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ABSTRACT

Fake news have become more prevalent in recent years with the increased popularity
and use of social media. Such news sometimes can be very dangerous, as they deceive
readers and can push the public towards dangerous actions. So we deem critical to detect
this type of publicly available information in real-time.

This thesis outlines our work in creating an experimental web browser extension that rec-
ognizes if a web page containing a Greek news article is fake with the process being
entirely transparent to the user. We do that by carrying out our analysis real-time and as-
certain the probability of this article to be illegitimate using contemporary ML techniques.

Initially, we collected a good amount of Greek articles (~35,000) and we marked the fake
ones, in order to create a dataset. Then we used this dataset along with basic feature ex-
traction techniques in order to create an input for training various classification algorithms.
The result of the above process produces a machine learning model, which can be stored
in a file and used for predictions in new unseen data. After that, we compare the results
of produced models based on some common metrics. Then we chose the model, which
gave us the best results, and we create a backend REST A.P.l. based on this. Finally, we
create a separate browser extension as a U.l. client to preview the results.

The results of the above process were quite encouraging considering the amount of avail-
able data and showed that our extension can predict fast (~35ms) and with great accuracy
(~95%) if an article is fake news or not. There are several open issues for improvement
and future research, such as the fake news detection by using various neural networks
instead of classification algorithms. Also, the automatic retrain of the model with new data
and the handling of which part of web page’s content is an article are some open issues
from current thesis.

SUBJECT AREAS: Machine Learning, Automatic Data Tagging

KEYWORDS: classification, feature extraction, model, probability prediction, browser
extension, data extraction, data tagging



NEPIAHWYH

H diaotropd weudwyv eI0RCEWV gival IBIAITEPA DNUOPIAAG Ta TEAEUTAIO XPOVIA, KUPIWG AOYW
NG au&avouevng dNPOTIKOTNTAG KAl XProNG TwV KOIVWVIKWYV BIKTUWV (social media). Té-
TOIOU €idOUG €10N0E€IG KATTOIEG POPES UTTOPET va gival TTOAU €TTIKIVOUVEG, KaBWG e¢atTaTouV
TOUG avVayVWOTES Kal JTTOPOUV va Toug wlroouv oe emikivOouveg evépyeles. ‘ETol n avi-
XVEUON O€ TTPAYMATIKO XPOVO TETOIOU €i00UG €10NOCEWV gival TTOAU GNUAVTIKH.

H ouykekpiyévn epyaacia replypd@el Tn diadikacia UAOTTOINONG VOGS TTEIpAUATIKOU browser
extension TTou avayvwpilel av 0 XpoTNG PPioKeTal O KATTOIO IOTOCEAIDA EAANVIKOU €10N-
OE0YPAPIKOU ApBpou Kal TTPORAETTEI OE TTPAYUATIKO XPOVO, XWPIG va yivel avTIANTITA atro
Tov XpHoTn n diadikaaia TG TTPORAEWNG, TNV TBAVOTNTA TO CUYKEKPIPMEVO ApOPO va aTro-
TeAei Yeudn €idnon xpnoiyotroliwvtag machine learning.

ApXIKA, yia Tn dnuIoUPYia TNG OUYKEKPIMEVNG ETTEKTAONG, CUAAECOUE Evav OXETIKA KAAO
apIBud atrd eAANVIKA €1dnoioypa@ikad dpBpa (~35.000) kal Eexwpiocaue Trola ammd autd
atroteAoUv aAnBivi Kai TTola Weudr €idnorn, woTe va dnuioupyroouue éva dataset. 21n ou-
VEXEIQ XPNOIMOTTOINCAUE TO OUYKeEKPIYEVO dataset padi pe Texvikég yia feature extraction
QTTO KEIPYEVO WOTE VA eKTTAIOEUCOUNE BIAPOPOUG OAYOPIBUOUG TagIVOUNoNnG. To aTToTEAE-
opa TNG TTapaTTdvw d1adIKACIag TTAPAYEl VA HOVTEAO UNXAVIKNG HABNoNG, TO OTTOIO PTTO-
PEi VO aTTOONKEUTEI O€ KATTOIO ApXEio KAl va XpnoIhoTroinBei yia TIpoBAEYEIS 0€ vEa Oed0-
Méva. ETTEITA OUYKPIVAPE TA ATTOTEAEOPATA TWV TTOPAYOUEVWY POVTEAWV PE BAON KOIVEG
METPIKES. TEAOG €TIAECAE TO HOVTENO TTOU £DIVE TA KAAUTEPO QTTOTEAEOUATA KAl TO XPNOI-
MoTToINCauE oav BAcn yia va KOTAOKEUACOUE HIA ETTEKTACT) browser TTou €TTIKOIVWVET JE
TO CUYKEKPIMEVO PHOVTEAO AVAYVWPIONG WEUDBWYV EIONCEWV.

