneity impacts negatively on interbank contagion although its 

intensity decreases as the size of the network increases. Moreover, as we can see from 

the Table 5.4 heterogeneity of bank size contributes less to the resilience of the 

interbank network than heterogeneity of interbank exposures when it comes to small 

and medium sized networks.  
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(a) N=20 banks 

 

(b) N=50 banks 

 

(c) N=80 banks 

 

(d) N=100 banks 

Figure 5. 5 : Scenario 2: Heterogeneous Banks with heterogeneous exposures | Extent of contagion 

(expressed as the total capital lost from the banking system due to the failure of at least one bank) as a 

function of the % initial loss of capital due to default of the first bank. 

Panels (a)-(d) show the relation between the % initial loss of capital due to default of the first bank and 

the extent of contagion across interbank networks with different number of banks. 
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(a) N=20 banks 

 

(b) N=50 banks 

 

(c) N=80 banks 

 

(d) N=100 banks 

Figure 5. 6 : Scenario 2: Heterogeneous Banks with heterogeneous exposures | Extent of contagion 

(expressed as the total capital lost from the banking system due to the failure of at least one bank) as a 

function of the leverage of the system. 

Panels (a)-(d) show the relation between the leverage of the system and the extent of contagion across 

interbank networks with different number of banks. 

The heterogeneity of interbank exposures acts as a diversification tool and 

contributes to a smaller extent to an unfolding crisis compared to the scenario where 

homogeneous banks are interconnected via heterogeneous exposures (shown in Table 

4).  
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Table 5.5 depicts the results of the third scenario as described in equation (5.18). 

In this scenario, we construct network systems where banks have the same equity size 

and unevenly distribute their exposures across creditor banks. We note that an initial 

shock fades away with the failure of the first bank and does not spillover to other 

banks within the network. This is mainly due to our choice of parameters regarding 

the equity of each bank, the links among banks and the interbank claims among 

creditor banks.In order to observe default cascades we relax our initial assumptions 

and lower the equity of each bank in the network system.  

 N=20 N=50 N=80 N=100 
CATIN2 0.196 

(25.178)*** 
0.143 

(16.422)*** 
0.125 

(15.232)*** 
0.088 

(9.806)*** 
LEVIN 0.324 

(39.268)*** 
0.298 

(32.475)*** 
0.275 

(31.619)*** 
0.279 

(30.578)*** 
NOUTGOING -0.163 

(-15.308)*** 
-0.168 

(-10.438)*** 
-0.126 

(-8.707)*** 
-0.087 

(-5.561)*** 
COUNT 0.736 

(191.690)*** 
0.761 

(175.841)*** 
0.790 

(195.383)*** 
0.793 

(186.247)*** 
VARLOANS -0.175 

(-43.977)*** 
-0.190 

(-44.390)*** 
-0.180 

(-46.723)*** 
-0.167 

(-41.937)*** 
P -0.253 

(-24.270)*** 
-0.313 

(-19.153)*** 
-0.322 

(-21.833)*** 
-0.339 

(-21.575)*** 

Adjusted R
2
 0.860 0.823 0.845 0.809 

Table 5. 5: OLS regression analysis for Scenario 3 (Homogeneous banks with heterogeneous 

exposures). 

The table presents the regression results for Scenario 3. The dependent variable is CATEND measured 

as the total loss of capital due to contagion as percentage of total capital in the network. Explanatory 

variables are the constant term CATIN2, LEVIN, NOUTGOING, COUNT, VARLOANS and P, the 

probability for a link to exist between two nodes. Each cell displays the OLS standardized coefficients 

along with the corresponding t-statistics (shown in parentheses). The sample comprises of 18,000 

realizations (simulated banking crises). *, ** and *** denote significance at the 10, 5 and 1 percent 

level, respectively. 

Specifically, each bank is now endowed with a balance sheet that consists of 25 

units of equity and interbank claims among creditor banks are distributed in the 

following ranges:      0,10 ,  0,20 ,  0,35ij ij ija a a   . Interbank exposures levels 

were kept the same as in Leventides et al. (2019). Moreover, we control  the leverage 

of the system by setting the rule that the maximum leverage ratio of each network 

system cannot exceed seven.Similar to the previous scenarios, the regressor 

coefficients are statistically significant in all cases and the R-squared values are still 

large, in fact the largest of all three scenarios tested. Variable CATIN2 has ahighly 

significant positive impact on systemic risk that fades away as the network system 

gets larger. The same observation holds for the level of connectivity in the banking 

system i.e. a strong negative impact on contagion risk that dissipates as N increases. 
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(a) N=20 banks 

 

(b) N=50 banks 

 

(c) N=80 banks 

 

(d) N=100 banks 

Figure 5. 7 : Scenario 3: Homogeneous banks with heterogeneous exposures (expressed as the total 

capital lost from the banking system due to the failure of at least one bank) as a function of the % 

initial loss of capital due to default of the first bank. 

Panels (a)-(d) show the relation between the % initial loss of capital due to default of the first bank and 

the extent of contagion across interbank networks with different number of banks. 
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(a) N=20 banks 

 

(b) N=50 banks 

 

(c) N=80 banks 

 

(d) N=100 banks 

Figure 5. 8 : Scenario 3: Homogeneous banks with heterogeneous exposures | Extent of contagion 

(expressed as the total capital lost from the banking system due to the failure of at least one bank) as a 

function of the leverage of the system. 

