
NATIONAL AND KAPODESTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

BSC THESIS

Detecting Hate Speech Online using Machine Learning

Antonios N. Danezis

Supervisors: Alexios Delis, Professor NKUA

ATHENS
SEPTEMBER 2020

ΕΘΝΙΚΟ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ

Αναγνώριση Ρητορικής Μίσους στο Διαδίκτυο με χρήση
Μηχανικής Μάθησης

Αντώνιος Ν. Δανέζης

Επιβλέποντες: Αλέξιος Δελής, Καθηγητής ΕΚΠΑ

ΑΘΗΝΑ
ΣΕΠΤΕΜΒΡΙΟΣ 2020

BSC THESIS

Detecting Hate Speech Online using Machine Learning

Antonios N. Danezis
S.N.: 1115201300033

SUPERVISORS: Alexios Delis, Professor NKUA

ΠΤΥΧΙΑΚΗ

Αναγνώριση Ρητορικής Μίσους στο Διαδίκτυο με χρήση Μηχανικής Μάθησης

Αντώνιος Ν. Δανέζης
Α.Μ.: 1115201300033

ΕΠΙΒΛΕΠΟΝΤΕΣ: Αλέξιος Δελής, Καθηγητής ΕΚΠΑ

CONTENTS
1. INTRODUCTION . 6

1.1 Background . 6

1.2 Related work . 6

1.3 Our Objective . 6

2. PREPROCESSING . 8

3. PROPOSED MODELS . 13

3.1 Regression and Classification Models . 13

3.2 Neural Network Model . 13

4. EXPERIMENTAL RESULTS . 15

4.1 Dataset Description . 15

4.2 Evaluation Factors . 18

4.3 Evaluating the systems . 18
4.3.1 Spell Checker . 18
4.3.2 Preprocessing Evaluation . 21
4.3.3 KNN Evaluation . 22
4.3.4 Logistic Regression Evaluation . 23
4.3.5 Linear SVC Evaluation . 25
4.3.6 Decision Trees Evaluation . 28
4.3.7 Fast text classifier Evaluation . 30

4.4 Comparing the classifiers . 32

5. CONCLUSION . 33

6. FUTURE WORK . 34

REFERENCES . 35

FIGURES LIST
Figure 1: Python Spell Checker using word dictionary 10

Figure 2: Python Spell checker using fasttext 11

Figure 3: Example of the TfidfVectorizer creating a dictionary of unigrams and
bigrams from a sentence . 12

Figure 4: Entries from the original dataset . 16

Figure 5: Dataset entries after relabeling . 17

Figure 6: Dataset statistics . 17

Figure 7: Spell checker predictions . 19

Figure 8: Updated spell checker predictions 20

Figure 9: Spell checking the first 1k entries of the dataset: Performance information 20

Figure 10: KNN classifier score with parameterization 22

Figure 11: KNN Classifier Classification report 22

Figure 12: KNN Classifier Prediction test information 23

Figure 13: Logistic Regression Classifier score for different C values 24

Figure 14: Logistic Regression Classifier score for different Tolerance values . 24

Figure 15: LR Classifier Classification report 25

Figure 16: LR Classifier Prediction test information 25

Figure 17: Support Vector Classifier score Primal/Dual 26

Figure 18: Support Vector Classifier score for different C values 27

Figure 19: Support Vector Classifier score for different Tolerance values 27

Figure 20: SV Classifier Classification report 28

Figure 21: SV Classifier Prediction test information 28

Figure 22: Extra Trees Classifier score for different NEstimators values 29

Figure 23: ET Classifier Classification report 29

Figure 24: ET Classifier Prediction test information 30

Figure 25: Fasttext Supervised Classifiers scores for different number of epochs 31

Figure 26: Fasttext Classifier Prediction test information 32

ABSTRACT

For the past two decades we’ve witnessed rapid growth of the internet as a platform
to grow communities. Large online communities have formed on social media, forums,
broadcasting platforms, live chats and online video games. However, with all this rise
in popularity of these platforms, so has the difficulty of moderating them. In this paper,
we’ll propose several deep learning models trained on a toxic comment dataset, evaluate
and compare them. Due to the nature of our dataset our models are mostly aimed for
use in forums and social media where the message length is longer. We will study the
training dataset and discuss its issues. Finally, we will demonstrate different preprocessing
techniques and decide which ones are beneficial to our models and which are detrimental.

Αναγνώριση Ρητορικής Μίσους στο Διαδίκτυο με χρήση Μηχανικής Μάθησης

1. INTRODUCTION
1.1 Background

In recent years, there has been a steep increase in the userbase of online platforms
such as social media, forums, broadcasting platforms, live chats and online video games.
According to a 2020 report by DataReportal [1], the number of internet users around the
world has grown by 7% since 2019, reaching 4.54 billion. Out of those, 3.80 billion are
social media users whose numbers have increased by 9% 2019. This means that in just
one year 321 million new users have joined online communities. With the growth of these
online communities the amount of hate speech, toxic behavior and cyberbullying has also
increased. A 2018 survey by common sense media reported that 64% of 1317 year olds
in North America have witnessed some form of hate speech online [2]. Another study by
Data& Society Research Institute reports that 91% of internet users between the ages
1829 have witnessed someone being harassed online.

It becomes clear that there is a need for more thorough moderation of online communities.
However, the sheer amount of user generated content makes it impossible to manually
moderate. Some platforms use a report system to recruit the help of the users inmoderation
but this is a slow process and often requires manual review, it also fails to filter toxic
messages before them being shared. Manymoderators use blacklist or regular expression
filters, but those solutions fail to detect more subtly toxic messages. Short text messages,
due to the low amount of word tokens, generate sparse matrices with little to no token co
occurrence. This makes keyword extraction and context extrapolation especially difficult.
The challenges in sentiment analysis and classification of short text has been explored by
several other papers [4] [5].

1.2 Related work
There have been a number of papers dedicated in sentiment analysis of online short
text as well as in the area of hate speech detection. A study by I. Hemalatha, Dr. G
Varma & Govardhan and Dr Indukuri Latha offers examples on how sentiment analysis
can be useful for social media platforms such as Twitter [7]. Proposed solutions for toxic
comment detection and classification include the use of convolutional neural networks
[9] or a combination of multiple classification models [11]. Other studies focus less on
measuring the performance of certain classificationmodels and instead analyze the effects
of certain preprocessing transformations in toxic comment classification [21].

1.3 Our Objective
Our objective is to create a system that can analyze and detect toxic comments at scale.
Our model needs to detect intent in messages and not just flag bad words. It also needs to
produce minimal false positives in order to reduce the need for manual review. Creating a
complete replacement for a human moderator is not under the scope but we want to offer
a powerful enough tool to help with most of the workload. For this we will be proposing
and evaluating 5 different models, 4 featurebased models using Logistic Regression, K
Nearest Neighbor, Support Vector Machine and Decision Tree classifiers and a Fasttext
neural network model. Wewill be training our models using a dataset provided by Jigsaw in
a Kaggle competition [19]. Due to the nature of our dataset our models aremostly aimed for
use in forums and social media where the message length is longer. However, they should
remain viable for use in livechats where user messages are short, especially if a dataset
containing shorter messages is included during training. In section 2 we will be presenting
different preprocessing steps that we will be applying to our models. Section 3 focuses
on the machine learning methods used. In Section 4 we analyze the experimental results

A. Danezis 6

Αναγνώριση Ρητορικής Μίσους στο Διαδίκτυο με χρήση Μηχανικής Μάθησης

of the proposed approaches, as well as the effects of different preprocessing methods.
Section 5 is discussion and future work.