Ta atroteAéopaTA TNG TTAPATIAVW BIAdIKACIO ATAV APKETA evOAPPUVTIKG yia TO TTARB0G
TWV OIABECINWY BEDOUEVWV KAl £DEICAV TTWG N ETTEKTOCT YAG UTTOPEI va TTPOPRAEWEI PE
QPKETA PeYAAn akpifeia (~95%) kai ypriyopa (~35 ms) av éva apBpo atroteAei yeudn €i-
onon. BEéBaia uttGpyxouv apKeTA avoixTd KOUPATIO TTPOG BEATIWON Kal EAAOVTIKH €peuva,
OTTWG N AVIXVEUOT WEUBWV EIBNCEWV PE XPrONn dIaQopwyV VEUPWVIKWY OIKTUWV avTi yIa
aAyopiBuoucg Tagivounong. AKOUN KATTOIO AvoIXTA KOPMATIA TTOU XPHCOUV ETTEKTAONG OTNV
TTapouoa gpyacia ival To retrain Tou JOVTEAOU Kal N Avayvwpion yia TO TTOI0 PEPOG TNG
I0TOOEAIDAG aTTOTEAEI £1I0NCEOYPAPIKO ApOpPO.

OEMATIKEZ MNEPIOXEZ: Mnxaviki M&dBnon, Autopartn Zripgavon Aedopévwv

AEZEIZ KAEIAIA: Tagivéunon, egaywyr XapakTnpIoTIKWY, JOVTEAO, TTPOBAEwnN TTIBa-
voTNTOG, ETTEKTACN QUAAOMPETPNTH, €aywyr dedouévwy, Orjuavon
0edouEVWV
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PREFACE

The project was challenging, as we had to create a real-time browser extension that han-
dles web pages that contain Greek article and tries to predict if this article is fake by using
machine learning. Therefore, we had to collect the data and to create various separate
components. We spent a lot of time crawling the web in order to collect data for our
dataset. Then comparing various ML algorithms along with feature extraction and data
preprocessing techniques in order to set up a generic RESTFUL API was also a chal-
lenge. Finally, we had to explore a completely new world of web browser extensions. At
the end of the day, conducting extensive investigation on all these separate fields has
allowed us to answer the question that we identified.

| would like to thank my supervisor for their excellent guidance and support during this
process.

To all my colleagues at UOA and at my job: | would like to thank you for your wonderful
cooperation as well. It has been always helpful to discuss ideas about my research with
you.

My mother and my friends deserve a particular note of thanks. Your wise counsel and
kind words have served me well. | also want to dedicate this thesis to my father who has
passed away but he always inspires me.

| hope you enjoy reading this thesis.



Real-time Fake-news Detection in Greek using a Browser Extension

1. INTRODUCTION

Nowadays most of the people prefer to read news from various sources like social media
rather than traditional news outlets due to low cost and easy access. Most of the time,
the readers consume those news without filtering the reliability of source or their content.
Because of this many fake news are transmitted as true. In recent years, fake news have
increasingly become a dangerous prospect made for online users. A characteristic exam-
ple of this is the spreading of various kinds of fake news during the 2016 US presidential
elections [1] that helped popularize the term.

In the Cambridge dictionary, fake news is defined as false stories that appear to be news,
spread on the internet or using other media, usually created to influence political views or
as a joke. Also fake news can be defined as the prediction of the chances of a particular
news article (news report, editorial, expose, etc.) being intentionally deceptive [2]. All
the above are only unofficial definitions and there is not a proper definition of fake news,
so this is the first challenge in detecting fake news. Another challenge is that this type
of news are spread almost automatically in the web and especially the social media. In
addition, the language used in fake news and legitimate articles are very similar because
fake news are created with the intention to be trusted. Therefore, fake news detection has
become a critical matter that yetis technically very challenging.

Our main goal is to create a stable and accurate model to predict Greek fake news in real-
time. We have to carefully adopt the most suitable and promising of the ML models so as
to empower a viable solution to the problem through our work. In our study, we consider
applying various feature extraction techniques combined with traditional classification al-
gorithms, in order to avoid or to overcome those limitations for our problem. We can say
that our approach detects fake news by representing articles content in terms of features
within a classification framework and focus mainly on the linguistic indicators of fake news
[3].

An extension to our main goal is to get the combination of feature extraction method and
machine learning algorithm that fits better to our problem and use it in a browser extension,
in order to make prediction in real-time. By real-time we mean that the user will have
a prediction if the content of the webpage she reads is fake just when she enters the
webpage and without discernible understanding of the service. Our overall objective has
been to offer realistic computational solutions to the problem of instantly identifying fame
news and along the way to materialize an amply test, well behaving and useful application.

O. Trispiotis 1
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2. DATASET CREATION

The first step to achieve our target was to identify an appropriate amount of data, in order
to train and evaluate our machine learning models. There are plenty of datasets available
for widely spoken languages including English, French etc. Unfortunatelly, for Greek there
are very limited resources that may be not applicable to our objective, so we had to create
our own dataset. In this section, we describe the steps that we follow in order to collect
and process various Greek articles to create our dataset. Figure [1] depicts the general
overview of our approach.

