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NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

Abstract
Sarantis Sofianos

Oceanography and Management of the Marine Environment MSc

Master of Science

Estimation and mechanistic interpretation of wind-wave interactions in in situ and
satellite altimetry data in the Southern New England Region.

by Panagiotis Mitsopoulos

Accurate estimation of wind and wave conditions is an essential information resource
for ship routing, coastal engineering, and several other coastal activities. The developing
offshore wind energy industry needs these estimations for prospecting and ensuring the
optimal siting of wind farms. Wind farms’ construction, operation, and decommission need
real-time monitoring of wind and waves for decision making. Additionally, special attention
to extremes and transient events must be paid for the aforementioned applications since they
have the most considerable impact and must be well captured in numerical models. While
a sprawl of data from various remote sensing capabilities, including the next generation of
satellite altimeter data, is growing, their use is more effective when combined with tradi-
tional, longer-record, in situ observations from buoys, which serve as ground truth reference.
This study focuses on the independent use of the two data sources and properly combining
them so that the final analysis is physically consistent. Statistical analysis and optimal in-
terpolation, merging multiple sensor’s data, are performed to improve the offshore marine
conditions’ estimations and to identify dominant mesoscale and local mechanisms that con-
tribute to their variability. The scope of this research is focused on the observations taken
on the Southern New England region in the United States, where new offshore wind energy
developments are taking place.

Main research results:

• An updated wind and wave climatology of the domain with a focus on climate vari-
ability in multiple timescales (diurnal, seasonal, interannual).

• The directional distribution of near-surface wind and wave height.

• The wind speed and significant wave height relationship based on theoretical formulae
and ocean waves classification based on their growth rate.

• The wind speed probability density functions which provide the best fit to the wind
speed distribution.

• A case study of extreme events.

• The validation of satellite altimeter with in situ observations in the Southern New
England region.

• Maps of interpolated wind speed and significant wave height fields using observations
from multiple satellite altimeters.

HTTPS://EN.UOA.GR/
https://oceanography.geol.uoa.gr/
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ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

Περίληψη

Εκτίμηση και ερμηνεία των φυσικών μηχανισμών αλληλεπίδρασης θάλασσας-ατμόσφαιρας, μέσω

δεδομένων ανέμου και ύψους κύματος, από πλωτούς σταθμούς μέτρησης και δορυφόρους νέας

γενιάς στην περιοχή της Νότιας Νέας Αγγλίας.

από τον Παναγιώτη Μητσόπουλο

Η ακριβής εκτίμηση των συνθηκών ανέμου και κύματος αποτελεί απαραίτητη πληροφορία για

την πορεία των πλοίων, την παράκτια μηχανική και πολλών ακόμη δραστηριοτήτων που λαμβάνουν

χώρα στη παράκτια ζώνη. Η αναπτυσσόμενη βιομηχανία της υπεράκτιας αιολικής ενέργειας χρει-

άζεται αυτές τις εκτιμήσεις για την έρευνα και εξασφάλιση της βέλτιστης τοποθεσίας των αιολικών

πάρκων. Η παρακολούθηση σε πραγματικό χρόνο του ανέμου και του κύματος για την λήψη α-

ποφάσεων είναι απαραίτητη κατά τις περιόδους κατασκευής, λειτουργίας αλλά και απόσυρσης

των αιολικών πάρκων. Επιπροσθέτως, ιδιαίτερη σημασία πρέπει να δίδεται και στα ακραία και

παροδικά φαινόμενα καθώς έχουν τις σημαντικότερες επιπτώσεις και πρέπει να αποτυπώνονται

ρεαλιστικά από τα αριθμητικά μοντέλα. Καθώς η διαθεσιμότητα των δεδομένων τηλεπισκόπισης,

συμπεριλαμβανωμένων και των δορυφόρων αλτιμετρίας νέας γενιάς, ολοένα και αναπτύσσεται, η

χρήση τους είναι πιο αποτελεσματική όταν συνδυάζεται με επιτόπιες παρατηρήσεις από τους πιο

παραδοσιακούς, πλωτούς σταθμούς μέτρησης, οι οποίοι συλλέγουν δεδομένα για μεγάλο χρονικό

διάστημα και θεωρούνται ως παρατηρήσεις αναφοράς. Η συγκεκριμένη εργασία εστιάζεται στην

ανεξάρτητη ανάλυση των δύο πηγών δεδομένων αλλά και στον κατάλληλο συνδυασμό τους ώστε

τα τελικά αποτελέσματα να εμφανίζουν συνέπεια. Η στατιστική ανάλυση επιτόπιων παρατηρήσε-

ων αλλά και η εφαρμογή σχήματος βέλτιστης παρεμβολής για την συγχώνευση δεδομένων από

διαφορετικούς δορυφόρους, βοηθούν στην βελτίωση της εκτίμησης των υπεράκτιων θαλάσσιων

συνθηκών αλλά και στην αναγνώριση των κυρίαρχων τοπικών μηχανισμών και μέσης κλίμακας

που συμβάλλουν στην μεταβλητότητα τους. Η μελέτη εστιάζεται στην περιοχή της Νότιας Νέας

Αγγλίας των Ηνωμένων Πολιτειών της Αμερικής, στην οποία λαμβάνει χώρα η ανάπτυξη της

υπεράκτιας αιολικής ενέργειας.
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Chapter 1

Introduction

1.1 Objective

This study’s motivation originates from the wealth of offshore wind developments in the
United States (US) East Coast during recent years. The Bureau of Offshore Energy Man-
agement (BOEM) has already leased several areas between the coastal and continental shelf
limits that correspond to multiple projects to construct and manage offshore wind farms.
BOEM has recently released a guideline addressing the oceanographic and meteorological
conditions that need to be characterized to support the offshore wind farms’ infrastructure
development [22]. Wind and wave conditions are two of the leading environmental factors
connected to offshore wind. Their accurate estimation is crucial for the design, the operation,
and the energy yield of an offshore wind facility.

There is a need for long-term and reliable data records to estimate the wind and wave
conditions. Numerical models and observations support offshore wind energy with the
characterization of these conditions. There are two primary objectives of good quality ob-
servations. On the one hand, they are an independent source of knowledge that we use to
study the environmental conditions and climate. On the other hand, observations are used to
enhance the robustness of numerical models through data assimilation. This study focuses
on the Southern New England (SNE) wind and wave regime’s characterization using in situ
observations from buoy stations that are moored in the domain and from satellite altimeters.
We take advantage of the National Data Buoy Center (NDBC) and Coastal Data Information
Program (CDIP) extended network of stations for the in situ data. These observations are
closer to the ground truth, but the sensors’ measurements onboard buoys contain inherent
sources of errors. The advantage of in situ stations is that they provide a long-term, reliable,
and quality controlled time-series record. Therefore, they are suitable for the accurate estima-
tion of the normal conditions in our area of interest. However, they represent measurements
in point locations; hence, there are spatial gaps in our estimates. Observations from multiple
satellite altimeters can partly fill these spatial gaps; thus, first, we aim to compare and vali-
date altimeters with in situ data and then provide maps of the wind and sea state primary
measures. The satellite altimeters’ disadvantage is the low temporal resolution, as it depends
on each satellite’s cycle, the period that elapses until it passes again over the same region.

1.2 Study Area

The area of interest is located in the western part of the North Atlantic ocean or the East Coast
of the continental United States. The region we focus on is geographically defined by the
coastal Southern New England states of Connecticut (CT), Rhode Island (RI), Massachusetts
(MA) on the east, and the New York/New Jersey bight, including Long Island on the west.
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FIGURE 1.1: US coastal regions of the Northwest Atlantic.

Specifically, the domain of interest is limited between 74◦W and 69◦W longitude and
39◦N and 42◦N latitude. Besides, it extends about 200 kilometers offshore, on the limits of
the US continental shelf. The whole domain is referenced herein as Southern New England
(SNE) for reader’s convenience, even though it contains parts of New York and New Jersey,
and it is shown in Figure 1.1.

SNE is also the birthplace of offshore wind in the United States, with Block Island wind
farm being the first constructed and operating in US coastal waters [73]. This region is
strongly connected with offshore wind energy as many promising projects currently exist,
and multiple areas shown in Figure 1.2 have already been leased. Similar developments will
also occur in the region’s central and western parts soon, as BOEM has also recommended
several lease areas.

The strong presence and increased frequency of extratropical storms also characterize
SNE’s coastal zone [101]. These low-pressure systems are noticeable primarily during the fall,
winter, and spring seasons. They develop in Southern latitudes, and the maximum of their
intensity is often attained in the New England region. They are called Nor’easters due to the
coastal wind’s direction during their passing. Their impact on the coastal zone is significant
as they cause high winds, extreme waves, storm surges, and coastal flooding. The maximum
Wind Speed (WS) values during Nor’easters do not approach those during the passing
of hurricanes. However, they are frequent over New England, and the coupling of high
waves and long duration may have a minimal to a catastrophic impact on the whole region
[23]. Coastal fronts are also a common feature of late fall, early winter New England weather.
Their genesis and formation close to the coast due to land-ocean differential heating or inland
due to differential heating connected with the uplifting of moist air when approaching the
Appalachian mountains is documented in detail in the literature [76].
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FIGURE 1.2: BOEM Offshore Wind lease areas in SNE. Source: RI Department
of Environmental Management (DEM)

1.3 Outline

Chapter 2 provides the theoretical background of this study. First of all, we define the wave
parameters reported from in situ and remote sensing observations. One of the common
parameters often used to characterize the sea state is the Significant Wave Height (SWH). We
examine how it is connected with the directional wave spectra and how it is derived from it.
One of the several ways to take advantage of the directional spectrum of waves leads us to
review the different ways to separate the sea states, a process called spectral decomposition.
An alternative way to empirically separate the sea states based on their growth stage is by
considering their wave age, which connects the wave speed of propagation with the WS.
Besides, a literature review of the bulk formulas used historically to connect the WS, and
SWH is provided, examining their limitations. Bulk formulas are also used to estimate the
waves’ interaction with the wind over the ocean. The unavailability of multiple parameters
required for the accurate description of the boundary layer’s stability is often a limitation.
Therefore, due to these restrictions, we often use the wind speed profile over the ocean and
the governing laws of air-sea interaction with assumptions of the conditions near the sea
surface. The wind speed probability density functions (PDFs) are essential to estimate the
mean wind power density close to the offshore wind planned area. Studies connected with
offshore wind research include estimating the PDF parameters and searching for innovative
ways to select the optimal PDF to characterize the wind speed distribution. We provide
the four distributions and their theoretical PDFs with the best fit for the SNE region’s data.
Finally, data from satellite altimeters are measured with entirely different methodologies
than those used for in situ observations. They also represent different spatial and temporal

http://www.dem.ri.gov/programs/marine-fisheries/images/WEAs_Map.jpg
http://www.dem.ri.gov/programs/marine-fisheries/images/WEAs_Map.jpg
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scales of the wind and wave conditions. Therefore, the principles of satellite altimetry are
described to explain these differences.

Chapter 3 includes a detailed description of the methodologies used to derive our results.
An integral part of all the studies that include observations is data preprocessing. It consists
of the collection, organization, and description of the various datasets used. The accuracy of
the measurements and the detection of error sources are also essential to filter out erroneous
data. All the above are provided both for the buoy and the satellite altimeter observations.
A spatiotemporal collocation methodology is required to validate altimeter observations’
consistency with respect to in situ, which are considered the ground truth reference. A
description of the limitations of such comparisons is also provided. After validating the
satellite altimeter observations, variogram modeling is used to describe the observations’
spatial correlation. This process is critical for interpolation to create maps of the WS and
SWH spatial variability and estimate the predictions’ uncertainty.

Chapter 4 contains all the results. The first section is about the wind and wave clima-
tology of the SNE based on buoy data. We examine different temporal scales of variability,
including the diurnal, seasonal, and interannual, for each buoy with an available long-term
record. The goal is to define the normal wind and wave conditions in SNE. The wind and
wave directional characteristics are also of high importance. Hence, we provide and visualize
the directional distribution of WS and SWH. We also emphasize the benefits of considering
the directional wave spectra for a detailed description of the wave climate. The WS and SWH
relationships are estimated using polynomial regression analysis. The differences between
these relationships with respect to wind direction are also examined for each location. The
classification of waves is performed based on their inverse wave age. An extreme event is
analyzed and described as a case study. The parameters of WS PDFs that best fit the data
from individual stations are estimated and evaluated. Validation of the data from multiple
satellite altimeter missions is performed using buoy observations as a reference. An evalua-
tion of their performance is also included. Satellite altimeter data are interpolated for recent
winter and summer seasons to estimate the wind and wave spatial distribution in the SNE
region. The limitations of this process are discussed. The impact of including data from
multiple satellite altimeters on the estimation errors is also assessed.

Finally, Chapter 5 summarizes the results, including the scientific questions raised from
this study to motivate future related research.
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Chapter 2

Theoretical Background

2.1 Significant Wave Height and Wave Spectra

Historically, the study of wave growth and the interest in its prediction have their origins in
the Second World War when it was critical for landing operations. Munk [69] classified ocean
waves according to their propagation period and documented the need for further compre-
hension of the wave spectrum. The band of the range of ocean waves that we are focusing
on in this study is the ordinary gravity waves, as shown in Figure 2.1. Wave characteristics
that describe what we call sea state were first observed visually and empirically defined.
Since then, a better understanding of the generation of waves and the need for reliable and
continuous observations led to what we perceive as the SWH and wave spectrum nowadays.

FIGURE 2.1: The classification of ocean waves depending on their period ac-
cording to Munk [69]. Reprinted from: [77]

First, we need to define the linear waves’ fundamental parameters. The wavelength
λ is the horizontal distance between two consecutive crests of a wave in meters, and it is
connected with the wavenumber k, the number of crests per unit distance:

k =
2π

λ
(2.1)

Wave frequency f is equal to the number of crests that pass from a point every second.
Wave period T is the time interval in seconds between the passage of successive crests from
a fixed location. They are both related with the angular frequency ω in radians per second:

ω =
2π

T
= 2π f (2.2)
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The wavenumber and wave frequency are connected with the dispersion relation, which
characterizes wave propagation variation. The dispersion relation of ordinary gravity waves
for specific depth h is given by:

ω2 = gk tanh kh (2.3)

Other important parameters, especially for navigation and offshore installations, include
the amplitude α, which is the maximum displacement from the mean or zero sea level, and
the wave height H, which is the vertical distance of the successive troughs and crests, both
measured in meters. Finally, we need to know the wave direction in degrees from which the
waves propagate to characterize the sea state.

The definition of random ocean waves rests on the assumption that they are a super-
position of an infinite number of components. Each wave component is characterized by
a unique combination of frequency and propagation direction. The vertical displacement
of waves in 2-dimensional space and time is given by the sum of the components’ surface
elevation [38]:

η (x, y, t) =
∞

∑
n=1

αn cos (knx cos θn + kny sin θn − 2π fnt + εn) (2.4)

Each wave component has a different phase angle εn between 0 and 2π. The sum of the
squared amplitudes of the wave components has a unique value:

f+d f

∑
f

θ+dθ

∑
θ

1
2

α2
n = S ( f , θ) d f dθ (2.5)

The function S ( f , θ) is the directional wave spectrum, and it represents the wave energy
distribution with respect to the different frequencies and directions of ocean waves because
the squared amplitudes are also present at the wave energy equation:

E =
ρwgH2

8
=

ρwgα2

2
(2.6)

Where pw is the water density and g is the gravitational acceleration constant. Therefore,
a transformation of S( f , θ) to pwgS( f , θ) is necessary first to be consistent with the energy
spectrum term. The total wave energy is represented by m0 which is the zeroth-moment of
the spectrum [5], and it is calculated by the integral of the S( f , θ) function in all frequencies
and directions:

m0 =
∫ ∞

0

∫ 2π

0
S( f , θ)d f dθ (2.7)

This integral is by definition equal to the surface elevation variance η2. Thus, wave
elevation variance is a more accurate term than wave energy. SWH is defined as four times
the Root-Mean-Square (RMS) of the elevation variance, and it is denoted as Hs or Hm0.

