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Abstract

In this work spin quantum networks are considered as a potential plat-
form for realizing short distance quantum communication tasks. We ex-
amine the network properties that allow us to efficiently transfer quantum
states between different locations. To this end we address two classes of
protocols, one where the network’s couplings are initially suitably engi-
neered but remain constant throughout the transfer process and another
where the couplings are time-driven. In the former case, we examine the
scenario of perfect state transfer (PST) between two arbitrary nodes of the
network. By studying open and closed chain geometries, we re-derive
the necessary and sufficient conditions for PST and develop an analytical
scheme that enables us to identify the allowed transfers. We highlight the
existence of solutions where the profile of the couplings does not posses
any apparent geometrical symmetry. The symmetry of the underlying net-
work is identified by exploiting the relation between one of the necessary
and sufficient conditions for PST and the recently introduced graph theoret-
ical concept of Latent Symmetry. The presence of latently symmetric pairs
of vertices is unraveled by performing an isospectral reduction. This trans-
formation allows us to acquire the profile of the networks’ couplings and
therefore obtain the geometric characteristics that a network should posses
in order to support PST. Furthermore, we employ the engineered couplings
protocol to examine the generation of entangled states in an open chain
geometry. To this end, the phenomenon of Fractional State Transfer is in-
vestigated, where we consider the transfer of a quantum state between one
initial and two target sites of the network. We take steps towards obtaining
the pattern of allowed and non allowed transfers and analytically obtain the
necessary and sufficient conditions for this phenomenon. In addition, we
prove that the bipartite nature of the chain imposes restrictions on the rela-
tive phase that appears in the generated entangled state. Finally, concerning
the case where the couplings of the network are time-driven, we turn our
focus on a protocol where the underlying undriven chain posses topological
characteristics. Based on considerations around the nature of the adiabatic
invariant and the form of the evolution of the instantaneous eigenspectrum,
we propose a particular driving function for controlling the couplings, that
leads to fast and robust state transfer along the chain. To prove our point,
we perform a comparison with two other state transfer protocols, while to
ensure robustness, we study the impact of static noise on each protocols’
parameters.
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Chapter 1

Introduction

In the early 1920’s the modern theory of quantum mechanics was formulated, providing
us a mathematical framework for the description of nature in atomic and subatomic
scales. The power of the quantum theories developed from then on, is reflected in
the phenomenal accuracy of their predictions. However, since the early days of the
theory, the rules constituting the mathematical foundations, yet simple, proved to be
counter-intuitive. The conceptual difficulties regarding the interpretation of quantum
foundations, that continue to puzzle physicists one century later on, can be seen as the
harbinger of the vast challenges that one will face when trying to gain control over a
quantum system.

In 1965, Moore [87] considered how the number of integrated circuit components,
that are the building blocks of every electronic device, will evolve over the following
years. He predicted that the number of components per integrated circuit would double
once every year. The essence behind this, is that in order for the power of an electronic
device to increase, the number of transistors on each component has to increase as well
and consequently, the transistor’s size should decrease. This implies, that the integrated
components will eventually reach the scale where the quantum effects cannot be ignored
and have to be treated accordingly. Letting aside the technological necessity, controlling
the behavior of quantum systems, deepens our understanding of fundamental quantum
processes and opens up the prospect of discovering new phenomena.

Considerations in the same spirit as described above, gradually gave rise to the field
of Quantum Information. With the development of a quantum key distribution protocol
[14] and the proof of the no cloning theorem [123], research on quantum cryptography
was initiated. At the same time, Feynman was one of the firsts to envision a quantum
computer capable of simulating physical systems [55] and a few years later Deutsch
[48] was stating that, in principle, a universal quantum computer could have remark-
able properties, which could not be reproduced by a classical Turing machine. This was
indeed demonstrated one decade later by Grover [65] and Shor [112], who developed
algorithms for solving problems in which a quantum computer could outperform its
classical counterpart. At the beginning of the 20-th century, Di Vincenzo [50] summa-
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14 CHAPTER 1. INTRODUCTION

rized the criteria that need to be fulfilled, in order for a device to be able to efficiently
perform tasks of quantum computation and communication. In the twenty years that
passed since Di Vincenzo’s paper, a huge research effort has been made in order to
identify and realize the most prominent platforms to this purpose.

Currently, two of the most well established platforms for realizing a quantum com-
puter employ superconducting [49] and ion-trap qubits [74, 13]. While other ongoing
directions involve neutral atoms [67, 121], semiconductor qubits [7, 108] and photons
[76]. Lastly, one very appealing proposal, though until now hard to realize, employs
topological protected qubits [90, 95]. In the latter approach, the topological protection,
in principle, minimizes the error rate during the computation, avoiding in this way the
use of error correcting codes [64], which pose a daunting challenge in all the other
methods.

Existing quantum devices are able to handle a few dozens of qubits and recently quan-
tum supremacy [104] (i.e. the ability of a quantum computer to solve a problem, whose
solution is intractable in a feasible amount of time by a classical computer) was claimed
to be achieved by employing a device that has the ability to handle 53 superconducting
quits [3]. However, this result has been disputed [99] and there are indications that in
order to realize quantum supremacy we have to gain control over at least a few hundreds
qubits. Each of the aforementioned platforms has its advantages and disadvantages and
in years to come it remains to be seen if one or a combination of more, will be estab-
lished as the optimal implementation.

In this thesis, we will not concern ourselves with quantum computational tasks. In-
stead, we will focus on one of the Di Vincenzo’s “desiderata” for quantum communica-
tion that was stated as follows:

“The ability to faithfully transmit flying qubits between specified locations”

The term “flying qubits” was used to emphasize the fact that the physical imple-
mentation of the qubits which are employed for communication tasks, will most likely
differ from the ones used for quantum computation. This fact remains true even nowa-
days, where photons are considered to be the most reliable candidates for performing
long-distance communication tasks [93]. The qubit state is usually mapped onto the po-
larization of the photon and can be transmitted through optical fibers. And even though
proposals where electrons were considered as an alternative, have previously been made
[51, 41], it wasn’t until Bose’s seminal work [20] that this direction flourished.

Bose proposed spin chains to act as an efficient quantum channel for short distance
communication. He envisaged a circuit of quantum processors where the information
can be transferred between them through spin chain quantum channels, avoiding this
way the encoding of the qubit to photons. Moreover, his transfer protocol required no
dynamical control over the system’s parameters, therefore minimizing the errors that
arise when local or global control operations take place during the transfer process. The
main draw back of this approach is its scalability, since the qubit state can only be per-
fectly transferred along chains of very small size. To remedy this issue a new approach
emerged [39, 92], where the interactions between adjacent spins are initially suitably
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engineered but remain constant throughout the transfer process. In this way, Perfect
State Transfer (PST) can be achieved between the two end sites of a spin chain of ar-
bitrary length. A crucial aspect of this protocol is that the couplings between adjacent
spins should follow a mirror symmetric profile (with respect to the center of the chain)
in order for PST to take place. Based on the engineered coupling protocol a series of
works was initiated, attempting to expand and explore its potential use. The neces-
sary and sufficient conditions were derived [118], the quantum speed limit was deduced
[126], a recursive formula for obtaining the optimal profile for the coupling strengths
was proposed [120] and the effect of next to nearest neighbors [68, 78, 40] and static
[46, 103, 105] or dynamical [27] disorder were considered, just to mention a few. A
very comprehensive review of the subject can be found in [69, 21]. Our work was also
motivated by this approach and we formulated the following research questions: Can
PST occur between two arbitrary sites of the quantum channel? If not, why? If so, is
there another underlying symmetry in the interactions’ profile besides mirror symme-
try? How are the symmetries of the interactions’ profile connected with the network’s
geometry? To this end, we consider PST between arbitrary initial and target sites in
open and closed (periodic boundary conditions) spin chains [97].

The problem of faithfully transferring a qubit state by employing a time-independent
protocol, can be reduced to the problem of transferring a single excitation in a discrete
network. This equivalence allowed mathematicians to treat the state transfer problem,
as a continuous quantum random walk on a graph [72]. In this way, the machinery of
graph theory was mobilized to tackle the problem and even though the research direction
deviated from the original purpose of end to end quantum communication in a chain,
more complex geometries were explored [38, 16, 11, 30, 8] and the details of the under-
lying dynamical evolution were treated more rigorously. In addition, another potential
protocol was introduced by Godsil [61], where in order to avoid the engineering of the
interactions, the PST condition is loosen up, allowing for state transfer arbitrary close to
perfect, therefore named Pretty Good State Transfer (PGST). Inspired by the connection
between graph theory and state transfer, we will employ the recently introduced graph
theoretical concept of latent symmetry [113] and highlight its relation to the geometry
of the underlying network [106], revisiting the results obtained in [97].

Another potential application of the engineered state transfer protocol is the gener-
ation of entanglement. The generation of bipartite and multipartite entanglement is of
crucial importance for many quantum information tasks, ranging from quantum telepor-
tation [15] to quantum error correction codes. Entanglement is generated by realizing
the phenomenon of fractional revival in the spin chain, where the wavefunction, initially
localized on one site of the chain, is found after some time perfectly splitted between the
initial and the target site. Fractional revivals have been intensively studied in molecular
[119] and atomic [98, 125, 6] systems and can be related to the Talbot effect [17] as
well as to pattern formations of the spatial wavefunction. In [36], this direction was ex-
amined by studying the fractional revivals during the free evolution of a Gaussian wave
packet in a homogeneous tight-binding model. One of the first works to consider the
generation of entanglement between the two end sites of an engineered spin chain, was
developed in [44]. While, an extensive study of factional revivals between the two end
sites of engineered chains was been made in [58, 57]. In [71] Kay, considered fractional



16 CHAPTER 1. INTRODUCTION

revivals as a resource for state preparation and developed a numerical technique for de-
signing the corresponding spin chains. In another recent work [10], besides studying
entanglement, they employed fractional revivals to generate periodic space-time quan-
tum interference patterns, known as quantum carpets [10]. Lastly, a series of works
[31, 32, 34, 33] have addressed the problem from a graph theoretical point of view, by
considering underlying networks of unweighted graphs. In this work, we will consider
the fractional perfect state transfer between one initial and two arbitrary target sites of a
weighted quantum chain, attempting to map the allowed transfers and identify the states
that can be generated using the engineered state transfer protocol.

As stated earlier, a key feature of the engineered interaction protocol is the fact that
we do not need to control the quantum channel’s parameters during the transfer pro-
cess. In general, depending on whether the parameters of the system vary in time
or not the quantum state transfer (QST) protocols can be divided into two classes,
time-dependent and time-independent respectively. Other time-independent protocols,
besides the engineered chain, that have been proposed rely on Rabi-like oscillation
schemes [122, 94, 59], a dual rail protocol was proposed in [25], while in [60] a transfer
protocol was introduced, where local memory was used to increase the efficiency of
the transfer while at the same time allowing for the transfer of multiqubit states. On the
other hand, concerning time-dependent protocols, the most intuitive protocol in this case
is to apply a sequence of swap operations between adjacent sites and gradually move the
state along the chain. Other representative protocols were introduced in [9, 109, 26, 77].

Two of the most important factors that determine the efficiency of a QST protocol
are its speed and robustness. That is, how much time it takes for the transfer to occur
and how faithfully the state is transferred in the presence or absence of decoherence and
static imperfections. The quantum speed limit for transferring a state along a spin chain
has been studied for various protocols [47, 126, 5, 28, 128] . On the other hand, many
works [46, 68, 103, 22] have examined the role of different sources of decoherence in
QST protocols and proposed schemes [25, 9, 66, 1, 2] to circumvent their impact. In
most cases there is a trade-off between speed and robustness, as increasing one results
to the decrease of the other and vice versa.

A very promising direction towards the realization of an efficient platform able to
perform fault-tolerant quantum computation comes from the field of topological states
of matter [107]. One of the most appealing properties of topological systems is that they
host edge states which, due to their topological protection, are robust to different sources
of quantum decoherence. Recent studies [79, 114, 54, 85, 19, 82, 83], have employed
1-D topological systems, such as the Kitaev chain [75] and the SSH model [4], to act as
a platform for realizing QST protocols. In this work, in the same spirit and aiming to
balance the trade-off between the various factors that determine the efficiency of QST
protocols, we will propose a fast and robust time-dependent protocol for transferring an
excitation along an SSH chain [96].

The Hamiltonian used in all the aforementioned protocols, is quite generic and the
results can be in principle applied to a variety of physical systems. The engineered J’s
protocol has been experimentally realized in the following setups (see Fig. 1.1). A
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Figure 1.1: Experimental realizations of the engineered coupling protocol for perfect
state transfer. (a) Array of evanescently coupled waveguides [12] (b) Liquid nuclear
magnetic resonance experiment [127] (c) Superconducting transmon qubits [80] (d) Na-
noelectromechanical resonators [115].

three qubit liquid nuclear magnetic resonance was used and in [127]. Experiments on
an array of N = 9 [12] and N = 19 [101] evanescently coupled waveguides, were con-
ducted as a proof of principle, while in [35] an array of N = 11 evanescently coupled
waveguides was the first setup where high fidelity transfer was accompanied by preser-
vation of entanglement. Moreover, in [80] the protocol was implemented in a chain of
four coupled superconducting transmon qubits. Lastly, the more recent experiment was
conducted in a setup consisting of N = 8 nanoelectromechanical resonators [115]. On
the other hand, the protocols that involve time-driven couplings are much harder to real-
ize experimentally. Nevertheless different setups ranging from, NV centers in diamond
[124], superconducting circuits [116, 85], arrays of quantum dots [102], driven optical
lattices [37] and NMR [29] have been proposed as potential platforms for realizing pro-
tocols with time-driven couplings. Which direction will be established as the optimal
one highly depends on the feasibility of its experimental implementation.

We have tried to give a brief overview of the great efforts that have been made dur-
ing the past two decades towards obtaining the optimal protocol for state transfer in
quantum networks, highlighting at the same time the directions in which this work has
contributed. The details of our results will be presented in the chapters to follow.

1.1 Outline

Chapter 2: We start by introducing the Heisenberg Hamiltonian and we briefly review
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how spin chains can be employed to act as efficient quantum channels for transfer-
ring information in a quantum network. The concept of Perfect State Transfer (PST)
together with the engineered couplings protocol are introduced. We derive the two nec-
essary and sufficient conditions for realizing PST between two arbitrary nodes of the
network (reachability criteria). We examine open and closed chains and map the reach-
able and non-reachable transfers. Analytically, we devise a scheme that allows us to
deduce whether PST is possible or not and to extract the corresponding profiles for the
couplings. Numerically, we employ an optimization algorithm based on the simplex
method.

Chapter 3: We highlight the equivalency between the evolution of an excitation in an
engineered quantum channel and a continuous random walk in a weighted graph. Re-
viewing the concept of cospectral vertices, the first reachability criterium is interpreted
in terms of walks in the quantum network. We present the recently introduced concept
of latent symmetry and argue that the isospectral reduction transformation can be em-
ployed to extract the symmetry profile for the sets of couplings that support PST. To
demonstrate the power of this treatment we revisit some of the examples of the previous
chapter. We furthermore show how the notion of strong cospectrality can handle net-
work degeneracies connecting it with the second reachability criterium for PST.

Chapter 4: We consider fractional state transfer as a mechanism for generation of en-
tangled states. We restrict ourselves to the case where the initial state splits between
two target sites. We numerically and analytically examine open chain geometries and
investigate the pattern of reachable and non-reachable target states. The reachability
criteria are derived and we highlight the fact that the bipartite nature of the underlying
chain imposes restrictions on the relative phase that appears on the target state.

Chapter 5: We review some basic properties of the SSH chain. We present two time-
dependent QST protocols that feature almost perfect state transfer between the two end
nodes of the chain when a time-driving function is imposed on the system’s parame-
ters. One where the underlying undriven channel is an odd-sized SSH chain and another
where the underlying chain is topologically trivial. Based on simple considerations con-
cerning the terms that are involved in the definition of the adiabatic invariant we identify
the crucial characteristics that the driving function needs to posses, in order to speed up
the transfer process for the SSH channel. We propose an intuitive function that has the
aforementioned characteristics. To unravel the crucial aspects of our construction, we
compare our proposal to an SSH chain possessing a different driving function, as well
as, to the protocol where the underlying chain is topologically trivial. We also consider
the impact of on and off-diagonal disorder ensuring the protocol’s robustness and we
examine its behavior as the system’s size is increased.

Chapter 6: In the final chapter we conclude.



Chapter 2

A “static” quantum channel

2.1 Preliminaries

The Heisenberg Hamiltonian can be used to describe a one dimensional spin-1/2 quan-
tum channel:

HXY Z =
1

2

∑
<i,j>

(Jxijσ̂
x
i σ̂

x
j + Jyijσ̂

y
i σ̂

y
j + Jzijσ̂

z
i σ̂

z
j ) +

1

2

N∑
i=1

Biσ̂
z
i (2.1)

The chain consists of N spins, (σ̂xi , σ̂
y
i , σ̂

z
i ) stand for the Pauli matrices, (Jxij, J

y
ij, J

z
ij)

corresponds to the strength of the exchange interaction between pairs of spins < i, j >
and Bi to the magnetic field. This is the so-called Heisenberg XYZ model, where XYZ
characterizes the fact that the exchange interaction can be completely anisotropic. When
Jx = Jy we get the XXZ model and when Jx = Jy = Jz the XXX model.