Panels (a)-(d) show the relation between the leverage of the system and the extent of contagion across 

interbank networks with different number of banks. 

The leverage of the system has a positive impact on systemic risk and its 

magnitude decreases as the size of the network increases. Figures 6 and 7 illustrate 

the third scenario as a function of the percentage loss of capital due to default of the 

first bank in the network and as a function of leverage in the banking system, 

respectively. As in the previous cases, we find the number of rounds until no further 



83 
 

bank defaults to affect contagion risk positively and statistically significantly, and 

such impact is magnified in relatively larger interbank networks. The heterogeneity of 

interbank exposures plays a significant role in the stability of the financial network 

especially in the medium sized interbank networks. 

Finally, Table 5.6 depicts the results of the fourth scenario as described in 

equation (5.19). In this scenario, we construct network systems where banks have the 

same equity size and interbank claims are evenly distributed across creditor banks. 

We acknowledge the fact that this scenario is a bit unrealistic as banks in real-world 

interbank networks do not have the same equity size and do not necessarily distribute 

their interbank claims evenly across their creditors. However, by testing a wide range 

of link probabilities between any two nodes, we are in a position to effectively 

examine the effect of different calibrations on systemic risk. Thus, although this 

scenario can be regarded as a special case with magnifying effects, it provides useful 

insights on interbank market resiliency during periods of stress. 

The variable CATIN2 has a strong positive impact on systemic risk that dissipates as 

the network system gets larger. Simulations show that this scenario yields 

qualitatively similar results with the previous three scenarios in relation to the 

leverage of the network, that is, leverage positively and significantly affects 

contagion risk. However, in this scenario, we observe that this effect becomes 

stronger progressively when the number of constituent banks in the network 

increases. Figure 5.9 confirms the results recorded in the Table 5.6 concerning the 

relationship between the extent of contagion and the percentage loss of capital in the 

network. For instance, the likelihood of systemic breakdowns seems to decrease as 

we move from smaller to larger network systems since we have very few cases that 

cause large capital losses. Connectivity impacts negatively on interbank contagion, 

although this negative impact dissipates as the number of banks in the interbank 

networks increases. As expected, the link probability has the same negative impact as 

connectivity on the interbank contagion. Contrary to the previous findings concerning 

connectivity, the negative impact of the link probability on interbank contagion seems 

to scale up as we move from smaller to larger interbank networks.  

  N=20 N=50 N=80 N=100 
CATIN2 0.228 

(21.978)*** 
0.153 

(14.098)*** 
0.137 

(12.902)*** 
0.105 

(9.426)*** 

LEVIN 0.137 
(14.890)*** 

0.268 
(28.512)*** 

0.352 
(37.106)*** 

0.352 
(37.707)*** 

NOUTGOING -0.257 
(-15.906)*** 

-0.146 
(-9.715)*** 

-0.130 
(-8.719)*** 

-0.095 
(-6.262)*** 

COUNT 0.645 
(198.356)*** 

0.617 
(172.925)*** 

0.568 
(150.736)*** 

0.573 
(148.381)*** 

P 
-0.156 

(-10.231)*** 
-0.304 

(-21.593)*** 
-0.378 

(-26.723)*** 
-0.379 

(-27.197)*** 
Adjusted R

2
 0.834 0.806 0.817 0.779 

Table 5. 6: OLS regression analysis for Scenario 4 (Homogeneous banks with homogeneous 

exposures). 

The table presents the regression results for Scenario 4. The dependent variable is CATEND measured 

as the total loss of capital due to contagion as percentage of total capital in the network. Explanatory 

variables are the constant term CATIN2, LEVIN, NOUTGOING, COUNT and P, the probability for a 
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link to exist between two nodes.. Each cell displays the OLS standardized coefficients along with the 

corresponding t-statistics (shown in parentheses). The sample comprises of 18,000 realizations 

(simulated banking crises). *, ** and *** denote significance at the 10, 5 and 1 percent level, 

respectively. 

Finally, the number of rounds until no further bank defaults affects contagion risk in a 

statistically significant manner especially when small interbank networks are 

considered.   

The main intuition behind these results is that increasing connectivity on a 

homogeneous interbank network can reduce the frequency of contagion in case the 

first bank that defaults is less leveraged as the interbank network has the dynamics to 

absorb more easily the shock and thus the initial shock is dissipated at a faster rate. 

This is the case for small network systems. As the size of the network increase and 

the system gets more leveraged, the stabilizing force of connectivity weakens and 

default cascades prevail. 
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(a) N=20 banks 

 

(b) N=50 banks 

 

(c) N=80 banks 

 

(d) N=100 banks 

Figure 5. 9: Scenario 4: Homogeneous banks with homogeneous exposures (expressed as the total 

capital lost from the banking system due to the failure of at least one bank) as a function of the % 

initial loss of capital due to default of the first bank. 