/ i{% Dataset

Find web pages with fake and Crawl the web Process the web
non fake articles pages pages

Figure 1: Dataset Creation Process

» The first step is the search of web pages with surely fake or non-fake content. There
are many reliable online newspapers, so we can say that the tricky part on our im-
plementation was to find fake articles. Fortunately, there are some “troll” websites
like tokoulouri.com and tovatraxi.com with valid amount of content (~5,100 fake ar-
ticles). In addition, there is ellinikahoaxes.gr which presents fake articles published
by 3rd parties and articulates why these pieces are not real.

* The second step is to crawl the web in order to download articles’ pages and to
process them. For this purpose, we used Crawler4J [4] web crawler, a powerful tool
for web crawling using Java. The way our crawling layer works is as follows:

— First we need to identify our seed url, used by the crawler to initiate its work

— Then we have to define 2 sets or patterns. One for the pattern of the urls to
follow and another for the pattern of the ones to store.

To make this process as agnostic to the website crawled as possible we expanded
the code of Crawler4J to take as input a YML configuration file with all the necessary
properties. In total, 184 websites are currently crawled, and ~130,000 pages have
been collected so far.

» The third step is the processing of each page, in order to extract the real article and
its title. That was the trickiest step because there is no standard formalization for
which part of the web page is the article, so we need to define that. In addition, as
we said earlier one of our main sources does not provide fake articles, but it explains
why various articles from other sources are fake, so we need to extract these articles
from the pages’ content. The following algorithm describes the steps we follow in
order to extract the articles from the downloaded webpages.

O. Trispiotis 12
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1 FUNCTION boolean isArticlePage (String pagePath) {

}

FUNCTION List handleArticles (String pagePath) {
INITIALIZE results TO empty List
SET articles TO newspaper. articles (pagePath)

2 SET articles TO newspaper. articles (pagePath)
3

4 |F articles is Empty

5 RETURN false;

6 ELSE

7 RETURN ftrue ;

8

9

[ G G
A W N =~ O

FOR each article in articles{
IF article.metadata.tag is ’article’ and article.metadata.

N
[,

language = ’greek’
16 ADD article TO results
17}
18
19 RETURN results
20 }

21

22 FUNCTION List getAllArticles (String pageFolderPath){
23 INITIALIZE allArticles TO empty List

24

25 FOR each pagePath in pageFolderPath{

26

27 IF isArticlePage (pagePath){

28 SET results TO handleArticles (pagePath)

29 ADD ALL results TO allArticles

30 }

31 ELSE{

32 SET urls TO BeautifulSoup.find_all(’a_tags’, pagePath)
33 FOR each url in urls{

34 SET newPagePath TO crawl(url)

35 IF isArticlePage (newPagePath) {

36 SET results TO handleArticles (pagePath)
37 ADD ALL results TO allArticles

38 }

39 }

40 }

41}

42

43 RETURN allArticles;

44}

Figure 2: Web Page Processing Algorithm

O. Trispiotis 13
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Figure P depicts the algorithmic steps to process a web page and extract its articles.
As we can see, the algorithm is very simple and contains only two main steps as all
our input pages are article pages or pages that refer to an article page.

— The algorithm firstly checks if the given webpage contains one or more articles.

If so, it handles all articles by extracting their title, text ,author etc. from the
web page. For this purpose, we used Python’s newspaper [9] library along
with a set of rules. The newspaper library is a powerful library that finds out
possible articles on a web page along with various information like title, text,
author, metadata etc.

Then on those possible articles, we check if their metadata contains the “article”
tag and if they are written in Greek. If the web page is not an article we get
all page’s urls that may refer to the original article page and download them.
Finally we process the new downloaded pages on the same way as the first
step. In order to achive that firstly we used Python’s BeautifulSoup [6] library
to get page’s urls that may refer to the original article from html’s a-tags. Then
we crawl those urls by using our web crawler or with traditional wget for archive
pages.

» The final step is to categorize our data in fake and non fake and store them in a
useful format. We prefered to store them as a csv file for easy and fast handling and
processing on our code.

In order to categorize a downloaded articles as fake or non-fake, we used a blacklist
logic based on the source of the article. We know that some sources like ellinika-
hoaxes.gr, tokoulouri.com and tovatraxi.com has only fake content, so we can easily
catgorize articles from those sources as fake (blacklisted source) and the other ar-
ticles as non-fake.

We used Python’s Pandas library [7] in order to store our categorized articles in a
csv file. Pandas is a powerful library for storing and handling huge files and also has
some very useful features for handling csv files.

Ouir final csv file contains the following attributes:

— id: unique id for a news article
— title: the title of a news article
— author: author of the news article; could be incomplete

— text: the text of the article

— label: a label that marks the article as potentially fake (1 for fake and 0O for

non-fake)

You can find our generated dataset here: fake-news-detection-public-dataset

Figure 3 depicts the algorithmic steps to categorize a downloaded article as fake or

non-fake and to store the final result in a csv file.