A. Danezis 7

Αναγνώριση Ρητορικής Μίσους στο Διαδίκτυο με χρήση Μηχανικής Μάθησης

2. PREPROCESSING
Processing natural language and especially online comments presents a lot of challenges.
The text is riddled with symbols, nonASCII characters, spelling mistakes and attempts to
circumvent blacklist filters by obfuscating words. Especially due to misspelling (whether
intentional or not) the text corpus contains many different variations of the same word.
Those variations pose challenges during feature extraction as they result to an extremely
large amount of word features being created. Words are often poorly separated, with
spacesmissing after periods andmixed numeric characters within words, thus complicating
tokenization.

• Text cleanup : The first preprocessing step is to clean up the text. This includes:

– Removing Unicode characters
This is done using the unidecode library (https://github.com/takluyver/Unidecode).
The library allows us to take a Unicode string and represent it (usually via transliteration)
in ASCII characters. If it fails to represent a Unicode character in ASCII it replaces
it with ”[?]”, which we later remove from the string.

”HÈLLO WÖRݤLÐ” clean_unicode−−−−−−−→ ”HELLO WORLD”

– Removing irrelevant ASCII characters
Since certain ASCII characters do not play a role in conveying sentiment, we remove
them from both the training and test data. We do however keep punctuation symbols,
since they play important factor in sentiment analysis. This is done by removing all
characters that fit the following regular expression from the provided text:

1 # Compile regex t ha t de f ines every charac te r which i s not alphanumeric ,
whitespace , or one of the l i s t e d symbols

2 re . compile (r ’ [^ a z0 9 \ . \ ? \ ! \ , \ \ # \@\%] ’ , re . IGNORECASE)

– Converting text to lowercase
We will also be converting our text to lowercase before vectorization, this will prevent
”Hello” and ”hello” from being viewed as different words by our model.

• Tokenization : For tokenization we’ll be considering any non alphanumeric character as
a delimiter. The reason we consider numbers as part of words is because in text they can
be used to replace certain letters. For example ”hello” could be written as ”h3llo” and we
want it to be tokenized into a singular token including the number 3. Furthermore, we only
accept tokens with length larger than one character this helps reduce the amount of features
that are not important when analyzing sentiment. To achieve the above we use the regex
”(?u)\b\w\w+\b” as a token pattern during the tokenization step.

A. Danezis 8

https://github.com/takluyver/Unidecode

Αναγνώριση Ρητορικής Μίσους στο Διαδίκτυο με χρήση Μηχανικής Μάθησης

• Spell correction : This step helps minimize differently typed variations of the same word
due to either incorrect spelling or attempt of the users to circumvent moderation. There
are two approaches to achieve this:

The first approach is based on a simple spellchecker made by Peter Norvig[12]. However,
in our variation we’ll be using an already compiled Fasttext [15] library as a dictionary. The
library we’ll be using is based on common crawl, containing 2million words ordered by their
frequency in the training corpus.

We load the word collection into a dictionary, the key being the word and the value is a rank
which represents their frequency (Figure 1: lines 36). Then, when we receive a string of
words to spellcorrect, for every word if it doesn’t exist without our dictionary we find 2
edit variations of it (Figure 1: line 25). This includes insertions, deletions, transpositions
and word splits. Every one of those edits that also exists in the dictionary is added to a list.

Finally, we pick the word with the highest ranking (highest frequency) from that list (Figure
1: line 21). This approach helps us replace unknown words with similar words that are known,
however, it only takes into account the sequence similarity and ignores the linguistic context
of the involved words. It also is a very slow and memory heavy process since it requires
generating a dictionary with millions of entries.

A. Danezis 9

Αναγνώριση Ρητορικής Μίσους στο Διαδίκτυο με χρήση Μηχανικής Μάθησης

1 def load_words (s e l f) :
2 # Load word2vec model i n t o a d i c t i o na r y and set the value o f the element to

i t s frequency
3 s e l f . w2v = gensim . models . KeyedVectors . load_word2vec_format (

EMBEDDING_FILE_GOOGLE, b inary=True)
4 s e l f . words = { }
5 f o r i , word i n enumerate (s e l f . w2v . index2word) :
6 s e l f . words [word] = i
7

8 def get_words (se l f , t e x t) :
9 r e t u rn re . f i n d a l l (r ’ \w+ ’ , t e x t . lower ())
10

11 def P(se l f , word) :
12 N = sum(s e l f . words . values ())
13 # P r o bab i l i t y o f ‘ word ‘ .
14 t r y :
15 r e t u rn s e l f . words [word] / N
16 except :
17 r e t u rn 1
18

19 def co r r e c t i on (se l f , word) :
20 # Most probable spe l l i n g co r r e c t i on f o r word .
21 r e t u rn max(s e l f . candidates (word) , key= s e l f .P)
22

23 def candidates (se l f , word) :
24 # Generate poss ib le s pe l l i n g co r r ec t i ons f o r word .
25 r e t u rn (s e l f . known ([word]) or s e l f . known (s e l f . ed i t s1 (word)) or s e l f . known (

s e l f . ed i t s2 (word)) or [word])
26

27 def known (se l f , words) :
28 # The subset o f ‘ words ‘ t ha t appear i n the d i c t i o na r y o f WORDS.
29 r e t u rn set (w f o r w in words i f w i n s e l f . words)
30

31 def ed i t s1 (se l f , word) :
32 # A l l ed i t s t ha t are one ed i t away from ‘word ‘ .
33 l e t t e r s = ’ abcdefghi jk lmnopqrstuvwxyz ’
34 s p l i t s = [(word [: i] , word [i :]) f o r i i n range (len (word) + 1)]
35 de le tes = [L + R [1 :] f o r L , R in s p l i t s i f R]
36 t ransposes = [L + R[1] + R[0] + R [2 :] f o r L , R in s p l i t s i f len (R) >1]
37 rep laces = [L + c + R [1 :] f o r L , R in s p l i t s i f R f o r c i n l e t t e r s]
38 i n s e r t s = [L + c + R f o r L , R in s p l i t s f o r c i n l e t t e r s]
39 r e t u rn set (de le tes + transposes + rep laces + i n s e r t s)
40

41 def ed i t s2 (se l f , word) :
42 ” A l l e d i t s t ha t are two ed i t s away from ‘word ‘ . ”
43 r e t u rn (e2 f o r e1 i n s e l f . ed i t s1 (word) f o r e2 i n s e l f . ed i t s1 (e1))

Figure 1: Python Spell Checker using word dictionary

The second approach to spell correction also involves a Fasttext [15] model. This time,
we create a Fasttext model by training it on our comment dataset. We also use the pretrained
library to assist with the process. Afterwards, for every input word, we find the top n (5) similar
words using the trained model. We can pick the most similar word to correct to, but given
that this similarity is lingual and does not represent the difference between the two sequences
it becomes apparent that we’re missing another metric. A metric that can help us determine
the similarity between two strings is the Levenshtein distance[13]. This metric represents
the minimum amount of single character edits required to change one word to another.