Panels (a)-(d) show the relation between the % initial loss of capital due to default of the first bank and 

the extent of contagion across interbank networks with different number of banks. 
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(a) N=20 banks 

 

(b) N=50 banks 

 

(c) N=80 banks 

 

(d) N=100 banks 

Figure 5. 10 : Scenario 4: Homogeneous banks with homogeneous exposures | Extent of contagion 

(expressed as the total capital lost from the banking system due to the failure of at least one bank) as a 

function of the leverage of the system. 

Panels (a)-(d) show the relation between the leverage of the system and the extent of contagion across 

interbank networks with different number of banks. 
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Tables 5.7–5.10 depict robustness tests on all four scenarios based on random 

sampling. We have performed second run Monte Carlo simulations in order to 

examine whether the new results differ from the previous ones, thus checking how 

random sampling affects our main conclusions. We observe qualitatively similar 

results in all four cases to those from the first run providing evidence that our 

findings are stable across different simulation scenarios. 

  N=20 N=50 N=80 N=100 
CATIN 1 0.044 

(13.363)*** 
0.001 

(0.389) 
-0.004 

(-1.135) 
0.002 

(0.579) 
CATIN2 0.259 

(10.095)*** 
0.163 

(7.044)*** 
0.073 

(3.301)*** 
0.050 

(2.614)*** 
LEVIN 0.272 

(10.899)*** 
0.255 

(11.408)*** 
0.412 

(19.261)*** 
0.402 

(22.155)*** 
NOUTGOING -0.213 

(-10.339)** 
-0.162 

(-4.518)*** 
0.014 

(-4.933)*** 
0.042 

(1.328) 
COUNT 0.569 

(128.765)*** 
0.604 

(147.789)*** 
0.523 

(126.895)*** 
0.539 

(131.678)*** 
VARCAP -0.085 

(-50.816)*** 
-0.075 

(-57.790)*** 
-0.057 

(-58.108)*** 
-0.054 

(-64.019)*** 

P 
0.021 

(-5.089)*** 
0.141 

(3.998)** 
-0.006 

(-0.171) 
-0.012 

(-0.405) 
Adjusted R

2
 0.786 0.785 0.768 0.789 

Table 5. 7: Robustness tests: OLS regression analysis for Scenario 1(Heterogeneous banks with 

homogeneous exposures). 

The table presents the regression results for Scenario1 applied on a second run of Monte Carlo 

simulations based on random sampling as robustness test. The dependent variable is CATEND 

measured as the total loss of capital due to contagion as percentage of total capital in the network. 

Explanatory variables are, CATIN1, CATIN2, LEVIN, NOUTGOING, COUNT, VARCAP and P, the 

probability for a link to exist between two nodes. Each cell displays the OLS standardized coefficients 

along with the corresponding t-statistics (shown in parentheses). The sample comprises of 18,000 

realizations (simulated banking crises).*, ** and *** denote significance at the 10, 5 and 1 percent 

level, respectively. 

  N=20 N=50 N=80 N=100 
CATIN 1 0.071 

(23.366)*** 
0.001 

(0.273) 
0.008 

(2.368)*** 
0.006 

(1.730)* 
CATIN2 0.207 

(20.109)*** 
0.098 

(8.941)*** 
0.101 

(9.336)*** 
0.068 

(6.721)*** 
LEVIN 0.602 

(53.999)*** 
0.469 

(38.008)*** 
0.313 

(26.051)*** 
0.304 

(26.494)*** 
NOUTGOING -0.154 

(-12.833)*** 
-0.096 

(-4.023)*** 
-0.064 

(-2.747)*** 
0.008 

(0.391) 
COUNT 0.459 

(107.602)*** 
0.567 

(131.004)*** 
0.590 

(144.084)*** 
0.609 

(156.107)*** 
VARCAP -0.038 

(-21.431)*** 
-0.067 

(-41.713)*** 
-0.053 

(-54.105)*** 
-0.051 

(-40.597)*** 

VARLOANS -0.220 
(-42.365)*** 

-0.091 
(-24.628)*** 

-0.018 
(-2.107)** 

-0.009 
(-12.307)*** 

P 
-0.223 

(-18.398)*** 
-0.080 

(-3.217)*** 
0.092 

(3.779)*** 
0.061 

(2.751)*** 
Adjusted R

2
 0.817 0.770 0.772 0.800 

Table 5. 8: Robustness tests: OLS regression analysis for Scenario 2 (Heterogeneous banks with 

heterogeneous exposures). 

The table presents the regression results for Scenario2 applied on a second run of Monte Carlo 

simulations based on random sampling as robustness test. The dependent variable is CATEND 

measured as the total loss of capital due to contagion as percentage of total capital in the network. 

Explanatory variables are the constant term CATIN1, CATIN2, LEVIN, NOUTGOING, COUNT, 

VARCAP, VARLOANS and P, the probability for a link to exist between two nodes. Each cell 

displays the OLS standardized coefficients along with the corresponding t-statistics (shown in 

parentheses). The sample comprises of 18,000 realizations (simulated banking crises). *, ** and *** 

denote significance at the 10, 5 and 1 percent level, respectively. 