O. Trispiotis
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INITIALIZE allCategorizedArticles TO empty List
INITIALIZE id TO 1

INITIALIZE fakeSources TO

[ellinikahoaxes , tokoulouri, tovatraxi]

© O N O g »h O N =

FOR each article in articlesFolderPath{

-
- O

INITIALIZE categorizedArticle TO empty Article

-
w N

SET categorizedArticle.id TO id

SET catgorizedArticle . title TO article. title
SET categorizedArticle .author TO article .author
SET categorizedArticle.text TO article.text

_a A A A
N o o b

IF article .source IN fakeSources
SET categorizedArticle.label TO 1
ELSE

SET categorizedArticle.label TO 0O

N N N = =
N =~ O © ©®

SET id TO id + 1

N NN
a o W

ADD categorizedArticle TO allCategorizedArticles
}

N NN
©® N O

pandas.to_csv(allCategorizedArticles)

N
©
——

FUNCTION void categorizeAndStoreToCSV (String articlesFolderPath){

Figure 3: Article Categorization and Store Algorithm

O. Trispiotis
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3. FAKE NEWS DETECTION
In this section, we outline our general approach to detect fake news using various feature
extraction methods combined with various classifiers. Figure ll shows an overview of our
proposed model.

Data Feature

Preprocessing Extraction Learner Training Prediction

Remove Qutliers Bag of Words Boosting

»| Fake News
Logistic
Regression

[Term Frequency -
Create new Inverse

Columns Document i i
N Frequency s Decision Tree s Nelr\;';?g}ed
Dataset

k.

Random Forests

Singular Value

Noise Removal Decomposition

—_—
Support Vector Real News

Machine

k.

Stop Words Average Word
Removal Vector

K-Nearest
Neighbors

Figure 4: Model Overview

» The first step is preprocessing the dataset by removing useless columns or generat-
ing new ones and removing invalid characters that are not necessary for text mining
or classification purposes.

* The second step is the feature extraction. We used in total four different text min-
ing techniques [8] to extract our features including Bag of Words(BoW) [9], Term
Frequency-Inverse Document Frequency(TF-IDF) [10], Singular Value Decomposi-
tion (SVD)[11] and Average Word Vector(Word2Vector) [12, 13]. BoW and TF-IDF
are word frequency techniques that extract features in form that can easily be com-
bined with classification algorithms. On the other hand Average Word Vector is a
word embedding techniques that extracts features in n-dimensional sequence array
and can be combined with classifiers. SVD is a popular technique for dimensionality
reduction and a method to identify a subspace in which the data approximately lies,
it can be used an extension to word frequency techniques.

» The third step is training the classifiers using the previous extracted features, in or-
der to determine new coming data into fake or real. We used 10-fold cross-validation
in training process of every algorithm and so the dataset is been split into 90% train-
ing data and 10% testing data on each fold. We trained and evaluated six classi-
fiers [8] from different algorithm families including Boosting [[14], Logistic Regression
[15], Decision Tree [16], Random Forests [17], Support Vector Machines [[18] and
K-Nearest Neighbors [19]. For each combination of learning algorithm and feature
method, a sklearn pipeline [20] was created. Intuitively, a pipeline is a sequence of
steps to be followed in order to get the results we want. The output of each step is the
input to next step. In this way, we made our framework modular and managable.
Thus, the performance evaluation was the same for all cases and the results as
much as possible fairly. In this work, the first steps of the pipeline are the features
options and then one final ML algorithm as learner. Each feature and classifier is
the same, wherever it is used.

O. Trispiotis 16
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3.1 Data Preprocessing Phase

We applied various data preprocessing steps to both our training and test data to reduce
the size of the actual data and to improve feature extraction. We split data preprocessing
into two components. The first one is a custom implementation that is executing only once
during data loading. This component is used to remove useless information from our data
and transform them to a more useful format. The second component is based on some
standard parameters of Python’s sklearn library and it is executed after data loading and
before feature extraction. This component is used to remove more specific information
from our data, like language’s stopwords.

For our custom implementation, we first remove various columns from dataset, including
the author, id, empty columns etc., as this kind of information is useless in our content-
based approach to detect fake news. So practically, we maintain only the article’s title and
text content.

After that, we append article’s title to its content in order to achieve better classification
results because it is common for fake news to have “clickbait” titles with specific formal,
so we created a new column called total.

Raw text and title are an unstructured form of data, so our new column can contain noisy
context like consecutive spaces, newline after html tags, invalid html tags etc. [21]. Fi-
nally, we apply the following rules to remove noisy content from total column using regular
expressions:

1. Remove spaces after a tag opens or closes
Replace consecutive spaces

Add newline after a <br>

Add newline after </p> and </div> and <h1/>
Remove <head> to </head>

Show links instead of texts

N o g ke

Remove remaining tags like <p>, <div> etc.
8. Remove spaces at the beginning

After the data loading and before the beginning of feature extraction we remove the stop
words [22] that are insignificant in a language and create noise when used as features in
text classification, using ntlk standard stopwords. We used stopword parameter for both
standard sklearn transformers and our custom implemented transformers.