For the state transfer protocols we will consider in this work, unless explicitly stated
otherwise, we will assume that Jx = Jy ≥ 0, Jz = 0 and Bi = 0 ∀i. Furthermore, we
will assume that the exchange interaction is non-zero only between nearest neighbors.
The Hamiltonian after these assumptions are implemented, becomes the Heisenberg XX
model:

HXX =
1

2

∑
<i,j>

Jij(σ̂
x
i σ̂

x
j + σ̂yi σ̂

y
j ) (2.2)

The quantum state of one spin-1/2 can be expanded in the basis of vectors:

|1〉 =

(
1
0

)
, |0〉 =

(
0
1

)
(2.3)

corresponding to spin up and spin down respectively, along the z-direction. Since the
total spin operator σz =

∑N
i=1 σ

z
i commutes with the Hamiltonian, every eigenstate will

conserve the number of up-spins. Therefore, the Hamiltonian of Eq. 2.2 can be written
in the site-basis as a block diagonal matrix, where in each block the number of up-spins

19



20 CHAPTER 2. A “STATIC” QUANTUM CHANNEL

0000|

1000|

0100|

1111|

0010|

0001|

0011|

1100|
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0110|
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0111|

1011|

1101|

1110|

Figure 2.1: Matrix representation of the XX-model on the site basis, for a 4-site spin
chain.

is conserved. In general, we get 2N states of the form:
(
a1

b1

)
⊗
(
a2

b2

)
⊗ ... ⊗

(
aN
bN

)
,

where ai, bi = 0, 1, that are separated in N + 1 blocks. Considering an example of a
4-site spin chain the matrix acquires the block-diagonal form depicted in Fig. 2.1.

The first to consider, a ”static” QST protocol employing a spin chain quantum chan-
nel, was Bose in his seminal work [20]. To sketch Bose’s idea, for convenience, we will
continue considering the example of the 4-site chain. However, the analysis that follows
is general. The goal is to transfer an initial state of the form:

ψ(t = 0) = cos θ |0000〉+ eiφ sin θ |1000〉 (2.4)

from the first to the last site of the chain without applying any local or global operations
during the transfer process. That means, we let the system evolve freely through the time
evolution operator Ût = e−

i
~Ht and after some time t∗, corresponding to the retrieval

time, we expect to find the system in the target state:

ψ(t = t∗) = cos θ |0000〉+ eiφ sin θ |0001〉 (2.5)

Due to the form of the Hamiltonian matrix we know that the action of the time evolution
operator on the system eigenstates, cannot transform a state belonging to one sub-block
to a state belonging to a different sub-block. Therefore, the first term of the superposi-
tion in Eq. 2.5 (corresponding to the first block of the matrix in Fig. 2.1) will ”remain”
as it is during the evolution (up to a phase). For the transfer to occur, we only need to
ensure that:

e−iHt
∗ |1000〉 = eiξ |0001〉 , (2.6)

here ξ is an overall phase and we have taken ~ = 1. In this way, the problem of trans-
ferring a superposition of the form of Eq. 2.5 is reduced to the so-called one excitation
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subspace of the XX Hamiltonian (see the second highlighted 4x4 block in Fig. 2.1).
Therefore, from now on we will consider as our Hamiltonian the one excitation sub-
block of the matrix 2.1, given by:

H = J
N−1∑
k=1

(|k〉 〈k + 1|+ |k + 1〉 〈k|) (2.7)

In the last equation we have introduced the notation |k〉 = |0102...1k...0N−1〉, corre-
sponding to one spin-up excitation on the k-th site.

2.1.1 Perfect state transfer

Let us now introduce the quantity that measures how faithfully we can transfer a state
between an initial |n〉 and a target |m〉 site. The quantity is called fidelity and can be
given by the following equation:

F =
∣∣〈m| e−iHt∗ |n〉∣∣2 (2.8)

which is simply the transition probability between the initial and the target site. When
F = 1, we say that Perfect State Transfer (PST) has occured. While, the case where
n = m, corresponds to a revival, where the wavefunction relocalizes at some time
t∗ on the initial site. The quantum revivals occur in every system that satisfies the
prerequisites dictated by the quantum recurrence theorem [18].

In fact, the “proper” fidelity, originally introduced by Bose, is a function of the afore-
mention quantity and is defined as folllows:

F =

√
F cos γ

3
+
F

6
+

1

2
(2.9)

This definition comes from the fact that in general, the state of the n-th spin is a mixed
state with a density matrix given by the following equation:

ρout(t) = p(t) |ψout(t)〉 〈ψout(t)|+ (1− p(t)) |0〉 〈0| (2.10)

where p(t) = cos2 θ + sin2 θF and

|ψout(t)〉 =
1√
p(t)

(cos θ |0〉+ eiφ sin θ(〈m| e−iHt |n〉) |1〉) (2.11)

Equation 2.9 is obtained by integrating over all pure initial states of the n-th spin |ψin〉 =
cos θ |0〉 + eiφ sin θ |1〉, on the Bloch sphere (i.e. 1

4π

∫
〈ψin| ρout(t∗) |ψin〉 dΩ). In Eq.

2.9, the parameter γ corresponds to the arg{〈m| e−iHt |n〉}. However, this phase can be
adjusted by applying an external magnetic field and thus, can be chosen to be a multiple
of 2π. Consequently, since Eq. 2.9 is just a function of F , throughout this thesis when
we refer to the fidelity we will consider Eq. 2.8.
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Figure 2.2: A schematic of an engineered chain with a mirror symmetric profile of the
couplings (different colors correspond to different coupling strengths). (a) Initially the
excitation is localized at the first site of the chain. (b) At the retrieval time t∗ we find
that the excitation has been perfectly transferred to the other end of the chain.

Bose examined whether PST is possible between the first and the last site of spin
chains of different length and he found out that the maximum spin chain length support-
ing PST is N = 4. To remedy the lack of scalability, a modified version of the static
protocol was proposed in [39, 92]. In this case, it was assumed that we are capable of
suitably engineering the couplings Ji’s between adjacent spins, which then remain fixed
during the transfer process (see Fig. 2.2). More specifically, it was demonstrated that
by enforcing a mirror symmetric profile of the form:

Jn = JN−n, n = 0, 1, ..., N − 1 (2.12)

PST could be supported between the two end sites of a spin chain of arbitrary length
N . This protocol is commonly referred to as the engineered J’s protocol and its main
advantages are: its fastness together with the fact that no dynamical control is applied
during the transfer process. The necessary and sufficient conditions for transferring
a state between the two end sites (1 → N ) of an engineered spin chain, have been
analytically determined [69, 118]. The first condition is that the couplings should follow
the mirror symmetric profile that was introduced in the previous section. The second,
imposes restrictions on the spectrum of the Hamiltonian.

2.2 Reachability criteria

In this section, we will analytically derive the two necessary and sufficient conditions
for achieving PST by adjusting the weigths of the couplings, but without restricting
ourselves to the transfer between the first and the last site of a chain. Instead we will
consider the transfer between two arbitrary sites. The first to consider such a case, to
our knowledge is Kay in [70]. By doing this, we aim to shed light to the underlying
dynamics of the transfer process and identify the role of the network’s symmetries.
More specifically, we will investigate how the symmetries that appear in the coupling’s
profile are modified, depending on the initial and final site of the transfer. To this end,
we have to note, that when examine a particular geometry, we will exclude the solutions
that result in disconnecting parts of the network (i.e. Ji 6= 0).
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We will examine two kinds of geometries, open and closed chains. By closed chains
we mean that periodic boundary conditions are imposed on the system (i.e. the first site
is connected to the last one). The Hamiltonian of Eq. 2.7 can be written down in matrix
form:

HN =



0 J1 0 . . . JN

J1 0 J2
...

0 J2 0
. . .

... . . . . . .
JN−1

JN . . . JN−1 0


(2.13)

where JN 6= 0 and JN = 0 correspond to closed and open chains respectively. The
matrix is real and symmetric and no degeneracies are present. The case of geometries
possessing spectral degeneracies will be considered in the next chapter. The eigenvalue
equation writes:

HN |vi〉 = Ei |vi〉 (2.14)

In order for PST to occur between the initial site |n〉 and the target site |m〉, we demand
that:

e−iHN t
∗ |n〉 = eiξ |m〉 (2.15)

Inserting the resolution of identity Î =
∑N

i=1 |vi〉 〈vi| we get:

N∑
i=1

ei(Eit
∗−ξ) 〈vi|n〉 |vi〉 =

N∑
i=1

〈vi|m〉 |vi〉 (2.16)

where |vi〉 are linearly independent and thus, ∀ i:

ei(Eit
∗−ξ) 〈vi|n〉 = 〈vi|m〉 (2.17)

if we add the fact that the eigenvector components of a real symmetric matrix can be
chosen to be real, we end up with two equations:

sin(Eit
∗ − ξ) = 0 (2.18a)

cos(Eit
∗ − ξ) 〈vi|n〉 = 〈vi|m〉 (2.18b)

We consider a transfer between a set of quantum states (in our case |n〉 and |m〉) as
reachable, when the states are connected through time evolution. That means, we have
the ability to construct a time evolution operator that simultaneously satisfies Eq. 2.18
(a) and (b). If we assume that Eq. 2.18 (a) holds then Eq. 2.18 (b) implies that:

〈vi|n〉 = ±〈vi|m〉 (2.19)

which tells us that in each eigenvector of the Hamiltonian matrix the n-th and the m-th
eigenvector components should be equal to each other, up to a plus or minus sign. On
the other hand, Eq. 2.18 (a) gives:

Eit
∗ − ξ = νiπ, νi ∈ N (2.20)
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and taking the difference between two eigenvalues we get:

(Ej − Ei)t∗ = (νj − νi)π (2.21)

Without loss of generality, we can set the retrieval time to be t∗ = π, which results in:

Ej − Ei
E ′j − E ′i

∈ Q (2.22)

This is the second reachability criterium which due to Eq. 2.22, is sometimes called the
rationality criterium for the eigenvalues [38, 120].

Looking things from a slightly different perspective may actually help us gain a more
intuitive picture of what the two reachability criteria stand for. The fidelity of the transfer
between sites n and m is given by the following sum:

F =

∣∣∣∣∣
N∑
i=1

vinvime
iφi

∣∣∣∣∣
2

(2.23)

where we have introduced the notation vin = 〈vi|n〉 and φi = Eit. PST dictates that the
above sum should be maximized. The first reachability criterium makes a step towards
this direction, by ensuring that the absolute values of the involved eigenvector compo-
nents should be equal to each other |vin| = |vim|. What remains to be appropriately
fixed, are the relative signs between them. Namely, the spectrum of the network should
be such that there exists a time t∗, for which all the exponents eiφi can produce an overall
sign to the N terms of the sum.

In Fig. 2.3 we depict a schematic of the exponential factors eiφi on the unit circle
during a transfer process, corresponding to a system withN = 4. This picture is inspired
by the classical analogy that was presented in [89], where the wave-packet revivals
were linked to the bunching of runners on a racetrack. When t = 0 (see Fig. 2.3 (a))
all vectors align towards the same direction on the positive part of the real axis. For
an arbitrary time t < t∗ (see Fig. 2.3 (b)), some vectors rotate clockwise will others
anticlockwise, depending on the sign of the corresponding eigenvalue. When PST is
possible, there is a time t = t∗ such that all vectors are aligned. In this case, all the
terms in the sum of Eq. 2.23 acquire the same sign and the sum is maximized (PST). In
Fig. 2.3 (c) we have singled out two cases, one where the alignment occurs on the real
axis (red vectors) and another where the alignment takes place on the imaginary axis
(black dashed vectors). The phases φi then, obey the following equation:

φi =

{
niπ

(2ni + 1)π
2

, ni = 0, 1, 2, ... (2.24)

Of course, in general, the alignment can occur in an arbitrary direction. Nevertheless, for
the systems we will consider in this chapter it will become apparent that Eq. 2.24 holds.
Finally, in 2.3 (d) for t = 2t∗ the vectors are once again aligned on the same direction
(again in the general case this direction maybe arbitrary), this case corresponds to a
revival where the wavefunction re-localizes on its original position acquiring a phase
ξ. Note here, that this periodicity that emerges in the dynamics of a quantum system is
always present when PST occurs.
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Figure 2.3: A schematic where the exponential terms of Eq. 2.23 for a system of
N = 4, are represented as vectors on the unit circle.

2.3 Network optimization

For the open and closed geometries that will be analytically examined in the following
section, the fidelity, in the absence of magnetic field, can be seen as a function of the
couplings and the retrieval time:

F = f(J1, J2, ..., JN−1, JN , t
∗) (2.25)

where for open chains we have to set JN = 0. Thus, for closed chains we have N + 1
parameters while for open chainsN . Finding the set of parameters that support PST can
be treated numerically as an optimization problem. Since, F ∈ [0, 1], we can define the
infidelity I , which corresponds the cost function (sometimes referred as loss function)
that the optimization algorithm has to minimize.

I = 1− F (2.26)

where, in our case, the couplings and the retrieval time are the parameters with respect to
which, the minimization takes place. The optimization algorithm we will use is based on
the Nelder-Mead method [91]. This method is also commonly referred to as the simplex
method, since it employs a polytope (i.e. simplex) of n + 1 vertices in the parametric
space, where by nwe denote the total number of parameters. After the boundaries of the
parametric space are imposed, pseudo-random values are assigned on each vertex and
the cost function is computed. In every step of the algorithm, different operations are
applied on one or more vertices deforming the polytope. In this way the polytope scans
the parametric space until a minimum is obtained, the algorithm then returns the optimal
values for the set of parameters. The simplex algorithm will be our main numerical tool
for deducing whether PST between a pair of vertices is possible or not. It is a reliable
method for obtaining the profile of the couplings when their analytical determination
becomes tedious or intractable.
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2.4 Open chains

To address the second question i.e., when the reachability criteria can be met, we will
now explicitly demonstrate that for certain cases the two criteria for PST cannot be met
simultaneously. To do so, we first focus our study on open chains. The eigenvalue
equation 2.14 is a linear system of N equations, where, each eigenvector component is
defined up to an arbitrary sign sij .

J1si2|vi2| = Eisi1|vi1|
J1si1|vi1|+ J2si3|vi3| = Eisi2|vi2|
...
JN−2siN−2|viN−2|+ JN−1siN |viN | = EisiN−1|viN−1|
JN−1siN−1|viN−1| = EisiN |viN |,

(2.27)

To deduce whether PST between the first and the m-th site is possible we will exploit
the first m − 1 equations of the linear system Eq. (2.27). By doing so, we can express
|vjm| as a function of |vj1| as follows

|vim| =
En−1 − En−3

n≥3

n−2∑
j

J2
j + En−5

n≥5

n−2∑
j 6=k

J2
j J

2
k + ...

s1m

n−1∏
j

Jj

|vi1|, (2.28)

where s1m is the relative sign between the first and the m-th component of vj .Then by
employing the first reachability criterium we can set |vim|/|vi1| = 1 and we end up
with two energy polynomials, corresponding to the plus or minus sign of the product
in the denominator. The number of the real roots of the two energy polynomials added
together, has to be greater than, or equal to the total number of the system’s eigenvalues
otherwise PST can not be achieved.

Based on this counting argument, it is straightforward to deduce that PST from the
first site to any target site n ≤ N/2 for even-sized and n ≤ (N + 1)/2 for odd-sized
chains, is forbidden. Additionally, since an open chain is mirror symmetric around the
axis that passes from its center, two mirror symmetric transfer processes have the same
properties. For example, when we consider the transfer from the first to the third site
of a 6-site chain, based on the above, we have two second degree polynomials that can
give four roots. Thus, PST cannot be made possible, since we ought to have at least six
roots. By invoking the mirror symmetry of the chain, the same holds for the transfer
between the fourth and the sixth site of the chain.

Moreover, specifically for odd-sized chains, because the spectrum of the Hamiltonian
is symmetric, there will always be a zero energy eigenvalue. If we want to examine
whether PST can occur from the n-th to the m-th site we can use Eq. (2.28) for |vin| and
|vim|. Using these two relations we can expunge |vi1| and express |vim| as a function of
|vin|, then by setting them equal we again end up with an energy polynomial. For the
special case where m is even and n is odd or the other way around, the constant term of
the polynomial is a product of the couplings. Since all the eigenvalues have to satisfy



2.4. OPEN CHAINS 27

the polynomial equation, the zero energy eigenvalue has to do so too. However, this
would mean that at least one of the couplings has to be equal to zero and consequently
that the chain gets disconnected. In conclusion, for odd-sized chains no PST is possible
between even and odd sites.

Things get more involved when we try to rule out other PST’s that do not fall into the
two cases we have mentioned so far. To this purpose the second reachability criterium
has to be employed. We will explicitly demonstrate an analytical scheme that can be
used for these cases by considering a specific example.

2.4.1 6-site chain: 1→ 4

We will rule out a PST between the first and the fourth site of a 6-site chain. The energy
polynomial in this case, when we set |vi4| equal to |vi6| is

E3 − (J2
1 + J2

2 )E + s14J1J2J3 = 0, (2.29)

where s14 = ±1. By using Descartes rule we can deduce the maximum number of the
polynomial’s positive roots depending on the sign of the constant term. In this particular
case, since we are dealing with a 6-site chain and two third degree polynomials, all the
roots have to be eigenenergies of the system. For s14 = +1 the polynomial can have two
real positive roots E1, E2 and one negative E3. While, for s14 = −1, we get one real
positive E4 and two negative E5, E6. Due to the symmetry of the spectrum we also get,
that E6 = −E1, E5 = −E2 and E3 = −E4. Considering the above, it is straightforward
to see that the transfer amplitude becomes a sum of sines.

〈4| e−iH6t∗ |1〉 =− 2|v11|2 sinE1t
∗ − 2|v21|2 sinE2t

∗

+ 2|v31|2 sinE3t
∗.

(2.30)

Due to Eq. 2.24, we get that φi = Eit
∗ = (2ni + 1)π

2
. On the other hand, employing

Vieta’s formula, the following equality holds for the three roots of the polynomials.