A. Danezis 10

Αναγνώριση Ρητορικής Μίσους στο Διαδίκτυο με χρήση Μηχανικής Μάθησης

leva,b(i, j) =

max(i, j), if min(i, j) = 0

min

leva,b(i− 1, j) + 1
leva,b(i, j− 1) + 1
leva,b(i− 1, j− 1) + 1(ai ̸=bj)

otherwise

Now we can use this metric to discard words from the similar word list that have a high Levenshtein
distance from our input. This approach takes into account both the linguistic context and
the edit distance between the words. On large word2vec models, however, getting the nearest
neighbors of a word can be very time consuming at around 12 seconds.

1 def i s _ v a l i d (term , w2c_item) :
2 # A co r r e c t i on i s considered va l i d on ly i f i t s l i n g u i s t i c s i m i l a r i t y w i th

the o r i g i n a l word i s more than 60% and i t s lavensh te in d is tance from the
o r i g i n a l i s l esse r than the leng th o f the word /4 + 1

3 r e t u rn w2c_item [1] > 0.6 and n l t k . ed i t _d i s tance (term , w2c_item [0]) < (len (
term) /4 + 1)

4

5 def check (terms , model) :
6 bu f f e r = []
7 f o r term in terms :
8 recommendations = []
9 # Get the 5 nearest neighbors o f the o r i g i n a l word , as descr ibed by

the model
10 f o r s im i l a r _ i t em in model . nearest_neighbors (term , 5) :
11 i f i s _ v a l i d (term , s im i l a r _ i t em) :
12 # Append the co r r ec t i ons to the recommendations l i s t on ly i f

they are considered va l i d
13 recommendations . append (s im i l a r _ i t em [0])
14 bu f f e r . append ((term , recommendations))
15 r e t u rn bu f f e r

Figure 2: Python Spell checker using fasttext

In the above example we get the 5 nearest neighbors of each term. We could increase it
to a higher number like 10 to slightly increase accuracy, but it will further impact performance.

• Vectorization: The two most prevalent options when it comes to text vectorization are count
and tf idf (term frequencyinverse document frequency). A count vectorizer will create
a unique integer i for each word. That word will be later vectorized into a vector with its ith
direction set to 1 and all other dimensions set to 0. When vectorizing a message consisted
of multiple words it will add up all the vectors and create a singular vector. The issue with
the count vectorizer is that a message with more words will create larger resulting vectors,
this results to a scenario where the length of the message seems to be almost as important
as the contents themselves. The tf idf vectorizer [14] solves that issue by using word frequency
instead of word count to create the message vector.

• Word ngrams: In natural languages, words often have multiple meanings which change
depending of the context the word is being used in. Word ngrams represent a series of
words in a given sample of text (or speech). They allow to store context around a word so
meaning can be derived more accurately. Ngrams can have different sizes depending on

A. Danezis 11

Αναγνώριση Ρητορικής Μίσους στο Διαδίκτυο με χρήση Μηχανικής Μάθησης

how many words they’re consisted of, a unigram is a single word ngram, size 2 is bigram,
size 3 trigram and so on.

During our vectorization preprocessing step, we have the ability to extract ngrams from
the given data. The vectorizer allows us to define a range of ngrams to extract so we’ll
be extracting ngrams of size 1,2,3 and 4. This should allow the estimator to better understand
the context the words are being within, at the cost of a much higher memory footprint.

1 >>> vec t o r i z e r = T f i d f Ve c t o r i z e r (ngram_range=(1 , 2))
2 >>> p r i n t (v e c t o r i z e r . f i t ([” the quick brown fox jumped over the lazy dog ”]) .

vocabulary_)
3 { ’ the ’ : 13 , ’ qu ick ’ : 11 , ’ brown ’ : 0 , ’ fox ’ : 3 , ’ jumped ’ : 5 , ’ over ’ : 9 , ’ l azy ’ :

7 , ’ dog ’ : 2 , ’ the quick ’ : 15 , ’ qu ick brown ’ : 12 , ’ brown fox ’ : 1 , ’ fox
jumped ’ : 4 , ’ jumped over ’ : 6 , ’ over the ’ : 10 , ’ the lazy ’ : 14 , ’ l azy dog ’ :
8}

Figure 3: Example of the TfidfVectorizer creating a dictionary of unigrams and bigrams from a
sentence

• Extracting Surface features: During the above steps we’ve done some processing that
has destructively removed some characteristics of the comment text. Most importantly, the
vectorizer ignores the characters case and importance of punctuation. This means that
sentence typed in all caps and a sentence typed in lowercase appear the same to the model.
While that is good in order to help extrapolate the linguistic context of the words within the
sentences, it also removes an important metric for analyzing sentiment.

In order to mitigate the situation we extract a few quality based surface features.

– Lengthiness
A measure of the length of the comment compared to the average length of comments
[22].

– Capital word Frequency
The frequency of words that are written in all uppercase letters [23], often associated
with shouting.

– Uppercase Frequency
The frequency of uppercase character in the message. This is extracted in addition
to the capital word frequency in order to cover scenarios where sentences without
spaces don’t get tokenized into multiple words.

– Exclamation mark Frequency
Measuring the frequency of exclamation marks is based on the surface feature proposed
in this paper regarding the assessment of post quality in online discussion [23]. However,
instead of the proposed percentage of sentences that end with a question mark, we’ll
be measuring exclamation frequency by calculating the ratio of the amount of question
marks in a comment by the length of the comment.

All those metrics are passed through a standard scaler before they are fed, along with the
text data, into the classifier.

A. Danezis 12

Αναγνώριση Ρητορικής Μίσους στο Διαδίκτυο με χρήση Μηχανικής Μάθησης

3. PROPOSED MODELS
We apply various different techniques to classify our data. Since our dataset is already labeled
with the toxicity of each comment we will be using supervised learning models.

3.1 Regression and Classification Models

• Logistic Regression
The Logistic Regression algorith is very competitive for use in binary classification, used
in numerous papers [24][25][6]. In Logistic Regression, we train a linear model that predicts
unknown parameters using the known parameters (data). The trained linear model uses
a logistic function (f(x) = L

1+e−k(x−x0)
) to estimate the binary (with two possible values)

dependent variable. By default, the linear model only provides a probability of the dependent
variable having a specific value, however, by specifying a probability cutoff (usually set
to 0.5) we can turn it into a classifier. Furthermore, that probability can also be used
to describe the classifiers confidence on a prediction.

• Support Vector Machine (linear kernel)
Support vector machines are a type of supervised learning classifier. When trained,
an SVM model creates a map of points using the training vectors. Those points define
gaps that surround the clusters formed by the training vectors. When classifying new
input the SVM maps the input vectors into the generated space and categorizes them
based on which side of the gap they fall on.

There is a linear and nonlinear version of Support Vector Classifiers (SVC) in the library
we use. The nonlinear SVC uses the library LIBSVM, which implements the Sequential
Minimal Optimization (SMO) algorithm. The linear SVC on the other hand uses the LIBLINEAR
library. This library implements linear SVMs and logistic regression models trained using
a coordinate descent algorithm.