3.2 Feature Extraction Techniques

We outlined the following main feature extraction approaches: Word frequency (or weighted
words) and word embedding [8]. Word embedding techniques learn from sequences

of words by taking into consideration their occurrence and co-occurrence information.

Also, these methods are unsupervised models for generating word vectors. In contrast,

weighted words features are based on counting words in documents and can be used as

a simple scoring scheme of word representation.

We used four different techniques to extract features from our preprocessed dataset based
on various text-mining algorithms including Bow, TF-IDF, SVD and Average Word Vector
(Word2Vec). BoW and TF-IDF are word frequency techniques that extract features in
form that can easily be combined with classification algorithms. On the other hand Aver-
age Word Vector is a word embedding techniques that extracts features in n-dimensional
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sequence array and can be combined with classifiers. SVD is a popular technique for
dimensionality reduction and a method to identify a subspace in which the data approxi-
mately lies, it can be used an extension to word frequency techniques. In this work feature
extraction is the first step to our pipeline. We used python’s sklearn and gensim libraries
to implement our feature extraction methods.

3.2.1 Bag of Words (BoW)

Bag of words is one the simplest text mining technique. This method is based on counting
number of the words in each document, and assign it to feature space. The following
models a text document using bag-of-words. Here is a simple text document with its BowW
representation:

Simple Text = John likes to watch movies. Mary likes movies too.

BoW = ["John”,’likes”,”t0”,”watch”,”movies”,”Mary”,”likes”,”"movies”,”t00"]

After transforming the text into a BoW, we can calculate various measures to characterize
the text. The most common type of characteristics, or features calculated from the Bag of
Words model is the frequency of a term (F), which measures the number of times a term
appears in the text. For the example above, we can construct the following list to record
the term frequencies of all the distinct words.

F=01,2,1,1,2,1,1,0, 0]

In the previous example, the Bag of Words representation will not reveal that the verb
"likes” always follows a person’s name in this text. As an alternative, the n-gram model
can store this spatial information. Applying to the same example above, a bigram model
will parse the text into the following units and store the term frequency of each unit as
before.

BoW = ["John likes”, "likes t0”, "to watch”, "watch movies”, "Mary likes”, "likes movies”,
"movies to0”]

BoW is a very simple method to extract the most descriptive terms in a document is easy
to compute and works fine with unknown words. In addition, it is very easy to compute the
similarity between two documents by using it. On the other hand, BoW has syntactic and
semantic limitations, as it does not capture the position and the meaning of a word in the
text. Also common words effect on the results.

We used CountVectorizer [23] of python sklearn library to implement our BoW feature
extraction method as the first step of a pipeline. We also used ngram_range parameter
giving it a value of (1, 2), to indicate that each word can be packed alone (unigram model)
or along with its sibling (bigram model).

3.2.2 Term Frequency — Inverse Document Frequency (TF-IDF)
We combined BoW technique with TF-IDF to overcome limitations of BoW [24] and to
improve recall and precision [24].

Term Frequency (TF): The ratio of the number of times a specific word appears in a do-
cument compared to the total number of words in that document. TF increases as the
number of occurrences of that word within the document increases and each document
has its own TF. Term Frequency can be defined mathematically as follows:

TF(.j) - Frequency of term i in document |
D)= Total words in document j
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Inverse Document Frequency (IDF): Measures how important a term is. While computing
TF, all terms are considered equally important. However, it is known that certain terms,
may appear many times but have little importance. Thus, we need to calculate the weight
of rare words across all documents in the corpus. The words that occur rarely in the corpus
have a high IDF score. Inverse Document Frequency can be defined mathematically as

follows:
Total documents

IDF(i) = |
) Og(Documents with term i

)

Based on the above, the mathematical representation of weight of a term in a document
by TF-IDF is given:
W(i,j) = TF(i,j) = IDF(i)

Although TF-IDF tries to overcome the problem of common terms in document, it still
suffers from syntactic and semantic limitations. In particular, TD-IDF cannot account for
the similarity between words in the document since each word is presented as an index.
We used CountVectorizer [23] and TfidfTransformer [25] of python sklearn library to im-
plement our BoW feature extraction method as the first step of a pipeline. We also used
ngram_range parameter giving it a value of (1,2), to indicate that each word can be packed
alone (unigram model) or along with its sibling (bigram model).

