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Περίληψη 

 

 

Τα προβλήματα οργάνωσης παραγωγής και διαχείρισης αποθεμάτων για πολλά 

προϊόντα και σταθμούς παραγωγής ανάγονται σε προβλήματα βελτιστοποίησης 

μεγάλης πολυπλοκότητας. Επίσης, σε πολλές περιπτώσεις το πρόβλημα πρέπει να 

λυθεί κάτω από συνθήκες ελλιπούς πληροφόρησης ως προς τις κατανομές 

πιθανότητας της ζήτησης, τις παραμέτρους κόστους κλπ.  

Τα τεχνητά νευρωνικά δίκτυα είναι αρκετά ισχυρά υπολογιστικά μοντέλα. Στην 

εργασία θα γίνει ανασκόπηση των βασικών μοντέλων τεχνητών νευρωνικών 

δικτύων και των εφαρμογών τους σε προβλήματα βελτιστοποίησης, με έμφαση στο 

πρόβλημα του εφημεριδοπώλη. Επιπλέον, θα προταθούν νευρωνικά δίκτυα για 

αυτά τα προβλήματα και θα μελετηθεί η απόδοσή τους μέσω υπολογιστικών 

πειραμάτων 

Τα νευρωνικά δίκτυα αποτελούνται από πολλούς νευρώνες, που είναι 

συνδεδεμένοι μεταξύ τους και στέλνουν σήματα ο ένας στον άλλον για να 

υλοποιήσουν ένα στόχο. Τα τεχνητά νευρωνικά δίκτυα δημιουργήθηκαν για να 

μιμηθούν τον τρόπο με τον οποίο λειτουργεί ο ανθρώπινος εγκέφαλο και να 

εκμεταλλευτούν τη δομή του και συνεπώς είναι πολύπλοκα μοντέλα με πολλές 

ικανότητες. Οι συνδέσεις μεταξύ των νευρώνων γίνονται είτε πιο δυνατές είτε πιο 

αδύναμες βάσει μίας διαδικασία μάθησης, έτσι ώστε να υλοποιούν καλύτερα τον 

επιθυμητό στόχο. Η διαδικασία μάθησης που θα επικεντρωθούμε ονομάζεται 

επιβλεπόμενη μάθηση όπου το νευρωνικό δίκτυο έχει ένα σύνολο δεδομένων 

εισόδου-εξόδου από το οποίο εκπαιδεύεται έτσι ώστε να μπορεί να γενικεύσει και 

να δίνει αποτέλεσμα μικρού σφάλματος όταν του δοθεί άγνωστη είσοδος.  

Θα εστιάσουμε στις εφαρμογές των νευρωνικών δικτύων στο πρόβλημα του 

εφημεριδοπώλη και στις παραλλαγές του. Στο πρόβλημα του εφημεριδοπώλη, ο 

διαχειριστής πρέπει να αποφασίσει τη βέλτιστη ποσότητα παραγγελίας ενός 

ευπαθούς προϊόντος έτσι ώστε να ελαχιστοποιήσει  το κόστος. Οι περιορισμοί του 

προβλήματος είναι ότι η πραγματική κατανομή πιθανότητας της ζήτησης είναι 

άγνωστη και κάθε προϊόν που δεν πωλήθηκε δεν μπορεί να αποθηκευτεί για 

μελλοντική χρήση. Μία παραλλαγή αυτού του προβλήματος είναι όταν ο 

διαχειριστής πρέπει να αποφασίσει την ποσότητα παραγγελίας για περισσότερα 

από ένα προϊόντα. Επιπλέον, μια ακόμα παραλλαγή είναι όταν ο διαχειριστής 

πρέπει να αποφασίσει την βέλτιστη τιμή για να πουλήσει το προϊόν καθώς και τη 

βέλτιστη ποσότητα της παραγγελίας με στόχο την μεγιστοποίηση των κερδών του. 

 Θα γίνει μία ανασκόπηση των νευρωνικών δικτύων που έχουν προταθεί στη 

βιβλιογραφία και στη συνέχεια θα προτείνουμε το δικό μας νευρωνικό δίκτυο για 

αυτά τα προβλήματα. Ειδικότερα, θα παρουσιάσουμε διάφορα νευρωνικά δίκτυα 

με διαφορετικό αριθμό νευρώνων, κανόνων μάθησης και συναρτήσεων 



 
 

ενεργοποίησης.  

Τέλος θα υλοποιήσουμε την απόδοσή τους μέσω υπολογιστικών πειραμάτων με 

αρκετές διαφορετικές παραμέτρους.  

 

Πιο συγκεκριμένα η δομή της εργασίας είναι ως εξής:  

Στο δεύτερο κεφάλαιο, θα παρουσιαστούν τα βασικά στοιχεία ενός νευρωνικού 

δικτύου, τις διαφορετικές αρχιτεκτονικές καθώς και διαφορετικές μέθοδοι 

εκπαίδευσης  έτσι ώστε να αναλυθεί ο τρόπος με τον οποίο ένα νευρωνικό δίκτυο 

εκπαιδεύεται για να επιλύει ένα πρόβλημα.  

Στο τρίτο κεφάλαιο, θα οριστεί το πρόβλημα του εφημεριδοπώλη καθώς και 

κάποιες παραλλαγές του που θα αναλυθούν στα επόμενα κεφάλαια.  

Στο τέταρτο κεφάλαιο, θα γίνει ανασκόπηση των νευρωνικών δικτύων που 

προτείνονται στη βιβλιογραφία για την επίλυση των προβλημάτων που ορίσθηκαν 

στο δεύτερο κεφάλαιο 

Στο πέμπτο κεφάλαιο, θα κατασκευάσουμε νευρωνικά δίκτυα που επιλύουν 

διαφορετικές παραλλαγές του προβλήματος του εφημεριδοπώλη και θα μελετηθεί 

η απόδοσή τους.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Acknowledgements 

 

 

 

First of all, I would like to thank my thesis supervisor, Professor Apostolos Burnetas, 

for his guidance through each stage of the process, for all his help and advice, and 

for inspiring my interest in the field of artificial neural networks and optimization.  

In addition, I would like to express my deepest appreciation to my examination 

committee, Professor Antonis Economou and Assistant Professor Athanasia Manou, 

for their insightful comments and suggestions.  

Finally, I would like to express my gratitude to my family and friends for all their 

encouragement and support during my studies. 

 

 

 

 

 

  



 
 

 

  



 
 

 

Contents 
 
1 Introduction ............................................................................................................ 1 

2 Artificial Neural Networks ...................................................................................... 3 

2.1 History ............................................................................................................. 3 

2.2 Architecture ..................................................................................................... 4 

2.3 Multilayer neural network .............................................................................. 7 

2.4 Learning Techniques ..................................................................................... 11 

2.5 Improving the performance of Neural Networks ......................................... 18 

3 Newsvendor Problem ........................................................................................... 21 

4 Neural Networks for the newsvendor problem ................................................... 25 

5 Applications .......................................................................................................... 28 

5.1 Order Quantity Optimization ........................................................................ 28 

5.2 Price and Order Quantity Optimization ........................................................ 35 

6 Conclusion ............................................................................................................ 44 

7 References ............................................................................................................ 45 



1 
 

1 Introduction 
 

 

The production management problems for many products are reduced to 

optimization problems of high complexity. Moreover, in many cases the problem has 

to be solved under partial information of the distribution of probability of demand, 

the parameters of the cost etc. 

 

Artificial neural networks are a very powerful computational model. In this thesis we 

will present the basic models of Artificial Neural Networks and their applications to 

optimization problems with main focus on the newsvendor problem. Furthermore, 

we will propose our own neural network for these problems and evaluate their 

performance upon numerical experiments. 

 

Neural Networks consist of many neurons that are connected with each other and 

transmit signals to one another in order to perform some task. Artificial Neural 

Networks were created in order to try to mimic the way the human brain functions 

and take advantage of the structure and so they are very complex models with many 

capabilities. The connections between the neurons become stronger or weaker 

according to some learning procedure in order to better perform a task. The learning 

technique we will focus on this thesis is called supervised learning, where the Neural 

Network is given some training data in order to adjust the parameters and be able to 

generalize so it can perform the task with a minimum error when faced with unseen 

data. 

 

We will mainly focus on the applications of neural networks to the newsvendor 

problem along with its variations. In the newsvendor problem, the inventory 

manager wants to find the optimal order quantity of a perishable product in order to 

minimize his cost. The constrains of this problem is that the true distribution of the 

demand is unknown to the inventory manager and every unsold product can not be 

stored for later use. One variation of this problem is when the inventory manager 

has to make a decision for the order quantity more than one product. Moreover, 

another variation is when the inventory manager has to decide the optimal price to 

sell the product as well as the optimal order quantity in order to maximize the 

profits. 

 

We will review some neural networks that have been proposed in the literature and 

then we will propose our own neural networks for these problems. We will present a 

variety of neural networks with different number of neurons, learning rules and cost 

functions. 

Finally, we will evaluate their performance by numerical experiments with different 

parameters 
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More precisely, the structure of this thesis is as follows: 

In the second chapter, we will present the basic components of a neural network, its 

different architectures, as well as the different training techniques in order to fully 

understand how a neural network is trained to perform a task. Finally, we will 

discuss some methods to overcome some common pitfalls of the neural networks. 

In the third chapter, we will define the newsvendor problem along with some 

variations that we will focus on later chapters. 

In the fourth chapter, we will review some proposed neural networks that focus on 

the problems we defined in the second chapter. 

In the fifth chapter, we will create our own neural networks to solve the different 

variations of the newsvendor problem and we will test their performance. 
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2 Artificial Neural Networks 
 

2.1 History 
 

Artificial neural networks are inspired by the field of biology and more precisely by 

the way the characteristics of the brain function are performing a task. The neurons 

are the structural constituents of the brain and the human brain has approximately 

10 billion neurons that are highly connected, with approximately 1014 connections 

per neuron.  

In a high-level description, neurons are composed mainly by:  the dendrites, the cell 

body and the axon. Electrical signals are carried by the dendrites into the cell body, 

that receives and processes the incoming signals. Afterwards, the signals are carried 

by the axon from the cell body to other neurons. The connection between two 

neurons, and specifically from the axon of a neuron to a dendrite of another neuron, 

is called synapse and it is responsible for allowing the interaction between two 

neurons.   

The function of the neural network is determined by the neurons and the synapses 

between neurons. A part of the neural structure is defined at birth, but other parts 

are developed through learning where in this case synapses are strengthened while 

other synapses are weakened.  

Therefore, the inspiration for artificial neural networks arises from the fact that the 

computations in the human brain are done in an entirely different way than in 

conventional computers. Despite this fact, artificial neural networks do not approach 

the complexity of the brain. 