E1 = −(E2 + E3) (2.31)

Multiplied by t∗ the above equation implies that the sum of two odd integers is an odd
integer. This proves by contradiction that the two reachability criteria cannot be met
simultaneously and PST is not possible for this transfer.

2.4.2 7-site chain: 1→ 5

Now let us consider a second example, where we examine the transfer between the
first and the fifth site of a 7-site open chain. Using the linear system of Eq. 2.27, we
express |vi5| in terms of |vi1|. Setting them equal we obtain two energy polynomials
corresponding to s15 = ±1.

E4 − (J2
1 + J2

2 + J2
3 )E2 + J2

1J
2
3 + s15J1J2J3J4 = 0 (2.32)
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For s15 = +1 we find four real roots, ±E1 and ±E2. While, for s15 = −1 a double root
E4 = 0 and E2

3 = J2
1 + J2

2 + J2
3 are obtained. Taking into account the above facts, the

probability amplitude of finding the wavefunction localized at the fifth site after time t∗

is given by:

〈5| e−iH7t∗ |1〉 =|v11|2e−iE1t∗ + |v21|2e−iE2t∗ − |v31|2e−iE3t∗

− |v41|2

− |v51|2eiE3t∗ − |v61|2eiE
t∗
2 + |v71|eiE1t∗ .

(2.33)

Due to the symmetry of the energy spectrum it also holds that |v11| = |v71|, |v21| = |v61|
and |v31| = |v51|. Thus, it follows that:

〈5| e−iH7t∗ |1〉 =2|v11|2 cosE1t
∗ + 2|v21|2 cosE2t

∗

− 2|v31|2 cosE3t
∗ − |v41|2.

(2.34)

For the amplitude to get its maximum values, an overall minus sign has to be produced
from the cosines. This means, that E1t

∗, E2t
∗ have to be odd multiples of π, while E3t

∗

even. However, from Eq. (2.32), if we multiply with t∗ and employ Vieta’s formula, we
get

(E1t
∗)2 + (E2t

∗)2 = (t∗)2(J2
1 + J2

2 + J2
3 ) = (E3t

∗)2. (2.35)

Since, the sum of the squares of two odd integers cannot be the square of an integer, we
have proved by contradiction that the transfer under consideration is not reachable.

The main point we want to highlight can be stated as follows: when the number of
roots of the energy polynomials is greater than the number of the eigenvalues, the sec-
ond criterium can be used in order to prove that some of these roots cannot satisfy the
two reachability criteria simultaneously. It is also clear that as the length of the chain
grows the number of these cases is increased, since we are forced to deal with polynomi-
als of greater degree. We have analytically examined open chains up to 10 sites and the
optimization algorithm we have used, comes in complete agreement with our analytical
findings. Even though the properties of the eigenvalues of Jacobi matrices have been
studied extensively [56, 117, 43], the mathematical task to prove that a number of roots
of an energy polynomial of arbitrary degree cannot satisfy the rationality criterium, to
our knowledge has not yet been properly addressed. As a result, there is no universal
analytical procedure that can be followed to deduce whether PST between two states
is possible or not. It follows that in general, each case has to be studied separately,
which is something that at first sight seems discouraging. Nevertheless, the power of
the analytical approach we just presented here, is that it can be applied with small mod-
ifications for each case and in order to demonstrate this fact more transparently we have
considered the two previous examples.

To sum up, the following general statements can be made for open chains of arbitrary
length. PST is always possible between mirror symmetric sites and this has been rigor-
ously proven for the transfer between 1 and N [118]. In addition, transfers where both
the initial and target sites are located at the first half of the chain cannot support PST.
The same holds for their mirror symmetric counterparts. Finally, for odd-sized chains
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we have proved that no PST is realized between even and odd sites. To these statements
we will also add one that is based on our numerical results. Having examined open
chains of length up to N = 20 sites, we have numerical evidence which support that
for even-sized chains PST between the first and N − 1 site is always possible, in these
transfers the profile of the couplings is not mirror symmetric. The rest of the cases have
to be studied separately. If we are unable to prove by contradiction that PST is not sup-
ported, we have to search the parametric space and find the suitable profile for the J’s
that extremizes the fidelity.

This can be done numerically via an optimization algorithm or by using yet again the
linear system of Eq. (2.27) to analytically extract the optimized profile for the Ji’s. For
the sake of illustration and to gain a more intuitive picture of the physical system under
consideration, we will present an indicative example for both cases.

The first example considers the transfer from the first to the third lattice site of an open
chain of length N = 4. This example highlights the fact that the profile of the couplings
does not have to be necessarily periodic, as in the case of mirror symmetric lattice sites.
In Fig. (2.4) we have plotted the probability for each of the four states on the lattice
basis as a function of time, obtained by running the optimization algorithm. The system
starts at the first site and then gradually the probability spreads out all over the chain,
until the whole wavefunction gets localized on the third site at the retrieval time. At this

Figure 2.4: PST between sites 1 and 3. Probability for each lattice site as a function of
time. Time is depicted in units of 1/Jmax, where Jmax is an arbitrary unit of energy. We
have set J1 = Jmax and subsequently the optimal values for the time and the couplings
are found to be J2 = 0.6Jmax, J3 = 0.8Jmax and t∗ = 4.967/Jmax.

point we demonstrate that the method we suggest here to examine reachability, is also
very powerful for designing the optimal profile in reachable cases. By employing the
linear system of Eq. (2.27) for a 4-site chain together with the first reachability criterium
we obtain the following energy polynomial

E2 − J2
1 + s13J1J2 = 0. (2.36)

The system has four eigenenergies that are symmetric around zero, that is ±E1 and
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±E2. It is clear that the s13 = +1 gives the pair of eigenenergies with the minimum
absolute value, say ±E1, while s13 = −1 corresponds to ±E2. Having in mind the
above, it is straightforward to see that

〈3| e−it∗HN |1〉 = 2|v11|2 cos (E1t
∗)− 2|v21|2 cos (E2t

∗). (2.37)

The first pair of eigenenergies that gives an overall sign to the sum is, E1t
∗ = π and

E2t
∗ = 2π. If we multiply the equations of the linear system Eq. (2.27) with the

retrieval time t∗, all quantities become dimensionless. After doing so, we can solve the
linear system in terms of the couplings and time and obtain the same values as those
produced by running the optimization algorithm.

2.5 Closed chains

For closed geometries, the introduction of the coupling between the first and the last site
changes the system’s behavior in a drastic manner. The linear system in this case takes
the following form:

J1si2|vi2|+ JNsiN |viN | = Eisi1|vi1|
J1si1|vi1|+ J2si3|vi3| = Eisi2|vi2|
...
JNsi1|vi1|+ JN−1siN−1|viN−1| = EisiN |viN |.

(2.38)

Let us consider PST between an arbitrary pair of sites for a closed chain of fixed length.
Following the same procedure as we did for the open chains, we express the eigenvector
component of the initial site as a function of the eigenvector component of the target
site and we extract two energy polynomials. Due to the cyclic symmetry of the closed
system, the degree of the energy polynomials is the same, independently of the choice
of the initial and target sites. Namely, the highest degree polynomial for a circular chain
of length N is N − 2 for even-sized chains and N − 1 for the odd ones.

From this perspective, it should come as no surprise that our numerical and analytical
findings support the following statement: “For any closed chain of fixed length, if we
can find an optimal profile for the couplings that supports PST between a particular pair
of sites, then an optimal profile that supports PST between an arbitrary pair of sites
always exists”. Similarly, if PST is not possible for a pair of sites then the same holds
for all pair of sites. Note here that we have assumed different initial and target sites. We
do not take into consideration the case of quantum revivals which are always reachable.

In addition to the aforementioned facts, the even or odd length of the chain turns out
to play a crucial role to the reachability of a transfer. In particular, all odd-sized chains
with the exception of N = 3 do not support PST. On the contrary, for even-sized chains
of arbitrary length, we can always obtain an optimal profile for the couplings that makes
the transfer between any particular pair of states reachable.

The N = 3 closed chain is the only odd geometry in which PST is possible between
all pair of sites. We will impose the first reachability criterium on the linear system for
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the transfer between a pair of sites. Without loss of generality, we pick the first and the
third site. Then, depending on which equations we use, we can either obtain a second
degree polynomial

E2 − s13J3E − J1(J1 + s13J2) = 0, (2.39)

or a first degree polynomial

(J2 − s13J1)E + J3(J1 − s13) = 0. (2.40)

In Eq. (2.39), we expect that one choice of the sign s13 will give one eigenvalue, while
the other choice, will give the other two eigenvalues. On the other hand, by observing
Eq. (2.40) we could immediately state that, since two first degree polynomials cannot
give three solutions, PST is not possible. This however is not the case here. For s13 =
−1 we get that E1 = −J3 but for s13 = +1 we can pick J1 = J2 which gives an infinite
number of solutions and thus we can avoid the contradiction. In conclusion, PST is
realized in this system as long as E1 = −J3 and J1 = J2. The N = 3 closed geometry
is the only case where a specific choice of the couplings can lead to an omission of
the highest order term in the energy polynomial. For all the other odd closed chains
(N > 3), PST is not supported. To analytically demonstrate this fact, we can demand
that the energy polynomials, obtained from the linear system (2.38), possess as roots
the system’s eigenvalues, arriving this way to a contradiction. For the even-sized closed
chains, the optimal profile for the couplings that supports PST between a particular
pair of states, can be obtained by the same scheme that was developed in the previous
section.

Nonetheless, the optimization algorithm, as the system’s length grows, remains our
strongest tool for obtaining the optimal profile for the couplings. Thus, it is worth
highlighting a property, that besides its physical importance, enables us to make the
optimization algorithm more efficient. When running the algorithm we obtain many
solutions for the coupling’s profile in reachable cases. Of particular importance is the
fact that, there always exists a solution which is locally symmetric on the two different
“paths” (clockwise, anti-clockwise) leading from the initial to the target site. To clarify
further this point, we will consider a specific example.

In Fig. (2.5) we show the probability for each lattice site for an engineered profile of
the couplings, that supports PST between the first and the third site of a 6-site closed
chain. By observing the values of the couplings we can easily notice that, for the path
that goes clockwise from the first to the third lattice site, J1 = J2. For the anti-clockwise
path, the profile is again parity symmetric (J3 = J6 and J4 = J5). Therefore, by
imposing such symmetries on the couplings, we can drastically reduce the dimensions
of the parametric space in which the optimization algorithm searches for solutions. In
the following chapter we will investigate the root of the emerging symmetries on the
profile of the couplings for a quantum network of arbitrary geometry.
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Figure 2.5: PST between site 1 and 3. Probability for each lattice site as a function of
time. Time is depicted in units of 1/Jmax. We have set J1 = Jmax and subsequently the
optimal values for the time and the couplings are found to be J2 = Jmax, J3 = J6 =
0.369Jmax, J4 = J5 = 0.547Jmax and t = 8.494/Jmax.



Chapter 3

Latent symmetry and PST

3.1 Preliminaries

In this chapter we will identify the graph theoretical concepts related to the phenomenon
of PST in discrete networks and unravel the underlying geometrical symmetry that has
to be imposed between two sites in order to be able to support PST. Our aim is twofold,
on the one hand we want to highlight the power of the tools developed in graph theory,
most of which remain blurry in the physics community. On the other, we will demon-
strate how these concepts will allow us to gain a deeper understanding of the underlying
dynamics of the PST process and indicate in which ways we can employ them in order
to extend our means of controlling and designing quantum networks that feature PST.

3.1.1 A continuous-time random walk on a graph

A graph G(V,E) denotes a set of objects, commonly addressed to as vertices V , pairs
of which are connected. We will consider weighted graphs, where their connections
belonging to the set E are called edges and each element eij (connecting vertices i and
j) is weighted by a function w : E → R+. A graph G can be fully specified by its
adjacency matrix AG which is defined as follows:

AG =

{
w(i, j) for eij ∈ E
0 otherwise

(3.1)

When all the edges have the same value, the graph is called unweighted and the value
1 is used to signify the existence of an edge. In the case of a weighted graph, arbi-
trary values can be assigned to every edge, we will restrict ourselves to positive real
numbers. In Fig. 3.1, we give a diagrammatic representation of a weighted graph G1

consisting of 3 vertices and 4 edges together with its adjacency matrix AG1 . Note, that
the diagonal entries in the adjacency matrix correspond to edges that are connecting
the vertices to themselves and are diagrammatically represented by loops. Let ψ(t) be a
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Figure 3.1: A weigthed graph consisting of 3 vertices and 4 edges, together with its
adjacency matrix.

time dependent-vector on the vertices ofG, then for a continuous-time quantum random
walk starting from the vertex a the evolution is given by

|ψ(t)〉 = e−itAG |a〉 (3.2)

where |a〉 corresponds to a unit vector of the form |00...1a...0〉, defined in the basis of the
adjacency matrix. The adjacency matrix of a graph has an one to one correspondence
with the Hamiltonian matrices we considered in the previous chapter. The vertices cor-
respond to sites, the weighted edges to the couplings between the spins and the weighted
self-loops to the magnetic field on each site. Thus, from now on we may use the afore-
mentioned terms interchangeably. We say that PST occurs between vertices a and b
when: ∣∣〈b| e−it∗AG |a〉

∣∣ = 1 (3.3)

where t∗ corresponds to the retrieval time.

3.2 Cospectrality

In the previous chapter we have introduced two reachability criteria which pose the nec-
essary and sufficient conditions for PST. The first reachability criterium for two vertices
a and b, belonging to a graph G of N vertices, writes:

|〈vi|a〉| = |〈vi|b〉| i = 1, 2, ..., N (3.4)

where vi corresponds to the i-th eigenvector of the Hamiltonian matrix.

When Eq. 3.4 holds the vertices a and b are said to be cospectral [110]. Cospec-
trality is a property that has been related to PST [63] and the following statements are
equivalent [63]:

1. vertices a and b are cospectral

2. σ(H \ a) = σ(H \ b)

3. (Hk)a,a = (Hk)b,b ∀k
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Figure 3.2: The first three powers of a 4-site open chain supporting PST between
vertices v1 and v3. For the highlighted elements of H2 and H3, we demonstrate how the
entries of each matrix can be interpreted in terms of walks.

By σ(H \ a) we denote the spectrum of the Hamiltonian matrix computed after the row
and column corresponding to the vertex a, have been deleted. Of particular importance
is the third equivalent definition of cospectrality, since it allows us to interpret the con-
cept in terms of walks in the graph. We will demonstrate this geometrical picture of the
matrix powers of the Hamiltonian by considering a simple example that was examined
in Chapter 2. Namely, we will consider a 4-site chain supporting PST between the first
and the third vertices. We have previously raised the importance of this example, that
belongs to the class of transfers where the profile of the couplings is not mirror symmet-
ric. In Fig. 3.2 we have computed the first 3 matrix powers of the Hamiltonian for a set
of couplings that supports PST between v1 and v2. We will now proceed and give the
interpretation of the matrix entries in terms of walks. For an entry (Hk)i,j , the matrix
power k corresponds to the number of steps we can take, while the subscripts i, j corre-
spond to the initial and final vertices of the walk. For the calculation of each entry, what
we basically do is adding all the possible walks of length k between the i-th and the
j-th vertices, while at the same time compensating for the weights of the edges. Taking
for example (H2)3,3 we have two options for realizing a walk of length 2 starting and
ending at the third vertex. The first is to go, 3 → 2 → 3 and the other is 3 → 4 → 3,
each time an edge is crossed we have to multiply with the corresponding weight and at
the end the walks have to be added together. Therefore, for this particular example, we
get (H2)3,3 = 1 · 1 + 1.3333 · 1.3333 = 2.77769. Following the same procedure, all the
matrix entries of each power of the Hamiltonian matrix can be computed. In Fig. 3.2,
we provide an additional example by considering the off-diagonal entry (H3)1,2.

Based on the above discussion, we can relate the first reachability criterium with
the geometry of the network, restating it in the following way: One of the necessary
conditions a quantum network should satisfy in order for PST to occur between vertices
a and b, is that the sum of all the weighted walks of length k starting and ending on
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vertex a should be equal to the corresponding sum of walks of vertex b (i.e. (Hk)a,a =
(Hk)b,b) and this should hold for every power of the Hamiltonian matrix. Actually here,
by taking advantage of the Caley-Hamilton theorem, which states that a square matrix
satisfies its own characteristic equation, for a Hamiltonian consisting of N vertices, it
directly follows, that it suffices to ensure that this holds for all k ≤ N − 1.

3.3 Isospectral reduction and Latent symmetry

We will now briefly review another concept originating from network theory, that goes
by the name isospectral reduction [24]. The purpose of the isospectral reduction trans-
formation, as the name suggests, is to reduce the dimension of a matrix H in CN×N ,
while at the same time preserve its spectral information. In order, for a smaller matrix
to be able to preserve the eigenvalues of the original matrix, rational functions are em-
ployed. The isospectral reduction is performed over a set of vertices S and is defined in
the following way:

RS(H, λ) = HSS −HSS̄(HS̄S̄ − Iλ)−1HS̄S (3.5)

by S̄ we denote the complement of S, that is the rest of the vertices that are not included
in the set S. The matricesHSS andHS̄S̄ are obtained by deleting all the vertices of S̄ and
S respectively, while HSS̄ and HS̄S correspond to the connections between set S and S̄.
The isospectral reduction is defined for all values of λ besides the ones that correspond
to eigenvalues of HS̄S̄ , we will denote this set by L. Thus, the isospectral reduction
is properly defined when λ ∈ L. The eigenvalues of the reduced matrix RS(H,λ) are
given by:

det(RS(H, λ)− λI) = 0 (3.6)

If the spectrum of HS̄S̄ does not contain any eigenvalues of the original matrix H then
all the eigenvalues of H are given by Eq. 3.6. On the contrary, the eigenvalues of H
that are contained in the spectrum of HS̄S̄ are excluded from the spectrum of RS(H,λ).
Thus, for the spectrum of the reduced matrix σ(RS(H,λ)) we get:

σ(RS(H, λ)) = σ(H)− σ(HS̄S̄) (3.7)

In Fig. 3.5 we give two representative examples, one where the initial graph is reduced
over three vertices and all spectral information is preserved and one where the reduction
over two sites does not contain all the eigenvalues of the initial graph.