3.2.3 Singular Value Decomposition (SVD)

In order to overcome semantic limitations of both BoW and TF-IDF we extended our imple-
mentation using words co-occurrence matrix. Words co-occurrence matrix is computed
simply by counting how two or more words occur together in a given corpus. As an exam-
ple of words co-occurrence, consider a corpus consisting of the following documents:

* penny wise and pound foolish
* a penny saved is a penny earned

"

Table 1| shows how many times the words “a” and “penny” are followed by other words of

[{Peei)

the corpus. We can summarize co-occurrence statistics for words “a” and “penny” as:

Table 1: Co-occurrence Matrix

a and | earned| foolish| is penny | pound | saved | wise
a 0 0 0 0 0 2 0 0
penny 0 0 1 0 0 0 0 1 1

[{peel)

We can see at the above table that “a” is followed twice by “penny” while words “earned”,
“saved”, and “wise” each follows “penny” once in our corpus. The count shown above is
called bigram frequency; it looks into only the next word from a current word. Therefore,
given a corpus of N words, we need a table of size NxN to represent bigram frequencies
of all possible word-pairs. Such a table is highly sparse as most frequencies are equal to
zero.

The co-occurrence matrix is not the word vector representation that is generally used.
Instead, this Co-occurrence matrix is decomposed into factors using techniques like SVD.
The combination of these factors forms the word vector representation. Singular Value
Decomposition (SVD) is a concept from linear algebra widely used in statistics and data
analysis as a noise reduction algorithm and to avoid the over-fitting problem [26]. SVD is
based on the following matrix equation:
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The above states that a rectangular matrix X can be decomposed into three other matrices
U, S and V where U and V are both orthogonal matrices. The product of U and S gives
the word vector representation and V gives the word context representation, so we have
semantic information using matrix V.

» U: consists of the orthonormal eigenvectors of:

hod
* V: consists of the orthonormal eigenvectors of:
XX
» S:is a diagonal matrix consisting of the square root of the eigenvalues of:

UorV

In SVD, the matrix X is typically a word document matrix; it is a way of representing a
document and text as a highly dimensional vector space model referred to as hyperspace
document representation. SVD takes high dimensional variable data and reduces it to a
lower dimensional space that more clearly depicts the underlying structure of the data.
SVD reduces noise and redundancy in the data leaving you with new dimensions that
capture the essence of existing relationships.

SVD analysis also preserves the semantic relationship between words [27] and produces
more accurate word vector representations than BoW and TF-IDF [27]. Although SVD tries
to overcome the semantic limitations of the previous methods, it still suffers from syntactic
limitations. In addition, SVD requires huge memory compared to the other two techniques
in order to store the NxN co-occurrence matrix. For the corporate of our problem with size
35,000 documents (N=35,000) we need an array of floats with size 35,000x35,000 for the
co-occurrence matrix, so we need about 10GB of memory on a 64bit system only to store
the co-occurrence matrix.

We used TruncatedSVD [28] method of sklearn along with previous TF-IDF method in
order to implement SVD and use it as the first step of a pipeline. First, we obtained the
number of features using the BoW and then we applied the TruncatedSVD method, which
works better on sparse arrays. For the purposes of this project, we obtained the 20% of
the features for memory and performance reasons, because as we said earlier we need
a lot of memory just to store the co-occurrence matrix for our problem. Also we saw that
the usage of less than 20% of the features gave as clearly worst results and the usage of
more features until the number of 70-80% gave as the same results with 20%. Finally, we
used the randomized algorithm (default) for the SVD because it appeared to be slightly
more efficient.
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3.2.4 Average Word Vector (W2V)

T. Mikolov presented "word to vector” representation as a word embedding architecture
[12, 13]. Word2vec is a simple, one hidden layer neural network that sums word embed-
dings and instead of minimizing a multi-class logistic loss (softmax), it minimizes a binary
logistic loss on positive and negative samples, allowing to handle huge vocabularies effi-
ciently [29].

Average Word Vector is a common technique to generate new embeddings to sentences,
paragraphs or documents, using an existing pre-trained Word2Vec model, by averaging
the word vectors to create a single fixed size embedding vector as we can see in the
following equation:

W, W, W, D
Wy, W, W, W, +W, +..+W |
le sz WJJ2 i
i + : =
Wln W2J1 'H,Fm] WIJJ+W2“+'”+MJ”:
T T | EEes | L n |

Generally, word embedding techniques like Word2Vec or Average Word Vector can cap-
ture the meaning in the words (semantics) and their position in the text (syntactics). As
we can see Average Word Vector tries to overcome the semantic and syntactic limitations
of BoW and SVD but it cannot capture the meaning of the word from the text and also fails
to capture out of vocabulary words from a corpus [8]. Also sometimes it needs a huge
corpus for trainning in order to be efficient [8].

We used a pre-trained Word2Vec model provided by Google by a Python’s library called
gensim [30] as the core to our Average Word Vector implementation. This model was
trained on 100 billion words of Google News and contains 300-dimensional vectors for 3
million words and phrases. Based on that model we built up a new transformer (Average
Word VectorTransformer) in order to transform the data in average word vectors and to
be compatible with sklearn pipeline.

3.3 Machine Learning Algorithms

In this section, we outline machine learning algorithms and their implementation we used
in this thesis. Our problem is a text classification problem we experimented with six dif-
ferent machine learning algorithms for text classification [8], in order to compare them
and see exactly which one fits better to our problem and why. All of them are traditional
classification algorithms from different families including Boosting, Logistic Regression,
Decision Tree, Random Forests, Support Vector Machines and K-Nearest Neighbors.

