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Abstract

This master’s thesis is divided in three main parts. In the first part, we present the two fundamental
transformations between anyons, Flux metamorphosis and Aharonov-Bohm effect. We introduce
the braid group, its defining relations and its representation via the quantum double. Then, we
construct the quantum double for the dihedral group D5, specify the modular generators of the
theory (S and T matrices) and give a simple example of anyon scattering.

In the second part, we focus on the quantum computational aspect of groups/models, with the
goal to derive universal quantum computation. We define the encoding of a qubit in the fusion
space and then we construct the generators of the braid group for various anyon models, including
D
(
D5

)
. We establish general protocols of encoding and processing information with anyons, one

using F and R-symbols as well as the fusion rules and another one with pairs of fluxes. We work
with Fibonacci and Ising anyon models, where the former is considered as the ideal model for
computing. We also point out the difficulty to construct known gates inside D

(
D5

)
.

In the third and final part, we give two examples of universal quantum computation, one with
qutrit encoding in D

(
S3

)
and another one using pair of fluxes with simple perfect groups. We note

in the conclusions that dihedral anyons have the potential of constructing a universal gate set but
the way to illustrate this is beyond the purpose of this thesis.

4





PerÐlhyh

H sugkekrimènh diplwmatik  ergasÐa qwrÐzetai se trÐa kÔria mèrh. Sto pr¸to mèroc, parousi�zoume
touc duo jemeli¸deic metasqhmatismoÔc metaxÔ anuonÐwn, thn metamìrfwsh ro c kai to fainìmeno
Aharonov-Bohm. Eis�goume to braid group, tic basikèc sqèseic thc om�dac kai thn anapar�stash
tou mèsw tou montèlou anuonÐwn peperasmènhc om�dac. 'Epeita, kataskeu�zoume to montèlo anuonÐwn
gia thn om�da D5, prosdiorÐzoume touc genn torec tou modular group gia auth thn jewrÐa (S kai
T pÐnakec) kai dÐnoume èna aplì par�deigma skèdashc anuonÐwn.

Sto deÔtero mèroc, esti�zoume sto upologistikì komm�ti twn om�dwn/montèlwn, me stìqo na ex�-
goume kajolik  kbantik  upologistik . OrÐzoume thn kwdikopoÐhsh enìc qubit ston q¸ro sÔnthxhc
kai met� kataskeu�zoume touc genn torec tou braid group gia di�fora anuonik� montèla, sumper-
ilambanomènou tou D

(
D5

)
. Kajier¸noume genik� prwtìkolla kwdikopoÐhshc kai epexergasÐac thc

plhroforÐac me anuìnia, èna qrhsimopoi¸ntac ta F kai R sÔmbola kaj¸c kai touc kanìnec sÔn-
thxhc kai èna �llo me zeÔgh ro¸n. Ergazìmaste me ta Fibonacci kai Ising montèla anuonÐwn, ìpou
ta pr¸to jewreÐtai wc to idanikì montèlo gia upologistik . EpÐshc, upodeiknÔoume thn duskolÐa
kataskeu c gnwst¸n pul¸n mèsa sto D

(
D5

)
.

Sto trÐto kai teleutaÐo mèroc, dÐnoume dÔo paradeÐgmata kajolik c kbantik c upologistik c,
èna me qutrit kwdikopoÐhsh sto D

(
S3

)
kai èna �llo qrhsimopoi¸ntac zeÔgh ro¸n me tèleiec aplèc

om�dec. Shmei¸noume sta sumper�smata ìti ta dÐedra anuìnia èqoun thn dunatìthta kataskeu c
enìc kajolikoÔ sunìlou pul¸n all� o trìpoc na ulopoihjeÐ autì eÐnai pèran tou skopoÔ aut c thc
ergasÐac.

5





Contents

1 Introduction 7

2 Quantum double 9
2.1 Flux metamorphosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Abelian Aharonov-Bohm effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Superselection sectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Algebraic structure of quantum double . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Fusion, spin and braid groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Construction of D(D5) 17
3.1 Conjugacy classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Centralizers and their irreducible representations . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Character table of Z2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Character table of Z5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.3 Character table and representations of D5 . . . . . . . . . . . . . . . . . . . . 21

3.3 Representations of D(D5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Modular matrices and charge conjugation . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.1 S matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.2 T matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.3 C matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Fusion rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6 Anyon scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Quantum computation with anyon models 30
4.1 Measurements with pairs of fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Encode a qudit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 F and R symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.1 Pentagon and hexagon equation . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.2 Quantum double method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Fibonacci anyons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5 Ising anyons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.6 D(D5) anyons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.7 Universal quantum computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.7.1 Simple perfect groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.7.2 Qutrit encoding in D(S3) model . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Conclusions 76

6 Tables and R matrices 79

6



1 Introduction

The concept of quantum computers was introduced by Richard Feynman in 1982 when he proposed
that quantum many-body systems can be simulated exponential faster on a quantum computer
that a classical one, by exploiting the basic principles of quantum mechanics. Later in 1994 Peter
Shor followed, who created an innovative quantum algorithm for the factorization of a k digit
number. The progress made was that information could be processed faster as well as the tolerance
to the system size was enhanced. Quantum computation is based on three different procedures:
initialization, unitary evolution and measurement. Suppose we have a system in hand, defined
in a Hilbert space H. Firstly, we initialize the state of the system to a desired and known state
|ψ0〉. Then under specific dynamics which we control (environment) the system evolves in time
with a corresponding unitary operator Û(t) to a final state |ψ〉 = Û(t) |ψ0〉 by the manner that
Schrodinger’s equation dictates. At last, we measure the state of the system at an instant of the
evolution and read the outcome.

Nevertheless, we are dealing with a lot of problems when we conduct quantum computation
in practice. The two predominant sources of error is decoherence and imperfect operations on the
system. The former refers to the inability of sustaining large quantum systems bounded and not
affecting their quantum properties (such as entanglement) due to their interactions with the outside
environment (noise) while the latter alludes to the fact that quantum operations or as we call gates
cannot be implemented with perfect accuracy so that small functional imperfections combined
together result in a quantum computer that fails to operate. The need for a fault − tolerant
quantum computer still remains so obvious [1].

The idea imposed to fix such technical obstacles is topological quantum computing. Topological
quantum computing proposes the use of 2D exotic quasiparticles called anyons for the purpose of
processing and encoding information. Anyons are localized excitations that appear in 2D (artificial)
materials which behave in a topological manner. They have highly entangled degenerate ground
states, encode non locally information which can be revealed only when we bring them together
(fusion) and we process this informational content when we encircle one another (braiding). They
are indistinguishable by local operations and because of their topological nature, manipulating the
information that they carry is so much more efficient because the path of their braids is topologically
protected by small deformations of their trajectory [2]. So topology is so far the best tool to confront
regular emerging errors.

In three spatial dimensions, the statistics of two identical particles is not as rich as in two
dimensions. The reason for this argument is that any circular closed path that a particle follows
in 3D can be continuously deformed (is equivalent) to the trivial path (no action at all or stay at
the same place). This happens as we make the trajectory go above or below the particle that we
encircle. This is why in 3D when we move a particle in a loop around its indistinguishable partner,
the operation we do is trivial (act with the identity matrix) [2]:

R̂2 |ψ1ψ2〉 = Î |ψ1ψ2〉 = |ψ1ψ2〉 ⇒ R̂ |ψ1ψ2〉 = ± |ψ2ψ1〉 ,

where the exchange operator R̂ acting on the eigenvector state |ψ1ψ2〉 of the two identical particles
gives ±1 as eigenvalues. So we have two kinds of particles: bosons, where the total wavefunction
of the two particles is symmetric under the exchange, and fermions, where the total wavefunction
is antisymmetric upon the exchange of the particles.

In two dimensions the scenery is far more intriguing. When we transport, in a loop, one of the
two indistinguishable particle around the other, it is not necessary that we return to the initial
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state. The explanation is that when we attempt to deform continuously the loop to a single point
we always cut through the other particle (we lack of an extra dimension here to slide over the
particle). In general, when we exchange the two particles in 2D we get an arbitrary phase for
abelian anyons and a unitary operator for non abelian anyons :

R̂ |ψ1ψ2〉 = eiφ |ψ2ψ1〉 ⇒ R̂2 |ψ1ψ2〉 = e2iφ |ψ1ψ2〉 abelian anyons,

R̂ |ψ1ψ2〉 = Û12 |ψ2ψ1〉 ⇒ R̂2 |ψ1ψ2〉 = Û21Û12 |ψ1ψ2〉 non abelian anyons,

where e2iφ 6= 1 and Û21Û12 6= Î for an arbitrary case. Only when φ = 0 or φ = π, we have bosons
and fermions respectively (the non abelian anyons, for which

[
Û12, Û21

]
6= Î, are neither bosons

nor fermions) [2].
Every distinct trajectory between a collection of n indistinguishable particles in 3D can be repre-

sented by some action of the elements of the permutation group Sn (because of the relation R̂2 = Î
in 3D for two particle systems). In 2D (because R̂2 6= Î in general) instead of the symmetric group
Sn we have the braid group Bn, when we talk for indistinguishable particles. The one-dimensional
representations of Bn represent the abelian anyons whereas higher-dimensional representations of
the braid group describe non abelian anyons. When the particles are distinguishable, we have
representations of the colored or pure braid group Pn, where the particles carry different colors to
be distinguished and after any kind of braid each particle returns to its initial fixed position in the
plane. Geometrically, an n-braid is a collection of n disjoint strings where the endpoints are fixed
(evolving upwards in time). If we permit any kind of permutation between the endpoints we take
Bn but if we prohibit it we have Pn. The groups Sn,Bn and Pn have infinite order meaning we can
have infinite different combinations of their elements [7].

Finally, a physical phenomenon strongly connected with anyons is the Aharonov−Bohm effect.
It has been observed that when a particle with charge q is being transported adiabatically (given
that the adiabatic condition is true) around a magnetic flux φ, then the wavefunction of the particle
acquires a phase eiqφ, which has purely topological origin since it depends only on the winding
number and not at the shape of the path [2]. We will later introduce this phenomenon in a more
mathematical way, when we will define anyons as doublets of charges and fluxes (also have spin).

The most promising systems for the realization of anyons are the Fractional Quantum Hall
(FQH) states in two dimensional electron (gas) systems at low temperatures and high magnetic
fields, where several non abelian anyons occupy a degenerate ground state. When the highly
degenerate Landau levels are filled up to a fraction (ν = p/q with p, q ∈ Z), the elementary
excitations carry fractional charge of magnitude e∗ = e/q and are candidates for realizations of all
kinds of anyons.
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2 Quantum double

Before we begin analyzing the quantum double model D(H), we have to introduce the tools that
we will be working with and their transformation laws. We start with a Lagrangian governed
by a Chern-Simons theory, which has it’s gauge symmetry spontaneously broken down via Higgs
mechanism so eventually we are left with a finite group H. This group can be abelian or non abelian.
The elements of the group are the pure fluxes of this model while the irreducible representations of
the group are our pure charges. The doublets of charges and fluxes will form our anyons [3]. We
will discuss the basic topological interactions among these different flux/charge composites.

2.1 Flux metamorphosis

Suppose we are equipped with two fluxes (two infinite vertical strings referred to the magnetic
vortices) g, h ∈ H. So the system is in the state :

|hg〉 ≡ |h〉 |g〉 (1)

When we interchange the h flux with the g flux counterclockwise, the stationary flux in the center
becomes conjugate of g (global symmetry transformation) [3]:

R|hg〉 =
∣∣hgh−1

〉
|h〉 , (2)

such that the total flux of the configuration hg = hgh−1h is conserved. The states of the two fluxes
have been reversed after the interchange because of their position (from the left to right).

Figure 1: Interchange of two fluxes h, g ∈ H counterclockwise (above)
with the R operator and clockwise (below) with the R−1 operator.

When the two fluxes do not commute and at least one of the two carries non trivial charge, we have
the non abelian Aharonov−Bohm effect. Suppose we interchange again counterclockwise the two
fluxes, now hgh−1 and h. We take :

R2 |hg〉 = R
∣∣hgh−1

〉
|h〉 =

∣∣(hgh−1)h(hgh−1)−1
〉 ∣∣hgh−1

〉
, (3)

according to relation (2).
However, the group elements that we attach to the fluxes depend on our conventions. Suppose

I am presented with k fluxons (particles that carry flux), and that I use my standard charges to
measure the flux of each particle. I assign group elements a1, a2, ..., ak ∈ H to the k fluxons. You
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are then asked to measure the flux, to verify my assignments. But your standard charges differ
from mine, because they have been surreptitiously transported around another flux (one that I
would label with h ∈ H). Therefore you will assign the group elements ha1h

−1, ha2h
−1, ..., hakh

−1

to the k fluxons; our assignments differ by an overall conjugation by h. Because exactly that two
fluxes transform with conjugation by the above interchange action, we will consider as different
pure fluxons (anyons that carry flux and have trivial charge) those group elements that belong in
different conjugacy classes of the finite group H [4].

2.2 Abelian Aharonov-Bohm effect

We will now present the transformation that comprises the mathematical analog of the abelian
Aharonov-Bohm effect. When we include a mass term in the Lagrangian that was reported initially,
then after the symmetry is spontaneously broken down, we also have (pure) charge particles in the
form of any kind of the irreducible representations of the group H, except form the fluxes. Different
types of charges correspond to all distinct irreducible representations of the group. Suppose we
have a charge/flux pair in hand. When we encircle the charge counterclockwise around the flux we
take the following transformation [3]:

R2 |h〉 |v〉 = |h〉 |Γ(h)v〉 , (4)

where Γ(h) is the matrix assigned to the group element h in the irep Γ, |v〉 is the internal charge
state and |h〉 is the state of the flux (h ∈ H). Assuming the dimension of Γ is |Γ| and defining an
orthonormal basis for |v〉 (same dimension as Γ), with i = 1, 2, ..., |Γ|, the transformation of the
charge basis vectors is written as [4]:

|v, i〉′ =
|Γ|∑
j=1

Γij(h) |v, j〉 (5)

The irreps of the group (and as a consequence the charge states) don’t have to be one dimensional.
When the irrep is 1D we have the classical and trivial abelian Aharonov − Bohm effect, in which
we get just a phase. When the irrep has a higher dimension, then we have the non-trivial (but still
abelian) Aharonov − Bohm effect in which we result with a unitary transformation (rotation) of
the state |v〉. We have to specialize in this point which irreps count as different types of charges.

In principle, charge can be measured in an Aharonov-Bohm interference experiment [4]. We
could hide the object whose charge is to be found behind a screen in between two slits, shoot a
beam of carefully calibrated fluxons at the screen, and detect the fluxons on the other side. From
the shift and visibility of the interference pattern revealed by the detected positions of the fluxons,
we can determine Γ(b) for each b ∈ H, and so deduce Γ.

However, there is a catch if the object being analyzed carries a nontrivial flux a ∈ H as well
as charge. Since carrying a flux b around the flux a changes a to bab−1, the two possible paths
followed by the b flux do not interfere, if a and b do not commute. After the b flux is detected, we
could check whether the a flux has been modified, and determine whether the b flux passed through
the slit on the left or the slit on the right. Since the flux (a or N(bab−1)) is correlated with the
“which way” information (left or right slit), the interference is destroyed.

Therefore, the experiment reveals information about the charge only if a and b commute. Hence
the charge attached to a flux a is not described as an irreducible representation of H; instead it is
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an irreducible representation of a subgroup of H, the centralizer N(a) of a in H, which is defined
as :

N(a) = {b ∈ H|ab = ba} (6)

The centralizers N(a) and N(bab−1) are isomorphic, so we may associate the centralizer with a
conjugacy class Ch of H rather than with a particular element h ∈ H, and denote it as N(Ch).
Thus, the list of the distinguishable charges is made by the ireps of the centralizers of the group H.

2.3 Superselection sectors

Collecting all the previous facts, each type of particle that can occur in our non abelian supercon-
ductor really has two labels : a conjugacy class Ch describing the flux, and the α-th irreducible
representation Γ of N(Ch) describing the charge [4]:

|Ch, αΓ〉

We say that Ch and αΓ label the superselection sectors of the theory, as these are the properties of
a localized object that must be conserved in all local physical processes. So, all the different anyon
types that can be distinguished are labeled as (Ch,

αΓ) and their dimension is d(Ch,αΓ) = |Ch| · |αΓ|.
The total dimension of the group is given by summing over all types of anyons :

D2 =
∑
Ch

∑
αΓ

d2
(Ch,αΓ) =

∑
Ch

|Ch|2
∑
αΓ

|αΓ|2 (7)

Accounting that the sum over the dimension squared for all irreducible representations of a finite
group is the order of the group, and the order of the normalizer N(Ch) is |H|/|Ch|, we obtain :

D2 =
∑
Ch

|Ch|2 ·
|H|
|Ch|

= |H|
∑
Ch

|Ch| = |H|2 (8)

2.4 Algebraic structure of quantum double

There are two physical operations upon the particles of any discrete H gauge theory, explained
previously. We can independently measure their magnetic flux and their electric charge through
quantum interference experiments. Flux measurements then correspond to operators Ph projecting
out a particular flux h, while the charge of a specific particle can be detected through its transforma-
tion properties under the residual global symmetry transformations g ∈ N(h) C H that commute
with the flux h of the particle (the centralizer is a normal subgroup of H). The combination of
global symmetry transformations followed by flux measurements :

{Ph g}h,g∈H

generate the quantum double D(H) = F(H)⊗C[H] [3]. If we have solely a flux measurement, this

corresponds to trivial global symmetry transformation :

Ph ≡ Ph e
def
= |h〉 〈h| , (9)

which acts only in the flux space of a state :

Ph |hi, αΓ〉 = Ph |hi〉 ⊗ |αΓ〉 = δh,hi |hi〉 ⊗ |
αΓ〉 = δh,hi |hi,

αΓ〉 (10)
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The flux projecting operators Ph follow the algebra :

PhPh′ = δh,h′ Ph (11)

Proof. By making two successive flux measurements we get :

PhPh′ = |h〉
〈
h
∣∣h′〉 〈h′∣∣ = δh,h′ |h〉

〈
h′
∣∣

But the right side above is non zero only for h = h′, so we can change |h′〉 to |h〉 :

PhPh′ = δh,h′ |h〉 〈h| = δh,h′Ph

Flux projection operators and global symmetry transformations for a nonabelian finite gauge group
H do not commute because global symmetry transformations g ∈ H affect the fluxes through
conjugation :

gPh = Pghg−1 g (12)

Proof. Let |hi〉 an arbitrary flux state (we omit the charge part |αΓ〉 of the state because flux
measurements and global symmetry transformations act on the flux space). We have that :

gPh |hi〉 = δh,hig |hi〉 = δh,hi
∣∣ghig−1

〉
The action of the right side of the equation is :

Pghg−1 g |hi〉 = Pghg−1

∣∣ghig−1
〉

= δghg−1,ghig−1

∣∣ghig−1
〉

But δghg−1,ghig−1 = 1 when ghg−1 = ghig
−1 ⇒ h = hi, so δghg−1,ghig−1 = δh,hi and :

Pghg−1 g |hi〉 = δh,hi
∣∣ghig−1

〉
= gPh |hi〉

Because |hi〉 is arbitrary, the equation holds in general.

Equations (11) and (12) can be gathered in the next relation :

Ph g · Ph′ g′ = δh,gh′g−1 Ph gg
′ (13)

Proof.
Ph g · Ph′ g′ = Ph

[
Pgh′g−1 g

]
g′ = PhPgh′g−1 gg′ = δh,gh′g−1Ph gg

′

The different particles (Ch,
αΓ), in which we concluded in subsection 2.3, for the theory constitute

the complete set of inequivalent irreducible representations of the quantum double D(H). To make
explicit the irreducible action of the quantum double on these particles, we have to develop some
further notation. To start with, we will label the group elements in the different conjugacy classes
of H as :

Ch ≡ AC =
{
Ah1,

Ah2, . . . ,
Ahk

}
We take the centralizer of the first element AN = N(Ah1) (the centralizers of the other elements
in the same conjugacy class are isomorphic to this). Since AN is a normal subgroup of H, we can
form the quotient group H/AN which includes all the left cosets hAN with h ∈ H (because AN is
a normal subgroup of H it holds that hAN = ANh) :

H/AN =
{
hAN |h ∈ H

}
12



The same cosets that arise in the quotient group form an equivalence class. In number, there will
be k equivalence classes (distinct cosets), same in number with the elements of the conjugacy class
AC. For each equivalence class, we choose a representative element Axi. Let

{
Ax1,

Ax2, . . . ,
Axk

}
be a set of representatives for the equivalence classes of H/AN , such that Ahi = Axi

Ah1
Ax−1

i . If
the elements hi, with i = 1, 2, . . . , k, give different cosets hi

AN , then the union of these cosets give
the whole group, that is h1

AN ∪ h2
AN ∪ · · · ∪ hkAN = H. So all the elements of the total cosets

are different. Suppose, that we pick as the first coset the one with the identity element inside, and
take as its representative Ax1 = e, for convenience. The basis vectors of the unitary irreducible
representation αΓ of the centralizer AN will be denoted by αvj . With the previous conventions in
mind, the internal Hilbert space V A

α is spanned by the quantum states (we reduce the notation for
the representations as αΓ ≡ α) : {∣∣Ahi, αvj〉}j=1,...,|α|

i=1,...,k

The element Ph g of the quantum double acting on the above eigenstates of V A
α can be represented

as (proof in [5]) :
ΠA
α (Ph g)

∣∣Ahi, αvj〉 = δh,gAhig−1

∣∣gAhig−1, α(g̃)mj
αvm

〉
, (14)

with :
g̃ := Ax−1

k gAxi, (15)

and Axk defined through Ahk := gAhig
−1. It is easily verified that this element g̃ constructed from

g and the flux Ahi indeed commutes with Ah1 and therefore can be implemented on the centralizer
charge.
In the case of a system with two particles (AC,α) and (BC, β), the corresponding Hilbert space is
the tensor product V A

α ⊗ V B
β and the extension of the element Ph g is the comultiplication :

∆ (Ph g) =
∑

h′·h′′=h
Ph′ g ⊗ Ph′′ g (16)

The braid operation is formally implemented by the universal R-matrix, which is an element of
D(H)⊗D(H) :

R =
∑
h,g∈H

Pg ⊗ Ph g =
∑
h,g∈H

Pg e⊗ Ph g (17)

TheRmatrix acts on a two particle state as a global symmetry transformation on the second particle
by the flux of the first particle. The physical braid operator R that generates a counterclockwise
interchange of the two particles is defined as the action of this R matrix followed by a transposition
(permutation) map σ : a⊗ b→ b⊗ a of the two particles :

RABαβ := σ ◦
(
ΠA
α ⊗ΠB

β

)
(R) (18)

The physical braid operator acting on the basis states
∣∣Ahi, αvj〉 ∣∣Bhm, βvn〉 of V A

α ⊗ V B
β gives us

the simple formula for it’s representation/matrix :

RABαβ
∣∣Ahi, αvj〉 ∣∣Bhm, βvn〉 =

∣∣AhiBhmAh−1
i , β(Ah̃i)ln

βvl
〉 ∣∣Ahi, αvj〉 , (19)

where the element Ah̃i is defined from equation (15) as Ah̃i = Bx−1
k

Ahi
Bxm and Bxk is the repre-

sentative of Bhk = Ahi
Bhm

Ah−1
i .

13



Proof.