The first artificial neural network was constructed in 1943 in the work of Warren 

McCulloch and Walter Pitts. They proved that artificial neurons could compute any 

arithmetic or logical function. A few years later, in 1949, Hebb presented the first 

rule for self-organized learning. Furthermore, in 1958, the first practical application 

of neural networks was presented by Rosenblatt, who proposed perceptron network 

together with the first model for supervised learning. The above are considered as 

the most pioneering contributions in the field of artificial neural networks. 

Artificial neural networks are very powerful computational models and have 

numerous applications. Some of them are function approximation, prediction, 

sequential decision making, classification, pattern recognition and clustering.  
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𝑤2 

𝛼 

 

𝑓 

2.2 Architecture 
 

Artificial neural networks are a computational model which is composed by a set of 

connected nodes called artificial neurons, that we will simply call neurons. Each 

neuron is a computational entity and each connection between two neurons has a 

weight 𝑤. A neuron can have multiple input and output connections. The input of 

each neuron is the output of its input connection scaled by the weight 𝑤 of the 

corresponding connection. A neuron has also an activation function, which 

determines the output of the neuron. The value of the output is the value of the 

activation function on the sum of a constant term with the linear combination of the 

neuron’s inputs with the corresponding weights of each input connection. 

 

 

An example of a simple artificial neural network is shown in Figure 1. 

 

 

 

  

 

 

Figure 1 

 

 

A computation of the neural network is as follows: each input node 𝑥1, 𝑥2 is 

multiplied with its weight 𝑤1, 𝑤2 respectively and then they are summed together 

with an extra term 𝑏, which is called bias. The result forms the net input 𝑧. Finally, 

the net input goes into an activation function 𝑓, which produces the neuron output 

𝛼.  

More precisely the mathematical form of the activation function is: 

𝛼 = 𝑓(𝑤𝑇𝑥 + 𝑏) 

Where 𝑥 is the vector [𝑥1, 𝑥2]𝑇  of the input, 𝑤 is the vector [𝑤1, 𝑤2]𝑇 of the weights 

of the connections and 𝑏, 𝛼 are scalars. 

Some questions that arise are what are the weights, the bias and the activation 

function.  

𝑏 

𝑤1 
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The bias 𝑏 can be viewed as another weight of a neuron with constant input 𝑥0 = 1. 

The weights and the biases are the parameters of the neural network that will be 

adjusted by some learning rule to meet a desired goal. The activation function is 

chosen by the designer of the network and can be any function of his choice. The 

activation function and the learning rules are chosen so that the output reaches the 

desired goal.   

 

The choice of the activation function depends on the problem the network is trying 

to solve. 

For example, if the output is required to be 0 or 1, one common activation function 

that is used is shown in Figure 2: 

𝑓(𝑧) = {
1,    𝑖𝑓 𝑧 ≥ 0
0,   𝑖𝑓 𝑧 < 0

  , 

 

 

 

 

 

 

 

 

 

 

 

where 𝛼 = 𝑓(𝑧) = 𝑓(𝑤𝑇𝑥 + 𝑏). It represents the operation that if the net input is 

𝑧 ≥ 0 then the output neuron is 1, otherwise it is 0. 

We can rewrite this as 𝑤𝑇𝑥 + 𝑏 > 0 ⇒ 𝑤𝑇𝑥 > −𝑏  .   

This implies that if the linear combination of the input vector with the weight vector 

is greater than some threshold b, then the output of the neural network is 1, 

otherwise it is 0. 

In this example where we have 2 inputs 𝑥1, 𝑥2 , it is easy to make a visualization in a 

2-dimentional plane to understand it better as shown in Figure 3, the 𝑤𝑇𝑥  

represents the decision boundary and everything that is in one side is 1 and 

everything on the other side is 0. 

 

Figure 2 
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Figure 3 

 

 

Some other activation functions that are commonly use are shown in Figure 4: 

 

 

 

 

 

 

   

            Linear:        𝑓(𝑧) = 𝑧                                                 Sigmoid:  𝑓(𝑧) =
1

1+𝑒−𝑧  

 

                  

 

 

 

 

 

               Tanh:   𝑓(𝑧) =
𝑒𝑧−𝑒𝑧

𝑒𝑧+𝑒−𝑧                                              𝑅𝑒𝐿𝑈:    𝑓(𝑧) = max{0, 𝑧} 

𝑧 = 𝑤1 ⋅ 𝑥1 + 𝑤2 ⋅ 𝑥2 + 𝑏 = 0 

−
𝑏

𝑤1

 

−
𝑏

𝑤2

 

Figure 4 
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2.3 Multilayer neural network 
 

An artificial neural network can have multiple neurons divided into layers. In each 

layer all neurons have the same inputs scaled with different weights. Each neuron of 

a layer has input connections, a bias, an activation function and an output. The 

outputs of a layer of neurons form the output vector of the layer. 

In a multilayer neural network, each layer of neurons is fully connected with its 

adjacent layer. More precisely, every node of one layer of the network is connected 

to every node in the adjacent forward layer and the inputs of a layer are the outputs 

of the previous layer. The first layer of the neural network is called input layer and 

the last layer is called the output layer. All the intermediate layers are called hidden 

layers.  

We denote by 𝑆ℓ the number of neurons in layer ℓ and by 𝑆0 the number of inputs in 

the input layer. We will use superscript to denote the layer we are referring to. For 

the layer ℓ of the neural network we will denote the weight matrix by 𝑊ℓ, the bias 

vector by 𝑏ℓ, the net input by 𝑧ℓ, the activation function by 𝑓ℓ and the output of the 

layer by 𝛼ℓ.   

Τhe weight matrix of the ℓ-th layer is:  

𝑊ℓ =  [

𝑤1,1
ℓ

⋮

𝑤
𝑆ℓ,1
ℓ

     

𝑤1,2
ℓ … 𝑤

1,𝑆ℓ−1
ℓ

⋮ ⋱ ⋮

𝑤
𝑆ℓ,2
ℓ … 𝑤

𝑆ℓ,𝑆ℓ−1
ℓ

] 

Where the weight 𝑤𝑖,𝑗 
ℓ  corresponds to the connection of the 𝑗-th neuron of the ℓ −

1 layer to the 𝑖-th neuron in the ℓ-th layer. 

 

A representation of a fully connected neural network with 3 hidden layers is shown 

in Figure 5.  
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𝑏1
1 

11 

𝑏2
1 

11 

𝑏3
1 

11 

𝑏4
1 

11 

𝑏6
1 

11 

𝑏3
2 

11 

𝑏5
2 

11 

𝑏2
3 

11 
𝑏1

4 

11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The neural network of Figure 5 has 4 neurons in the input layer, 6 neurons in the first 

hidden layer, 6 in the second hidden layer, 4 in the third hidden layer and 1 neuron 

in the output layer. 

 

Here, in the first layer we have the vector 𝛼1 = 𝑓(𝑊1𝑥 + 𝑏1), where  

𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4]𝑇,  𝑏1 = [𝑏1
1, 𝑏2

1, … , 𝑏6
1]𝑇  and  

𝑊1 =  [
𝑤1,1

1

⋮
𝑤6,1

1
     

𝑤1,2
1 … 𝑤1,4

1

⋮ ⋱ ⋮
𝑤6,2

1 … 𝑤6,4
1

] , 

 

in the second layer we have 𝛼2 = 𝑓(𝑊2𝛼1 + 𝑏2), where  𝑏2 = [𝑏1
2, 𝑏2

2, … , 𝑏6
2]𝑇 and  

𝑥1 

𝑥2 

𝑥3 

𝑏4
2 

11 

𝑏1
2 

11 

𝑏2
2 

11 

𝑓2 

𝑓2 

𝑓2 

𝑓2 

𝑓2 

𝑓2 

𝑏6
2 

11 

𝑥4 

𝑏5
1 

11 

𝑓1 

𝑓1 

𝑓1 

𝑓1 

𝑓1 

𝑓1 

𝑏1
3 

11 

𝑏3
3 

11 

𝑓3 

𝑓3 

𝑓3 

𝑓3 

𝑏4
3 

11 

𝑓4 

𝑤11
1  

𝑤64
1  

𝑤11
2  

𝑤11
3  

𝑤11
4  

𝑤66
2  

𝑤46
3  

𝑤14
4  

𝛼4 

Figure 5 
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𝑊2 =  [

𝑤1,1
2

⋮
𝑤6,1

2
     

𝑤1,2
2 … 𝑤1,6

2

⋮ ⋱ ⋮
𝑤6,2

2 … 𝑤6,6
2

], 

 

in the third layer we have 𝛼3 = 𝑓(𝑊3𝛼2 + 𝑏3), where  𝑏3 = [𝑏1
3, 𝑏2

3, … , 𝑏4
3]𝑇 and  

𝑊3 =  [
𝑤1,1

3

⋮
𝑤4,1

3
     

𝑤1,2
3 … 𝑤1,6

3

⋮ ⋱ ⋮
𝑤4,2

3 … 𝑤4,6
3

], 

 

and in the output layer we have 𝛼4 = 𝑓(𝑊4𝛼3 + 𝑏4), where  𝑏4 = 𝑏1
4 and  

𝑊4 =  [𝑤1,1
4 , 𝑤1,2

4 , … , 𝑤1,4
4 ] . 

 

We can see that the network is much more complicated and the number of our 

parameters, weights and biases are now 24+6+36+6+24+4+4+1 = 105 

It is common to use the same activation function for all the hidden layers but it is not 

necessary. The purpose of the activation function in the hidden layers is to make our 

network more complex and the advantage is that it has higher flexibility and can 

approximate a wider class of functions. That’s why it is common for the activation 

function of the hidden layers to be non-linear. 

 

In the case where the activation function is linear, we can rewrite the output of the 

neural network as: 

                                      𝛼4 = 𝑓(𝑊4𝛼3 + 𝑏4)  

                                            = 𝑓(𝑊4 𝑓(𝑊3𝛼2 + 𝑏3)  + 𝑏4)  

             = 𝑓(𝑊4 𝑓(𝑊3𝑓(𝑊2𝛼1 + 𝑏2) + 𝑏3) + 𝑏4) 

                                  = 𝑓(𝑊4 𝑓(𝑊3𝑓(𝑊2𝑓(𝑊1 𝑥 + 𝑏1) + 𝑏2) + 𝑏3) + 𝑏4) 

                                            = 𝑓(𝑊′𝑥 + 𝑏′)  
 

for some 𝑊′ and 𝑏′, since 𝑓 is a linear function. 