3.3.1 Boosting

Boosting is an Ensemble learning meta-algorithm for primarily reducing variance in super-
vised learning. Boosting is basically a family of machine learning algorithms that creates
a strong learner from a number of weak learners. It was first introduced by R.E. Schapire
[14] in 1990 as a technique for boosting the performance of a weak learning algorithm.

A weak learner is defined to be a Classification that is only slightly correlated with the true
classification (it can label examples better than random guessing). In contrast, a strong
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learner is a classifier that is arbitrarily well correlated with the true classification.

For this thesis, we used sklearn’s AdaBoostClassifier [31]] that implements the AdaBoost-
SAMME algorithm [32]. It starts by fitting a classifier on the original dataset and then fits
additional copies of the classifier on the same dataset but where the weights of incorrectly
classified instances are adjusted such that subsequent classifiers focus more on difficult
cases. Therefore, the result is a new strong classifier.

3.3.2 Logistic Regression

Logistic Regression is a statistical model that in its basic form uses a logistic function to
model a binary dependent variable, although many more complex extensions exist. Lo-
gistic Regression is used to describe data and to explain the relationship between one
dependent binary variable and one, more nominal, ordinal, interval, or ratio-level inde-
pendent variables. The logistic regression classifier was introduced and developed by
statistician David Cox in 1958 [15] and predicts probabilities rather than classes [33]. The
goal of LR is to train from the probability of variable Y being 0 or 1 for given x.

For this thesis, we used sklearn’s LogisticRegression [34] classifier that implements reg-
ularized logistic regression [35].

3.3.3 Decision Tree

One of earlier classification algorithm for text and data mining is decision tree [36]. Deci-
sion trees (DTC’s) are used successfully in many diverse areas of classification, such as
text and document classification [16]. The structure of this technique includes a hierarchi-
cal decomposition of the data space (only train dataset). Decision tree as classification
task was introduced by D. Morgan and developed by JR. Quinlan [37]. The main idea is
creating trees based on the attributes of the data points, but the challenge is determining
which attribute should be in parent level and which one should be in child level. To solve
this problem, De Mantaras [38] introduced statistical modeling for feature selection in tree.

For this thesis, we used sklearn’s ExtraTreesClassifier [39], which is a decision tree classi-
fier. During classification process, classifier fits a number of randomized decision trees on
various sub-samples of the dataset and uses averaging to improve the predictive accuracy
and control over-fitting.

3.3.4 Random Forests

Random Forests (RF) or random decision forests technique is an ensemble learning method
for text classification that was firstly introduced by T. Kam Ho in 1995 [[17]. The technique
was later developed by L. Breiman in 1999 [40] who found converged for RF as a margin
measure. The main idea of RF is generating random decision trees in order to avoid the
overfitting problem of DTC [41]]. Therefore, we can say that RF is an extension to Decision
Trees.

For our thesis, we used sklearn’s RandomForestClassifier [42] that implements the Ran-
dom Forests algorithm. During classification process, the RFC fits a number of DTCs on
various sub-samples of the dataset and uses averaging to improve the predictive accuracy
and control over-fitting.

3.3.5 Support Vector Machine (SVM)

Support Vector Machine (SVM) is a ML algorithm that was firstly introduced by Vapnik
and Chervonenkis [18] in 1963. Original version of SVM was designed for binary linear
classification problems, but many researchers have worked on multi-class problems using
this authoritative technique [43]. In addition, a nonlinear version of SVM was introduced
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by BE. Boser [44] in early 1990s. The main idea behind linear and non-linear SVM is the
same. The data are placed on the n-dimensional space based on their characteristics
and SVM tries to find the hyperplane that best divides the data into several classes. A
hyperplane in an n-dimensional Euclidean space is a flat n-1 dimensional subset that
divides the space into two disconnected parts, so for linear problems this hyperplane is a
line. In order to find the best hyperplane SVM algorithm finds the points closest to the line
from all classes, which are called support vectors. After that, the algorithm computes the
distance between the line and the support vectors. The hyperplane for which this distance
is maximum is the optimal hyperplane.

For this thesis, we used sklearn’s inear SVC [45] which is an implementation of SVM al-
gorithm, setting the probability argument to true, in order to get the classification results
as probabilities.

3.3.6 K-Nearest Neighbors

K-Nearest Neighbors algorithm (k-NN) is a non-parametric method proposed by Thomas
Cover [[19] which for classification or regression. In both classification and regression, the
input consists of the k closest training examples in the feature space [46]. The output
depends on whether k-NN is used for classification or regression.

The basic concept behind k-NN is given a test document x, the KNN algorithm finds the k
nearest neighbors of x among all the documents in the training set, and scores the cate-
gory candidates based the class of k neighbors. The similarity of x and each neighbor’s
document could be the score of the category of the neighbor documents. After sorting the
score values, the algorithm assigns the candidate to the class with the highest score from
the test document x [46]. The algorithm relies on distance for classification so normalizing
the training data can improve its accuracy.