Since we use a relatively large dataset and our problem is a binary classification one,
we will be using the linear SVC. This will retain the performance of the nonlinear SVC
but will be much more efficient.

• Decision Trees
There are two main types of decision tree classifiers: Random Forest and Extra (Randomized)
Trees Classifier. We will be studying the performance of the Extra Trees Classifier.

• KNearest Neighbors
KNN is another popular classifier in the field of text classification. It finds the nearest
neighbors of a given input and classifies the input based on the distance of the input
from them using a provided weight system. We will be using euclidean distance to measure
the distance between vectors.

3.2 Neural Network Model
As a Neural Model we’ll be using a Fasttext model. The Fasttext system is a shallow neural
network based on these papers: [15][16] that generates word embeddings. A primary way
of generating word embeddings is the skipgram model, used by the word2vec neural networks
[17]. Skipgram is a generalization of ngrams as it does not require for words to be in consecutive
order, instead it can ”skip” over words to account for sparse data. This is limiting however,
since it creates poor representations of rare words, especially if they’re not a part of the training
corpus. Fasttext attempts to mitigate this issue by introducing the ngrammodel, which further
builds upon the skipgram model by introducing subword information (character ngrams).
This allows it to extrapolate the linguistic meaning of unknown words by using the extracted

A. Danezis 13

Αναγνώριση Ρητορικής Μίσους στο Διαδίκτυο με χρήση Μηχανικής Μάθησης

subword information.

The supervised Fasttext model supports multiple labels but not multiple features. This means
that our preprocessing step which adds extra features can’t be included. However, due to
word ngrams and subword information is still very capable of understanding intent and sentiment.

A. Danezis 14

Αναγνώριση Ρητορικής Μίσους στο Διαδίκτυο με χρήση Μηχανικής Μάθησης

4. EXPERIMENTAL RESULTS

In this section we will explore the dataset used to train and test the previously discussed models.
Then, we will analyze their performance experimentally.

4.1 Dataset Description
The dataset used for the evaluation of the models consists of 159 thousand wikipedia comments
with a unique id and a toxicity rating. It is provided by Jigsaw[20] for a competition on Kaggle[19].
The comments are written in english but can contain nonenglish words, nonASCII characters
and spelling mistakes. The length of the comments ranges from 1 word to hundreds of words.

The original dataset contained 6 flags for each comment:

• Toxic

• Severe Toxic

• Obscene

• Threat

• Insult

• Identity Hate

A comment can be tagged with none, any or all of the above tags. The multiple tags, however,
are not very helpful in the context of whether a context should be flagged or not. In that scenario
we’d want a single “Yes” or “No” flag, or some confidence percentage on how toxic a comment
is considered. Also, as we’ll see below they can even be detrimental.

Let’s examine some entries from the original dataset:

A. Danezis 15

Αναγνώριση Ρητορικής Μίσους στο Διαδίκτυο με χρήση Μηχανικής Μάθησης

Comment Tags

1 What are the numerical parameters used in the plot?

2 UNBLOCK ME OR I’LL GET MY LAWYERS ON TO
YOU FOR BLOCKING MY CONSTITUTIONAL RIGHT
TO FREE SPEECH

Toxic

3 I think that your a Fagget get a oife and burn in Hell
I hate you ’m sorry we cant have any more sex i’m
running out of conndoms

Toxic
Obscene
Threat
Insult
Identity Hate

4 Current source. I’m not sure what you’re asking about
the opamp current. 21:39, August 6, 2005 (UTC)

5 you have a sandy vagina Toxic
Obscene
Insult

6 Don’t be such a sandy vagina. Leave it to a fag to be
such a let down. People are just having fun editing joke
pages. No real person would ever sight wikipedia as
a credible source. Your job and everything you do is
worthless. You’re worthless as a human being. Take the
dick out of your ass and calm down.

Toxic

Figure 4: Entries from the original dataset

We can see that comments that are mildly toxic (such as comment 2) are marked with the
tag Toxic only. Also, usually, the more labels a comment is tagged with the more severely
toxic it is. Exceptions to that are comments like entry 6 above, it is certainly more toxic than
comment 5 and contains the same insults as both comment 5 and 3, yet it is only marked
as toxic and nothing else. Clearly there are some errors in the original dataset, this issue was
further explored in one of the posts on the kaggle thread[18]. However, since it would be very
difficult to manually correct the issues with the dataset, we can instead try some solutions
to mitigate this issue.

First, let’s reduce the labels to only two: toxic and not toxic. Any comment that contains any
of the tags on the original dataset is marked as toxic, if it isn’t marked with any tags then it’s
tagged as nontoxic.

Let’s update the above entries:

A. Danezis 16

Αναγνώριση Ρητορικής Μίσους στο Διαδίκτυο με χρήση Μηχανικής Μάθησης

Comment Tags

1 What are the numerical parameters used in the plot? NotToxic

2 UNBLOCK ME OR I’LL GET MY LAWYERS ON TO
YOU FOR BLOCKING MY CONSTITUTIONAL RIGHT
TO FREE SPEECH

Toxic

3 I think that your a Fagget get a oife and burn in Hell
I hate you ’m sorry we cant have any more sex i’m
running out of conndoms

Toxic

4 Current source. I’m not sure what you’re asking about
the opamp current. 21:39, August 6, 2005 (UTC)

NotToxic

5 you have a sandy vagina Toxic

6 Don’t be such a sandy vagina. Leave it to a fag to be
such a let down. People are just having fun editing joke
pages. No real person would ever sight wikipedia as
a credible source. Your job and everything you do is
worthless. You’re worthless as a human being. Take the
dick out of your ass and calm down.

Toxic

Figure 5: Dataset entries after relabeling

Now we can work on the data a bit more consistently as well as produce a singular value
severity based on the confidence of the prediction.

The resulting statistics for the updated dataset are:

Uppercase Characters 17124

Exclamation marks 323

Total Characters 392779

Uppercase Words 949

Stop Words 143040

Total words 392779

Toxic Comments 16225

Non Toxic Comments 143346

Total Comments 159571

Figure 6: Dataset statistics

A. Danezis 17

Αναγνώριση Ρητορικής Μίσους στο Διαδίκτυο με χρήση Μηχανικής Μάθησης

For the spellchecker we used several different word2vec and fastext models. One is made
by Google, it has a 3 million word vocabulary with a vector length of 300 features and a size
of 1.5 GB. The other word2vec model is trained by Stanford and contains 1.2 million words
with a 200 vector feature length and a total size of 974MB. For the fasttext model we used
a model of 2 million word vectors trained with subword information on Common Crawl. The
vector length was 300 features and the size of the dataset is 7.2GB.

4.2 Evaluation Factors
When evaluating and parameterizing models we used a GridSearch algorithm. GridSearch
searches the parameter space exhaustively, considering all possible combinations of parameter
values. The approach takes its name from the gridlike structure the parameter values are
provided in. The scoring factor takes into account precision, recall, f1score and accuracy.
In addition to that, we will examine the amount of false positives each model produces. A
model with low false positives would allow for a more automated flagging system, where comments
are automatically flagged and filtered if there is a high enough confidence of a comment being
toxic.

4.3 Evaluating the systems

4.3.1 Spell Checker

Let’s look at some examples of the spell checkers work. We ran the spell checker on the data
set and selected 10 suggested corrections to study. These are the 10 first suggestions, ignoring
the ones that include adding or removing a dash (ex. makeup to makeup) or proposing a
plural form of a word.