This means that if the activation function of the hidden layers is linear, then the 

additional complexity of the multilayer neural network does not offer any advantage 

because all the hidden layers can be omitted and the neural network becomes 

shallow with only the input layer and the output layer with a matrix W’ and bias b’. 
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Example 

 

Assume that we have some fruits and vegetables and we want to classify them into 

apples, oranges bananas and carrots. Each fruit is been represented by 3 features: 

shape, texture, weight. These features are binary numbers, the shape is 1 if it is 

round and 0 if it is not, the texture is 1 if the surface is more smooth and 0 if it is not 

and the weight is 1 if the weight is more than 0.2 kilograms and 0 if it is not. A 

prototype apple will be represented by 𝑝1, a prototype orange will be represented 

by 𝑝2, a prototype banana will be represented by 𝑝3, a prototype carrot will be 

represented by 𝑝4, where 𝑝1, 𝑝2, 𝑝3, 𝑝4  are: 

 

𝑝1 = [
1
1
1

] , 𝑝2 = [
1
0
1

] , 𝑝3 = [
0
1
1

] , 𝑝4 = [
0
0
0

] 

 

We will use the following neural network to decide which kind of fruit is represented 

by these features. The three features are going to be the input of the neural 

network. The neural network will have 2 output neurons representing the 4 fruits.  

The activation function will be:  

𝑓(𝑧) = {
1,    𝑖𝑓 𝑧 ≥ 0   
 0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

In order to determine the weight matrix and the biases of our network we need to 

determine the decision boundaries of each neuron such that they separate apples, 

oranges bananas and carrots into 4 categories. The goal is to have the decision 

boundary of the first neuron to separate the vectors 𝑝1 and 𝑝2 from 𝑝3 and 𝑝4 and 

the decision boundary of the second neuron to separate 𝑝1 and 𝑝3 from 𝑝2 and 𝑝4. 

If the weight matrix is  

𝑊1 = [
1 0 0
0 1 0

] , 

 

and the biases are  

𝑏1 = [
−0.5
−0.5

] , 

 

 then for every input 𝑝𝑖,  𝑖 = 1, … ,4  the output of the neural network will be: 

𝑓(𝑊1 ⋅ 𝑝1 + 𝑏1) = 𝑓 ([
1 0 0
0 1 0

] ⋅ [
1
1
1

] + [
−0.5
−0.5

]) = [
1
1

]  (𝑎𝑝𝑝𝑙𝑒)    
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𝑓(𝑊1 ⋅ 𝑝2 + 𝑏1) = 𝑓 ([
1 0 0
0 1 0

] ⋅ [
1
0
1

] + [
−0.5
−0.5

]) = [
1
0

]  (𝑜𝑟𝑎𝑛𝑔𝑒)    

𝑓(𝑊1 ⋅ 𝑝3 + 𝑏1) = 𝑓 ([
1 0 0
0 1 0

] ⋅ [
0
1
1

] + [
−0.5
−0.5

]) = [
0
1

]  (𝑏𝑎𝑛𝑎𝑛𝑎)    

𝑓(𝑊1 ⋅ 𝑝4 + 𝑏1) = 𝑓 ([
1 0 0
0 1 0

] ⋅ [
0
0
0

] + [
−0.5
−0.5

]) = [
0
0

]  (𝑐𝑎𝑟𝑟𝑜𝑡)    

 

We can see that it categorizes the inputs as follows: if the output is [
1
1

] then it is categorized 

as apple, if the output is [
1
0

] then it is categorized as orange, if the output is [
0
1

] then it is 

categorized as banana, if the output is [
0
0

]  then it is categorized as carrot.  

Therefore, the neural network classifies perfectly the prototype apples, oranges, bananas 

and carrots.  

In the case that the input of the neural network is not one of the prototype descriptions 

given in 𝑝1, 𝑝2, 𝑝3, 𝑝4 then the input will be classified in the category of the prototype that is 

closer to it in Euclidean distance.  

 

 

2.4 Learning Techniques 
 

 

Leaning is a very important procedure of a neural network since it is responsible for 

adjusting the parameters of the network (the weights and the biases) so that for 

every input we get the desired output. There are many learning techniques. The 

main categories of learning techniques are: supervised learning, unsupervised 

learning and reinforcement learning. 

 

In Supervised learning, we are given a set of training examples  

(𝑋1, 𝑌1), (𝑋2, 𝑌2), … , (𝑋𝑛, 𝑌𝑛) 

where 𝑋𝑖 is the input of the network and 𝑌𝑖  is the desired output of the particular 

input. 

The procedure is to adjust the parameters of the network through some learning 

rule in order to get a network output as close as possible to the correct output. 

The goal of this procedure is to create a neural network that will be trained by a set 
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of given examples and will give us the correct output when the input of the network 

is an unseen data set. 

This can be achieved by defining a cost function, which measures how close is the 

network’s output to the correct output, and try to minimize it.  

A commonly used cost function is:  

𝐶(𝑤, 𝑏) =
1

2𝑛
 ∑‖𝑌𝑖 − 𝑎𝑖,𝐿‖

𝑖

, 

where 𝑎𝐿is the output of the neural network on input 𝑋𝑖 and  𝑌𝑖 is the desired output 

of the network given the input is 𝑋𝑖.  

Another commonly used cost function is the quadratic cost function:  

  

𝐶(𝑤, 𝑏) =
1

2𝑛
 ∑‖𝑌𝑖 − 𝑎𝑖,𝐿‖

2

𝑖

 . 

The cost function can be viewed as another parameter that the designer of the 

network can choose.  

 

In Unsupervised learning, we are given a set of data whose output is unknown. The 

goal of the network is to search for input patterns and classify them correctly.  

 

In Reinforcement learning, an agent takes actions in an environment and depending 

on the current state (the network’s input) and action (the network’s output), he 

receives a reward. The goal for the agent is to learn an optimal policy that maximizes 

the expected long-term rewards. 

 

 

Gradient Descent 

 

The learning technique that we will focus on in this thesis is supervised learning. As 

we mentioned, the closer the network output is to the correct output the smaller the 

cost function gets. So, it is normal to have a learning rule that tries to minimize the 

cost function with respect to the weights and biases parameters. A common 

optimization method used for the minimization is gradient descent 

Gradient descent is an iterative algorithm based on the gradient of the function we 

want to minimize.  

The derivative of a function 𝑓(𝑥): ℝ → ℝ   at a point 𝑥𝑡, gives the slope of the 

function at the point 𝑥  and consequently it gives us a direction of how the function 

is going to change if we make small change to 𝑥𝑡. The gradient of a function 
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𝑓(𝑥):  ℝ𝑛 → ℝ at a point 𝑥𝑡 is a vector and contains all the partial derivatives of this 

function at the point 𝑥𝑡.  

The idea of gradient descent is that if we take a small step towards the opposite 

direction of the function’s gradient to the point 𝑥𝑡+1 then the value of the function 

should be decreased: 𝑓(𝑥𝑡+1) < 𝑓(𝑥𝑡). 

 

In our neural network the parameters that we want to adjust are the weights and 

biases and the function we want to minimize is the cost function.  

Therefore, if we can compute the gradient of the cost function with respect to the 

weights and biases then starting with some initial values, we could have a guidance 

on whether we should increase or decrease them to minimize the cost function. 

Thus, the learning rule that will minimize the cost function is: 

𝑤𝑖𝑗
′ = 𝑤𝑖𝑗 − 𝛼 ⋅  

𝜕𝐶

𝜕𝑤𝑖𝑗
 

𝑏𝑗
′ = 𝑏𝑗 − 𝛼 ⋅  

𝜕𝐶

𝜕𝑏𝑗
 

Where 𝛼 is called the learning rule and we can think of it as the step size that we are 

going to move in the opposite direction of the gradient. 

 

There are some challenges when applying the gradient descent rule. One of them is 

the value that we have to choose for the step size 𝛼, which in the neural network 

terminology is referred to as the learning rule. The gradient only gives the slope of 

the function near the value 𝑥𝑡. If the learning rule 𝛼 is large, then the new point 𝑥𝑡+1 

will be far away from the point 𝑥𝑡 and the calculation of the gradient does not 

guarantee that the final move will still be towards the direction of the true 

minimum. On the other hand, if the learning rule is small then the procedure can 

take a very time until we reach a desired point. That is why we have to be careful 

when deciding the learning rule. It is common practice to train the model many 

times with different values of the learning rule 𝛼 until we find a suitable learning 

rate. Also, it is common to change the learning rate as the training evolves. 

 

Another challenge is the complexity of computing the gradient of the cost function 

with respect to all the weights and biases for every different training example.  

 

The cost function is   

𝐶(𝑤, 𝑏) =
1

2𝑛
 ∑‖𝑌𝑖 − 𝑎𝑖,𝐿‖

2

𝑖

, 

which can be rewritten as: 
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𝐶(𝑤, 𝑏) =
1

𝑛
∑ 𝐶𝑖

𝑖

, 

where 𝐶𝑖 =
‖𝑌𝑖−𝑎𝐿‖

2

2
 is the cost for one individual training example. 

 

In practice to compute the gradient  ∇𝐶 we compute ∇𝐶𝑖 for every training example 

and then take the average to find  ∇𝐶 =  ∑ ∇𝐶𝑖𝑖 .  

In many cases the number of training examples is very large and it is inefficient to 

compute the gradient for every training example in each iteration of the gradient 

algorithm. The method of stochastic gradient descent can be used to speed up the 

process without giving up the accuracy of the algorithm. The stochastic gradient 

descent converges almost surely to a local minimum, when the step size decreases 

with an appropriate rate, and is subject to relatively mild assumptions [1]. 

In stochastic gradient descend, we estimate the gradient ∇𝐶 by choosing a small 

random sample of our training examples, called mini-batch, compute the ∇𝐶𝑖 only 

for this sample and then average them. In this way, we have a good estimate of the 

true gradient ∇𝐶, which helps significantly to speed up the learning process.  

In mathematical terms this is expressed as:  

𝑤𝑘𝑗
′ = 𝑤𝑘𝑗 −

𝛼

𝑚
∑

𝜕𝐶𝑖

𝜕𝑤𝑘𝑗

𝑚

𝑖=1

 

𝑏𝑗
′ = 𝑏𝑗 −

𝛼

𝑚
∑

𝜕𝐶𝑖

𝜕𝑏𝑗

𝑚

𝑖=1

      . 

 

One other challenge when applying the gradient descent or the stochastic gradient 

descent is the computation of the gradient itself for every training example. Because 

the number of weights and biases is often quite large, a naive approach to calculate 

the gradient with respect to all these weights is impractical.  

For this reason, we use a very efficient algorithm called backpropagation that can 

efficiently compute the gradient of the cost function.   

Despite that the computation of the gradient of function is theoretically easy to 

compute, its computational evaluation is usually inefficient. The backpropagation 

algorithm solves this problem, by introducing an efficient procedure to achieve it. 

Before we dive into the backpropagation algorithm, we define the quantity 𝛿𝑗
ℓ, which 

we will call the error in the 𝑗-th neuron of the ℓ-th layer:  
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𝛿𝑗
ℓ =

𝜕𝐶

𝜕𝑧𝑗
ℓ 

, 

where 𝐶 is the cost function, 𝑧 is the net input  𝑧 = 𝑤𝑇𝛼ℓ−1 + 𝑏,  and 𝛼ℓ−1 is the 

output of the neurons of the ℓ − 1 layer.  