RABαβ
∣∣Ahi, αvj〉 ∣∣Bhm, βvn〉 = σ ◦

(
ΠA
α ⊗ΠB

β

)
(R)

∣∣Ahi, αvj〉 ∣∣Bhm, βvn〉
= σ ◦

(
ΠA
α ⊗ΠB

β

)(∑
h,g

Pg ⊗ Ph g
) ∣∣Ahi, αvj〉 ∣∣Bhm, βvn〉

= σ ◦
∑
h,g

ΠA
α (Pg)⊗ΠB

β (Ph g)
∣∣Ahi, αvj〉 ∣∣Bhm, βvn〉

= σ ◦
∑
h,g

ΠA
α (Pg)

∣∣Ahi, αvj〉⊗ΠB
β (Ph g)

∣∣Bhm, βvn〉
and by using equations (10) and (14) we get :

RABαβ
∣∣Ahi, αvj〉 ∣∣Bhm, βvn〉 = σ ◦

∑
h,g

δg,Ahiδh,gBhmg−1

∣∣Ahi, αvj〉 ∣∣gBhmg−1, β(g̃)ln
βvl
〉

= σ ◦
∑
h

δh,AhiBhmAh−1
i

∣∣Ahi, αvj〉 ∣∣AhiBhmAh−1
i , β(Ah̃i)ln

βvl
〉

= σ ◦
( ∣∣Ahi, αvj〉 ∣∣AhiBhmAh−1

i , β(Ah̃i)ln
βvl
〉)

=
∣∣AhiBhmAh−1

i , β(Ah̃i)ln
βvl
〉 ∣∣Ahi, αvj〉

2.5 Fusion, spin and braid groups

Let (ΠA
α , V

A
α ) and (ΠB

β , V
B
β ) be two irreducible representations of the quantum double D(H). The

tensor product representation (ΠA
α ⊗ ΠB

β , V
A
α ⊗ V B

β ) constructed by means of the comultiplication
(16) need not be irreducible. In general, it gives rise to a decomposition :

ΠA
α ⊗ΠB

β =
⊕
C,γ

NABγ
αβC ΠC

γ , (20)

where NABγ
αβC stands for the multiplicity of the irreducible representation (ΠC

γ , V
C
γ ). From the

orthogonality relation for the characters of the irreducible representations of D(H), we infer (proof
in [5]) :

NABγ
αβC =

1

|H|
∑
h,g

tr
(
ΠA
α ⊗ΠB

β (∆(Ph g))
)
tr
(
ΠC
γ (Ph g)

)∗
=

1

|H|
∑

h′·h′′=h
h,g∈H

tr
(
ΠA
α (Ph′ g)⊗ΠB

β (Ph′′ g)
)
tr
(
ΠC
γ (Ph g)

)∗
, (21)

where the first trace is calculated in the basis
∣∣Ahi, αvj〉 ∣∣Bhm, βvn〉 and the second trace in the

basis
∣∣Chq, γvr〉. The fusion rule (21) now determines which particles (CC, γ) can be formed in

the composition of two given particles (AC,α) and (BC, β), or if read backwards, gives the decay
channels of the particle (CC, γ).
The fusion algebra, spanned by the elements ΠA

α with multiplication rule (21), is commutative and
associative and can therefore be diagonalized. The matrix implementing this diagonalization is the

14



so-called modular S matrix [6] :

SABαβ :=
1

|H|
trR2AB

αβ =
1

|H|
tr(RBAβα RABαβ )

=
1

|H|
∑

Ahi∈AC,Bhj∈BC
[Ahi,Bhj]=e

tr
(
α(Ax−1

i
Bhj

Axi)
)∗

tr
(
β(Bx−1

j
Ahi

Bxj)
)∗
, (22)

where the commutator between two group elements is defined as [g, h] = ghg−1h−1. The modular
S matrix (22) contains all information concerning the fusion algebra defined in (20). In particular,
the multiplicities (21) can be expressed in terms of the modular S matrix by means of Verlinde’s
formula [6] :

NABγ
αβC =

∑
D,δ

SADαδ S
BD
βδ (S∗)CDγδ

SeD1δ

(23)

The modular T matrix, which contains the spin factors assigned to the particles (anyons) of the
theory is :

TABαβ := δα,βδ
A,B exp

(
2πis(A,α)

)
= δα,βδ

A,B 1

dα
tr
(
α(Ah1)

)
, (24)

where dα stands for the dimension of the centralizer charge representation α of the particle (AC,α).
The SABαβ and TABαβ matrices now realize a unitary representation of the special linear (modular)
group SL(2,Z), under matrix multiplication, over the integers :

SL(2,Z) =
{(a b

c d

)
|a, b, c, d ∈ Z, ad− bc = 1

}
,

with the following relations :

C = (ST )3 = S2, (25)

S∗ = CS = S−1, St = S, (26)

T ∗ = T−1, T t = T. (27)

The matrices S and T are symmetric and unitary while the charge conjugation operator C assigns
a unique anti-particle C(AC,α) = (ĀC, ᾱ) to each particle (AC,α), such that the vacuum channel
occurs in the fusion rule (20) for the particle/anti-particle pairs.
We introduce the Artin group representations for Bn and Pn, that is the braid group and the pure
braid group. The braid groups Bn, n ≥ 2, have finitely many generators σ1, σ2, . . . , σn−1 (the order
of the elements and the group though are infinite) and defining relations [7] :{

σiσj = σjσi , if |i− j| ≥ 2,

σiσjσi = σjσiσj , if |i− j| = 1,
(28)

where i, j = 1, . . . , n − 1. The first equation says that braids between spatially remote strands
commute and the second one is called the Y ang − Baxter relation. The braid group refers to a
collection of identical particles. The generator σi produces a counterclockwise rotation (R matrix)
between the ith and the (i+ 1)th strand (Figure 2).
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Figure 2: Counterclockwise rotation of two identical adjacent anyons in terms of Ri (σi) operator
(left) and their clockwise rotation in terms of R−1

i (σ−1
i ) operator (right).

On the other hand, the pure braid group admits generators [7] :

Aij = σi σi−1 · · ·σj−2 σ
2
j−1 σ

−1
j−2 · · ·σ

−1
i−1 σ

−1
i , (29)

which satisfy the relations :

A−1
rs AijArs =


Aij , r < s < i < j or i < r < s < j ,

ArjAijA
−1
rj , r < s = i < j ,

(ArjAsj)Aij(ArjAsj)
−1 , r = i < s < j ,

(ArjAsjA
−1
rj A

−1
sj )Aij(AsjArjA

−1
sj A

−1
rj ) , r < i < s < j ,

(30)

with 1 ≤ i < j ≤ n. These generators correspond to starting at the ith strand, wrapping around
(twist) the jth one, and returning on the same side of the intermediate strands. The ith strand
crosses from the back the other strands, makes a loop around the jth strand in a clockwise manner
and returns from the back to its initial position (the jth strand is separated from the others, as
we see in Figure 3). The pure braid group corresponds to the process of braiding n distinguishable
particles.

Figure 3: The geometrical braid diagrams for the generators σi and Aij of the braid group and
the pure braid group respectively.

The defining relations of the two groups (28) and (30) can easily be proved geometrically. The way
we constructed the R matrices in the quantum double results for them in having finite order [3]:

Rm = 1V Aα
⊗ 1V Bβ , (31)

where it denotes that the effect of m braidings in the space V A
α ⊗ V B

β is trivial. So, given this
restriction, the relations don’t add up to the braid group but rather a finite order braid group
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(we cannot make arbitrary large and different braidings) which we call truncated braid group and
symbolize it as B(n,m). As the order of the R matrix or the particle number increases, the order
of the truncated group becomes much higher (we have more distinct braiding possibilities). For n
indistinguishable particles (AC,α), a representation is admitted for the braid group, in the tensor
product space (V A

α )⊗n, as :
σi 7→ Ri, (32)

with
Ri := 1

⊗(n−1) ⊗R⊗ 1⊗(n−i−1), (33)

where 1 ≡ 1V Aα and R = RAAαα . In addition to equation (28), we have the extra relation of the
truncated braid group (finite order) :

σmi = e, i = 1, . . . , n− 1 (34)

If specifically m = 2, we get the permutation group on n strands :

B(n, 2) ' Sn (35)

Suppose now that we have n distinguishable anyons. The system realizes a representation of the
pure braid group in the space V A1

α1
⊗ · · ·V An

αn as :

Aij 7→ Ri · · ·Rj−2R2
j−1R−1

j−2 · · ·R
−1
i , (36)

with Ri as defined in (33), with R ≡ RAiAi+1
αiαi+1 the braid operator between the ith and (i + 1)th

(distinguishable) particles. Besides equation (29), because of (34), we also have that :

A
m/2
ij = e, (37)

from which it is clear that the pure (colored) braid group P (n,m) is only defined for even m.

3 Construction of D(D5)

We begin by introducing the group. The dihedral group D5 is the group of symmetries of a regular
pentagon (Figure 4).

(3) E

B

D
(2)

C

(1)

A

(5)

(4)

Figure 4: Geometrical axial symmetries of the D5 group.
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The group has two generators, rotation by 2π
5 = 72◦ denoted as r (arbitrary direction) and reflection

across the x axis (line (3) in Figure 4) denoted as s. So we list the elements of the group :

R0 ≡ e→ identity element,

R1 ≡ r → rotate clockwise 72◦,

R2 ≡ r2 → rotate clockwise 144◦,

R3 ≡ r3 → rotate clockwise 216◦,

R4 ≡ r4 → rotate clockwise 288◦,

F3 ≡ s→ reflect across line (3),

F5 ≡ sr = r−3sr3 → reflect across line (5),

F2 ≡ sr2 = r−1sr1 → reflect across line (2),

F4 ≡ sr3 = r−4sr4 → reflect across line (4),

F1 ≡ sr4 = r−2sr2 → reflect across line (1).

So the group has the above 10 elements in total :

D5 =
〈
r, s|r5 = s2 = (sr)2 = e

〉
=
{
e, r, r2, r3, r4, s, sr, sr2, sr3, sr4

}
3.1 Conjugacy classes

The conjugacy class of e is just 0C = {e} because heh−1 = e for every h ∈ D5. To find the
conjugacy class of rn, note that when we conjugate rn by rm we get :

rmrnr−m = rn ∀m,

and when we conjugate rn by srm we get :

srmrnsrm = srmsr−nrm

= ssr−mr−nrm

= r−n ∀m

(Note that since each reflection srm has order 2, (srm)−1 = srm). Thus the conjugacy class of each
rn contains rn and r−n. In the case of D5, this gives us the classes :

1C =
{
r, r4

}
, 2C =

{
r2, r3

}
To find the conjugacy class of s, we notice that when we conjugate s by rm we get :

rmsr−m = sr−2m ∀m,

and when we conjugate s by srm we get :

srmssr−m = s ∀m

Since m can be 1, 2, 3 or 4, 2m is either 2, 4, 1 or 3 since we have to take 2m (mod 5). Thus all the
reflections form a single conjugacy class :

3C =
{
s, sr, sr2, sr3, sr4

}
Since all of the reflections are in this conjugacy class, we don’t need to compute the conjugacy class
of any of the other reflections. Therefore, D5 has the 4 conjugacy classes listed above.
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3.2 Centralizers and their irreducible representations

For elements in the same conjugacy classes, their centralizers are isomorphic. So we find the
centralizer for a single element of every conjugacy class, defined in equation (6). The centralizers
are presented below :

Conjugacy class Centralizer
0C D5
1C Z5
2C Z5
3C Z2

Table 1: The four conjugacy classes of the group D5 and the respective centralizers of their elements.

We will now derive the character tables for the representations of the centralizers Z2, Z5 and D5.

3.2.1 Character table of Z2

The cyclic group of order 2 is :
Z2 = 〈h〉 = {e, h} ,

with h2 = e. The conjugacy classes of Z2 are {e} and {h}. As the number of conjugacy classes is
equal to the number of irreducible representations, the group has 2 irreps. By summing the squares
of the dimensions of the irreps, we take the order of the group. That is :

|Z2| = 2 = 12 + 12,

so we have two 1D irreps. The character of the representation of the identity element e is always
equal to the dimension of the irrep (the element e is represented with 1 for 1D irreps and with the
identity matrix 1n×n for nD irreps). Hence, the character table has the form :

Z2 e h

χ(0Γ̃) 1 κ

χ(1Γ̃) 1 λ

where 0Γ̃ and 1Γ̃ are the two 1D irreps. By the character orthogonality :

〈χj , χk〉 =
1

|H|
∑
h∈H

χj (h)χk (h) = δj,k, (38)

which indicates the row orthogonality in the character table, we have :

For j, k = 0→ 0Γ̃ as χi ≡ χ(iΓ̃)⇒ 1

|Z2|
∑
h∈Z2

χ0 (h)χ0 (h) = 1⇒

1

2

(
1 · 1 + κ · κ∗

)
= 1⇒ |κ|2 + 1 = 2⇒ |κ|2 = 1⇒ κ = ±1 ∈ R

We choose κ = 1 so we have the trivial representation. Every group can be represented by the
trivial representation (1D), so it always exists and it’s irreducible (it satisfies every multiplication
table).
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For j = 0→ 0Γ̃ and k = 1→ 1Γ̃⇒ 1

|Z2|
∑
h∈Z2

χ0 (h)χ1 (h) = 1⇒

1

2

(
1 · 1 + 1 · λ∗

)
= 0⇒ 1 + λ∗ = 0⇒ λ∗ = −1 = λ ∈ R

and we get the sign representation. Thus, the character table of Z2 becomes :

Z2 e h

χ(0Γ̃) 1 1

χ(1Γ̃) 1 −1

In the following step, we obtain the character table of Z5.

3.2.2 Character table of Z5

The cyclic group of order 5 is :

Z5 = 〈h〉 =
{
e, h, h2, h3, h4

}
with h5 = e. The conjugacy classes of Z5 are {e}, {h},

{
h2
}

,
{
h3
}

and
{
h4
}

. So it has 5 irreducible
representations. We see that the cyclic groups have exactly the same number of conjugacy classes
and elements. To avoid the lengthy analytical process, we will prove a Theorem that reveals
immediately the character table of Z5.

Theorem 3.1: Let V be a vector space over the field of the complex numbers C. Let

Zn = 〈h|hn = e〉 =
{
e, h, h2, . . . , hn−1

}
be the cyclic group of order n, and let ω = e2πi/n ∈ C.

1 For every k = 0, 1, . . . , n − 1, the pair (Ck,Γk) given by Ck = C, Γk (h) =
[
ωk
]

is a one
dimensional representation of Zn.

2 No two of these representations are isomorphic.

3 Let (V,Γ) be an irreducible representation of Zn. Then there exists exactly one k ∈ {0, 1, . . . , n− 1}
such that (V,Γ) is isomorphic to (Ck,Γk).

Proof. 1 To prove that for every k, (Ck,Γk) is a representation of the group Zn = 〈h|hn = e〉, it
means that a group homomorphism f : Zn → H is determined by f (h), as long as f (h)n = eH .
For Γk : Zn → GL (C) given by Γk (h) = ωkidC, we see that

Γk (hn) = ωknidC = idC = Γk (e) .

2 To prove that different k give nonisomorphic representations, if f : Ck → Cl an isomorphism,
then f (x) = αx for some α 6= 0 ∈ C. It occurs that

f (αx) = αf (x)⇒ ωkαx = ωlαx⇒

ωk = ωl ⇒ k ≡ l (mod n)⇒ k = l.
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3 To prove that any irreducible (V,Γ) is isomorphic to one of these, we start by supposing that
Γ (h) has an eigenvector v ∈ V , with eigenvalue λ. Then, v is an eigenvector for Γ

(
hj
)

for all
j. Let CV a subrepresentation of V , then because V is irreducible ⇒ V = CV . So, V = CV
is one dimensional, which means Γ (h) = λid and :

id = Γ (e) = Γ (hn) = Γ (h)n = λnid⇒

λn = 1⇒ λ = ωk for some k

As a result, we get (V,Γ) ∼= (Ck,Γk).

We can figure out the dimensions of the irreps (di > 0 for i = 0, 1, 2, 3, 4) from the fact that :

|Z5| = 5 = 12 + 12 + 12 + 12 + 12,

which indicates that all the irreps are 1D (every cyclic groups has only 1D irreps). We found that
the generator element h ∈ Z5 has 5 non equivalent representations :

Γ0 (h) ≡ 0Γ̂ (h) = ω0 = 1,

Γ1 (h) ≡ 1Γ̂ (h) = ω,

Γ2 (h) ≡ 2Γ̂ (h) = ω2,

Γ3 (h) ≡ 3Γ̂ (h) = ω3,

Γ4 (h) ≡ 4Γ̂ (h) = ω4

According to the above irreps, we find the representations for the other elements of the group with
number/scalar multiplication (all the irreps are 1D), following the multiplication rules of the group.
The character table of Z5 is :

Z5 e h h2 h3 h4

χ(0Γ̂) 1 1 1 1 1

χ(1Γ̂) 1 ω ω2 ω3 ω4

χ(2Γ̂) 1 ω2 ω4 ω ω3

χ(3Γ̂) 1 ω3 ω ω4 ω2

χ(4Γ̂) 1 ω4 ω3 ω2 ω

Next, we construct the character table for D5.

3.2.3 Character table and representations of D5

The group D5, as we derived in subsection 3.1, has 4 conjugacy classes. The 4 irreps have dimensions
d0 = d1 = 1 and d2 = d3 = 2.

Proof. The dimensions of the 4 irreps should satisfy the relation :

|D5| = 10 =

4∑
i=0

d2
i = d2

0 + d2
1 + d2

2 + d2
3 + d2

4

We must examine all the possible cases.
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Case 1: di ≥ 4
We observe that di < 4 (0 ≤ i ≤ 4) because if di = 4 :

10 < 16 + d2
j + d2

k + d2
l

Case 2: di = 3
Also di 6= 3 because in such case we would have :

10 = 9 + d2
j + d2

k + d2
l ⇒ d2

j + d2
k + d2

l = 1

but we know that :
d2
j + d2

k + d2
l ≥ 12 + 12 + 12 = 3

Case 3: di = 1 ∀i
We would have :

12 + 12 + 12 + 12 = 4 6= 10

Case 4: di = 2 ∀i
We would have :

22 + 22 + 22 + 22 = 16 6= 10

Case 5: di = dj = dk = 1 and dl = 2
We would have :

12 + 12 + 12 + 22 = 7 6= 10

Case 6: di = dj = dk = 2 and dl = 1
We would have :

22 + 22 + 22 + 12 = 13 6= 10

So we are left only with the case when we have di = dj = 1 and dk = dl = 2 :

12 + 12 + 22 + 22 = 10

We construct the character table of D5 :

D5 e 1C 2C 3C

χ(0Γ) 1 1 1 1

χ(1Γ) 1 c1 c2 c3

χ(2Γ) 2 c4 c5 c6

χ(3Γ) 2 c7 c8 c9

The first irrep 0Γ has to be the trivial representation (always ∃). Because elements in the same
conjugacy class have the same character, we have that χ (r) = χ

(
r4
)

and χ
(
r2
)

= χ
(
r3
)
. Since

r5 = e, the second linear (1D) irrep 1Γ must meet the relation :

χ5(r) = 1⇒ χ (r) = c1 = e2nπi/5

But this solution has to satisfy also the multiplication rules of the group :

χ4(r) = χ
(
r4
)

= χ (r)⇒ c4
1 = c1 ⇒ c1

(
c3

1 − 1
)

= 0⇒ c1 = 0, e2mπi/3

The value c1 = 0 doesn’t satisfy the equation c5
1 = 1 and we reject it. Furthermore, the character

property χ
(
r−1
)

= χ (r) gives us χ (r) = χ
(
r−1
)

= χ (r) ⇒ χ (r) ∈ R. As a result, the complex
numbers are rejected as solutions and we get c1 = 1. By the same reasoning, we get c2 = 1.
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For y ∈ 3C we must have :
χ2(y) = c2

3 = 1⇒ c3 = ±1

For c3 = 1 we take again the trivial representation so we conclude that c3 = −1 which leads to the
sign representation. For the 2D irreps we use the character orthogonality :

〈χ(0Γ), χ(2Γ)〉 = 0⇒ 1

10

(
2 + 2c∗4 + 2c∗5 + 5c∗6

)
= 0,

and :

〈χ(1Γ), χ(2Γ)〉 = 0⇒ 1

10

(
2 + 2c∗4 + 2c∗5 − 5c∗6

)
= 0

Substracting the two above equations, we get c∗6 = 0 = c6. With similar procedure, using the
orthogonality relations 〈χ(0Γ), χ(3Γ)〉 = 〈χ(1Γ), χ(3Γ)〉 = 0 and then substracting the two, we get
c∗9 = 0 = c9. Moving on, the normalization of the 3rd row gives :

〈χ(2Γ), χ(2Γ)〉 = 1⇒ |c4|2 + |c5|2 = 3

But we earlier mentioned that χ(1C), χ(2C) ∈ R (for all the irreps), so we are left with the two
following equations :

c2
4 + c2

5 = 3

1 + c4 + c5 = 0

}
⇒ c2

4 + (1 + c4)2 = 3⇒ c2
4 + c4 − 1 = 0

The solutions of the trinomial are c4 = −1±
√

5
2 . Suppose we accept c4 = −1+

√
5

2 = 2 cos 2π
5 . Then we

get that c5 = −1−
√

5
2 = 2 cos 4π

5 . If we take the relations 〈χ(0Γ), χ(3Γ)〉 = 0 and 〈χ(3Γ), χ(3Γ)〉 = 1,
we result with the same set (with the above) of equations for c7 and c8. In order not to have
the same representation as 2Γ, we make the inverse selection of solutions, hence c7 = 2 cos 4π

5 and
c8 = 2 cos 2π

5 . Eventually, the character table of D5 becomes :

D5 e 1C 2C 3C

χ(0Γ) 1 1 1 1

χ(1Γ) 1 1 1 −1

χ(2Γ) 2 2 cos 2π
5 2 cos 4π

5 0

χ(3Γ) 2 2 cos 4π
5 2 cos 2π

5 0

As we have discovered the 1D representations of D5 (equals to the character of the elements),
we establish the 2D representations (in matrix form). We just have to find the matrices for the
generator elements r and s. We work geometrically in Figure 4. For the irrep 2Γ, by transforming the
pentagon edges C

.
=
(
cos 2π

5 , sin
2π
5

)
to E

.
= (1, 0) with 2Γ(r) and A

.
=
(
cos 4π

5 , sin
4π
5

)
to E

.
= (1, 0)

with 2Γ(r2) = 2Γ2(r) in combination with the character relation χ(2Γ(r)) = tr{2Γ(r)} = 2 cos 2π
5 ,

we result in the clockwise rotation by 2π
5 :

2Γ(r) =

(
cos 2π

5 sin 2π
5

− sin 2π
5 cos 2π

5

)

For the representation of the reflection s, using the relation 2Γ(r)2Γ(s)2Γ(r) = 2Γ(s), the character
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relation χ(2Γ(s)) = tr{2Γ(s)} = 0 and also transforming the edge E
.

= (1, 0) with 2Γ(s) to itself
(trivially), we get :

2Γ(s) =

(
1 0
0 −1

)
For the irrep 3Γ, the procedure is similar here but the character relation for the r element χ(3Γ(r)) =
tr{3Γ(r)} = 2 cos 4π

5 reveals that we are dealing with a clockwise rotation by 4π
5 :

3Γ(r) =

(
cos 4π

5 sin 4π
5

− sin 4π
5 cos 4π

5

)
,

which, for instance, transforms the edge A
.

=
(
cos 4π

5 , sin
4π
5

)
to E

.
= (1, 0). For 3Γ(s), the respective

relations as for 2Γ(s) give the same matrix :

3Γ(s) =

(
1 0
0 −1

)

3.3 Representations of D(D5)

The representations of the quantum double D(D5) can be constructed using pairs of the conjugacy
classes of the group and the irreducible representations of their centralizers (subsection 2.3). As a
result, we have the following 16 inequivalent and irreducible representations of D(D5) :

1 ≡ A ≡
∣∣e, 0Γ

〉
, 2 ≡ B ≡

∣∣e, 1Γ
〉
, 3 ≡ C ≡

∣∣e, 2Γ
〉
,

4 ≡ D ≡
∣∣e, 3Γ

〉
, 5 ≡ E ≡

∣∣1C, 0Γ̂
〉
, 6 ≡ F ≡

∣∣1C, 1Γ̂
〉
,

7 ≡ G ≡
∣∣1C, 2Γ̂

〉
, 8 ≡ H ≡

∣∣1C, 3Γ̂
〉
, 9 ≡ I ≡

∣∣1C, 4Γ̂
〉
, (39)

10 ≡ J ≡
∣∣2C, 0Γ̂

〉
, 11 ≡ K ≡

∣∣2C, 1Γ̂
〉
, 12 ≡ L ≡

∣∣2C, 2Γ̂
〉
,

13 ≡M ≡
∣∣2C, 3Γ̂

〉
, 14 ≡ N ≡

∣∣2C, 4Γ̂
〉
, 15 ≡ O ≡

∣∣3C, 0Γ̃
〉
,

16 ≡ P ≡
∣∣3C, 1Γ̃

〉
Among those, there are two one-dimensional anyons (1 and 2), twelve two-dimensional anyons
(3 − 14) and two five-dimensional anyons (15 and 16) that satisfy equations (7) and (8), that is
2 · 12 + 12 · 22 + 2 · 52 = 100 = 102 = |D5|2 = |D(D5)|, where |D(D5)| is the order of the quantum
double algebra.
The state

∣∣e, 0Γ
〉

corresponds to the trivial sector (trivial electric and magnetic parts). The purely

magnetic flux sectors are
∣∣1C, 0Γ̂

〉
,
∣∣2C, 0Γ̂

〉
and

∣∣3C, 0Γ̃
〉
. The purely electric sectors are the pairs

of trivial magnetic flux and a non-trivial representation, which are
∣∣e, 1Γ

〉
,
∣∣e, 2Γ

〉
and

∣∣e, 3Γ
〉
. The

remaining sectors, being combinations of non-trivial fluxes and non-trivial representation of the
centralizers, are dyonic sectors, meaning that they correspond to non-trivial magnetic fluxes and
electric charges.