A. Danezis 18

Αναγνώριση Ρητορικής Μίσους στο Διαδίκτυο με χρήση Μηχανικής Μάθησης

Original Spellchecked

editting editng

happend happened

seperate separte

wellintentioned goodintentioned

naivity naivite

kilometres kilometeres

antiEuropean proEuropean

vandalise vandalising

harrasement harrassement

organisations organizations

Figure 7: Spell checker predictions

We notice that a lot of the misspelled words are changed to words that are also incorrectly
spelled. This happens because the fasttext model contains incorrectly spelled words too.
We can attempt to correct this issue by skipping suggestions that are not included in the english
word dictionary.

Let’s see some more results after the above update:

A. Danezis 19

Αναγνώριση Ρητορικής Μίσους στο Διαδίκτυο με χρήση Μηχανικής Μάθησης

Original Spellchecked

vandalising vandalizing

subsections sections

anyones someones

becuase because

harrass harass

seperate separate

naivity naivite

happend happed

vandalise vandalize

organisations organizations

vandalised vandalized

uptil uptill

Figure 8: Updated spell checker predictions

Now the suggestions are valid English words and they express a similar meaning even if the
suggestion is incorrect (see happend and subsections). There still exist some slightly erroneous
corrections (vandalising to vandalizing) but that’s due to the dictionary not containing the original
words. As such, it can be corrected by just introducing said words to the dictionary. With these
changes however less than 5% of the comments and about 0.06% of the words get corrected
at all. This raises serious questions about the meaningfulness of such a preprocessing operation.

Let’s measure the performance too:

Time(seconds)

Average Time 5.27

Max Time 95.2

Figure 9: Spell checking the first 1k entries of the dataset: Performance information

With this average spell checking duration it’s clearly not a viable option for live chats and most

A. Danezis 20

Αναγνώριση Ρητορικής Μίσους στο Διαδίκτυο με χρήση Μηχανικής Μάθησης

larger communities. This, combined with its unimpressive effectiveness made us discard it
as a preprocessing option. Perhaps a vastly more efficient and more effective spell checker
could be helpful, but it seems that training the model on the incorrectly spelled words so that
it understands intent is the best approach for our use case.

4.3.2 Preprocessing Evaluation
A number of studies have analyzed the effect of data preprocessing in text classification. One
such study [21] explores the effect of different text transformations on models during sentiment
classification. Another study [22] investigates the usefulness of content based (comment length,
uppercase frequency and more) and quality based features in predicting comment popularity
and user engagement. We are applying three different optional preprocessing steps. Nonalphanumeric
character removal, stopword removal, ngram generation and adding extra qualitybased features.
We will study how useful each of those transformations are on each of our models.

We performed a 2fold validation by dividing 90% of our dataset to 2 nearly equal parts. The
other 10% will be used for testing.

Logistic Regression Linear SVC Extra Trees Classifier

accuracy recall f1score accuracy recall f1score accuracy recall f1score

No Preprocessing 0.95133 0.95469 0.95119 0.95493 0.95833 0.95658 0.93478 0.93552 0.92400

Remove nonalphanum chars 0.95711 0.96077 0.95826 0.95870 0.96159 0.96022 0.93912 0.93859 0.93051

Remove stopwords

Lowercase 0.95334 0.95651 0.95320 0.95568 0.95820 0.95637 0.93511 0.93740 0.92548

Generate ngrams 0.94361 0.94492 0.94141 0.95200 0.95476 0.95324 0.93166 0.93439 0.92224

Qualitybased features 0.95129 0.95382 0.95039 0.95474 0.95764 0.95598 0.93308 0.93408 0.92332

Qualitybased features LC 0.95367 0.95682 0.95374 0.95614 0.95914 0.95756 0.93542 0.93558 0.92310

All sans ngrams 0.95961 0.96422 0.96205 0.96000 0.96347 0.96220 0.94102 0.94291 0.93398

All 0.95270 0.95726 0.95499 0.96051 0.96510 0.96420 0.93680 0.93909 0.92836

Πίνακας 3: Accuracy, recall and f1scores for different preprocessing transformations

As the above data indicates, the benefit of preprocessing our text data is small but noteworthy.

Removing nonalphanumeric characters is beneficial for all our models. The Logistic Regression
Classifier benefiting the most, where removing nonalphanumeric characters yielded an increase
from a 0.95119 f1score to 0.95826. Converting our input text to lowercase doesn’t offer much
of a benefit, however, it seems to greatly increase the effect if combined with quality based
features. This is most likely the case because the classifier can better derive linguistic meaning
out of the lowercase words, without losing the important information that character case provides.
The Linear Support Vector Classifier seems to benefit the most from the addition of such features,
while the Logistic Regression and Extra Trees Classifier models experience no practical improvement.
Generating ngrams yields more surprising results, we don’t know why but it ended up being
detrimental for all our models. Even when combined with removal of non alphanumeric characters
and lowercase text they still negatively affect the performance of the models. We will not be
using ngrams when evaluating our models for this reason.

Applying all the preprocessing steps sans ngrams boosts the f1score of our Logistic Regression
model from 0.95119 to 0.96205 a significant improvement . Our Extra Trees and Linear
Support Vector Classifiers also benefited from data preprocessing, with a 0.00998 and 0.00562
improvement in their f1score respectively.

A. Danezis 21

Αναγνώριση Ρητορικής Μίσους στο Διαδίκτυο με χρήση Μηχανικής Μάθησης

4.3.3 KNN Evaluation
The KNearest Neighbors algorithm requires very little parameterization since the main tuning
parameter is the amount of nearest neighbors (N) used to classify the comment.

2 5 10 15 20
0

20

40

60

80

100

Nnearest neighbor

C
la
ss
ifi
ca
tio
n
Sc
or
e

Figure 10: KNN classifier score with parameterization

In the diagram above we observe that the score for nearest neighbors is very mediocre for
less than 4 neighbors and it begins to stabilize at 12 nearest neighbors or higher. On the best
case scenario of 20 neighbors we can further analyze the results:

Precision Recall F1score Support

nottoxic 0.94 0.90 0.96 14383

toxic 0.83 0.41 0.55 1575

macro avg 0.89 0.70 0.76 15958

weighted avg 0.93 0.93 0.92 15958

Figure 11: KNN Classifier Classification report

A. Danezis 22

Αναγνώριση Ρητορικής Μίσους στο Διαδίκτυο με χρήση Μηχανικής Μάθησης

False Negatives 922

False Positives 132

Correct Predictions 14904

Total Predictions 15958

Accuracy 0.933

Total Prediction Time 1138.67s

Avg Prediction Time 71ms

Figure 12: KNN Classifier Prediction test information

4.3.4 Logistic Regression Evaluation
The Logistic Regression Classifier (LRC) has a few parameters we can tweak:

C: This parameter defines the inverse regularization strength, the lower this parameter is
the more it reduces the coefficients in the resulting regression. That results in a model with
more variance. If C is high then variance is reduced but this can lead to overfitting. So we
want to keep this parameter relatively low.

Solver: This is the algorithm to use in the optimization problem. For a dataset of the size we’re
working with we have mainly two options. Saga and Sag.