88 
 

 N=20 N=50 N=80 N=100 
CATIN2 0.200 

(25.728)*** 
0.153 

(18.410)*** 
0.127 

(13.078)*** 
0.157 

(21.173)*** 
LEVIN 0.282 

(34.036)*** 
0.189 

(22.195)*** 
0.329 

(32.672)*** 
0.308 

(37.777)*** 
NOUTGOING -0.187 

(-16.831)*** 
-0.168 

(-11.145)*** 
-0.114 

(-6.923)*** 
-0.145 

(-11.721)*** 
COUNT 0.745 

(190.987)*** 
0.773 

(184.138)*** 
0.736 

(164.477)*** 
0.765 

(190.795)*** 
VARLOANS -0.167 

(-41.084)*** 
-0.137 

(-33.586)*** 
-0.164 

(-38.890)*** 
-0.196 

(-46.316)*** 
P -0.217 

(-19.612)*** 
-0.226 

(-14.785)*** 
-0.371 

(-22.288)*** 
-0.323 

(-25.206)*** 

Adjusted R
2
 0.862 0.824 0.789 0.864 

Table 5. 9: Robustness tests: OLS regression analysis for Scenario 3 (Homogeneous banks with 

heterogeneous exposures). 

The table presents the regression results for Scenario3 applied on a second run of Monte Carlo 

simulations based on random sampling as robustness test. The dependent variable is CATEND 

measured as the total loss of capital due to contagion as percentage of total capital in the network. 

Explanatory variables are the constant term  CATIN2, LEVIN, NOUTGOING, COUNT, VARLOANS 

and P, the probability for a link to exist between two nodes. Each cell displays the OLS standardized 

coefficients along with the corresponding t-statistics (shown in parentheses). The sample comprises of 

18,000 realizations (simulated banking crises). *, ** and *** denote significance at the 10, 5 and 1 

percent level, respectively. 

  N=20 N=50 N=80 N=100 
CATIN2 0.266 

(25.631)*** 
0.196 

(18.103)*** 
0.153 

(13.994)*** 
0.126 

(11.749)*** 

LEVIN 0.163 
(17.098)*** 

0.247 
(25.943)*** 

0.283 
(29.111)*** 

0.357 
(37.852)*** 

NOUTGOING -0.306 
(-19.180)*** 

-0.220 
(-14.254)*** 

-0.164 
(-10.529)*** 

-0.118 
(-8.020)*** 

COUNT 0.616 
(188.365)*** 

0.600 
(161.885)*** 

0.609 
(160.323)*** 

0.565 
(145.072)*** 

P 
-0.150 

(-9.783)*** 
-0.256 

(-17.542)*** 
-0.309 

(-20.730)*** 
-0.371 

(-26.650)*** 
Adjusted R

2
 0.834 0.804 0.790 0.798 

Table 5. 10: Robustness tests: OLS regression analysis for Scenario4 (Homogeneous banks with 

homogeneous exposures). 

The table presents the regression results for Scenario4 applied on a second run of Monte Carlo 

simulations based on random sampling as robustness test.  The dependent variable is CATEND 

measured as the total loss of capital due to contagion as percentage of total capital in the network. 

Explanatory variables are the constant term CATIN2, LEVIN, NOUTGOING, COUNT and P, the 

probability for a link to exist between two nodes.. Each cell displays the OLS standardized coefficients 

along with the corresponding t-statistics (shown in parentheses). The sample comprises of 18,000 

realizations (simulated banking crises). *, ** and *** denote significance at the 10, 5 and 1 percent 

level, respectively. 

 

5.5. Conclusions 

This paper investigates how complexity under a specific network structure, that 

has been extensively applied for the study of contagion in financial networks, affects 

interbank contagion. Similar to Leventides et al. (2019), we explore the interplay 

between heterogeneity, balance sheet composition in the spreading of contagion using 

f    ba  c  c  a    ,   d   a  E dő -Ré y    tw  k  t  ct          a w d   a     f 

link probabilities between any two banks.  
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Our findings indicate a non-monotonic relation between diversification and interbank 

contagion across the different sizes of interbank networks for all scenarios tested. 

While for small or medium interbank networks, connectivity can act as an absorbing 

barrier, such that interbank systems of these sizes can withstand the initial shock, for 

large network systems connectivity does not seem to provide an effective shield 

against capital losses. Our results, for the four scenarios tested, indicate that small and 

thus more concentrated interbank network systems are more prone to contagion. In 

these cases, we observe that the size of total capital losses is, in most cases, larger 

than that documented in medium and large sized systems, which is in line with the 

findings of Nier et al.(2007).  

As far as heterogeneity is concerned, this enters in our experiments in the form of 

interbank claims and bank sizes. Our results clearly suggests that heterogeneity plays 

a significant role in the stability of the financial system. Similar to Leventides et al. 

(2019), we still find that when heterogeneity is introduced with respect to the size of 

 ach ba k, th   y t m’   h ck ab   pt    capac ty      ha c d. I  add t   , wh   w  

allow for heterogeneity on interbank exposures in our model, we observe additional 

resilience to the interbank network as an initial shock dissipates more easily than in 

the case of homogeneous interbank claims. 