Recall that 𝛼ℓ = 𝑓(𝑧ℓ) = 𝑓(𝑤𝑇𝛼ℓ−1 + 𝑏). 

Backpropagation gives us a way to compute the error 𝛿𝑗
ℓ and then use it to compute 

the values 
𝜕𝐶

𝜕𝑤𝑘𝑗
ℓ  and 

𝜕𝐶

𝜕𝑏𝑗
ℓ that we are interested in.  

The most common method used in backpropagation is the chain rule method from 

multivariable calculus.  

The output error is: 𝛿𝑗
𝐿 =

𝜕𝐶

𝜕𝑧𝑗
𝐿  

Applying the chain rule we get:  

𝛿𝑗
𝐿 = ∑

𝜕𝐶

𝜕𝛼𝑘
𝐿 ⋅

𝜕𝛼𝑘
𝐿

𝜕𝑧𝑗
𝐿

𝑘

 

However, we have that:  

𝛼𝑘
𝐿 = 𝑓(𝑧𝑘

𝐿), 

therefore,  

𝛿𝑗
𝐿 =

𝜕𝐶

𝜕𝛼𝑗
𝐿 ⋅ 𝑓′(𝑧𝑗

𝐿). 

If we use the cost function 𝐶 =
‖𝑌−𝑎𝐿‖

2

2
,  then  

𝜕𝐶

𝜕𝛼𝑗
𝐿 = |𝑌 − 𝑎𝑗

𝐿|, and 

𝛿𝑗
𝐿 = |𝑌 − 𝑎𝑗

𝐿| ⋅ 𝑓′(𝑧𝑗
𝐿). 

For an arbitrary ℓ: 

𝛿𝑗
ℓ =

𝜕𝐶

𝜕𝑧𝑗
ℓ

=  ∑
𝜕𝐶

𝜕𝑧𝑘
ℓ+1

⋅
𝜕𝑧𝑘

ℓ+1

𝜕𝑧𝑗
ℓ

𝑘

= ∑
𝜕𝑧𝑘

ℓ+1

𝜕𝑧𝑗
ℓ

⋅ 𝛿𝑘
ℓ+1

𝑘

 

 

However, we have that 

𝑧𝑘
ℓ+1 =  ∑ 𝑤𝑘𝑗

ℓ+1 ⋅ 𝛼𝑗
ℓ + 𝑏𝑘

ℓ+1

𝑗

=  ∑ 𝑤𝑘𝑗
ℓ+1𝑓(𝑧𝑗

ℓ) + 𝑏𝑘
ℓ+1

𝑗

 . 

Hence, 

𝜕𝑧𝑘
ℓ+1

𝜕𝑧𝑗
ℓ

= 𝑤𝑘𝑗
ℓ+1  𝑓′(𝑧𝑗

ℓ). 
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We thus obtain:  

𝛿𝑗
ℓ = ∑ 𝑤𝑘𝑗

ℓ+1 𝛿𝑘
ℓ+1𝑓′(𝑧𝑗

ℓ)

𝑘

 . 

 

Now that we have computed the error 𝛿𝑗
ℓ for every layer and neuron, we can use it 

to compute the desired quantities  
𝜕𝐶

𝜕𝑤𝑘𝑗
ℓ ,

𝜕𝐶

𝜕𝑏𝑗
ℓ . 

We know that:  

𝑧𝑗
ℓ = ∑ 𝑤𝑗𝑘

ℓ  𝛼𝑘
ℓ−1 + 𝑏𝑗

ℓ

𝑘

 

Hence,  

𝜕𝐶

𝜕𝑤𝑗𝑘
ℓ

=
𝜕𝐶

𝜕𝑧𝑗
ℓ 

⋅
𝜕𝑧𝑗

ℓ

𝜕𝑤𝑗𝑘
ℓ

= 𝛿𝑗
ℓ 𝛼𝑘

ℓ−1  

and 

𝜕𝐶

𝜕𝑏𝑗
ℓ

=
𝜕𝐶

𝜕𝑧𝑗
ℓ 

⋅
𝜕𝑧𝑗

ℓ

𝜕𝑏𝑗
ℓ

= 𝛿𝑗
ℓ  

 

Summing up, the four fundamental equations for backpropagation are: 

𝛿𝐿 = ∇𝛼 𝐶 ⊙ 𝑓′(𝑧𝐿) 

𝛿ℓ = ((𝑤ℓ+1)
𝑇

⋅ 𝛿ℓ+1) ⊙ 𝑓′(𝑧ℓ) 

𝜕𝐶

𝜕𝑏𝑗
ℓ

=  𝛿𝑗
ℓ 

𝜕𝐶

𝜕𝑤𝑗𝑘
ℓ

= 𝛼𝑘
ℓ−1 𝛿𝑗

ℓ , 

 

where the ⊙ is the Hadamard matrix product, i.e, the product is taken elementwise. 

Now that we have written the equations in the above form, we can easily see how 

the backpropagation algorithm will work. 

Given a training example (𝑋𝑖, 𝑌𝑖),  

Step 1: We perform a feedforward pass, meaning that the input 𝑋𝑖 will pass through 

the neural network to give an output 𝛼𝐿. 
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Step 2: We compute the output error: 𝛿𝑗
𝐿 

Step 3: We backpropagate the error and compute the quantities 𝛿𝑗
ℓ  for all ℓ and 𝑗. 

Step 4: The gradient of the cost function is given simply by computing:  
𝜕𝐶

𝜕𝑤
,

𝜕𝐶

𝜕𝑏
 

This algorithm is very efficient because it only has to pass through the network 

twice, one for its feedforward computations and once to backpropagate the errors.  

Summing up, to train our neural network we will use stochastic descent with the 

help of the backpropagation algorithm to compute the gradients. 

 

 

Stochastic gradient descent and backpropagation are very commonly used 

algorithms in practice, despite that they are known for many years. Of course, there 

are also some other algorithms used for training the parameters of the neural 

network. Some of them are variations of the stochastic gradient descent and some 

of them have different computation complexity. One variation of the stochastic 

gradient descent that we will also use in our analysis is called Adam. 

 

Adam Algorithm  

Adaptive Moment Estimate (Adam) algorithm [6] is a little more complicated than 

the one-line stochastic gradient descent but empirically we find that it converges 

more quickly than stochastic gradient descent.  

In each iteration in order to adjust the parameters it uses both the average of the 

first moment estimation (mean) and the average of the second moment estimation 

of the gradient.  

In each iteration 𝑡, it computes the quantities 𝑚𝑡 , and 𝑣𝑡 respectively: 

 

𝑚𝑡 = 𝛽1 ⋅ 𝑚𝑡−1 + (1 − 𝛽1) ⋅ 𝑔𝑡 

𝑣𝑡 = 𝛽2 ⋅ 𝑣𝑡−1 + (1 − 𝛽2) ⋅ 𝑔𝑡 ⨀ 𝑔𝑡 , 

 

where 𝑔𝑡 is the gradient of the cost function 𝐶 with respect to the weights and 

biases,  𝛽1, 𝛽2 ∈ [0,1) are hyper-parameters.  

Initially, 𝑚0 and 𝑣0 are vectors of zeros. 

The quantities 𝑚𝑡, 𝑣𝑡  calculated above are biased towards zero, since their initial 

values is a vector of zeros. Therefore, we will use the biased-corrected estimates 

𝑚�̂� and  𝑣�̂�:  
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𝑚�̂� =
𝑚𝑡

1 − 𝛽1
𝑡 

𝑣�̂� =
𝑣𝑡

1 − 𝛽2
𝑡 

 

The last step is to update the parameters 𝑤, 𝑏 ∶ 

 

𝑤𝑡 = 𝑤𝑡−1 − 𝛼 ⋅
𝑚�̂�

√𝑣�̂� + 𝜖
 

𝑏𝑡 = 𝑏𝑡−1 − 𝛼 ⋅
𝑚�̂�

√𝑣�̂� + 𝜖
,  

 

where 𝛼 is the learning rate, 𝜖 is a hyperparameter. 

 

 

2.5  Improving the performance of Neural Networks 
 

 

Up until now, we have discussed the main components of a neural network as well 

as some learning techniques to train the network.  

In this chapter we consider again the main components of the neural network in 

order to understand better why we use each one of them and mention some ways to 

increase performance.  

First of all, the most important element in the process of training a neural network is 

the training data. When training a neural network, we must “feed” the neural 

network with the training data that we have available until is fully trained and can 

perform optimally with new data points. The first problem that arises is the fact that 

we don’t know exactly when the neural network is fully trained and how well it can 

perform to unseen data. Also, there is the problem of overfitting. If we train the 

network too much, then it starts to learn the training data exclusively and becomes 

incapable of generalizing to new input data.  

One way to tackle this problem is to estimate how well our network is being trained 

to unseen data. To do this, before we start the training process, we can divide the 
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training data to two different data sets. We use the first one to train the neural 

network and the second one to test its performance.  

 

Although this is a good method, it has a significant drawback. If we change the 

hyperparameters many times based on the performance of the test data, then there 

is a chance that we will overfit the neural network to the test data as well. To 

overcome this problem, we can divide the data into three categories: the training 

data, the validation data and the test data.  

We use the training data to train the model and the validation data to tune the 

parameters for better performance.  

Lastly, only when we estimate that the neural network is sufficiently trained, we test 

it with the test data to measure its actual performance.  

Some other methods that are widely used and have been seen in practice to help 

with the overfitting problem, are called regularization techniques. One of the most 

used technique is known as weight decay or L2 regularization [9]. 

The idea is to add an extra term to the cost function that will penalize the weights by 

some factor 𝜆. 𝜆 is also a hyperparameter, that we must decide its value before the 

training begins. The idea of penalizing the weights is that we don’t want to have 

large values of weights unless they make a significant reduction to the cost function.  

This comes from the idea that when some connections have large values of weights, 

then these connections have more influence to the neural network than others. 

Hence, the behavior of the neural network may change significantly if we make some 

small changes to the input data.  

We note that by changing the cost function to the new form:  

𝐶(𝑤, 𝑏) = 𝐶𝑖 +
𝜆

2𝑛
⋅  ∑ 𝑤2

𝑤

  

we also make a small modification to the gradient descent method.  

The only change is in the partial derivative with respect to the weight:  

𝜕𝐶

𝜕𝑤
=

𝜕𝐶𝑖

𝜕𝑤
+

𝜆𝑤

𝑛
 

 

Therefore, the gradient descent rule becomes:  

𝑤′ = 𝑤 − 𝛼 ⋅
𝜕𝐶𝑖

𝜕𝑤
− 𝑤 ⋅

𝛼𝜆

𝑛
 , 

where 
𝜕𝐶𝑖

𝜕𝑤
 is the same as the one we found from backpropagation.  
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We next focus on the hyper-parameters of the neural network.  