Tolerance: This value is used for stopping criteria. The lower it is the longer it takes for the
solver to converge.

Max Iterations: The maximum number of iterations allowed until the solver converges. If
we lower the tolerance mentioned above, we may need to increase the maximum iterations
so the solvers don’t fail to converge. After experimentation this value was set to 700 so we
can allow lower tolerances to converge.

First let us examine the regularization parameter and how it affects both solvers:

A. Danezis 23

Αναγνώριση Ρητορικής Μίσους στο Διαδίκτυο με χρήση Μηχανικής Μάθησης

0 1 2 5 10
80

85

90

95

100

C

C
la
ss
ifi
ca
tio
n
Sc
or
e

Sag
Saga

Figure 13: Logistic Regression Classifier score for different C values

The tolerance was set to 0.0005 with 700 max iterations so we can ensure convergence.
We observe that the higher parameter C is, which means the lower the variance, we get better
results. This is expected since we’re essentially tightening our criteria. However, since higher
values for the parameter C can result in overfitting, we’d like to choose a low enough value
before we experience a lot of diminishing returns. A good value for C seems to be between
2 and 5. There is also little to no difference between the two solvers. We’ll continue to study
them both below though.

Now lets study the performance of different tolerance levels:

1 · 10−2 1
·10−2

80

85

90

95

100

Tolerance

C
la
ss
ifi
ca
tio
n
Sc
or
e

Sag
Saga

Figure 14: Logistic Regression Classifier score for different Tolerance values

As expected lower tolerance does help improve accuracy, but below 0.0001 the solvers start
failing to converge and with the diminishing returns the desired tolerance ends up in the 0.0001
 0.0005 range.

Now that we’ve chosen our parameters let’s look into the performance of the selected model
in more detail.

A. Danezis 24

Αναγνώριση Ρητορικής Μίσους στο Διαδίκτυο με χρήση Μηχανικής Μάθησης

Precision Recall F1score Support

nottoxic 0.97 0.99 0.98 14383

toxic 0.92 0.70 0.79 1575

macro avg 0.94 0.85 0.89 15958

weighted avg 0.96 0.96 0.96 15958

Figure 15: LR Classifier Classification report

False Negatives 476

High Confidence False
Negatives

130

False Positives 130

High Confidence False
Positives

12

Correct Predictions 15382

Total Predictions 15958

Accuracy 0.964

Total Prediction Time 6.02s

Avg Prediction Time 0.37ms

Figure 16: LR Classifier Prediction test information

This approach produces fairly good results, false positives are low. Especially the ones with
high confidence (confidence > 90%), consist 12% of the false positive set. In total, the incorrectly
classified comments that were predicted with high confidence are only 0.89% of the predictions.
The fact that high confidence false positives make only 0.075% of the total predictions also
means that the algorithm could automatically flag and filter comments when confidence is
high enough without making many mistakes.

4.3.5 Linear SVC Evaluation
The Linear Support Vector Classifier shares similarities with the Logistic Regression Classifier
(LRC) in terms of parameterization. The parameters are:

A. Danezis 25

Αναγνώριση Ρητορικής Μίσους στο Διαδίκτυο με χρήση Μηχανικής Μάθησης

C: Same as for the LRC, defines the inverse regularization strength.
Tolerance: The value used for stopping criteria. The lower it is the longer it takes for the solver
to converge.

Max Iterations: The maximum number of iterations allowed until the solver converges. This
time, since the SVC converges much more slowly, we’ll need a significantly higher value (than
for the LRC) of 5000.

Optimization problem type: We can solve for one of two optimization problems, primal and
dual. Usually, when the amount of samples is larger than the amount of features (like in our
problem), selecting an algorithm that solves the primal optimization problem is preferred. We
will study both of the options though.

First we should decide on the optimization problem type to solve:

1 2 5 10
80

85

90

95

100

C

C
la
ss
ifi
ca
tio
n
Sc
or
e

Primal
Dual

Figure 17: Support Vector Classifier score Primal/Dual

As expected, solving for the primal optimization problem gives us better results with our dataset,
so we’ll focus on that from now on.

Next step is adjusting our regularization strength:

A. Danezis 26

Αναγνώριση Ρητορικής Μίσους στο Διαδίκτυο με χρήση Μηχανικής Μάθησης

1 2 5 10
80

85

90

95

100

C

C
la
ss
ifi
ca
tio
n
Sc
or
e

Primal
Dual

Figure 18: Support Vector Classifier score for different C values

We can observe that similarly to our Logistic Regression Classifier the best C value is around
1. This time however we notice a regression happening earlier on as the value of C increases.

0.1 1
·10−2

80

85

90

95

100

Tolerance

C
la
ss
ifi
ca
tio
n
Sc
or
e

Primal
Dual

Figure 19: Support Vector Classifier score for different Tolerance values

Examining tolerance parameterization gives us much less varying results than for the LRC.
We can pick a value of 0.005 and proceed into further analyzing the model.

A. Danezis 27

Αναγνώριση Ρητορικής Μίσους στο Διαδίκτυο με χρήση Μηχανικής Μάθησης

Precision Recall F1score Support

nottoxic 0.97 0.99 0.98 14383

toxic 0.89 0.73 0.80 1575

macro avg 0.93 0.86 0.89 15958

weighted avg 0.96 0.96 0.96 15958

Figure 20: SV Classifier Classification report

False Negatives 433

False Positives 130

Correct Predictions 15382

Total Predictions 15958

Accuracy 0.964

Total Prediction Time 6.14s

Avg Prediction Time 0.38ms

Figure 21: SV Classifier Prediction test information

The Support Vector Classifier performs very well, it has less false negatives than any of the
other classifiers while still maintaining a low false positive ratio. However, it does not provide
us with a confidence for every prediction. This means that we cannot as reliably automatically
flag comments with high probability of being toxic.

4.3.6 Decision Trees Evaluation
The Extra Trees Classifier main adjustable parameter is the n estimators parameter. There
are more parameters that can be tuned such as max depth and max features but those
are aimed to optimize the model for very large datasets, so we will keep them off since training
and prediction times weren’t unreasonably high for our dataset. The n estimators parameter
defines the amount of trees in the forest the estimator fits. Generally it is avoided to use a
very small amount of estimators since it increases the chances of overfitting, but higher values
significantly increase training time.

A. Danezis 28

Αναγνώριση Ρητορικής Μίσους στο Διαδίκτυο με χρήση Μηχανικής Μάθησης

10 50 100 200
80

85

90

95

100

NEstimators

C
la
ss
ifi
ca
tio
n
Sc
or
e

Figure 22: Extra Trees Classifier score for different NEstimators values

We notice above that when using more than 20 estimators the classification score is very
stable. In order to reduce the chance of overfitting we’ll be using 100 estimators, higher values
suffer from diminishing returns and greatly increase training and prediction speed.