We have to highlight here an important aspect of the reduction that will be proved to
be crucial for our approach. The reduced matrix obeys the eigenvalue equation:

RS(H,λi)ṽi = λ̃iṽi (3.8)

where by λ̃i and ṽi we have denoted the eigenvalues and eigenvectors of RS(H,λi).
Note, that the eigenvectors ṽi do not have to form an orthogonal basis and in principle,
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Figure 3.3: A 5-vertex graph is given together with its Hamiltonian matrix H and its
spectrum σ(H). In the first case (bottom left) the reduction is performed over the set
S1 = {v3, v4, v5}, while in the other (bottom right), over S2 = {v1, v2}. For both cases,
we provide the spectrum of the reduced matrix together with the spectrum of HS̄S̄ .

could even be linearly dependent or pairwise identical. However, they are related to the
eigenvectors vi of H [52, 23]. Namely, ∀ i we can write:

ṽij = civij j ∈ S (3.9)

where, by vij we denote the eigenvector components, while ci corresponds to a normal-
ization constant. That means, that each eigenvector of the reduced matrix is up to a
normalization constant, the projection of the corresponding eigenvectors of H onto the
set S.

3.3.1 Latent Symmetry

We are now ready to present the concept of latent symmetry that was recently introduced
by Smith and Webb [113]. It was defined in the following way: A graph G has a
latent symmetry, if there exists a subset of vertices S, that are symmetric under some
isospectral reduction RS(G) [113]. Latent symmetry, as the name implies, allows one
to identify symmetries of a network that are difficult to unravel unless performing a
reduction.

To serve our purpose of connecting this notion to the phenomenon of perfectly trans-
ferring a state in a quantum network, we will consider isospectral reductions on a subset
of two vertices. We say that two vertices are latently symmetric if their isospectral re-
duction is a bisymmetric matrix. When the adjacency matrix of the graph is symmetric,
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which is always the case for the class of Hamiltonian matrices we consider in this work,
the isospectral reduction over two vertices takes the following form:

RS(H, λ) =

(
f1(λ) g(λ)
g(λ) f2(λ)

)
(3.10)

where f1(λ), f2(λ) and g(λ) are rational functions of the parameter λ. Thus, in order
for the matrix of Eq. 3.10 to be bisymmetric, we need f1(λ) = f2(λ), ∀λ ∈ L.

If we look back at Eq. 3.9, we immediately notice that when two vertices of a Hamil-
tonian H are latently symmetric then the absolute values of the corresponding eigen-
vector components for each eigenvector of H should be equal to each other. Therefore,
latent symmetry between two vertices implies cospectrality. This fact has been very
recently demonstrated in [73].

3.3.2 4-site open chain revisited

Let us sum up the concepts introduced so far. A necessary condition between two
vertices that support PST is that the corresponding eigenvector components for every
eigenvector, should be equal to each other up to a sign. When this is the case, the two
vertices are called cospectral. The notion of cospectrality has a geometrical interpreta-
tion in terms of walks on the quantum network. In fact, it implies that a not so apparent
symmetry exists between the two vertices. A way to deduce whether this symmetry is
present or not, is to perform the transformation of isospectral reduction. We will now
demonstrate how to employ latent symmetry in order to identify the symmetry that has
to be imposed on the J’s profile in order to achieve PST between two vertices. To this
purpose, we will consider the simple example of a 4-site open chain that was examined
in the previous chapter.

The Hamiltonian matrix of a 4-site open chain is as follows:

H4 =


0 J1 0 0
J1 0 J2 0
0 J2 0 J3

0 0 J3 0

 (3.11)

We will first examine the transfers 1 → 4 and 1 → 3. In Eq. 3.12 we have calculated
the isospectral reductions over the corresponding pairs of vertices.

R{1,4}(H4) =

(
J2
1λ

λ2−J2
2

J1J2J3
λ2−J2

2

J1J2J3
λ2−J2

2

J2
3λ

λ2−J2
2

)
R{1,3}(H4) =

(
J2
1

λ
J1J2
λ

J1J2
λ

J2
2+J2

3

λ

)
(3.12)

When we demand that the resulting matrices should be bisymmetric for the case 1→ 4,
we get that J1 = J3. This comes is accordance with the mirror symmetric profile
that should be imposed on the chain in order to support PST between the first and the
last vertices. On the other hand, for the transfer 1 → 3 we get a pythagorian triplet
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J2
1 = J2

2 + J2
3 . Thus, an underlying hidden symmetry is revealed explaining the non

mirror-symmetric profile of the couplings that we obtained in the previous chapter.

R{1,2}(H4) =

(
0 J1

J1
J2
2λ

λ2−J2
3

)
(3.13)

As for the case of the transfer 1 → 2, by inspecting the reduction of Eq. 3.13, we can
immediately see that the only solution is J2 = 0. Therefore, we can deduce that this
transfer is non-reachable, since the only way to make the two vertices latently symmetric
is to disconnect the chain.

3.4 What about network degeneracies?

We will now re-derive the necessary and sufficient conditions for PST, however on the
contrary to the previous chapter, we will not assume that the system’s eigenvalues are
simple. Instead, we will consider the more general case where a degenerate eigenvalue
E of multiplicity j exists. The following approach holds for an arbitrary number of
degenerate multiplets.

We start by demanding PST between vertices n and m, of an N vertex graph, at the
retrieval time t∗:

e−iHt
∗ |n〉 = eiξ |m〉 (3.14)

After inserting the resolution of unity, we split each sum to a degenerate and a non-
degenerate subspace:

eiEt
∗∑

j

〈
v′j
∣∣n〉 ∣∣v′j〉+ eiEkt

∗∑
k

〈vk|n〉 |vk〉 = eiξ
∑
j

〈
v′j
∣∣m〉 ∣∣v′j〉+ eiξ

∑
k

〈vk|m〉 |vk〉

(3.15)
where

∣∣v′j〉 and |vk〉 are the eigenvectors corresponding to the degenerate and the non-
degenerate subspace respectively. Moreover, k is the number of simple eigenvalues and
of courseN = j+k. Invoking the linearly independence, we can treat the two subspaces
independently. Thus, we obtain the two following equations:

eiEt
∗ 〈
v′j
∣∣n〉 = eiξ

〈
v′j
∣∣m〉 (3.16)

eiEkt
∗ 〈v′k|n〉 = eiξ 〈v′k|m〉 (3.17)

For the non-degenerate subspace we get:

sin (Ekt
∗ − ξ) = 0 and cos (Ekt

∗ − ξ) 〈vk|n〉 = 〈vk|m〉 (3.18)

and combining the above results we have:

〈vk|n〉 = dk 〈vk|m〉 (3.19)

where for a given k, dk can be either +1 or −1. For the degenerate subspace we get:

sin (Et∗ − ξ) = 0 and cos (Et∗ − ξ)
〈
v′j
∣∣n〉 =

〈
v′j
∣∣m〉 (3.20)
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and we end up with: 〈
v′j
∣∣n〉 = d

〈
v′j
∣∣m〉 (3.21)

where in contrast to the previous case, for all j, d can be either +1 or−1. In other words,
the relative sign of the eigenvector components corresponding to the vertices n and m,
should be the same for every eigenvector belonging to the same degenerate subspace.
Vertices satisfying the aforementioned condition are called strongly cospectral [63] due
to the fact that the condition 3.21 is more restrictive than cospectrality. Moreover, in
[73] it was proven that two vertices are strongly cospectral if and only if their isospectral
reduction is a bisymmetric matrix and its eigenvalues are simple.

We will now present an indicative example employing strong cospectrality to achieve
PST. We will consider a graph of five vertices and ten edges. The graph is depicted in
Fig. 3.4 along with the corresponding Hamiltonian matrix. We will examine the case
where the weights are determined by three parameters (a, b, c), all of which are different
from each other. In this particular setting the Hamiltonian has a double degenerate
eigenvalue E1 = E2 = −a. If we perform the isospectral reduction over all pairs of
vertices, we can deduce that the following pairs are cospectral:

{v1, v2}, {v1, v3}, {v2, v3}, {v4, v5} (3.22)

However, when we run our optimization algorithm in order to find out whether a set
of parameters {a, b, c, t∗} exists such that PST is supported, we conclude that such a
set exist only for the vertices {v4, v5}. This is because the vertices v4 and v5 are the
only pair of strongly cospectral vertices, which becomes apparent when we calculate
the spectrum of the reduced matrix:

R{4,5} =

(
3c2

λ−2a
3c2

λ−2a
+ b

3c2

λ−2a
+ b 3c2

λ−2a

)
(3.23)

In every other case, the spectrum of the reduced matrices always contains the degenerate
pair of eigenvalues. On the contrary, σ(R{4,5}) does not contain any of the degenerate
eigenvalues, both of them belong to the set σ(HS̄S̄). In general, in order for two vertices
to be strongly conspectral for a d-fold degenerate eigenvalue, at least d− 1 eigenvalues
should be contained in σ(HS̄S̄). Let as return to the picture that was introduced in the
previous chapter, where the exponential terms eiEit appearing in the sum:

F =

∣∣∣∣∣
5∑
i=1

vi4vi5e
iEit

∣∣∣∣∣
2

, (3.24)

are represented on the unit circle. In Fig. 3.4 we may notice that all vectors are aligned
(red ones), besides two (black ones) which correspond to the degenerate eigenvalue.
This may seem disturbing at first sight, since we have explicitly argued that in order
for PST to occur all vectors should be aligned, so that the exponents can produce an
overall sign that maximizes the fidelity. However, before rushing into conclusions, let
us turn our attention on the eigenvector matrix of the Hamiltonian (computed for the set
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Figure 3.4: A 5-vertex graph is given together with its Hamiltonian matrix. For this
given parametrization of the edges, PST is only supported between vertices v4 and v5

which are strongly cospectral.

of parameters that result in PST between the fourth and the fifth vertices):
−0.8082 0.1158 0. 0.3515 −0.4579
0.5044 0.642 0. 0.3515 −0.4579
0.3038 −0.7578 0. 0.3515 −0.4579

0. 0. −0.7071 −0.5608 −0.4305
0. 0. 0.7071 −0.5608 −0.4305

 (3.25)

where the first two columns are the two eigenvectors corresponding to the degenerate
eigenvalues. One can immediately notice that the eigenvector components correspond-
ing to the fourth and the fifth site (v14, v15 and v24, v25) are equal to zero. Thus, these
two terms contribute to the maximization of the sum of Eq. 3.24, through their absence
and due to this reason the corresponding vectors in Fig. 3.4 do not have to be aligned
with the rest. In the general case, strong cospectrality ensures that the exponetial factor
of the degenerate subspace aligns the corresponding vectors, at t = t∗, with the rest.
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Figure 3.5: The exponential terms eiEit for the example we considered in Fig. 3.4 are
represented as vectors on the unit circle for t = t∗, where PST occurs.

3.5 Applicability

In this chapter we have unraveled the connections between the PST in engineered chains
and some recently developed concepts coming from graph theory. By doing so, we
have traced the origin of both symmetric and asymmetric profiles that we encountered
in the previous chapter when examining open and closed geometries. The underlying
symmetry a network should posses, in order to support PST between a pair of vertices,
is the latent symmetry. The isospectral reduction procedure provides a straightforward
methodology, that allows us to deduce whether the aforementioned symmetry is present
in a quantum network. Moreover, we are able to obtain the symmetries of the couplings’
profile. This information is crucial for both the optimization and the inverse eigenvalue
algorithms [69], which are the main numerical tools that are employed for designing
networks that support PST. Lastly, in a given network where the geometry of the network
does not allow for PST to occur, schemes can be devised to obtain the set of suitable
modifications that have to be applied in order to make it so. Steps towards this direction
have been made in [63, 106, 88].



Chapter 4

Fractional State Transfer

4.1 Preliminaries

A way to generate entanglement in the one-excitation subspace of a quantum spin chan-
nel through the engineered J’s protocol is by employing the phenomenon of fractional
revival. As we have already seen in Chapter 2, when a one-site excitation at some point
during the dynamical evolution relocalizes on the initial site, we say that a revival has
occurred. The fractional revival on the other hand, occurs when the wavefunction, for a
time t∗ in between two revivals, is localized in a particular number of sites (target sites).
This phenomenon exhibits a periodic behavior with period equal to the period of one
full revival. In fact from a point of view, PST can be thought of, as a special case of
fractional revival.

Coming back to entanglement, it is worth noting that since the early days of the
engineered protocol, it was highlighted [38] that entanglement transfer can be realized
in the chain. In the most simple case, this is due to the fact that the mirror symmetric
profile simultaneously supports PST between mirror symmetric sites. We can imagine
that a Bell state of the form 1/

√
2(|01〉 + |10〉) is imposed on the first two qubits of an

N -site chain. Therefore, in the one excitation subspace (i.e. |k〉 = |0102...1k...0N−1〉)
our initial state has the form

|ψ(t = 0)〉 =
1√
2

(|1〉+ |2〉) (4.1)

At t = t∗, corresponding to the retrieval time where PST occurs between vertices 1 →
N and 2→ N − 1 we will get the state

|ψ(t = t∗)〉 =
1√
2

(|N〉+ |N − 1〉) (4.2)

In this way, the Bell state is transferred on the other end of the chain. An important thing
that we have to keep in mind and also applies for the fractional revivals we will consider
in this chapter, is the fact that since we restrict ourselves to the one-excitation subspace,
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we do not consider entangled states containing two-excitation terms like 1/
√

2(|00〉 +
|11〉).

In the same spirit with the aforementioned scheme, one can consider the following
scenario. We start with an excitation localized on the first site of the chain |1〉. If
the chain supports a fractional revival, where the wavefunction is equally distributed
among the first and the last site, at t∗ we obtain the state 1/

√
2(|1〉+ |N〉). Tracing out

the other spins of the chain, this is equivalent to the generation of the entangled state
1/
√

2(|10〉 + |01〉). In fact a few years back, Kay [71] generalized this approach by
numerically demonstrating that in principle, an arbitrary one excitation quantum state
can be generated by suitably engineering the quantum channel.

In this chapter we will present our contribution towards the direction of entanglement
generation in an engineered quantum channel. We will do so by extending the approach
we followed in Chapter 2. In this case, we will examine the splitting of the wavefunction
during the transfer between an arbitrary initial and two arbitrary target sites of the spin
chain. When this transfer process occurs with fidelity F = 1, we say that Fractional
State Transfer (FST) has occurred. We will consider the fractional revivals as a special
case of FST, corresponding to the case where one of the target sites is the same as the
initial one. Our aim is to identify the reachable and non-reachable transfers and deduce
which states can be prepared by employing this scheme.

4.2 Reachability criteria for FST

We yet again restrict ourselves to the one-excitation subspace of the XX Hamiltonian
(see Eq. 2.2) and we are considering the transfer between an initial site |n〉 and two
target sites |m〉 and |k〉. The target state has the following form:

|ψ(t = t∗)〉 = cosχ |m〉+ sinχeiθ |k〉 (4.3)

where χ ∈ (0, π/2) and θ ∈ [0, 2π) In order to achieve fractional perfect state transfer,
the following equation should hold:

e−iHt
∗ |n〉 = eiξ(cosχ |m〉+ eiθ sinχ |k〉) (4.4)

inserting the resolution of identity we get:
N∑
i=1

ei(Eit
∗−ξ) 〈vi|n〉 |vi〉 =

N∑
i=1

(cosχ 〈vi|m〉+ eiθ sinχ 〈vi|k〉) |vi〉 (4.5)

and invoking linear independence:

ei(Eit
∗−ξ) 〈vi|n〉 = cosχ 〈vi|m〉+ eiθ sinχ 〈vi|k〉 , ∀i. (4.6)

Thus, when separating real and imaginary parts we end up with the following relations:

cos(Eit
∗ − ξ) 〈vi|n〉 = cosχ 〈vi|m〉+ cos θ sinχ 〈vi|k〉 (4.7a)

sin(Eit
∗ − ξ) 〈vi|n〉 = sin θ sinχ 〈vi|k〉 (4.7b)



4.3. NUMERICAL RESULTS 45

From here on, we can distinguish two cases, one where θ = νπ for which we obtain:

sin(Eit
∗ − ξ) = 0 (4.8a)

〈vi|n〉 = ±(cosχ 〈vi|m〉+ sinχ 〈vi|k〉) (4.8b)

and another where θ 6= νπ, for which we get:

N∑
i=1

sin2 (Eit
∗ − ξ)

sin2 θ sin2 χ
= 1 (4.9a)

N∑
i=1

sin2 (θ − Eit∗ + ξ)

sin2 θ cos2 χ
= 1 (4.9b)

What we can immediately notice, is that for θ = νπ we once more obtain the rationality
criterium (see Eq. 4.8(a)), that we have encountered in the PST case of Chapter 2.