F  ally, w   h  ld al   j  t fy th  fact that w  ch     t  w  k   d   a  E dő -

Ré y    tw  k  t  ct     v    f this network framework is not very realistic. In an 

such a network framework, where the probability of forming  a link is homogeneous, 

the resulting network structure does not present marked heterogeneity. As we 

observed from all the four scenarios tested, the initial shock that hits the system 

seems to propagates into the system jeopardizing thus the stability of the entire 

system. This strengthens even more our arguments concerning the critical role that 

heterogeneity plays in the resilience of the financial system. 
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6. Application of complex network analysis for systemic risk monitoring and 

policy formulation /Policy insights from interbank networks 

 

6.1 Introduction 

Representing the banking system as a network is arguably more realistic than to 

model it as a representative bank, as traditional macro finance models do. For this 

reason, network analysis can be utilized by policymakers and regulators in 

developing effective policies on financial stability. During the last decade, there has 

been a growing interest from financial stability experts at central banks and 

supervisory authorities in the analysis of financial interconnectedness of financial 

institutions by means of network representation and analysis. One of the early 

promoters of the introduction of network theory to financial systems was the Bank of 

E  la d’  ch  f  c   m  t A d  w Halda  . I  h    p  ch at th  F  a c al St d  t 

Association in Amsterstam on 28 April of 2009, Haldane argued that the crisis 

presented policymakers and regulators with a large body of evidence and strong 

incentives to change the way financial markets are understood. For Haldane the shift 

needed was clear; a better understanding of the complexity of the financial system 

and the application some of the lessons from other disciplines – such as ecology, 

epidemiology, biology and engineering – to the financial sphere. 

6.2 The Basel Process of Capital Regulation 

The Basel Committee on Banking Supervision (BCBS) has its origins in the financial 

market turmoil that dates back in the 1980s. In response to disruptions in the global 

financial markets, representatives from central banks of the G10
11

 countries met in 

Basel, Switzerland to issue guidelines relating to capital and risk management 

activities of global banking institutions. Since it was established, the BCBS has 

formulated the Basel I, Basel II, and Basel III accords. 

In 1988, the Basel Committee on Banking Supervision (BCBS) produced the first 

Basel Accord, also known as Basel I (Goodhart, 2011). This document established 

the first global minimum capital requirements for international banks, in order to 

improve the stability of the financial sector and maintain confidence in bank 

solvency. Focusing primarily on credit risk, the intended goal was to define how 

much capital banks should hold to remain safe. This pure microprudential set of rules 

was later enforced by law in many countries in 1992 and amended in 1996 to 

incorporate market risk regulation. 

                                                           

11
The committee was expanded in 2009 and 2014 to 28jurisdictionsconsisting of central banks and authorities 

with formal responsibility for the supervision of banking business. Currently, committee members come from 

Brazil, Canada, Germany, Australia, Argentina, China, France, India, Saudi Arabia, the Netherlands, Russia, 

Hong Kong, Japan, Italy, Korea, Mexico, Singapore, Spain, Luxembourg, Turkey, Switzerland, Sweden, South 

Africa, the United Kingdom, the United States, Indonesia and Belgium.  
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In Basel I, that is, the 1988 Basel Accord weighed the capital owned by a bank 

against the credit risk it faced. Basel I defined the bank capital ratio and set the ball 

rolling for solvency monitoring and reporting. Assets of financial institutions were 

classified and grouped into five risk categories according to credit risk, carrying risk 

weights 0%, 10%, 20%, 50% and 100%. The 1988 Basel Accord has also set the 

minimum of 8% of regulatory capital for banks, measured in terms of credit risk-

weighted assets 

In June 1999, the Basel Committee issued a proposal for a new capital adequacy 

framework to replace the 1988 Basel Accord. This led to revised Basel framework 

"International Convergence of Capital Measurement and Capital Standards" 

(Basel II) which published in 2004. The fundamental goal of the Basel Committee 

was to further strengthen the soundness and stability of the international banking 

system. The new Basel Accord comprised three pillars. The first Pillar encompassed 

the calculation of capital requirements on the basis of bank risks (credit, market and 

operational risk). Further focal points were the specification of basic principles for 

qualitative banking supervision and risk management in banks (pillar II), and the 

introduction of supervisory disclosure requirements in order to strengthen market 

discipline (pillar III). 

The need for extending the Basel II framework appeared quickly after its 

implementation in 2008 given the new sources of regulatory concerns triggered by 

the Global Financial Crisis. Thus, in December 2010, the Basel Committee on 

Banking Supervision (BCBS) published the first version of the new Basel framework 

"A global regulatory framework for more resilient banks and banking systems " ( 

Basel III). Basel III revises and strengthens the three pillars established by Basel II, 

and extends it in several areas. The new Basel framework set new standards that 

targeted both the microprudential and macroprudential levels through multiple 

individual measures. Increased quality, quantity and transparency of regulatory 

capital and the introduction of capital buffers are some of the main highlights. Basel 

III also introduced higher capital requirements for particularly risky products and 

reduced leverage ratios in an attempt to prevent excessive bank leverage. Under this 

new framework, more details have been specified on the supervisory treatment of 

 y t m cally  mp  ta t ba k . Th  d f   t     f “Global Systemically Important 

Banks (G-SIBs),” (Ba  l C mm tt      Ba k    S p  v     , 2011) does include, for 

the first time, the concept of interconnectedness, thereby measured as the aggregate 

value of assets and liabilities each bank has with respect to other banking institutions. 

Basel III was initially agreed upon by the members of the Basel Committee on 

Banking Supervision in November 2010, and was scheduled to be introduced from 

2013 until 2015; however, implementation was extended repeatedly to 31 March 

2019 and then again until 1 January 2022. 