Precision Recall F1score Support

nottoxic 0.94 1.00 0.97 14383

toxic 0.93 0.45 0.61 1575

macro avg 0.94 0.73 0.79 15958

weighted avg 0.94 0.94 0.93 15958

Figure 23: ET Classifier Classification report

A. Danezis 29

Αναγνώριση Ρητορικής Μίσους στο Διαδίκτυο με χρήση Μηχανικής Μάθησης

False Negatives 865

High Confidence False
Negatives

83

False Positives 53

High Confidence False
Positives

7

Correct Predictions 15382

Total Predictions 15958

Accuracy 0.942

Total Prediction Time 7.12s

Avg Prediction Time 0.44ms

Figure 24: ET Classifier Prediction test information

According to the data above the classifier creates many more false negatives than it does
false positives. The accuracy in fact suffers from the large amount of false negatives. We’ll
go into more detail in section 3.4 when comparing it to the other classifiers.

4.3.7 Fast text classifier Evaluation

Fasttext has a plethora of parameters to adjust. However, due to their sheer amount we will
only be evaluating the most prevalent ones:

Pretrained vectors: The fasttext model can be trained with the assistance of a pretrained
word library. This can help the model have a better understanding of the similarity between
and their linguistic meaning outside of the training dataset. As a result, not only can it help
increase accuracy

Word vector dimensions: The amount of dimensions a word vector is comprised of. A higher
vector length can allow the model to better describe the relation between words, however
it can also suffer from diminishing returns. Furthermore, when using a pretrained library, the
word vector length cannot be larger than the length of the vectors in the trained library. Since
our library contains vectors of length 300, we will be setting that value when using it. When
we are not using the pretrained library we will evaluate the model for the vector lengths of
1000 and 300.

Character ngram size: The size of the character ngrams that the model will extract. This
is expressed by two numbers, one defining the lower bound (min) and the other the higher
bound (max). When min is set to 3 and max is set to 5, the model will generate character
ngrams of size 3, 4 and 5. For our evaluation we will be comparing models using character
ngrams of range (3,6) with models that do not use this feature.

A. Danezis 30

Αναγνώριση Ρητορικής Μίσους στο Διαδίκτυο με χρήση Μηχανικής Μάθησης

The parameters we will not be evaluating:

Word ngram size: Similar to character ngrams but for word tokens. We will always be extracting
word ngrams of sizes 1 to 5.

Loss function: The loss function is what the algorithm uses in order to calculate the weights
of the neural network during the optimization process. We will be using the default softmax
function as a loss function.

Learning rate: The learning rate describes how much the model adjusts the weights when
they’re updated, based on the calculated error. If the learning rate is too low, the neural network
can fail to effectively reduce the error. If the learning rate is too high, then the model can end
up overadjusting on the errors and training will be unstable. Thankfully, Fasttext uses a dynamic
learning rate. This means that the learning rate will decrease as the model stabilizes, so setting
a custom value usually has only a small impact. As such, we will be using the default learning
rate of 0.1.

5 10 20 30 40 50
90

92

94

96

98

100

Epochs

C
la
ss
ifi
ca
tio
n
Sc
or
e

300d
300d + pretrained library
300d + char ngrams

300d + char ngrams + pretrained library
1000d + char ngrams

Figure 25: Fasttext Supervised Classifiers scores for different number of epochs

As shown in the figure above, character ngrams play a very important role in the accuracy
of the model. By introducing character ngrams to our models we gained 1.5% on our classification
score across the board. Introducing the pretrained word library made little to no difference
when not extracting character ngrams. However, when we did introduce ngrams the use of
the pretrained library had a noteworthy positive impact, especially for a higher number of epochs.
We are unsure why, but perhaps this can be attributed to the increased stability the library
can offer which made the model avoid the falloff that the alternative experienced as the amount
of epochs increased. We can mostly make up for the absence of a pretrained library by increasing
the vector dimensions to 1000. Nevertheless, since it still failed to achieve a higher classification
score and it is less likely to handle words outside of the vocabulary well, it is a less favorable
solution. To conclude, we will be using character ngrams and the pretrained library on our
proposed model.

A. Danezis 31

Αναγνώριση Ρητορικής Μίσους στο Διαδίκτυο με χρήση Μηχανικής Μάθησης

False Negatives 416

High Confidence False
Negatives

348

False Positives 182

High Confidence False
Positives

124

Correct Predictions 15360

Total Predictions 15958

Accuracy 0.962

Total Prediction Time 9.55s

Avg Prediction Time 0.59ms

Figure 26: Fasttext Classifier Prediction test information

The Fasttext classifier performed reasonably well. It’s main weakness however is how often
its incorrect predictions are high confidence ones. 78.9% of the incorrect predictions were
in fact predicted with high confidence. This makes it harder to recommend for automatic comment
flagging.

4.4 Comparing the classifiers
Overall, the only classifier that performed notably poorly was the KNN classifier. Not only
did it have the lowest f1score of 0.76 and the lowest accuracy at 93.3%, it also had by far
the highest prediction time out of all the proposed models. This makes it very hard to recommend
for use in any scenario. The Extra Trees classifier also had a relatively low f1score of 0.79,
however it had the lowest amount of false positives. Coupled with the confidence metric it
produces, the extra trees classifier seems as a fairly appealing for automatic comment flagging,
perhaps in combination with one of the other classifiers to make up for the large amount of
false negatives. It is important to note that these characteristics it presents may be attributed
to the dataset we’re using, perhaps this behavior will not persist when training on different
toxic comment datasets. The FastText model had one of the higher f1scores, but it failed
to match the performance of the Logistic Regression and SVM Classifiers. This may be attributed
to its lack of support for extra generated features that the regression classifiers do support.
The Linear SVM and Logistic Regression classifiers had the highest classification score out
of all the proposed models. Out of the two, however, the Logistic Regression model provides
a confidence output value which makes it considerably more practical. As such it is the recommended
solution for online hate speech detection, out of the models we evaluated.

A. Danezis 32

Αναγνώριση Ρητορικής Μίσους στο Διαδίκτυο με χρήση Μηχανικής Μάθησης

5. CONCLUSION
In this thesis, we proposed several regression models and a shallow neural network model
for online hate speech detection. We discussed inconsistencies and errors within the dataset,
and examined the importance of preprocessing transformations. Removing non alphanumeric
characters and extracting quality based features were two transformations that achieved the
most positive results. On the other hand, we noticed that generating ngrams had little to no
benefit and even yielded worse results on some of our models. Out of the proposed models,
the Linear SVC and Logistic Regression models achieved the highest classification scores.
Our Decision Trees classifier presented the interesting quality of a very low false positive
rate. This characteristic could make it useful when used in combination with other classification
models. It is important to note that our Fasttext neural network, while it did not perform as
well as the above regression models, is a shallow neural network and therefore doesn’t have
the representational power of deep neural networks.

A. Danezis 33

Αναγνώριση Ρητορικής Μίσους στο Διαδίκτυο με χρήση Μηχανικής Μάθησης

6. FUTURE WORK
The toxic comment dataset used in this paper is limited to forum comments extracted from
wikipedia. This means that we do not properly examine the performance of the models in
shorter text messages, where sentiment extraction becomes much more challenging. It would
be interesting to study the proposed models on a dataset containing shorter messages, similar
to those found in live chats. During our preprocessing step we examined two different spell
correction algorithms and found them lacking. In a future paper, we would like to research
the viability of a smaller scale spell corrector that focuses on correcting common typos and
spelling mistakes on frequently used words. Finally, we suggest further research in deep neural
networks (such as convolutional neural networks) in order to examine how they compare
to our shallow fasttext model and regression classifiers.

