

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

GRADUATE PROGRAM
INFORMATION AND DATA MANAGEMENT

DISSERTATION THESIS

Micro-Service-Based Referrals on AWS

Kyriaki Aikaterini I. Ganoti

Advisor: Alex Delis, Professor

ATHENS

DECEMBER 2020

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΔΙΑΧΕΙΡΙΣΗ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΔΕΔΟΜΕΝΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Micro-Service-Based Referrals on AWS

Κυριακή Αικατερίνη Ι. Γανωτή

Επιβλέπων: Αλέξης Δελής, Καθηγητής

ΑΘΗΝΑ

ΔΕΚΕΜΒΡΙΟΣ 2020

DISSERTATION THESIS

Micro-Service-Based Referrals on AWS

Kyriaki Aikaterini I. Ganoti
R.N.: Μ1465

ADVISOR: Alex Delis, Professor

December 2020

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Micro-Service-Based Referrals on AWS

Κυριακή Αικατερίνη Ι. Γανωτή
Α.Μ.: Μ1465

ΕΠΙΒΛΕΠΩΝ: Αλέξης Δελής, Καθηγητής

Δεκέμβριος 2020

ABSTRACT

On this project we developed a microservice which provides a structured way of
collecting and organizing referrals. The main idea behind a referral is the ability of
individuals or other business entities to refer customers to a business, in return for a
kind of compensation, such as commissions on resulting sales. Typically, customers
refer people who they believe will be benefited from a particular service. So, the
customer tells their friends about the business and the business gains new customers.
This project is implemented in Java 8 [1], uses the MySQL relational database
management system managed by Amazon Aurora database engine, it integrates
Amazon’s tools like SQS (Simple Queue Service) and SNS (Simple Notification Service)
and it is being fully deployed on Amazon’s EC2 instances (Elastic Compute Cloud). The
main implementation includes a single microservice called referrals, which is
responsible for any referral related business logic, as for example, the tracking of all
new referrals which happen on the ecosystem along with the progress of each of them.
Each referral is being created under a specific referral scheme and for each referral
scheme we define properties, like what are the conditions a referral needs to have met
in order to be considered as completed, what the status of a referral is, what kind of
reward a referral can get after completion etc. The service defines an API where it
exposes CRUD endpoints and can accept requests by other services or clients over
JSON-RPC protocol [2]. It also holds listeners on Amazon’s queues for getting
information about event-messages which have been published by other services or
clients.

SUBJECT AREA: Software Development
KEYWORDS: AWS, database, entity, aurora, ec2, sqs, sns, datadog