First of all, we must specify the parameters of the network. The network has two 

kind of parameters that we want to find their optimal value. In the first category, 

there are the weights and biases which, as we have mentioned, will be changing 

through some learning rule until they reach their optimal values. In the second 

category, there are all the other parameters that of the neural network. These are 

for example the number of layers, the size of each layer, the learning rate 𝛼 of the 

stochastic gradient descent algorithm, the activation functions of every neuron, etc. 

These parameters are called hyper-parameters. 

The hyper-parameters have to be assigned before the neural network begins its 

training and they are usually being decided by the designer of the neural network 

through trial and error.  

Luckily there are some guidelines to tune these hyper-parameters but they are only 

guidelines and we will always have to test different kind of combinations of these 

hyper-parameters until we find their optimal value.  

Unfortunately, there can’t be a universal neural network that can solve every 

problem and so we have to tune our neural network every time we face a different 

problem. This is known as the “No free lunch theorem” [13]. 

On the other hand, in [5] it has been proven that given enough neurons, a neural 

network can approximate any function.  

Lastly, as we have seen, in order for the Stochastic Gradient Descent or Adam 

algorithm to work, we have to assign the weights and biases to some initial values 

before the neural network starts.  

The initial values of the weights and biases is very important because for different 

initial values, given that everything else stays the same, we might end up to different 

local minimums.  

Unfortunately, there is no general method that we can use to find the global 

minimum with ease. One thing that we can do is to train our neural network with 

random initialization to the weights and biases multiple times and keep the one 

where it performs best. Of course, as we mentioned before, we want the weights 

and biases to have relatively small values, so it is better if we initialize them as such. 

A common method is to initialize them with a Normal distribution with mean 0 and 

variance 1.  

Several alternative techniques have been proposed to improve the performance of 

the neural network. Many of these are only empirically proven to improve 

performance. 
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3 Newsvendor Problem 
 

 

A classical optimization problem in operational research is inventory optimization. In 

every period the newsvendor manager has to make a decision of how much quantity 

of a product he will order. His objective is to maximize his profits in a finite or infinite 

horizon.  

However, there are some cases that the corresponding products are perishable. This 

means that they lose their value at the end of each period, so it is impractical to 

store them. One example of this kind of products is newspapers. Each day’s 

newspapers are worthless for the next day, so the newsvendor has to make a new 

decision every day knowing the unsold newspapers of each day will become 

worthless. Influenced by the newsvendor decision this class of problems are called 

newsvendor problems.  This is the type of problems we will try to analyze with some 

extensions.  

The problem was first introduced by Francis Edgeworth in 1888, where he used the 

central limit theorem to determine the optimal decision. 

 

 

Problem Definition 

 

In the newsvendor problem the retailer makes an order at the beginning of the 

period and sells them during that period. The actual demand of the product is 

unknown to the retailer. It is considered to be stochastic and it is represented by a 

random variable 𝑋 with density function 𝑓(𝑥) and cumulative distribution   

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥).  To model the objective function of the retailer we will assume 

that we have two kinds of costs at the end of each period depending on the order 

quantity and the actual demand. If at the end of a period we have unsold products 

then each unsold product has a holding cost. On the other hand, if the retailer runs 

out of products in the middle of the period then he is charged a shortage cost per 

unit for the potential profit of the unsatisfied demand. 

The objective of the newsvendor is to find the optimal quantity  𝑄 that minimizes 

the cost function 𝐶(𝑄) where:  

 

            𝐶(𝑄) = 𝐸𝐷[𝑐𝑝(𝐷 − 𝑄)+ + 𝑐ℎ(𝑄 − 𝐷)+] = 
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                       = 𝑐𝑝  ∫ max(0, 𝑥 − 𝑄) 𝑓(𝑥)𝑑𝑥

∞

0

+ 𝑐ℎ  ∫ max(0, 𝑄 − 𝑥) 𝑓(𝑥)𝑑𝑥

∞ 

0

 

 = 𝑐𝑝  ∫ (𝑥 − 𝑄) 𝑓(𝑥)  𝑑𝑥

∞

𝑄

+ 𝑐ℎ  ∫ (Q − 𝑥) 𝑓(𝑥)𝑑𝑥

𝑄 

0

, 

 

where  𝑐𝑝: is the shortage cost, 

  𝑐ℎ: is the holding cost, 

  𝐷 is the actual demand and  

  (𝐷 − 𝑄)+ = max (0, 𝐷 − 𝑄) . 

 

If the distribution of the demand is known, then the optimal solution of 𝐶(𝑄) is: 

𝑄∗ = 𝐹−1 (
𝑐𝑝

𝑐𝑝 + 𝑐ℎ
)  

 

However, in real world problems the actual distribution of the demand is rarely 

known and this is our main interest. 

It is worth noting that the distribution of the demand may be independent from any 

parameters or as it is usually the case, it can depend on some external parameters 

such as weather conditions, the day of the week, the store location etc. In every 

period the newsvendor knows these external parameters and must decide his order 

quantity based on them.  

 

A variation of the above problem is if we take into account the price that the retailer 

sells the products as well as the cost of the ordered quantity. Then the problem 

becomes a maximization problem where the objective of the retailer is to find the 

optimal order quantity such that his profits are maximized.    

The expected profit is: 

𝛱(𝑄) = 𝐸𝐷[𝑝 ⋅ 𝑚𝑖𝑛(𝑄, 𝐷) − 𝑤 ⋅  𝑄] , 

where p is the selling price and  

  𝑤 is the cost the retailer is buying the products. 

 

From here we can derive a more realistic approach of the problem where the actual 

distribution of the demand depends on the selling price of the product. One example 

of this dependence is if 𝐷 ~ 𝑁(𝑓(𝑝), 𝜎2), i.e, the actual distribution of the demand 
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is normal with constant variance 𝜎2 , but with mean equal to some function of the 

price, e.g.   𝜇(𝑝) = 𝑚𝑎𝑥(𝐴 − 𝑑𝑝, 0), where 𝐴 and 𝑑 are some constant unknown 

parameters  

 

This extends to the problem, where the objective of the newsvendor is not only to 

find the optimal order quantity but also to decide the optimal price of which he will 

sell his products along with an order quantity.  

Thus, the expected profit becomes: 

 

𝛱(𝑝, 𝑄) = 𝐸𝐷[𝑝 ⋅ 𝑚𝑖𝑛(𝑄, 𝐷) − 𝑤 ⋅  𝑄] . 

 

To find the optimal solution to this problem we will consider the approach followed 

in [11] and [12], with 𝐷 ~ 𝑁(𝑦(𝑝), 𝜎2). We rewrite 𝐷 =  𝑦(𝑝) + 휀 where ε 

~ 𝑁(0, 𝜎2) and 𝑄 as 𝑄 =  𝑦(𝑝) + 𝑧. 

They find the solution in 2 stages. They first maximize the order quantity as a 

function of the price and then maximize the price based on the optimal order 

quantity function. 

The order quantity is given as  

𝑧∗ = 𝐹−1 (
𝑝 − 𝑤

𝑝
) . 

To find the optimal price we must solve the equation:  

𝜕𝛱(𝑝)

𝜕𝑝
= 0 

where  

𝜕𝛱(𝑝)

𝜕𝑝
= 𝑦(𝑝) + 𝑝 ⋅ 𝑦′(𝑝) + ∫ 𝑢 ⋅ 𝑓(𝑢)𝑑𝑢

𝑧∗

−∞

 + ∫ 𝑧∗𝑓(𝑢)𝑑𝑢

∞

𝑧∗

 −  𝑤 ⋅ 𝑦′(𝑝) 

= 𝑦(𝑝) + 𝑝 ⋅ 𝑦′(𝑝) + ∫ 𝑢 ⋅ 𝑓(𝑢)𝑑𝑢

𝑧∗

−∞

+ 𝑧∗(1 − 𝐹(𝑧∗)) −  𝑤 ⋅ 𝑦′(𝑝) 

 

Where 

∫ 𝑢 ⋅ 𝑓(𝑢)𝑑𝑢

𝑧∗

−∞

= ∫ 𝑢 ⋅
1

𝜎√2 
⋅ 𝑒𝑥𝑝 (−

𝑢2

2𝜎2
)  𝑑𝑢

𝑧∗

−∞

= −
2𝜎

√2
⋅ exp (−

𝑧∗2

2𝜎2
) 

Hence, 
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𝜕𝛱(𝑝)

𝜕𝑝
=  𝑦(𝑝) + 𝑝 ⋅ 𝑦′(𝑝) −

2𝜎

√2
⋅ exp (−

𝑧∗2

2𝜎2
) + 𝑧∗(1 − 𝐹(𝑧∗)) −  𝑤 ⋅ 𝑦′(𝑝) 

 

We find the optimal values by solving these equations. 

 

In the next chapter, we present some representative papers that use neural network 

models for the newsvendor problem, and in Chapter 5, we will also develop a neural 

network algorithm for the above joint price-quantity optimization problem. 

The analysis is inspired by [10], which has already analyzed the first problem of 

optimal order quantity. 
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4 Neural Networks for the newsvendor problem 
 

In this chapter we will analyze some approaches to the newsvendor problem and 

inventory optimization in general. Our main focus will be the two main neural 

networks that have been proposed by [10] and [14]. 

In the paper [10] the authors propose a neural network to solve variation of the first 

problem that we discussed in the previous chapter.  

Instead of trying to find the optimal order quantity for one single product, they 

assume that the retailer has 𝑚 products and he needs to find the optimal order 

quantity for each one of them. Also, for each day, they use 𝑝 different features that 

affect the demand distribution. 

In mathematical terms, given 𝑛 training data  

{  (𝑥𝑖
1, 𝑑𝑖

1)  , … , (𝑥𝑖
𝑚, 𝑑𝑖

𝑚) }𝑖=1
𝑛  , 

where 𝑥𝑖
𝑗

∈ ℝ𝑝 and 𝑑𝑖
𝑗

∈ ℝ, for 𝑖 = 1, … , 𝑛 ,  𝑗 = 1, … , 𝑚  and 

𝑥𝑖
𝑗
 represents the features from the 𝑖-th data point and the 𝑗-th product, 

𝑑𝑖
𝑗
 is the actual demand from the 𝑖-th data point and the 𝑗-th product given the 𝑥𝑖

𝑗
 

features. 

Hence the cost function that they minimize is:  

𝐶(𝑤, 𝑏) = ∑(

𝑛

𝑖=1

 
1

𝑛
 (  ∑ 𝑐ℎ(𝑎𝑖

𝑗,𝐿
− 𝑑𝑖

𝑗
)

+
𝑚

𝑗=1

 + 𝑐𝑝(𝑑𝑖
𝑗

− 𝑎𝑖
𝑗,𝐿

)
+

) ), 

 

where 𝑎𝑖
𝑗,𝐿

 is the output of the neural network on input 𝑥𝑖
𝑗
 

and 𝑑𝑖
𝑗
 is the desired output of the network given the input is 𝑥𝑖

𝑗
 

In the paper they also use a quadratic loss function: 

𝐶(𝑤, 𝑏) = ∑ (
1

𝑛
(∑ ( 𝑐ℎ(𝑎𝑖

𝑗,𝐿
− 𝑑𝑖

𝑗
)

+
+ 𝑐𝑝(𝑑𝑖

𝑗
− 𝑎𝑖

𝑗,𝐿
)

+
)

2
𝑚

𝑗=1

))

𝑛

𝑖=1

. 