4.3 Numerical results

In a manner similar to Chapter 2, an optimization algorithm was employed to examine
the reachable and non-reachable transfers in an open chain geometry. The optimization
parameters are the couplings Ji, time t, the relative phase between the two targets θ and
the angle χ, which is related to the target sites’ amplitudes. The cost function that the
optimization algorithm tries to minimize is the infidelity, defined as 1 − F , where F is
the fidelity of FST given by:

F =
∣∣〈ψ(t = t∗)| e−iHt |n〉

∣∣2 (4.10)

We will start by sketching the pattern of reachable and non-reachable transfers based
on our numerical results. Even and odd-sized chains will be treated separately.

Concerning the even-sized chains, fractional revivals are always reachable when n =
m and k is the mirror symmetric of m. In these cases θ = π

2
and the J’s profile are

symmetric. The fractional revival between the first and the N − 1 site of the chain is
also always reachable. All transfers where the target sites are 1 and N are reachable,
irrespective of the initial site. Finally, in general, the transfers where both target sites
are in the first half of the chain (m, k ≤ N/2) are non-reachable.

For odd-sized chains, all transfers where the target sites are 1 and N are reachable,
irrespective of the initial site. In addition, every transfer where n = 1, m = i(i =
1, 2, ..., N − 1) and k = N , is reachable . Non-reachable are the transfers where we
go from the central site to the two nearest mirror symmetric ones, an exception to this
rule is N = 3 where FST is supported and the two couplings are equal to each other
J1 = J2. Finally, similarly to the even-sized chains, the only fractional revivals that are
reachable are the ones where the initial site n (n = m) and the target site k are mirror
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Figure 4.1: Infidelity as a function of the angle χ, corresponding to the fractional state
transfer 1 → 4 + 2. The red points correspond to the values χ = 0 (PST between 1
and 4) and χ = π/2 (non-reachable PST between 1 and 2). The inset shows the gradual
increase of infidelity in the region close to π/2.

symmetric. Note, that in this case, in contrast with the even-sized chains, the relative
phase is θ = νπ.

We will highlight some important aspects of the aforementioned numerical results.
One thing that we examined is how the solutions we obtain are affected by the ampli-
tudes of the target sites. More specifically, we wanted to know if there are values of
the parameter χ for which the infidelity of the process is increased. To this purpose
for the reachable transfers we have taken different values of χ ∈ [0, π/2] and for each
value we obtained through the optimization algorithm the optimal set of parameters that
minimizes the infidelity. In Fig. 4.1, we give an indicative example by considering the
fractional state transfer between the initial site |1〉 and the target sites |2〉 and |4〉. For
χ = 0 the infidelity of the process is zero (i.e. of the order of 10−16) since this corre-
sponds to PST between the first and the fourth site, which we know is reachable. On the
contrary for χ = π/2, which corresponds to the non-reachable transfer between sites
1 and 2, the infidelity is increased and becomes of the order of 10−4. For the rest of
the values corresponding to different distributions of the wavefunction among the target
sites the infidelity is zero. This fact indicates that the process is insensitive to the values
of the amplitudes that we may impose on the target state. Let us make one small remark
here concerning Fig. 4.1. The fact that in the infidelity suddenly jumps when approach-
ing the value χ = π/2, is due to the size of the step we have chosen for scanning the
interval. If we decrease the size of the step and examine the behavior of infidelity for
χ-values arbitrary close to π/2 we will see that the transition is smooth and no sudden
jump takes place (see the inset in Fig. 4.1).

Of particular interest is the profile where all J’s, besides the ones on the center of the
chain, are mirror symmetric. Solutions that follow this profile have been first obtained
in [44] and later on in [10] through an inverse eigenvalue schemes, while in [58] an
analytical treatment was developed. In every case, their relation to the mirror profile
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of the standard PST has been highlighted. We have strong numerical indications that
this is a distinct feature of fractional revivals, since no such profile for the couplings has
been encountered in any other fractional state transfer process.

Lastly our attention was drawn by the fact that in order to get zero infidelity the
phase factor θ is restricted in acquiring either the value νπ or (2ν + 1)

π

2
, where ν ∈ Z.

To validate this numerically, for fixed amplitudes (i.e. χ) we have examined infidelity’s
behavior, taking the phase factor θ ∈ [0, 2π]. In Fig. 4.2 we consider two such examples.
On the right plot it is apparent that in order to get zero infidelity, the phase factor θ has to
be equal to νπ, while on the left plot θ = (2ν+1)π

2
. Examining the pattern of reachable

transfers we have observed that if the two target sites are both odd or even-labeled the
relative phase θ = νπ (e.g. Fig. 4.2(a)). On the other hand, when one target site is even
and the other odd we get θ = (2ν + 1)π

2
(e.g. 4.2(b)). In the following section we will

analytically demonstrate that this is the case for a particular class of networks which are
called bipartite.

Figure 4.2: Infidelity as a function of the angle θ, corresponding to the fractional state
transfer (a) 1→ 1 + 4 and (b) 1→ 2 + 4.
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4.4 Restrictions on the relative phase

In this section we will analytically demonstrate why the relative phase between the
two target sites that were considered, is restricted in acquiring the values θ = νπ or
(2ν + 1)π

2
. To this purpose, we will first introduce the notion of a bipartite graph [62].

A graph is bipartite if all its vertices can be partitioned in two sets S1 and S2, in such
a way that every edge has one end belonging to S1 and the other to S2. A way to
identify the bipartite character of a graph is through proper coloring. Proper coloring is
the procedure where colors are assigned on each vertex, such that no adjacent vertices
have the same color. Of course for a N -vertex graph this can be trivially realized by
employing N different colors. What is important is the least number of colors that are
needed for proper coloring a graph. This number is called the chromatic number of a
graph. If the chromatic number of a graph is 2 then the graph is bipartite. In Fig. 4.3
we provide some examples of bipartite and non-bipartite graphs.

For a bipartite Hamiltonian matrix, assuming that its vertices are colored with black
and red, we can define [100] the operator:

S =
∑
n∈black

|n〉 〈n| −
∑
n∈red

|n〉 〈n| (4.11)

which anticommutes with the Hamiltonian. For an open chain, we assign the black color
to even-numbered vertices and the red to odd-numbered vertices. If k is an even vertex
S |k〉 = |k〉, while if k is an odd vertex S |k〉 = − |k〉. Moreover, for every eigenvector
|vi〉 with eigenvalues Ei, S |vi〉 will be the eigenvector corresponding to the eigenvalue
−Ei. Based on the latter, we can write:

eiHt
∗ |n〉 =

∑
Ei>0

〈vi|n〉 (e−iEit
∗ |vi〉+ eiEit

∗
S |vi〉) (4.12)

where |vi〉 are the eigenvectors corresponding to the positive eigenvalues. If we multiply
Eq. 4.12 from the left by a site basis vector 〈k| depending on whether k is even or odd,
the sign of the second term inside the sum will be plus or minus respectively. Thus, for
k ∈ even, 〈k| eiHt∗ |n〉 will become a sum of cosines Eq. 4.13 (a). On the contrary for

Figure 4.3: (a) A bipartite graph with chromatic number 2. (b) A graph with chromatic
number 3 (c) A graph with chromatic number 4.
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k ∈ odd, we will get a purely imaginary sum of sines Eq. 4.13 (b).

〈keven| eiHt
∗ |n〉 = 2

∑
Ei>0

〈vi|n〉 〈keven|vi〉 cos (Eit
∗) (4.13a)

〈kodd| eiHt
∗ |n〉 = −2i

∑
Ei>0

2 〈vi|n〉 〈kodd|vi〉 sin (Eit
∗) (4.13b)

The same equation will of course hold if instead of keven, kodd we had meven,modd. On
the other hand, when we multiply Eq. 4.4 from the left with 〈k| and 〈m| we get:

〈k| eiHt∗ |n〉 = cos (θ + ξ) sinχ+ isin(θ + ξ) sinχ (4.14a)
〈m| eiHt∗ |n〉 = cos ξ cosχ+ i sin ξ cosχ (4.14b)

If we now equate the real and imaginary parts of Eq. 4.13 and Eq. 4.14 for both
keven, kodd and meven,modd we can derive the following relations:

keven,meven : sin (θ + ξ) = 0 and sin ξ = 0 (4.15a)
kodd,modd : cos (θ + ξ) = 0 and cos ξ = 0 (4.15b)
kodd,meven : cos (θ + ξ) = 0 and sin ξ = 0 (4.15c)
keven,modd : sin (θ + ξ) = 0 and cos ξ = 0 (4.15d)

From which it directly follows that for a bipartite Hamiltonian, when the two target
sites belong to the same partition of vertices, their relative phase is restricted to take the
values θ = νπ, while when they belong to different partitions θ = (2ν + 1)π/2, where
ν ∈ Z. This proof can be seen as an extention of the approach developed by Kay in
[70], where the bipartite nature of the chain was related to PST.

4.5 Reachability criteria for bipartite networks

Having addressed the restrictions that are imposed on the relative phase, let us revisit the
analytic relations that were derived in Section 4.2. For simplicity, let us only consider
the case where the wavefunction equally splits between the two target sites (i.e. χ =
π/4). We hereby present the reachability criteria for FST in terms of the eigenvalues
and the eigenvector components of the Hamiltonian.

For θ = νπ from Eq. 4.8 we get:

sin(Eit
∗ − ξ) = 0 (4.16a)

〈vi|n〉 = ± 1√
2

(〈vi|m〉+ 〈vi|k〉) (4.16b)

due to the bipartite nature of the spin chain the rationality criterium (Eq. 4.16(a)) im-
plies that the retrieval time t∗ can be chosen appropriately, such that the eigenvalues
acquire integer values, while Eq. 4.16(a) describes the relation between the eigenvector
components of the sites that participate in the fractional transfer process.
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On the other hand, for θ = (2ν + 1)π/2 we get the following equations:

N∑
i=1

sin2(Eit
∗ − ξ) =

1

2
(4.17a)

〈vi|m〉 =
√

2 cos (Eit
∗ − ξ) 〈vi|n〉 (4.17b)

〈vi|k〉 =
√

2 sin (Eit
∗ − ξ) 〈vi|n〉 (4.17c)

In contrast to the PST case, due to the complexity of the above equations, we have not
yet identified a geometrical symmetry of the network that can be related to Eq. 4.16 (b)
and Eq. 4.17 (b) and (c).



Chapter 5

A time-driven quantum channel

5.1 Preliminaries

In the previous chapters we have turned our focus on the engineered J’s protocol. We
have seen that the major advantages of this protocol are the high speed of information
transfer and the fact that no dynamical control is needed during the transfer process.
However, besides the speed of the transfer, there is another factor that determines the
efficiency of the transfer process and that is the protocols resilience to different sources
of decoherence. In addition to that, we have seen that PST occurs in between two
revivals of the initial state where the fidelity of the transfer forms a peak. Thus, a crucial
aspect in order to achieve a high fidelity transfer is to be able to read out the target state
at a particular time window related to the width of the peak. The latter feature is present
in various QST protocols and poses a challenging task for the experimentalists.

An alternative approach aiming to properly address one or both of the aforementioned
issues, are time-dependened quantum protocols. In this approach, the parameters of the
quantum channel are time-driven during the transfer process. As we already mentioned
in the introduction, the most intuitive way of realizing a time-dependent protocol is to
perform a series of swap operations in order to gradually move the excitation site by
site until the target state is reached. Although, this protocol performs well in terms
of speed, when disorder is introduced on the system’s parameters, the fidelity of the
transfer is highly degraded. This effect was highlighted in [103], where a comparison,
in terms of the effect of disorder, was made between the engineered “static” protocol
and one adiabatic time-dependent transfer protocol. It was deduced that although the
static quantum channel by far outperforms the adiabatic one in terms of speed, it is
more susceptible to static off-diagonal noise in J’s. In most cases, increasing the speed
comes along with a decrease in terms of robustness. Therefore, finding the balance
between these two aspects is a task of crucial importance.

A very active research direction that was initiated the past few years, employs sys-
tems that possess topological characteristics to develop efficient QST protocols. These
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systems, due to their topological protection, are extremely resilient to specific sources
of decoherence. In this chapter we will examine a QST protocol employing a Su-
Schrieffer-Heeger (SSH) chain, revealing crucial aspects of the driving function that
when handled appropriately, lead to fast and robust transfer process. To demonstrate
this, we will make a comparison between our proposal and another time-dependent pro-
tocol, in which the underlying undriven quantum channel is topologically trivial.

5.1.1 SSH model

We will start by briefly introducing the SSH model. We will hereby present only the
properties that will be necessary to our discussion. For a more detailed review of the
model we refer the reader to [4]. The SSH chain is the simplest topologically non-trivial
system in 1-D that can be obtained by suitably modifying the Hamiltonian of the one
excitation subspace that was introduced in Chapter 2:

H =
N−1∑
i=1

Ji(|i〉 〈i+ 1|+ h.c.) +
N∑
i=1

Bi |i〉 〈i| (5.1)

To do so, the chain has to be dimerized. Meaning, we have to make Ji = Jodd for
i ∈ odd and Ji = Jeven for i ∈ even. In addition, the magnetic field needs to be
constant. We will once again assume that Bi = 0 ∀i, unless explicitly stated otherwise.
We will distinguish two cases, one where the SSH chain consists of an even number of
sites N ∈ even and another where N ∈ odd.

For even-sized chains the topological phase arises when Jodd < Jeven and two modes
appear at the center of the energy gap (see Fig. 5.1). On the contrary, in the trivial phase
where Jodd > Jeven no modes appear inside the gap. The energies corresponding to the
two eigenmodes lie close (above and below) to E = 0 and are separated from the rest
of the modes by a finite energy gap of the order of Jeven. This gap is a characteristic
feature of topological protection. If we construct a linear combination of the two eigen-
vectors corresponding to the two modes, we obtain a state that is localized on the left
|L〉 or on the right side |R〉 of the chain depending on the relative sign between the two
eigenvectors (see Fig. 5.1).

If we initially prepare the system to be the state that is localized on the left side of the
chain and we let it evolve freely, due to the finite size of the chain, the wavefunction of
|L〉 has an overlap with |R〉. Thus, as the system evolves in time, there will be an Rabi-
like oscillation between the states |L〉 and |R〉. This scheme has been employed to create
an efficient time-independent QST protocol for transferring single site excitations along
the chain [79, 54]. It closely resembles the weak-coupling (or strong- magentic field)
protocols that have been proposed to create Rabi-like oscillation schemes for transfer-
ring excitations [122, 111, 84], but its additional topological protection makes it more
robust to specific types of disorder. The drawback of this approach is that the energy
spacing between the two modes is decreased (exponentially) as the length of the chain
increases. Thus, leading to large transfer times as the systems’ size scales up.
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Figure 5.1: On the left we depict the spectrum of an even-sized SSH chain in its
topological phase, consisting of N = 30 and where Jodd < Jeven (Jodd = 0.5, Jeven =
1). On the right we have plotted the linear combinations of the two modes that are sitting
in the middle of the energy gap (|L〉 on the top right panel and |R〉 on the bottom).

Figure 5.2: On the left we depict the spectrum of an odd-sized SSH chain, consisting
of N = 31 and Jodd = 0.5, Jeven = 1.0 . On the right we have plotted the eigenvector
corresponding to the zero mode. The red mode corresponds to Jodd < Jeven, while the
black to the exact opposite case, where Jodd > Jeven.
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On the contrary, for odd-sized chains, there is always one zero mode (see Fig. 5.2)
that is localized on the end corresponding to the weaker coupling. Namely, when Jodd <
Jeven (Jodd > Jeven) the mode is localized near the first (last) site of the chain (see
Fig. 5.2). In this case the energy of the mode is exactly zero. For odd-sized chains
the eigenmode energies (besides the zero energy solution) are given by the following
expression:

εj = ±
∣∣Jodd + Jevene

iqj
∣∣, (5.2)

where qj = 2jπ/(N + 1) and j = 1, 2, ..., [N/2] (j counts the number of ± pairs and
[x] gives the greatest integer that is less than equal to x) [42]. Thus, for an odd-sized
chain of length N the energy gap can be analytically determined and is given by:

g = 2
∣∣ε[N/2]

∣∣ (5.3)

The main protocol we will examine in this chapter is based on the odd-sized SSH chain.

5.2 QST protocols

The aim of the protocols we will consider, is to transfer a single excitation from the first
|1〉 to the last |N〉 site of the chain, by properly controlling the couplings Ji(t) during
the dynamical evolution. The quantity that determines how faithfully the transfer has
occurred is the fidelity, which for a time-dependent protocol can be defined as:

F = |〈N |N(t∗)〉|2 (5.4)

where by |N(t∗)〉we denote amplitude of theN -th site, obtained by numerically solving
the time-dependent Schrödinger equation and t∗ corresponds to the transfer time. In all
protocols we will present, the energy scale is determined by the maximum value that the
couplings acquire during the dynamical evolution. Thus, without loss of generality we
will set Jmax = 1. Time will be given in units of 1/Jmax and energy in units of Jmax.
We will now present two different cases for realizing an efficient time-driven quantum
channel, one where the underlying undriven chain has topological characteristics and
another where the chain is topologically trivial.