ΠΕΡΙΛΗΨΗ

Στην παρούσα εργασία υλοποιήσαμε ένα microservice το οποίο παρέχει έναν δομημένο
τρόπο συλλογής και οργάνωσης συστάσεων. Η κύρια ιδέα πίσω από μια σύσταση είναι
η ικανότητα ατόμων ή άλλων επιχειρηματικών οντοτήτων να παραπέμπουν πελάτες σε
μια επιχείρηση, σε αντάλλαγμα για ένα είδος αποζημίωσης, όπως προμήθειες για τις
προκύπτουσες πωλήσεις. Συνήθως, οι πελάτες αναφέρονται σε άτομα που πιστεύουν
ότι θα επωφεληθούν από μια συγκεκριμένη υπηρεσία. Έτσι, ο πελάτης λέει στους
φίλους του για την επιχείρηση και η επιχείρηση κερδίζει νέους πελάτες. Αυτή η εργασία
υλοποιήθηκε σε Java 8 [1], χρησιμοποιεί το σχετικό σύστημα διαχείρισης βάσεων
δεδομένων MySQL το οποίο διαχειρίζεται η μηχανή βάσεων δεδομένων Amazon
Aurora, ενσωματώνει τα εργαλεία της Amazon όπως SQS (Simple Queue Service) και
SNS (Simple Notification Service) και εκτελείται σε EC2 της Amazon (Elastic Compute
Cloud). Η κύρια εφαρμογή περιλαμβάνει ένα microservice, το οποίο ονομάζεται referrals
και το οποίο είναι υπεύθυνο για οποιαδήποτε λογική που σχετίζεται με συστάσεις, όπως
για παράδειγμα, η παρακολούθηση όλων των νέων συστάσεων που συμβαίνουν στο
οικοσύστημα μαζί με την πρόοδο καθεμιάς από αυτές. Κάθε σύσταση δημιουργείται
κάτω από ένα συγκεκριμένο σχήμα συστάσεων και για κάθε σχήμα συστάσεων
ορίζουμε ιδιότητες, όπως ποιες είναι οι προϋποθέσεις που πρέπει να πληροί μια
σύσταση για να θεωρηθεί ως ολοκληρωμένη, ποια είναι η κατάσταση μιας σύστασης, τι
είδους ανταμοιβή μπορεί να λάβει ένας χρήστης για μια σύσταση η οποία
ολοκληρώθηκε κ.λπ. Η υπηρεσία καθορίζει ένα API όπου εκθέτει λειτουργίες CRUD και
μπορεί να δεχτεί αιτήματα από άλλες υπηρεσίες ή πελάτες μέσω του πρωτοκόλλου
JSON-RPC [2]. Διατηρεί επίσης ακροατές σε Amazon queues για τη λήψη
πληροφοριών σχετικά με μηνύματα εκδηλώσεων που έχουν δημοσιευτεί από άλλες
υπηρεσίες ή πελάτες.

ΠΕΔΙΟ ΕΝΔΙΑΦΕΡΟΝΤΟΣ: Software Development
ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: AWS, database, entity, aurora, ec2, sqs, sns, datadog

To mom and dad

ACKNOWLEDGMENTS

During the writing of this dissertation, I have received a great support, so I would like to
thank my supervisor and professor Mr. Alex Delis whose knowledge and mentorship
were invaluable, and who has always been a great motivation for me.

TABLE OF CONTENTS

1. INTRODUCTION .. 11

1.1 Referral marketing .. 11
1.1.1 Referral process .. 11

2. DATABASE DESIGN ... 12

2.1 Referrals database .. 12

2.2 Database schema ... 12

2.3 Entity Mapping .. 14

2.4 Readers Writer Pattern ... 15

3. AMAZON AURORA ... 17

4. OVERALL ARCHITECTURE ... 19

4.1 Referrals microservice ... 19
4.1.1 Referral scheme and referral conditions ... 19

4.2 Amazon EC2 .. 20

4.3 Task manager implementation .. 21

5. AWS SQS/SNS .. 22
5.1.1 Amazon SQS .. 22
5.1.2 Amazon SNS ... 22
5.1.3 Subscription of SQS to and SNS topic .. 22

6. METRICS ... 28

ACRONYMS .. 30

REFERENCES .. 31

LIST OF FIGURES

Figure 1: ER Diagram of referrals database design .. 15
Figure 2: Readers Writer Scheme ... 16
Figure 3: AWS Cli Login page ... 17
Figure 4: Database page ... 18
Figure 5: Overall architecture .. 20
Figure 6: SNS page ... 22
Figure 7: Newly created Topic page .. 23
Figure 8: Amazon SQS page ... 24
Figure 9: Default settings for a dev environment ... 25
Figure 10: Newly created SQS Queue page ... 26
Figure 11: Subscribe to Amazon SNS topic page ... 26
Figure 12: Successful SQS queue subscription on SNS topic 27
Figure 13: Datadog top API calls for referrals service ... 28
Figure 14: Max CPU rate ... 28
Figure 15: Referral created rate on referrals ... 29
Figure 16: VerificationReferralCondition created rate on referrals 29
Figure 17: PaymentReferralCondition created rate on referrals 29

Micro-Service-Based Referrals on AWS

Κ.Α. Γανωτή 11

1. INTRODUCTION

1.1 Referral marketing
People influence people. Referral marketing is known to be the best marketing
approach applied by small and large businesses around the world. This type of
marketing helps the increase of the number of new clients and is usually done by
offering rewards encouraging customers to recommend the business’s product and
services to other people. Before the development of the service started, we proved that
the referrals service would indeed help to bring new clients to the business. For
achieving that, we made available the referral process on a specific percentage of our
existing users and we monitored through statistical analysis their behaviour. From this
analysis, known as AB Testing in digital marketing, we observed that the referral
process helped indeed, to bring many new users into the business.