 

They develop a neural network with the stochastic gradient descent learning rule 

and the backpropagation to compute the gradient of the cost functions.  

It is worth noting that in their analysis they use neural networks with both 2 and 3 

hidden layers with a number of neurons in each layer being selected at random 

based on the number of neurons in the previous layer. More precisely, denoting 𝑛𝑛𝑘  

the number of neurons in the layer 𝑘, for the network with two layers they choose:  

𝑛𝑛2 ∈ [0.5 ⋅ 𝑛𝑛1, 3 ⋅ 𝑛𝑛1] 
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𝑛𝑛3 ∈ [0.5 ⋅ 𝑛𝑛2, 𝑛𝑛2] 

𝑛𝑛4 = 1 . 

 

They also use a regularization parameter that is drawn uniformly from [10−2, 10−3]. 

Lastly, they use the sigmoid function for the hidden layers. 

The authors show that the neural network with the quadratic cost function performs 

better than the neural network with the simple cost function, but both networks 

perform better than some other state-of-the-art approaches that solve the same 

problem.  

 

In [14] the authors consider the same problem using a slight variation of the neural 

network in [10] 

They suggest the same neural network as [10] but they also add another layer at the 

end of the neural network with the ReLU activation function.  

They also use a single input neuron in the last hidden layer that represents the actual 

demand of the products.  

 

The weights are fixed from the last hidden layer to the output as:  

[
−𝑐𝑝 𝑐𝑝

𝑐ℎ −𝑐ℎ
 ]  

 

A visual representation of the network is given in Figure 6.  

 

This variation has the property that the output layer is the cost function itself that is 

minimized, since:  

𝐶(𝑓(𝑥𝑖, 𝑞)) = {
     𝑐ℎ(𝑎𝑖

𝐿 − 𝑑𝑖)+,           𝑖𝑓 𝑎𝑖
𝐿 ≥   𝑑𝑖 

    𝑐𝑝(𝑑𝑖 − 𝑎𝑖
𝐿)+             𝑖𝑓 𝑑𝑖 ≥  𝑎𝑖

𝐿    . 

 

The authors argue that the proposed quadratic cost function of [10] brings worse 

results than the simple cost function. 

  

Other papers in the literature that tackle these problems or other more general 

problems for supply chain management, try to estimate the demand using neural 

networks. One drawback in this approach is that they don’t take into account the 

costs 𝑐𝑝 and 𝑐ℎ for the minimization problem. Such papers are [2] and [7].  
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5 Applications 
 

 

In this chapter we develop a neural network model for the problem of order quantity 

optimization as well as for the problem of price-order quantity optimization in a 

newsvendor inventory environment. 

 

5.1 Order Quantity Optimization 

 

We will first analyze our approach to finding the optimal order quantity under 

unknown demand distribution. Recall that in the problem the objective in the neural 

network is to find the optimal order quantity 𝑦 in order to minimize the empirical 

cost function:  

𝐶(𝑤, 𝑏) =
1

𝑛
∑(

𝑛

𝑖=1

  𝑐ℎ(𝑎𝑖
,𝐿 − 𝑑𝑖)

+
+ 𝑐𝑝(𝑑𝑖 − 𝑎𝑖

𝐿)+  ) =
1

𝑛
∑ 𝐶𝑖(𝑤, 𝑏)

𝑛

𝑖=1

                       (1) 

 

𝐶𝑖(𝑤, 𝑏) = {
     𝑐ℎ(𝑎𝑖

𝐿 − 𝑑𝑖),           𝑖𝑓 𝑎𝑖
𝐿 ≥   𝑑𝑖  

    𝑐𝑝(𝑑𝑖 − 𝑎𝑖
𝐿)             𝑖𝑓 𝑑𝑖 ≥  𝑎𝑖

𝐿                                                 (1. 𝑏) 

 

where  𝑐𝑝 is the shortage cost, 

  𝑐ℎ is the holding cost, 

  𝑑𝑖 is the actual demand,  

  𝑎𝑖
𝐿 is the output of the neural network on input 𝑥𝑖 , 

  (𝑎𝑖
,𝐿 − 𝑑𝑖)

+
= max (0, 𝑎𝑖

,𝐿 − 𝑑𝑖) and 

 w, b are the matrices of weight and bias vectors in the neural network. 

 

We will also consider a variation with the quadratic cost function: 

𝐶(𝑤, 𝑏) =
1

𝑛
∑( 𝑐ℎ(𝑎𝑖

𝐿 − 𝑑𝑖)
+ + 𝑐𝑝(𝑑𝑖 − 𝑎𝑖

𝐿)+)2

𝑛

𝑖=1

=
1

𝑛
∑ 𝐶𝑖(𝑤, 𝑏)

𝑛

𝑖=1

,                         (2) 

 

where  𝐶𝑖(𝑤, 𝑏) = {
     (𝑐ℎ(𝑎𝑖

𝐿 − 𝑑𝑖))
2

,           𝑖𝑓 𝑎𝑖
𝐿 ≥   𝑑𝑖  

    (𝑐𝑝(𝑑𝑖 − 𝑎𝑖
𝐿))

2

             𝑖𝑓 𝑑𝑖 ≥  𝑎𝑖
𝐿

                         (2. 𝑏) 
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Our approach is based on the model in [10] with some variations.  

First of all, we consider a simpler version of the problem where there are no feature 

values. This is done mainly for practical reasons and secondly because we will 

analyze an application with the price as a feature in our next application.  

For simplicity we are going to find the optimal order quantity for only one product 

and we will not consider the problem with multiple products. The analysis can easily 

be generalized to the multi-product and the multi-featured problem. 

In this problem we are given 𝑛 training examples:  

{(𝑋1, 𝐷1), … , (𝑋𝑛, 𝐷𝑛)}, 

where 𝐷𝑖  is the actual demand generated by some distribution and 

  𝑋1 = 𝑋2 = ⋯ = 𝑋𝑛 = 𝑟 where 𝑟 is an arbitrary number between [0,1] 

We use this convention because in this problem we don’t include any features. This 

is equivalent as having the same feature in every training example.  

In our analysis, we will use simulated data from known distributions and test 

different kinds of neural networks to measure their performance. We will first 

generate some data that come from the normal distribution with mean 𝜇 and 

variance 𝜎2 and test our neural network for different values of 𝜇, 𝜎2, 𝑐𝑝, 𝑐ℎ.  

We will use the same tuning of neural network for all the different values of 

𝜇, 𝜎2, 𝑐𝑝, 𝑐ℎ to test its performance. We will also be testing it for the two different 

kinds of cost functions.    

It is worth noting that because these data are being generated by a known 

distribution, we can compare the performance of our neural networks with the 

theoretical optimal quantity 𝐹−1 (
𝑐𝑝

𝑐𝑝+𝑐ℎ
). 

We will then generate some data using the exponential distribution and use a 

different neural network to test these data for different values of the mean 
1

𝜆
, 𝑐𝑝, 𝑐ℎ. 

We will also be testing it for the two cost functions. 

 

Training data generated by the normal distribution  

In this framework, after a lot of training and tuning of the hyperparameters of our 

network we propose a neural network with 2 hidden layers. The first (input) layer of 

the network will have only 1 neuron, the first hidden layer will have 32 neurons, the 

second hidden layer will have 16 neurons and the output layer will have 1 neuron. 
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We found that a suitable activation function is the LeakyReLU [8] and we will use it 

for all of the neurons. LeakyReLU is a variation of the ReLU function that we stated in 

the beginning of this thesis. 

The function for LeakyReLU is 𝑓(𝑥) = {
    𝑧           ,       𝑖𝑓 𝑧 ≥  0
 0.001𝑧   ,     𝑖𝑓 𝑧 < 0

 

 

In order to train the weights and the biases, we will apply the Adam algorithm for all 

the neural networks in the first application. In the next application we will use the 

Stochastic Gradient Descent algorithm. 

The parameters of the Adam used except for the learning rate, are the same for all 

the neural networks: 

 𝑏1 = 0.9,  𝑏2 = 0.999,  𝑒 = 10−8. 

The only value that will vary from one neural network to an other is the learning 

rate. 

As we have stated, choosing the learning rate is a very important decision and it can 

influence the time that the neural network will converge. We found that starting 

with a relatively large value of learning rate and decreasing it as the number of 

iterations of the algorithm is increasing, helps the neural network converge faster 

and not oscillate around a solution.  

 

When using the cost function (1), we will use the learning rates: 0.01 , 0.001, 0.0001 

that will be changing when the number of iterations reaches 0, 100 and 250 

respectively. 

As for the second neural network we will use the learning rates: 0,1, 0.01, 0.001 , 

0.0001 that will be changing when the number of iterations reaches 0, 6, 100 and 

250 respectively. 

We must also discuss the number of epochs that the neural network will be trained, 

i.e, the number of iterations the Adam algorithm will perform until it stops training 

the weights and biases. We found that a number of 500 iterations is enough to train 

this model.  

We will use a mini-batch of length 10. The mini-batch is the size of the training data 

to estimate the full gradient. 

Lastly, we should note that because in all our neural networks we start by initializing 

the weights and biases to some random numbers, we will only show the results of 

the neural network that had the best performance in a best-of-three runs.  
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Training data generated by the exponential distribution  

 

In this framework, we propose a neural network with 3 hidden layers. The first 

(input) layer of the network will have only 1 neuron, the first hidden layer will have 

16 neurons, the second hidden layer will have also 16 neurons, the third hidden layer 

will have 8 neurons and the output layer will have 1 neuron. 

We will also use the LeakyReLU function for all of the neurons 

As mentioned above, we will use the Adam algorithm to train the neural network for 

this application with parameters: 

 𝑏1 = 0.9,  𝑏2 = 0.999,  𝑒 = 10−8. 

As for the learning rate, when using the cost function (1), we will use the learning 

rates: 0.01 , 0.001, 0.0001 that will be changing when the number of iterations 

reaches 0, 100 and 250 respectively. 

As for the second neural network we will use the learning rates: 0,1, 0.01, 0.001 , 

0.0001 that will be changing when the number of iterations reaches 0, 6, 100 and 

250 respectively. 

Lastly, the number of epochs will again be 500 and the mini-batch size 10. 

 

 

Numerical Experiments  

 

We next generate simulated data to test our neural network and observe its 

performance under different distributions of the demand and different values of the 

parameters 𝑐𝑝, 𝑐ℎ 

The first data set is very small. We only consider 5 data points for the first data set. 

The reason is so that we can see the performance of our neural network when faced 

with small data. 

 

The results are shown in Table 1. 