3.4 Modular matrices and charge conjugation

We will calculate the two generators of the modular group S and T , which encode information
about the braiding properties (S → mutual statistics, T → self-statistics) and fusion rules of the
anyons, and the charge conjugation operator C that determines the anti-particles of the anyons
within the framework of the 16 particles of this theory.
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3.4.1 S matrix

To begin with, we label the elements of the 4 conjugacy classes of D5 :

0C =
{

0h1 = e
}

1C =
{

1h1 = r, 1h2 = r4
}

2C =
{

2h1 = r2, 2h2 = r3
}

(40)
3C =

{
3h1 = s, 3h2 = sr, 3h3 = sr2, 3h4 = sr3, 3h5 = sr4

}
Then, we illustrate a choice of representatives for the equivalence classes of the quotient groups
H/AN (subsection 2.4), which we need in order to calculate the S matrix from formula (22).
For the conjugacy class 0C = {e} we have the centralizer 0N = N (0C) = D5, so :

H/0N = D5/D5 =
{
e
{
e, r, . . . , sr4

}
, r
{
e, r, . . . , sr4

}
, . . . , sr4

{
e, r, . . . , sr4

}}
= {D5}

As we have 1 distinct coset (here the group D5), the order of the quotient group is 1 :∣∣H/0N
∣∣ =
|D5|
|D5|

= 1

We select as a representative from this coset the identity element 0x1 = e.
For the conjugacy class 1C =

{
r, r4

}
we have the centralizer 1N = N (1C) = Z5, so :

H/1N = D5/Z5 =
{
e
{
e, r, . . . , r4

}
, r
{
e, r, . . . , r4

}
, . . . , sr4

{
e, r, . . . , r4

}}
=
{
Z5,

3C
}

As we have 2 distinct cosets, the group Z5 and the conjugacy class 3C, the order of the quotient
group is 2 : ∣∣H/1N

∣∣ =
|D5|
|Z5|

=
10

5
= 2

We select as a representative from the coset Z5 the identity element 1x1 = e and from the coset 3C
the element 1x2 = s. For the conjugacy class 2C =

{
r2, r3

}
we have the centralizer 2N = N (2C) =

Z5, so :

H/2N = D5/Z5 =
{
eZ5, rZ5, . . . , sr

4Z5

}
=
{
Z5,

3C
}

We have the same 2 distinct cosets and we choose again as representatives the elements 2x1 = e and
2x2 = s. For the conjugacy class 3C =

{
s, sr, sr2, sr3, sr4

}
we have the centralizer 3N = N (3C) =

Z2, so :

H/3N = D5/Z2 =
{
e {e, s} , . . . , sr4 {e, s}

}
=
{
{e, s} ,

{
r2, sr3

}
,
{
r4, sr

}
,
{
r, sr4

}
,
{
r3, sr2

}}
≡ {Z2,A,B,C,D}

As we have 5 distinct cosets, the group Z2 and the cosets A,B,C and D, the order of the quotient
group is 5 : ∣∣H/3N

∣∣ =
|D5|
|Z2|

=
10

2
= 5

We select as a representative from the coset Z2 the identity element 3x1 = e, from the coset A the
element 3x2 = r2, from the coset B the element 3x3 = r4, from the coset C the element 3x4 = r and
from the coset D the element 3x5 = r3. The representatives are listed in section 6.
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We will evaluate a single element of the S matrix just to show how the matrix was calculated.
The notation for an anyon state, out of the total 16, will be |i〉 = |AC, αΓ〉 with A ∈ {0, 1, 2, 3},
Γ ∈

{
Γ, Γ̂, Γ̃

}
and α = α (A). For two given representations of D(D5), |AC, αΓ〉 =

∣∣1C, 0Γ̂
〉

and∣∣BC, βΓ
〉

=
∣∣1C, 0Γ̂

〉
, we have :

S55 ≡ 〈5|S |5〉 ≡
〈

1C, 0Γ̂
∣∣S∣∣1C, 0Γ̂

〉
=

1

10

∑
1hi∈1C,1hj∈1C

[1hi,1hj]=e

tr
(

0Γ̂(1x−1
i

1hj
1xi)

)∗
tr
(

0Γ̂(1x−1
j

1hi
1xj)

)∗

We examine for which elements we make the summation. For i = j → [1hi,
1hi] = e for all 1hi ∈ 1C.

For i 6= j → [1hi,
1hj ] 6= e with i, j = 1, 2. So we get :

S55 =
1

10

[
2χ∗0Γ̂

(
1h1

)
χ∗0Γ̂

(
1h1

)
+ 2χ∗0Γ̂

(
1h2

)
χ∗0Γ̂

(
1h2

)]
,

and reading the value for χ0Γ̂

(
1C
)

from the character table of Z5, we find :

S55 =
1

10

[
2 · 1 · 1 + 2 · 1 · 1

]
=

4

10

The complete S matrix is :

S =
1

10



1 1 2 2 2 2 2 2 2 2 2 2 2 2 5 5
1 1 2 2 2 2 2 2 2 2 2 2 2 2 −5 −5
2 2 4 4 x x x x x y y y y y 0 0
2 2 4 4 y y y y y x x x x x 0 0
2 2 x y 4 x y y x 4 x y y x 0 0
2 2 x y x y y x 4 y y x 4 x 0 0
2 2 x y y y x 4 x x 4 x y y 0 0
2 2 x y y x 4 x y x y y x 4 0 0
2 2 x y x 4 x y y y x 4 x y 0 0
2 2 y x 4 y x x y 4 y x x y 0 0
2 2 y x x y 4 y x y x x y 4 0 0
2 2 y x y x x y 4 x x y 4 y 0 0
2 2 y x y 4 y x x x y 4 y x 0 0
2 2 y x x x y 4 y y 4 y x x 0 0
5 −5 0 0 0 0 0 0 0 0 0 0 0 0 5 −5
5 −5 0 0 0 0 0 0 0 0 0 0 0 0 −5 5



, (41)

with x =
√

5− 1 = 4 cos 2π
5 and y = −(

√
5 + 1) = 4 cos 4π

5 . From subsection 3.2.2, for D5 we have

ω = e2πi/5 and we can alternatively have the expressions x = 2(ω + ω) and y = 2(ω2 + ω2).

3.4.2 T matrix

We use the equation (24) :

T11 ≡ T 0,0
0Γ,0Γ

=
χ0Γ

(
0h1

)
d0Γ

=
1

1
= 1, T22 ≡ T 0,0

1Γ,1Γ
=
χ1Γ

(
0h1

)
d1Γ

=
1

1
= 1,

T33 ≡ T 0,0
2Γ,2Γ

=
χ2Γ

(
0h1

)
d2Γ

=
2

2
= 1, T44 ≡ T 0,0

3Γ,3Γ
=
χ3Γ

(
0h1

)
d3Γ

=
2

2
= 1,
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T55 ≡ T 1,1
0Γ̂,0Γ̂

=
χ0Γ̂

(
1h1

)
d0Γ̂

=
1

1
= 1, T66 ≡ T 1,1

1Γ̂,1Γ̂
=
χ1Γ̂

(
1h1

)
d1Γ̂

=
ω

1
= ω,

T77 ≡ T 1,1
2Γ̂,2Γ̂

=
χ2Γ̂

(
1h1

)
d2Γ̂

=
ω2

1
= ω2, T88 ≡ T 1,1

3Γ̂,3Γ̂
=
χ3Γ̂

(
1h1

)
d3Γ̂

=
ω3

1
= ω3,

T99 ≡ T 1,1
4Γ̂,4Γ̂

=
χ4Γ̂

(
1h1

)
d4Γ̂

=
ω4

1
= ω4, T1010 ≡ T 2,2

0Γ̂,0Γ̂
=
χ0Γ̂

(
2h1

)
d0Γ̂

=
1

1
= 1,

T1111 ≡ T 2,2
1Γ̂,1Γ̂

=
χ1Γ̂

(
2h1

)
d1Γ̂

=
ω2

1
= ω2, T1212 ≡ T 2,2

2Γ̂,2Γ̂
=
χ2Γ̂

(
2h1

)
d2Γ̂

=
ω4

1
= ω4,

T1313 ≡ T 2,2
3Γ̂,3Γ̂

=
χ3Γ̂

(
2h1

)
d3Γ̂

=
ω

1
= ω, T1414 ≡ T 2,2

4Γ̂,4Γ̂
=
χ4Γ̂

(
2h1

)
d4Γ̂

=
ω3

1
= ω3,

T1515 ≡ T 3,3
0Γ̃,0Γ̃

=
χ0Γ̃

(
3h1

)
d0Γ̃

=
1

1
= 1, T1616 ≡ T 3,3

1Γ̃,1Γ̃
=
χ1Γ̃

(
3h1

)
d1Γ̃

=
−1

1
= −1

Collecting the elements of the T matrix, we get :

T = diag
(
1, 1, 1, 1, 1, ω, ω2, ω3, ω4, 1, ω2, ω4, ω, ω3, 1,−1

)
(42)

All the non-diagonal elements of the T matrix are zero. The spin factors of the anyons are (equation
(24)) :

T11 = exp
(
2πis1

)
= 1⇒ s1 = 0,

T22 = exp
(
2πis2

)
= 1⇒ s2 = 0,

T33 = exp
(
2πis3

)
= 1⇒ s3 = 0,

T44 = exp
(
2πis4

)
= 1⇒ s4 = 0,

T55 = exp
(
2πis5

)
= 1⇒ s5 = 0,

T66 = exp
(
2πis6

)
= ω = exp

(
2πi/5

)
⇒ s6 = 1/5,

T77 = exp
(
2πis7

)
= ω2 = exp

(
4πi/5

)
⇒ s7 = 2/5,

T88 = exp
(
2πis8

)
= ω3 = exp

(
6πi/5

)
⇒ s8 = 3/5,

T99 = exp
(
2πis9

)
= ω4 = exp

(
8πi/5

)
⇒ s9 = 4/5, (43)

T1010 = exp
(
2πis10

)
= 1⇒ s10 = 0,

T1111 = exp
(
2πis11

)
= ω2 = exp

(
4πi/5

)
⇒ s11 = 2/5,

T1212 = exp
(
2πis12

)
= ω4 = exp

(
8πi/5

)
⇒ s12 = 4/5,

T1313 = exp
(
2πis13

)
= ω = exp

(
2πi/5

)
⇒ s13 = 1/5,

T1414 = exp
(
2πis14

)
= ω3 = exp

(
6πi/5

)
⇒ s14 = 3/5,

T1515 = exp
(
2πis15

)
= 1⇒ s15 = 0,

T1616 = exp
(
2πis16

)
= −1 = exp

(
πi
)
⇒ s16 = 1/2

We characterize the abelian anyons 1, 2 (d1 = d2 = 1) as ”bosons” due to value of their spin factor
(this theory has no ”fermions” i.e. 1D anyons with φ = π → s = 1/2).
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3.4.3 C matrix

From the relation (25), using the S matrix of D5 (equation (41)) :

C = S2 = diag
(
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

)
= 116×16 (44)

So we see that every particle has itself as antiparticle.

3.5 Fusion rules

We determine the fusion rules by utilizing the Verlinde’s formula (equation (23)), where S∗ = S
because all the elements of the S matrix are real. For our theory, the multiplicities are NABγ

αβC ≡
Nab
c = 0, 1, so two anyons a ≡ (AC,α) and b ≡ (BC, β) can either fuse to an anyon c ≡ (CC, γ)

by a single channel or not at all. Because the fusion of anyons is an associative process, that is to
say a × b = b × a, we can save time in the computation by calculating half of the elements of the
fusion rules. It is worth noting that for the pure electric states, the fusion process does correspond
to a tensor product of the two representations since there is no flux metamorphosis involved. As
such, the fusion rules for the pure electric states can be obtained by reducing the tensor product
into a direct sum of irreducible representations. Also, we see that fusion, being a decomposition of
products of representation, can only generate representations of dimension equal or lower than the
maximum dimension of the representations being fused. The fusion rules are included in section 6.

3.6 Anyon scattering

Here, we look at a simple example of abelian Aharonov−Bohm scattering, namely for two anyons
with magnetic fluxes that commute [3]. For (AC,α) = (1C, 0Γ̂) ≡ 5 and (BC, β) = (2C, 1Γ̂) ≡ 11,
we find their monodromy matrix R2 = R115R511 and use it to find the cross section of the scat-
tering process with the anyon 5 being the projectile and the anyon 11 being the scatterer (Figure 5).

Figure 5: The geometry of the Aharonov −Bohm elastic scattering experiment. The projectile
anyon (plane wave with momentum p) never enters the nearby region of the scatterer, who has
it’s position fixed at the origin. The cross section for the scattered projectile is measured by a

detector placed at a scattering angle θ.
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We see that for arbitrary 1hi ∈ 1C and 2hj ∈ 2C we have
[
1hi,

2hj
]

= rkrlr−kr−l = e for k = 1, 4
and l = 2, 3, thus we are dealing with the abelian case of the phenomenon. To calculate R511, we
use equation (19) :

R511

∣∣1h1,
0v̂
〉∣∣2h1,

1v̂
〉

= ω
∣∣2h1,

1v̂
〉∣∣1h1,

0v̂
〉
⇒ R511

∣∣1〉 = ω
∣∣1〉,

R511

∣∣1h1,
0v̂
〉∣∣2h2,

1v̂
〉

= ω
∣∣2h2,

1v̂
〉∣∣1h1,

0v̂
〉
⇒ R511

∣∣2〉 = ω
∣∣3〉,

R511

∣∣1h2,
0v̂
〉∣∣2h1,

1v̂
〉

= ω
∣∣2h1,

1v̂
〉∣∣1h2,

0v̂
〉
⇒ R511

∣∣3〉 = ω
∣∣2〉,

R511

∣∣1h2,
0v̂
〉∣∣2h2,

1v̂
〉

= ω
∣∣2h2,

1v̂
〉∣∣1h2,

0v̂
〉
⇒ R511

∣∣4〉 = ω
∣∣4〉,

so the braid matrix R511, in the basis of the two anyons
∣∣i〉 with i = 1, 2, 3, 4, is :

R511 =


ω 0 0 0
0 0 ω 0
0 ω 0 0
0 0 0 ω


In the same basis, we similarly find :

R115 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


The monodromy matrix of the anyons 5 and 11 is :

R2 = R115R511 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



ω 0 0 0
0 0 ω 0
0 ω 0 0
0 0 0 ω

 =


ω 0 0 0
0 ω 0 0
0 0 ω 0
0 0 0 ω


We see that the monodromy matrix is diagonal with phases e2πiα as elements, as we expected for
the abelian case. The differential cross section for this particular scattering experiment turns out
[3] :

dσ

dθ
=

sin2
(
πα
)

2πp sin2
(
θ/2
) =

sin2
(
π/5

)
2πp sin2

(
θ/2
) , (45)

because ω, ω = e±2πi/5 = e2πiα ⇒ α = ±1/5. In every abelian case of D(D5), the resulting phases
are always ωn and ω−n with n ∈ {0, 1, 2, 3, 4}, so α = ±n/5 but we have the same cross section for
both signs of a given α value as the sinus is squared in the above formula. For the non-abelian case,
the particles involved may exchange internal flux/charge quantum numbers which corresponds to
non-diagonal monodromy matrices R2. There are two formulas for dσ/dθ in the non-abelian case,
with their difference being in whether the detector can distinguish between the different internal
appearances of the projectile or not [3],[8]. In addition, we note that all the R matrices are included
in section 6.
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4 Quantum computation with anyon models

In this section, we provide the basic tools of how to use anyon models for encoding and processing
quantum information. The general idea is to encode a qudit in the dimension of the fusion space.
Then, we introduce two main techniques to construct the braiding generators, the first being with
F and R symbols and the second one via the representations of the quantum double. We illustrate
these methods on both Fibonacci and Ising anyons and the quantum double models D

(
S3

)
and

D
(
D5

)
. Finally, we point out how the Fibonacci anyons can perfom universal quantum computation

and also introduce two other ideas, in relevance with our work, that can solve this major problem
of universality, that is constructing the whole spectrum of quantum gates.

4.1 Measurements with pairs of fluxes

As pure fluxes we consider the anyon types that carry trivial representation of the centralizer of
the conjugacy class in which the flux element belongs :∣∣h〉 ≡ ∣∣h, 0Γ

〉
We look separately each conjugacy class. In D5, for the conjugacy classes 0C, 1C and 2C we have
only one pair of different fluxes, each one having trivial total flux hh′ = e with h, h′ ∈ AC :

0C →
∣∣h, h′〉 =

∣∣e, e〉 =
∣∣0; 0C

〉
,

1C →
∣∣h, h′〉 =

∣∣r, r−1
〉

=
∣∣r, r4

〉
=
∣∣0; 1C

〉
,

2C →
∣∣h, h′〉 =

∣∣r2, r−2
〉

=
∣∣r2, r3

〉
=
∣∣0; 2C

〉
The braiding of the two fluxes is also trivial (h and h′ = h−1 commute) :

R
∣∣h, h′〉 =

∣∣hh′h−1, h
〉

=
∣∣h′, h〉⇒ R2

∣∣h, h′〉 =
∣∣h, h′〉⇒ R2 = I,

where we used the flux metamorphosis rule (2). When flux metamorphosis happens between pure
fluxes, the action of the braiding matrix (19) gives a trivial scalar factor, as their representation is
trivial. But for h, h′ ∈ 3C (h 6= h′), we have non trivial total flux and the braid operator R has
orbits of length five. If we choose

∣∣h, h′〉 =
∣∣s, sr〉 as a pair of fluxes, we have [4]:

R :
∣∣s, sr〉→ ∣∣sr4, s

〉
→
∣∣sr3, sr4

〉
→
∣∣sr2, sr3

〉
→
∣∣sr, sr2

〉
→
∣∣s, sr〉⇒ R5 = I,

which holds for every arbitrary pair
∣∣h, h′〉. Thus, if the two fluxons are exchanged five times, they

swap positions (the number of exchanges is odd), yet the labeling of the state is unmodified. This
observation means that there can be quantum interference between the “direct” and “exchange”
scattering of two fluxons that carry distinct labels in the same conjugacy class, reinforcing the
notion that fluxes carrying conjugate labels ought to be regarded as indistinguishable particles.
Since the braid operator acting on pairs of distinct fluxes in 3C satisfies R5 = I, its eigenvalues are
fifth roots of unity. For example, by taking linear combinations of the five states with total flux
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hh′ = r, we obtain the R eigenstates :

R = 1 :
∣∣s, sr〉+

∣∣sr4, s
〉

+
∣∣sr3, sr4

〉
+
∣∣sr2, sr3

〉
+
∣∣sr, sr2

〉
,

R = ω :
∣∣s, sr〉+ ω

∣∣sr4, s
〉

+ ω2
∣∣sr3, sr4

〉
+ ω2

∣∣sr2, sr3
〉

+ ω
∣∣sr, sr2

〉
,

R = ω2 :
∣∣s, sr〉+ ω2

∣∣sr4, s
〉

+ ω
∣∣sr3, sr4

〉
+ ω

∣∣sr2, sr3
〉

+ ω2
∣∣sr, sr2

〉
,

R = ω2 :
∣∣s, sr〉+ ω2

∣∣sr4, s
〉

+ ω
∣∣sr3, sr4

〉
+ ω

∣∣sr2, sr3
〉

+ ω2
∣∣sr, sr2

〉
,

R = ω :
∣∣s, sr〉+ ω

∣∣sr4, s
〉

+ ω2
∣∣sr3, sr4

〉
+ ω2

∣∣sr2, sr3
〉

+ ω
∣∣sr, sr2

〉
,

where ω = e2πi/5.
Although a pair of fluxes

∣∣h, h−1
〉

with trivial total flux has trivial braiding properties, it is inter-
esting for another reason — it carries charge. The way to detect the charge of an object is to carry
a flux g around the object (counterclockwise); this modifies the object by the action of αΓ

(
g
)

for
some representation α of H. If the charge is zero then the representation is trivial — Γ

(
g
)

= I for
all g ∈ H. But if we carry a flux g counterclockwise around the state

∣∣h, h−1
〉
, the state transforms

as (due to equation (2)) :
R
∣∣g〉∣∣h, h−1

〉
→
∣∣ghg−1, gh−1g−1

〉∣∣g〉,
a nontrivial action (for at least some g) if h belongs to a conjugacy class with more than one
element. In fact, for each conjugacy class Ch, there is a unique state

∣∣0;Ch
〉

with zero charge, the
uniform superposition of the class representatives :∣∣0;Ch

〉
=

1√
|Ch|

∑
h∈Ch

∣∣h, h−1
〉
,

where
∣∣Ch∣∣ denotes the order of Ch. A pair of fluxons in the class Ch, that can be created in a

local process, must not carry any conserved charges and therefore must be in the state
∣∣0;Ch

〉
(we

create them from the vaccum because they have trivial flux and charge). Other linear combinations
orthogonal to

∣∣0;Ch
〉

carry nonzero charge. This charge carried by a pair of fluxons can be detected
by other fluxons, yet oddly the charge cannot be localized on the core of either particle in the pair.
Rather it is a collective property of the pair. If two fluxons with a nonzero total charge are brought
together, complete annihilation of the pair will be forbidden by charge conservation, even though
the total flux is zero.
In the case of a pair of fluxons from the conjugacy class 3C of H = D5, for example, there is a
two-dimensional subspace with trivial total flux and nontrivial charge, for which we may choose
(not uniquely) the basis :∣∣0〉 =

∣∣s, s〉+ ω
∣∣sr, sr〉+ ω2

∣∣sr2, sr2
〉

+ ω2
∣∣sr3, sr3

〉
+ ω

∣∣sr4, sr4
〉
,∣∣1〉 =

∣∣s, s〉+ ω
∣∣sr, sr〉+ ω2

∣∣sr2, sr2
〉

+ ω2
∣∣sr3, sr3

〉
+ ω

∣∣sr4, sr4
〉
,

with evident orthogonality →
〈
0
∣∣1〉 =

〈
1
∣∣0〉 = 0 and not orthonormality →

〈
0
∣∣0〉 =

〈
1
∣∣1〉 = 5 6= 1.

If the generator flux r of D5 is carried around these two basis states consisting of fluxon pairs, we
take :

R
∣∣r〉∣∣0〉 = ω2

∣∣0〉∣∣r〉
R
∣∣r〉∣∣1〉 = ω2

∣∣1〉∣∣r〉
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Therefore, the action (by conjugation) of r ∈ D5 on these states is :

Γ
(
r
)

=

(
ω2 0
0 ω2

)
,

which is the complex extension of the real matrix 3Γ
(
r
)

we found in subsection 3.2.3. It represents
a unitary clockwise rotation by 4π/5 on the complex plane (acts on the complex numbers x+ iy =
(x y)T ) whereas 3Γ

(
r
)

represents a clockwise rotation on the real plane by the same angle.
When the second generator of the group s ∈ D5 is carried around the basis states, we get :

R
∣∣s〉∣∣0〉 =

∣∣1〉∣∣s〉,
R
∣∣s〉∣∣1〉 =

∣∣0〉∣∣s〉,
so the action (by conjugation) of s on the basis states is :

Γ
(
s
)

=

(
0 1
1 0

)
,

which is the representation of the reflection element in both 2D irreps of D5 → 2Γ
(
s
)

= 3Γ
(
s
)
. We

conclude that the action by conjugation is just the two-dimensional irreducible representation 3Γ
of D5, so the charge of each pair of fluxons

∣∣h, h−1
〉

with h ∈ 3C is 3Γ.
Furthermore, under braiding, this charge carried by a pair of fluxons can be transferred to other
particles. For example, consider a pair of particles, each of which carries charge but no flux (we
refer to such particles as chargeons), such that the total charge of the pair is trivial. If one of the
chargeons transforms as the unitary irreducible representation Γ of H, there is a unique conjugate
(dual) representation Γ that can be combined with Γ to give the trivial representation; if

{∣∣v, i〉}
is a basis for Γ, then a basis

{∣∣v, i〉} can be chosen for Γ, such that the chargeon-antichargeon
pair with trivial charge can be expressed as :

∣∣0; Γ
〉

=
1√
|Γ|

|Γ|∑
i=1

∣∣v, i〉⊗ ∣∣v, i〉
Imagine that we create a pair of fluxons in the state

∣∣0;Ch
〉

=
∣∣h, h−1

〉
and also create a pair of

chargeons in the state
∣∣0; Γ

〉
. Then we wind the chargeon with charge Γ counterclockwise around

the first member of the pair of fluxons, so due to Bohm-Aharonov effect it’s state transforms
exactly as in equation (5). The chargeon-antichargeon state becomes :

∣∣0; Γ
〉′

=
1√
|Γ|

|Γ|∑
i=1

∣∣v, i〉′ ⊗ ∣∣v, i〉 =
1√
|Γ|

|Γ|∑
i=1

Γij
(
h
)∣∣v, j〉⊗ ∣∣v, i〉

We bring the members of the pair together and see if they annihilate (the total charge of the pair
of chargeons has remained zero after the winding). The amplitude of the process is :

〈
0; Γ
∣∣0; Γ

〉′
=

1

|Γ|

|Γ|∑
i=1

Γij
(
h
)〈
v, i
∣∣v, j〉〈v, i∣∣v, i〉 =

1

|Γ|

|Γ|∑
i=1

Γij
(
h
)
δij =

∑|Γ|
i=1 Γii

(
h
)

|Γ|
=
χ
(
Γ
(
h
))

|Γ|
,
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so the probability they will annihilate is :

Prob
(
0
)

=

∣∣∣∣∣χ
(
Γ
(
h
))

|Γ|

∣∣∣∣∣
2

Since the total charge of all four particles is zero and charge is conserved, after the winding the
two pairs have opposite charges — if the pair of chargeons has total charge Γ′, then the pair of
fluxons must have total charge Γ

′
, combined with Γ′ to give trivial total charge. This probability

is less than one, provided that the representation of Γ is not one dimensional and the class Ch is
not represented trivially (αΓ

(
Ch
)
6= 0Γ

(
Ch
)

= 1).
In the case where Ch = 3C of H = D5 and Γ = 3Γ which came up in the analysis earlier, we see
that χ

(
3Γ
(

3C
))

= 0. Therefore, charge is transfered with certainty; after the winding, both the
fluxon pair and the chargeon pair transform as Γ′ = 3Γ.
We want to show now how we can use the chargeons to calibrate the fluxons and assemble a flux
bureau of standards. Suppose that we are presented with two pairs of fluxons in the states

∣∣a, a−1
〉

and
∣∣b, b−1

〉
, and we wish to determine whether the fluxes a and b match or not. We are also

equipped with a chargeon-antichargeon pair. We wind the chargeon around the first member of
the first fluxon pair and then around the second member of the second fluxon pair. The state of
the chargeons is transformed to :

∣∣0; Γ
〉′

=
1√
|Γ|

|Γ|∑
i=1

∣∣v, i〉′ ⊗ ∣∣v, i〉 =
1√
|Γ|

|Γ|∑
i=1

Γij
(
b−1a

)∣∣v, j〉⊗ ∣∣v, i〉
The probability that the chargeon pair will annihilate after the two consecutive exchanges is :

Prob
(
0
)

=

∣∣∣∣∣χ
(
Γ
(
b−1a

))
|Γ|

∣∣∣∣∣
2

,

which clearly is less than zero if b 6= a (assuming that the representation Γ is not one-dimensional
and represents b−1a nontrivially). After a number of repetitions we can say with high statistical
confidence if the fluxes are different. We can sort in that way all the different fluxes on seperate
”bins”.
The next step is to label the fluxes so that they match the group composition rules, because the
chance of getting it right on the first random labeling is 1/

(
|H|!