1.1.1 Referral process
During the referral process, an existing user has the ability to refer one or more friends,
who have never signed up into the platform before. The referrer provides the email
addresses of whoever they are willing to invite into the business and by just clicking a
submit button, they send an invitation email to those addresses. The email for each of
the addresses is unique. It contains a link, which will carry information about the referrer
and the email address and once the recipient of the email clicks on this link, they will be
led in the platform’s sign up page. That way, when a new user signs up into the
platform, the tracking of information about the referee becomes very easy and we
should not forget that this kind of knowledge is required to be stored later on referrals
service.

Micro-Service-Based Referrals on AWS

Κ.Α. Γανωτή 12

2. DATABASE DESIGN

2.1 Referrals database
Referrals microservice is written in Java 8. It uses Google Guice framework to automate
the dependency injection and stores the required data in a mysql database. The basic
concept needs to be defined first, is the referral scheme. A new referral is being created
under an active referral scheme, which defines information related to how long a referral
is valid for completion before to expire, what conditions need to be fulfilled in order for a
referral to be considered as completed, what the reward for the referee will be if their
referrals manage to complete their referral process, what the reward for a new referred
user will be etc. The database design consists of six tables for storing all the actions
related to what we described above and one more table, which is a task manager
information table. We will explain more about the task manager information table later.
The main six tables are the reward, referral_scheme, referral, condition_table,
referral_condition and referral_scheme_condition_table and the relationships from
one to another could be observed on Figure 1, where the ER diagram of the database is
presented.

2.2 Database schema
In more details, the referral_scheme defines the required properties of a referral
scheme such as its name, if it’s active or historic, for how long it can be active etc and
also holds two foreign keys on the reward table. The condition_table defines the
available conditions which can be attached on one or more referral schemes (many to
many relationship M:M). For this reason the table referral_scheme_condition_table
defines which conditions have been attached on each, currently active or past active,
referral scheme. The referral_condition table also holds a many to many relationship
(M:M) between the condition_table and the referral table, because we need to know
which conditions have been met for a referral. The database schema will look like the
following:

CREATE DATABASE IF NOT EXISTS `referrals` DEFAULT CHARACTER SET
utf8mb4 COLLATE utf8mb4_unicode_ci;
USE `referrals`;

CREATE TABLE IF NOT EXISTS `reward` (
 `id` bigint(20) unsigned NOT NULL AUTO_INCREMENT,
 `name` varchar(20) NOT NULL,
 `description` varchar(255) DEFAULT NULL,
 `amount` decimal(12,2) NOT NULL,
 PRIMARY KEY (`id`),
 UNIQUE KEY `name` (`name`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4
COLLATE=utf8mb4_unicode_ci;

CREATE TABLE IF NOT EXISTS `referral_scheme` (
 `id` bigint(20) unsigned NOT NULL AUTO_INCREMENT,
 `product` varchar(20) NOT NULL,
 `expiry_period_type` varchar(20) NOT NULL,