Hs = 4
√

m0 (2.8)

When directional information is unavailable, we can obtain the wave spectrum as a
function only of the frequencies. It becomes the frequency spectrum, an example of which
is shown in Figure 2.2 using buoy observations. The infinite number of wave frequencies
are represented on the x-axis. In reality, sensors onboard buoys divide the whole spectrum
into frequency bands with an f+df size. NDBC uses frequency bands of 0.01 Hz size with a
cut-in frequency of 0.03 Hz and a cut-off frequency of 0.4 Hz. On the other hand, CDIP uses
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narrower frequency bands of 0.005 Hz for a more extended spectrum with a cut-in frequency
of 0.025 Hz and a cut-off frequency of 0.58 Hz. The elevation variances or the wave energies
are plotted on the y-axis in m2s or m2/Hz.

FIGURE 2.2: An example of a wave frequency spectrum. Data presented were
reported from Block Island buoy 44097 on October 27 2018.

From the frequency spectrum, we can derive two primary parameters for our study, the
SWH and the peak or dominant period Tp. The integral of the spectrum that represents the
volume of the area under its continuous curve in Figure 2.2 is equal to the zeroth-moment of
the spectrum m0, and it is the representative value of the total wave energy as defined in 2.7.
Therefore, SWH is expressed as four times the square root of this integral. From the frequency
spectrum, we can also derive the peak frequency fp, which is the wave frequency of the
spectrum’s peak band. The wave dominant period Tp corresponds to the peak frequency
band.

To estimate SWH and Tp from the wave spectrum accurately, observations are assumed
to represent statistically stationary random processes. The aim is to prevent scattering of
the observation values; hence, we need a relatively large wave measurement record [77].
To satisfy both conditions, NDBC and CDIP stations record raw 1 Hz observations for 20
minutes (see 3.1.1).

The directional wave spectrum S(f,θ) is the distribution of the elevation variance or the
wave energy both in the frequency domain and the wave components’ direction. An example
of the directional wave spectrum from buoy observations is shown in 2.3 and the wave
energy density is reported in m2s/deg or m2s/rad.

Except for the SWH and Tp, we also need information relative to the ocean waves’ di-
rection to obtain a complete picture of the sea state. Except for the surface elevation, buoys
contain directional wave sensors measuring the slope vector, and they are included in their
raw time series. These measuring systems are called heave pitch and roll, and the slope time
series are measured in the east-west, and north-south direction using buoy azimuth [92].

The directional wave spectrum is also expressed as:
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S( f , θ) = S( f )D( f , θ) (2.9)

where D( f , θ) is the directional spreading function:∫ π

−π
D( f , θ)dθ = 1 (2.10)

D(f,θ) describes how the wave energy density is spread in all directions. Longuet-Higgins
[61], estimated the wave spectrum using the Fourier series methodology and proved that the
first four coefficients are needed to describe the spectrum, including its directional parame-
ters. The four Fourier coefficients are calculated by applying cross-spectral analysis to the
wave elevation and the buoys’ slope time series. This process is extensively described in [20,
27, 28, 56].

FIGURE 2.3: An example of a wave directional spectrum. Data presented were
reported from Block Island buoy 44097 for October 27 2018.

The challenge is to reconstruct the directional spreading function from the estimated
Fourier coefficients and create the directional spectra. It is worth mentioning that NDBC
buoys, using the Datawell Hippy 40 sensor, measure and then disseminate the frequency
spectrum and the four Fourier coefficient time series [92]. Still, the final two-dimensional
spectra are not provided. CDIP provides only recent directional spectra online. There are
several methods to reconstruct the two-dimensional, directional spectra. The Maximum
Entropy Method (MEM) [62], is considered the most reliable [5]. CDIP also uses this method
to reconstruct the directional spectra. Its disadvantage is that often the spectrum’s shape con-
tains artificial double-peaks. An extended discussion of the various methods to reconstruct
the directional spectrum is available in [28, 39, 106].
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2.2 Wave Age and Spectral Decomposition

In the previous section, we discussed the importance of the directional wave spectra to
describe the ocean wave conditions. We also emphasized that the waves contributing to the
wave spectrum have various frequencies, directions, heights, and periods. This leads us to
study waves according to their unique characteristics and influence on the wave climate.

Waves can be classified according to their growth status. Local waves that owe their
development to the increasing momentum input from the wind are called wind waves or
wind sea. When the wind speed is reduced, and the wind’s relative direction with the waves
is increased over 30 degrees, or when remotely-generated waves due to a distant storm
arrive, they are called swell [77]. Wind waves are strongly correlated with the wind, and
they have a notable presence during extreme events, in enclosed basins, and coastal regions.
An empirical method often used is to classify waves as wind sea when their dominant
period has a duration of fewer than 10 seconds. In contrast, swells are not coupled with the
wind, and they do not owe their development to a local wind momentum input. Besides,
swell waves are different visually, as they appear as more organized groups of waves with
smoother crests. In this study, we will focus on two methods of ocean wave classification.

The first method is based on ocean waves’ growth using the inverse wave age criterion
[45]. Wave age cp/U10 cos θd represents the wind’s potential to transfer energy to the waves
[108]. cp is the wave phase speed at the peak of their spectrum and it is equal to λp/Tp
or ωp/kp. Once wind-waves are generated, the wind is faster than the waves. As the
energy is provided to the wind waves, their celerity increases until they reach the wind-
wave equilibrium, at which the sea is considered mature or fully developed:

cp

U10 cos θd
= 1.2 (2.11)

u10 is the wind speed at 10 meters height, which is discussed in the next Section 2.3
and θd is the relative angle between the wind direction and the mean wave direction. If we
combine cp with the dispersion relation for deep water waves ω2 = gk and 2.2, the result is
a relationship which connects the peak propagation speed with the dominant period [45]:

cp =
gTp

2π
(2.12)

The inverse wave criterion is used to classify waves from buoy time series as in similar
studies [33, 45]. We classify wind waves according to the following condition:

U10 cos θd

cp
> 0.83 (2.13)

The remaining waves are considered swell or mixed seas. An advantage of current
sensors onboard boys is that both wind and mean wave direction are measured. Therefore,
we can add an intermediate range for mixed sea states 0.15 < U10cosθd/cp < 0.83 [45]. It is
worth mentioning that these are not hard limits, though.

The second way to classify ocean waves is more advanced and relies on the wave di-
rectional spectra. This method is called spectral partitioning, and it is implemented for the
spectral decomposition of waves to wind sea and swell partitions. An example of a direc-
tional spectrum is shown in 2.3. This figure shows a single system describing the sea state.
A common condition, especially in the open ocean, is to have multiple systems with unique
frequencies coming from diverse directions. One of the main benefits of spectral partitioning
is to decompose the different systems into wind waves and swells operationally in numer-
ical models [77]. NDBC does not disseminate historical partitioned data for wind waves
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and swells. It recommends empirical methods [36] that rely on the determination of the
separation frequency fs, which separates the different wave systems.

For this study, we use a Matlab algorithm [24] to partition wind wave and swell systems
during extreme events (see 4). This algorithm is mainly based on the watershed methodology
described in [46]. With this method, the different watershed regions are identified from the
input directional spectrum matrix, and then they are assigned a number that differentiates
each system from the other. A similar algorithm is used operationally for the spectral par-
titioning in the Wavewatch III (WW3) model [94]. There are also other spectral partitioning
methods. Wang and Hwang [102] use a spectral steepness method which utilizes the peak
frequency to calculate the separation frequency without taking into account the wave di-
rection. Portilla et al. [81] propose a different methodology also based on the watershed
algorithm.

2.3 Sea surface roughness and the wind speed profile over the
ocean

To quantify the interaction between the atmosphere and the ocean, we need to measure the
exchange of momentum at the sea surface. This exchange’s direct measurement is not an
easy task, though; therefore, oceanographers and meteorologists estimate it through bulk
formulas. Precisely, the flux of momentum is quantified by the wind stress on the ocean
surface:

τ = ρau2
∗ = ρaCDU2

r (2.14)

where ρa is the density of air, Ur is the wind speed relative to the speed of the water
and CD is the drag coefficient [29]. u∗ is the friction velocity. While ρ and Ur can be directly
measured, CD is a subject of many theoretical and experimental parameterizations. The
theoretical parameterization of the drag coefficient is derived from the Monin-Obukhov
similarity theory:

CD =

(
k

ln z/z0 − ψm(z/L)

)2

(2.15)

where k = 0.4 is the Von Karman constant, z0 is the roughness length, ψm is a dimension-
less function that controls the stability of the atmosphere. Besides, z is the reference height
where we want to estimate the drag coefficient, and L is the Monin-Obukhov length. A thor-
ough description of the drag coefficient’s dependency on atmospheric stability is available
in [89], including examples for different conditions.

For an accurate estimation of CD, it is necessary to obtain observations of WS, air and
water temperature, and humidity, among other parameters. In practice, as is the case for
NDBC buoy observations, all these parameters are not always available because they are
measured from different sensors. Hence, only dedicated experiments on air-sea interaction
provide all the necessary information to assess the air-sea coupling. For this reason, the
stability function is often eliminated, and we assume neutral stability of the atmospheric
boundary layer over the ocean. A quantification of the errors that this assumption creates
is presented in 2.4. Under neutral boundary layer conditions, the wind speed logarithmic
profile over the ocean is described by:

uz =
u∗
k

ln
(

z
z0

)
(2.16)
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Combining the latter equation and 2.14, we can estimate the wind speed at the reference
height of 10 meters (u10) given the wind speed at a different height, the drag coefficient and
the roughness length [105].

u10 = uz
k√

CDN
ln−1

(
z
z0

)
(2.17)

NDBC does not report the wind speed at 10 meters, though. It suggests two different
ways of adjusting the WS at a reference height [52, 58]. The latter method is based on the
power-law wind profile mainly used for the WS adjustment over land, and offshore wind
design [55]. A comparison of the logarithmic and the power-law [30] has shown that for
values of the wind shear coefficient that approach the ocean surface conditions, the difference
between them is minimal and gets even smaller as we go higher in the atmosphere and inside
the surface layer (80-100 meters).

FIGURE 2.4: The influence of the neutral stability assumption in various condi-
tions and heights near the sea surface. Point B represents the wind speed at 10
meters under neutrally stable conditions and A the measured value. Derived

from: [59]

We also define the drag coefficient at 10 meters height for a neutrally stable atmospheric
boundary layer using 2.15:

CDN10 =

(
k

ln (10/z0)

)2

(2.18)

In this case, it is evident that estimating CD means that we can estimate the z0. The
roughness length over the ocean is not constant and dependent on the sea state. There
are proposed methodologies to predict the roughness length from the wave age and SWH
[93]. An extensive literature review of the most popular drag coefficient and roughness
length parameterizations is available in the literature [13, 108]. The latter also explores the
parameterization of CD and z0 using the wave age and the wave steepness (H/λ). As the
surface wind increases until the ocean surface gets fully rough, the wind stress strengthens
its impact, and CD has higher values. Although it is true for moderate to high winds, it has
been proven that the linear increase of the drag coefficient with increased wind speed does
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not apply for low wind speeds. During conditions of very low winds (u10 < 4m/s) and
the presence of aligned with the wind direction swells, the momentum flux reserves its sign
from positive to negative, and the assumption of a neutrally stable, logarithmic profile over
the sea surface is no longer valid [29, 42, 44].

From the number of available parameterizations, it is evident that the task to describe the
air-sea interactions sufficiently is multi-faceted. This study uses a specific parameterization
while considering the errors therein and the possible deviations from the truth. Specifically,
we use equation 2.17 to adjust the reported wind speed observations from the buoys to
the reference height of 10 meters. Representative values of CD = 1.2× 10−3 and the cor-
responding z0 = 9.7× 10−5m derived from 2.18 are also used in similar studies [86, 107].
Anemometers onboard buoys are placed on various heights (3.5 to 4.5 meters) depending
on the buoy type. Hence, adjusting to a reference height is also beneficial for consistent
comparisons.

2.4 Literature review of bulk formulae for wind-wave relation-
ships

In the first section of this Chapter 2.1, we showed that SWH is estimated from the frequency
spectrum and it is equal to four times the integral of the area under the continuous line of
the spectrum, or the RMS elevation.

Historically, WS and SWH relationships are synonymous to the wave spectrum. Pierson’s
spectrum approach to ocean waves [80] was transcedental as he developed the theoretical
background and the statistics of ocean wave spectra. Neumann implemented Pierson’s the-
ory and created the first wave spectrum using visual wave observations from ships. The
Neumann spectrum was the first to connect the WS at the height of the anemometer as a driv-
ing force for the waves with the frequency spectrum. The fully developed or fully aroused
sea was then defined as the sea state with a spectrum of all frequency components with the
maximum energy under a specific value of WS forcing. This led to the SWH definition and
the first relationships of SWH and WS based on the wave spectrum of a fully developed sea.
The first three relationships came from the Pierson-Neumann system of equations 2.19, the
Sverdrup-Munk-Bretschneider wave forecasting method 2.20 and the Darbyshire spectrum
2.21.

Hs = 7.065× 10−6u2.5 (2.19)

Hs = 2.667× 10−4u2 (2.20)

Hs = 1.39× 10−4u2 (2.21)

A comparison of theoretical spectra and their corresponding wind-wave relationships is
available in [75].

Kitagorodskii based on the Pierson-Moskowitz spectrum [79], proposed similar empirical
laws for the fully-developed sea. One of Kitagorodskii’s empirical formulas is also the wave
age wind-wave equilibrium equation 2.11. For the fully-developed sea, he connected u10
with Hs [19]:

Hs =
0.2
g

u2
10 (2.22)
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A few years later, Carter [14] reviewed the JONSWAP spectrum [49] and proposed the
following relationship:

Hs = 0.02466u2
10 (2.23)

This relationship is also used as a reference in similar and contemporary studies [4].
Carter also proposed equations for the duration and fetch-limited seas:

Hs = 0.0163X0.5u10 (2.24)

Hs = 0.0146D5/7u9/7
10 (2.25)

The sea is considered duration-limited when:

D > 1.167X0.7u−0.4
10 (2.26)

X is the fetch, the perpendicular distance to the upwind coast in kilometers and D is the
duration in hours. In this study, fetch is not included directly in the estimations. However,
we examine the relationships for each of the main wind directions to indirectly connect them
with the variation of the fetch in coastal regions.

WMO [77] suggests a similar empirical relationship for the estimation of SWH when u10
is given.

Hs =
( u10

12.5

)2
(2.27)

Finally, other studies incorporate wind-wave relationships from wave models for classi-
fication of the sea state into wind-waves and swells using altimeter data [16].

All the relationships mentioned above are valid under the assumptions of deep water
waves and fully developed seas. Consequently, SWH cannot be accurately estimated from
u10 in all other growth stages or with presence of swells.

2.5 Wind Speed Probability Density Functions

This section is about the statistical interpretation of the long-term time series from the buoys.
Specifically, the ultimate goal is to indicate the Probability Density Functions (PDF) that
describe the u10 distribution as it is estimated from the buoy records for each location.

Wind PDFs are required for design assessment at the offshore wind farm site before its
installation [55]. They are an integral part of the wind data analysis, and they are usually
combined with the wind roses that provide the directional distribution of the wind speed
[22]. The average wind turbine power is also associated with the PDF estimation [68]. For the
wind PDF estimation, the suggested buoy dataset is the 10-minute average U10. Although the
modern wind turbine hub heights are greater than or equal to 100 meters, an extrapolation
of the surface WS to such height would result in high uncertainty [8]. Therefore, a reference
height of 10 meters is selected for this study. The results would also prove useful as a
reference to a similar estimation of the PDFs from wind lidar buoy and offshore wind tower
observations in a later stage.

The standard and most widely-accepted wind speed distribution is the Weibull:

f (x) = αxα−1exp (−xα) (2.28)
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Where α > 0 is the shape parameter. The best fit to our data is the 3-parameter Weibull
though, for y = (x− γ)/η, where η is the scale and γ is the location parameter. Special cases
of the Weibull are the Exponential (β = 1) and the Rayleigh (α = 2) distributions.

There also regional characteristics of the wind speed distribution. Previous studies using
buoy data have proved that the Weibull distribution is adequate for estimating the surface
wind PDFs only for specific regions [68]. They propose that universal models should be
a mixture of multiple distributions with different assigned weights for each distribution,
depending on the domain. There are also studies suggesting that the Johnson SB [90, 91]
distribution can be accepted as an alternative PDF and the best fit for certain regions. As
described in the results, we identify and evaluate four distribution with the best fit for the
WS data in SNE. Two of them, Weibull and Rayleigh are already referenced above. Besides,
the Beta and Johnson SB distributions are also suggested to describe the long-term WS
distribution at SNE:

f (x) =
Γ (α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1 (2.29)

This is the Beta 2P distribution where Γ is the Gamma function and α > 0, β > 0 are the
shape parameters. We evaluate the 4P Beta PDF by adding scale and location parameters for
y = (x− γ)/η, where η is the scale and γ is the location parameter respectively.

f (x) =
b

x(1− x)
φ

(
α + β log

x
1− x

)
(2.30)

This is the Johnson SB 2P distribution where α > 0, β > 0 are the shape parameters and
φ is the normal distribution PDF. We evaluate the 4P Johnson SB PDF by adding a scale and
location parameters for y = (x− γ)/η, where η is the scale and γ is the location parameter
respectively.