)
. Suppose we take 3 pairs from 3

different bins,
∣∣a, a−1

〉
,
∣∣b, b−1

〉
and

∣∣c, c−1
〉
, and we want to check whether c = ba. We create again

a chargeon-antichargeon pair and wind the chargeon first around a (carry the chargeon around a
closed path that encloses a), then around b and finally around c−1. The probability whether the
reunited chargeon pair annihilates is :

Prob
(
0
)

=

∣∣∣∣∣χ
(
Γ
(
c−1ba

))
|Γ|

∣∣∣∣∣
2

Every time the chargeon-antichargeon pair annihilates, when we bring it together, it means that
ba = c. We construct in that way a flux bureau of standards and label the fluxes according to the
values that they take in group H. So given an unkown pair of fluxes

∣∣d, d−1
〉
, we can use any of

the labeled fluxes, suppose
∣∣a, a−1

〉
, repeat the above process and determine the flux d. We will
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call this process projective flux measurement.
Suppose we have two pairs of fluxes

∣∣a, a−1
〉

and
∣∣b, b−1

〉
. We want to realize the effect on the

states if we transport the pair of fluxes
∣∣a, a−1

〉
counterclockwise around the first member of the

second fluxon pair. Since the
∣∣a, a−1

〉
pair has trivial total flux, the

∣∣b, b−1
〉

pair is unaffected by
this procedure. But since in effect the flux b travels counterclockwise about both members of the
pair whose initial state was

∣∣a, a−1
〉
, this pair is transformed as :

R
∣∣b〉∣∣a, a−1

〉
=
∣∣bab−1, ba−1b−1

〉∣∣b〉
We will refer to this operation as the conjugation gate acting on the fluxon pair. Recapitulating, the
3 basic processes with fluxon pairs are Projective flux measurement, Destructive measurement
and Conjugation gate.

4.2 Encode a qudit

Let us now try to give a bit more precise mathematical meaning to idea of fusion and how we can
encode a qudit in it’s space. We start with a theory A (anyon model) with a finite collection of
superselection sector labels CA =

{
a, b, c, . . .

}
called topological or anyonic charges. The process

of combining two of these anyons is also called fusion while the rules describing the allowed fusion
outcomes of two anyons are called fusion rules. A convenient way of writing the fusion rules is
given by [9],[10]:

a× b =
∑
c∈CA

Nab
c c,

where the fusion multiplicities Nab
c are non-negative integers which indicate the different ways that

the two anyons a and b can be combined to produce the anyon c (these different ways are called
the different fusion channels). The fusion algebra is both commutative and associative :

a× b = b× a ⇔ Nab
c = N ba

c ,(
a× b

)
× d = a×

(
b× d

)
⇔

∑
x

Nab
x N

xd
c =

∑
x

Nax
c N bd

x
(46)

To each fusion product we assign a fusion vector space V ab
c (a Hilbert space), with dim

(
V ab
c

)
= Nab

c .

The vector space V ab
c is spanned by so called fusion states, which form the basis (diagrammatically

in Figure 6) : {∣∣a, b; c, µ〉∣∣µ = 1, 2, . . . , Nab
c

}
(47)

The dual space (hermitian conjugate) of V ab
c , formed by the bras, is denoted by V c

ab and it’s basis
vectors are (Figure 6): {〈

a, b; c, µ
∣∣∣∣µ = 1, 2, . . . , N c

ab = Nab
c

}
(48)

It is called splitting space and is described by the states that arise when the anyon c splits into the
anyons a and b, while it is a dual basis in the sense that the arrows are reversed. The full Hilbert
space for the fusion of the anyons a and b is given by ⊕cV ab

c . It’s basis states are orthonormal to
the corresponding dual basis states :〈

a, b; c′, µ′
∣∣a, b; c, µ〉 = δcc′δµ,µ′ , (49)
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and the completeness relation of the basis is expressed as :∑
c,µ

∣∣a, b; c, µ〉〈a, b; c, µ∣∣ = Iab, (50)

where Iab is the projector onto the full Hilbert space ⊕cV ab
c .

Figure 6: Graphical notation for the fusion states of V ab
c showing the fusion of a and b into c

(left). The graphical notation for the basis states of the dual space V c
ab emphasizes the splitting of

c into a and b (right).

One can as well consider more general fusion spaces V ab, carried by particles a and b, where the
fusion outcome is not fixed. The structure of such spaces is given by the direct sum over all the
subspaces indexed by the possible fusion outcomes c :

V ab =
⊕
c

V ab
c , dim

(
V ab

)
=
∑
c

Nab
c (51)

Since for each c there is a proper subspace, the orthonormal basis in V ab is given by :{∣∣a, b; c, µ〉∣∣c, µ = 1, . . . , Nab
c

}
,
〈
a, b; c, µ

∣∣a, b; c′, µ′〉 = δc,c′δµ,µ′ (52)

From the definition (51), one can see that dim
(
V ab

)
> 1 only for non-abelian models. In an abelian

model there would be no topological degeneracy and the outcome of every fusion would always be
unique. The topological Hilbert space would coincide with the only subspace labeled by a single c,
V ab ' V ab

c and thus dim
(
V ab

)
= Nab

c = 1 for all a and b. Since one wants to consider the fusion
spaces as an arena for quantum computation, this reinforces the notion that quantum computation
with anyons is only possible for a non-abelian model.
The two-particle fusion spaces serve as simple examples of what are sometimes called topological
Hilbert spaces. However, they are hardly of particular interest, because unless there is fusion
degeneracy, i.e. Nab

c ≥ 2, V ab
c can not be used to encode quantum information. Consequently, the

fusion spaces V ab are directly out of the question, because one cannot form superpositions of states
belonging to different superselection sectors. To overcome these restrictions, one must consider
the more general fusion spaces V a1,...,aN

c carried by some N -particles, whose total charge has been
restricted to c. To study their structure, one needs to decompose them in terms of the elementary
fusion spaces V ab

c .
When three particles with charges a, b and c are fused to yield a total charge of d, there are two
natural ways to decompose the Hilbert space V abc

d (Figure 7) :

V abc
d
∼=
⊕
e

V ab
e ⊗ V ec

d
∼=
⊕
f

V af
d ⊗ V

bc
f (53)

These isomorphisms (called F -moves) are written as :∣∣a, b; e, α〉∣∣e, c; d, β〉 =
∑
f,µ,ν

[
F abcd

](
e,α,β

)(
f,µ,ν

)∣∣a, f ; d, ν
〉∣∣b, c; f, µ〉 (54)
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Figure 7: Two distinct decompositions of the fusion space V abc
d into tensor product of two anyon

splitting spaces.

and are unitary for anyon models (we give the description in the following subsection).
The decomposition of multi-particle fusion spaces V a1,...,aN

c is :

V a1,...,aN
c '

⊕
b1,b2,...,bN−2

V a1a2
b1

⊗ V b1a3
b2
⊗ · · · ⊗ V bN−2aN

c , (55)

where b1, b2, . . . , bN are particles which may occur during intermediate stages of fusing all particles
together. From this expression, one can immediately read off the dimension of V a1,...,aN

c :

dim
(
V a1...aN
c

)
= Na1...aN

c =
∑

b1,b2,...,bN−2

Na1a2
b1

N b1a3
b2
· · ·N bN−2aN

c (56)

Rather than the tensor product of the subspace bases, we adopt a more compact notation for the
basis states of V a1...aN

c as :{∣∣a1a2 · · · aN ; c, µ
〉∣∣µ = 1, . . . , Na1a2...aN

c

}
,
〈
a1a2 · · · aN ; c, µ

∣∣a1a2 · · · aN ; c, µ′
〉

= δµ,µ′ (57)

When the end charge c is not fixed, we have the Hilbert space V a1...aN with :

dim
(
V a1...aN

)
=
∑
c

V a1...aN
c =

∑
c,b1,b2,...,bN−2

Na1a2
b1

N b1a3
b2
· · ·N bN−2aN

c (58)

In particular, we can bring N anyons of the same type a together. The asymptotic dimension of
the resulting Hilbert space V aa...a = V a⊗N is written as :

dim
(
V aa...a

)
→
(
da
)N

as N →∞

Here da is called the quantum dimension of the anyon. They obey da ≥ 1. The vacuum anyon
1 always has d1 = 1. Very roughly speaking, the quantum dimension should be thought of as the
number of degrees of freedom carried by in a single anyon. However, as we’ll see, these numbers
are typically non-integers, reflecting the fact that we can’t really think of the information as being
stored on an individual anyon.
From (58) and using the fact that Nab

c = N ba
c , we can write the dimension of V aa...a as :

dim
(
V a⊗N

)
=

∑
c,b1,...,bN−2

Naa
b1 N

ab1
b2
· · ·NabN−2

c =
∑

c,b1,...,bN−2

[
Na

]
ab1

[
Na

]
b1b2
· · ·
[
Na

]
bN−2c

=
∑
c

([
Na

]
ac

)N
,

(59)
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where Na is the matrix with components
[
Na

]
bc

= Nab
c , which is raised to the N th power in the

expression above. But, in the limit N →∞, such a product is dominated by the largest eigenvalue
of the matrix Na. This eigenvalue is the quantum dimension da. There is therefore an eigenvector
ea =

(
e1, . . . , eN

)T
satisfying :

Naea = daea ⇒ Nab
c ec = daeb

For what it’s worth, the Perron-Frobenius theorem in mathematics deals with eigenvalue equations
of this type. Among other things, it states that all the components of ea are strictly positive. In fact,
in the present case the symmetry of Nab

c = N ba
c tells us what they must be. For the right-hand-side

to be symmetric, we must have eb = db. So the quantum dimensions obey :

dadb =
∑
c

Nab
c dc (60)

The process when two anyons fuse to a given anyon c via a specific channel represents a single basis
vector so it corresponds to a certain measurement outcome, as we know that the total wavefunction
collapses after the measurement from the superposition of the basis to an eigenstate of the physical
quantity we observe. Some examples of fusion spaces (trees) are given in Figure 8.

Figure 8: Three splitting tree bases for the space V a1...a4
c .

4.3 F and R symbols

Let us consider the case of three anyons a, b and c that fuse together to form an anyon d. One can
describe the state of these three particles in two different ways. We can interpret the fusion process
by describing how a fuses with b (left of Figure 9), or by starting with the fusion of b and c anyons
(right of Figure 9). The e and f are the possible intermediate anyons of each fusion and µ and ν
denote the channels (ways) from which the process took place. However, in the two different cases
these states are described in different bases. We define the change of basis (order of the fusion) as
a set of unitary matrices called F -symbols or F -moves, as shown in Figure 9 [9],[10].

Figure 9: The F symbols as the amplitudes in the change of fusion basis.
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With the below definitions :

∣∣x〉 ≡ ,
∣∣y〉 ≡ ,

where x, y = 0, 1, . . . , n, we construct two different orthonormal bases (the same dimension because
we are talking about the same space V abc

d ), so :∣∣x〉 =
∑
y

cy
∣∣y〉 =

∑
y

(
F abcd

)
xy

∣∣y〉
We verified that we are delving with a change of basis, with cy =

(
F abcd

)
xy

being the fusion

probability amplitude and as such P
(
y
∣∣x) = |cy|2 =

∣∣(F abcd

)
xy

∣∣2 is the conditional probability to
measure the anyon y in the second basis given that we have prepared the anyons a and b to fuse
exactly to the anyon x (in the |x〉 basis). We want the action of the F -symbols to preserve the
norm (probability) : ∑

y

|cy|2 =
∑
y

∣∣(F abcd

)
xy

∣∣2 = 1,

so we demand F to be unitary. Unitarity of the model amounts to :[(
F abcd

)†]
(f,µ,ν)(e,α,β)

=
[
F abcd

]∗
(e,α,β)(f,µν)

=
[(
F abcd

)−1]
(f,µ,ν)(e,α,β)

, (61)

and diagrammatically refers to the inverse procedure in the change between the two basis (Figure
10). If we require the two above basis for the splitting trees to be orthonormal and the transfor-
mation between them to be unitary, then the F -symbols (as well as the R-symbols) can always be
represented by unitary matrices.

Figure 10: The action of the inverse (unitary) F symbol.

There is a certain freedom present in any anyon model. This corresponds to the choice of bases in
the V ab

c space. We can apply unitary transformations in V ab
c without changing the theory, denoted

by uabc . This gives new basis states
∣∣a, b; c〉′ (Figure 11).

Figure 11: Unitary gauge transformation of a vertex.

When there are no multiplicities (Nab
c = 0, 1), the transformations uabc are just complex phases. In

this case, the transformation on the basis vectors is
∣∣a, b; c〉′ = uabc

∣∣a, b; c〉 and we have the freedom
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to redefine the F symbols as it follows :[
F abcd

]′
ef

=
ubcf u

af
d

uabe u
ec
d

[
F abcd

]
ef

(62)

We can always use this freedom to switch to a more convenient set of F symbols. When the state

of the system with anyons a, b and c is transformed by a global U(1) phase factor, we get the same
physical state meaning that we cannot measure this phase so we have the same expectation values
for every observable :∣∣ψ〉 ∼ ∣∣ψ〉′ = eiφ

∣∣ψ〉 = eiφ
∑
x

cx
∣∣x〉 = eiφ

∑
x,y

cx
(
F abcd

)
xy

∣∣y〉 =
∑
x,y

cx
(
F abcd

)′
xy

∣∣y〉,
where we absorbed the phase in the F -symbols due the gauge redundancy that we mentioned
previously. By the fact that F -symbols correspond to probability amplitudes, so we want their
absolute square (probability) to be fixed, we have the arbitrariness of a global phase when we
calculate the total F and R matrices in any space we work. When it comes to the R-symbols or
R-moves, their effect is a counterclockwise rotation of two anyons given that the fuse to an anyon
c (measurement). The diagrammatic relation of the R-symbol is the following (Figure 12).

Figure 12: The phase accumulated by exchanging two particles a and b that fuse to c in terms of
the Rabc symbol.

The same arguments that we analyzed for the F -symbols hold for the R-symbols. The unitary
braiding operator Rab upon a pair of anyons a and b, acting on the basis vector of their fusion
gives :

Rab
∣∣a, b; c, µ〉 =

∑
ν

[
Rabc
]
µν

∣∣b, a; c, ν
〉
, (63)

which is the mathematical description of Figure 12. Similar equations hold also for the inverse
R-moves. Unitarity of the R-symbols amounts to :[(

Rabc
)−1]

µν
=
[(
Rabc
)†]

µν
=
[
Rabc
]∗
νµ

(64)

Under a gauge transformation, the R-symbols become :

[
Rabc
]′

=
ubac
uabc

Rabc (65)

The inverse
(
Rabc
)−1

symbol corresponds to a phase when a and b are rotated in a clockwise manner,
given that they fuse to c (Figure 13). When we have no multiplicities (one channel at most for
every fusion), the sum in (63) simplifies to just one phase. We will only get involved with such
practical anyon models.
For the F -moves in a tree diagram, if we result with value 1 or because of the gauge freedom a
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Figure 13: The phase accumulated by exchanging two particles a and b clockwise that fuse to c in
terms of the

(
Rabc
)−1

symbol.

phase eiφ (norm equal to 1), we know that despite the change of basis, we are dealing with the
same diagram on the right hand side of the equation. If a diagram on the right is not permitted
by the fusion rules, we put the corresponding F -symbol to zero. We will later do calculations with
such symbols.
For the R moves, we introduce the crucial spin-statistics (which relates the spin of the anyons with
the action of the braid/monodromy operator) equation [3]. Consider that we have two anyons
a and b that fuse to an anyons c. If we exchange, with Rabc symbol, counterclockwise k times
the two anyons then we can continuously transform this braiding process to the one that a and b
twist their own wordlines (ribbons) k times by and angle π and also the c anyon twists by itself
k times counterclockwise by an angle π (Figure 14). The spin-statistics theorem dictates that the
amplitudes of these two processes have to be equal. Each twist is directly linked with the topological
spin of each particle. If an anyon, with spin s, twists counterclockwise by an angle φ then we get
the phase eiφs and when this happens clockwise we get e−iφs. We result with the formula [2]:(

Rabc
)k

= e−ikπsae−ikπsbeikπsc (66)

We repeatedly use the above relation to calculate the R-symbols.

Figure 14: The two topologically equivalent configurations described by the spin-statistics
theorem.

4.3.1 Pentagon and hexagon equation

We will consider a multiplicity-free theory (Nab
c = 0, 1). If we have higher multiplicities than 1 for

the fusion between anyons, then in every F or R-move we have to sum for the multiplicities of every
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participating vertex. The reason we restrict ourselves is for the notation to be clear. We present the
two consistency equations that F and R-moves should satisfy. We start by the pentagon equation
(Figure 15) [12].

Figure 15: Consistency condition for F -moves.

We see that the geometrical figure constructed is a pentagon. The space of the trees is V abcd
e . There

are five splitting tree bases in total. We can convert one to another by a sequence of F -moves.
But there are different sequences of F -moves achieving this purpose. It is natural to require that
different sequences of F -moves give the same transformation. More precisely, in the space V abcd

e , to
convert one basis to another, there are exactly two sequences of F -moves. To convert the splitting
tree basis labeled by 1O to the basis labeled by 3O, one can follow either the path 1O → 2O → 3O
or the path 1O→ 5O→ 4O→ 3O. Denote by

∣∣ iO;α, β
〉

the random basis state in the basis labeled
by iO. Then following the path from 1O to the basis labeled by 3O, we have :∣∣ 1O;m,n

〉
=
∑
z

(
Fmcde

)
nz

∣∣ 2O;m, z
〉

=
∑
z,y

(
Fmcde

)
nz

(
F abze

)
my

∣∣ 3O; z, y
〉

And following the path 1O→ 5O→ 4O→ 3O, we have :∣∣ 1O;m,n
〉

=
∑
x

(
F abcn

)
mx

∣∣ 5O;x, n
〉

=
∑
x,y

(
F abcn

)
mx

(
F axde

)
ny

∣∣ 4O;x, y
〉

=
∑
x,y,z

(
F abcn

)
mx

(
F axde

)
ny

(
F bcdy

)
xz

∣∣ 3O; z, y
〉
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By requiring these two sequences to give the same transformation, we arrive at the following
equation, known as pentagon equation :(

Fmcde

)
nz

(
F abze

)
my

=
∑
x

(
F abcn

)
mx

(
F axde

)
ny

(
F bcdy

)
xz
, ∀a, b, c, d, e,m, n, y, z. (67)

Now we exhibit the second geometrical consistency relation called the hexagon equation (Figure
16). To convert the basis labeled by 1O to the basis labeled by 4O, there are two sequences of
F/R-moves : 1O→ 2O→ 3O→ 4O and 1O→ 6O→ 5O→ 4O. Again, it is natural to require these
two sequences of moves produce the same transformation. For the sequence 1O→ 2O→ 3O→ 4O,
the transformation is given by :∣∣ 1O;m

〉
=
∑
x

(
F abcd

)
mx

∣∣ 2O;x
〉

=
∑
x

(
F abcd

)
mx
Rxad

∣∣ 3O;x
〉

=
∑
x,n

(
F abcd

)
mx
Rxad

(
F bcad

)
xn

∣∣ 4O;n
〉

For the sequence 1O→ 6O→ 5O→ 4O, we have :∣∣ 1O;m
〉

= Rbam
∣∣ 6O;m

〉
=
∑
n

Rbam
(
F bacd

)
mn

∣∣ 5O;n
〉

=
∑
n

Rbam
(
F bacd

)
mn
Rcan
∣∣ 4O;n

〉
Hence we arrive at the hexagon equation :

Rbam
(
F bacd

)
mn
Rcan =

∑
x

(
F abcd

)
mx
Rxad

(
F bcad

)
xn

(68)

In general, it is a very hard task to solve the pentagon and hexagon equations. The pentagon
equation makes the F -moves consistent not only for the case of four anyons a, b, c and d but also
for the case of arbitrary n anyons. In general we have infinitely many solutions from the pentagon
and hexagon equations (also non unitary solutions can exist). If we fix the gauge (equations (62)
and (65)) and also with the constraints that F and R matrices have to be unitary, we end up with
finite (in number) solutions from these two relations. If there are no solutions, it means that the
anyon model we chose (fusion rules and braiding) does not exist (in the sense that it can not be
realized by a gapped, local Hamiltonian).

4.3.2 Quantum double method

Throughout this section, it will be very convenient to condense the notation in the following manner.
We will change the particle labels from (AC, αΓ), (BC, βΓ), (CC, γΓ), . . . to a, b, c, . . .. As a result,
we replace the internal spaces V A

α , V
B
β , . . . to V a, V b, . . . and the representation maps are denoted

as Πa = ΠA
α , etcetera. We can label the basis states of a by an index i = 1, . . . , da with da the

dimension of the anyon a. We denote the basis states of a therefore as :{∣∣a, i〉}, i = 1, . . . , da,
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Figure 16: Consistency condition for R-moves.

leaving the particle label explicit, instead of
∣∣Ahj , αvk〉 as we did before. The coordinate functions

of the representation matrices are denoted as Πa
ij . The fusion product a × b means the tensor

product representation.

4.3.2.1 Computing the F -symbols

The F -symbols are conveniently calculated using Clebsch-Gordan coefficients, which describe how
the irreps are precisely embedded in tensor product representations (Figure 17). When there
are no fusion multiplicities (Nab

c = 0, 1) we can calculate the Clebsch-Gordan symbols using a
generalization of the projection operator technique (a technique well known from the theory of
group representations).
In a multiplicity-free theory, there is a unique basis [10]:{∣∣c, k〉}, Nab

c = 1, k = 1, . . . , dc

in a × b corresponding to the decomposition in irreps. Of course, there is also the standard inner
product basis : ∣∣a, i〉∣∣b, j〉, i = 1, . . . , da, j = 1, . . . , db

The Clebsch-Gordan coefficients, sometimes also called 3j-symbols, precisely give the relation
between these two. They are defined by [11]:∣∣c, k〉 =

∑
i,j

Cabcijk

∣∣a, i〉∣∣b, j〉 =
∑
i,j

(
a b c
i j k

) ∣∣a, i〉∣∣b, j〉 (69)
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Figure 17: The irrep c embedded in the tensor product of irreps a× b.

The inverse of this relation is written as :∣∣a, i〉∣∣b, j〉 =
∑
c,k

(
c a b
k i j

) ∣∣c, k〉 (70)

To calculate the actual coefficients, we will use projectors Paij defined by :

Paij =
da
|H|

∑
h,g∈H

Πa
ij
∗(Phg)Π(Phg), (71)

where the last Π
(
Phg

)
stands for the appropriate representation of the Phg element of the quan-

tum double, depending on what it is acting on. These projectors, which can be applied in any
representation, act as :

Paij
∣∣b, k〉 = δa,bδj,k

∣∣a, i〉 (72)

Proof. 〈
b, l
∣∣Paij∣∣b, k〉 =

da
|H|

∑
h,g∈H

Πa
ij
∗(Phg)〈b, l∣∣Π(Phg)∣∣b, k〉 =

da
|H|

∑
h,g∈H

Πa
ij
∗(Phg)Πb

lk

(
Phg

)
The orthogonality relation for the coordinate functions Πa

ij is :

da
|H|

∑
h,g∈H

Πa
ij
∗(Phg)Πb

lk

(
Phg

)
= δa,bδi,lδj,k, (73)

so we have : 〈
b, l
∣∣Paij∣∣b, k〉 = δa,bδi,lδj,k

From the formula we want to show :

Paij
∣∣b, k〉 = δa,bδj,k

∣∣a, i〉 = δa,bδj,k
∣∣b, i〉⇒ 〈

b, l
∣∣Paij∣∣b, k〉 = δa,bδj,k

〈
b, l
∣∣b, i〉 = δa,bδi,lδj,k,

which agrees with the previous formula.