Micro-Service-Based Referrals on AWS

Κ.Α. Γανωτή 13

 `expiry_period_length` INTEGER NOT NULL,
 `limit_rewards` INTEGER NOT NULL,
 `recruit_reward_id` bigint(20) unsigned NOT NULL,
 `referrer_reward_id` bigint(20) unsigned NOT NULL,
 `active` tinyint(1) NOT NULL,
 `activated_at` timestamp NOT NULL,
 PRIMARY KEY (`id`),
 CONSTRAINT `FK_referral_scheme_recruitreward` FOREIGN KEY
(`recruit_reward_id`) REFERENCES `reward` (`id`),
 CONSTRAINT `FK_referral_scheme_referrerreward` FOREIGN KEY
(`referrer_reward_id`) REFERENCES `reward` (`id`),
 INDEX `referral_scheme_active_idx` (`active`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4
COLLATE=utf8mb4_unicode_ci;

CREATE TABLE IF NOT EXISTS `condition_table` (
 `id` bigint(20) unsigned NOT NULL AUTO_INCREMENT,
 `name` varchar(20) NOT NULL,
 `description` varchar(255) DEFAULT NULL,
 `event_type` varchar(20) NOT NULL,
 PRIMARY KEY (`id`),
 UNIQUE KEY `name` (`name`),
 UNIQUE KEY `event_type` (`event_type`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4
COLLATE=utf8mb4_unicode_ci;

CREATE TABLE IF NOT EXISTS `referral_scheme_condition_table` (
 `referral_scheme_id` bigint(20) unsigned NOT NULL,
 `condition_id` bigint(20) unsigned NOT NULL,
 `ordinal` int unsigned NOT NULL,
 `data` text NOT NULL,
 PRIMARY KEY (`referral_scheme_id`,`condition_id`),
 CONSTRAINT `FK_referralschemeconditiontable_referralscheme`
FOREIGN KEY (`referral_scheme_id`) REFERENCES `referral_scheme`
(`id`),
 CONSTRAINT `FK_referralschemeconditiontable_conditiontable`
FOREIGN KEY (`condition_id`) REFERENCES `condition_table` (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4
COLLATE=utf8mb4_unicode_ci;

CREATE TABLE IF NOT EXISTS `referral` (
 `id` bigint(20) unsigned NOT NULL AUTO_INCREMENT,
 `referrer_user_id` bigint(20) unsigned NOT NULL,
 `user_id` bigint(20) unsigned NOT NULL,
 `created_at` timestamp NOT NULL,
 `referral_scheme_id` bigint(20) unsigned NOT NULL,
 PRIMARY KEY (`id`),
 CONSTRAINT ReferralScheme_User UNIQUE (`referral_scheme_id`,
`user_id`),

Micro-Service-Based Referrals on AWS

Κ.Α. Γανωτή 14

 CONSTRAINT `FK_referral_referralscheme` FOREIGN KEY
(`referral_scheme_id`) REFERENCES `referral_scheme` (`id`),
 INDEX `referrer_user_id_idx` (`referrer_user_id`),
 INDEX `user_id_idx` (`user_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4
COLLATE=utf8mb4_unicode_ci;

CREATE TABLE IF NOT EXISTS `referral_condition` (
 `referral_id` bigint(20) unsigned NOT NULL,
 `condition_id` bigint(20) unsigned NOT NULL,
 `created_at` timestamp NOT NULL,
 PRIMARY KEY (`referral_id`, `condition_id`),
 CONSTRAINT `FK_referralcondition_referral` FOREIGN KEY
(`referral_id`) REFERENCES `referral` (`id`),
 CONSTRAINT `FK_referralcondition_condition` FOREIGN KEY
(`condition_id`) REFERENCES `condition_table` (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4
COLLATE=utf8mb4_unicode_ci;

2.3 Entity Mapping
For being able to map Java classes to database tables and Java data types to SQL
data types, we used hibernate framework[3]. Hibernate is a powerful object-relational
mapping tool which also provides data query and retrieval facilities. In Java, the objects
in a relational database context are defined as entities. In order to define an entity we
need to create a class that is annotated with the @Entity annotation. The @Entity
annotation is a marker annotation and is used to discover persistent entities.
For our database design, we created six classes annotated with the @Entity annotation,
for our main six tables and one more for the task_manager table. For example, the
entity class for the referral scheme will look like the following:

@Entity
@Table(name = "referral_scheme")
public class ReferralSchemeEntity {

/* properties, setters, getters and whatever else is needed
it should live here */

}

It defines that the ReferralSchemeEntity will be mapped on the referral_scheme table,
as the @Table annotation declares. The same logic applies for the rest of the entities.