We identify the single, univariate distributions of best fit to the long-term u10 time series
using the extended SciPy library of PDFs for each buoy location. This library utilizes the Max-
imum Likelihood Estimation (MLE) methodology for fitting to the theoretical distributions
and the estimation of the distribution parameters.

2.6 Principles of Satellite Altimetry

The Radar altimeter is an active, nadir looking microwave instrument that emits its impulses
to the earth’s surface. Once it receives them back, it measures the travel time, the magnitude,
and the shape of each return signal.

The average of hundreds of pulses shape the mean returned signal. Specifically, the sig-
nals tracked originally by the altimeter are convolved to a single waveform after being fitted
to a mathematical model. These function fitting methods are evolving through the years and
are described in [40]. The process is fundamental for satellite altimetry and constitutes the
retracking model. The mathematical model used for the fitting of the retracking algorithm
is the Brown-Hayne model [12, 50] for the Low-Resolution Mode (LRM) and the SAMOSA
model for the Synthetic Aperture Radar (SAR) altimetry [84]. As a result, a typical waveform
in the open ocean has three distinct areas, as presented in Figure 2.5. The first one is the area
of low, close to zero power. The second is the leading edge, which contains the area from
the time that the waveform’s power begins to increase until its peak. The third is the trailing
edge, which is the area of decaying power of the waveform.

Except for the impulses’ signal, an accurate determination of the earth’s orbit is critical,
especially the radial component. In addition, the target accuracy of the distance between the
satellite and the sea level is on the order of 1 centimeter. Therefore, corrections due to the
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errors caused by the signal’s delay as it travels through the ionosphere and the atmosphere
have to be applied. The ionospheric corrections are essential to measuring the delay of the
altimeter signal’s travel time caused by the ionosphere’s free electrons. It is also one reasons
why a dual-frequency (Ku or Ka and C band) altimeter instrument is needed onboard the
satellite. Besides, there are two kinds of atmospheric corrections: the dry tropospheric and
the wet tropospheric correction. For the latter, the microwave radiometer instrument is used
to measure the water vapor in the atmosphere. A significant challenge for coastal altimetry
is that the microwave radiometer footprint radius is close to 50 kilometers. Therefore, the
brightness temperature of the land contaminates the measurement in coastal areas. The wet
troposphere correction is also very challenging due to the spatiotemporal variability of water
vapor in the atmosphere. For these reasons, the uncontaminated signal in the open ocean
is used in conjunction with in situ observations, when and where available, to correct the
wet troposphere delay. Furthermore, there is uncertainty also at the surface of the ocean.
Specifically, geophysical adjustments have to be applied to estimate parameters such as the
earth and ocean tides, the sea state bias, and a dynamic atmosphere correction.

In coastal altimetry, the retracking model’s fitting to get the final waveform has additional
challenges as we get closer to the coast. Due to the extended radius of the altimeter footprint,
land intrudes in the received signal, and there is land contamination of the waveform [43].
Hence, the final waveform can be corrupted, especially in high sea state conditions. Secondly,
as we get closer to the coast, the footprint’s backscatter is different from the one in the
open ocean. Indeed, in coastal areas, the altimeter footprint may cover both a windy area
with considerable sea surface roughness and an area of calm sea state with an almost flat
surface “shaded” by the wind. As a result of the limitations mentioned above, the final
waveform shows unusually higher power peaks in the trailing edge, a part of the waveform
that we should otherwise not consider when fitting to the model to estimate the geophysical
parameters.

FIGURE 2.5: The Brown theoretical retracking model for LRM altimetry and
the derived parameters. Derived from: [40].

These limitations are evident when we consider the pulse-limited signal of the LRM
altimeters. The effective footprint of the LRM altimeter is given by:

f =
πR0(cτ + 2Hs)

1 + R0/RE
(2.31)
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Where c is the speed of light, τ is the pulse length, Hs the SWH, R0 the altitude of the
satellite and RE the Earth’s radius.

When the sea is calm, the altimeter’s footprint is approximately a 2-kilometer radius in
both directions, the along-track and the across-track. In contrast, during a storm or high sea
state, the effective footprint can extend to over 7 kilometers. The principles of pulse-limited
altimetry are extensively described in [15]. SAR or delay-Doppler altimetry using the Ray et
al. [84] model, revolutionized how the signal’s power is used. On the one hand, it considers
both the leading and the trailing edge of the retracked waveform instead of the smaller
area of the leading edge considered for the LRM. The finer resolution on the along-track
and the waveform’s reduced noise are the main aspects of the evolution of SAR altimetry
[83]. Its Pulse-Doppler-limited footprint’s resolution can be constrained to approximately
300 meters only on the along-track. On the across-track, though, the resolution remains
similar to the pulse-limited LRM. The effective footprint of SAR looks like slices of the LRM
circular footprint as in Figure 2.6. The SAR altimetry pioneer is Cryosat 2 satellite, as it
is equipped with the SIRAL instrument that operates in both modes (see 3.1.2). Raynal et
al. [85] demonstrates the increased accuracy of the SAR’s higher spatial resolution over
different areas worldwide. The European Space Agency (ESA) Sentinel 3 twin satellites, A
and B, are the first missions that use the SAR altimetry mode exclusively. Currently, the
remaining altimeters in orbit are operating in LRM mode. On the other hand, SARAL-AltiKa
is the only LRM altimeter that emits its impulses in higher frequency using the Ka-band,
which increases the accuracy of the measured parameters and reduces the noise of the final
waveform.

FIGURE 2.6: A representation of the LRM and SAR altimeter footprint.

We can determine at least three essential parameters from the retracked waveform 2.5.
The first one is the epoch. We can then estimate the range from the epoch, which is the
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signal’s travel time, until it reaches back the satellite and is connected with the Sea Surface
Height (SSH). The second important parameter of the waveform is the slope of the leading
edge (or width or rising time of the leading edge), which is connected to the estimation of
the SWH. The third essential parameter is the backscatter coefficient derived by the received
signal’s power and is associated with the surface WS. For this study, the focus is on two of
the three aforementioned geophysical parameters and their corresponding estimates, namely
the SWH and the WS.

As previously discussed, the estimation of the SWH is connected with the slope of the
leading edge. Specifically, the slope is a function of the root mean square error of the SWH.
A steep leading edge represents a small value of the SWH. In contrast, for higher values of
SWH, for example, during a storm, the return signal starts to rise earlier until it reaches its
peak power, and also, the shape of the echo is different [6]. The difference between the two
resulting waveforms, one during a calm sea and one for a rougher sea surface, is shown in
Figure 2.7(b). It is evident that SWH from altimeters is derived with an entirely different
measurement method with respect to buoys described in Chapter 2.1.

The radar altimeter also measures the backscatter signal’s strength. This value is inversely
proportional to the sea surface Mean Square Slope (MSS) [17] which is related to the sea
surface roughness induced by the wind. Therefore, the estimated WS increases as the surface
MSS gets higher and the backscatter becomes smaller. The main source of errors in the
altimeter estimation of the WS is the empirical nature of the corresponding algorithms that
do not consider the impact of the sea state growth, primarily due to swells [1, 37]. The
retracking of hundreds of noisy signals and the need for reliable atmospheric corrections,
notably close to the coast, makes the task even more challenging.

FIGURE 2.7: (a) Illuminated surface geometry. (b) The resulting shape of the
reflected pulse. Derived from: [87]
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Chapter 3

Methodology

3.1 Data preprocessing

This study is based on the interpretation of wind and wave conditions using in situ and
remote sensing observations from buoys and altimeters. There are fundamental differences
in how in situ platforms measure and report the geophysical parameters compared to ob-
servations from satellite altimeters. On the one hand, buoys’ measurements are considered
the "ground truth", owing to their ability to provide a reliable, long-term, and continuous
time-series record of temporally processed oceanographic and meteorological parameters
from the raw data for a specific location. On the other hand, altimeters provide instantaneous
measurements representing their sea surface footprint with a low temporal resolution. A
description of satellite coastal altimetry challenges is available in 2.6.

This chapter aims to provide an outline of the collection and preprocess of the different
data types. This step is essential because both datasets contain inherent and unique sources
of error [37, 67, 109], and they need to be quality controlled before the analysis. The next step
is to accurately describe the methodology that was implemented to achieve our final results.

3.1.1 Buoy Data Collection and Organization

The importance of an extended and well-preserved network of buoys in the United States of
America is well documented in [72]. This study utilizes all the wind and wave geophysical
parameters reported by multiple stations of the NDBC and CDIP. CDIP is operated by the
Ocean Engineering Research Group (OERG), part of the Integrative Oceanography Division
(IOD) at Scripps Institution of Oceanography (SIO), and it is responsible for the operation
and maintenance of buoys 44097 and 44091. Buoy 44039 is part of the Long Island Sound
Integrated Coastal Observing System (LISICOS), and it is operated and maintained by the
University of Connecticut (UConn) Marine Sciences Department. The remaining buoys are
operated and maintained by NDBC.

Information about all stations’ location characteristics and their data availability are
included in Tables 3.1 and 3.2 respectively. The anemometer height is 4.1 meters for all buoys
with available wind measurements except buoys 44020 (3.8 meters) and 44039 (3.5 meters).
When is needed, wind speed is adjusted at 10 meters height, assuming neutral stability of
the atmospheric boundary layer, as described in 2.3.

Data are available at the NDBC and CDIP websites. Directional wave spectra for buoy
44097 were downloaded from CDIP archive at THREDDS Data Server (TDS) in NetCDF
format. All other geophysical parameters were downloaded from the NDBC website as .txt
files. NDBC provides an extensive description of the measurement process, the statistical
analysis and quality control of the raw data, and the various error sources in [71]. The buoy
anemometers’ reported accuracy is ±1m/s with a resolution of 0.1m/s. The corresponding
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(A) Buoy 44025 (Long Island) (B) CDIP Datawell
Waverider Buoy

FIGURE 3.1: The two types of buoy stations moored in SNE.

accuracy of the SWH measurements is ±0.2m with a 0.1m resolution. After careful examina-
tion of the quality-controlled time series, additional filtering criteria were implemented to
eliminate erroneous data.

Buoy # Location Lon. (deg. W) Lat. (deg. N) Water Depth (m)

44097 Block Island, RI -71.127 40.969 48.16
44020 Nantucket Sound -70.279 41.493 14.30
44025 Long Island -73.164 40.251 36.30
44017 Montauk Point -72.049 40.693 48.00
44065 New York Harbor Entrance -73.703 40.369 25.00
44039 Central Long Island Sound -72.655 41.138 27.00
44008 Southeast of Nantucket -69.248 40.504 74.70
44066 East of Long Beach, NJ -72.644 39.618 78.00
44091 Barnegat, NJ -73.769 39.778 25.60

TABLE 3.1: Buoys’ location, coordinates and water depth.

Specifically, WS data with values smaller than or equal to 0.2 m/s and SWH values lower
than or equal to 0.1 meters were discarded. Previous studies [3] have used even stricter
filtering criteria for the WS, recognizing that one disadvantage of the 4-blade, wind-vane
sensors onboard buoys, is that they need a minimum, nonzero WS to start measuring and
recording data reliably. The 0.1 meter-limit for SWH is also used by CDIP. Furthermore, data
availability in terms of years of available data, as documented in Section 3.2, imposes the
need for consistency on the final buoy time series. The final buoy datasets consist of data
from 2007 until the end of 2019. Buoy time series have gaps owing to maintenance or change
of the sensor payloads. The main goal was to have at least ten years of data for each buoy
for consistent analysis. Previous studies have also documented that ten years of wave data
are enough to characterize the seasonal variability for a specific location [7].

For this reason, buoy 44091 data were used only for the validation with altimeter data.
Buoy 44039 data has two disadvantages that prevented their use for other than the validation
with altimeters section of this study.
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Buoy # Distance to Coast (km) Data Type Data Availability (Years)

44097 41.0 wave only 2009-Present
44020 13.0 wind/wave 2009-Present
44025 42.0 wind/wave 1975-Present
44017 30.0 wind/wave 2002-Present
44065 23.0 wind/wave 2008-Present
44039 13.0 wind/wave 2004-2019
44008 103.0 wind/wave 1982-Present
44066 121.0 wind/wave 2009-Present
44091 27.5 wave only 2014-Present

TABLE 3.2: Buoys’ distance to the closest coast and data availability depending
on the type of the reported parameters and its period.

Specifically, SWH values have a precision of one decimal number, and dominant pe-
riods are rounded to the closest integer. Data are also recorded at irregular times, which
creates challenges for interpreting the results, especially compared to the other buoys’ stable
recording times.

FIGURE 3.2: NDBC and CDIP buoys in the SNE region.

It is essential to mention the different datasets that were used and their unique charac-
teristics. First of all, buoy payloads can record WS and wind direction in two distinct ways
described in [71]. The first one is an 8-minute average of 1Hz observations, which leads
to an hourly dataset. Data are reported at the end-of-acquisition minute, but that does not
mean that the observation value includes measurements from the whole hour. This dataset
was used when synchronous wind and wave observations were needed to validate altimeter
data. The second one is a 10-minute average of the 1Hz observations, which is reported
again at the end-of-acquisition minute. Still, the difference is that it is the average of the
whole 10-minute period. This dataset is referenced as the 10-minute average dataset from
now on, and it is especially useful for studying the diurnal variability and wind climate. It is
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also the recommended dataset for wind observations, according to BOEM for offshore wind-
related studies [22]. The 10-minute average dataset is used when wind data are processed
independently, and the hourly dataset is used when combined with wave data.

Wave data are measured and reported in an entirely different way due to their more
complex nature. All wave parameters are derived from the estimated energy spectra [71];
therefore, they are neither instantaneous nor average values of continuous observations.
Wave parameters represent observations every 20 minutes. The acquisition time starts at
the 20th minute of each hour and ends at the 40th. The final reported measurements are
synchronized to the closest hourly wind observations. This is useful when we want to
study, for example, the relationships between WS and SWH. Still, at the same time, we have
to consider that the observations are not simultaneous in reality. Data organization and
preprocessing were implemented using Python Pandas and other supplemental packages of
the Python programming language. The final time series were saved as separate .txt files for
each buoy and are available for future use.

3.1.2 Altimeter Data Collection and Organization

The theoretical aspect and the distinct qualities of the satellite altimeter observations are
already emphasized in 2.6. This chapter will provide the necessary information regarding
the altimeter datasets’ characteristics, the reasons for their choice, and their actual use as
input to the analysis.

SARAL Jason 3 Sentinel 3A Sentinel 3B Cryosat 2

Repeat Cycle 35 10 27 27 369
Frequency Band Ka/C Ku/C Ku/C Ku/C Ku/C
Data Availability 03/2013- 09/2016- 03/2016- 05/2018- 07/2010-

Instrument AltiKa Poseidon-3B SRAL SRAL SIRAL
Operation Mode LRM LRM SAR SAR LRM/SAR

Product Type GDR GDR NTC NTC GOP

TABLE 3.3: Satellite Altimeters used in this study and their characteristics.

First of all, this study’s scientific context dictates the use of data from multiple altimeter
missions. Currently, there are six satellite altimeters in orbit. Information about the main
characteristics of each altimeter that is included in this study is provided in 3.3. Data from the
most recent altimeter mission, the Chinese HY-2B, were not used or examined. Sentinel-3A
and Sentinel-3B satellites are part of the same mission, often characterized as “twins” because
they have complementary orbits. They are the only satellites equipped with multiple sensors,
including the radar altimeter instrument SRAL.