 

 

 

https://en.wikipedia.org/wiki/Basel_Committee_on_Banking_Supervision
https://en.wikipedia.org/wiki/Basel_Committee_on_Banking_Supervision
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6.3 Policy applications 

One of the many lessons that emerged from the Global Financial Crisis (GFC) of 

2007 is that banks were overseen mainly on individual basis without sufficient 

consideration for systemic risk. Filling this gap will require a new set of macro-

prudential tools to regulate and supervise institutions based on their size and their 

interconnectedness or complexity. The findings presented in this Thesis have 

significant implications on banking supervision and policy conduct for central banks 

and supervisory authorities. 

The role of supervisory authorities is critical to preserve financial stability in banking 

system and limit the contagion of financial stress of a financial institution to others 

and, thus to avert adverse effects on the proper functioning of the financial system 

and economy. However, the a priori evaluation and measurement of financial 

contagion risk is a challenging task since its estimation entails great uncertainty. 

After all, most regulators and policymakers believe that systemic events can be only 

identified after the fact. Since the primary role of supervisory authorities is to 

identify, measure and reduce systemic risk, the identification of such a risk clearly 

needs to be under a probabilistic framework which can predict the level of overall 

systemic risk in different scenarios. Many indicators for measuring systemic risk has 

b    p  p   d  v   th  la t d cad . Tw   f th m a   th  Acha ya  t al.’  (2011) 

ma    al  xp ct d  h  tfall (MES) wh ch   t mat   a f  a c al    t t t   ’  l    

conditional on the banking system being in distress and the Adrian and 

B      m    ’  (2010) Conditional Value-at-Risk (CoVaR) which evaluates systemic 

losses conditional on each financial institution being in distress. These measures 

usually take into account the size, the probability of bank default, and even the 

correlation of each bank. However, these measures do not take into account the 

reciprocal web of exposures linking financial institutions and the systemic importance 

of each bank in the banking system. 

Based on this gap, researchers and regulators make use of network models in 

assessing contagion risk. The network models usually consider the interbank network 

as propagation channel for financial contagion. For this reason, there can be used 

mathematical models which predict financial contagion based on measurable 

variables such as the leverage or the density of the network. As pointed out by Billio 

et al. (2012) when we think about systemic and contagion risk we might focus on the 

“f    L’ ”; th    b     l v  a  , l q  d ty, l      a d l  ka   . O       a ch p  p     

such models that give the ability on the supervisor to quantify the possibility of 

contagion given various measurable variables that has at his disposal.Our analysis 

shows that although the risk of contagion is low frequency event, interbank exposures 

may constitute a devastating channel of contagion at turbulent periods through which 

problems affecting one bank may spread to other banks. As systemic risk evolves 

over time, regulatory policies should include not only a frequent monitoring of 

interbank exposures but also a regular assessment of the interbank market structure, 
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such as the overall leverage of the system, the nature of the interconnectedness and 

the heterogeneity across bank sizes and interbank exposures. 

Central bank, acting as the supervisor, will have the ability to estimate the dependent 

variable (contagion effect) taking into account risk indicators (directly measurable 

variables) that are employed in our analysis such as the leverage of the network, the 

size or the heterogeneity of the system. The supervisor can monitor these 

measurements frequently and check if the stability of the system improves or 

deteriorates. Our numerical simulations suggest that attention should be given to the 

structure and the size of interbank loans between banks. The crucial thing is to limit 

systemic risk and the contagion effect by preventing banks from failing in the first 

place, placing particular emphasis on the systemic banks, being these banks with few 

connections but large risk exposure each or these banks with many connections and 

low risk exposure each. Specifically, our results show that once the initial shock 

spread in the system, the extent to which the propagation will stop is primarily 

associated with the network structure of interbank exposure in the system and the 

total capital adequacy of the system. Capital adequacy of the system plays a 

prominent role whether the interbank network system withstands an initial shock or 

incur contagious breakdowns with detrimental consequences to the entire economy.  

Furthermore, the supervisor can also compare different network structures as far as 

contagion is concerned. However, this is somehow a passive intervention of the 

supervisor where he can ring the alarm bells for immediate actions, should the 

conditions deteriorate. However, the supervisor can also apply active risk 

ma a  m  t t ch  q   . Pa am t   ’ b   da     c  c       c  ta     a d  y t m c 

risk can be set, ranging from low to medium or high risk. These boundaries can be 

interpreted as limits to the independent variables that supervisor can measure. Every 

time the supervisor observes that contagion has entered into a danger zone or has the 

propensity to enter, he will have to take corrective actions with regards to the 

variables mentioned above. If for example, the supervisor observes that the leverage 

of the system is heading into dangerously levels resulting in increased contagion 

levels, he will intervene aiming to limit the leverage of the system imposing 

borrowing restrictions to critical banks
12

 or imposing increases on the capital buffers 

that are required to hold. Furthermore, if the increased contagion levels are due to low 

connectivity across banks or to put it differently, there is increased loan portfolio 

concentration in particular regions of the network, the regulator will give incentives 

for increased connectivity and thus risk sharing across banks in an attempt to lower 

the probability of contagious defaults.  