Micro-Service-Based Referrals on AWS

Κ.Α. Γανωτή 15

Figure 1: ER Diagram of referrals database design

2.4 Readers Writer Pattern
As it was mentioned earlier, we used Amazon’s Aurora relational database engine in
order to take advantage of its high-performance storage subsystem. The underlying
storage can grow automatically as needed and also the database clustering and
replication happens automatically as well. One or more DB instances are forming an
Aurora DB cluster and its two main types are the Primary DB instance and the Replica.
The Primary DB Instance or Master, supports reads and writes operations to the
database and the Replica or Slave, supports only read operations. Replica instances
can and should be more than one in order to support high read of rps (reads per
second) but the Master instance should be always one. (Figure 2)

Micro-Service-Based Referrals on AWS

Κ.Α. Γανωτή 16

Figure 2: Readers Writer Scheme

Micro-Service-Based Referrals on AWS

Κ.Α. Γανωτή 17

3. AMAZON AURORA

For setting up an Amazon Aurora cluster we need to create an AWS account [4] and
then login into the AWS console [5]. Once we login into the AWS cli we should see a
page like Figure 3.

Figure 3: AWS Cli Login page

From the list of the available services, we will choose the Databases and we will filter
the databases for referrals database. In Figure 4 we can see the referrals cluster we
created. For creating a database, Amazon’s documentation provides a good start [6].

Micro-Service-Based Referrals on AWS

Κ.Α. Γανωτή 18

Figure 4: Database page

As we can see on the above figure, at the moment we got the screenshot, Aurora
cluster for referrals maintains one Master and one Replica instance. In periods where
the reads will be more often, for example on a period where a campaign runs and more
and more referral actions are happening, the Replica instances might be increased.

Micro-Service-Based Referrals on AWS

Κ.Α. Γανωτή 19

4. OVERALL ARCHITECTURE
4.1 Referrals microservice
Referral microservice is responsible to define the active referral schemes, the conditions
need to be fulfilled in order for a referral to be completed, any new referral and any old
referral along with the status of each referral. The service exposes any required
information through endpoints over json-rpc protocol. Those endpoints are mostly read
operations, in the favour of exposing information like the status of the referral for a user,
the current active referral scheme etc. Some write operations are exposed as well but
are only related to admin actions, for example for setting up a new referral scheme, a
new condition or a new reward. However, the data that the service needs for its main
business logic around the track and the fulfilment of a referral, are not reaching the
service through its endpoints. Data are collected and stored into the referrals database
in two ways. The first is through event-message queues and the second is via polling
another microservice. In more details, the referral process is designed currently as
follows. There are three conditions attached to a current active referral scheme. Once
these three conditions have been met, it’s safe to be assumed that the referral of the
user is completed.

4.1.1 Referral scheme and referral conditions
The first condition is related to the user signup event. Each time a user creation
happens, there is a microservice which is safe to be called user service, which handles
the creation of users. Subsequently, it publishes an event-message on an AWS SNS
topic. This event-message contains valuable information about the user who just
completed the signup process. On the other hand, referrals service creates an SQS
Queue which subscribes on this SNS topic. Thus, each time an event-message is being
published on the SNS topic, the referrals service gets notified and is able to check if the
signup event was a referral. In the case that wasn’t not a referral, it removes the
message from the queue and does nothing more. Although, in the case that the new
user was a referral, it creates a new entry on the referral table and one entry on the
referral_condition table inside a transaction and then, it removes the message from
the queue. Of course, the messages which are currently in processing, are being
labeled as in progress, so we can prevent other instances of the application service to
consume the same messages twice.