Satellite with ARgos and ALtiKa (SARAL-AltiKa) is a collaboration between the Centre
National d’Etudes Spatiales (CNES) and the Indian Space and Research Organization (ISRO)
[99] with the participation of the European Organization for the Exploitation of Meteorologi-
cal Satellites (EUMETSAT). This mission is unique, mainly for two reasons. SARAL-AltiKa is
the first mission that takes advantage of the high-frequency Ka-band (35.75 GHz) capabilities.
Specifically, its high-frequency signal means that the altimeter footprint is smaller, leading
to better spatial resolution and more accurate measurements, in particular close to the coast.
The disadvantage of Ka-band’s high frequency is its sensitivity to water vapor and rain,
leading to signal attenuation and making the atmospheric corrections even more challenging
[10, 96]. SARAL-AltiKa is also unique because it was launched using the same orbit and
ground tracks as its predecessor mission, ERS, from March 2013 until July 2016. From July
4, 2016, it has entered its second phase, which is called the drifting phase or SARAL-DP.
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Since then, SARAL-AltiKa does not maintain its altitude; therefore after each repeat cycle, its
ground tracks are no longer passing from the same location as the previous, but they “drift”
a few kilometers. The mission agencies made this decision to preserve a few more years of
its lifetime. It has been proven that it is possible to maintain good mesoscale sampling even
without keeping the same altitude for the satellite [21].

The Jason 3 mission involves CNES, the National Aeronautics and Space Administration
(NASA), EUMETSAT, and the National Oceanic and Atmospheric Administration (NOAA).
It is the successor of Jason 2, and it was launched on January 17, 2016. Jason 3 entered its
calibration and validation phase on February 19, 2016, when it also started measuring and
reporting data. Its primary instrument, the Poseidon-3B altimeter, sends and receives its
impulses in Low-Resolution Mode (LRM), and it operates in Ku-band (13.575 GHz). Jason 3
is also unique because it has the highest temporal resolution and the lowest spatial resolution
of all the altimeters. Every repeat cycle covers ten days, and every ascending or descending
along-track is at an approximately 2.8 degrees distance from the closest. The instruments
onboard Jason 3, which are also common to satellites that include altimeters, are shown
Figure 3.3.

Sentinel 3 mission is organized and implemented by the European Space Agency (ESA)
and EUMETSAT. Satellite altimetry is one of its main objectives, but not the exclusive. Its
payload also includes instruments that measure and record Sea Surface Temperature (SST)
and Ocean Colour data that are equally important to the geophysical parameters derived
from the radar altimeter. So far, Sentinel 3 is comprised of two satellites, Sentinel 3A and
Sentinel 3B. Sentinel 3A launched on February 2016 and Sentinel 3B on April 2018. They
are often characterized as the “twin mission” because their along-tracks are complimentary
to increase spatial coverage. Both satellites are equipped with the same payloads; hence
they will be referenced in this study as Sentinel 3. Sentinel 3 SRAL altimeter sends and
receives its impulses in Ku-band. It is also worth mentioning that it is the first mission that
operates in SAR (or delay-Doppler [83]) mode exclusively, even if it can function in both
SAR and LRM modes. As a result, only the across-track resolution of its effective footprint
is still pulse-limited because the along-track resolution is increased and constrained to 300
meters. Conventional altimetry operates in low-resolution mode, which is pulse-limited on
both the across and the along-track directions. SRAL altimeter’s received pulses can also
be processed in Pseudo-Low Rate Mode (PLRM) and produce LRM-like waveforms when
operating in SAR mode. Still, PLRM’s estimates are noisier and have worse performance in
coastal regions [74]. In this study, only SAR mode data are used and evaluated.

Cryosat 2 is an ESA mission launched on April 2010, and its primary objective is to
monitor the Arctic sea ice extent. It is a pioneer altimeter mission because it is the first-
ever to operate in SAR mode. Specifically, the SIRAL altimeter onboard Cryosat 2 can
operate in three modes: LRM, SAR, and SAR Interferometry (SARIn). Generally, SIRAL
operates like a traditional altimeter in LRM mode. SAR processing mode is available for a
few oceanographic areas, specific for each cycle. SARin is only available for the ice sheet
margins and over mountain glacier regions. Therefore, Cryosat 2 data used in this study
are LRM-processed with very few exceptions that are processed using the SAR waveforms.
Cryosat 2 has the most extended repeat cycle (369 days) with an approximately 30-day
subcycle covering a specific region of interest. It is also worth mentioning that its orbit does
not repeat after completing every cycle, unlike every other conventional altimeter mission,
which makes it unique in that regard.

For each mission, there are three types of dataset files available: a reduced dataset that
contains only the 1Hz data, a native or standard including both the 1Hz and the 20Hz
parameters, and an expert or enhanced sensor product that includes the full waveforms.
Only the native dataset was collected, organized, and used for this study.
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FIGURE 3.3: The main components of Jason 3 payload including the radar
altimeter Poseidon-3B (center), the Advanced Microwave Radiometer (AMR,
upper center) and the radio positioning DORIS system for the precise determi-
nation of its orbit (lower center). Other instruments include a Laser Reflector
Array (LRA) used for the calibration of the orbit determination system (lower
left) and a precision Global Positioning System Payload (GPSP) antenna (up-
per left). These components are common to all satellites that contain altimeter

instruments. Derived from: [78]

Besides, every altimeter mission has a family of three distinct Level 2P (processed) prod-
uct types, distinguished by increasing latency and accuracy. This family of products is often
called Geophysical Data Records (GDR). Near Real-Time (NRT) or Operational GDR (OGDR)
products are mainly useful for the operational community. They are disseminated only a
few hours after the initial waveforms are received, but they may contain outliers. Short
Time Critical (STC) or Interim GDR (IGDR) products have additional auxiliary data used in
the processing, and they are provided a couple of days after the NRT products. The third
product type is the Non-Time Critical (NTC), or GDR, and the only one used in this study.
For Cryosat 2, this product type is called Geophysical Ocean Product (GOP) to distinguish
it from the ice processors’ GDR dataset. LRM products are followed by an additional M
letter (GOPM) and SAR products with an R (GOPR). These products are delivered typi-
cally one month or two months after data acquisition with more precise orbit determination
and atmospheric corrections. It incorporates additional auxiliary/ancillary data with lower
errors.

There are different dataset standards throughout the lifetime of each altimeter. Generally,
the initial standard uses the waveform retracking algorithms and geophysical/atmospheric
corrections of the calibration/validation (Cal/Val) phase. Then, depending on the instru-
ment’s skills and contemporary research developments, the initial standards are updated
one or two times during every altimeter’s lifetime. Specifically, in this study, Jason 3 GDR-T
data are used from February 2016 until September 2016. From September 2016, the GDR-D
version is used. The most recent, GDR-F version of SARAL-AltiKa data is used for its first
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phase (March 2013 until July 2016) and also for the period from November 2019 until July
2020. For the intervening period, the previous (GDR-T) version is used because it is not
disseminated yet on the AVISO ftp server in its entirety.

Quality control is critical during the preprocessing stage. Editing criteria should be
implemented on Level 2 data to filter outliers or erroneous data and keep only the valid ob-
servations before their use in the analysis. The two primary sources of the suggested editing
criteria are every mission’s data handbook [11, 31, 32, 65, 78], and the Quality Assessment
Reports (QAR) that accompany the data files after the completion of each cycle. Generally,
the discarded observations are not extensive due to the high data quality from the current
missions. As already discussed, each altimeter has its unique features. For example, SARAL-
AltiKa’s Ka-band is more sensitive to rain and water vapor. Simultaneously, it is expected
to provide more observations with higher accuracy close to the coast because of its smaller
wavelength and effective footprint. These characteristics are also reflected in the valid altime-
ter data for each mission. It is the user’s responsibility to select the suitable editing criteria
according to the application. For this study, we use the official mission handbooks and QAR
guidelines to filter suspect or erroneous Level 2 altimeter data.

Although there are multiple sources of satellite altimetry data, SARAL-AltiKa and Jason 3
GDR data were downloaded from the Aviso-CNES Data Center website, Sentinel 3 NTC data
were downloaded from the EUMETSAT Coda website, and Cryosat 2 data were downloaded
using ESA’s Cryosat User Tool (CUT).

For the preprocessing stage, NetCDF data files were input, subsetted, filtered using
Python xArray [51] package, and the final, quality-controlled data were written to single, .txt
files using Python Pandas [64] to be available for future use.

3.2 Spatio-temporal collocation

The satellite altimeter products consist of point observations that are representative of the
nadir-pointing sensor’s footprint center. We have previously discussed that the altimeter’s
effective footprint cannot be considered a single point, though. It has a radius that is not
constant and changes with respect to the sea state. This is also important when we want to
compare altimeter measurements’ accuracy against the buoys, which are stations in point
locations.

A review of the different validation approaches, terminology, and metrics to assess the
quality of satellite observations is available in [60]. Validation is a process that requires the
determination of specific criteria by the user to accomplish two primary goals. First of all,
there should be limits to the two datasets’ proximity both in space and time. The process
of applying these limits is called spatiotemporal collocation and results in the final datasets
with the collocated observations to compare. Indeed, the validation of altimeter against
buoy observations is sensitive primarily to selecting the collocation or sampling radius and
secondarily to the chosen time window [54]. It has been documented that a reduced sam-
pling radius or closer proximity of the two observations in space leads to smaller absolute
differences between the two collocated values [67]. Traditionally, for global scale validation
of 1 Hz altimeter data, a sampling radius of 50 or 25 kilometers and a time window of 30 or
60 minutes is selected. The data are again quality-controlled to remove possible outliers. The
individual measurements are then straightforward or weighted averaged to compare with
the buoy observations because they are considered simultaneous with a spatial distance of 6
to 7 kilometers [26, 82, 103]. The selection of a suitable sampling radius becomes challenging
when approaching a coastal region due to the land contamination of the waveforms and the
number of available stations. The former is discussed in 2.6, and the latter is the second goal
we must achieve, the statistical significance of the results. Validation is often a compromise

https://aviso-data-center.cnes.fr/
https://coda.eumetsat.int/#/home
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between the two, and selecting the appropriate sampling radius and time window depends
on the application.

There are inherent sources of measurement error in both types of observations. The
accuracy of WS and SWH measurements from buoy sensors is reported in 3.1.1. On the
other hand, the challenges of coastal altimetry are explained in 2.6. The primary sources
of inaccuracy in altimeter measurements include estimating parameters like the backscatter
coefficient or the altimeter range from the waveform retracking and the empirical nature of
the algorithms used to calculate the final geophysical parameters (SSH, SWH, WS). Hence,
instrumental errors are the first source of uncertainty when comparing two different mea-
surement systems’ observations. Even if the two measurement systems had zero or identical
uncertainty, their comparison would still be challenging due to their diverse spatial and
temporal sampling. In other words, we need to consider how close are the observations in
space and time due to the wind and wave variability in multiple spatial and temporal scales.
Furthermore, we also need to take into account the sampling variability of the two types
of observations. Specifically, the reported observations from buoys as described in 3.1.1 are
temporal averages, whereas the 1Hz altimeter values are considered instantaneous.

This study aims to validate wind speed and significant wave height measurements from
altimeters with buoys in the SNE. There are limited buoy stations in this domain, as described
in 3.1.1. At the same time, most of the stations are located closer than 50 kilometers from the
coast, which is a choice of a limit for similar studies [103]. In contrast, data with proximity
to land are not discarded in other studies to retain a larger sample size [82]. Therefore, the
limits selection is a compromise between accuracy and statistical significance. Specifically,
a 10-kilometer sampling radius around and a time window of 30 minutes before and after
each buoy observation are chosen. The time window is reduced to 15 minutes for the CDIP
waverider buoys, which have a more frequent recording of data (every 30 minutes). These
criteria fulfill the first goal since the closest distance to the coast is 13 kilometers for buoys
44039 and 44020; hence, we can find a considerable amount of collocated measurements from
altimeters in these locations, and we avoid erroneous data due to land contamination. Still,
the sample size of collocated data gets smaller as we are approaching the coast. On the other
hand, the validity of altimeter observations inside semi-enclosed basins like, for example,
the Long Island Sound or in areas surrounded by land and islands like the Nantucket Sound
is one of this study’s goals. Besides, it has been documented that the compared observations’
spatial proximity plays a larger role than the temporal proximity [54, 67]. For the reader’s
convenience, we call the two buoys mentioned above as “sheltered”, the buoys which are
closer than 50 kilometers from land as “coastal”, and the ones with a distance over 50 kilo-
meters off the coast as “open ocean” buoys. The results presented in 4.6 are all statistically
significant, and the sample size of the collocated dataset is adequate for their interpretation.
We examined the option to increase the sampling radius around the open ocean buoys. Still,
we decided to be consistent with the coastal and sheltered buoys and compare them using
the correlation coefficient. The 30-minute time window was selected because the hourly
buoy WS and SWH datasets are used for the validation and also taking into account the buoy
reporting times described in 3.1.1.

The exact, great-circle distance given the buoys and the altimeter observations coordi-
nates were calculated using the haversine formula 3.1, where θ1, θ2 are the latitude and
φ1, φ2 are the longitude coordinates of the two locations in radians. The time difference
is calculated using the dates and times of the reported observations. Once the sampling
radius and time window limits are applied, the collocated dataset is created. The average
calculated distance is 7 kilometers. This distance is acceptable, especially when the altimeter
measurement principles and the effective footprint (2-7 kilometers depending on sea state)
is considered. By selecting a 10-kilometer radius, one or two collocated 1Hz altimeter obser-
vations correspond to every buoy value. In the case of two collocated altimeter observations,
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the first one is located north and the second south of the buoy’s location. The average of the
two values is calculated and then compared with a single buoy measurement.

D(θ, φ) = 2 · arcsin

(√
sin2

(
θ2 − θ1

2

)
+ cos θ1 · cos θ2 · sin2

(
φ2 − φ1

2

))
(3.1)

The comparison of the two datasets was performed with Ordinary least squares linear
regression. The slope and the intercept of the linear model fit are reported. Evaluation of the
comparison is realized by calculating commonly used pairwise metrics [26, 103] :

Bias =
1
N

N

∑
i=1

(Ai − Bi) (3.2)

RMSE =

√√√√ 1
N

N

∑
i=1

(Ai − Bi)
2 (3.3)

SI =

√
1
N ∑N

i=1 [(Ai − Ā)− (Bi − B̄)]2

B̄
(3.4)

R =
∑N

i=1 (Ai − Ā) (Bi − B̄)√
∑N

i=1 (Ai − Ā)
2
(Bi − B̄)2

(3.5)

Bias is used to assessing the systematic errors or differences between the two datasets,
RMSE is the Root Mean Square Error, SI is the scatter index and R is the Pearson’s Corre-
lation Coefficient. Ai are the altimeter values, Bi are the buoy values, Ā, B̄ represent their
corresponding mean values, and N is the collocated dataset sample size.

All calculations described above are computationally intensive due to the size of the
datasets. Python library NumPy [47] and its vectorized operations helped to efficiently
optimize all computations. Regression analysis was performed, and evaluation statistics
were calculated using the Python libraries Scikit-learn and SciPy [98, 100].

3.3 Variogram Modeling and Kriging Interpolation

Variogram modeling is defined by the variogram or semivariogram estimator function,
which describes a variable’s correlation in space. The variogram estimator is then crucial to
predicting a particular variable’s values at unobserved locations and obtain information on
these predictions’ accuracy.

The classical variogram estimator is:

γ(h) =
1

2N(h)

N(h)

∑
i=1

(z(xi)− z(xi + h))2 (3.6)

There are also other, more robust estimator functions that we can use like, for example,
the Cressie [18], the Dowd [25], or the Genton [35] estimators. This equation’s parameters
will be explained based on an example using satellite altimeter data on the SNE region for
the winter 2019 season. The variogram estimates (blue dots) and the corresponding model
(green line), which best fits the data, are presented in Figure 3.4.

First of all, z(xi) is the observed value at point x and z(xi + h) is the observed value at a
distance h from point x. This distance is called the lag interval. Lag intervals result from a
process called binning, in which we classify pairs of observations in groups based on their
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separation distance. Figure 3.4 shows five groups of multiples of the first lag distance of 0.4
degrees until a maximum lag distance of 2 degrees, which can be selected by the user. N(h) is
the number of observation pairs for each lag interval and is represented by the red histogram
bars. With this process, all pairs of observations are given specific values of semivariances
γ(h) on the y-axis. We use the term semivariance due to the pairs of point observations.
Hence, the semivariances represent variance per observation.

FIGURE 3.4: Variogram model for the satellite altimeter Hs data for the Winter
2019 season.