A. Danezis 34

Αναγνώριση Ρητορικής Μίσους στο Διαδίκτυο με χρήση Μηχανικής Μάθησης

REFERENCES
[1] Digital 2020 Global Digital Interview https://datareportal.com/reports/digital2020globaldigital

overview
[2] Common Sense ”SOCIAL MEDIA, SOCIAL LIFE. Teens Reveal Their Experiences” 2018 https:

//www.commonsensemedia.org/sites/default/files/uploads/research/2018_cs_socialmediasociallife_
fullreportfinalrelease_2_lowres.pdf

[3] Amanda, Lenhart & Kathryn, Zickuhr ”ONLINE HARASSMENT, DIGITAL ABUSE, AND
CYBERSTALKING IN AMERICA” 2016 https://www.datasociety.net/pubs/oh/Online_Harassment_
2016.pdf

[4] Li, Yichen & Tripathi, Arvind & Srinivasan, Ananth. ”Challenges in Short Text Classification: The
Case of Online Auction Disclosure” (2016). MCIS 2016 Proceedings. 18. http://aisel.aisnet.org/
mcis2016/18

[5] Chen, Jindong & Hu, Yizhou & Liu, Jingping & Xiao, Yanghua & Jiang, Haiyun. (2019). Deep Short
Text Classification with Knowledge Powered Attention. Proceedings of the AAAI Conference on
Artificial Intelligence. 33. 62526259. 10.1609/aaai.v33i01.33016252.

[6] van Aken, Betty & Risch, Julian & Krestel, Ralf & Löser, Alexander. (2018). Challenges for Toxic
Comment Classification: An InDepth Error Analysis. 10.18653/v1/W185105.

[7] Hemalatha, I & Varma, G & Govardhan, Dr & Latha, Indukuri. (2014). Automated Sentiment Analysis
System Using Machine Learning Algorithms. 3. 300303.

[8] Gao, Lei & Huang, Ruihong. (2018). Detecting Online Hate Speech Using Context Aware Models.
https://arxiv.org/pdf/1710.07395.pdf

[9] Georgakopoulos, Spiros & Vrahatis, Aristidis & Tasoulis, Sotiris & Plagianakos, Vassilis. (2018).
Convolutional Neural Networks for Toxic Comment Classification. https://arxiv.org/pdf/1802.09957.
pdf

[10] Maas, Andrew & Daly, Raymond & Pham, Peter & Huang, Dan & Ng, Andrew & Potts, Christopher.
(2011). Learning Word Vectors for Sentiment Analysis. 142150. https://ai.stanford.edu/~ang/papers/
acl11WordVectorsSentimentAnalysis.pdf

[11] Nobata, Chikashi & Tetreault, Joel & Thomas, Achint & Mehdad, Yashar & Chang, Yi. (2016).
Abusive Language Detection in Online User Content. 145153. 10.1145/2872427.2883062.

[12] Peter Norvig ”How to Write a Spelling Corrector”. [Online] https://norvig.com/spellcorrect.html
[13] The LevenshteinAlgorithm. [Online] http://levenshtein.net/
[14] Rajaraman, Anand & Ullman, Jeffrey D. (2011). ”Data Mining” http://i.stanford.edu/~ullman/mmds/

ch1.pdf
[15] Piotr, Bojanowski & Edouard, Grave & Armand, Joulin & Tomas, Mikolo. ”Enriching Word Vectors

with Subword Information” [Online] https://arxiv.org/abs/1607.04606
[16] Armand, Joulin & Edouard, Grave & Piotr, Bojanowski & Tomas, Mikolov. ”Bag of Tricks for Efficient

Text Classification” [Online] https://arxiv.org/abs/1607.01759
[17] Tomas, Mikolov& Kai, Chen& Greg, Corrado& Jeffrey, Dean. ”Efficient Estimation of Word

Representations in Vector Space” [Online] https://arxiv.org/abs/1301.3781
[18] A very late look at data. [Online] https://www.kaggle.com/c/jigsawtoxiccommentclassification

challenge/discussion/52217
[19] Kaggle competition data https://www.kaggle.com/c/jigsawtoxiccommentclassification

challenge/data
[20] Jigsaw website https://jigsaw.google.com/
[21] Fahim Mohammad ”Is preprocessing of text really worth your time for online comment

classification?” https://arxiv.org/abs/1806.02908
[22] Brand, Dirk Johannes & Brink van der Merwe. ”Comment classification for an online news domain.”

(2014).
[23] Weimer, Markus & Gurevych, Iryna & Mühlhäuser, Max. (2007). Automatically Assessing the Post

Quality in Online Discussions on Software.
[24] Maas, Andrew & Daly, Raymond & Pham, Peter & Huang, Dan & Ng, Andrew & Potts, Christopher.

(2011). Learning Word Vectors for Sentiment Analysis. 142150.
[25] Lei Gao, Ruihong Huang ”Detecting Online Hate Speech Using Context Aware Models”. [Online]

https://arxiv.org/abs/1710.07395

A. Danezis 35

https://datareportal.com/reports/digital-2020-global-digital-overview
https://datareportal.com/reports/digital-2020-global-digital-overview
https://www.commonsensemedia.org/sites/default/files/uploads/research/2018_cs_socialmediasociallife_fullreport-final-release_2_lowres.pdf
https://www.commonsensemedia.org/sites/default/files/uploads/research/2018_cs_socialmediasociallife_fullreport-final-release_2_lowres.pdf
https://www.commonsensemedia.org/sites/default/files/uploads/research/2018_cs_socialmediasociallife_fullreport-final-release_2_lowres.pdf
https://www.datasociety.net/pubs/oh/Online_Harassment_2016.pdf
https://www.datasociety.net/pubs/oh/Online_Harassment_2016.pdf
http://aisel.aisnet.org/mcis2016/18
http://aisel.aisnet.org/mcis2016/18
https://arxiv.org/pdf/1710.07395.pdf
https://arxiv.org/pdf/1802.09957.pdf
https://arxiv.org/pdf/1802.09957.pdf
https://ai.stanford.edu/~ang/papers/acl11-WordVectorsSentimentAnalysis.pdf
https://ai.stanford.edu/~ang/papers/acl11-WordVectorsSentimentAnalysis.pdf
https://norvig.com/spell-correct.html
http://levenshtein.net/
http://i.stanford.edu/~ullman/mmds/ch1.pdf
http://i.stanford.edu/~ullman/mmds/ch1.pdf
https://arxiv.org/abs/1607.04606
https://arxiv.org/abs/1607.01759
https://arxiv.org/abs/1301.3781
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/discussion/52217
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/discussion/52217
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data
https://jigsaw.google.com/
https://arxiv.org/abs/1806.02908
https://arxiv.org/abs/1710.07395

	Introduction
	Background
	Related work
	Our Objective

	Preprocessing
	Proposed Models
	Regression and Classification Models
	Neural Network Model

	Experimental Results
	Dataset Description
	Evaluation Factors
	Evaluating the systems
	Spell Checker
	Preprocessing Evaluation
	KNN Evaluation
	Logistic Regression Evaluation
	Linear SVC Evaluation
	Decision Trees Evaluation
	Fast text classifier Evaluation

	Comparing the classifiers

	Conclusion
	Future Work
	References