The second condition is related to a user KYC verification process [7]. We will not get
into details on how a user is being verified but, what we need to know here is that there
is a microservice, which is safe to be called verify service, which handles the verification
process for each new user. Each time a user’s verification process is being completed,
an event-message it’s being published from the verification microservice to an SNS
topic. Of course, the user verification SNS topic it’s quite different from the user signup
SNS topic. Similarly with the signup event-message, the referrals service creates
another SQS queue which subscribes on this verification topic and gets notified for each
new event-message. After getting notified, the second condition for this user is being
completed and a new entry on the referral_condition table is being added.

For the third condition, which is related with the amount of money the verified user has
spent on internal games, we need to poll another microservice periodically (the
microservice which manages how much a user spent). This microservice is a heavy
load service which handles also basic components of the whole platform and thus it was

Micro-Service-Based Referrals on AWS

Κ.Α. Γανωτή 20

decided to not alter it at all, trying to avoid introducing latency on an already heavy
process. In that case, a scheduled task sends a request on the corresponding service
periodically. The referrals send the request in batches, in order to avoid adding a high
database load on this service. More specifically, it collects all the user ids who haven’t
fulfilled the last condition yet and their referral is not expired and sends them to be
checked on the corresponding microservice. For each referral it was found that the
amount which was spent was enough on the corresponding microservice, a new entry is
being created on the referral_condition table, which will declare that the third condition
has been met. The overall architecture is displayed on Figure 5.

Figure 5: Overall architecture

4.2 Amazon EC2
As it was mentioned earlier, the service is deployed in Amazon’s Elastic Computing
(AWS EC2). EC2 is a part of Amazon’s web services which allow users to rent virtual
computers on which they can run their own applications, known as instances. Usually,
we use more than one instance for each service in the production environment.
Although, no matter how many instances we have deployed our software into, all of the
instances connect to the same write database instance (Master). Because of that, the
need arose to prevent more than one instance from making a request on the service
that stores the information about the amount a user has spent. As we mentioned earlier,
it should be avoided any extra load on this service. Also, in the case that two instances
work on the same dataset, the risk of violation exceptions from the database would
increase. For example, the database schema defines that only one user entry for a
specific condition can be stored on the referral_condition table. In that case, a unique
violation exception could be raised.

Micro-Service-Based Referrals on AWS

Κ.Α. Γανωτή 21

4.3 Task manager implementation
For addressing the above issue, the quickest solution would be to maintain another
host, lets name it referrals-management which would be the only one responsible to run
the periodic task. However, this solution would require extra configuration for making
only the one host available to run the scheduled task which would have resulted in a
dirtier codebase. It would also require duplicating any setup and configuration we
needed for the primary host, but with extra changes in order to serve the management
host, and last but not least, extra testing. That’s why the following solution was one-way.
Consequently, we chose to implement a task manager which would be able to manage
the polling to the service. Particularly, the polling is being defined to run every 2
minutes. The task manager monitors when was the last time that the polling process ran
and prevents any scheduled task to run again, if the time that passed from the last run
is not higher or equal to 2 minutes. The run statistics are stored on the task_manager
table and one entry is maintained each time. A database trigger was used for ensuring
that only one entry is stored on the task_manager table each time. The task_manager
table schema will be similar to the following:

CREATE TABLE IF NOT EXISTS `task_manager` (
 `id` bigint(20) unsigned NOT NULL AUTO_INCREMENT,
 `in_progress` tinyint(1) NOT NULL,
 `updated_at` timestamp NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4
COLLATE=utf8mb4_unicode_ci;

The database trigger will be similar to the following:

DELIMITER $$
CREATE TRIGGER accept_only_one_row
BEFORE INSERT
ON task_manager FOR EACH ROW
BEGIN
 DECLARE createdrows INT;

 SELECT COUNT(*) INTO createdrows FROM task_manager;

 IF createdrows > 0 THEN
 signal sqlstate '45000' set message_text = 'Only one task is
allowed';
 END IF;
END $$
DELIMITER;

The above trigger, on a new entry save action, it will check if the rows of the existing
entries are more than 0 so it will not allow more than 1 entries to be stored on this table
ever.