There are three fundamental parameters defined by the variogram. The first one is the
sill, a variance plateau that is reached with increasing lag intervals. The sill has a value
of approximately 0.11 in Figure 3.4. Specifically, it is called the partial sill in this example
because there is an additional nugget effect, the second fundamental parameter of the var-
iogram. The nugget can be observed as the y-intercept on the variogram (approximately
0.24 in Figure 3.4). It represents the minimum variance value, which exists even in zero lag
interval due to small scale variations that are not captured by the large lag intervals [97].
When the nugget effect is present, the full sill is equal to the partial sill with the nugget’s
addition. The third variogram parameter is the range, defined as the lag distance at which
the variogram reaches the sill or the partial sill if there is a nugget effect.

Once the variogram estimator function is defined, we can fit the variogram model. Cer-
tain functions can only be used as variogram models. The most commonly used is the
spherical model. Other models used to fit the variogram estimator function are the exponen-
tial, linear, Gaussian, and Matern models. Both Python libraries that were used in this study,
PyKrige [70] and SciKit GStat [63], provide multiple variogram estimators and models. The
evaluation of each combination is performed with metrics like the correlation coefficient and
RMSE and the variogram model visualization.

It is essential to mention that to perform kriging interpolation, we need to consider
that the observations have to be Gaussian distributed before modeling the variogram. The
variogram is sensitive to strong positive skewness resulting in higher semivariance values.
Hence, if the data distribution has a long tail to the right, it is common to transform it
into Gaussian using the Box-Cox transformation. An example is Figure 3.5A showing the
distribution of the altimeter Hs dataset for winter 2019. Figure 3.5B shows the distribution
after the Box-Cox transformation.
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FIGURE 3.5: A. The original altimeter Hs distribution for the Winter 2018
season and B. The transformed to normal distribution for the same dataset.

After transforming the data and modeling the variogram, we can interpolate the point
observations to a regular grid. There are several types of kriging interpolation, but the most
common and the one that is used herein is ordinary kriging of point observations. It is based
on the assumption that we do not know the variable mean. First, the weighted average
of neighboring observations is calculated to estimate a variable’s value in an unobserved
location.

ẑ(x0) =
N

∑
i=1

λiz(xi) (3.7)

λi are the kriging weights, and the condition that applies to them is that their sum should
be equal to 1 to ensure that the estimates are unbiased. The value at each grid point is
accompanied by a predicted error value or the kriging variance σ2(x0), and it is connected
both with the variogram and the kriging weights.

σ2(x0) = 2
N

∑
i=1

λiγ(xi, x0)−
N

∑
i=1

N

∑
j=1

λiλjγ(xi, xj) (3.8)

γ(xi, xj) is the semivariance between xi, xj and γ(xi, x0) is the semivariance between xi
and the point we want to estimate x0. The second condition that should be satisfied for
kriging interpolation is that the estimated weights have to minimize the variances on equa-
tion 3.8. This optimization is accomplished mathematically with the inclusion of Lagrange
multipliers. After the solution of a system of equations, we estimate the kriging weights.
Then, we estimate the variable values at the unobserved grid point locations using 3.7 and
the kriging variance for each grid point is calculated by:

σ2(x0) = 2
N

∑
i=1

λiγ(xi, x0) + ψ(x0) (3.9)

Finally, we need to emphasize the impact of the observations’ relative distance on weights.
First of all, nearby point observations to the unobserved locations have higher corresponding
values of weights. However, when these points are concentrated in specific areas, their
weights are lower with respect to those for isolated observations. Besides, increasing nugget
variance in the variogram means that the weights of nearby points become smaller.
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Chapter 4

Results

4.1 Wind and Wave Climatology of the SNE

The estimation of average atmospheric and marine conditions is fundamental, especially
when we initially encounter the domain of interest, and we seek to describe it in terms of
climatology. Identifying normal conditions is also the foundation of the study of extreme
events at a later stage. For these reasons, we need a reliable and long-term record of data. In
this chapter, we use the available buoy time series as described in Section 3.1.1 to provide an
update for the wind and wave climate and the 2007-2019 period.

4.1.1 Diurnal Variability

Offshore wind farms are designed relatively close to the coast, at a maximum distance of
60 kilometers, due to the lower installation costs. Therefore, the wind’s diurnal variability,
induced by phenomena like the land-sea breeze, has to be understood [9]. The 10-minute
average WS dataset is suggested to describe the variability [22] and all results presented in
this section were derived using NDBC buoys’ continuous winds dataset [71].

Statistics 44025 44017 44065 44020 NWPR1 44008

mean u10 (m/s) 9 9.18 8.51 8.2 4.83 9.09
max. u10 (m/s) 9.34 9.49 8.82 8.49 5.36 9.35
min. u10 (m/s) 8.48 8.77 7.93 7.8 4.48 8.84

time of max. u10 00:40 02:00 07:10 23:00 14:24 20:50
time of min. u10 15:30 13:50 13:40 13:40 06:00 10:10

u10 diur. range (m/s) 0.86 0.72 0.89 0.69 0.88 0.51

mean wind dir. (deg) 293.2 284.4 285.3 283.1 317.2 289.3
max. wind dir. (deg) 306.2 295.1 294.6 295.5 329.8 300.6
min. wind dir. (deg) 279.5 270.5 273 271.9 297.6 279.9

time of max. wind dir. 07:30 05:00 09:50 06:50 05:12 05:50
time of min. wind dir. 17:20 15:30 18:50 16:00 17:30 16:00

wind dir. diur. range (deg) 26.7 24.7 21.6 23.7 32.2 20.7

TABLE 4.1: NDBC Buoys & Station NWPR1 (Newport, RI) u10 and wind direc-
tion winter diurnal variability statistics including mean, minimum, maximum
values, the diurnal range and the times when the minimum and maximum

values are observed.

Since buoy time series are disseminated in UTC, first, we need to convert the time zone to
local US Eastern time. The advective effects become more substantial with closer proximity
to land. Thus, for this section, data from an additional meteorological station (NWPR1) at
Newport, Rhode Island (41.504◦N, 71.326◦W), are used to compare the diurnal variability
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in its location with the buoys’. This coastal station is maintained by NOAA and is located
on land. The anemometer height is 8.4 meters; hence, we need to make a small adjustment
to the reference height of 10 meters to compare with the buoys. The average u10 and wind
direction is calculated for the 2007-2019 period. The 10-minute average dataset is used for
the NDBC buoys and 6-minute average values for station NWPR1. We use the circular
mean [91], not the arithmetic mean for the wind direction calculations. Data are grouped in
mean values every 10 minutes for the buoys and every 6 minutes for station NWPR1 for the
winter and summer seasons separately. Then these grouped values are subtracted from the
24-hour, seasonal mean for each buoy and station. The final time series represent the diurnal
residuals. Figures 4.1, 4.2 show the diurnal residuals and their corresponding confidence
intervals. Tables 4.1, 4.2 provide a summary of the calculations for the winter and summer
seasons, including minimum and maximum values of the residuals and the times they occur
during the day. The u10, and wind direction diurnal range is the difference between the
reported minimum and maximum residuals and characterizes the diurnal variability for
each location. Figure 4.3 shows the diurnal range for all stations’ locations with respect to
their proximity to the coast.

Statistics 44025 44017 44065 44020 NWPR1 44008

mean u10 (m/s) 5.54 5.45 5.38 6.11 3.55 4.72
max. u10 (m/s) 6 5.81 6.35 6.65 5 4.83
min. u10 (m/s) 5.04 5.07 4.52 5.66 2.62 4.6

time of max. u10 20:30 18:00 18:20 17:30 15:18 14:30
time of min. u10 12:20 12:00 11:30 10:40 05:30 19:50

u10 diur. range (m/s) 0.96 0.74 1.83 0.99 2.39 0.23

mean wind dir. (deg) 208.1 221.7 206.6 215.7 222.4 202.5
max. wind dir. (deg) 261.8 252.8 270.5 246.6 303.1 216.7
min. wind dir. (deg) 186.8 203.5 178.2 190.3 209.4 190.7

time of max. wind dir. 08:00 06:20 07:20 08:10 06:12 04:20
time of min. wind dir. 17:50 15:20 15:00 15:50 21:12 20:40

wind dir. diur. range (deg) 75 49.3 92.3 56.3 93.6 25.9

TABLE 4.2: NDBC Buoys & Station NWPR1 (Newport, RI) u10 and wind di-
rection summer diurnal variability statistics including mean, minimum, max-
imum values, the diurnal range and the times when the minimum and maxi-

mum values are observed.

The results from station NWPR1 indicate a u10 diurnal range over 2m/s during the
summer months. This result is even more significant if we consider the WS’s low average
values at this location (3.55 m/s). During summer, the lowest WS values are observed in the
early morning hours (5:30 AM), and the maximum is reached in the afternoon (3:18 PM). The
winter minimum and maximum reported times are almost synchronous to the respective
during summer. The maximum wind intensity occurs one hour earlier during the winter.
The summer diurnal range is nearly three times more than the winter value, 2.39m/s, and
0.88m/s correspondingly. The wind gradually changes its direction from southwest to the
northwest at 6:12 PM, which almost coincides with the minimum WS. It then reverses back
to the southwest direction at noon and stays virtually constant until 2:00 AM. During winter,
the wind is coming mainly from the northwest, and the diurnal range is relatively small (32
degrees).
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FIGURE 4.1: NDBC Buoys & Station NWPR1 (Newport, RI) u10 diurnal cycle
for the winter and summer seasons.
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FIGURE 4.2: NDBC Buoys & Station NWPR1 (Newport, RI) wind direction
diurnal cycle for the winter and summer seasons.
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The diurnal cycles of the buoys located kilometers offshore reveal different attributes.
The western part of the region presents the highest diurnal range, specifically at the coastal
buoy 44065 location, 23 kilometers from the closest shore and southwest of Long Island.
Therefore, both the proximity to land and the topography surrounding each buoy’s location
has to be considered. As we move further off the coast and to the eastern part of the region,
the diurnal range differences for u10 and wind direction between summer and winter are
not as significant as for station NWPR1. The uncertainty of the estimations also becomes
higher. Besides, the WS diurnal cycle is not synchronous with the wind direction diurnal
cycle. Generally, the lowest WS values are identified between 10:30 AM and 12:30 PM during
the summer and the highest in the evening between 5:30 PM and 8:30 PM. On the other
hand, minimum WS values are found during winter between 1:30 PM and 3:30 PM and the
maximum in the early morning hours. There are also local wind speed maxima between
6:00 and 9:00 AM, which are apparent in Figures 4.1B and 4.1C. The diurnal range is more
extensive during summer, and it can reach up to 2m/s. Maximum WS values are observed
earlier at stations with closer proximity to the land. On the contrary, buoys’ winter diurnal
cycle is almost the reverse of the NWPR1 station. Specifically, buoys’ minimum WS values
are reported between 12:00 and 3:00 PM, the same hours of maximum WS observed on land.
In contrast, the wind direction’s diurnal cycle for each location coincides.

However, the above description does not include buoy 44008. Figures 4.1F and 4.2F
confirm that the advective effects do not appear to influence locations 100 kilometers off the
closest coast, where the diurnal range is almost negligible. Therefore, it may be concluded
that generally, the diurnal variability has to be considered at distances less than 40 kilometers
from the land. Still, it becomes weak at 100 kilometers or more offshore, especially on the
eastern side of SNE.

Finally, the diurnal variability of the wind does not affect the wave climate significantly.
The diurnal range of the SWH is in the order of centimeters (not shown here). Besides, we
did not identify any significant influence on the directional spectra’s diurnal variability for
buoy 44097.

FIGURE 4.3: NDBC Buoys and NWPR1 station wind speed and direction diur-
nal range with respect to their distance from the closest coast.
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4.1.2 Seasonal Variability

The seasonal variability of both the Hs and the u10 will be characterized in this study for
SNE, a North Atlantic coastal region, using buoy data. Young [104] documented the North
Atlantic wind and wave climate’s strong seasonal trends using altimeter data and numerical
models. He also emphasized that the extended NDBC buoy network is suitable for regional
studies.

Figure 4.4 shows the u10 seasonal variability for six of the available buoys, including the
daily mean values, their 25th, 75th percentiles, and a monthly lowpass filter to visualize the
seasonality. Both Figure 4.4 and the average u10 values available in tables 4.3, 4.4 display that
the seasonal variability ranges from 2m/s for the sheltered buoy 44020 to almost 4.5 m/s for
the open ocean buoy 44008. Figure 4.5 shows similar results for the Hs. Buoys 44020 and
44065 that are closer to the coast show almost zero seasonal variability. Buoy 44039, located
in the Long Island Sound, shows stronger seasonal variability with lower WS values on
average than buoy 44020, even if they have the same distance to the coast. On the contrary,
at over 100 kilometers from the coast, buoy 44008 presents a strong seasonal variability of
approximately 1.3 meters on average. This difference is only partly explained by the direct
influence of the wind on the sea surface. We show in 4.4 that the percentage of purely wind
waves at the buoy 44008 location is small, especially during the summer season, and the
opposite applies for the sheltered buoy 44020. Therefore, the strong seasonal variability in
the open ocean buoy’s location is also connected with the North Atlantic variability trend
described by Young. In contrast, buoy 44020 is located 13 kilometers from the closest coast,
where there is a low presence of swell waves due to topography. Finally, we can identify
local minima during the first days of December for both u10 and Hs (Figure 4.5F) and also
local Hs maxima between July and August.
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FIGURE 4.4: Buoy u10 seasonal variability
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FIGURE 4.5: Buoy Hs seasonal variability
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4.1.3 Interannual Variability

The interannual variability is essential for detecting anomalies, trends, and the representation
of climatic averages. Due to gaps in the buoy time series, months with less than 50% of data
availability were discarded.

FIGURE 4.6: Buoy 44039 u10 interannual variability including monthly mean
values, 25th and 75th percentiles, climatic average and monthly anomalies.

FIGURE 4.7: Buoy 44025 u10 interannual variability including monthly mean
values, 25th and 75th percentiles, climatic average and monthly anomalies.

Statistically significant trends were not identified for Hs and u10 both for the winter and
summer seasons. Two methods were used: linear regression analysis and calculating the
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regression slope and the Mann-Kendall and seasonal Mann-Kendall trend test [53].

FIGURE 4.8: Buoy 44020 u10 interannual variability including monthly mean
values, 25th and 75th percentiles, climatic average and monthly anomalies.

FIGURE 4.9: Buoy 44025 u10 interannual variability including monthly mean
values, 25th and 75th percentiles, climatic average and monthly anomalies.

Data gaps and the relatively small number of years with available data for almost all
stations were limiting factors to achieve statistical significance. For completeness, the in-
terannual variability of Hs and u10 for the buoys with small gaps in their time series are
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included in this section. In recent literature, data from long-term altimeter records and nu-
merical models are not indicating statistically significant trends on the Northeast Atlantic
coasts either [66, 95].

A feature that requires attention is the double peaks from late autumn to early spring,
especially when considering the Hs figures. For example, the double peaks in Figure 4.11 can
be assessed considering the monthly average wave spectrum of the same buoy in Figure 4.16.

FIGURE 4.10: Buoy 44017 u10 interannual variability including monthly mean
values, 25th and 75th percentiles, climatic average and monthly anomalies.

FIGURE 4.11: Buoy 44097 u10 interannual variability including monthly mean
values, 25th and 75th percentiles, climatic average and monthly anomalies.
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Specifically, double peaks appear regularly due to the southeastern swell system with the
highest energy in March and November combined with the sea states’ lower energy density
during February and secondarily January. However, there are not available wind data for
this station for further assessment. Judging from Figure 4.7, double peaks exist in the u10
winter monthly means. Multiple winter peaks also appear in the corresponding Hs Figure 4.9
for buoy 44025. Finally, the local Hs maxima during the summer months described in 4.1.2
is also present in the interannual variability figures and the monthly mean time series.

4.1.4 Wind and Wave Directional Distribution

The directional distribution of WS and SWH provides us with necessary information on
the origin of winds and waves and also their magnitude in each direction. For the WS, the
statistical distribution and visualization with a wind rose are adequate to assess the wind
direction regime. On the other hand, wave distribution also requires more elaborate analysis
due to multiple wave systems present.