Applying the projector to a direct product of two states (70) and using equation (69), gives :

Pclk
∣∣a, i〉∣∣b, j〉 =

(
c a b
k i j

) ∣∣c, l〉
=
∑
i′,j′

(
c a b
k i j

)(
a b c
i′ j′ l

) ∣∣a, i′〉∣∣b, j′〉 (74)
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By using the definition (71), this is seen to be equal to :

Pclk
∣∣a, i〉∣∣b, j〉 =

dc
|H|

∑
h,b∈H

Πc
lk
∗(Phg)Π(Phg)∣∣a, i〉∣∣b, j〉

=
dc
|H|

∑
h,g∈H

Πc
lk
∗(Phg) ∑

h′h′′=h
i′,j′

Πa
i′i

(
Ph′g

)
Πb
j′j

(
Ph′′g

)∣∣a, i′〉∣∣b, j′〉, (75)

where we inserted the definition of the comultiplication (16), which acts on the product state.
Equating expressions (74) and (75), we obtain :(

c a b
k i j

)(
a b c
i′ j′ l

)
=

dc
|H|

∑
h,g∈H

Πc
lk
∗(Phg) ∑

h′h′′=h

Πa
i′i

(
Ph′g

)
Πb
j′j

(
Ph′′g

)
(76)

Unitarity amounts to : (
c a b
k i j

)
=

(
a b c
i j k

)∗
(77)

Now we pick some triple (i, j, k) such that :

dc
|H|

∑
h,g∈H

Πc
kk
∗(Phg) ∑

h′h′′=h

Πa
ii

(
Ph′g

)
Πb
jj

(
Ph′′g

)
(78)

is non-zero. From equation (76) with i = i′, j = j′ and k = k′ and from the unitarity condition
(77), it follows that this number is real and positive. This fixes one of the Clebsch-Gordan symbols,
by : (

a b c
i j k

)
=

(
dc
|H|

∑
h,g∈H

∑
h′h′′=h

Πc
kk
∗(Phg)Πa

ii

(
Ph′g

)
Πb
jj

(
Ph′′g

))1/2

(79)

Since we have demanded the unitarity condition, once we compute a positive (non-zero) F -symbol
(element of the F matrix) we know that the relative phase among all the elements of that matrix
is constant, let’s say eiφ. We mentioned earlier that these matrices can be can be identified with
the arbitrariness of a total complex phase (in our example this eiφ phase). We use equation (76)
to calculate all others, which results in :(

a b c
i′ j′ k′

)
=

√
dc
|H|

∑
h,g∈H

∑
h′h′′=h Πc

k′k
∗(Phg)Πa

i′i

(
Ph′g

)
Πb
j′j

(
Ph′′g

)(∑
h,g∈H

∑
h′h′′=h Πc

kk
∗(Phg)Πa

ii

(
Ph′g

)
Πb
jj

(
Ph′′g

))1/2
(80)

From the Clebsch-Gordan symbols it is straightforward to calculate the F -symbols. We use the
definitions of F and Clebsch-Gordan symbols (Figures 9 and 17), when there are no multiplicities
meaning α, β, µ, ν = 0, 1. We sum in the internal states of the intermediate anyon e →

∣∣e,m〉 (we
have specified the result of the fusion of the anyons a and b but it’s state is unknown so we have
to include contributions from all of them). The states of the anyons a →

∣∣a, i〉, b → ∣∣b, j〉 and
c→

∣∣c, k〉 are given (we prepare them in some desired states) and we let free the state of the final
anyon d→

∣∣d, l〉 in the end of the fusion diagram. The emerging relation is :∑
f,n

(
F abcd

)
ef

(
b c f
j k n

)(
a f d
i n l

)
=
∑
m

(
a b e
i j m

)(
e c d
m k l

)
(81)
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Using the orthogonality of the Clebsch-Gordan symbols :∑
i,j

(
a b c
i j k

)(
a b c′

i j k′

)
= δc,c′δk,k′ , (82)

we finally have :(
F abcd

)
ef

=
∑

i,j,k,n,m

(
a b e
i j m

)(
e c d
m k l

)(
b c f
j k n

)∗(
a f d
i n l

)∗
(83)

4.3.2.2 Computing the R-symbols

We look at Figure 12. As we use the quantum double here, Rab ≡ Rab defined in (18). After the
winding of the two particles a and b, with the action of the braiding matrix Rab, we don’t know in
which exactly states these particles end up so we have to sum in all possible states they can exist.
For the simple case where there are no multiplicities of c, similarly as we did for F -symbols, here
we have :

Rabc

(
b a c
j′ i′ k

)
=
∑
i,j

Rab(i,i′),(j,j′)

(
a b c
i j k

)
, (84)

where Rab(i,i′),(j,j′) are the representation elements of the action of Rab on the basis states
∣∣a, i〉∣∣b, j〉

:

Rab(i,i′),(j,j′) ≡
〈
a, i′
∣∣〈b, j′∣∣Rab∣∣a, i〉∣∣b, j〉 =

〈
a, i′
∣∣〈b, j′∣∣σ ◦ (Πa ⊗Πb

)(
R
)∣∣a, i〉∣∣b, j〉

=
∑
h,g∈H

〈
a, i′
∣∣〈b, j′∣∣(Πb

(
Phg

)
⊗Πa

(
Ph
))∣∣b, j〉∣∣a, i〉 (85)

Using equation (82), we get :

Rabc =

da∑
i,i′=1

db∑
j,j′=1

(
a b c
i j k

)(
b a c
j′ i′ k

)∗
Rab(i,i′),(j,j′), (86)

where again k (internal state of the fusion resulting anyon c) can be chosen freely.
If multiplicities of c do occur, we can still obtain the

(
Rabc
)
µν

by first including the µth copy of c

and next project onto the νth copy. This can be done by introducing more general Clebsch-Gordan
coefficients that also carry and index µ that keeps track of the copy c. The formula then becomes :∑

ν

(
Rabc
)
µν

(
b a c, ν
j′ i′ k

)
=
∑
i,j

Rab(i,i′),(j,j′)

(
a b c, µ
i j k

)
⇒

∑
ν,i′,j′

(
Rabc
)
µν

(
b a c, ν
j′ i′ k

)(
b a c′, ν ′

j′ i′ k′

)∗
=
∑
i,i′,j,j′

Rab(i,i′),(j,j′)

(
a b c, µ
i j k

)(
b a c′, ν ′

j′ i′ k′

)∗
⇒

∑
ν

(
Rabc
)
µν
δc,c′δν,ν′δk,k′ =

∑
i,i′,j,j′

Rab(i,i′),(j,j′)

(
a b c, µ
i j k

)(
b a c′, ν ′

j′ i′ k′

)∗
⇒

(
Rabc
)
µν

=

da∑
i,i′=1

db∑
j,j′=1

(
a b c, µ
i j k

)(
b a c, ν
j′ i′ k

)∗
Rab(i,i′),(j,j′) (87)
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4.4 Fibonacci anyons

Here we have a model of two different anyons. We have the abelian trivial sector (vacuum) which
we label as 1 and a non-trivial charge (anyon) which we label as τ with τ = τ , meaning that it is
it’s own antiparticle (self-dual like 1). The fusion rules of this model are [2],[13],[14]:

1⊗ 1 = 1

τ ⊗ 1 = 1⊗ τ = τ

τ ⊗ τ = 1⊕ τ
(88)

The first two fusion rules give an abelian model as the fusion of 1 with any other anyon x =
{
1, τ
}

gives back the same anyon x (because 1 is abelian). The interesting non-trivial fusion rule is the
third one with the fusion of the two non-abelian anyons τ , which indeed makes the model non-
abelian because we result with more than one type of anyons after the fusion. The topological
Hilbert space that describes the fusion of N different τ anyons is denoted V τ⊗N

c with c ∈
{
1, τ
}

.
We usually create N anyons from the vacuum (the reverse process of fusion called splitting), so in

these cases the overall charge is trivial and the Hilbert space they live is V τ⊗N
1 . The dimension

of this fusion space is dim
(
V τ⊗N
1

)
= N τ⊗N

1 =
[
D1

]
N

. The number
[
D1

]
N

, i.e. the dimension of
the topological Hilbert space, describes the different ways the N anyons can fuse to the vacuum.
By creating the trees for each N we notice that every 1 must always be followed by a τ because
1⊗ τ = τ . So if the first two anyons fuse to trivial total charge 1 then, because this trivial charge
with the third τ give back τ , then the remaining

(
N − 2

)
τ anyons can fuse with

[
D1

]
N−2

different
ways to end up with topological charge 1. If the first two anyons fuse to τ then we are left with(
N − 1

)
τ anyons that can fuse with

[
D1

]
N−1

different ways to 1. So the numbers
[
D1

]
N

satisfy
the recursion relation : [

D1

]
N

=
[
D1

]
N−1

+
[
D1

]
N−2

(89)

The dimensions of the Hilbert space follow the Fibonacci sequence and that’s the reason why the
model is called Fibonacci model. The matrix Nτ , with components N τb

c , can be extracted from
the fusion rules :

Nτ =

(
N τ1

1 N τ1
τ

N ττ
1 N ττ

τ

)
=

((
Nτ

)
11

(
Nτ

)
1τ(

Nτ

)
τ1

(
Nτ

)
ττ

)
=

(
0 1
1 1

)
(90)

The space V τττ
1 of three τ anyons that fuse to the vaccum 1 is one-dimensional :

dim
(
V τττ
1

)
=
∑
x

N ττ
x Nxτ

1 = N ττ
τ N ττ

1 = 1

The change of basis transformation F in V τττ
1 is trivial (µ = 1) :

∣∣τ〉
1
≡ =

(
F τττ1

)
ττ

≡
(
F τττ1

)
ττ

∣∣τ〉
2
,

where with the state
∣∣τ〉 we note the product anyon τ of the first fusion (the numbers 1 and 2 on

the states are referring to the basis). Without loss of generality we can take F τττ1 = 1 due to gauge
freedom. The diagram at the right above is identical with the left one if we rotate it around the
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main/central vertical vertex by π angle (the scalar coefficient F can be a phase at most as we have
the same course of fusions). Similarly for the space V ττ1

1 :

∣∣1〉
1
≡ =

(
F ττ11

)
1τ

≡
(
F ττ11

)
1τ

∣∣τ〉
2
,

so we deal again with an 1D space and we choose
(
F ττ11

)
1τ

= 1. In general, we know that the total

probability to measure the
∣∣τ〉 state in the right basis given that we prepared the system in the

state
∣∣1〉 in the left basis is P

(
1
∣∣τ) =

∣∣(F ττ11

)
1τ

∣∣2 = 1→
(
F ττ11

)
1τ

= eiθ and we select θ = 0. We
cannot encode a qubit in these two trivial spaces. The first non-trivial space to encode a qubit is
V τττ
τ , with states : ∣∣1〉

1
≡ ,

∣∣τ〉
1
≡ ,

∣∣1〉
2
≡ ,

∣∣τ〉
2
≡

The general unitary transformation F between the two bases has the form :

F ≡ F ττττ =

((
F ττττ

)
11

(
F ττττ

)
1τ(

F ττττ

)
τ1

(
F ττττ

)
ττ

)
=

(
a b
b∗ −a∗

)
,

with
∑

y

∣∣(F ττττ

)
xy

∣∣2 =
∣∣a∣∣2 +

∣∣b∣∣2 = 1. Without any multiplicities in the theory, the pentagon

equation (67) for a = b = c = d = e = m = y = τ and n, z = 1 gives :(
F ττττ

)
11

(
F ττ1τ

)
ττ

=
∑
x

(
F τττ1

)
τx

(
F τxττ

)
1τ

(
F ττττ

)
x1

=
(
F τττ1

)
ττ

(
F ττττ

)
1τ

(
F ττττ

)
τ1
⇒(

F ττττ

)
11

=
(
F ττττ

)
1τ

(
F ττττ

)
τ1
⇒ a = |b|2,

so |a|2 + a− 1 = 0 ⇒ a1,2 = −1±
√

5
2 . We pick a = −1+

√
5

2 = φ−1 with φ = 1+
√

5
2 the golden mean.

We then have to solve for b → |b|2 = a = φ−1 ⇒ b = eiθ
√
φ−1. The phase eiθ can be set to unity

with a gauge transformation (in each space V τ⊗N
c separately we have a gauge freedom or else for

every different F matrix). The F matrix becomes :

F =

(
φ−1

√
φ−1√

φ−1 −φ−1

)
(91)

All pentagon relations are now indeed satisfied as we fixed the gauge. Next, we calculate the R
matrix. It is clear that if the exchange includes an anyon which is the vacuum sector, this action
will have no physical consequence in the system. Since the vacuum braids trivially, the phases
below, which are allowed by the fusion rules, are equal to 1 :

Rτ1τ = R1τ
τ = R11

1 = 1

The R matrix is clearly diagonal because an exchange of two anyons cannot change the outcome
of the fusion, so it has the form :

R = Rττc =

(
Rττ1 0

0 Rτττ

)
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Having found the F matrix, we use the hexagon equation (68) to find the components of the R
matrix. For a = b = c = d = τ and m = n = 1 we take :

Rττ1
(
F ττττ

)
11
Rττ1 =

∑
x

(
F ττττ

)
1x
Rxττ

(
F ττττ

)
x1

=
(
F ττττ

)2
11

+
(
F ττττ

)
1τ
Rτττ

(
F ττττ

)
τ1
⇒

φ−1
(
Rττ1

)2
= φ−2 + φ−1Rτττ ⇒

(
Rττ1

)2
= φ−1 +Rτττ

For a = b = c = d = m = τ and n = 1 we get :

Rτττ R
ττ
1

√
φ−1 = φ−3/2 −Rτττ φ−3/2 ⇒ Rτττ R

ττ
1 = φ−1 −Rτττ φ−1

The solutions from the two equations we derived above are Rττ1 = e−4πi/5 and Rτττ = e3πi/5, so we
result with the following R matrix :

R =

(
e−4πi/5 0

0 e3πi/5

)
(92)

We work in the qubit basis
∣∣x〉 with x ∈

{
1, τ
}

that we established previously. The generators of
the braid group B3 among three identical τ particles can be determined by the F and R matrices
that we found :

σ1

∣∣x〉 ≡ = Rττx = Rττx
∣∣x〉,

σ2

∣∣x〉 ≡ =
∑
y

(
F ττττ

)
xy

=
∑
y

Rττy
(
F ττττ

)
xy

=
∑
y,z

(
F ττττ

)−1

yz
Rττy

(
F ττττ

)
xy

=
∑
y,z

(
F ττττ

)−1

yz
Rττy

(
F ττττ

)
xy

∣∣z〉
So the unitary generators σi are (F−1 = F † = F because the matrix F is hermitian) :

σ1 = R =

(
e−4πi/5 0

0 e3πi/5

)
, σ2 = F−1RF =

(
φ−1e4πi/5

√
φ−1e−3πi/5√

φ−1e−3πi/5 −φ−1

)
(93)

These matrices comprise a representation of the braid group B3 with an image that is dense in
SU
(
V τττ
τ

)
= SU

(
2
)
. Therefore, each braid/weave can be simulated with arbitrary accuracy by

some finite braid. We can also use the inverse of each of the σi’s as the opposite braid can be applied.
The image of these two generators is the truncated braid group B

(
3, 10

)
which has infinite order

(three identical τ anyons where the order of the generators is 10 → σ10
i = 12×2). Because of this

finite order of the generators, we result with σni = σn−10
i where n = n (mod10), so the number of

braids we need to approximate or even construct analytically a unitary gate is significantly reduced
[15].
Even though the determinants of the generators are not 1, we can redefine them with a freedom
of a common total phase eπi/5 so that they belong in SU

(
2
)
. Otherwise, we approximate unitary
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gates with braids up to an overall phase factor. Since in quantum mechanics the overall phase of a
system cannot be measured, this overall phase is generally of no consequence. In order to create a
two-qubit entangling gate, we need 6 Fibonacci anyons with a 5D fusion space and whose image is
dense in SU

(
V τ⊗6

1

)
= SU

(
5
)

(Figure 18) or 8 anyons that form a dense set in SU
(
V τ⊗8

c

)
= SU

(
13
)
.

Both spaces of course include the SU
(
4
)

as 4×4 computational blocks in their representations that
act on the two encoded qubits. The representations of the generators for the 6 and 8 anyon cases
have a trivial and a 9 × 9 non-computational blocks respectively (there is leakage which leads to
errors between the computational and non-computational states whenever the representation has
non diagonal elements) [14],[15].
Universality refers to the existence of a universal set of quantum gates, the elements of which can
perform any unitary evolution in SU

(
n
)

with arbitrary accuracy. It requires a minimum set of
quantum gates, such as the set of single qubit braids (rotation gates that can span SU

(
2
)

or geo-
metrically the Bloch sphere) and a two-qubit entangling gate such as the controlled-NOT (CNOT)
gate. Alternatively, universality can be achieved only with the Hadamard gate and CCNOT or
Toffoli gate (3-qubit gate). The weaves (sequences of successive braids) of some universal gates
like Hadamard, NOT and CNOT with Fibonacci anyons are included (with diagrams) in [15].
Not all anyon models, such as Ising anyons, provide universality by braiding alone. Such comput-
ers need to be supplemented by non-topological operations (like measurement) in order to achieve
universality. The application of the Solovay-Kitaev theorem concludes that the universal gates of
the circuit model can be simulated to accuracy ε with braidwords of length poly

[
log
(
1/ε
)]

and so
a universal quantum computer can be simulated efficiently using Fibonacci anyons [15].

Figure 18: The 6τ anyon encoding of two qubits where x, y = 1, τ (left) and the trivial
non-computational basis element (right).

4.5 Ising anyons

There are three elements in the Ising anyon model. A fermion denoted as ψ, an anyon denoted as
σ and the vacuum 1, obeying the following fusion rules [2],[16]:

1⊗ 1 = 1, 1⊗ ψ = ψ, 1⊗ σ = σ,

ψ ⊗ ψ = 1, σ ⊗ ψ = σ,

σ ⊗ σ = 1⊕ ψ.
(94)
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The fusion rule for two σ particles states that this anyon is indeed a non-abelian one, because there
exist two possible fusion outcomes. Since all other fusion rules determine the outcomes uniquely,
higher dimensional fusion spaces are always carried by σ particles. Using the last fusion rule
successively, we get the fusion rules for Nσ particles :

σ ⊗ σ ⊗ σ = 2σ,

σ ⊗ σ ⊗ σ ⊗ σ = 21⊕ 2ψ,

σ ⊗ σ ⊗ σ ⊗ σ ⊗ σ = 4σ,

· · ·(
σ
)⊗N

=

{
2
N−2

2 1⊕ 2
N−2

2 ψ, N is even,

2
N−1

2 σ, N is odd

(95)

From these, we can detect the smallest non-trivial fusion spaces :

V σ⊗3

σ ≡ V σσσ
σ , dim

(
V σσσ
σ

)
= Nσ⊗3

σ = 2,

V σ⊗4

1 ≡ V σσσσ
1 , dim

(
V σσσσ
1

)
= Nσ⊗4

1 = 2,

V σ⊗4

ψ ≡ V σσσσ
ψ , dim

(
V σσσσ
ψ

)
= Nσ⊗4

ψ = 2

(96)

Since one anticipates that the computational space should belong to the vacuum sector, the interest
lies particularly in the space V σσσσ

1 because they could be used to encode a qubit as the space is
two-dimensional. To encode m qubits, one needs a fusion space carried by

(
2m+ 2

)
σ particles. In

general, the dimension of the fusion space carried by N particles can be determined by using the
last fusion rule from (94) successively :

N 1 2 3 4 5 6 7 8 9 10 11 12 . . .

Nσ⊗N
1 0 1 0 2 0 4 0 8 0 16 0 32 . . .

⇒ dim
(
V σ⊗N
1

)
= 2

N−2
2 , N is Even,

which means that the topological Hilbert space grows exponentially with N . Since the fusion
multiplicities are zero for all odd N , one can restrict to consider only spaces carried by an even
number of particles. This is in line with the anticipated initialization of the quantum computer,
where one draws some number of particles-anti-particle pairs out of the vacuum, which implies
that one always ends up with an even number of particles. The space V σσσ

1 is zero-dimensional
(forbidden by the fusion rules). By inspection with the tree diagrams, we collect the values of the
F -symbols for the one-dimensional spaces V σσx

1 , V xσσ
1 and V σxσ

1 with x ∈
{
1, ψ

}
:(

F σσy1

)
xσ

= ayδx,y,
(
F xσσ1

)
σy

= byδx,y, F σyσ1 = cy, |ay|2 = |by|2 = |cy|2 = 1,

for some ay, by, cy ∈ C, meaning that these F -moves introduce only overall phases which are non-
physical and can be set to unity → ai = bi = ci = 1. The zero values, because of the Kronecker
delta, correspond to the forbidden F transformations. However, the space V σσσ

σ is 2D and so a
potential computational space for a single qubit. So F σσσσ is a genuine 2×2 unitary matrix because
it is the only one acting in a non-trivial fusion space :

F ≡ F σσσσ =

((
F σσσσ

)
11

(
F σσσσ

)
1ψ(

F σσσσ

)
ψ1

(
F σσσσ

)
ψψ

)
=

(
F11 F1ψ

Fψ1 Fψψ

)
,
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where the components have to satisfy the constraints following from unitarity :
|F11|2 + |F1ψ|2 = 1,

|Fψ1|2 + |Fψψ|2 = 1,

F11

(
Fψ1

)∗
+ F1ψ

(
Fψψ

)∗
= 0

From the pentagon equation (67), for a = b = c = d = n = y = σ and e = 1 we take :(
Fmσσ1

)
σz

(
F σσz1

)
mσ

=
∑
x=1,ψ

(
F σσσσ

)
mx

(
F σxσ1

)
σσ

(
F σσσσ

)
xz
,

from which we take two equations for m = z = 1, ψ :(
F σσσσ

)2
11

+
(
F σσσσ

)
1ψ

(
F σσσσ

)
ψ1

= 1⇒ F 2
11 + F1ψFψ1 = 1,(

F σσσσ

)2
ψψ

+
(
F σσσσ

)
1ψ

(
F σσσσ

)
ψ1

= 1⇒ F 2
ψψ + F1ψFψ1 = 1,

where we used the F symbols equal to 1 that we derived earlier. We can pick F11 ∈ R. We have
this freedom to select an element from the whole matrix to be real and then the fixed gauge will
determine properly the other 3 elements. From the above two equations we get F 2

11 = F 2
ψψ ⇒

Fψψ = ±F11 ∈ R. We then conclude that :

F1ψFψ1 = |F1ψ|2 = |Fψ1|2 ⇒ F1ψ = F ∗ψ1

The third equation of the unitarity constraint becomes :

F11F1ψ + F1ψFψψ = 0

Adding by members this equation to the pentagon relations, we see that the F matrix elements are
determined as solutions to the polynomial equations :{

1 = F11

(
F11 + F1ψ

)
+ F1ψ

(
Fψ1 + Fψψ

)
,

1 = Fψ1
(
F11 + F1ψ

)
+ Fψψ

(
Fψ1 + Fψψ

)
The set of equations has four types of general solutions :

±
(

1 0
0 1

)
, ±

(
1 0
0 −1

)
, ±

(
0 eiφ

e−iφ 0

)
and ± 1√

2

(
1 eiφ

e−iφ −1

)
,

where φ =
[
0, 2π

]
is an undetermined arbitrary parameter (different from the gauge freedom of

a common total phase which we fixed when we demanded F11 ∈ R). Of these matrices, the first
three are trivial in the sense that they only redefine the basis up to some overall phase. Fixing
the arbitrary phase by setting φ = 0 and choosing the solution with an overall ’+’ sign, the matrix
implementing the non-trivial F -move in the standard basis of the model is :

F =
1√
2

(
1 1
1 −1

)
(97)

This solution is of particular interest because it is the Hadamard gate, which was already encoun-
tered as one of the gates in one particular universal gate set. To find how the braid group acts in
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the fusion space of the model, one should find the unitary matrices representing the R-moves as
solutions of the hexagon equation (68). For a = b = c = d = σ we take :