Micro-Service-Based Referrals on AWS

Κ.Α. Γανωτή 22

5. AWS SQS/SNS

5.1.1 Amazon SQS
Amazon SQS [8] (Simple Queue Service) is a managed message queue service offered
by Amazon Web Services (AWS). It provides an API over http protocol, which is being
used by applications for submitting items into and reading items out of a queue. The
queue as a structure, is fully managed by AWS, which makes SQS an easy solution for
passing messages between different parts of software systems that run in the cloud.
Typically, one consumer subscribes to an SQS queue. There could be the case where
more than one consumer could subscribe to one SQS queue, but this could cause
issues given that all consumers would need to read the message at least once. Also, in
case a message is being processed successfully, it is being deleted from the queue
automatically.

5.1.2 Amazon SNS
Amazon SNS [9] (Simple Notification Service) is a publisher subscriber network, where
subscribers subscribe to topics and are receiving the messages whenever a publisher
publishes an event-message to that publisher. When an Amazon SQS subscribes to an
Amazon SNS topic, a publisher, which in our case will be either the service which
handles the user creation or the user verification, publishes an event-message to the
topic and Amazon SNS sends an Amazon SQS message to the subscribed queue. The
Amazon SQS message will contain the subject and the message which was published
to the topic along with extra data (metadata) about the document, in a json format. This
is called Fanout pattern [10] and it is the design we used for referrals.

5.1.3 Subscription of SQS to and SNS topic
We can create an SNS topic and an SQS queue and following, we can subscribe the
SQS queue to the SNS topic, via AWS console. Firstly, we need to create an SNS topic
[11]. The page should look like Figure 6.

Figure 6: SNS page

By clicking on the Create Topic button, we will be transferred to the create topic page,
where we can set a topic name, leave all the other settings as default and submit the
request by clicking on the create topic button. Once we do that, the next page will inform
us that our topic was created successfully (Figure 7).

Micro-Service-Based Referrals on AWS

Κ.Α. Γανωτή 23

Figure 7: Newly created Topic page

The next step is to create the corresponding SQS Queue, which we will subscribe to the
topic we just created. We need to visit the Amazon SQS cli [12], which will look like
Figure 8 and click on the Create queue button.

Micro-Service-Based Referrals on AWS

Κ.Α. Γανωτή 24

Figure 8: Amazon SQS page

On the Create queue page, we need to set a name for the queue, but we can leave the
rest of the configuration as it is. In a production environment though, those default
settings need to change. For example, on the access policy section the following are
defaults (Figure 9) but if we don’t change them, on a production environment our queue
will be useless.

Micro-Service-Based Referrals on AWS

Κ.Α. Γανωτή 25

Figure 9: Default settings for a dev environment

Once we have created the SQS queue, we should get informed like Figure 10 and the
next step will be to subscribe this SQS queue to our SNS topic.

Micro-Service-Based Referrals on AWS

Κ.Α. Γανωτή 26

Figure 10: Newly created SQS Queue page

On the above page, we can click on the Subscribe to Amazon SNS topic button, which
will lead us on the Subscribe to Amazon SNS topic page (Figure 11).

Figure 11: Subscribe to Amazon SNS topic page

On the arn input field, we need to paste the arn from Figure 7 and then to click the
button Save. A new page like Figure 12 will be presented. After we have set up the SNS
topic and the SQS queue which listens on that topic, we can listen for event-messages
which are published on the SNS topic.