The WS and SWH directional distribution tables and figures include only winter and
summer data, and the directional spectra include all available data for the 2007-2019 period.
Data from seven buoys were used for the analysis of joint WS and wind direction. Eight
buoys record both SWH and mean wave direction data, and they were used for the SWH
directional wave distribution. Six buoys are common for wind and wave analysis, buoy
44039 misses wave direction, and the two CDIP buoys (44097 and 44091) do not record
wind data. The eight main directions from where the wind and waves are coming from
were chosen, each with an angular window of 45 degrees. After grouping the data in these
directions, the frequency of occurrence, the u10, Hs average and standard deviation for each
direction separately, and including all of them collectively were calculated. The results are
presented in tables 4.3 - 4.6.

The buoy wind data exhibit homogeneous characteristics during the winter and summer
seasons. During winter, over 50% of the observations reveal a wind direction from the west
and northwest. The wind is also strongest from these directions. Buoy 44066, the most
remote of all stations and located at the western side of SNE, shows the highest average WS
values. The sheltered buoy 44020 reports the lowest wind intensity on average. The standard
deviation of the WS is highest from the northeastern direction. During summer, the wind
shifts to the south, with over 50% of observations showing wind direction from the west
and southwest for each station. The strongest winds during summer are coming from the
northeast, and the standard deviation is also higher for the northeastern winds. Buoy 44020
location is the one with the highest average WS value during summer, and it is expected
due to the low seasonal variability, as we previously showed in 4.1.2. The reverse is true for
buoy 44008, which has the lowest summer WS average, along with buoy 44039, due to high
seasonal variability.

In contrast, the waves are not as coherent with respect to their directional distribution,
especially during winter. Three parameters impose challenges to predict and characterize
the wave climate during winter; strong winds, more frequent low-pressure systems passing
over the region, and swell waves reaching SNE from distant North Atlantic storms. All
the above lead to the broader spreading of the sea state to more directions and dictate
the further investigation of the wave climate using the directional spectrum. Nevertheless,
during winter, the wind’s impact is most substantial to waves at the buoy 44020 location, to
which they are coming from the west and secondarily from the northwest. There is a small
influence of swell waves coming from the east in this location. During summer, waves are
more coherent, and their dominant directions for most stations are the south and southeast
for approximately 60% of the observations. The only exception is again buoy 44020, to where
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swells are coming from the east, and the wind waves follow the direction of the wind coming
from the southwest.

Buoy Statistics N NE E SE S SW W NW uni

Frequency (%) 11.3 7.43 6.15 4.48 8.52 13.83 20.92 27.37 100
44025 Average (m/s) 8.08 8.05 8.24 6.84 7.6 8.02 9.86 10.43 9

St. Dev. (m/s) 3.79 4.57 4.08 3.78 3.6 3.37 4.08 3.92 4.08

Frequency (%) 8.93 6.5 6.66 4.83 6.36 14.08 29.5 23.14 100
44017 Average (m/s) 8.1 8.81 9.19 7.29 7.87 8.54 10.17 9.56 9.18

St. Dev. (m/s) 4.05 4.99 4.13 3.38 3.71 3.53 3.94 3.65 3.98

Frequency (%) 9.6 7.67 5.24 3.28 10.25 12.9 26.03 25.02 100
44065 Average (m/s) 7.73 8.32 7.36 5.65 7.31 6.95 9.36 9.9 8.51

St. Dev. (m/s) 3.61 4.13 4.05 3.69 3.37 3.18 3.83 3.87 3.93

Frequency (%) 11 5.41 5.81 5.13 6.85 13.03 29.95 22.83 100
44020 Average (m/s) 8.04 8.11 8.08 6.64 6.88 7.13 8.63 9.12 8.2

St. Dev. (m/s) 4.18 4.98 4.01 3.56 3.69 3.13 3.75 3.61 3.86

Frequency (%) 11.16 6.91 6.67 6.91 8.13 13.37 21.63 25.22 100
44008 Average (m/s) 8.9 8.16 8.13 7.49 7.92 8.48 10.1 9.94 9.09

St. Dev. (m/s) 4.47 4.74 3.84 3.61 3.74 3.87 4.36 4.01 4.22

Frequency (%) 13.95 6.09 8.67 3.78 6.43 11.29 26.57 23.23 100
44039 Average (m/s) 6.82 6.47 7.22 5.5 5.31 6.24 8.32 8.39 7.38

St. Dev. (m/s) 3.2 3.4 3.8 3.48 3.37 3.07 3.59 3.34 3.57

Frequency (%) 10.77 7.24 5.35 4.81 7.34 13.94 22.47 28.07 100
44066 Average (m/s) 8.45 8.85 8.41 7.89 8.01 9.23 10.52 10.34 9.52

St. Dev. (m/s) 4.22 4.98 4.36 3.98 3.80 3.79 4.04 3.74 4.13

TABLE 4.3: Directional Distribution of winter u10 frequency, average and stan-
dard deviation using buoy data.

FIGURE 4.12: Buoy wind rose map for the winter season.
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Buoy Statistics N NE E SE S SW W NW uni

Frequency (%) 6.22 8.42 9.32 8.08 19.95 29.6 11.03 7.38 100
44025 Average (m/s) 5.3 6.25 5.6 4.54 5.62 5.93 4.81 5.22 5.54

St. Dev. (m/s) 2.82 3.19 2.85 2.3 2.38 2.41 2.15 3.84 2.6

Frequency (%) 5.11 7.27 7.67 7.36 14.28 37.35 13.57 7.39 100
44017 Average (m/s) 5.42 6.97 6.26 4.7 4.88 5.9 4.83 5.12 5.54

St. Dev. (m/s) 2.88 3.69 3.19 2.51 2.31 2.29 2.17 2.68 2.64

Frequency (%) 6.02 6.7 8.63 8.21 28.54 19.46 13.34 9.09 100
44065 Average (m/s) 5.21 5.98 5.77 4.6 6.04 4.96 4.55 5.41 5.38

St. Dev. (m/s) 2.71 3.03 2.8 2.24 2.49 2.14 2.12 2.71 2.53

Frequency (%) 7.22 9.22 8.77 7.11 15.68 35.88 10.63 5.49 100
44020 Average (m/s) 5.86 6.16 5.05 5.22 6.3 6.68 5.62 5.87 6.11

St. Dev. (m/s) 3 2.92 2,67 2.94 2.84 2.41 2.7 2.99 2.76

Frequency (%) 8.37 10.81 8.49 10.16 21.02 23.05 10.67 7.44 100
44008 Average (m/s) 4.93 5.6 4.71 4.31 4.62 4.77 4.29 4.61 4.73

St. Dev. (m/s) 2.82 2.98 2.69 2.34 2.24 2.14 2.15 2.63 2.46

Frequency (%) 8.14 5.98 12.35 6.77 18.45 22.91 17.35 8.05 100
44039 Average (m/s) 4.57 4.87 5.22 4.39 4.7 4.74 4.37 4.62 4.69

St. Dev. (m/s) 2.34 2.68 2.74 2.43 2.2 2.07 2.1 2.45 2.32

Frequency (%) 7.18 9.79 8.63 7.5 16.63 29.8 12.74 7.76 100
44066 Average (m/s) 6.05 6.55 5.55 4.9 5.51 6.24 5.02 5.16 5.74

St. Dev. (m/s) 3.34 3.21 3.06 2.58 2.46 2.47 2.34 2.81 2.75

TABLE 4.4: Directional Distribution of summer u10 frequency, average and
standard deviation using buoy data.

FIGURE 4.13: Buoy wind rose map for the summer season.
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Buoy Statistics N NE E SE S SW W NW uni

Frequency (%) 2.41 3.08 16.54 20.97 18.67 7.03 22.83 8.45 100
44025 Average (m) 1.24 1.24 1.59 1.42 1.53 1.33 1.65 1.46 1.51

St. Dev. (m) 0.77 0.85 1.04 0.94 0.76 0.66 0.71 0.67 0.84

Frequency (%) 1.95 3.56 14.44 22.09 22.84 24.56 5.87 4.7 100
44017 Average (m) 1.09 1.4 1.65 1.57 1.79 1.66 1.36 1.3 1.61

St. Dev. (m) 0.48 0.81 0.98 1 0.88 0.77 0.68 0.54 0.88

Frequency (%) 1.82 0.84 18.88 30.98 20.35 1.79 7.9 17.45 100
44065 Average (m) 0.88 0.81 1.28 1.11 1.1 0.8 1.13 1.07 1.12

St. Dev. (m) 0.5 0.47 0.81 0.68 0.54 0.43 0.48 0.43 0.63

Frequency (%) 6.81 6.74 20.71 4.3 4.69 6.23 37.23 13.29 100
44020 Average (m) 0.78 0.86 0.57 0.63 0.61 0.56 0.72 0.76 0.69

St. Dev. (m) 0.46 0.57 0.33 0.36 0.31 0.24 0.32 0.38 0.37

Frequency (%) 7.01 9.5 12.98 9.5 19.25 19.14 16.29 6.34 100
44008 Average (m) 2.13 2.36 2.11 1.88 2.65 2.46 2.5 2.46 2.37

St. Dev. (m) 1.18 1.49 1.23 1.18 1.39 1.18 1.15 1.28 1.28

Frequency (%) 4.99 3.18 4.5 18.76 22.31 21.05 17.16 8.05 100
44097 Average (m) 1.46 1.73 1.73 1.46 1.83 1.99 1.87 1.69 1.76

St. Dev. (m) 0.76 0.94 0.93 0.88 1.06 1.01 0.82 0.72 0.95

Frequency (%) 11.23 4.2 27.32 20.78 20.14 4.88 5.01 6.44 100
44091 Average (m) 1.29 1.63 1.52 1.24 1.45 1.18 1.43 1.43 1.4

St. Dev. (m) 0.56 1.02 1.01 0.65 0.61 0.47 0.51 0.54 0.76

Frequency (%) 5.37 5.88 18.17 13.37 17.21 8.08 11.45 20.48 100
44066 Average (m) 1.62 2.57 1.75 1.55 2 1.97 2.23 2.05 1.94

St. Dev. (m) 0.99 1.79 1.06 1 1.06 0.9 1.06 0.99 1.11

TABLE 4.5: Directional Distribution of winter Hs frequency, average and stan-
dard deviation for NDBC Buoys and Stations

FIGURE 4.14: Winter wave rose map for NDBC buoys
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Buoy Statistics N NE E SE S SW W NW uni

Frequency (%) 0.59 1.84 16.35 34.47 37.19 7.25 1.62 0.69 100
44025 Average (m) 0.93 1.1 1.05 0.87 1.02 0.99 0.89 0.88 0.97

St. Dev. (m) 0.26 0.42 0.52 0.4 0.38 0.35 0.29 0.29 0.41

Frequency (%) 0.31 1.88 12.65 32.94 39.49 11.9 0.57 0.27 100
44017 Average (m) 0.87 1.23 0.98 0.9 1.05 0.99 0.77 0.88 0.99

St. Dev. (m) 0.31 0.46 0.43 0.42 0.43 0.34 0.24 0.23 0.42

Frequency (%) 0.3 0.48 15.23 43.98 37.35 1.17 0.27 1.22 100
44065 Average (m) 0.75 0.72 0.91 0.78 0.87 0.82 0.73 0.75 0.83

St. Dev. (m) 0.18 0.26 0.41 0.34 0.34 0.36 0.39 0.21 0.36

Frequency (%) 7.91 9.4 20.32 8.05 11.11 18.31 17.81 7.08 100
44020 Average (m) 0.44 0.56 0.4 0.44 0.47 0.46 0.46 0.43 0.45

St. Dev. (m) 0.21 0.3 0.18 0.23 0.19 0.16 0.16 0.18 0.2

Frequency (%) 1.37 4.54 17.93 24.02 34.62 14.45 2.78 0.29 100
44008 Average (m) 1.23 1.35 1.08 0.97 1.21 1.25 1.06 1.1 1.14

St. Dev. (m) 0.43 0.62 0.5 0.45 0.53 0.6 0.35 0.4 0.53

Frequency (%) 0.57 1.51 2.57 28 38.6 23.88 4.23 0.64 100
44097 Average (m) 1.09 1.19 1.17 0.86 0.98 1.16 1.01 0.96 1

St. Dev. (m) 0.33 0.3 0.51 0.38 0.39 0.53 0.35 0.29 0.44

Frequency (%) 1.78 1.78 26.02 29.97 36.51 3.16 0.13 0.65 100
44091 Average (m) 0.97 1.35 1.05 0.88 1.01 0.91 1.07 0.97 0.99

St. Dev. (m) 0.56 1.02 1.01 0.65 0.61 0.47 0.51 0.54 0.76

Frequency (%) 1.07 3.18 17.81 27.61 31.59 14.79 1.66 2.29 100
44066 Average (m) 1.08 1.44 1.12 0.84 1.13 1.11 1 1.21 1.05

St. Dev. (m) 0.32 0.56 0.49 0.37 0.35 0.26 0.39 0.28 0.4

TABLE 4.6: Directional Distribution of summer Hs frequency, average and
standard deviation for NDBC Buoys and Stations

FIGURE 4.15: Summer wave rose map for NDBC buoys and Stations
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The wave directional spectra reveal even more detailed characteristics of the wave cli-
mate. Specifically, Figure 4.16 shows the buoy 44097 monthly average wave elevation vari-
ance density, or energy density as it is commonly referenced, for all direction and frequency
bands. This station’s selection was made because it is located inside the SNE offshore wind
projected area and our main domain of interest.

FIGURE 4.16: Buoy 44097 monthly average wave variance (energy) density for
the 2009-2019 period.

Three main wave systems can be identified with distinct directions, periods, and devel-
opment of their variance density throughout the year. The first one is a wind wave system,
judging from its direction and range of periods. This wave system propagates its energy
from the southwest with average periods of between 6 to 8 seconds, and it is evolving from
October to April, with a peak in January. Starting from May and during the summer months,
this system shifts its direction to southern with noticeably lower energy. The second system
is a mixed swell-wind wave system that propagates from the south. It is evolving from
November until April with maximum variance density in December and April. The third
one is a swell system with a 10 to 15 seconds period range propagating from the southeast.
This system is strongest in March and November, but it shows considerable energy from
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September to April. Besides, all three main systems are present from November until March
with distinct levels of variance density. Finally, the southern wave direction during sum-
mer, evident in Figure 4.15, is caused mainly by the southern swell with the highest energy
density during August, with periods close to 15 seconds.

4.2 Wind Speed Probability Density Functions

The process of fitting to the theoretical probability functions and the estimation of the corre-
sponding parameters was described in 2.5. The initial assessment and comparison between
the SciPy extended library of PDFs is not included in this section. Only the estimated param-
eters, statistics, and figures of the four best fitted PDFs to each boy’s data are included. The
evaluation of the fitting is performed with the Kolmogorov-Smirnov (K-S) goodness-of-fit
test and the calculation of the K-S error, which represents the deviation of the empirical Cu-
mulative Distribution Function (CDF) to the theoretical. The distribution with the smallest
K-S error value is often proposed as the best fit. For further assessment, the probability plots
for each buoy and each of the four proposed PDFs are also added, including the coefficient
of determination (R2).

All calculations were performed to WS data from four selected buoys with a distance
less than 50 kilometers from the coast. First, a table including the estimated PDF parameters
are presented for each buoy’s time series and all four distributions. The four distributions
included are the ones with the smallest K-S error among the 90 distributions available in the
SciPy library. Finally, Figure 4.21 contains all empirical PDFs that fit best to the buoys’ data
and also the u10 histograms.

Based on the K-S error values in Table 4.7 and the coefficients of determination on the
probability plots, the distributions that best fit the data are the Beta and Johnson SB for the
coastal buoys 44025, 44017, and 44065, which are located between 20 and 40 kilometers off
the coast. For the sheltered buoy 44020, the Weibull 3P distribution is accepted as the best to
describe the long-term u10 distribution.

Buoy PDF shape α shape β location γ scale η K-S error

44025

Johnson SB 1.45889 1.51276 -1.36785 29.55943 0.00855
Beta 2.70274 7.88593 -0.23496 29.49847 0.00861

Weibull 3P 2.02042 - 0.01575 8.21624 0.01256
Rayleigh 2 - 0.04085 5.78170 0.01034

44017

Johnson SB 1.26469 1.39953 -1.02751 27.13660 0.00870
Beta 2.50125 6.73867 -0.08808 27.31905 0.00892

Weibull 3P 2.00142 - 0.05729 8.18246 0.01318
Rayleigh 2 - 0.05897 5.78394 0.01301

44065

Johnson SB 1.45918 1.52591 -1.34807 28.62410 0.01001
Beta 2.70918 7.70465 -0.21269 28.02316 0.00808

Weibull 3P 2.03604 - 0.02152 7.96683 0.01285
Rayleigh 2 - 0.06330 5.58648 0.01106

44020

Johnson SB 1.69612 1.78309 -2.17746 32.48900 0.01429
Beta 3.44047 10.4444 -0.64746 32.00931 0.01364

Weibull 3P 2.16096 - -0.04203 8.27184 0.01086
Rayleigh 2 - 0.12833 5.65487 0.03053

TABLE 4.7: u10 Probability Density Function parameter and K-S error statistics.
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FIGURE 4.17: Buoy 44025 u10 probability plots and the corresponding coeffi-
cient of determination for each PDF.