- NN1 represents the neural network that was trained with respect to the cost 

function (1), 

- NN2 represents the neural network that was trained with respect to the 

Quadratic cost function (2), and 

- Optimal represents the Optimal Theoretical value that we found by solving               

  𝑄∗ = 𝐹−1 (
𝑐𝑝

𝑐𝑝+𝑐ℎ
)  
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We only use different kind of (𝑐𝑝, 𝑐ℎ) values that it holds 𝑐𝑝 ≥ 𝑐ℎ because this is 

almost always true for real applications. 

Table 1 

Data = 5 
 

Distribution 
 

(𝑐𝑝, 𝑐ℎ) 
Method of 
Estimation 

Proposed 
Ordered 
Demand 

 
Cost 

N(50,1) (3,3) NN1 49.63 2.18 

  NN2 49.74 2.11 

  Optimal 50.0 1.96 

 (6,3) NN1 50.06 3.24 

  NN2 49.94 3.10 

  Optimal 50.43 3.68 

 (11,3) NN1 49.71 2.85 

  NN2 50.03 2.91 
  Optimal 50.79 2.00 
 (20,3) NN1 51.01 5.39 
  NN2 50.76 6.92 
  Optimal 51.12 4.69 

N(50,6) (3,3) NN1 49.75 18.30 
  NN2 49.64 18.36 
  Optimal 50.0 1814 
 (6,3) NN1 45.64 62.61 
  NN2 45.75 61.92 
  Optimal 52.58 24.05 
 (11,3) NN1 52.24 29.56 
  NN2 53.26 26.90 
  Optimal 54.75 24.44 
 (20,3) NN1 59.47 39.79 
  NN2 58.57 37.09 
  Optimal 56.75 31.61 

N(50,20) (3,3) NN1 33.91 62.09 
  NN2 40.98 61.68 
  Optimal 50.0 67,096 
 (6,3) NN1 90.60 137.24 
  NN2 88.47 134.68 
  Optimal 58.61 98.85 
 (11,3) NN1 77.37 62.61 
  NN2 78.03 62.74 
  Optimal 65.83 60.30 
 (20,3) NN1 75.61 85.96 
  NN2 73.20 78.74 
  Optimal 72.49 79.61 

Exp(1/40) (3,3) NN1 41.07 146.99 



33 
 

  NN2 64.78 189.66 

  Optimal 27.73 130.87 

 (6,3) NN1 75.38 150.88 

  NN2 72.56 142.41 

  Optimal 43.94 85.71 

 (11,3) NN1 40.89 122.36 

  NN2 39.37 126.32 

  Optimal 61.62 117.49 

 (20,3) NN1 91.80 209.24 

  NN2 86.87 194.45 

  Optimal 81.48 178.27 

 

As we can see from Table 8, even though the data sets are very small, both neural 

networks seem to have very good performance, especially when the variance is 

small. We can see that in many cases, the order quantity that the neural networks 

suggest is very close to the theoretical optimal. 

In some cases we can even see that the costs of some neural networks is smaller 

than the one from the theoretical optimal. This is because the data sets are very 

small and in some cases the variance is very large. 

 

Another observation is that in most cases, the neural network with the quadratic 

cost function performs better that the first one.  

 

Next, we consider a data set with 1000 points and test their performance 

The result can be seen in Table 2 

 

Table 2 

Data = 1000 
 

Distribution 
 

(𝑐𝑝, 𝑐ℎ) 
Method of 
Estimation 

Proposed 
Ordered 
Demand 

 
Cost 

N(50,1) (3,3) NN1 50.02  1.16  
  NN2 50.02  1.16  
  Optimal 50.00  1.16  
 (6,3) NN1 50.44  1.62  
  NN2 50.56  1.65  
  Optimal 50.43  1.62  
 (11,3) NN1 50.76  2.15  
  NN2 50.98  2.16  
  Optimal 50.79  2.14  
 (20,3) NN1 51.21  2.33  
  NN2 53.02  4.53  
  Optimal 51.12  2.32  
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N(50,6) (3,3) NN1 49.99  7.27  
  NN2 50.22  7.28  
  Optimal 50.0  7.27  
 (6,3) NN1 52.37  10.14  
  NN2 53.31  10.15  
  Optimal 52.58  10.12  
 (11,3) NN1 54.29  12.67  
  NN2 55.86  12.92  
  Optimal 54.75  12.66  
 (20,3) NN1 57.50  14.27  
  NN2 59.15  15.34  
  Optimal 56.75  14.18  

N(50,20) (3,3) NN1 49.75 24.51 

  NN2 49.66 24.51 

  Optimal 50.0 24.52 

 (6,3) NN1 58.63  35.16  
  NN2 60.79  35.24  
  Optimal 58.61  35.16  
 (11,3) NN1 64.27  40.01  
  NN2 69.18  40.98  
  Optimal 65.83  40.08  
 (20,3) NN1 81.82 247.33   
  NN2 117.75   287.56 
  Optimal 72.49  249.76 

Exp(1/40) (3,3) NN1 29.16 88.07 

  NN2 39.89 92.59 

  Optimal 27.73 88.06 

 (6,3) NN1 41.01 130.93 

  NN2 63.38 145.99 

  Optimal 43.94 131.06 

 (11,3) NN1 63.35 172.13 

  NN2 88.98 198.07 

  Optimal 61.62 171.55 

 (20,3) NN1 81.58 249.33 

  NN2 118.59 287.75 

  Optimal 81.48 249.30 

 

 

As we can see, the performance of our neural networks is even better than the 

previous examples. This is expected since they are now trained with more data 

points and their accuracy is improved. 

One interesting thing that we observe is that in most cases, the neural network with 

the quadratic cost function now performs worse that the first one. This is consistent 

with the discussion in [14] 
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5.2 Price and Order Quantity Optimization 
 

 

In this chapter we analyze our approach to the second proposed problem of the 

newsvendor. 

To recall the problem, the objective is to find both optimal price value and the order 

quantity to maximize the expected profits:  

𝛱(𝑝, 𝑄) = 𝐸𝐷[𝑝 ⋅ 𝑚𝑖𝑛(𝑄, 𝐷) − 𝑤 ⋅  𝑄] 

 

Where: 𝑝 is the selling price, 

  𝑄 is the order quantity, 

   𝐷 is the actual demand, and  

 w is the cost per unit that the retailer procures the products from the 

 supplier 

 

In this problem we are given 𝑛 training examples ( (𝑋1, 𝐷𝑖), … , (𝑋𝑛, 𝐷𝑛) ) 

Where 𝑋𝑖 is the feature price and 

  𝐷𝑖  is the actual demand and its distribution is now depending on the 

 corresponding price.  

 

We are going to tackle this problem in two stages, where in every stage we will build 

a different neural network. 

In the first stage we will create a neural network that will perform a function 

approximation between the price and actual demand.  In other words, our neural 

network will receive the price as input and its output would be the estimated 

demand of the product for that price. 

In the next stage, we will create a neural network to solve the optimization problem. 

More precisely, with the help of the neural network from the first stage, this neural 

network’s output will be the optimal price in order to maximize the profit function. 

Based on that proposed price, we will again use our first neural network to 

determine the optimal order quantity. 
 

We will first analyze the first neural network and then we will analyze the second. 
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First Stage 

 

In this stage, we want to approximate the relationship between the price and the 

actual demand of the product. 

The actual demand can depend on the price in many different ways. 

In our application, the actual demand will be a random variable following a Normal 

distribution with mean 𝜇(𝑝) and a constant variance 𝜎2 

That is, the mean of the distribution of the actual demand will depend on the given 

price. 

We will examine three different functions of 𝜇(𝑝): 

1) 𝜇(𝑝) = (𝐴1 − 𝐵1𝑝)+ 

 

2) 𝜇(𝑝) =
𝐴2

𝑝+𝐵2
 

 

3) 𝜇(𝑝) = 𝐴3 𝑒−𝐵3𝑝 

 

where 𝐴1, 𝐴2, 𝐴3 and 𝐵1, 𝐵2, 𝐵3 are some constants. 

 

We can see that the first function of 𝜇(𝑝) is linear whereas the other two are non-

linear. 

This means that the neural network for the first function will be simpler than the 

other two. 

More specifically, for the first function, we propose a neural network with only one 

hidden layer. The first (input) layer of the network will have only 1 neuron, the 

hidden layer will have 8 neurons and the output layer will have 1 neuron. 

We found that a suitable activation function is the LeakyReLU for the neurons in the 

hidden layer and the output neuron. 

As for the cost function, we will use the quadratic cost function: 

𝐶(𝑤, 𝑏) =
1

2𝑛
 ∑‖𝐷𝑖 − 𝑎𝑖,𝐿‖

2

𝑖

 

In order to train the weights and the biases, we will apply the Stochastic Gradient 

Descent algorithm for all the neural networks in this application. 

As for the learning rate, we will use the learning rates: 0.8, 0.3, 0.09, 0.06  that will 

be changing when the number of iterations reaches 0, 300, 500 and 800 respectively. 

The number of epochs will be 1000 and the mini-batch size 10. 



37 
 

Lastly, we should note that we are applying the same best-of-three rule as in the first 

application. 

 

For the second function, we propose a neural network with three hidden layers. The 

first (input) layer of the network will have only 1 neuron, the first hidden layer will 

have 64 neurons, the second hidden layer will have 32 neurons, the third hidden 

layer will have 16 neurons and the output layer will have 1 neuron. 

We will also use the LeakyReLU function for all of the neurons in the hidden layers 

and the Sigmoid function for the output neuron. 

The learning rates that we will use for the Stochastic Gradient Descent algorithm are: 

0.15, 0.1, 0.09 that will be changing when the number of iterations reaches 0, 4 and 

600 

The number of epochs will be 1500 and the mini-batch size 10. 

 

For the third function, we propose a neural network with two hidden layers. The first 

(input) layer of the network will have only 1 neuron, the first hidden layer will have 

64 neurons, the second hidden layer will have 32 neurons and the output layer will 

have 1 neuron. 

We will also use the LeakyReLU function for all of the neurons in the hidden layers 

and the Sigmoid function for the output neuron. 

In order to use the Sigmoid function in the output neuron, we first rescaled all of our 

data points to lie in the interval [0,1] 

The learning rates that we will use for the Stochastic Gradient Descent algorithm are: 

0.65, 0.6, 0.28, 0.09 that will be changing when the number of iterations reaches 0, 

4, 300 and 600 

The number of epochs will again be 1000 and the mini-batch size 10. 

 

Numerical Experiments  

 

We next generate simulated data to test our three neural network and observe their 

performance. 

The functions of 𝜇(𝑝) that we use are: 

1) 𝜇(𝑝) = (1000 −  10𝑝)+ 
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2) 𝜇(𝑝) =
10000

𝑝+100
 

 

3) 𝜇(𝑝) = 100𝑒−
𝑝

50 

 

The results are shown in Figures 7, 8 and 9. 