5.2.1 Topological chain

We restrict ourselves to odd-sized chains and we assume that we can separately control
even and odd-indexed couplings. Initially the system is prepared so that Jodd = 0
and Jeven = 1 and the excitation is localized on the first site of the chain which is
disconnected from the rest (see Fig. 5.3 (a)). Therefore, the initial state is an eigenstate
of the system (|100...0〉 with zero eigenenergy). At the transfer time t∗ (see Fig. 5.3
(c)) we end up with the opposite situation (i.e. Jeven = 0 and Jodd = 1). The system
undergoes a transition and transforms from a topological chain supporting an edge mode
on the first site, to a topological chain with an edge mode on the last site, resulting to
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Figure 5.3: A schematic of different time instants during the dynamical evolution of
the topological chain. (a) Initially, Jodd = 0, Jeven = Jmax, the zero-mode is localized
on the first site and the energy gap takes its maximum value (∼ Jmax ). (b) For t = t∗/2
we have Jodd = Jeven = J < Jmax and the energy gap acquires its minimum value (∼
4J/N ). Before and after t∗/2 we have Jodd < Jeven < Jmax and Jeven < Jodd < Jmax
respectively. (c) Finally, Jodd = Jmax, Jeven = 0, the zero-mode is localized on the last
site and the energy gap, once again takes its maximum value.

an excitation transfer from one side to the other. Note here, that in this protocol, there
always exists a time where all the couplings acquire the same value Jeven = Jodd. In our
case we will consider this time to be t = t∗/2 (see Fig. 5.3 (b)). For the infinite system,
Jeven = Jodd corresponds to the closing of the energy gap separating the zero-energy
mode with the rest excited states. However, in finite systems a finite energy difference
between any two modes is always present. Thus, the point in the parameter space where
Jeven = Jodd, corresponds to the minimization of the energy gap.

5.2.2 Topologically-trivial chain

To explore how the topological nature of the underlying static chain affects the trans-
fer, we will proceed to a comparison with a protocol employing a topologically-trivial
chain. We consider a protocol where the only couplings that are controlled are the ones
connecting the edge sites with the rest of the chain (i.e. J1 and JN−1). This protocol has
been chosen based on its performance in terms of speed and also by the fact that local
manipulation of the system’s parameters makes it experimentally more feasible. As was
the case for the topological chain, the initial state is localized at the first site and cor-
responds to the system’s zero-energy eigenstate (see Fig. 5.4 (a)). Here, J1 = 0 while
Ji = J ∀i 6= 1. During the dynamical evolution, due to the odd-size of the chain, the
zero-energy eigenstate is always present. Therefore, gradually switching on J1 while
JN−1 is decreased, results at time t∗, to the transfer of the excitation at the other end of
the chain (see Fig. 5.4 (c)). An important difference between this protocol and the one
described in the previous section, is that in this case, there is no point in the parameter
space where all the couplings acquire the same value.
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Figure 5.4: A schematic of different time instants during the dynamical evolution of
the topologically-trivial chain. (a) Initially, J1 = 0, Ji = Jmax where i = 2, ..., N − 1,
the zero-mode is localized on the first site and the energy gap takes its maximum value.
(b) For t = t∗/2 we have J1 = JN−1 < Jmax while Ji = Jmax for i = 2, 3, ..., JN−2.
Before and after t∗/2 we have J1 < JN−1 < Jmax and JN−1 < J1 < Jmax respectively.
(c) Finally, J1 = 0 and Ji = Jmax for i = 2, ..., N − 1, while the zero-mode is localized
at the last site of the chain.

5.3 Crucial characteristics of the driving function

Before presenting our numerical results, we will develop an intuitive and solid line of
arguments that dictate which are the crucial considerations that have to be taken into
account when driving the state transfer in an odd-sized SSH chain. In all protocols we
will consider the system is prepared in the zero-energy eigenstate that is localized on the
first site of the chain. As the system evolves, a zero-energy state is always present due
to the odd size of the chain. Therefore, the adiabatic approximation ensures, that if the
system is driven sufficiently slow during the transfer process, the system remains in the
zero-energy eigenstate without exciting eigenstates. Our proposal is based on suitably
adjusting the driving function in order to reach high fidelity values for small transfer
times. Our approach does not rely on methods like the adiabatic passage or shortcuts
to adiabaticity, where specifically engineered terms are introduced in the Hamiltonian
that can induce counter-processes able to suppress the excitations. In other words, we
confine ourselves to drive the parameters of nearest-neighbor coupling. To introduce
counter-adiabatic terms one should include next-to-nearest neighbor interactions like in
[45].

When driving the chain, we focus on two important quantities: The energy difference
between the zero-mode and the rest of the states, and the derivative of the Hamiltonian
matrix that is directly related to the slope of the driving function. These two quantities,
after all, appear in the definition of the adiabatic invariant [86], which goes as follows:
Assuming that |vi(t)〉 is the instantaneous the zero-energy eigenstate, in order to be
close to the adiabatic limit, the following sum has to be sufficiently small

∑
j 6=i

〈vj(t)| ˙̂
H |vi(t)〉

Ej(t)− Ei(t)
� 1, (5.5)

where Em(t) the instantaneous eigenenergy of the jth mode and ˙̂
H the time-derivative

of the Hamiltonian. Equation 7.4 holds when no degeneracies appear in the spectrum
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Figure 5.5: For each protocol (a) cosine (b) exponential and (c) trivial, on the top panel
we plot the driving function as a function of time. While on the bottom panel, we depict
the corresponding instantaneous energy spectrum as a function of time. In all plots, we
have taken the transfer time to be t∗ = 1 and the chain consists of N = 31 sites.

and the energies |Ej(t)− Ei(t)| > ε0 are separated by a small ε0 ∀t. In the QST protocol
employing the odd-sized SSH chain, initially (as Jodd = 0) the energy gap separating
the zero-mode from the excited states takes its maximum value. As Jodd is switched-on
and Jeven decreases, the energy gap approaches its minimum, occurring at Jodd = Jeven
and at the transfer time t∗ regains its maximum value (e.g. see Fig. 5.5 (a) and (b)
bottom panel). Our logic when dealing with the aforementioned dynamical evolution
is simple and can be summarized into two considerations. One thing that we can do is
to force the driving function to equate Jodd and Jeven at values close to Jmax, which is
the maximum value the couplings can acquire during the transfer. This will result in
the maximization of the minimum energy gap. The minimum energy gap can be used to
specify a characteristic time scale. When the transfer time is sufficiently large compared
to this time scale, we can safely assume that we are close to the adiabatic following of
the zero-energy state. A driving function that has this characteristic has also been used
in [103], where the dimerized chain they consider is equivalent to the SSH chain. The
other crucial consideration, is to adjust the driving in such a way that, initially, when the
energy gap is bigger, we ”strongly” drive the system (i.e. steeper slope of the driving
function) and when we are close to the minimum value of the energy gap the driving
becomes more ”gentle” (i.e. smaller slope). Note however here, that strongly driving
the system may induce non-adiabatic transitions between the zero-energy state and the
excited states, that in general reduce the efficiency of the transfer.

Recently [85], in a superconducting quibit chain that can be effectively described
by an odd-sized SSH chain, an adiabatic protocol using a cosine driving function was
considered. Aiming to balance the interplay between the two aforementioned consider-
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ations in order to increase the speed of the transfer protocol, we propose an alternative
exponential driving function. We claim that this function encapsulates the desirable cru-
cial characteristics we considered in this section. In the next sections we will explicitly
demonstrate that the proper implementation of the above leads to faster transfer process
while at the same time the robustness of the protocol is maintained.

5.4 Speed of the transfer

Now let us examine in more detail the QST protocols that we briefly described in the
previous section and provide the numerical evidence supporting our claims. We will
examine chains of moderate length N = 31 sites. In the protocol we propose the
couplings are driven by an exponential function (see Fig. 5.5 (b) top panel):

Jodd = (1− e−αt/t∗)/(1− e−α) and Jeven = (1− e−α(t∗−t))/t∗)/(1− e−α) (5.6)

where α = 6.0 is a free parameter that has been fine-tuned to increase the efficiency
in terms of speed. We will get back to the role of this free parameter at the end of the
current section. The exponential protocol will be compared with the cosine protocol
proposed in [85] (see Fig. 5.5 (a) top panel), in which:

Jodd = b(1− cos (πt/t∗)) and Jeven = b(1 + cos (πt/t∗)) (5.7)

with a constant parameter b = 0.5 . On the other hand, for the trivial protocol the driving
function has the following linear form (see Fig. 5.5 (c) top panel):

J1 =
t

t∗
, JN−1 = 1− t

t∗
and Ji = Jmax = 1,∀i 6= 1, N − 1 (5.8)

In Fig. 5.5, we plot for each protocol on the top panel the driving function for the
couplings and on the bottom how the instantaneous eigenspectrum evolves over time.
Comparing the two protocols that employ the topological chain (see Fig. 5.5 (a) and (b)),
we can immediately notice their qualitative differences. The cosine function initially for
large values of the energy gap, drives the system slowly, meaning the numerator of Eq.
7.4 is smaller as compared to the exponential. However, it approaches the minimum
value of the energy gap with greater slope, while the exponential slows down and drives
the system more smoothly in this region. Last but not least, the minimum value of the
energy gap is analytically obtained by plugging into Eq. 5.3, the instantaneous values of
the couplings at t = t∗/2. For the cosine we get gcosmin = 0.09, while for the exponential
gexpmin = 0.18. As it was already mentioned, this is because the exponential equates Jeven
and Jodd at higher values.

In the trivial protocol on the other hand (Fig. 5.5 (c)), the evolution is completely
different. Namely, the instantaneous energy gap separating the zero-energy mode with
the rest of the modes starts from its minimum value (gtrivmin = 0.1), slowly increases
reaching its maximum (gtrivmax = 0.14) at the middle of the time evolution and then
returns to its initial value.
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Figure 5.6: Fidelity as a function of the transfer time for all protocols.

Now, that the qualitative differences between the protocols have become apparent, let
us proceed and examine some quantitative results. In Fig. 5.6, for each protocol, we plot
the fidelity F (Eq. 5.4) as a function of the transfer time t∗. To make a comparison in
terms of the speed of the transfer we have to set a lower bound in fidelity. In particular,
we will consider the time after which the fidelity is stabilized above 0.9. In this case,
the exponential protocol is clearly faster than the cosine protocol, since this occurs for
t∗ ≥ 42 as compared to the cosine where this happens for t∗ ≥ 761. The trivial protocol
on the other hand, even though it reaches F = 0.9 for t∗ = 35, appears to have a
strongly oscillatory behavior that prevents its stabilization above F = 0.9 till t∗ ≥ 231.

For all profiles, in the limit of t∗ →∞ the fidelity approaches unity and the excitation
is perfectly transferred along the chain. This makes up the adiabatic limit where, dur-
ing the dynamical evolution, we ”follow” the zero-energy state, without exciting other
eigenstates. The oscillations that appear in the fidelity plot of the trivial protocol are
in general undesirable in QST protocols since they demand great precision when tun-
ing the transfer time [69]. Moreover, they signify that non-adiabatic processes are the
underlying mechanism responsible for achieving high values of fidelity in such small
transfer times. Taking a closer look at the fidelity plot of the exponential protocol (Fig.
5.7 for α = 6), we can notice that small oscillations are also present here, i.e. the fi-
delity curve does not increase smoothly. This indicates that non-adiabatic processes are
at work also in this case. Obtaining a suitable basis where these processes that occur
during the dynamical evolution can be rigorously tracked down, remains a highly non-
trivial task [81, 53]. Nevertheless, as we will now show, the non-adiabatic processes can
be properly handled to increase the efficiency of the transfer process.

When we introduced the exponential driving function, we mentioned that the α pa-
rameter is fine-tuned (α = 6.0). Smaller values of the a parameter lead to a less steep
slope of the driving function and a smaller value of gexpmin (i.e. Jeven, Jodd equate at a
smaller value). In this case, the non-adiabatic processes are suppressed and the fidelity
smoothens out (see Fig. 5.7 α = 4). Consequently, the protocol’s speed is reduced since
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high fidelity values are obtained for larger transfer times. On the contrary, increasing α
above the fine-tuned value results to a stronger slope of the driving function and a greater
value of gexpmin. Therefore, the non-adiabatic processes take over for small transfer times
and strong oscillations appear at the fidelity plot (see Fig. 5.7 α = 8). This once again
reduces the speed of the protocol. Thus, the value of this fine-tuned parameter α = 6
is a trade-off, since it signifies the point up to which we strongly drive the system such
that the speed is increased, but gently enough to avoid non-adiabatic effects.

Figure 5.7: Fidelity as a function of the transfer time for the exponential driving and
for different values of the α parameter.

5.5 Disorder Analysis

In this section, we will consider static disorder both on the couplings and on the mag-
netic field and study its effect on the transfer probability. Based on the matrix repre-
sentation of the Hamiltonian the disorder on the couplings is commonly addressed to
as off-diagonal disorder, while the disorder on the magnetic field as diagonal disorder.
Static disorder can be attributed to manufacturing errors that arise during the experi-
mental implementation. The way each disorder realization is imposed on the system’s
parameters is the following:

Ji(t)→ Ji(t)(1 + δJi) Bi(t)→ Bi(t) + δBi (5.9)

δJi and δBi acquire random real values uniformly distributed in the interval (−ds, ds),
while ds corresponds to the disorder strength. When we consider static disorder, for
each realization a random profile of perturbations is imposed on the parameters and
remains fixed during the time evolution.

In Fig. 5.8 for each protocol, we plot the mean transfer probability |〈N |N(t∗)〉|2, as a
function of log t∗ for diagonal and off-diagonal disorder of moderate strength ds = 0.2.
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Figure 5.8: For each protocol, (a) cosine, (b) exponential and (c) trivial, we show the
impact of diagonal and off-diagonal disorder of strength ds = 0.2 (units of Jmax). Each
point corresponds to the mean value of the transfer probability |〈N |N(t∗)〉|2 averaged
over 10000 disorder realizations given as a function of the transfer time, while the error
bars correspond to the standard deviation of the sample. In order to compare we have
also included the unperturbed curve. The transfer time axis is displayed in logarithmic
scale. We also note, that the limits of the t∗-axis for the cosine differ from the other two.
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We have to note here, that we use the term mean transfer probability instead of mean
fidelity, to stress the fact that one should be careful and properly treat the phase γ that
appears in the original definition of fidelity Eq. 2.9. In this case, since the static noise
corresponds to fabrication errors, to consider the original fidelity we can assume that
the phase factor γ can be suitably adjusted for each realization before taking the mean
value.

What we can immediately notice, is that in almost all cases (there is one exception that
will be discussed later on) the effect of disorder does not ruin completely the transfer
process. Instead, the main effect is that in the presence of disorder (diagonal or off-
diagonal), the transfer time t∗ needed to reach high values of transfer probability is
increased.

Let us turn our attention to the protocols employing the SSH chain. The zero-energy
mode of the underlying static chain is known to be robust against perturbations that re-
spect chiral symmetry [4]. Off-diagonal (chiral) disorder may change the mode’s wave-
function, however its energy remains pinned down to zero. On the contrary, diagonal
disorder breaks chiral symmetry and the energy of the mode is shifted. For the time-
driven chain a difference between chiral and non-chiral disorder becomes apparent in
the case of the adiabatic cosine protocol (see Fig. 5.8 (a)). As it was expected from the
static case, the transfer probability reduces more in the presence of non-chiral disorder
[85, 79]. The exponential protocol however, seems indifferent to whether the disorder
is chiral or not (see Fig. 5.8 (b)). The reason behind this lies in the higher speed of
the exponential protocol. Since the effect of disorder strongly manifests in large time
scales, the adiabatic cosine protocol is far more sensitive compared to the exponential.
This argument has been recently used to justify the resilience of the counter adiabatic
protocol in [45].

When we examine the effect of the disorder on the couplings for the topologically
trivial protocol (see Fig. 5.8 (c)) we observe that the oscillatory behavior of the transfer
probability for small transfer times is suppressed (i.e. less oscillations and the mean
transfer probability is significantly degraded). Thus, we can deduce that the resonant
processes are not so robust to the static off-diagonal disorder.

On the other hand, when considering the effect of the disorder on the magnetic field
we distinguish two cases. One where the disorder is imposed on all sites of the chain
and another where the first and last sites are exempted (i.e. δB1 = δBN = 0). In the
latter case, the protocol proves to be even more robust than the off-diagonal case (see
Fig. 5.8 (c) diagonal 2). However, in the former, the effect of disorder is severe and
the transfer process is completely destroyed (see Fig. 5.8 (c) diagonal 1). The diago-
nal disorder on the edges greatly affects the transfer process since it induces an energy
difference between the initial and the final state. The system’s initial state is localized
on the first site with energy equal to δB1, while the final state is localized on site N
with energy δBN . Combined with the fact that the energy gap separating them from the
rest of the excited states takes its minimum value (which is smaller than the strength
of the disorder) during the beginning and the end of the transfer process, explains the
high impact of the diagonal disorder on the edges. In conclusion, the topological pro-
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tection coming from the energy gap, clearly favors the topological channels, which are
indifferent to whether the diagonal disorder is imposed on the edge sites.

To sum up, the exponential protocol is quite robust to both diagonal and off-diagonal
disorder and clearly outperforms the two other protocols. As opposed to the adiabatic
cosine protocol, it is indifferent to whether the disorder is chiral or not and compared
with the trivial chain we can deduce that no significant (in terms of affecting the trans-
fer probability) resonant processes susceptible to static noise are at work. Finally, the
presence of a wide energy gap in the underlying static SSH chain clearly favors the
topological quantum channel when the diagonal disorder is imposed on the edge sites
of the chain.

5.6 Scalability

The last thing we will examine is a crucial aspect determining the efficiency of a QST
protocol, commonly referred to as scalability. Meaning: how does the protocol behaves
when we increase the system’s size. To numerically examine this property, we pick
up an arbitrary fidelity and plot the transfer time t∗ it takes to reach it as a function
of the system’s size N . For consistency with the analysis made so far, we once again
pick F = 0.9 and examine chains up to N = 100 (see Fig. 5.9). We have to note,
that in the case of the trivial protocol, we pick up the transfer time t∗0.9 after which
the oscillations of fidelity do not lead to a decreased fidelity value below the imposed
bound (i.e. F < 0.9). Considering the SSH protocols, as the system size is increased
the value of the minimum instantaneous energy gap decreases. Consequently, to reach
the desirable value of fidelity, the system has to be driven at a slower pace. Nevertheless,
by inspecting Fig. 5.9, it is evident that the proposed exponential driving outperforms
the two other protocols in terms of the transfer time and exhibits a good behavior up to
the lengths we have considered here.
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Figure 5.9: For each protocol, we plot the transfer time t∗0.9 it takes to reach F = 0.9
as a function of the system’s size N .