Micro-Service-Based Referrals on AWS

Κ.Α. Γανωτή 27

Figure 12: Successful SQS queue subscription on SNS topic

Micro-Service-Based Referrals on AWS

Κ.Α. Γανωτή 28

6. METRICS
For monitoring performance and issues that might come up about the new service, we
used Datadog [13]. Datadog is a monitoring and analytics platform which gives a real-
time insight of how a service performs in a development or a production environment. It
is being used for diagnosing issues and for gaining “insight info” of the production code.
There are Datadog Widgets available for monitoring the CPU level of an instance in
production, the used memory, the api calls which take more time. Also, Datadog gives
us the ability to create monitors which will trigger an alarm based on a condition, for
example when the number of a specific error exceeds some threshold. Specifically, for
referrals, we set various dashboards but some of the most important were the one
which shows us which endpoints are heavily used, so we can monitor if there is
anything which seems odd along with the CPU and memory load. Also, we set
timeseries for the fulfilments of each condition. This is extremely important since it
shows how the digestion of data performs, given that most of the data are entering
referrals via message queues. Following figures show some widgets from the Datadog
dashboard for referrals.

Figure 13: Datadog top API calls for referrals service

The above widget can present extremely different data of course, depending on the
period we monitor the dashboard. For example in a period where a campaign promotion
run and referrals are more active, the referrals.sendreferralemail could come in the first
place of the most used endpoints.

Figure 14: Max CPU rate

Micro-Service-Based Referrals on AWS

Κ.Α. Γανωτή 29

Figure 15: Referral created rate on referrals

Figure 16: VerificationReferralCondition created rate on referrals

Figure 17: PaymentReferralCondition created rate on referrals

Micro-Service-Based Referrals on AWS

Κ.Α. Γανωτή 30

ACRONYMS

API Application Programming Interface

AWS Amazon Web Service

CRUD Create Read Update Delete

EC2 Elastic Compute Cloud

JSON-RPC Json remote procedure protocol

M:M Many to Many Relationship

MySQL My Structured Query Language

RPS Reads per second

SNS Simple Notification Service

SQS Simple Queue Service

Micro-Service-Based Referrals on AWS

Κ.Α. Γανωτή 31

REFERENCES

[1] “Java 8 Central - Oracle.,” [Online]. Available:
https://www.oracle.com/java/technologies/java8.html. [Accessed 29 December 2020].

[2] “SON-RPC 2.0 Specification,” [Online]. Available: https://www.jsonrpc.org/specification. [Accessed
29 December 2020].

[3] “Hibernate,” [Online]. Available: https://hibernate.org/. [Accessed 29 December 2020].
[4] “Create and activate an AWS account - Amazon AWS,” [Online]. Available:

https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/.
[Accessed 2020 December 29].

[5] “AWS Management Console - Amazon AWS,” [Online]. Available:
https://aws.amazon.com/console/. [Accessed 29 December 2020].

[6] “Creating a DB cluster and connecting to a database on an ...,” [Online]. Available:
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/CHAP_GettingStartedAurora.
CreatingConnecting.Aurora.html. [Accessed 29 December 2020].

[7] “Know your customer - Wikipedia,” [Online]. Available:
https://en.wikipedia.org/wiki/Know_your_customer. [Accessed 29 December 2020].

[8] “Amazon Simple Queue Service - AWS Documentation,” [Online]. Available:
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/welcome.htm
l. [Accessed 29 December 2020].

[9] “What is Amazon SNS? - AWS Documentation,” [Online]. Available:
https://docs.aws.amazon.com/sns/latest/dg/welcome.html. [Accessed 29 December 2020].

[10] “ Fanout to Amazon SQS queues - AWS Documentation,” [Online]. Available:
https://docs.aws.amazon.com/sns/latest/dg/sns-sqs-as-subscriber.html. [Accessed 29 December
2020].

[11] “Amazon Simple Notification Service (SNS) - Amazon AWS,” [Online]. Available:
https://aws.amazon.com/sns/. [Accessed 29 December 2020].

[12] “Amazon SQS | Message Queuing Service | AWS,” [Online]. Available:
https://aws.amazon.com/sqs/. [Accessed 29 December 2020].

[13] “Datadogh,” [Online]. Available: https://www.datadoghq.com/. [Accessed 29 December 2020].