Rσσm
(
F σσσσ

)
mn
Rσσn =

∑
x=1,ψ

(
F σσσσ

)
mx
Rxσσ

(
F σσσσ

)
xn

This time all the Ryσσ , with y ∈
{
1, ψ

}
, are complex constants with unit norm. This is because the

spaces V yσ
σ are 1D for a given y, which implies that braiding can only contribute non-physical overall

phases that can again be set to unity. From the definition of the R-move as a map R : V ab
c → V ba

c ,
also Rσσy with y ∈

{
1, ψ

}
are phases, because there are no fusion degeneracies. However, this is

a 2D fusion space to encode a single qubit, as the action of braiding depends whether one braids
particles which fuse to yield either 1 or ψ. Therefore, these phases are physical and correspond to
the eigenvalues of a matrix implementing an R-move in V σσσ

σ (or V σσσσ
1 ) :

R ≡
(
Rσσ1 0

0 Rσσψ

)
From the hexagon equation for m = n = 1, ψ, we get

(
Rσσ1

)2 ≡ (R1

)2
=
√

2 and
(
Rσσψ

)2 ≡ (Rψ)2 =

−
√

2 so combining the two results we have :(
Rσσψ

)2
= eiπ

(
Rσσ1

)2 ⇒ Rσσψ = eiπ/2Rσσ1

We want the R matrix to be unitary so |R1|2 = |Rψ|2 = 1, which restricts that it’s elements must
have unit norm (complex phases). Since all the solutions give a different representation of the same
model, the simplest one will be to choose R1 = 1 and represent the R matrix as :

R =

(
1 0
0 i

)
(98)

This particular matrix appears also in the theory of quantum computation, where it is known as
the phase gate S. We can now find a representation of the braid group B3, the braid group on
three identical (same color) strands. Just like we did with Fibonacci anyons, with the basis states∣∣x〉, x ∈ {1, ψ}, now : ∣∣x〉 ≡ ,

we find the generators of B3 in V σσσ
σ :

σ1 = R =

(
1 0
0 i

)
, σ2 = F−1RF =

eiπ/4√
2

(
1 −i
−i 1

)
(99)

We verify that the generators σi indeed form a representation of the braid group B3, i.e. that they
satisfy the Yang-Baxter equation :

σ1σ2σ1 =
eiπ/4√

2

(
1 1
1 −1

)
= eiπ/4F = σ2σ1σ2

As it happens that both sides are proportional to F , this also demonstrates that the F matrix is
a physically meaningful transformation (Hadamard gate) which can be implemented by braiding
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anyons.
The generators are unitary operations→ σiσ

†
i = 12×2. Another thing to be noticed is the order 4 of

the generators→ σ4
1 = σ4

2 = 12×2, which means that we are dealing with the truncated braid group
B
(
3, 4
)

rather than the braid group B3 that has infinite number of elements. The truncated braid
group has a finite number of elements and this sets a limit on the number of different braidings,
which could be implemented. Since braiding is the only tool to perform unitary transformations in
the fusion space, dealing with truncated braid groups implies that there is also only a limited number
of unitary transformations available. However, models that produce truncated braid groups are not
automatically invalid for universal quantum computation since some may generate subgroups which
are dense in the unitary group U

(
n
)

(in our example with Ising anyons det
(
σi
)

= i 6= 1→ dense in
U
(
2
)

and not SU
(
2
)
). For instance, even though single qubit unitary transformations are limited

to the elements in B
(
3, 4
)

here, even this relatively simple group is of order 96 [3] and it is far from
obvious whether it admits universal quantum computation.
Unfortunately, such a model is not universal for quantum computation. Even though the Hadamard
gate H can be realized, instead of the π

8 -phase gate T , one can only produce the phase gate S = σ1 =
T 2. Because the physical braid group generators σi are the most elementary unitary transformations
that can be implemented on the system, there can not exist a transformation T ∈ B

(
3, 4
)

because
then σ1 could be decomposed as two successive even more elementary operations T , which should
satisfy the pentagon and hexagon equations. However, no such solutions were obtained and thus
even without considering if any entangling gates arise though braiding anyons, it can be concluded
that the Ising anyon model does not admit universal quantum computation.
Two qubit gates can be constructed in the fusion space of 6 Ising anyons as shown in Figure 19
[16]. The braidwords and their diagrams of constructing 1-qubit and also 2-qubits gates like CNOT
can be found in [17]. In bibliography, the σ1 generator is defined with an overall phase e−iπ/8 as it
emerges from the hexagon equation. We omitted this phase because it cannot be measured.

Figure 19: The 6σ anyon encoding of two qubits where the table shows the identification of the
fusion channels with the computational basis.

4.6 D(D5) anyons

We are working with 3 identical anyons (F type) so we have to find the two generators of the braid
group B3 via the F and R symbols. In the qutrit basis we selected, we have :

σ1

∣∣x〉 ≡ = RFFx = RFFx
∣∣x〉,
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σ2

∣∣x〉 ≡ =
∑
y

(
FFFFF

)
xy

=
∑
y

RFFy
(
FFFFF

)
xy

=
∑
y,z

(
FFFFF

)−1

yz
RFFy

(
FFFFF

)
xy

=
∑
y,z

(
FFFFF

)−1

yz
RFFy

(
FFFFF

)
xy

∣∣z〉,

where x, y, z ∈
{
A,B,L

}
and because

(
FFFFF

)
is unitary we have

(
FFFFF

)−1

yz
=
(
FFFFF

)∗
zy

. So :

σ1 = R , σ2 = F−1RF = F †RF, (100)

where :

R ≡

RFFA 0 0
0 RFFB 0
0 0 RFFL

 , F ≡ FFFFF ≡


(
FFFFF

)
AA

(
FFFFF

)
AB

(
FFFFF

)
AL(

FFFFF

)
BA

(
FFFFF

)
BB

(
FFFFF

)
BL(

FFFFF

)
LA

(
FFFFF

)
LB

(
FFFFF

)
LL

 (101)

We calculate the F -symbols with the quantum double method (Clebsch-Gordan symbols). We will
calculate the first element

(
FFFFF

)
AA

as an example. We have from (83) :

(
FFFFF

)
FF

=
∑

i,j,k,n,m

(
F F A
i j 1

)(
A F F
1 k 1

)(
F F A
j k 1

)∗(
F A F
i 1 1

)∗
,

where m,n = 1 because the anyon A (vaccum) is one-dimensional and we also chose l = 1 for the
two-dimensional F anyon. To find a non-zero coefficient, we start with (79) in which we calculate
diagonal elements of the representations ΠA and ΠF and because of (14), the relation h′h′′ = h in
the sum of (79) defines which coefficients are non zero. For instance :(

F F A
1 1 1

)
= 0 because 1h1

1h1 = r2 6= e = 0h1,(
F F A
2 2 1

)
= 0 because 1h2

1h2 = r3 6= e = 0h1

So the two non-zero coefficients for this selection of anyons (a = b = F and c = A) are :(
F F A
1 2 1

)
and

(
F F A
1 2 1

)
because 1h1

1h2 = 1h2
1h1 = e = 0h1

We first find from (79) that :(
F F A
1 2 1

)
=
( 1

10

∑
g∈Z5

1Γ̂
(
g
)

1Γ̂
(
sgs
))1/2

=
( 1

10

(
1 +ω ·ω4 +ω2 ·ω3 +ω3 ·ω2 +ω4 ·ω

))1/2
=

1√
2
,

where Z5 =
{
e, r, r2, r3, r4

}
. Then we find the other non-zero CG coefficient from (80) :(
F F A
2 1 1

)
=

1√
10

∑
g∈3C

1Γ̂
(
sg
)

1Γ̂
(
gs
)

√
5

=
1√
2
,
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where we summed in the elements of the conjugacy class 3C. The other non-zero symbols that we
need are calculated as above : (

A F F
1 1 1

)
=

(
F A F
1 1 1

)
= 1

Gathering what we computed, the sum for
(
FFFFF

)
AA

reduces to one term :

(
FFFFF

)
AA

=

(
F F A
1 2 1

)(
A F F
1 1 1

)(
F F A
2 1 1

)∗(
F A F
1 1 1

)∗
=

1

2

The total F matrix results :

F ≡ FFFFF ≡

 1/2 −1/2 1/
√

2

−1/2 1/2 −1/
√

2

1/
√

2 −1/
√

2 0

 (102)

We reassure that
∑3

j=1

∣∣(FFFFF

)
ij

∣∣2 = 1 for i = 1, 2, 3.

For the RFFx symbols we use the simple relation (66) for k = 1 :

RFFA = e−iπsF e−iπsF eiπsA = e−2πi/5 = ω−1 = ω,

RFFB = e−iπsF e−iπsF eiπsB = ω,

RFFL = e−iπsF e−iπsF eiπsL = ω,

where we used the anyon spins from (43). The total R matrix is :

R ≡

ω 0 0
0 ω 0
0 0 ω

 (103)

Alternatively, we could have used (71) with :

RFF ≡ R66 =


ω 0 0 0
0 0 ω 0
0 ω 0 0
0 0 0 ω


and the non-zero 3j-symbols (CG symbols) :(

F F A
1 2 1

)
=

(
F F A
1 2 1

)
=

1√
2
,(

F F B
1 2 1

)
=

(
F F B
2 1 1

)
= − 1√

2
,(

F F L
1 1 1

)
=

(
F F L
2 2 2

)
= 1
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and take the same result for the R matrix as in (103).
The generators of B3 are (F † = F , as F is symmetric with real elements) from (100) :

σ1 =

ω 0 0
0 ω 0
0 0 ω

 , σ2 = FRF =


ω+ω

2 − (ω+ω)
2

ω√
2

− (ω+ω)
2

ω+ω
2 − ω√

2
ω√
2

− ω√
2

ω

 , (104)

where ω + ω = 2 cos 2π/5. The generators act on a general qutrit state :

∣∣ψ〉 = a
∣∣0〉+ b

∣∣1〉+ c
∣∣2〉 =

ab
c

 , (105)

which represents the initial state of the three F anyons we braid. We can approximate or even
find exactly a qutrit gate by a sequence of actions of the generators σ1 and σ2 on the state

∣∣ψ〉.
Working with the group D5, such a task is very hard because among the elements of the generators
we have the 5th roots of unity.
Without loss of generality, we may multiply the σi

′s by a common factor (we explained this freedom
earlier) so that they all have determinant equal to 1 (note that all the σi

′s are conjugate to each
other). This is because the images of the representations we take are subgroups of SU(V mm...

z )
(square matrices with determinant = 1 that have the dimension of the space V mm...

z ). For our
case, we have 3 anyons m = F that fuse to z = F and dim(V FFF

F ) = 3. The new matrices with
determinant = 1 are σ̃i = τσi with τ = e2π/15. The matrix σ1 (as well as σ̃1) is unitary but σ2

(and σ̃2) is not. The order of the first generator is finite → σ5
1 ≡ Γ5

(
σ1

)
= 13×3 but the second

generator σ2 ≡ Γ
(
σ2

)
has infinite order → σm2 6= 13×3 ∀m ∈ N.

The quantum double D(D5), as well as others like D(S3), have a lot of options for qutrit encoding so
we can get as images of the representations of the braid group generators some interesting subgroups
of SU(3) which are rarely the braid group B3 or the truncated braid group B(3,m) (the matrices
of the generators don’t obey the Y ang-Baxter equation but the multiplication table of the image
subgroup of SU(3) which can have finite or infinite order). Nevertheless, those matrices indeed
correspond to representations of the braiding generators as we showed geometrically with F and R
moves even though they don’t actually produce the braid group. For quantum computation reasons,
we want the braiding transformations σi

′s to be unitary in order for the process to conserve the
total probability. Generators that are not in this category still represent braiding transformations
between anyons but are not ideal for building braiding quantum circuits. Our aim always is to
build circuits that lead to a universal gate set.
We want to examine if the representation of B3 that we found is irreducible and identify the images
on each irreducible summand (we also call them sectors but we shouldn’t confuse the word with
the anyonic sectors/states). To find a subspace invariant under the matrices σ1 = Γ(σ1) and
σ2 = Γ(σ2), we carry out the following procedure: First, we create new matrices from σ1 and σ2

via addition and multiplication. When we find a matrix that has a nontrivial null space, we take a
basis for that null space, and apply the matrices σ1 and σ2 to the vectors in that basis. We record
the resulting vectors, apply σ1 and σ2 to them, and continue in this fashion until applying σ1 and
σ2 ceases to produce vectors that are linearly independent from the ones we have already recorded.
After some testing, the first combination of the two generators that has non-trivial null space is

57



their product :

σ1σ2 =


1+ω2

2 − (1+ω2)
2

ω2
√

2

− (1+ω2)
2

1+ω2

2 − ω2
√

2
1√
2

− 1√
2

1


We transform this matrix into row echelon form :

σ1σ2 →

1 −1
√

2
0 0 1
0 0 0

 ,

so it’s null space is spanned by a single vector :1 −1
√

2
0 0 1
0 0 0

xy
z

 =

0
0
0

⇒
xy
z

 = x

1
1
0


Any linear combination of addition and multiplication of σ1 and σ2 we act on the above vector
gives the same vector multiplied by a complex scalar or the trivial null vector which implies that
the null space is 1-dimensional. We name this irreducible subspace as W . We normalize the vector
to norm 1 :

−→w =
1√
2

1
1
0

→ 1√
2

(∣∣A〉+
∣∣B〉),

where
∣∣A〉 ≡ ∣∣0〉 and

∣∣B〉 ≡ ∣∣1〉 are the two basis states of the qutrit space. The representations
of the two generators in this 1D basis are σ1 = ω and σ2 = 0. We will now find the irreducible 2D
orthogonal complement of W → W⊥ (dim(V FFF

F ) = 3 = dim(W ) + dim(W⊥)). We want to find
two linearly independent vectors that are orthogonal to the vector −→w . Those two real vectors must
satisfy :

1√
2

(
x y z

)1
1
0

 = 0⇒ x+ y = 0.

For x = 1→ y = −1, we have the normalized vector :

−→w 1 =
1√
2

 1
−1
0

→ 1√
2

(∣∣A〉− ∣∣B〉)
We can pick as the second vector of W⊥ the unit basis vector in the z direction (−→w and −→w 1 are in
the xy plane) :

−→w 2 =

0
0
1

→ ∣∣L〉 ≡ ∣∣2〉
The three vectors that we found are linearly independent :

a√
2

1
1
0

+
b√
2

 1
−1
0

+ c

0
0
1

 =

0
0
0

⇒ a = b = c = 0.
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The representations of the generators in the basis
{(∣∣A〉− ∣∣B〉)/√2,

∣∣L〉} of W⊥ are :

σ1 =

(
ω 0
0 ω

)
= ω

(
1 0
0 ω2

)
∼
(

1 0
0 ω2

)
,

σ2 =

(
ω + ω ω
ω ω

)
= ω

(
1 + ω2 1

1 1

)
∼
(

1 + ω2 1
1 1

)
,

(106)

if we reduce a common phase ω (σ1 = ω ∼ 1). The 2 dimensional sector satisfies obviously the same
multiplication relations as the 3D reducible representation we first derived and also carries qutrit
information even though it is 2-dimensional (the basis of W⊥ includes all of the fusion basis states∣∣A〉, ∣∣B〉 and

∣∣L〉). So, we still encode a qutrit in the 2D basis and process it’s information with
the above 2D matrices σ1 and σ2. We proved that the reducible representations of the generators
in V FFF

F decompose into the irreducible representations in the sectors W and W⊥.
We could have worked with 4 identical F type anyons (this type choice is arbitrary) but we need
more F symbols to calculate in order to find the 3 generators of the B4 group. We analyze the case
where the space is described by four F anyons that fuse into the vaccum A. The basis states are :

∣∣0〉 ≡ ∣∣A〉 ≡ ,
∣∣1〉 ≡ ∣∣B〉 ≡ ,

∣∣2〉 ≡ ∣∣L〉 ≡ ,

where we symbolize the states
∣∣x, x〉 ≡ ∣∣x〉 because the two anyons are the same kind. For the

generator σ2 :

σ2

∣∣x〉 ≡ =
∑
y

(
FFFxA

)
xy

For x = A,B we have y = F from the fusion rules. If x = L then y = F,L. But for y = L →
F ⊕ L 6= A. So we accept only y = F . We continue :

σ2

∣∣x〉 =
(
FFFxA

)
xF

=
∑
e

(
FFFFF

)−1

xe

(
FFFxA

)
xF

=
∑
e

RFFe
(
FFFFF

)−1

xe

(
FFFxA

)
xF

=
∑
e,z

(
FFFFF

)
ez
RFFe

(
FFFFF

)−1

xe

(
FFFxA

)
xF

=
∑
e,z,f

(
FFFzA

)−1

Ff

(
FFFFF

)
ez
RFFe

(
FFFFF

)−1

xe

(
FFFxA

)
xF
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But because F × F = A⊕B ⊕ L, we should have f = z in order to eventually fuse to the vacuum
A, so :

σ2

∣∣x〉 =
∑
e,z

(
FFFzA

)−1

Fz

(
FFFFF

)
ez
RFFe

(
FFFFF

)−1

xe

(
FFFxA

)
xF

We see that it requires more effort than the case with three F anyons as here we have to calculate
not only the matrix FFFFF that we calculated but also the symbols FFFAA , FFFBA and FFFLA . The
generators σ1 and σ3 are identified straightforward :

σ1

∣∣x〉 ≡ = RFFx ,

σ3

∣∣x〉 ≡ = RFFx ,

so σ1 = σ3 = R from (103).
We will now construct representations of the braiding generators with the quantum double. The
case of indistinguishable particles is very easy to be examined and we can verify that the generators
satisfy the Y ang-Baxter equation (28). Suppose we have one anyon type a, we only need the
braiding matrix Raa (from equation (19)) to construct them with equation (33). They all have the
same order and so we result with representations of the truncated braid group B(n,m).
We will do the calculations for the case of distinguishable particles. Suppose we have three anyons
of types E, F and G (or else 5, 6 and 7). In order to take a representation for the pure truncated
braid group, all the R matrices involved must have the same even order. The braid matrices we
need are :

R65 = R75 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , R56 = R76 =


ω 0 0 0
0 0 ω 0
0 ω 0 0
0 0 0 ω

 , R57 = R67 =


ω2 0 0 0
0 0 ω2 0
0 ω2 0 0
0 0 0 ω2


From equations (33) and (36), we define the 3 generators of the pure truncated braid group (all
the above matrices have order 6→ R10 = 14×4) :

A12 = R2
1 = R65R56 ⊗ 12×2,

A13 = R1R2
2R−1

1 =
(
R65 ⊗ 12×2

)(
12×2 ⊗R75R57

)(
R−1

56 ⊗ 12×2

)
,

A23 = R2
2 = 12×2 ⊗R76R67,

(107)
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where Ri, R−1
i
′s correspond to single braiding operators while R2

i
′s correspond to monodromy

operators. The matrices end up being :

A12 = diag
(
ω, ω, ω, ω, ω, ω, ω, ω

)
,

A13 = diag
(
ω, ω2, ω2, ω, ω, ω2, ω2, ω

)
,

A23 = diag
(
ω2, ω2, ω2, ω2, ω2, ω2, ω2, ω2

)
,

(108)

where all the generators have order 5 → A
10/2
ij = A5

ij = 18×8 (equation (37)) and form the pure

truncated group P (3, 10) (3 distinguishable particles with all the generators having order 10
2 = 5).

We verify with an example that the generators we found satisfy the group relations (30) :

A−1
12 = diag

(
ω, ω, ω, ω, ω, ω, ω, ω

)
,

A−1
13 = diag

(
ω, ω2, ω2, ω, ω, ω2, ω2, ω

)
,

so we have :
A−1

12 A23A12 = A13A23A
−1
13 = diag

(
ω2, ω2, ω2, ω2, ω2, ω2, ω2, ω2

)
The braiding generators Aij act on the general initialized state :∣∣ψ〉 =

(
a
∣∣E, 1〉+ b

∣∣E, 2〉)⊗ (c∣∣F, 1〉+ d
∣∣F, 2〉)⊗ (e∣∣G, 1〉+ f

∣∣G, 2〉), (109)

where we use the notation of the internal states of the 3 types of anyons (the R matrices and
consequently the braiding generators in the quantum double are represented in the internal states
of the anyons). It holds that |a|2 + |b|2 = |c|2 + |d|2 = |e|2 + |f |2 = 1. We cannot encode any qudit
in the fusion space of E, F and G because it is one dimensional as E×F = C⊕K, C×G = F ⊕H
and K ×G = I ⊕ L so we get only 1 time each anyon in the end of the fusion tree.
There are a few options in D(D5) in which we can encode a qubit in the fusion options between
3 distinguishable anyons. If we select the anyons E, F and O, we result with the following fusion
space basis : ∣∣0〉 ≡ and

∣∣1〉 ≡ ,

so we can encode a qubit in this 2D space with state
∣∣ψ〉 = a

∣∣0〉+ b
∣∣1〉. We can define the braiding

generators between the 3 anyons just like in equation (107) by substituting the indices of the anyon
7 with the anyon 15 in the R matrices (also now the rightmost anyon lives in a 5-dimensional space
so in the tensor product when we don’t act on the 3rd anyon we put 15×5 instead of 12×2). The
additional R matrices we need :

R155 =



0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0


, R156 =



0 1 0 0 0 0 0 0 0 0
0 0 0 ω 0 0 0 0 0 0
0 0 0 0 0 ω2 0 0 0 0
0 0 0 0 0 0 0 ω2 0 0
0 0 0 0 0 0 0 0 0 ω
1 0 0 0 0 0 0 0 0 0
0 0 ω 0 0 0 0 0 0 0
0 0 0 0 ω2 0 0 0 0 0
0 0 0 0 0 0 ω2 0 0 0
0 0 0 0 0 0 0 0 ω 0


,
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with order 10→ R10
155 = R10

156 = 110×10. So now not all R matrices involved have the same order.
The generators that arise are :

A12 = diag
(
ω, ω, ω, ω, ω, ω, ω, ω, ω, ω, ω, ω, ω, ω, ω, ω, ω, ω, ω, ω

)
,

A13 =

 O10×10
ωA O5×5

O5×5 ωA

ωB O5×5

O5×5 ωB
O10×10

 , A23 =


O5×5 C

D O5×5
O10×10

O10×10
O5×5 C

D O5×5

 ,
(110)

where with O we denote the zero/null matrices and :

A =


0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

 , B = A
−1 =


0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0

 ,

C =


0 0 0 1 0
0 0 0 0 ω
ω2 0 0 0 0
0 ω2 0 0 0
0 0 ω 0 0

 , D =


0 0 1 0 0
0 0 0 ω 0
0 0 0 0 ω2

ω2 0 0 0 0
0 ω 0 0 0


(111)

The generators have order 5, 2 and 10→ A5
12 = A2

13 = A10
23 = 120×20, a consequence of the different

orders of the R matrices. The image group of this representation, formed by elements that are
all the possible different results for any action of the generators, now is a different finite group
(because all the generators have finite order) than the pure truncated braid group. It is obvious
to confirm that the relations of the pure braid group (30) are not satisfied here.
In the attempt to define the generators in the fusion space rather than the internal states of the
anyons (quantum double), using the F and R symbols, we can construct the generators A12 and
A23 as :

A12

∣∣x〉 ≡ =
(
REFx

)2
=
(
REFx

)2∣∣x〉,

A23

∣∣x〉 ≡ =
∑
y,z

(
FEFOO,P

)−1

yz

(
RFOy

)2(
FEFOO,P

)
xy

=
∑
y,z

(
FEFOO,P

)−1

yz

(
RFOy

)2(
FEFOO,P

)
xy

∣∣z〉,
where we define geometrically the generators Aij as in Figure 3 (the particles are distinguishable)

by using the monodromy symbols
(
REFx

)2
and

(
RFOy

)2
from equation (66) (for k = 2). We cannot
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construct the generator A13 with F and R symbols because there is no way to make the leftmost
anyon E and rightmost anyon O fuse while braiding separately from anyon F at some point in the
process, in order to use for their braiding the monodromy symbol

(
REOc

)2
. That’s why this method

is applicable only when we work with a collection of indistinguishable particles.

4.7 Universal quantum computation

In this final section, we inspect two fundamental cases of universal quantum computation with
certain anyon models. There are also other interesting suggestions that propose an efficient way
to achieve universality, such as metaplectic anyons or more generally the SU(2)k anyon theories
from which we compared the Ising (k = 2) anyon and Fibonacci (k = 3) anyon models, motivated
by their potential for future realizations based on Majorana fermion quasiparticles or exotic
fractional quantum-Hall states, respectively.