FIGURE 4.18: Buoy 44017 u10 probability plots and the corresponding coeffi-
cient of determination for each PDF.
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FIGURE 4.19: Buoy 44065 u10 probability plots and the corresponding coeffi-
cient of determination for each PDF.

FIGURE 4.20: Buoy 44020 u10 probability plots and the corresponding coeffi-
cient of determination for each PDF.
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FIGURE 4.21: u10 histograms and the four PDFs that provide the best fit to the
buoy data.
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4.3 Wind Speed and Wave Height Relationships

The theoretical formulas which connect u10 with Hs are available in 2.4. In this study, the
wind-wave relationships are estimated using a second-degree polynomial regression fitting
of the SWH to the u10 adjusted values. Previous studies, dedicated to the East Coast of
the United States, use more sophisticated methods [4]. This study attempts to integrate
and interpret the difference between the wind-wave relationships depending on the wind
direction for every location. Specifically, the eight major directions, each with an angular
window of 45 degrees, are used. All figures include the sample size and the estimated
coefficients of the fitted line.

FIGURE 4.22: Buoy 44020 wind wave relationships for each of the main wind
directions and for all directions combined (E).

Figure 4.22 indicates the strength of the relationship. The sheltered buoy 44020 is sur-
rounded by the southeastern Massachusetts and the Martha’s Vineyard, Nantucket islands.
The only opening for the entrance of swell waves in the region is from the east. Hence,
wind waves dominate the region throughout the year. The relationships fit exceptionally
the data with a minimal number of outliers. Even the highest waves that are coming from
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the northeast and north directions are well-captured by such relationships. Generally, the
coefficients are consistent for every wind direction, except for the west, north, and northeast
directions, where the second coefficient is zero. The small intercept is an indication of the
minimal influence of swells in the region.

FIGURE 4.23: Buoy 44065 wind wave relationships for each of the main wind
directions and for all directions combined (E).

On the contrary, this is not the case for the open-ocean buoy 44008, as it is located in
a swell-dominated region, although its distance from the sheltered buoy is just 50 kilome-
ters approximately. The range of the Hs values is substantial, even for low wind speeds,
increasing the uncertainty of its estimation when only the u10 is given. The coefficients also
vary depending on the wind direction. In directions with higher wind speeds and potential
for producing higher sea states, the coefficients tend to be larger, as the northeast and east
directions. Besides, an interesting feature of the coastal buoy relationships is that when the
wind is aligned with the swell direction (from the east to the south), the second coefficient is
significantly larger, almost ten times the same coefficients of the relationships for the western
wind direction, which is the most common for every location in SNE throughout the year.
The above means that on conditions of very light winds speeds (0-5 m/s), the Hs becomes



54 Chapter 4. Results

smaller with increasing wind speed. This feature is not present in the sheltered buoy rela-
tionship. We may connect this behavior with the upward momentum transfer described in
[42], but it requires further investigation.

FIGURE 4.24: Buoy 44017 wind wave relationships for each of the main wind
directions and for all directions combined (E).

Finally, Figure 4.27 shows a comparison of the estimated relationships for the whole time
series record of each buoy. The increasing curvature of the lines of best fit with increasing
distance from the coast is expected. It is also worth mentioning that the adjacent coastal
buoys 44025 and 44017 located south of the Long Island Sound show almost identical rela-
tionships. Again, it is necessary to highlight the increased uncertainty of the relationships
and their reduced capability to describe them in highly swell-influenced regions accurately.
The latter leads us to investigate the wind-wave interactions with respect to waves’ growth
stage in the next section.
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FIGURE 4.25: Buoy 44025 wind wave relationships for each of the main wind
directions and for all directions combined (E).
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FIGURE 4.26: Buoy 44008 wind wave relationships for each of the main wind
directions and for all directions combined (E).
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FIGURE 4.27: A comparison of the wind-wave relationships for the NDBC
Buoys.
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4.4 Classification of ocean waves based on their inverse wave age

The theoretical basis of the inverse wave age criterion is explained in 2.2. The results pre-
sented in this section are based on the inverse wave age histograms for each buoy. Three
figures are included: one for the whole datasets and two representing the inverse wave age
distribution during the winter and summer seasons respectively. The estimated probabilities
of occurrence for wind waves, mixed sea state, and swells are reported in Table 4.8.

Buoy
Summer Winter All

Wind Swell Mixed Wind Swell Mixed Wind Swell Mixed

44020 0.647 0.215 0.139 0.774 0.130 0.096 0.717 0.162 0.121
44065 0.129 0.483 0.387 0.382 0.444 0.173 0.247 0.474 0.279
44017 0.142 0.464 0.394 0.323 0.416 0.261 0.226 0.455 0.319
44025 0.149 0.457 0.393 0.446 0.354 0.201 0.284 0.413 0.302
44008 0.044 0.485 0.470 0.225 0.363 0.412 0.132 0.429 0.439
44066 0.163 0.424 0.413 0.433 0.290 0.276 0.280 0.368 0.352

TABLE 4.8: Frequency of occurence of wind-sea, swell and mixed sea state for
NDBC buoys using the inverse wave age classification for winter, summer and

all seasons.

Generally, the inverse wave age distributions are bimodal. The first peak represents the
mixed sea states and swells, and the second peak, the wind waves. The figures include a
vertical dashed line that represents the wind-wave equilibrium. Sea states with an inverse
wave over 0.83 are characterized as purely wind waves, although this is not a hard limit.
Besides, an empirical limit for swell dominated sea states is an inverse wave age equal to
0.15. Waves with an inverse wave age between the two limits are categorized as mixed, and
they are influenced both by wind-waves and swell. It is worth mentioning that the inverse
wave age represents deep water waves at the peak, not the whole wave spectrum.

A general trend is that the second peak, which represents the wind waves, does not
appear during the summer, except for the sheltered buoy 44020. The latter indicates again
that swell’s influence in this location is not significant with respect to the coastal and open
ocean buoys. The bimodal distribution retains its characteristics during the summer with
higher wind waves and lower probability of mixed/swell waves. During winter, almost
80% of the waves are purely influenced by the wind in this location. This result is connected
with the low WS seasonal variability in Figure 4.5B. The above does not apply to the coastal
buoys and the open ocean buoy 44066. Figures 4.30B,C,D,F show clear peaks after the wind-
wave equilibrium during the winter, when the influence of the wind is most substantial due
to the high values of u10. However, the second peak ceases to appear during the summer
distributions in Figure 4.29, and at the same time, the mixed/swell probability density peaks
almost double their value. The western part of the region is significantly influenced by the
wind, especially during winter, when the wind-waves’ probability is nearly as high as the
probability of swell/mixed seas. For buoy 44025, purely wind waves are developing three
times less during the summer than the winter, when the probability density peak is higher
than the swell/mixed.

For the open ocean buoy 44008, the inverse wave age distribution appears to have a single
peak throughout the year. During the winter, this peak has a lower probability density, and
the distribution is more spread to a broader range of inverse wave age values. In contrast,
over 95% of the waves are characterized as mixed or swell based on the inverse wave age
classification during summer. Consequently, the wind waves’ influence during the summer
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is minimal for the eastern part of SNE and at a distance over 100 kilometers from the closest
coast.
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FIGURE 4.28: NDBC buoys Inverse Wave Age distribution.
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FIGURE 4.29: NDBC buoys summer Inverse Wave Age distribution.
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FIGURE 4.30: NDBC buoys winter Inverse Wave Age distribution.
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4.5 A case study of extreme events

In the previous sections, the focus was on the normal wind-wave conditions. On the other
hand, extreme winds and waves are often described by values at the upper tail of the u10
and Hs probability density functions. The study of extreme events is essential and precedes
the offshore wind farms’ design and construction to assess the wind turbine fatigue loads.
This section aims to describe the wind and wave mechanisms underlying the development
of the most frequent extreme events in SNE, the extratropical storms, or Nor’easters, defined
in 1.2.

FIGURE 4.31: Time series of the main wind and wave parameters measured
by buoy 44017 during October 27 and 28, 2018 describing the passing of the

Nor’easter.

The time series of the wind and wave parameters measured by buoy 44017 in Figure 4.31
shows the development of the Nor’easter storm that passed from SNE on October 27, 2018,
bringing extreme waves and coastal flooding. In the early morning hours of October 27,
light winds and calm sea states are present before the storm’s passing. Wind and waves
are coming from the same, east-southeast direction. As the wind increases its intensity, the
waves’ Hs and Tp also progressively increase. The WS reaches its maximum at around 3:00
PM, while the sea state becomes roughest with a three-hour lag at 6:00 PM.
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FIGURE 4.32: Surface analysis maps before (upper panel), during (center
panel) and after (bottom panel) the passing of the October 27, 2018 Nor’easter

from SNE. Derived from: WPC’s Surface Analysis Archive
.

https://www.wpc.ncep.noaa.gov/archives/web_pages/sfc/sfc_archive.php
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FIGURE 4.33: Buoy 44097 directional wave spectra before (upper figure), dur-
ing (center figure) and after (bottom figure) the passing of the October 27,
20018 Nor’easter over SNE. Values represent the energy density logarithm for

better visualization.

At 6:00 PM, the wind also starts to shift its direction to the south while the wind intensity
decreases to a minimum at 9:00 PM. The combination of the WS decrease and the shift of the
wind’s direction is critical for developing a local south-southwestern swell system. From this
point on, wind and waves are coming from different directions. Considering the dominant
period, it passes the crude 10-seconds wind-wave threshold simultaneously to the WS’s
minimum. If we also look at the inverse wave age time series, the sea state becomes mixed
at the same time when the SWH peak occurs and becomes swell-dominated between 5:00 to
6:00 AM of October 28. The wind, which started to increase again on October 27 at 9:00 PM,
reaches a second but lower maximum and remains almost constant from the early hours of
October 28 and throughout the day. The waves remain substantially high (over 4 meters)
until noon on October 28, but they are gradually losing their energy.
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FIGURE 4.34: Spectral partitioning of the buoy 44097 directional wave spec-
tra before (upper figure), during (center figure) and after (bottom figure) the

passing of the October 27, 2018 Nor’easter over SNE.
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Figure 4.32 includes the surface analysis maps from the Weather Prediction Center’s
(WPC) archive before, during, and after the passing of the Nor’easter from SNE. For a more
detailed analysis, we provide the buoy 44097 directional spectra. Figure 4.33 includes three
snapshots of the storm development based on buoy observations, almost coinciding with
the surface analysis maps. The upper figure at 11:44 AM shows a single wind-wave system
with relatively small but increasing elevation variance density and a dominant period of
7-8 seconds. After the wind direction shift at 9:44 PM, we can distinguish the split in two
separate systems, the wind-wave, and the south-southeast swell, with an 11 to 12 seconds
period. After nine hours, only the swell system is still present. Figure 4.34 is an even
more realistic representation of the sea state and the result of spectral partitioning of the
aforementioned directional spectra described in 2.2. The blue color represents wind-waves,
green is for the first swell system, and the noise, the spectral domain where zero energy is
observed, is the white part of the directional wave spectra. In the upper figure, the wind-
wave system with low elevation variance density is only observed. At 9:44 PM, the swell
system has already been generated by the shift in the wind direction, and we can identify
the two separated peaks. This snapshot is an example of a mixed sea state when the highest
peak represents the swell and the lowest the wind-wave. The latter gradually loses its energy,
and in the early morning hours of October 28 (lower figure), the swell system is dominant
but with decreased elevation variance density.
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——————-

4.6 Validation of Altimeter WS and SWH observations in the SNE
region

A description of the inherent challenges of validating satellite altimeter observations with
ground truth stations is available in Section 3.2. Sensors onboard buoys and altimeters are
sensitive to errors. However, even if we considered their measurements perfect, deviations
would still exist on the match-up observations due to the spatial and temporal sampling
and representation differences based on each measurement system’s principles. The results
presented in this section aim to quantify how well altimeters match buoy observations on a
regional level.

FIGURE 4.35: Altimeter tracks during January 2020 over SNE, including the
buoys’ locations and the collocated WS observations.

Figure 4.35 shows the altimeters tracks and WS observations over SNE during a spe-
cific cycle or subcycle in January 2020. Sentinel 3 A and B tracks are included in the same
Figure 4.35C, and their combined dataset was used in the calculations because they are con-
sidered as the same mission with identical sensors. In the same Figure, the buoys’ locations
are depicted with triangles. The collocated observations are represented by colored trian-
gles, whereas the buoys that do not match with the altimeters during their specific cycle or
subcycle are left empty. This process described in 3.2 was performed iteratively for multiple
years, depending on the altimeters’ data availability. The final collocated dataset contains
both buoy and altimeter observations that were matched in space and time. Its sample size
is expected to be relatively small, considering the range of the altimeter cycles (10 to 35 days)
and the small sampling radius required in a coastal region.
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FIGURE 4.36: Comparison of SWH between altimeter and in-situ observations.

FIGURE 4.37: Correlation coefficient map between altimeter and buoy SWH
collocated data.
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FIGURE 4.38: Comparison of WS between altimeter and in-situ observations.

FIGURE 4.39: Correlation coefficient map between altimeter and buoy WS
collocated data.

The collocated dataset’s WS and SWH comparison and also the evaluation statistics
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are shown in Figures 4.36, 4.38. It is evident that due to the different number of buoys
with available WS and SWH, the corresponding comparisons result from larger sample
sizes for the SWH. The evaluation metrics and the slope of the regression line show that
SARAL-AltiKa has the best overall agreement with the buoys. Although there are a few
outliers, they do not significantly influence the close approximation to the buoys’ ground
truth values. The uncertainty is very low even for SWH values lower than 1 meter, which
has been documented as a challenge due to the difficulty in estimating the leading edge
slope in low sea states and a general limitation of the satellite altimetry [6]. A root mean
squared error (RMSE) of 13 centimeters, a scatter index (SI) of almost 11%, and a correlation
coefficient of 0.985 emphasize these results. Sentinel 3 also matches the buoy measurements
with a zero average bias, which could also be attributed to the small sample size. Despite
the small bias and the high correlation, Jason 3 shows the largest RMSE. This result can be
attributed to the considerable number of match-up observations representing SWH over 3
and up to 5 meters. Cryosat 2, which utilizes the oldest technology of the current altimeters,
also shows a good agreement with the buoys regarding their correlation and the small bias.
Still, it has the highest number of outliers reflected on the SI (16%) and RMSE (19.8 cm).
Figure 4.37 confirms the assumption that the agreement between the buoy and altimeter
observations is worse at locations with proximity to the land due to the challenges of coastal
altimetry described in 2.6. Generally, the agreement is exceptional in terms of correlation
statistics, as the SWH correlation coefficient is well over 0.9 in almost every location. The
highest correlation coefficient was calculated for the open ocean buoy 44008 and the lowest
for the sheltered buoy 44020, located in the Nantucket Sound.

The WS comparison is more challenging, primarily due to the smaller sample size of
the collocated dataset. Except for the lower number of stations with available wind data
(7), the WS times series also contain more gaps than the SWH. The agreement in terms of
statistics is best for Jason 3, but all collocated observations are located in a specific region
surrounding the open ocean buoy 44066. On the other hand, SARAL-AltiKa has the largest
sample size and collocated measurements at almost every buoy location. The statistics show
good agreement with the buoy data with a minimal overall bias (0.053m/s). The comparison
of Sentinel 3 with the buoys is sensitive to outliers due to the small collocated sample size,
and it has the lowest correlation coefficient among all altimeters. Still, the RMSE (1.256m/s)
and the bias (0.113m/s) are small and comparable to the values in the performance reports
disseminated after every completed cycle. The worst performance belongs to Cryosat 2
with substantial bias (higher than 0.5m/s). However, the statistics are comparable with the
target accuracy of 0.5m/s bias and 2m/s RMSE of the WS estimation from scatterometers [34].
Figure 4.38C shows an apparent underestimation of low WS (0-10m/s) and an overestimation
of the higher WS values (10-20m/s), although the sample size is not as large for the higher
WS. Figure 4.39 shows that for the WS, the location with the best agreement with altimeter
data in terms of the correlation coefficient is the open ocean buoy 44066 (higher than 0.95),
and the worst is the sheltered buoy 44039 (almost 0.9) located in the Long Island Sound.