In each Figure the first plot is the function generated by our neural networks, 

the second plot is the actual function of 𝜇(𝑝) 

and the third plot is the training data points  𝐷𝑖  that our neural network was trained. 

In all three cases we generated the actual demand  𝐷𝑖  from a Normal Distribution 

with mean 𝜇(𝑝) and 𝜎2 = 2. 

 

 

 

Figure 7 

 

 

Figure 8 
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Figure 9 

 

 

To test the performance of our neural networks, we generated a new data set for 

each case and we evaluated the difference between our neural networks and the 

data points. The mean of this cost for each case is: 

 

1) 𝑐𝑜𝑠𝑡1 = 1.98 
 

2) 𝑐𝑜𝑠𝑡2 = 2.14 

 

3) 𝑐𝑜𝑠𝑡3 = 1.78 

 

 

 

 

Second Stage 

 

Our goal is to find both optimal price value and the order quantity 𝑄 in order to 

maximize our expected profits. 

In the first stage we created a neural network that approximates the function 

between the price and actual demand. That means that given a price 𝑝, we have an 

estimation about the optimal quantity that we want to order. 

Hence, our problem now becomes finding only the optimal price value that 

maximizes the expected profits, because given that price, we can use our neural 

network from the first stage and find the optimal order quantity. 

 

This neural network is similar to the neural network from the first application with 
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some necessary variations.  

One variation in this neural network is in the training data set. We need a set of the 

actual demands in order to calculate the profit function and be able to maximize it. 

The problem in this application is that the actual demand depends on the price that 

we set every time. This means that the actual demand depends on our neural 

network’s output and we can’t know it in advance. To solve this problem, we must 

start with a random initial input and at the end of each iteration that our neural 

network proposes a price, we should generate the actual demand based on that 

particular price. With the help of the first neural network we can also produce the 

proposed demand for that particular price and then we proceed to calculate the 

profit cost and its derivative in order to use the Stochastic Gradient Descent 

algorithm and train the weights and biases to maximize the profit function. 

 

The profit function that we want our neural network to maximize is : 

𝛱(𝑤, 𝑏) =⋅ 𝑎𝐿 ⋅ 𝑚𝑖𝑛(𝑁𝑁3(𝑎𝐿), 𝐷(𝑎𝐿)) − 𝑤 ⋅  𝑁𝑁3(𝑎𝐿)   

  

𝛱(𝑤, 𝑏) = {
   𝑎𝐿 ⋅  D(𝑎𝐿) − 𝑤 ⋅  𝑁𝑁3(𝑎𝐿),                 𝑖𝑓 𝑁𝑁3(𝑎𝐿) ≥   D(𝑎𝐿)  

 𝑎𝐿  ⋅ 𝑁𝑁3(𝑎𝐿)  − 𝑤 ⋅  𝑁𝑁3(𝑎𝐿)           𝑖𝑓  D(𝑎𝐿) ≥  𝑁𝑁3(𝑎𝐿)
   

 

  𝑎𝐿is the output of our neural network, which is the proposed selling price 

  𝑁𝑁3(𝑎𝐿) is the output of the neural network from the first stage given the 

 price 𝑎𝐿, which is the proposed order quantity 

 D(𝑎𝐿) is the actual demand given the price 𝑎𝐿 

 

We must also compute the partial derivative of the profit function with respect to 

the output 𝑎𝐿 because we will use it in the process of training our neural network: 

For 𝑁𝑁3(𝑎𝐿) ≥   D(𝑎𝐿) we have that  

𝜕𝛱(𝑎𝐿)

𝜕𝑎𝐿
=  D(𝑎𝐿) −  𝑤 ⋅  

𝜕𝑁𝑁3(𝑎𝐿)

𝜕𝑎𝐿
 

 

The quantity 
𝜕𝑁𝑁3(𝑎𝐿)

𝜕𝑎𝐿  is the partial derivative of the neural network from the first 

stage with respect to its input price 𝑎𝐿. 

To find the quantity 
𝜕𝑁𝑁3(𝑎𝐿)

𝜕𝑎𝐿 , we must recall the four fundamental equations of the 

backpropagation algorithm: 

 

𝛿𝐿 = ∇𝛼 𝐶 ⊙ 𝑓′(𝑧𝐿) 
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𝛿ℓ = ((𝑤ℓ+1)
𝑇

⋅ 𝛿ℓ+1) ⊙ 𝑓′(𝑧ℓ) 

𝜕𝐶

𝜕𝑏𝑗
ℓ

=  𝛿𝑗
ℓ 

𝜕𝐶

𝜕𝑤𝑗𝑘
ℓ

= 𝛼𝑘
ℓ−1 𝛿𝑗

ℓ 

 

We will use the same equations but instead of computing the  quantities 𝛿𝑗
ℓ =

𝜕𝐶

𝜕𝑧𝑗
ℓ, 

we will compute the quantities : 𝛿𝑗
ℓ =

𝜕𝑁𝑁3(𝑎𝐿)

𝜕𝑧𝑗
ℓ  

And instead of computing the quantities 
𝜕𝐶

𝜕𝑏𝑗
ℓ =  𝛿𝑗

ℓ ,   
𝜕𝐶

𝜕𝑤𝑗𝑘
ℓ = 𝛼𝑘

ℓ−1 𝛿𝑗
ℓ 

we will compute  
𝜕𝑁𝑁3(𝑎𝐿)

𝜕𝑏𝑗
ℓ =  𝛿𝑗

ℓ ,   
𝜕𝑁𝑁3(𝑎𝐿)

𝜕𝑤𝑗𝑘
ℓ = 𝛼𝑘

ℓ−1 𝛿𝑗
ℓ 

 

Continuing with the same way as the backpropagation algorithm, in the last step, we 

compute the quantities  
𝜕𝐶

𝜕𝑏𝑗
1 =  𝛿𝑗

1,  
𝜕𝐶

𝜕𝑤𝑗𝑘
1 = 𝛼𝑘

0 𝛿𝑗
1,  

Where 𝛼𝑘
0 is actually the input feature, price, that we give to our neural network. 

The algorithm of backpropagation stops here. 

But if we continue for one more step, we compute the desired quantity:  

 

𝜕𝑁𝑁3(𝑎𝐿)

𝜕𝑎𝐿
= 𝛿0 = ((𝑤1)𝑇 ⋅ 𝛿1) ⊙ 𝑓′(𝑧0), where 𝑓′(𝑧0) is the derivative of the 

“activation” function of our input. In neural networks, we don’t have an activation 

function in the input layer so we can just assume that the “activation” function is the 

linear function: 𝑓(𝑥) = 𝑥 

 

Hence,  
𝜕𝑁𝑁3(𝑎𝐿)

𝜕𝑎𝐿 = ((𝑤1)𝑇 ⋅ 𝛿1) 

  

This means that we can compute the partial derivative of the profit function 

    for  𝑁𝑁3(𝑎𝐿) ≥   D(𝑎𝐿) : 

 

 
𝜕𝛱(𝑎𝐿)

𝜕𝑎𝐿 =  D(𝑎𝐿) −  𝑤 ⋅  
𝜕𝑁𝑁3(𝑎𝐿)

𝜕𝑎𝐿  
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Similarly, for  D(𝑎𝐿) ≥  𝑁𝑁3(𝑎𝐿) : 

 

𝜕𝛱(𝑎𝐿)

𝜕𝑎𝐿
=  𝑁𝑁3(𝑎𝐿) +  𝑎𝐿 ⋅

𝜕𝑁𝑁3(𝑎𝐿)

𝜕𝑎𝐿
 − 𝑤 ⋅  

𝜕𝑁𝑁3(𝑎𝐿)

𝜕𝑎𝐿
 

 

We are now ready to introduce the neural network and examine its performance. 

We will use the same neural network for all the three cases in the first stage. 

 

We will use a simple neural network with 1 hidden layer. The first (input) layer of our 

network will have only 1 neuron, the hidden layer will have 4 neurons and the 

output layer will have 1 neuron. 

We will also use the LeakyReLU function for all of the neurons in the hidden layers 

and the Sigmoid for the output neuron. 

In this problem we want to maximize the profit function, so we will use a variation of 

the Stochastic Gradient Descent algorithm called Stochastic Gradient Ascent. It is 

almost the same as the Stochastic Gradient Descent and its equations for training 

the weights and biases become:  

𝑤𝑖𝑗
′ = 𝑤𝑖𝑗 + 𝛼 ⋅  

𝜕𝐶

𝜕𝑤𝑖𝑗
 

𝑏𝑗
′ = 𝑏𝑗 + 𝛼 ⋅  

𝜕𝐶

𝜕𝑏𝑗
    . 

The learning rates that we will use are: 0.5, 0.1, 0.05, 0.001 that they will be 

changing when the number of iterations reach 0, 75, 200 and 500 

The number of epochs will be 1000 and the mini-batch size 1. 

The results can be seen in the table 3. 

 

 

Table 3 

𝜇(𝑝)  Price Demand Total Profits 

𝜇(𝑝) = (1000 −  10𝑝)+ NN 64 356.91 15702.07 

Optimal 62 380.92 15913.05 

𝜇(𝑝) =
10000

𝑝 + 100
 

NN p>> Q <<  

Optimal p>> Q<<  

𝜇(𝑝) = 100𝑒−
𝑝

50 
 

NN 89 16.03 743.79 

Optimal 95 15.36 750.00 
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We observe that in the first and third case, the neural networks give a very good 

estimation of the optimal order quantity and the optimal price. 

In the second case, we can see that we don’t have an exact value in the values of the 

price and the quantity. 

This is so because in the search of the optimal values, we found that the theoretical 

profit function keeps increasing as the price increases. 

And although our neural network was trained by training data that had a maximum 

price of 300, we found out that even for prices larger than  1010, the theoretical 

profit function was still increasing. 
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6 Conclusion 
 

In this thesis we presented the basic models of artificial neural networks, their 

architecture, the learning techniques and their applications in optimization 

problems. We then emphasized on the applications of neural networks in the 

newsvendor problem and variations. 

We then created and trained neural networks to solve different variations of the 

newsvendor problem. In the first one the goal was to find the optimal order quantity 

in order to minimize the cost function and in the second one the goal is to find the 

optimal price value and the order quantity to maximize the expected profits. The 

numerical results for the two applications were very close to the theoretical optimal 

solutions and in the first application, when the training data set was larger, then the 

output of the neural network showed even better accuracy. 

 

One possible extension to be considered is to modify the problem as an online 

optimization problem where we are given the training data one at a time. In our 

analysis, we were given n training data points to train our neural network. This 

approach is helpful when someone opens a new business and has no information 

about the actual demand of the products. 

Another possible extension to be considered is when the actual demand is not 

known unless the order quantity is more than the true demand, i.e., if our proposed 

order quantity is less than the actual demand, then the only information that we get 

is that all the products were sold, and we get no information about how many 

products we could have potentially sold. 
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