4.7.1 Simple perfect groups

Instead of dealing with the general case of non-solvable groups, we will deal with the smaller
set of groups that are both simple and perfect. Non-solvable groups are those that contain a
perfect subgroup; and a perfect group is any non-trivial group, whose commutator subgroup equals
the full group:

[
H,H

]
= H. The property of simplicity means that the group has exactly two

subgroups that are invariant under conjugation: the trivial group and the whole group. Because
the commutator subgroup is invariant under conjugation, it should be clear that any simple non-
abelian group is perfect. However, we shall refer to these groups as simple and perfect to remind
the reader that we are dealing with a subcase of the general non-solvable case.
The set of simple perfect groups, which includes the alternating groups An for n > 4, is powerful
for computing because in some sense we can get from one non-trivial element to any other using
operations that fix the identity. The simplest example of that category of groups is A5 which will
be referred during the process.
We will work with a computational basis of qudits of trivial net flux [18]:∣∣n〉 =

∣∣anba−n〉⊗ ∣∣anb−1a−n
〉
, 0 ≤ n ≤ d, (112)

with d the smallest prime number such that adba−d = b. The pure fluxes, as we defined them in
subsection 4.1, here take values in a simple perfect group. Every simple perfect group has even
order, so we can always find a group element a such that a2 = e and thus work with qubits (e is
the trivial element). We choose two non-commuting elements a, b ∈ H such that a2 = e and we
define the basis states : ∣∣0〉 ≡ ∣∣b, b−1

〉
,∣∣1〉 ≡ ∣∣aba−1, ab−1a−1

〉 (113)

The matrix that executes the projective measurement is the Z-Pauli matrix :

Z
∣∣0〉 =

∣∣0〉, Z∣∣1〉 = −
∣∣1〉,

Z =

(
1 0
0 −1

)
(114)
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The X-Pauli is defined as :

X
∣∣0〉 =

∣∣1〉, Z∣∣1〉 =
∣∣0〉,

X =

(
0 1
1 0

)
(115)

The eigenvectors of X in the computational basis are :

|+〉 =
1√
2

(∣∣0〉+
∣∣1〉) =

1√
2

(∣∣b, b−1
〉

+
∣∣aba−1, ab−1a−1

〉)
,

|−〉 =
1√
2

(∣∣0〉− ∣∣1〉) =
1√
2

(∣∣b, b−1
〉
−
∣∣aba−1, ab−1a−1

〉) (116)

Suppose we create a pair of fluxes from the vacuum. The state, as we explained in subsection 4.1,
should be

∣∣0;Ch
〉
, with b, aba−1 ∈ Ch, as we cannot have any conserved charges. This means that

if we bring two members of a flux pair
∣∣h, h−1

〉
together, the chance (probability) that they will

annihilate is not 1 but :
P =

∣∣〈0;Ch
∣∣h, h−1

〉∣∣2 = 1/|Ch|
If the state of a pair is |−〉, then the amplitude of the pair components to fuse into the vacuum is :〈

0;Ch |−〉 =
1√

2|Ch|
(〈

0
∣∣+
〈
1
∣∣+ . . .

)(∣∣0〉− ∣∣1〉) = 0,

thus they will never fuse to the vacuum. On the other side, if the pair is in the state |+〉, we have :

〈
0;Ch |+〉 =

1√
2|Ch|

(〈
0
∣∣+
〈
1
∣∣+ . . .

)(∣∣0〉+
∣∣1〉) =

√
2

|Ch|
,

and thus there is a finite probability that they will fuse to the vacuum.
We can construct the state |+〉. We begin by creating a pair in the vacuum state

∣∣0;Ch
〉
. If Ch has

just two elements, then
∣∣0;Ch

〉
= |+〉 and we are done. But if the specific conjugacy class has more

than two elements, we bring the pair near a calibrated pair
∣∣c, c−1

〉
, where c ∈ Ch and c 6= b, aba−1.

If it doesn’t match
∣∣c, c−1

〉
→
〈
c, c−1

∣∣0;Ch
〉

= 0 for every c ∈ Ch, then the state of the pair must
be |+〉.
We denote for convenience the pair states as

∣∣a〉 ≡ ∣∣a, a−1
〉
. Suppose we have the 3 pair state∣∣x, y, z〉. We can wind the third pair clockwise or counterclockwise around the first pair and

execute the gate :

Rxz
∣∣x, y, z〉 =

∣∣x, y, xzx−1
〉
, R−1

xz

∣∣x, y, z〉 =
∣∣x, y, x−1zx

〉
,

or do the same with the second pair :

Ryz
∣∣x, y, z〉 =

∣∣x, y, yzy−1
〉
, R−1

yz

∣∣x, y, z〉 =
∣∣x, y, y−1zy

〉
,

or even borrow a pair of fluxes
∣∣c〉 from the bureau of standards and wind

∣∣z〉 around it :∣∣x, y〉⊗R∣∣c〉∣∣z〉 =
∣∣x, y, czc−1

〉∣∣c〉,
for every c ∈ H. So we can execute any gate of the form :∏

i

Ri
∣∣x, y, z〉 =

∣∣x, y, f(x, y)zf(x, y)−1〉
,

with Ri = R±xz,R±yz and f
(
x, y
)

is a function with a product form of x, y factors and their inverses.
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Theorem 4.1: If H is a simple and perfect finite group, then any function f
(
h1, . . . , hn

)
: Hn → H

can be expressed as a product of the inputs
{
hi
}

, their inverses
{
h−1
i

}
and fixed elements of H,

any of which may appear multiple times in the product.

The smallest simple and perfect group is A5, the group of even permutations of five objects.
Gottesman has proved in one of his papers that for d prime, being able to apply products of X’s
and Z’s plus a Toffoli gate is universal for quantum computation.
The Toffoli gate is defined to act on a 3-qubit state as :

T
∣∣x, y, z〉 =

∣∣x, y, z ⊕ xy〉, (117)

so in our case, where a pair of fluxes can be written in the form
∣∣h〉 =

∣∣amba−m〉, we can write the
action of the Toffoli gate in a more convenient way as :

T
∣∣aiba−i, ajba−j , akba−k〉 =

∣∣aiba−i, ajba−j , aij+kba−ij−k〉 (118)

Thus, the Toffoli gate conjugates the third qubit by the function :

f
(
x, y
)

= f
(
aiba−i, ajba−j

)
= aij

Suppose we have 2 qubits with fluxes h1 and h2 with hi ∈
{
b, aba−1

}
. We define new variables

h′i = hib
−1 ∈

{
e, c
}

, with c defined as the commutator of a and b :

c ≡
[
a, b
]

= aba−1b−1

We choose an element g such that it doesn’t commute with c and define l ≡
[
c, g
]
. If we find two

functions p1,2 that can be written in a product form, such that :

p1

(
c
)

= g, p1

(
e
)

= e,

p2

(
l
)

= a, p2

(
e
)

= e,
(119)

then the Toffoli function can be written as :

f
(
h1, h2

)
= p2

([
h′1, p1

(
h′2
)])

Let the fluxes take values in A5. According to the above analysis, we need an element a such that
a2 = e in order to work with qubits. We choose a =

(
12
)(

34
)
. Next, we choose an element b that

doesn’t commute with a, and an element g that doesn’t commute with c ≡
[
a, b
]
. A little trial and

error yield b =
(
345
)

and g =
(
234
)
. The computational basis is now defined as :∣∣0〉 =

∣∣b〉 =
∣∣(345

)〉
,∣∣1〉 =

∣∣aba−1
〉

=
∣∣(435

)〉
,

(120)

and the remaining group elements are fixed as :

c =
(
aba−1

)
b−1 =

(
435
)(

435
)

=
(
345
)
,

l =
(
cgc−1

)
g−1 =

(
245
)(

324
)

=
(
25
)(

34
) (121)
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It’s easy to see that two functions with the properties in (119) are :

p1

(
h
)

= p2

(
h
)

=
(
521
)
h
(
125
)

(122)

Putting all the steps together, we get the Toffoli function :

f
(
h1, h2

)
=
{(

521
)
h1

(
14352

)
h2

(
124
)
h−1

1

(
15342

)
h−1

2

(
521
)}

(123)

So given 3 qubits
∣∣h1, h2, h3

〉
, if we want to execute the Toffoli gate for the group A5 all we have to

do is conjugate the third qubit by the above function f
(
h1, h2

)
. This ”recipe” of finding the Toffoli

function f
(
h1, h2

)
can be used for any simple perfect group and it’s exact form can be found using

the functions pi.
Now that we constructed the Toffoli gate, we move on to the next step. We need to be able to
apply and measure products of X’s and Z’s, i.e. XaZb. An important observation is that :

(
XaZb

)d
= ωabd(d−1)/2XadZbd =

{
I , if d = odd,

−Iab, if d = 2,
(124)

with ω = e2πi/d. We work with qubits so ω = e2πi/2 = eπi. The eigenvectors of ZX = iY are :∣∣0Y 〉 =
1√
2

(∣∣0〉+ i
∣∣1〉) =

1√
2

(∣∣b〉+ i
∣∣aba−1

〉)
,∣∣1Y 〉 =

1√
2

(∣∣0〉− i∣∣1〉) =
1√
2

(∣∣b〉− i∣∣aba−1
〉) (125)

In order to construct the method for measuring operators of the form XaZb for every possible value
of d, we introduce a vital trick, that is Kitaev′s phase estimation technique. Assuming that we
are working in a system with qudits, and we have an operator U with eigenvalues that are dth roots
of unity. If we are able to apply a controlled-U , and measure in the X basis, it is equivalent to
being able to measure the operator U .
The general case for d an odd prime number is easy because the eigenvalues of XaZb are the dth

roots of unity just like those of X and Z. Assuming we can make measurements in the X basis
(which includes preparation of X eigenstates), all that remains is to construct the controlled-XaZb.
That is, we need to be able to apply the gate :

CXaZb
(∣∣n〉⊗ ∣∣ψ〉) =

dc−1∑
s=0

Ps ⊗
(
XaZb

)s(∣∣n〉⊗ ∣∣ψ〉) =
∣∣n〉⊗ (XaZb

)n∣∣ψ〉
=
∣∣n〉⊗XanZbnωabn(n−1)/2

∣∣ψ〉,
composed of the total phase :

CXaZb
∣∣n,m〉 = ωbnm+abn(n−1)/2

∣∣n,m〉,
as Zbn

∣∣m〉 = ωbnm
∣∣m〉, followed by controlled-sums (a in number) which illustrate the Xan gate

above. The controlled-sum is just a Toffoli with an input (qubit) fixed to one, so in practice it acts
always as Xn for the third qudit (one control qubit, one control qudit and one target qudit) :(

Csum
)a∣∣1〉⊗ ∣∣n〉⊗ ∣∣ψ〉 = T a

∣∣1〉⊗ ∣∣n〉⊗ ∣∣ψ〉 =
∣∣1〉⊗ ∣∣n〉⊗Xan

∣∣ψ〉,
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where we use an extra qubit ancilla in the state
∣∣1〉. As for the phase, because we have a Toffoli, we

have universal classical computation. We can thus compute the computational basis vector indexed
by q = bnm+ abn(n− 1)/2 in an ancilla by the action of T q in

∣∣1, 1, 0〉 (two control qubits and one
target qudit) :

T q
∣∣1, 1, 0〉 =

∣∣1, 1〉⊗Xq
∣∣0〉 =

∣∣1, 1, q〉,
apply a Z to this ancilla in order to create the phase, and then erase the computation. We used
for the previous the generalized hybrid Toffoli gate :

T =

dc−1∑
r=0

d′c−1∑
s=0

Pr ⊗ Ps ⊗Xrs =

dc−1∑
r=0

d′c−1∑
s=0

∣∣r〉〈r∣∣⊗ ∣∣s〉〈s∣∣⊗Xrs,

with dc,d
′
c the dimensions of the two control qudits. We showed how to compute XaZb operators

for the qudit case.
The d = 2 qubit case is invariant under complex conjugation and thus there is no way of distin-
guishing the two eigenstates of ZX. Suppose someone provides us with the state :∣∣Ψ〉 =

∣∣0Y 〉 =
1√
2

(∣∣0〉+ ω
∣∣1〉)

It could be any of the two eigenvectors of ZX. We label it as the ω = +i eigenstate. We use again
Kitaev’s phase estimation technique and act with control-ZX on the state |+〉 ⊗

∣∣Ψ〉, with |+〉 as
the control ancilla (X eigenstate) and

∣∣Ψ〉 as the target. So the circuit performs the transformation
:

CZX
(
|+〉 ⊗

∣∣Ψ〉) =
1

2

(∣∣00
〉

+ ω
∣∣01
〉
−
∣∣11
〉

+ ω
∣∣10
〉)

=
∣∣Ψ〉⊗ ∣∣Ψ〉

So the copy of the second state occurs either way. This is quite helpful as we can execute gates
on the first qubit without employing a destructive measurement on the second. We can always act
with Z on

∣∣Ψ〉 and construct the orthogonal state
∣∣Φ〉 = 1√

2

(∣∣0〉−ω∣∣1〉). Now that we have copied

our state, we can construct a new controlled-ZX gate with the ancilla
∣∣Ψ〉 as the control qubit and

another
∣∣Ψ〉 as the target, and then measure the first qubit in the X basis :

(
X ⊗ I

)
CZX

(∣∣Ψ〉⊗ ∣∣Ψ〉) =
1

2

(∣∣10
〉

+ ω
∣∣11
〉
− ω

∣∣01
〉
−
∣∣00
〉)

= − |−〉 ⊗
∣∣Ψ〉,

where the phase eiπ = −1 is irrelevant as it is not observable. Doing the same thing with
∣∣Φ〉 as

the ancilla, and then measuring again in the X basis :(
X ⊗ I

)
CZX

(∣∣Φ〉⊗ ∣∣Ψ〉) =
1

2

(∣∣10
〉

+ ω
∣∣11
〉

+ ω
∣∣01
〉

+
∣∣00
〉)

= |+〉 ⊗
∣∣Ψ〉,

so as long as we are consistent in using the same ancilla
∣∣Ψ〉, we will have broken the conjugation

symmetry and have found a new way of labeling, creating and measuring eigenstates of ZX.
All that remains to be explained is how to create the first copy of

∣∣Ψ〉. Because a state with a
density matrix proportional to the identity can be written as :

ρ =
1

2
I =

1

2

∣∣0Y 〉〈0Y ∣∣+
1

2

∣∣1Y 〉〈1Y ∣∣,
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it is equivalent to having prepared an eigenstate of ZX = iY chosen at random. By using a
controlled-NOT gate from a |+〉 ancilla to a

∣∣0〉 ancilla, we produce the state :

CNOT
(
|+〉 ⊗

∣∣0〉) =
1√
2

(∣∣00
〉

+
∣∣11
〉)

=
1√
2

(∣∣0Y 1Y
〉

+
∣∣1Y 0Y

〉)
So by discarding one qubit of the above bell state (trace out it’s degrees of freedom), we have
produced the desired

∣∣Ψ〉. Therefore, we proved also for the qubit case, which is of main interest,
how to construct eigenstates of ZX, X and Z as well as the way to execute the Toffoli gate.
Summing up what we showed, we have the power to achieve universal quantum computation

4.7.2 Qutrit encoding in D(S3) model

The superselection sectors of D
(
S3

)
(representations of the quantum double model D

(
S3

)
) are [19]:

1 ≡ A ≡
∣∣e, 0Γ

〉
, 2 ≡ B ≡

∣∣e, 1Γ
〉
, 3 ≡ C ≡

∣∣e, 2Γ
〉
,

4 ≡ D ≡
∣∣1C, 0Γ̂

〉
, 5 ≡ E ≡

∣∣1C, 1Γ̂
〉
, 6 ≡ F ≡

∣∣2C, 0Γ̃
〉
, (126)

7 ≡ G ≡
∣∣2C, 1Γ̃

〉
, 8 ≡ H ≡

∣∣2C, 2Γ̃
〉

The fusion rules of D
(
S3

)
are included in the last section of Tables and R matrices. The T matrix

of the model is :
T = diag

(
1, 1, 1, 1,−1, 1, ω, ω2

)
, (127)

with ω = e2πi/3, from which we find the spin factors s1 = s2 = s3 = s4 = s6 = 0, s5 = 1/2, s7 = 1/3
and s8 = 2/3. We can use the spins to find the R symbols from (66).
Now, the fusion rules of the whole D

(
S3

)
anyon model are too complicated to serve as an illustrative

model. Hence, the simplest fusion subalgebra M we can distinguish is [20]:

M =
{

1,Λ,Φ
}
, (128)

with 1 ≡ A, Λ ≡ B and we have 4 options for Φ ≡ C,F,G,H. These choices of particles give closed
fusion rules :

Φ⊗ Φ = 1⊕ Λ⊕ Φ, Λ⊗ Λ = 1, Φ⊗ Λ = Φ,

where Φ is the anyon with the non-abelian identity. We elaborate two cases for the Λ−Φ submodel,
one in the space where three Φ particles fuse to Φ and the other with four anyons of the same type
that fuse to the vacuum. We choose Φ = C. The basis states in V ΦΦΦ

Φ are :

∣∣x〉 ≡ ,

with x ∈
{

1,Λ,Φ
}

. We calculate the unitary F and R matrices :

F ≡ FΦΦΦ
Φ =

F11 F1Λ F1Φ

FΛ1 FΛΛ FΛΦ

FΦ1 FΦΛ FΦΦ

 =
1

2

 1 1 −
√

2

1 1
√

2

−
√

2
√

2 0

 ,

R =

RΦΦ
1 0 0
0 RΦΦ

Λ 0
0 0 RΦΦ

Φ

 =

1 0 0
0 −1 0
0 0 1


(129)
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The unitary generators of B3 are (F−1 = F † = F ) [19]:

σ1 = eiπR =

−1 0 0
0 1 0
0 0 −1

 and σ2 = eiπFRF =
1

2

−1 1
√

2

1 −1
√

2√
2
√

2 0

 , (130)

where we multiplied both σ1 and σ2 with a total phase eiπ = −1 so that the have determinant equal
to 1. The image of this representation of the generators σi is the symmetric group of permutations
on 3 objects S3, as σ2

1 = σ2
2 = 13×3 and also the Yang-Baxter relation is satisfied.

When we deal with the fusion space V ΦΦΦΦ
1 (Φ = C), we have the computational qutrit basis :

∣∣x〉 ≡ ∣∣x, x〉 ≡ ,

with x ∈
{

1,Λ,Φ
}

. The generators of B4 are identified in the same manner as we did in D
(
D5

)
:

σ1

∣∣x〉 = σ3

∣∣x〉 = RΦΦ
x

∣∣x〉,
σ2

∣∣x〉 =
∑
e,z

(
FΦΦz

1

)−1

Φz

(
FΦΦΦ

Φ

)
ez
RΦΦ
e

(
FΦΦΦ

Φ

)−1

xe

(
FΦΦx

1

)
xΦ

∣∣z〉
The extra one-dimensional F -symbols we need, in order to determine σ2, are

(
FΦΦ1

1

)±
=
(
FΦΦΛ

1

)±
=(

FΦΦΦ
1

)±
= 1. We result with the expressions :

σ1 = σ3 =

−1 0 0
0 1 0
0 0 −1

 and σ2 = −1

2

 1 −1
√

2

−1 1
√

2√
2
√

2 0

 , (131)

where we added again a common factor eiπ = −1 so that det
(
σi
)

= 1. This reducible representation
splits into two sectors S1 and S2, where S1 is a 1-dim irrep mapping σi to 1 and S2 is a 2-dim

irrep spanned by the basis
{∣∣Λ,Λ〉, √3

3

∣∣1, 1〉 − √6
3

∣∣Φ,Φ〉} =
{∣∣B,B〉, √3

3

∣∣A,A〉 − √6
3

∣∣C,C〉}. The
matrices of the σi’s under the basis of S2 are given by :

σ1 = σ3 = i

(
1 0
0 −1

)
and σ2 =

i

2

(
−1 −

√
3

−
√

3 1

)
(132)

They generate a group which is isomorphic to the non-abelian semidirect product Z3 o Z4 [19],
which has order 12. Thus, combining the action of the generators in any possible way, we derive
only 12 different matrices that form a representation for this specific group (they satisfy it’s mul-

tiplication table). This group is generated by the elements ρ =
(
σ1σ2

)2
and τ = σ2, with the

relations ρ3 = 13×3 = τ4 and τρ = ρ−1τ . Note that ρ and τ2 commute, so ρτ2 has order six. We
verify that the group is non abelian because σ1σ2 6= σ2σ1. The three generators of B4 have the same
order σ4

i = 12×2 and satisfy the Yang-Baxter equation. Nevertheless, there is no finite truncated
braid group B

(
4, 4
)
. The only finite truncated braid group with order m = 4 is B

(
3, 4
)
.

If we choose Φ = G, the qutrit basis in the fusion space V ΦΦΦΦ
1 ≡ V GGGG

A is
{∣∣A,A〉, ∣∣B,B〉, ∣∣G,G〉},

while we have :

F ≡ FΦΦΦ
Φ =

1

2

 1 1
√

2

1 1 −
√

2√
2 −

√
2 0

 , R =

ω2 0 0
0 −ω2 0
0 0 ω

 , (133)
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with ω = e2πi/3. All the other F symbols we use in the formula of σ2 are 1D and equal to unity.
We find the representation of B4 :

σ1 = σ3 = τ

ω2 0 0
0 −ω2 0
0 0 ω

 and σ2 =
τ

2

 ω −ω
√

2ω2

−ω ω
√

2ω2
√

2ω2
√

2ω2 0

 , (134)

where the phase τ = e−
πi
9 fixes the determinant of the generators to 1. This representation is

irreducible and the group generated by σi’s has a structure of the semidirect product
(
Z9×Z3

)
oS3

with order 162, which is isomorphic to the group D
(
9, 1, 1; 2, 1, 1

)
[19],[21]. This group has three

generators :

E =

0 1 0
0 0 1
1 0 0

 , F
(
9, 1, 1

)
=

e
2πi
9 0 0

0 e
2πi
9 0

0 0 e−
4πi
9

 , G
(
2, 1, 1

)
=

−1 0 0
0 0 −1
0 −1 0


So the group is defined as D

(
9, 1, 1; 2, 1, 1

)
:=< E,F

(
9, 1, 1

)
, G
(
2, 1, 1

)
>. Actually one can show

that the group generated by the σi’s is isomorphic to D
(
9, 1, 1; 2, 1, 1

)
via a conjugation by some

unitary matrix. Obviously, the σi’s belong in that group and can be produced by the 3 matrices
above.
Now, let’s present a model inside D

(
S3

)
that succeeds universality, and this is by using D type

anyons. We revert to the fusion tree formation of 4 anyons that was used throughout the thesis. The
natural choice will be to encode a qubit in V DDDD

A . Unfortunately, we did not succeed in finding
a model that could be made universal even with measurements and ancillary states. Therefore, we
turn back to V DDDD

G based on our knowledge of the braid group representations :

∣∣x, y〉 ≡
The space V DDDD

G is nine dimensional with a basis
{∣∣G,G〉, ∣∣A,G〉, ∣∣G,A〉, ∣∣F,C〉, ∣∣C,F〉, ∣∣F,H〉,∣∣H,F〉, ∣∣C,H〉, ∣∣H,C〉}. Let U = span

{∣∣G,G〉, ∣∣A,G〉, ∣∣G,A〉}, V = span
{

1√
2

(∣∣F,C〉+
∣∣C,F〉),

1√
2

(∣∣F,H〉 +
∣∣C,H〉), 1√

2

(∣∣H,F〉 +
∣∣H,C〉)} and W = span

{
1√
2

(∣∣F,C〉 − ∣∣C,F〉), 1√
2

(∣∣C,H〉 −∣∣F,H〉), 1√
2

(∣∣H,F〉 − ∣∣H,C〉)}. To remind ourselves that these bases are used as computational

bases, we also write them as
{∣∣0〉

x
,
∣∣1〉

x
,
∣∣2〉

x

}
, x = U, V,W , where the subscript x indicates which

subspace we are referring to, e.g.
∣∣0〉

U
=
∣∣G,G〉. The representation of B4 splits into the direct

sum of a 6-dim irreducible summand U ⊕ V and a 3-dim irreducible summand W .
To encode 2-qutrits, we consider the following fusion tree :

∣∣x1, y1;x2, y2

〉
=
∣∣x1, y1

〉
⊗
∣∣x2, y2

〉
≡

The 2-qutrits are the tensor product of the two qutrits on the two branches. This encoding of
2-qutrits is called the sparse encoding because encoding with fewer anyons, called dense encoding,
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is also possible. To encode n-qutrits, we simply use the tensor product of n such branches, so there
are totally 4n anyons. We will refer to the three qutrit models that encode 1-qutrit in the subspaces
U , V and W respectively, with the computational bases above as the qutrit U −model, V −model
and W −model respectively.
For 1-qutrit braiding circuits, we need to know the representation matrices of B4 and for 2-qutrit
braiding circuits, the representation matrices of B8. Since both collections of matrices are finite, they
are not sufficient to simulate the standard qutrit circuit model. To gain extra power, we consider
measurement and ancilla. In anyon theory, there are two kinds of measurements to determine the
total charge of a collection of anyons: projective and interferometric. Both types of measurements
always lead to some decoherence in the model. Therefore, ideally we should only use them at the
end of the computation. Since we cannot avoid using them for weakly integral anyons, we will allow
ourselves to determine whether or not the total charge of two anyons is trivial in the middle of the
computation. Then based on the outcome, we choose how to continue our computation. For this
reason, we call such models adaptive.
Measurement 1. LetMA =

{
PA, PA′

}
be the projective measurement onto the total charge = A

sector and it’s complement. ThenMA allows us to distinguish between the anyon A and the other
anyons; namely, check whether an anyon is trivial or not. Moreover, the state after measurement
for each outcome is still coherent.
The next measurement that we use is problematic, but it is unavoidable due to our choices of
computational subspaces. It allows us to project states back to the computational subspaces.
Measurement 2. Let S be a subspace of an anyonic space and S⊥ be it’s orthonormal complement.
Then MS =

{
PS , PS⊥

}
be the projective measurement that projects a state to S or S⊥.