Chapter 6

Conclusions and outlook

We have studied the problem of transferring states between vertices of a quantum net-
work. In the first chapters of this work we focused on the engineered couplings protocol,
while on the last chapter a time-dependent protocol was considered.

Concerning the engineered couplings protocol, by examining the conditions (reacha-
bility criteria) for the manifestation of perfect state transfer between an arbitrary pair of
vertices in open and closed geometries, we identified the reachable and non-reachable
transfer processes depending on the size of the chain [97]. For open chains, we high-
lighted the existence of non-mirror symmetric patterns that emerge in the profile of the
couplings. The analytical treatment that has been previously developed to deal with the
transfers between mirror symmetric vertices, proves insufficient in these cases. To this
end, we developed a scheme that enables us to analytically tackle the problem. This
scheme sheds light to the mathematical complexity of the problem which increases with
the chains size and inevitably at some point the analytical treatment becomes infeasible.
Our results are supported by the numerical implementation of an optimization algorithm
from which we can extract the profile of the couplings. An interesting finding that we
came up with, when examining closed geometries, is that we identified a class of net-
works that do not support PST between any two vertices. This class of networks consists
of all odd-sized cycles apart from the N = 3 case.

To find the root of the underlying symmetry that dictates the couplings’ profile, we
turned our attention to the graph theoretical tools that have been developed to treat PST
in arbitrary network configurations. Exploiting the relation between cospectrality and
the recently introduced notion of Latent Symmetry, the latter is identified as “core”
geometrical symmetry that two vertices should possess in order to support PST. Latent
symmetry is defined in terms of the isospectral reduction, which enables us to identify
non trivial automorphisms between two vertices of the graph.

We have investigated the implications of the connections between cospectrality, latent
symmetry and the first criterium for PST [106]. More specifically, we highlighted the
fact, that the geometrical interpretation of cospectrality succeeds in providing an intu-
itive picture for one of the first reachability criterium in terms of walks in the network.

65
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We have demonstrated that performing the isospectral reduction over a pair of vertices
and imposing latent symmetry, we can obtain the symmetry profile of the couplings that
satisfies the first reachability criterium. This provides a consistent analytical method
for deducing whether two vertices can support PST based on the geometry of the net-
work and also gives invaluable information for the numerical treatments (optimization
algorithm or inverse eigenvalue methods). Moreover, we have connected the non-mirror
symmetric patterns of the couplings, that we have previously encountered, to the net-
work’s non-trivial automorphisms. In this way, we showed that the isospectral reduction
proves to be a powerful tool that allows us to design networks whose geometry com-
plies with the first reachability criterium. On the other hand, the second reachability
criterium imposes restrictions on the eigenvalues and there is no apparent way (at least
to our knowledge) to relate this criterium to the geometry of the network. To this end,
the only resources we have at our disposal are the aforementioned numerical treatments.
Lastly, we have also addressed the case where the Hamiltonian of the network possess
degenerate eigenvalues and demonstrated how the notion of strong cospectrality, that
has been alleged to be one of the necessary and sufficient conditions for PST, ensures
that the degenerate subspace meets the condition demanded by the second reachability
criterium.

For PST to occur, the two reachability criteria have to be simultaneously satisfied.
The isospectral reduction can be used to exclude PST, when the geometry of the network
does not comply with the symmetries that are imposed on the profile of the couplings by
the first reachability criterium. However, there are cases where, eventhough the profile
of the couplings respects latent symmetry, their weights cannot be suitably adjusted to
enforce the second criterium on the system’s eigenvalues. These cases are the most dif-
ficult to handle and the analytical treatment that was developed in the first chapter of this
work makes a step towards addressing this issue. The most striking example where the
two conditions fail to be simultaneously satisfied, is the family of odd weighted cycles
(besides N = 3). This example opens the perspective of employing the machinery that
has been developed so far, towards obtaining a no-go theorem for particular classes of
weighted graphs were PST will be impossible between any pair of vertices.

Another potential use of the engineered couplings protocols is the generation of
entangled states through the phenomenon of fractional state transfer. Extending the
methodology that we introduced when studying PST, we considered reachable and non-
reachable transfers in an open chain between one initial and two target sites. We showed
that, the bipartite nature of the chain proves to be restrictive on the values that the rel-
ative phase of the entangled state can acquire. Based on our numerical findings, we
tried to unravel the pattern of reachable transfer as the systems’ size grows and we also
analytically determined the reachability criteria that have to be imposed on the systems’
eigenvalues and eigenvectors.

In this case, the relations are more tedious to handle and so far an geometrical in-
terpretation in terms of network symmetries is missing. Meaning the symmetries that
appear in the coupling’s profile remain in general unidentified. Investigating the isospec-
tral reduction over the three sites involved in the FST, might help to shed some light
towards this direction.
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In the final chapter, we have numerically investigated a time-dependent protocol that
employs a topological quantum chain to act as a quantum channel for transferring single-
site excitations [96]. We propose an exponential driving function that increases the ef-
ficiency of the transfer in terms of speed. To sustain our claim, we make a comparison
with two other QST protocols. The crucial characteristics of the exponential function
are the fact that it suitably adapts the slope of the driving function based on the value of
the instantaneous energy gap, while at the same time ensures that the minimum value of
the energy gap is as big as possible. In addition, we studied the effect of diagonal and
off-diagonal static noise highlighting the fact that even though the speed of the protocol
is increased its robustness is maintained and lastly, we numerically verified that the ex-
ponential protocol outperforms the other two protocols when we increase the system’s
size. The difference in terms of speed with the cosine and the trivial protocol, empha-
sizes the power of our treatment and identifies the considerations that have to be taken
into account when driving a topological quantum chain. The developed scheme makes
a substantial contribution to speeding-up adiabatic protocols (with topological charac-
teristics or not) since it indicates a conceptual way of designing the control schemes
depending on the instantaneous eigenspectrum characteristics.

To conclude, on the one hand we have considered one of the fastest time-independent
protocols for short distance quantum communication and shed light to its underlying
dynamics and potential use, while on the other we took steps towards optimizing the
speed of one of the more robust time-dependent proposals. Our work adds up to the
ongoing effort of constructing discrete networks that can efficiently transfer and manip-
ulate quantum states. We have witnessed first hand the vast challenges that one faces
when trying to gain control over a quantum system.
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Περίληψη

Εισαγωγή

Μια από τις βασικότερες διεργασίες στον κλάδο της κβαντικής πληροφορίας, είναι η

αξιόπιστη μεταφορά καταστάσεων μεταξύ δυο σημείων του χώρου. Επί του παρόν-

τος, για τη πραγματοποίηση μεταφοράς μεγάλων αποστάσεων τα φωτόνια αποτελούν

την βέλτιστη επιλογή. Η κβαντική κατάσταση συνήθως κωδικοποιείται στην πόλ-

ωση των φωτονίων τα οποία μπορούν να μεταφερθούν μεταξύ δύο σημείων μέσω

οπτικών ινών. Παρ΄ όλα ταύτα, έχει επισημανθεί ότι η κωδικοποίηση της πληρο-

φορίας στα φωτόνια μπορεί να αποφευχθεί όταν η μεταφορά καταστάσεων πρόκειται

να πραγματοποιηθεί μεταξύ κοντινών αποστάσεων. Στον αντίποδα των φωτονίων

σε αυτήν την περίπτωση, έχουν προταθεί πρωτόκολλα επικοινωνίας τα οποία χρησι-

μοποιούν αλυσίδες σπιν. Εναρκτήριο έναυσμα για αυτήν την ερευνητική κατεύθυνση

αποτέλεσε η εργασία του Bose [20]. Στην εργασία αυτή οι συνδέσεις μεταξύ των
γειτονικών σπιν της αλυσίδας θεωρήθηκαν σταθερές και ομογενείς. Προετοιμάζοντας

το σύστημα έτσι ώστε η κατάσταση η οποία θέλουμε να μεταφέρουμε βρίσκεται στο

πρώτο πλεγματικό σημείο της αλυσίδας, το σύστημα αφήνεται ελεύθερο και εξετάζε-

ται αν υπάρχει κάποια χρονική στιγμή t∗ κατά την οποία η κατάσταση έχει μεταφερθεί
στο άλλο άκρο της αλυσίδας. Βασικό πλεονέκτημα του εν λόγω πρωτοκόλλου είναι

το γεγονός ότι δεν απαιτείται δυναμικός έλεγχος των παραμέτρων του συστήμα-

τος κατά τη διάρκεια της μεταφοράς (χρονοανεξάρτητο πρωτόκολλο). Το μέγεθος

που καθορίζει πόσο αξιόπιστα μεταφέρεται μια κατάσταση ονομάζεται πιστότητα και

όταν αυτή η ποσότητα είναι ίση με 1 λέμε ότι έχουμε τέλεια μεταφορά μιας κατάσ-

τασης. Ο Bose μελέτησε πώς μεταβάλλεται η πιστότητα της μεταφοράς καθώς το
μέγεθος της αλυσίδας μεγαλώνει. Διαπίστωσε ότι χρησιμοποιώντας το παραπάνω

πρωτόκολλο ο μέγιστος αριθμός πλεγματικός αριθμός σημείων μιας αλυσίδας που δύ-

ναται να μεταφέρει τέλεια μια κατάσταση είναι N = 4. Αν και το αποτέλεσμα αυτό δεν
ήταν ιδιαίτερα ενθαρρυντικό για την πρακτική εφαρμογή του πρωτοκόλλου, λίγο καιρό

αργότερα προτάθηκε μία παραλλαγή αυτής της ιδέας που αντιμετώπισε το εν λόγω

πρόβλημα. Στις μελέτες [39, 92] διαπιστώθηκε ότι η τέλεια μεταφορά μιας κατάσ-

τασης μπορεί να γίνει χωρίς την επιβολή δυναμικού ελέγχου για οσοδήποτε μεγάλες

αλυσίδες, αρκεί οι συνδέσεις μεταξύ των σπιν να προκατασκευαστούν κατάλληλα. Πιο

συγκεκριμένα, το προφίλ που θα πρέπει να ακολουθούν οι συνδέσεις, θα πρέπει να

είναι κατοπτρικά συμμετρικό ως προς το κέντρο της αλυσίδας. Το πρωτόκολλο αυτό

πετυχαίνει τη μεταφορά καταστάσεων σε μικρούς χρόνους, όμως έχει επισημανθεί
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πειραματικά η δυσκολία προπαρασκευής των συνδέσεων με μεγάλη ακρίβεια καθώς και

η ευαισθησία του πρωτοκόλλου στην παρουσία θορύβου. Τα προαναφερθέντα προβ-

λήματα έχουν οδηγήσει στην μελέτη πρωτοκόλλων στα οποία οι συνδέσεις μεταξύ

των σπιν ελέγχονται δυναμικά κατά την μεταφορά (χρονοεξαρτημένα πρωτόκολλα).

Ιδιαίτερο ενδιαφέρον παρουσιάζουν προτάσεις οι οποίες χρησιμοποιούν σπιν αλυσίδες

με τοπολογικά χαρακτηριστικά, τα οποία δύναται να προστατέψουν την διαδικασία

της μεταφοράς από πηγές θορύβου και αποσυνοχής.

Τα αποτελέσματα της παρούσας μελέτης συνεισφέρουν και στις δύο προαναφερ-

θείσες ερευνητικές κατευθύνσεις (χρονοανεξάρτητα και χρονοεξαρτώμενα πρωτόκολλα).

΄Εναυσμα για την μελέτη μας γύρω από το χρονοανεξάρτητο πρωτόκολλο αποτέλεσε

η παρατηρούμενη κατοπτρική συμμετρία των συνδέσεων στην περίπτωση της τέλειας

μεταφοράς. Τα ερευνητικά ερωτήματα που διαμορφώσαμε ήταν τα εξής: Μπορεί το

φαινόμενο της τέλειας μεταφοράς να συμβεί μεταξύ οποιουδήποτε αρχικού και τελικού

πλεγματικού σημείου ενός κβαντικού δικτύου; Αν όχι, πότε και γιατί; Αν ναι, υπ-

άρχει κάποια άλλη αναδυόμενη συμμετρία πέραν της κατοπτρικής; Πώς συνδέονται

οι συμμετρίες στο προφίλ των συνδέσεων με την γεωμετρία του δικτύου; Επίσης,

μελετήθηκε η μεταφορά μιας κατάστασης από ένα αρχικό σε δύο τελικά πλεγματικά

σημεία. Η μεταφορά αυτή ονομάζεται κλασματική (fractional) και μέσω αυτής μπορεί
κανείς να προετοιμάσει κβαντικά εναγκαλισμένες καταστάσεις. ΄Οσον αφορά τα χρο-

νοεξαρτώμενα πρωτόκολλα, επικεντρωθήκαμε στην μελέτη ενός πρωτοκόλλου που

χρησιμοποιεί μια αλυσίδα με τοπολογικά χαρακτηριστικά και τα αντίστοιχα ερευν-

ητικά ερωτήματα ήταν: Ποια είναι τα βασικά χαρακτηριστικά τα οποία πρέπει να

διαθέτει η χρονοεξαρτώμενη συνάρτηση ελέγχου των συνδέσεων μεταξύ των σπιν,

προκειμένου η μεταφορά να γίνεται σε μικρότερους χρόνους; Επηρεάζει η επιβολή

αυτών των χαρακτηριστικών την ανθεκτικότητα του πρωτοκόλλου στην περίπτωση

ύπαρξης στατικού θορύβου;

Τα αποτελέσματα της έρευνάς μας συνοψίζονται στις παρακάτω ενότητες.

Χρονοανεξάρτητο πρωτόκολλο μεταφοράς

Η Χαμιλτονιανή που χρησιμοποιείται για να περιγράψει το κβαντικό δίκτυο αναφέρεται

στη βιβλιογραφία ως μοντέλο ΧΧ και έχει την κάτωθι μορφή:

HXX =
1

2

∑
<i,j>

Jij(σ̂
x
i σ̂

x
j + σ̂yi σ̂

y
j ) (7.1)

Οι αλληλεπιδράσεις περιορίζονται μεταξύ πρώτων γειτόνων, θεωρούμε ~ = 1, το
σθένος των συνδέσεων συμβολίζεται με J και οι σ̂xi , σ̂

y
i , σ̂

z
i είναι οι πίνακες του

Pauli.Οι καταστάσεις του i-οστού σπιν αναπαρίστανται από τα διανύσματα δύο συνιστ-
ωσών:

|1〉 =

(
1
0

)
, |0〉 =

(
0
1

)
(7.2)

Η ΧΧ-Χαμιλτονιανή μετατίθεται με τον τελεστή σz, οπότε ο αριθμός των σπιν με
προσανατολισμό πάνω ή κάτω είναι διατηρούμενη ποσότητα. Ως εκ τούτου, για τα
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πρωτόκολλα μεταφοράς που θα μελετηθούν στην παρούσα εργασία, δύναται να περι-

οριστούμε στον υπόχωρο της Χαμιλτονιανής όπου μόνο ένα σπιν έχει προσανατολισμό

προς τα πάνω. Η Χαμιλτονιανή μιας αλυσίδας αποτελούμενη από N σπιν, σε αυτόν
το υπόχωρο παίρνει την παρακάτω μορφή:

H = J
N−1∑
k=1

(|k〉 〈k + 1|+ |k + 1〉 〈k|) (7.3)

Το διάνυσμα |k〉 είναι συντομογραφία της κατάστασης |01...1k...0N〉, όπου μόνο το k-
οστο σπιν έχει προσανατολισμό προς τα πάνω. Η πιστότητα μια μεταφοράς F μεταξύ
δύο πλεγματικών σημείων n και m ορίζεται ως:

F =
∣∣〈m| e−iHt∗ |n〉∣∣2 (7.4)

Με t∗ συμβολίζουμε την χρονική στιγμή ανάκτησης της κατάστασης από το πλεγ-
ματικό σημείο m. ΄Οταν F = 1 λέμε ότι έχουμε τέλεια μεταφορά μιας κατάστασης
από το n στο m. Για την μεταφορά μεταξύ των πλεγματικών σημείων 1 και N έχει
αποδειχθεί ότι οι συνδέσεις Ji της αλυσίδας πρέπει να ακολουθούν ένα κατοπτρικά
συμμετρικό προφίλ τέτοιο ώστε Jn = JN−n, όπου n = 0, 1, ..., N − 1.

Στην μελέτη μας δεν περιοριστήκαμε στην εξέταση της τέλειας μεταφοράς μεταξύ

του αρχικού και του τελικού πλεγματικού σημείου της αλυσίδας, αντιθέτως εξ-

ετάστηκαν όλες τις δυνατές μεταφορές μεταξύ όλων των συνδυασμών αρχικών και

τελικών σημείων του πλέγματος. Αρχικά μελετήθηκαν ανοιχτές και κλειστές αλυσίδες.