Our results also suggest that it would be wiser and more prudent policy to set capital 

requirements from a system-wide angle rather than imposing a common threshold to 

all financial institutions. In other words, capital requirements should be set to each 

                                                           

12
This is in line with the latest reforms in banking regulation. An example of this kind of policy reform include the new standard 

that the BCBS introduced in April 2014, setting a lower large exposures limit for exposures between G-SIBs of 15% of Tier 1 

capital as opposed to the 25% limit applied to other counterparties. 
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bank according to its systemic importance within the system. This notion is in line 

with the suggestions of Haldane and May (2011) and Alter et al. (2015). 

Our suggested analysis is easily explainable, reproducible and can be carried out for 

all banks in a banking system for a certain point in time. Repeating this exercise 

periodically for a range of parameters concerning contagion and systemic risk makes 

it possible to judge how the stability of the financial system evolves over time. This 

could give regulators important information on how e.g. certain regulatory actions 

affect the stability of the financial system. 

Finally, let us emphasize that regulators should review periodically the parameters of 

their model they have decided to work with, respond quickly to fast-evolving market 

conditions and adapt their policies. Early regulatory intervention is of crucial 

importance, since it paves the way to tackling the undesirable developments 

contributing to contagion or systemic collapse. 
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7. Closing Discussion 

 

The crisis that begun in the US in 2007 and developed into a full-blown international 

banking crisis with the collapse of Lehman Brothers in September 2008 will be 

remembered at the history as the worst financial crisis since the Great Depression. 

The initial crisis, which originated in the U.S. subprime mortgage-backed securities 

and collateralized debt obligations markets, affected an ever-widening group of 

market participants around the world through a complex web of interlinkages. The 

initial shock spread rapidly through beyond the United State's borders, thus 

contaminating the global financial system. This distress has led to the default of a 

large number of banks and jeopardized the existence of many other financial 

institutions. In an effort to ease the aftermaths of that financial crisis, governments 

were forced to bail-out large, complex and highly interconnected financial 

intermediaries as they feared the unforeseeable consequences of their default. Ten 

years later, one of the many lessons the crisis taught us is the recognition of the 

importance of interconnectedness as a key dimension of systemic risk. Financial 

institutions need to be controlled not only in relation to their propensity to undertake 

high risk due to the protection they enjoy on their liability side, but also in relation to 

the risk they transmit to other institutions with which they are connected to by a 

complex web of exposures. For regulators and central bankers the crucial thing about 

systemic and contagion risk is to measure the systemic importance of individual 

institutions and whether this importance is translated to their size, leverage or their 

interconnection with other institutions. 

This thesis is the result of an effort to develop a better understanding of systemic risk 

and to analyze the interplay of several crucial drivers on interbank contagion, such as 

ba k cap tal  at   , l v  a  ,   t  c    ct d     a d h m      ty ac     ba k ’ 

sizes. Making use of the tools that network theory provides, we consider network 

models and try to address the following questions: Does heterogeneity, leverage and 

interconnectedness matter for systemic risk and the propagation of contagion? If so, 

in what respect? As pointed out by Billio et al. (2012) when we think about systemic 

and contagi      k w  m  ht f c      th  “f    L’ ”; th    b     l v  a  , liquidity, 

losses and linkages. 

After reviewing the recent literature on interbank contagion and providing some basic 

concept from network theory, we start our study by giving a different definition to 

contagion related to that, that is obeserved in the recent literature. Thus, unlike most 

papers in the recent literature (Nier et al., 2007; Gai and Kapadia, 2010; Chinazzi et 

al., 2015; Amini et al., 2016) we define the term contagion as the situation in which 

the initial failure of a bank leads to the failure of at least one other bank, while the 

extent of contagion is measured by the total capital lossin the banking system due to 

the failure of at least one bank. In other words, we are mostly interested in detecting 

the magnitude of capital losses in the banking network rather than the number of 

banks that were adversely affected. We examine, in chapter 4, via a comprehensive 
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network model the knock-on effects an initial default can bring into the interbank 

network. Due to lack of data, we generate large number of banking systems via a 

network structure framework and balance sheet allocation. In each realization, we 

construct interbank networks of various sizes and test four scenarios by varying the 

equity size of banks and the interbank exposure structure across creditor banks. 

Furthermore, we assume that the network of interbank claims and obligations forms 

randomly. This assumption enable us to capture all possible scenarios that may 

appear in real-world situations. Our findings show that heterogeneity in bank sizes 

and interbank exposures matters a great deal in the stability of the financial system, as 

its absorption capacity is enhanced. Also, the level of interconnectedness hugely 

impacts on th   y t m’      l   c ,   p c ally     mall   a d h  hly   t  c    ct d 

interbank networks. We provide also evidence that highly leveraged banks form the 

main channel through which financial shocks propagate within the system and such 

effect is more pronounced in large interbank networks than in smaller ones. 