For example, applying MS to S = U in V DDDD
G , we obtain the orthogonal projection to U =

span
{∣∣G,G〉, ∣∣A,G〉, ∣∣G,A〉} and it’s orthogonal complement V ⊕W = span

{∣∣F,C〉, ∣∣C,F〉, ∣∣F,H〉,∣∣H,F〉, ∣∣C,H〉, ∣∣H,C〉}.
The main idea is that braiding supplemented by measurements MA and MU leads to a universal
gate set for the U -model and V -model. To make the qutrit W -model universal, we need to use the
extra ancillary state : ∣∣H〉

A
≡
∣∣H,H〉

A
≡

Then the second result from this analysis is that braiding supplemented by measurementsMA and
MU and the ancilla state

∣∣H〉
A

leads to a universal gate set for the W -model.

Measurement 3. LetM|0〉 =
{
P|0〉, P|0〉⊥

}
be the projective measurements that is the orthogonal

projection to span
{∣∣0〉} and it’s orthogonal complement span

{∣∣1〉, ∣∣2〉} in a qutrit.
The generalized Hadamard gate for qutrit is the following :

h =
1√
3

1 1 1
1 ω ω2

1 ω2 ω

 , where ω = e
2πi
3 . (135)

The SUM gate for qudits is a generalized version of CNOT , which maps the basis element
∣∣i, j〉

to
∣∣i, i+ jmod3

〉
.

We define the qutrit gate FLIP2 by the map: FLIP2

∣∣0〉 =
∣∣0〉, FLIP2

∣∣1〉 =
∣∣1〉, FLIP2

∣∣2〉 = −
∣∣2〉.

Theorem 4.2: The 1-qutrit classical gates, generalized Hadamard gate, SUM gate, and Measure-
ment 3 form a universal gate set for the standard qutrit quantum circuit model.
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Note that with 1-qutrit gates, the generalized Hadamard gate h and Measurement 3, we can easily
construct the following ancilla and measurements :

1.
∣∣i〉, i = 0, 1, 2.

2.
∣̃∣i〉 =

∑2
j=0 ω

ij
∣∣j〉 = h

∣∣i〉, i = 0, 1, 2.

3. Projection of a 1-qutrit state to any computational state, preserving the coherence of the
orthogonal complement. For example, projection to span

{∣∣0〉, ∣∣1〉} and it’s complement
span

{∣∣2〉}.

4. Measurement of a qutrit in the standard computational basis.

5. Projection to span
{∣̃∣1〉, ∣̃∣2〉} and it’s complement span

{∣̃∣0〉}.

6. Measurement of a qubit in the standard basis if we take
{∣∣0〉, ∣∣1〉} as the computational basis.

This follows from 4.

From the set of operations given in Theorem 4.2, it can be shown that we can construct the qutrit
(qubit) gates (measurements) stated in Lemmas 4.1− 4.3.
Lemma 4.1: The gate FLIP2 can be constructed.

Lemma 4.2: The 3-qubit gate
∧2(Z) which maps

∣∣i, j, k〉 to
(
− 1
)ijk∣∣i, j, k〉 can be constructed.

In particular,
∧2(Z) and Z can be constructed since we have the ancilla

∣∣1〉.
We note that the state |+〉 can be obtained by projecting the state

∣̃∣0〉 to the space span
{∣∣0〉, ∣∣1〉}.

Lemma 4.3: Measurement of X can be constructed on a qubit.
Lemma 4.4: The following set of qubit operations are universal for quantum computation :

1. Create the state |±〉 = 1√
2

(∣∣0〉± ∣∣1〉), ∣∣0〉 and
∣∣1〉.

2. Measure Z.

3. Measure X.

4. The Toffoli gate T =
∧2(X).

Lemma 4.5: The following set of qubit operations are universal for quantum computation :

1. Create the state |+〉 = 1√
2

(∣∣0〉+
∣∣1〉).

2. Measure Z.

3. Measure X.

4. The Toffoli gate T =
∧2(Z).

By the lemmas above in this subsection, all the operations in Lemma 4.5 can be created from the
operations given in Theorem 4.2 if we pick a qubit from the qutrit space . Thus, Lemma 4.5 implies
Theorem 4.2.
The U -model, V -model and W -model can be made universal provided measurement and ancilla
are allowed besides braiding. Our main theorems are :
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Theorem 4.3: Braiding quantum gates and Measurements 1 and 2 provide a universal gate set for
the qutrit U -model and V -model.

Theorem 4.4: A universal gate set for the W -model can be constructed from braidings and Mea-
surements 1 and 2 when the ancillary state

∣∣H〉
A

is used.

Universality for U- and V -models. U ⊕ V is a 6-dim irreducible representation of B4. Under
the basis span

{∣∣0〉
U
,
∣∣1〉

U
,
∣∣2〉

U
,
∣∣0〉

V
,
∣∣1〉

V
,
∣∣2〉

V

}
, the generators σi’s have the following matrices :

σ1 =



ω2 0 0 0 0 0
0 1 0 0 0 0
0 0 ω2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 ω

 , σ2 =
1

3



1 ω ω
√

2ω2
√

2
√

2

ω 1 ω
√

2
√

2
√

2ω2

ω ω 1
√

2
√

2ω2
√

2√
2ω2

√
2

√
2 −ω −ω2 −ω2

√
2

√
2
√

2ω2 −ω2 −ω −ω2
√

2
√

2ω2
√

2 −ω2 −ω2 −ω


,

σ3 =



ω2 0 0 0 0 0
0 ω2 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 ω 0
0 0 0 0 0 1


Let p = σ1σ2σ1 and q = σ3σ2σ3. Then :

p2 =



0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1

 , q2 =



0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0

 , p2q2p2 =



1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0


Therefore, when restricted to the subspace U or V , p2 and q2 generate all the classical gates on 1
qutrit and p2q2p2 is equal to h2, where h is the generalized Hadamard gate defined previously :

p2q2p2 =

(
h2 O3×3

O3×3 h2

)
= 12×2 ⊗ h2

Let h′ = q2pq2. Then (in block form) :

h′ =
1√
3

(
h

√
2h−1

√
2h−1 −h

)
, h′−1 =

1√
3

(
h−1

√
2h√

2h −h−1

)
We define a unitary transformation between the basis states of the two subspaces U and V as
γ : U → V , γ

∣∣j〉
U

=
∣∣j〉

V
, j = 0, 1, 2.

Lemma 4.6: By alternating use of h′ (or h′−1) and Measurement 2, one can eventually obtain the
generalized Hadamard gate on both U and V , as well as the transformation γ and γ−1. Moreover,
the probability to successfully construct these transformations approaches to 1 exponentially fast
in the number of measurements and the gate h′.
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The following lemma shows Measurement 3 can be constructed in both U and V .
Lemma 4.7: Using Measurement 1, 2 and braiding, one can perform Measurement 3 in both the
space U and V .
Up to now, we only considered gates and operations on one qutrit. Next, we want to construct a
2-qutrit gate, the Controlled-Z gate

∧(
Z
)

which maps
∣∣i, j〉 to ωij

∣∣i, j〉.
We use the fusion tree to encode 2-qutrits that we mentioned before. Let s1 = σ2σ1σ3σ2, namely,
s1 is the braiding of the first pair with the second pair. Similarly let s2 = σ4σ3σ5σ4, s3 = σ6σ5σ7σ6.
Clearly s1 exchanges x1 with y1 with a phase in the 2-qudit splitting tree, namely it maps∣∣x1, y1;x2, y2

〉
to
∣∣y1, x1;x2, y2

〉
up to a phase :

s1

∣∣x1, y1;x2, y2

〉
≡ ∼ ≡

∣∣y1, x1;x2, y2

〉
Similarly, s3 exchanges x2 with y2. The gate s2 is much more complicated since it involves F -
moves. Let CZ = s−1

1 s2
2s1s

−1
3 s2

2s3. Through direct calculations, we find that CZ is a diagonal
matrix. Moreover, when restricted to the space U , CZ is exactly the Controlled-Z gate

∧(
Z
)
.

Again, via the transformation γ, one also obtains the Controlled-Z gate in the space V .
The SUM gate maps

∣∣i, j〉 to
∣∣i, i+j〉 and can be obtained by conjugating

∧(
Z
)

via the Hadamard
gate. Explicitly :

SUM =
(
Id⊗ h

)∧(
Z
)−1(

Id⊗ h−1
)

So we can also construct the SUM gate in the space U and V .
To sum up, with Measurement 1, 2 and braiding, we can construct all the 1-qutrit classical gates,
generalized Hadamard gate, SUM gate and Measurement 3 im both spaces U and V .
Finally, Theorem 2 follows from Theorem 1 and the arguments analyzed in Universality for U - and
V -models.
Universality for W -model. At this point, we examine the representation on W . Under the basis
of W given by

{∣∣0〉
W
,
∣∣1〉

W
,
∣∣2〉

W

}
, the σi’s have the matrices :

σ1 =

1 0 0
0 1 0
0 0 ω

 , σ3 =

1 0 0
0 ω 0
0 0 1

 , σ2 =

 1
2 +

√
3i
6 −1

2 +
√

3i
6 −1

2 +
√

3i
6

−1
2 +

√
3i
6

1
2 +

√
3i
6 −1

2 +
√

3i
6

−1
2 +

√
3i
6 −1

2 +
√

3i
6

1
2 +

√
3i
6


The same as in the U, V -models, we define p = σ1σ2σ1, q = σ3σ2σ3. Then :

p2 = −

0 1 0
1 0 0
0 0 1

 , q2 = −

0 0 1
0 1 0
1 0 0


So p2 and q2 generate all the 1-qutrit classical gates in W . Also from σ1 and σ3, we obtain the
generalized Z-gate and Phase gate P :

Z =

1 0 0
0 ω 0
0 0 ω2

 , P =

1 0 0
0 1 0
0 0 ω

 ,
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where Z maps
∣∣i〉 to ωi

∣∣i〉 and P maps
∣∣i〉 to ω

i2−i
2

∣∣i〉. Moreover, let h′ = q2pq2, then h′ = e−
iπ
2 h =

i−1h, which is exactly the generalized Hadamard gate up to a phase.
Therefore, in the space W , we obtained the classical 1-qutrit gates, generalized Z-gate, the Phase
gate and the generalized Hadamard gate by braiding.
Now we turn to constructing the 2-qutrit gate

∧(
Z
)
. One may try the same braiding method as

we did for the space U . But it turns out that braiding doesn’t work for W . Instead, we try to
construct a transformation similar to γ. Consider the following picture of braiding :

R
∣∣H〉

A

∣∣x, y〉 = P−1QP
∣∣H〉

A

∣∣x, y〉 ≡

Let P = σ6σ5σ4σ3σ7σ6σ5σ4, Q = σ2σ1σ1σ2σ6σ7σ7σ6 and let R = P−1QP . Then the braiding in
the picture is given by R.
We denote the state in the picture before braiding by

∣∣H〉
A

∣∣x, y〉. Then the braiding R gives the
following transformation :

R
∣∣H〉

A

∣∣i〉
W

=
1

2

(
−
∣∣H〉

A

∣∣i〉
W

+
∣∣H〉

B

∣∣i〉
V
−
√

2
∣∣H〉

B

∣∣− i〉
U

)
and :

R
∣∣H〉

B

∣∣i〉
U

=
1√
2

(∣∣H〉
A

∣∣− i〉
W

+
∣∣H〉

B

∣∣− i〉
V

)
,

where i = 0, 1, 2 and −i is taken to be modulo 3.
We define a unitary transformation β :

∣∣H〉
A
⊗W →

∣∣H〉
B
⊗ U with β

(∣∣H〉
A

∣∣i〉
W

)
=
∣∣H〉

B

∣∣i〉
U

.

Here
∣∣H〉

A
is the ancilla.

Lemma 4.8: With braiding, Measurement 1, 2 and Ancilla
∣∣H〉

A
, the transformation β and β−1 can

be constructed with probability approaching to 1 exponentially fast in the number of measurements
and the gates applied.
By going back and forth between W and U via β and β−1, any operation in the space U can
be performed in W accordingly. In particular, the Controlled-Z gate and Measurement 3 can be
constructed in W . Collecting all the results in Universality for W -model, we finish the proof of
Theorem 4.4.
The whole process can be found analytically in [19], which also contains proofs for the Lemmas
and Theorems that were claimed in order to derive Universality for U , V and W -models.
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5 Conclusions

The quantum mechanical description of quantum hall systems focuses on how the landau levels are
filled and as we change that filling, our system will cycle through a variety of some very interesting
quantum hall phases that can be quite extraordinary exotic and differ in the kind of anyonic
excitations they allow us to generate. Both abelian and non abelian anyons can be realized in FQHE
systems [22]. For example, abelian anyons with e∗ = e/3 are realized in ν = 7/3 FQH state whereas
the ν = 5/2 FQH state can harbor non abelian anyons, known as Ising anyons, with e∗ = e/4
[23],[24]. In relevance with the latter case, it was discoved that the non abelian physics of this non
trivial and highly correlated phase of matter can be distilled into a much simpler weakly correlated
platform, namely the 2D ”spinless” p + ip superconductor, where superconducting vortices form
the non abelian Majorana zero modes, meaning that each pair of quasiparticles contain a neutral
fermion orbital which can be occupied or unoccupied and hence can act as a qubit [25].

If we want to build an inherently fault tolerant topological quantum computer, we have to find
topological phases of matter that harbor non abelian anyons as collective excitations. These emer-
gent particles have zero energy deegres of freedom, in the way that when they populate a certain
exotic topological phase, they generate a degenerate ground state (they are locally indistinguish-
able). We want their unitary braiding to commute with the Hamiltonian of the system so that our
state transforms between these degenerate ground states. Also, there has to be a sufficient energy
gap between the ground states and their corresponding first excited states, a crucial requirement
as we want our system to be immune in local operations and external noise. In that way, we
can encode information non locally meaning that it is protected by damage that can be caused
by decoherence through topology. Non abelian anyons can be implemented with an engineering
approach (we can design them). We take materials which individually we understand perfectly well
(find them in laboratory) and then combine those materials in a very precise way to really force
non abelian anyons in to our system, even if individually we will have no chance finding something
so exotic by looking at the individual components. Read and Rezayi proposed a phase state where
there are correlations among triplets of electrons (3e = e+e+e) and Fibonacci anyons emerge. It is
possible to mimic this multi-particle clustering physics by using the ”simple” abelian quantum hall
state and deposit 2D arrays of superconducting islands on top of this quantum Hall phase (charged
2e = 3 ×

(
2e/3

)
Cooper pairs are forced into a quantum Hall fluid that supports fractionalized

excitations) and find Fibonacci anyons in practice [26].
When it comes to their computational capabilities, we pointed out some interesting conclusions

on how the Fibonacci are capable of producing a universal gate set while the Ising anyons are not.
With their discrete braiding operations we cannot reach the entire Bloch sphere of a qubit. So some
quantum gates required for universal quantum computation will be missing from the set that we
can do with braiding. These additional gates can be supplemented by topologically not protected
operations on the qubit, but without absolute gate fidelity. There are also suggestions that abelian
anyons, provided that we support them with non topological operations like measurements, can
potentially achieve universality [27],[28] (see also Kitaev’s work in [29]). We presented that A5

anyons can be universal and also we can find submodels inside D
(
S3

)
that give a universal qutrit

gate set. The dihedral anyons in D
(
D5

)
are not preferred for computational purposes, as they

produce limited gates and also due to their fusion rules, there in no way to encode qubits between
indistinguishable anyons. However, there is a Y ang-Baxterixation process which leads to universal
quantum computation with dihedral anyons [30]. This method is worth mentioning but exceeds
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the logic and the scope of this thesis.
The field of research aims in finding topological phases of matter that can host non abelian

anyons in order to built a fault tolerant quantum computer. There has been progress in the
field of Majorana zero modes, which can be found in the boundary edges of 1D ”spinless” p-
wave superconducting nanowires, where by adding an extra nanowire and exploiting the second
dimension we can construct a T -junction and perform quantum gates with them [31]. They can
also be spotted as vortices in the defects of 2D superconductors or quantum spin liquids (i.e. when
we have a chiral Majorana edge state in the boundary of a Kitaev spin liquid which yields quantized
values of thermal Hall conductance and ψ, σ Ising anyons appear) [32]. In the near future, it is
promising that the hardware will be created so that non abelian anyons, such as Fibonacci, to be
detected, then prototypes of topological qubits to be constructed and finally quantum simulations
to happen with anyons that give eventually universal operations to execute a variety of gates and
algorithms.
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6 Tables and R matrices

D5 e r r2 r3 r4 s sr sr2 sr3 sr4

e e r r2 r3 r4 s sr sr2 sr3 sr4

r r r2 r3 r4 e sr4 s sr sr2 sr3

r2 r2 r3 r4 e r sr3 sr4 s sr sr2

r3 r3 r4 e r r2 sr2 sr3 sr4 s sr

r4 r4 e r r2 r3 sr sr2 sr3 sr4 s

s s sr sr2 sr3 sr4 e r r2 r3 r4

sr sr sr2 sr3 sr4 s r4 e r r2 r3

sr2 sr2 sr3 sr4 s sr r3 r4 e r r2

sr3 sr3 sr4 s sr sr2 r2 r3 r4 e r

sr4 sr4 s sr sr2 sr3 r r2 r3 r4 e

Table 2: Multiplication table of D5.

D5 Representatives

0C 0x1 = e
1C 1x1 = e,1x2 = s
2C 2x1 = e,2x2 = s
3C 3x1 = e,3x2 = r2,3x3 = r4,3x4 = r,3x5 = r3

Table 3: Representatives for the equivalence classes of D5/
AN .

⊗ A B C D E F G H

A A B C D E F G H

B B A C E D F G H

C C C A⊕B ⊕ C D ⊕ E D ⊕ E G⊕H F ⊕H F ⊕G
D D E D ⊕ E A⊕ C ⊕ F ⊕G⊕H B ⊕ C ⊕ F ⊕G⊕H D ⊕ E D ⊕ E D ⊕ E
E E D D ⊕ E B ⊕ C ⊕ F ⊕G⊕H A⊕ C ⊕ F ⊕G⊕H D ⊕ E D ⊕ E D ⊕ E
F F F G⊕H D ⊕ E D ⊕ E A⊕B ⊕ F H ⊕ C G⊕ C
G G G F ⊕H D ⊕ E D ⊕ E H ⊕ C A⊕B ⊕G F ⊕ C
H H H F ⊕G D ⊕ E D ⊕ E G⊕ C F ⊕ C A⊕B ⊕H

Table 4: Fusion rules of D
(
S3

)
.
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⊗
A

B
C

D
E

F
G

H
I

J
K

L
M

N
O

P

A
A

B
C

D
E

F
G

H
I

J
K

L
M

N
O

P

B
B

A
C

D
E

F
G

H
I

J
K

L
M

N
P

O

C
C

C
A
⊕

B
⊕

D
C
⊕

D
F
⊕

I
E
⊕

G
F
⊕

H
G
⊕

I
E
⊕

H
K
⊕

N
J
⊕

L
K
⊕

M
L
⊕

N
J
⊕

M
O
⊕

P
O
⊕

P

D
D

D
C
⊕

D
A
⊕

B
⊕

C
G
⊕

H
H
⊕

I
E
⊕

I
E
⊕

F
F
⊕

G
L
⊕

M
M
⊕

N
J
⊕

N
J
⊕

K
K
⊕

L
O
⊕

P
O
⊕

P

E
E

E
F
⊕

I
G
⊕

H
A
⊕

B
⊕

J
C
⊕

K
D
⊕

L
D
⊕

M
C
⊕

N
E
⊕

J
F
⊕

N
G
⊕

M
H
⊕

L
I
⊕

K
O
⊕

P
O
⊕

P

F
F

F
E
⊕

G
H
⊕

I
C
⊕

K
A
⊕

B
⊕

L
C
⊕

M
D
⊕

N
D
⊕

J
I
⊕

N
E
⊕

M
F
⊕

L
G
⊕

K
H
⊕

J
O
⊕

P
O
⊕

P

G
G

G
F
⊕

H
E
⊕

I
D
⊕

L
C
⊕

M
A
⊕

B
⊕

N
C
⊕

J
D
⊕

K
H
⊕

M
I
⊕

L
E
⊕

K
F
⊕

J
G
⊕

N
O
⊕

P
O
⊕

P

H
H

H
G
⊕

I
E
⊕

F
D
⊕

M
D
⊕

N
C
⊕

J
A
⊕

B
⊕

K
C
⊕

L
G
⊕

L
H
⊕

K
I
⊕

J
E
⊕

N
F
⊕

M
O
⊕

P
O
⊕

P

I
I

I
E
⊕

H
F
⊕

G
C
⊕

N
D
⊕

J
D
⊕

K
C
⊕

L
A
⊕

B
⊕

M
F
⊕

K
G
⊕

J
H
⊕

N
I
⊕

M
E
⊕

L
O
⊕

P
O
⊕

P

J
J

J
K
⊕

N
L
⊕

M
E
⊕

J
I
⊕

N
H
⊕

M
G
⊕

L
F
⊕

K
A
⊕

B
⊕

E
C
⊕

I
D
⊕

H
D
⊕

G
C
⊕

F
O
⊕

P
O
⊕

P

K
K

K
J
⊕

L
M
⊕

N
F
⊕

N
E
⊕

M
I
⊕

L
H
⊕

K
G
⊕

J
C
⊕

I
A
⊕

B
⊕

H
C
⊕

G
D
⊕

F
D
⊕

E
O
⊕

P
O
⊕

P

L
L

L
K
⊕

M
J
⊕

N
G
⊕

M
F
⊕

L
E
⊕

K
I
⊕

J
H
⊕

N
D
⊕

H
C
⊕

G
A
⊕

B
⊕

F
C
⊕

E
D
⊕

I
O
⊕

P
O
⊕

P

M
M

M
L
⊕

N
J
⊕

K
H
⊕

L
G
⊕

K
F
⊕

J
E
⊕

N
I
⊕

M
D
⊕

G
D
⊕

F
C
⊕

E
A
⊕

B
⊕

I
C
⊕

H
O
⊕

P
O
⊕

P

N
N

N
J
⊕

M
K
⊕

L
I
⊕

K
H
⊕

J
G
⊕

N
F
⊕

M
E
⊕

L
C
⊕

F
D
⊕

E
D
⊕

I
C
⊕

H
A
⊕

B
⊕
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The R matrices of D
(
D5

)
are :

1. R(1) ≡ R11 = R12 = R22 = 1

2. R(2) ≡ R13 = R14 = R15 = R16 = R17 = R18 = R19 = R110 = R111 = R112 = R113 =
R114 = R23 = R24 = R25 = R26 = R27 = R28 = R29 = R210 = R211 = R212 = R213 =
R214 = 12×2

3. R(3) ≡ R115 = R116 = R215 = R216 = 15×5

4. R(4) ≡ R33 = R34 = R35 = R36 = R37 = R38 = R39 = R310 = R311 = R312 = R313 =
R314 = R44 = R45 = R46 = R47 = R48 = R49 = R410 = R411 = R412 = R413 = R414 =
R55 = R510 = R610 = R710 = R810 = R910 = R1010

5. R(5) ≡ R56 = R511 = R66 = R711 = R811 = R911 = R1013 = R1113 = R1213 = R1313

6. R(6) ≡ R57 = R512 = R67 = R77 = R712 = R812 = R912 = R1011 = R1111

7. R(7) ≡ R58 = R513 = R68 = R78 = R713 = R88 = R813 = R913 = R1014 = R1114 = R1214 =
R1314 = R1414

8. R(8) ≡ R59 = R514 = R69 = R79 = R714 = R89 = R814 = R99 = R914 = R1012 = R1112 =
R1212

9. R(9) ≡ R315 = R316 = R415 = R416

10. R(10) ≡ R515 = R516 = R615 = R616 = R715 = R716 = R815 = R816 = R915 = R916

11. R(11) ≡ R1015 = R1016 = R1115 = R1116 = R1215 = R1216 = R1315 = R1316 = R1415 = R1416

12. R(12) ≡ R1515 = −R1516 = −R1616

with :

R(4) =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , R(5) =


ω 0 0 0
0 0 ω 0
0 ω 0 0
0 0 0 ω

 , R(6) =


ω2 0 0 0
0 0 ω2 0
0 ω2 0 0
0 0 0 ω2

 ,

R(7) =


ω2 0 0 0
0 0 ω2 0
0 ω2 0 0
0 0 0 ω2

 , R(8) =


ω 0 0 0
0 0 ω 0
0 ω 0 0
0 0 0 ω

 , R(9) =



1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1


,
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R(10) =



0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0


, R(11) =



0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0


,

R(12) =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


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