Με τον όρο κλειστές αλυσίδες εννοούμε ότι το τελευταίο σπιν συνδέεται με το πρώτο,

ενώ για τις ανοιχτές η σύνδεση αυτή απουσιάζει. Βασικό αριθμητικό εργαλείο στην

μελέτη μας αυτή υπήρξε ένας αλγόριθμος βελτιστοποίησης. Μελετώντας αλυσίδες

μεγέθους μέχρι N = 20 χαρτογραφήσαμε τις περιπτώσεις που η τέλεια μεταφορά
είναι δυνατή και εξαγάγαμε το προφίλ των συνδέσεων Ji καθώς και την τιμή του
χρόνου ανάκτησης t∗. Στις ανοιχτές αλυσίδες, αναδείξαμε την ύπαρξη μεταφορών για
τις οποίες το προφίλ των συνδέσεων δεν διαθέτει κάποια εμφανή χωρική συμμετρία,

ενώ παρατηρήθηκε ότι για όλες τις κλειστές γεωμετρίες μονού αριθμού πλεγματικών

σημείων, εξαιρουμένης της περίπτωσης N = 3, δεν δύναται να καταστεί δυνατή η
τέλεια μεταφορά μεταξύ οποιουδήποτε ζεύγους πλεγματικών σημείων.

Η Χαμιλτονιανή του συστήματος στο χώρο των θέσεων μπορεί να αναπαρασταθεί

σε πίνακα N , ο οποίος θα ικανοποιεί την εξίσωση ιδιοτιμών:

HN |vi〉 = Ei |vi〉 (7.5)

Οι ικανές και αναγκαίες συνθήκες για την τέλεια μεταφορά εξήχθησαν αναλυτικά και

συνοψίζονται στις παρακάτω δύο σχέσεις οι οποίες αφορούν τις ιδιοενέργειες και τις

συνιστώσες των ιδιοδιανυσμάτων του συστήματος.

(Ej − Ei)t∗ = νijπ, νij ∈ Z (7.6α)

〈vi|n〉 = ±〈vi|m〉 (7.6β)

Βάσει των παραπάνω σχέσεων αναπτύξαμε μια αναλυτική μεθοδολογία η οποία μας

επιτρέπει να αποφανθούμε αν μια τέλεια μεταφορά μεταξύ δύο πλεγματικών σημείων
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μπορεί να υποστηριχθεί από το εκάστοτε υποκείμενο κβαντικό δίκτυο. Η μεθοδολογία

μας βασίζεται στην μελέτη του συστήματος εξισώσεων που προκύπτει από την εξίσωση

ιδιοτιμών. Εξισώνοντας τις συνιστώσες των ιδιοδιανυσμάτων που αντιστοιχούν στα

υπό εξέταση πλεγματικά σημεία εξάγονται πολυώνυμα της ενέργεια του συστήματος,

οι λύσεις των οποίων πρέπει να ικανοποιούν την Εξ. 7.6α. Κατ΄ αυτόν τον τρόπο,

επιβεβαιώσαμε αναλυτικά τα αριθμητικά αποτελέσματά μας για τα μεγέθη αλυσίδων

που η πολυπλοκότητα ανάλυσης των πολυωνύμων επέτρεπε τον αναλυτικό χειρισμό.

Λανθάνουσα συμμετρία

΄Εχοντας αναδείξει την ύπαρξη μη-κατοπτρικά συμμετρικών λύσεων στο προφίλ των

συνδέσεων η αναζήτηση της υποκείμενης γεωμετρικής συμμετρίας του δικτύου, έστρ-

εψε την προσοχή μας σε μελέτες στις οποίες το φαινόμενο της τέλειας μεταφοράς είχε

εξεταστεί υπό το πρίσμα της μαθηματικής θεωρίας των γράφων. Το χρονοανεξάρτητο

πρωτόκολλο τέλειας μεταφοράς μπορεί να ιδωθεί ισοδύναμα ως ένας συνεχής κβαν-

τικός περίπατος σε έναν σταθμισμένο γράφο, με την Χαμιλτονιανή να αντιστοιχεί

στον πίνακα γειτνίασης του γράφου. Δύο πλεγματικά σημεία του γράφου για τα

οποία ισχύει η σχέση Εξ. 7.6β ονομάζονται συνφασματικά (cospectral). ΄Ενας εν-
ναλακτικός ορισμός της συνφασματικότητας (cospectrality) μέσω των δυνάμεων του
πίνακα της Χαμιλτονιανής:

(Hk)a,a = (Hk)b,b, ∀k (7.7)

μας επιτρέπει την γεωμετρική ερμηνεία μιας εκ των δύο ικανών και αναγκαίων συν-

θηκών για την τέλεια μεταφορά. Πιο συγκεκριμένα, για να μπορεί να πραγματοποιη-

θεί τέλεια μεταφορά μεταξύ των πλεγματικών σημείων a και b θα πρέπει το άθροισμα
όλων των σταθμισμένων περιπάτων k-βημάτων με αρχικό και τερματικό σημείο το a
να είναι ίσο με το αντίστοιχο άθροισμα με αρχικό και τερματικό σημείο το b. Επιπρόσ-
θετα, η ιδιότητα της συνφασματικότητας σε μία πρόσφατη μελέτη [73] συνδέθηκε με

τη νεοεισαχθήσα έννοια της λανθάνουσας συμμετρίας (latent symmetry) μεταξύ δύο
πλεγματικών σημείων.

Η λανθάνουσα συμμετρία μεταξύ δύο πλεγματικών σημείων ενός δικτύου αποκαλύπτε-

ται μέσω ενός μετασχηματισμού ισοφασματικής αναγωγής του πίνακα της Χαμιλτονι-

ανής στα εν λόγω σημεία. Η ισοφασματική αναγωγή ενός πίνακα ως προς ένα σύνολο

πλεγματικών σημείων S ορίζεται ως εξής:

RS(H, λ) = HSS −HSS̄(HS̄S̄ − Iλ)−1HS̄S (7.8)

με S̄ να αντιστοιχεί στο συμπλήρωμα του S, δηλαδή τα υπόλοιπα πλεγματικά σημεία
τα οποία δεν περιέχονται στο S. Οι πίνακες HSS και HS̄S̄ κατασκευάζονται διαγρά-

φοντας από τη Χαμιλτονιανή όλα τα πλεγματικά σημεία που αντιστοιχούν στο S̄ και
S αντιστοίχως, ενώ οι HSS̄ και HS̄S αντιστοιχούν στους πίνακες σύνδεσης μεταξύ

του συνόλου S και S̄. Στόχος της ισοφασματικής αναγωγής είναι η αναγωγή του
αρχικού πίνακα σε ένα πίνακα μικρότερης διάστασης RS (ίσης με τον αριθμό των

στοιχείων του συνόλου S), ο οποίος διατηρεί το φάσμα του αρχικού. Για να γίνει
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αυτό εφικτό τα στοιχεία του RS δίνονται από ρητές συναρτήσεις της παραμέτρου

λ. Μέσω της ισοφασματικής αναγωγής δύναται να αποκαλυφθούν μη τετριμμένοι
αυτομορφισμοί μεταξύ των πλεγματικών σημείων της Χαμιλτονιανής. Η μελέτη μας

αναδεικνύει την λανθάνουσα συμμετρία, ως την γεωμετρική συμμετρία που θα πρέπει

να υπάρχει μεταξύ δύο πλεγματικών σημείων του δικτύου προκειμένου να μπορεί

να μεταφερθεί τέλεια μια κατάσταση από το ένα στο άλλο. Οι λύσεις των μη-

κατοπτρικών προφίλ συνδέσεων που παρατηρήθηκαν στις ανοιχτές γεωμετρίες αν-

τιστοιχούν στους προαναφερθείσες μη-τετριμμένους αυτομορφισμούς του δικτύου.

Επιπρόσθετα, χρησιμοποιώντας την ισοφασματική αναγωγή μπορούμε να εξαγάγουμε

τις συμμετρίες του προφίλ των συνδέσεων και να αποφανθούμε για την δυνατότητα

επίτευξης της τέλειας μεταφοράς βάσει της γεωμετρίας του δικτύου.

Τέλος μελετήθηκε η έννοια της ισχυρής συνφασματικότητας(strong cospectrality)
μεταξύ δύο σημείων, η οποία συνδέθηκε αναλυτικά με τις δύο ικανές και αναγκαίες

συνθήκες για την τέλεια μεταφορά κατά την παρουσία εκφυλισμένων ιδιοτιμών στο

δίκτυο.

Κλασματική μεταφορά καταστάσεων

Μια ακόμη εφαρμογή του χρονοανεξάρτητου πρωτοκόλλου προπαρασκευασμένων

συνδέσεων, είναι η μελέτη της κλασματικής μεταφοράς καταστάσεων με στόχο την

δημιουργία εναγκαλισμένων καταστάσεων. Στο πλαίσιο αυτό μελετήσαμε την κλασ-

ματική μεταφορά μεταξύ ενός τυχαίου αρχικού (n) και δύο τυχαίων τελικών (m, k)
πλεγματικών σημείων μιας ανοιχτής αλυσίδας. Η πιστότητα της μεταφοράς σε αυτήν

την περίπτωση ορίζεται ως:

F =
∣∣(cosχ 〈m|+ eiθ sinχ 〈k|)e−iHt |n〉

∣∣2 (7.9)

όπου χ ∈ (0, π/2) και θ ∈ [0, 2π). Επίσης, εξαγάγαμε αναλυτικά τις ικανές και
αναγκαίες συνθήκες που θα πρέπει να ικανοποιούνται από τις συνιστώσες των ιδ-

ιοδιανυσμάτων και τις ιδιοτιμές του συστήματος έτσι ώστε η κλασματική μεταφορά

να είναι τέλεια (F = 1). Ενώ παράλληλα, χρησιμοποιώντας αριθμητικές μεθόδους
(αλγόριθμο βελτιστοποίησης) σκιαγραφήσαμε το μοτίβο των δυνατών κλασματικών

μεταφορών συναρτήσει του μεγέθους της αλυσίδας και όπου ήταν δυνατόν εντοπίσαμε

τις συμμετρίες στα προφίλ των συνδέσεων. Επιπρόσθετα, αναδείξαμε το πώς η γραφο-

θεωρητική έννοια του 2-χρωματισμού της ανοιχτής αλυσίδας επιβάλλει περιορισμούς

στις τιμές της σχετικής φάσης θ μεταξύ των όρων που εμφανίζονται στην εναγκαλισ-
μένη κατάσταση. Συγκεκριμένα δείξαμε ότι ότανm, k ∈ even ήm, k ∈ odd, η σχετική
γωνία είναι θ = νπ και ότανm ∈ even και k ∈ odd ή το αντίστροφο, θ = (2ν + 1)π

2
,

όπου ν ∈ Z.
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Χρονοεξαρτώμενο πρωτόκολλο μεταφοράς

Το βασικό μοντέλο το οποίο χρησιμοποιήθηκε στην περίπτωση του χρονοεξαρτώμε-

νου πρωτοκόλλου μεταφοράς είναι η αλυσίδα Su-Schrieffer-Heeger (SSH).Σκοπός μας
στην περίπτωση αυτή είναι η μεταφορά μιας κατάστασης από το ένα άκρο της αλυσίδας

στο άλλο. Η Χαμιλτονιανή του μοντέλου προκύπτει με τον διμερισμό των συνδέσεων

της Εξ. 7.3 κατά τον ακόλουθο τρόπο: Ji = Jodd για i ∈ odd και Ji = Jeven για
i ∈ even. ΄Οταν ο συνολικός αριθμός πλεγματικών σημείων της αλυσίδας είναι μονός
υπάρχει πάντοτε μια ιδιοκατάσταση του συστήματος με μηδενική ενέργεια η οποία

διαχωρίζεται από τις υπόλοιπες ιδιοκαταστάσεις μέσω ενός ενεργειακού χάσματος.

Ανάλογα με το εάν Jodd < Jeven ή Jodd > Jeven η κατάσταση αυτή εντοπίζεται χωρικά
στο πρώτο ή στο τελευταίο πλεγματικό σημείο αντιστοίχως. Συνεπώς, αν υποθέ-

σουμε ότι τη χρονική στιγμή t = 0 οι συνδέσεις είναι Jodd = 0, Jeven = 1 και η
αρχική μας κατάσταση είναι εντοπισμένη στο πρώτο πλεγματικό σημείο της αλυσί-

δας, αυξάνοντας σταδιακά το σθένος των συνδέσεων Jodd ενώ παράλληλα μειώνουμε
το σθένος των Jeven, καταλήγουμε τη χρονική στιγμή t = t∗ να έχουμε την αν-
τίστροφη εικόνα Jodd = 1, Jeven = 0. Κατ΄ αυτόν τον τρόπο επιτυγχάνεται η μεταφορά
της κατάστασης από το πρώτο στο τελευταίο πλεγματικό σημείο της αλυσίδας. Η

πιστότητα της μεταφοράς σε αυτήν την περίπτωση θα δίνεται από τη σχέση:

F = |〈N |N(t∗)〉|2 (7.10)

όπου το |N(t)〉 προσδιορίζεται λύνοντας την χρονοεξαρτώμενη εξίσωση Schrödinger.
Σε μια πρόσφατη μελέτη [85], αναδείχθηκε η ανθεκτικότητα του εν λόγω πρωτοκόλ-

λου παρουσία στατικού θορύβου. Βασική προϋπόθεση για την επίτευξη υψηλής

πιστότητας στη μεταφορά, αποτελεί η αδιαβατική εξέλιξη του συστήματος. Συνεπώς,

για την επίτευξη υψηλής πιστότητας η χρονική διάρκεια της μεταφοράς είναι πολύ

μεγαλύτερη σε σχέση με τους αντίστοιχους χρόνους ανάκτησης του χρονοανεξάρτη-

του πρωτοκόλλου που μελετήσαμε στις προηγούμενες ενότητες.

Η παρουσία του ενεργειακού χάσματος στην χρονοανεξάρτητη Χαμιλτονιανή, αποτελεί

βασικό χαρακτηριστικό της τοπολογικής προστασίας της ιδιοκατάστασης που αντισ-

τοιχεί στην μηδενική ενέργεια. Το μέγεθος του ενεργειακού χάσματος του συστήμα-

τος εξαρτάται από τον λόγο μεταξύ των δύο συνδέσεων Jodd και Jeven. Στην παρούσα
μελέτη μας, βασιζόμενοι σε συλλογισμούς που αναπτύσσουμε σε σχέση με τους όρους

που υπεισέρχονται στον ορισμό του αδιαβατικού αναλλοίωτου και με γνώμονα την

μορφή της εξέλιξης του στιγμιαίου ενεργειακού φάσματος, εντοπίζουμε τα βασικά

χαρακτηριστικά που θα πρέπει να επιβληθούν στις χρονοεξαρτώμενες συναρτήσεις

ελέγχου των παραμέτρων Jodd(t) και Jeven(t) προκειμένου να βελτιώσουμε τον χρόνο
της μεταφοράς. Προτείνουμε μια συγκεκριμένη μορφή για τη συνάρτηση ελέγχου

και αναδεικνύουμε την υπεροχή της ως προς την ταχύτητα μεταφοράς, συγκρίνοντάς

την με την προυπάρχουσα πρόταση [85] και με ένα χρονοεξαρτώμενο πρωτόκολλο

στο οποίο η υποκείμενη Χαμιλτονιανή της αλυσίδας δεν διαθέτει τοπολογικά χαρακ-

τηριστικά. Επιπρόσθετα, επιβεβαιώνουμε ότι η ανθεκτικότητα του πρωτοκόλλου μένει

ανεπηρέαστη υπό την παρουσία στατικού θορύβου και συγκρίνουμε τις επιπτώσεις

του θορύβου μεταξύ των πρωτοκόλλων που η χρονοανεξάρτητη Χαμιλτονιανή δια-

θέτει τοπολογικά χαρακτηρίστηκα και του πρωτοκόλλου που η Χαμιλτονιανή είναι
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τοπολογικά τετριμμένη. Ισχυριζόμαστε ότι η μέθοδός μας είναι γενική και δύναται

να χρησιμοποιηθεί για την βελτιστοποίηση του χρόνου μεταφοράς καταστάσεων σε

αδιαβατικά πρωτόκολλα.
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gates for neutral atoms. Physical Review Letters, 85(10):2208, 2000.

[68] Alastair Kay. Perfect state transfer: beyond nearest-neighbor couplings. Physical
Review A, 73(3):032306, 2006.



82 BIBLIOGRAPHY

[69] Alastair Kay. Perfect, efficient, state transfer and its application as a constructive
tool. International Journal of Quantum Information, 8(04):641–676, 2010.

[70] Alastair Kay. Basics of perfect communication through quantum networks. Phys-
ical Review A, 84(2):022337, 2011.

[71] Alastair Kay. Tailoring spin chain dynamics for fractional revivals. Quantum,
1:24, 2017.

[72] Julia Kempe. Quantum random walks: an introductory overview. Contemporary
Physics, 44(4):307–327, 2003.

[73] Mark Kempton, John Sinkovic, Dallas Smith, and Benjamin Webb. Characteriz-
ing cospectral vertices via isospectral reduction. Linear Algebra and its Applica-
tions, 594:226–248, 2020.

[74] David Kielpinski, Chris Monroe, and David J Wineland. Architecture for a large-
scale ion-trap quantum computer. Nature, 417(6890):709–711, 2002.

[75] A Yu Kitaev. Unpaired majorana fermions in quantum wires. Physics-Uspekhi,
44(10S):131, 2001.

[76] Emanuel Knill, Raymond Laflamme, and Gerald J Milburn. A scheme for effi-
cient quantum computation with linear optics. Nature, 409(6816):46–52, 2001.

[77] Kamil Korzekwa, Paweł Machnikowski, and Paweł Horodecki. Quantum-state
transfer in spin chains via isolated resonance of terminal spins. Physical Review
A, 89(6):062301, 2014.

[78] V Kostak, GM Nikolopoulos, and I Jex. Perfect state transfer in networks of
arbitrary topology and coupling configuration. Physical Review A, 75(4):042319,
2007.
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