Considering the expected differences [67] and results from similar studies [88, 103], al-
timeter SWH is consistent with the buoy observations. The comparison also showcases the
strength of SARAL-AltiKa in coastal regions due to its higher resolution and lower noise
in the observations [6, 10]. Validation of altimeter WS with the available buoys in SNE is
more challenging due to the relatively small sample size and the sampling radius. However,
the overall statistics show good agreement between the two data sources. Although studies
related to the altimeter WS algorithms [1, 41, 57] define the ocean surface WS as the WS
at 10 meters height, the buoy measurements were not adjusted. The adjustment, assuming
neutral boundary layer stability, induced systematic biases, and worse overall performance
regarding the statistics.

——————-
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4.7 Wind and Wave maps based on satellite altimeter data

In the previous section, we evaluated each altimeter’s performance with respect to in situ
observations and their collective dataset with increasing distance to the coast. This section
attempts to utilize altimeter data and the methodology described in 3.3 to create maps of the
surface WS and the SWH in the SNE region for the winter and summer seasons. One goal
is to estimate the WS and SWH in unobserved locations by interpolating the altimeter ob-
servations to a regular grid. The selected 0.125◦ × 0.125◦ grid is consistent with the distance
between altimeter observations on each track (6-7 kilometers) and the altimeter’s effective
footprint (2-7 kilometers). We selected data from 2019 primarily because it is the first year
with data available from all five altimeters, Jason 3, Sentinel 3 A and B, SARAL-AltiKa, and
Cryosat 2. Therefore, we filled spatial gaps by adding as many neighboring observations
as possible. One disadvantage of the buoys’ fixed point locations is that we cannot make
assumptions of the geophysical parameters’ transition between each station or how the ob-
servations are correlated from point location to another. It is neither feasible to have a dense
network of in situ stations. Besides, only CDIP buoy 44097 is located inside the offshore
wind projected areas. Thus, one of the benefits of this section’s results is deducing the WS
and SWH gradient from the interpolated maps and its uncertainty.

Figure 4.40 is the map of the interpolated WS altimeter observations for the winter (A)
and the summer (B) seasons. Grey contour lines have been added to distinguish areas with
a 0.5m/s difference, primarily due to the significant WS gradient during winter. Generally,
WS increases with increasing distance to the coast due to the sea surface’s lower roughness
length and the land’s decreasing influence on the transition from a coastal area to the open
ocean. Besides, we showed in 4.1.1 and 4.1.2 that SNE is characterized by substantial seasonal
variability, especially in the open ocean where the difference of the average WS between the
summer and winter seasons is over 4m/s. The WS maps show general agreement with
this result as most areas present significant seasonal differences. This feature is critical for
offshore wind energy because the wind turbines start operating at a cut-in WS of 3-4 m/s, and
their rated WS of maximum capacity is between 11 and 16 m/s. However, the altimeter WS
maps represent interpolated surface WS values, and the WS values are expected to be higher
at the turbine height. The WS maps indicate values between 4 to 6 m/s for the summer
and 6 to 10 m/s for the winter season, respectively. During summer 2019, coastal areas
and the northeastern part of the region showed the lowest WS values, and the area between
39◦− 39.5◦N and 72.5◦− 71.5◦W the highest. The region of peak WS during winter is at 40◦N
and 70.5◦W. There are also two high WS regions, one south of the eastern Long Island and the
other north of Cape Cod, MA. The lowest WS can be identified close to the New Jersey shores
and the Massachusetts Bay and Boston area. The notable WS gradient could be attributed
to the local phenomena present during winter and described in 1.2. The case study of an
extreme event in 4.5 also showed that the WS is at its highest during the passing of storms.
Therefore, when altimeters capture several extreme events, our estimations are sensitive to
extreme WS values. The opposite applies if altimeters miss the passing of the storms. On
the contrary, slow-moving, high-pressure systems are mostly present during summer over
SNE, decreasing the variability between consecutive altimeter tracks. On average, there are
two altimeter tracks available every day over SNE. Still, these tracks represent the satellites’
passing over specific regions each time, and they do not cover the whole domain. Therefore,
our estimations have spatial and temporal limitations.

Figure 4.41 contains the interpolated SWH maps for the 2019 winter (A) and summer
(B) seasons. Figure 4.5 showed that generally, there is strong SWH seasonal variability in
the region, especially in the open ocean and as we move further offshore. However, the
seasonal variability is almost insignificant in areas surrounded by land or islands like the
Nantucket sound, mainly due to the relatively low WS seasonal variability and the small
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percentage of swell waves reaching the domain. Therefore, the higher gradients of SWH
during the winter that are depicted in Figure 4.41A with respect to Figure 4.41B are expected.
On average, SWH ranges from 1 meter close to the coast to over 2 meters in distances over 100
kilometers offshore during the winter. During summer, SWH is low in the coastal area north
of Cape Cod Bay, and the highest values are estimated at approximately 70◦W and 39◦N,
the same region of peak SWH during winter 2019. Based on the climatological averages
available in Tables 4.5 4.6 and the interannual variability Figure 4.8, the interpolation maps
overestimate the SWH very close to the coast and in areas where the influence of swell waves
is minimized. This result depicts one of the disadvantages of the kriging methodology and
interpolation in general. Kriging provides the best linear unbiased prediction based on the
modeled variogram. Still, the topography’s constraints and, consequently, the coastal wave
dynamics in a semi-enclosed area or inside a sound are not considered for the estimations.
Therefore, they are biased with substantial deviations from the expected values.

FIGURE 4.40: Surface WS kriging interpolation maps of altimeter data for the
2019 winter (A) and summer (B) seasons.

FIGURE 4.41: SWH kriging interpolation maps of altimeter data for the 2019
winter (A) and summer (B) seasons.

There are several types of errors associated with the interpolated WS and SWH maps.
First of all, as explained in 3.3, one of the advantages of kriging is that for every estimated
value at each grid point, we also estimate the corresponding kriging variance. The variance’s
square root is the kriging standard error, and it represents the uncertainty of the kriging
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interpolation. Figure 4.42 showcases the improvement of the SWH kriging standard error for
the winter 2019 season once we include from only one to all five altimeters. The interpolation
error becomes smaller even in locations with very few observations, like the southwest and
close to the coast, and almost homogeneous to the whole domain when including data from
all altimeters. The kriging standard error is smaller than the real estimation errors because
other inherent sources of uncertainty are not considered. The second type of error is asso-
ciated with the initial estimation of the Level 2 altimeter data. Specifically, every altimeter
parameter that is derived from the retracking as explained in 2.6 has a corresponding error
which is not included in the interpolation.

FIGURE 4.42: SWH kriging standard error maps for the 2019 winter using data
from (A) Jason 3, (B) Jason 3 and SARAL-AltiKa, (C) Jason 3, SARAL-AltiKa

and Sentinel 3 and (D) all altimeters.

The diurnal sampling bias [2, 9] also needs to be considered, especially for the WS and
consequently, offshore wind energy estimation. In Section 4.1.1, we showed that there is
substantial diurnal variability in locations with a distance less than 40 kilometers from the
closest coast, based on observations from buoys, which record the WS every 10 minutes. In
contrast, satellites generally pass over a region at specific hours during the day. Three of
the five altimeters used in this study, SARAL-Altika, Sentinel 3 A and B, pass over SNE at
certain hours. These are the hours of the ascending and the descending tracks. Specifically,
SARAL-AltiKa’s ascending tracks pass at 6:00-6:30 AM and the descending tracks twelve
hours later. Sentinel 3 ascending tracks pass at 9:00-9:30 PM and the descending tracks at
11:00-11:30 AM. Jason 3 and Cryosat 2 pass at irregular times over SNE. Indeed, each cycle
or subcycle begins one hour later than the previous one.
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FIGURE 4.43: A visualization of the diurnal bias due to altimeter sampling
frequency compared with buoy 44025 for the summer (A) and winter (B) sea-
sons. A straight horizontal blue line was added to display the sample size limit
(100) of altimeter observations for the calculation of the average WS value that
represents specific hours. The dashed horizontal lines were added to display

the minimum available buoy observations for each hour (534).

A summary of this description and comparison with buoy data is presented in Figure 4.43.
The histograms represent the altimeter sample size, and a light blue horizontal line is added
to visualize the sample size limit for the comparison with buoy observations. We selected a
limit of 100 altimeter observations with a maximum distance of 1 degree from buoy 44025.
The average and confidence intervals are represented with red dots and arrows for the
summer and blue for the winter season. The 1-degree distance is relatively large, but we
wanted to have enough observations to compare with over 500 observations per hour from
the buoy represented by the blue and red dashed lines. The average WS from altimeters are
generally close to the buoy average except for the observations representing the descending
Sentinel 3 track. This difference is more significant during winter, and it could be partly
attributed to the spatial and temporal limitations previously mentioned. Besides, the SARAL-
AltiKa descending track captures the highest WS values at the buoy 44025 location during
summer. On the other hand, altimeters’ tracks do not coincide with the lowest WS values
observed between 5:00 to 6:00 AM by buoy 44025. During winter, both the buoy maximum at
4:00 AM and the minimum WS at 3:00 PM are represented only by a small number of Cryosat
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2 and Jason 3 observations. Figure 4.43 is also essential because it depicts the temporal gaps
we need to fill with other sensors that measure the WS like scatterometers or SAR to reduce
the uncertainty.
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Chapter 5

Concluding Remarks and Discussion

Observations are essential to define the wind and wave conditions through all phases of an
offshore wind farm, from the design and planning to decommission. They also enhance the
quality of the numerical models’ initial conditions estimation. In this study, data from buoys
and satellite altimeters in the SNE region were used and analyzed.

First, we specified the normal conditions in different scales of variability using the buoy
measurements due to their continuous, long-term, and reliable datasets. During the summer
season, the surface WS diurnal range can reach up to 2m/s in stations with a distance of 40
kilometers or less from the closest coast. These values are lower than the diurnal range on
a meteorological station on land, and the uncertainty is generally higher. The WS diurnal
variability also has unique characteristics over the ocean. WS minimum values are identified
six hours after the lowest WS on land and the maximum values three to six hours later. The
wind direction diurnal cycle has similar patterns for the on land and offshore stations, with
a lower diurnal range during the summer season for the coastal buoys. All the above do not
apply for stations located over 100 kilometers off the coast, where the diurnal variability is
insignificant.

SNE, a mid-latitude North Atlantic coastal region, is characterized by substantial WS
and SWH seasonal variability. On the one hand, it ranges from 2m/s for the locations close
to the coast to almost 4.5 m/s for the open ocean buoys. The SWH seasonal variability is
negligible in areas with proximity to land and a low presence of swell waves. In contrast,
it increases with distance to the coast, and it reaches up to 1.5 meters for the open ocean
buoys. This difference is only partly explained by the direct influence of the wind on the
sea surface. Wind roses sufficiently visualize the directional wind distribution. Generally,
the wind has a west or northwest direction during the winter, while it comes from the west
or southwest during the summer months. Directional wave distribution does not show the
same homogeneity, especially during the winter months when higher wind speeds, storms,
and swells with higher energy density are present. The directional wave spectrum of buoy
44097, located on the eastern side of SNE, reveals that the highest monthly average energy
density is attributed to waves that arrive from remote regions in the Atlantic Ocean. We
can also identify three systems developing throughout the year. The southeastern swell,
which has energy density peaks in November and March, is the most dominant. The results
indicate the importance of the directional wave spectrum for studying and monitoring the
wave conditions in the SNE. Directional spectra observations can also be derived from SAR
and satellite missions focused on wind and waves (CFOSAT) and assimilated into numerical
models to correct their initial conditions. Therefore, the reconstruction of the directional
spectrum of waves from wave buoys or NDBC stations, when available, can serve as a
ground truth reference for future studies involving remote sensing observations and the
evaluation of numerical models.

The relatively small number of available years of data for most buoys and the gaps in
their time-series record were limiting factors for detecting statistically significant WS and
SWH trends in SNE. Studies on general or extreme WS and SWH trends using in situ, remote
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sensing observations, and data from models show inconsistent or inconclusive results [101]
for the Eastern US coasts. On the other hand, the increased storm frequency and intensity in
coastal regions like SNE indicate the need for further investigation.

Extreme events are also critical for offshore wind energy yield estimation and fatigue
assessment on the infrastructure. Therefore, the wind and wave conditions before, during,
and after the passing of a nor’easter storm are examined as a case study.

The relationships between u10 and Hs are calculated with polynomial regression fitting
to the buoy observations for each of the primary wind directions. The relationships can
adequately represent the wind and wave conditions in areas where the wind influence
prevails, like the Nantucket Sound, but they are insufficient in swell-dominated locations.
For this reason, the wind-wave coupling was further examined using the inverse wave
age criterion that considers the wave celerity with respect to u10. This process results in
the classification of waves based on their growth, and its advantage is the inclusion of the
wind and mean wave direction. The classification shows that at the coastal buoys’ locations,
especially on the western side of the SNE region, the wave conditions are influenced by the
wind, notably during the winter. Still, there is also a substantial presence of swell waves,
which is increased during the summer months due to the decreasing wind speed. 70% of the
observations at the sheltered buoy 44020 location consist of purely wind waves, while at the
open ocean buoy 44008, the sea state is swell-dominated with 95% mixed and swell waves
during the summer. We need to emphasize that relationships and classifications have their
limitations, primarily because they consider only the wave spectrum’s peak. A complete way
to observe the sea state is by considering the whole directional wave spectrum, if available.

The accurate estimation of the WS PDF and its parameters is crucial for the offshore
wind energy assessment. Specifically, the shape and scale parameters of the distribution
are included in calculating the wind power output. The Weibull distribution is the most
commonly used and proposed as the best fit to the WS data in similar studies. After fitting
the data from four buoys located less than 40 kilometers offshore to a collection of 90 distri-
butions and evaluating the results visually with the probability plots and quantitatively with
error statistics, we suggest that the Johnson SB and the Beta distributions generally have
exceptional performance. Only data from the sheltered buoy 44020 fit best to the Weibull
3P. The limitation of such estimations for offshore wind is that the rotor’s height is greater
than or equal to 100 meters, which is substantially higher than the 10-meter buoy reference
height. Future studies using data from offshore towers and lidar buoys in the domain that
measure WS and direction at several heights will also expand our knowledge by comparing
the results included herein. Besides, even if the distributions mentioned above fit exception-
ally the data from buoys in SNE, we need to examine whether mixed distribution models
proposed in similar studies [68] improve our estimations.

Satellite altimetry is also an essential source of offshore wind data due to SWH and WS
observations’ availability to characterize both the sea state and the surface wind regime.
Validation of altimeter WS and SWH against in situ observations is required to assure the
quality and determine the measurements’ accuracy. Although SNE is a relatively small
domain with a limited number of available stations, the agreement between the collocated
altimeter and buoys dataset is confirmed. The consistency is highlighted by correlation
coefficient maps showing high values (over 0.9) at each buoy location to compare using the
collective altimeter dataset and an increasing trend with increasing distance from the land.
The results verify the exceptional performance of SARAL-AltiKa close to the coast and its
ability to provide reliable measurements in low sea states.

The accumulated dataset from all five satellite altimeters was used to interpolate the
observations using the kriging methodology for the 2019 winter and summer seasons. The
resulting maps show strong WS gradients during winter in SNE, and further investigation
is needed to assess the sensitivity of the output maps to extreme events. SWH maps show
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coherency during winter and summer with the highest sea states at the southeastern part
of the region and decreasing SWH with increasing proximity to the land. Although the
availability of SWH and WS in locations close to the coast or areas surrounded by land is
one of the advantages, the estimation is not as robust as in the open ocean due to the smaller
sample size and the limitations induced by topography. The various sources of errors in the
estimation are documented, emphasizing the WS diurnal or sampling bias. Monitoring of
the sea state and surface wind conditions requires multiple sources of data, and combined
satellite datasets are analyzed in recent studies [48]. The requirement to fill the temporal
gaps of the satellite altimeter observations in future studies is addressed.
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