In chapter 5, we extend the model developed in the previous chapter to include a wide 

variety of network topologies and provide a better understanding of the relation 

between network structure, banks’ cha act    t c  a d   t  ba k c  ta    . Wh l  th  

focus of the previous chapter is on the various factors that affect interbank contagion 

such as bank capital ratios, leverage, interconnectedness and homogeneity across 

ba k ’   z  , th  m d l lack  fl xibility as far as the variability of the networks links 

   c  c    d. I    d   t  c  c mv  t th   p  bl m, w    t  d c  th  E dő -Ré y  

probabilistic network model in our study to provide a wider vicinity of scenarios 

concerning the network structure of the interbank system and study how homogeneity 

within the interbank network affects the propagation of financial distress from one 

institution to the other parts of the system through bilateral exposures.The 

  t  d ct     f th  E dő -Ré y  p  bab l  t c   twork model provides us with a wider 

vicinity of scenarios concerning the network structure of the interbank system. Under 

this framework, we build up multiple scenarios of various network structures that 

include a satisfactory number of cases via Monte Carlo simulations. In every single 

network that we construct, we investigate the dynamics of cascading defaults from an 

   t al  a d m  h ck that h t  th   y t m. E dő –Ré y   a d m   aph m d l wh ch    

one of the earliest theoretical network models was introd c d by E dõ  a d Ré y  

(1960). In this random graph, each possible link between any two nodes can occur 

with a certain independent and identical probability-th  E dő  a d Ré y  p  bab l ty. 

Th  E dő  a d Ré y  (1960)  a d m   aph m d l    a m d l    wh ch has been 

extensively applied for the study of contagion in financial networks, e.g. Iori et al. 

(2006), Nier et al. (2007), Gai and Kapadia (2010), May and Arinaminpathy (2010) 

a d Am     t al. (2016).U     th  E dő –Ré y    tw  k  t  ct   , th  d      

distribution or the connectivity among banks can vary with respect to the chosen 

probability p. Thus, each random network generated with the same parameters N, p 

looks slightly different. Not only the detailed wiring network graph changes between 

realization , b t    d    th    mb    f l  k . Ra d m   aph     E dő -Ré y    aph  

are useful for modeling, analysis, and solving of structural and algorithmic problems 
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arising in mathematics, theoretical computer science, statistical mechanics, natural 

sciences, and even in social sciences. 

Similar to the next chapter, we explore the interplay between heterogeneity, balance 

sheet composition in the spreading of contagion using four basic scenarios, under an 

E dő -Ré y    tw  k  t  ct          a w d   a     f l  k probabilities between any 

two banks. Our findings indicate a non-monotonic relation between diversification 

and interbank contagion across the different sizes of interbank networks for all 

scenarios tested. While for small or medium interbank networks, connectivity can act 

as an absorbing barrier, such that interbank systems of these sizes can withstand the 

initial shock, for large network systems connectivity does not seem to provide an 

effective shield against capital losses. Our results, for the four scenarios tested, 

indicate that small and thus more concentrated interbank network systems are more 

prone to contagion. In these cases, we observe that the size of total capital losses is, in 

most cases, larger than that documented in medium and large sized systems, which is 

in line with the findings of Nier et al.(2007). As far as heterogeneity is concerned 

which enters in our experiments in the form of interbank claims and bank sizes. Our 

results clearly suggests that heterogeneity plays a significant role in the stability of 

the financial system. Similar to the previous chapter, we still find that when 

h t        ty      t  d c d w th    p ct t  th    z   f  ach ba k, th   y t m’   h ck 

absorption capacity is enhanced. In addition, when we allow for heterogeneity on 

interbank exposures in our model, we observe additional resilience to the interbank 

network as an initial shock dissipates more easily than in the case of homogeneous 

interbank claims. Finally, we should also justify the fact that we choose to work 

  d   a  E dő -Ré y    tw  k  t  ct     v    f th     tw  k f am w  k      t v  y 

realistic. In an such a network framework, where the probability of forming  a link is 

homogeneous, the resulting network structure does not present marked heterogeneity. 

As we observed from all the four scenarios tested, the initial shock that hits the 

system seems to propagates into the system jeopardizing thus the stability of the 

entire system. This strengthens even more our arguments concerning the critical role 

that heterogeneity plays in the resilience of the financial system. 

From a regulative perspective, our study provide, in chapter 6, insights for the 

measurement of systemic risk under a network context and give the ability to the 

supervisor to quantify the possibility of contagion given various measurable variables 

that has at his disposal. Our analysis shows that although the risk of contagion is low 

frequency event, interbank exposures may constitute a devastating channel of 

contagion at turbulent periods through which problems affecting one bank may 

spread to other banks. As systemic risk evolves over time, regulatory policies should 

include not only a frequent monitoring of interbank exposures but also a regular 

assessment of the interbank market structure, such as the overall leverage of the 

system, the nature of the interconnectedness and the heterogeneity and homogeneity 

across bank sizes and interbank exposures.The supervisor can also compare different 

network structures as far as contagion is concerned. However, this is somehow a 

passive intervention of the supervisor where he can ring the alarm bells for immediate 
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actions, should the conditions deteriorate. However, the supervisor can also apply 

act v     k ma a  m  t t ch  q   . Pa am t   ’ b   da     c  cerning contagion 

and systemic risk can be set ranging from low to medium or high risk. These 

boundaries can be interpreted as limits to the independent variables that supervisor 

can measure. Every time the supervisor observes that contagion has entered into a 

danger zone or has the propensity to enter, he will have to take corrective actions with 

regards to the variables mentioned above. 
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