For this thesis, we used sklearn’s KNeighborsClassifier [47], which implements the k-NN
algorithm.

The overall implementation of our fake news detection process is available here: fake-
news-detection
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4. EVALUATION

In this section, we outline our evaluation process and provide key results. Our evaluation
process is separated into two sections. The first one is concerened with the selection of
parameters for every ML algorithm and its optimization. The second one is the comparison
of every selected model based on widely used metrics. These metrics are precision, recall,
F-measue which is a combination of precision and recall, accuracy and AUC ROC curve
[48] and are based on true-false positive and true-false negative values [49]. We also
used mean absolute error and MAE folds curve in order to detect overfitting or underfitting
problems [50]. Overfitting referes to the situation where a model learns the data but also
the noise that is part of training data to the extent that it negatively impacts the performance
of the model on new unseen data. We can say that an overfitting machine learning model
has learned the training data very well and fails on testing unseen data. On the other hand
underfitting means that our machine learning model can neither learn the training data nor
generalize to new unseen data [50].

4.1 Metrics Definition

On our problem, we have two different classes “Fake” and “No Fake”. We define “Fake”
as positive class and “No Fake” as negative class, so can summarize our fake prediction
model using a 2x2-confusion matrix that depicts our four possible outcomes:

Table 2: Fake Prediction Model

True Positive (TP): Classifica-
tion of a fake news as fake

False Positive (FP): Classifi-
cation of a no fake news as
fake

False Negative (FN): Classifi-
cation of a fake news as no
fake

True Negative (TN): Classifi-
cation of a no fake news as no
fake

Now we can define our metrics:

* Precision: The portion of positive identifications that was actually correct. It is de-
fined mathematically as follows:

P

Precision = TP+ FP
* Recall: The portion of actual positives that was identified correctly. It is defined
mathematically as follows:
TP

* F-measure: Precision and recall can be combined to produce a single metric known
as F-measure, which is the weighted harmonic mean of precision and recall. The
main advantage of using F-measure is that we can rate a model using one unique
rating instead of two. It is defined mathematically as follows:

2 x Precision = Recall

F — measure = —
Precision + Recall

» Accuracy: The fraction of predictions our model got right. Formally, accuracy has
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the following mathematical definition:

Accuracy = TP+ TN
Y= TPY TN+ FP+ FN

* Mean Absolute Error (MAE): The absolute difference between the actual or true
values and the values that are predicted. Absolute difference means that if the result
has a negative sign, it is ignored. MAE has the following mathematical definition:

MAE = |True values — Predicted values|

+ AUC ROC curve: A performance measurement at various thresholds settings. It
tells how much model is capable of distinguishing between classes. Higher the AUC,
better the model is at predicting positives as positives and negatives as negatives.

* MAE Folds curve: Mean Average Error or MAE folds curve represends the mean
average error on each fold during trainning process. For each fold we have two
different MAE curves, one for the trainning error and one for the test error. As we
said earlier an overfitted model has learned the training data too well, so the the
model’s error on the training MAE diagram will be very low but the model’s error
on the test MAE diagram will be high. On the other hand an underfitted model can
neither learn the training data nor generalize to new unseen data, so the model’s
error on both train and test MAE will be high.

4.2 Hyper-parameter Tuning

A ML model can require different constraints, weights or learning rates to generalize dif-
ferent data patterns. These measures are called hyper-parameters, and have to be tuned
so that the model can optimally solve the ML problem. The optimal solution is the solution
that gives the best result for a predifined metric like accuracy. Hyper-parameter optimiza-
tion is the process of choosing a set of optimal hyper-parameters for a ML algorithm. It
finds a tuple of hyper-parameters that yields an optimal model, which minimizes a pre-
defined loss function on given independent data. The objective function takes a tuple of
hyper-parameters and returns the associated loss.

In this thesis, we used sklearn’s GridSearchCV method [51] to compare various combi-
nations of hyper-parameters for each ML algorithm on a predefined grid and to choose
which one of these applies to our problem [52]. As scoring metrics for the above process,
we used accuracy, precision and recall. As target metric, we choose the accuracy. We
also combined the GridSearchCV function with 10-fold split to get more accurate results.
At the end of this process, we get a tuned learner along with the set of best parameters.

4.3 K-Fold Evaluation

In K Fold cross -validation, the data is divided into k subsets. Now the method is repeated
k times, such that each time, one of the k subsets is used as the validation set and the
other k-1 subsets are put together to form a training set. The error estimation is averaged
over all k trials to get total effectiveness of our model. As can be seen, every data point
gets to be in a validation set exactly once, and gets to be in a training set k-1 times. This
significantly reduces bias and variance as we are using most of the data for fitting and
validation. Therefore, we avoid overfitting and underfitting problems. Interchanging the
training and test sets also adds to the effectiveness of this method.

The dataset was splitted into 90% training data and 10% testing data on each fold during
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training process for every algorithm. We wanted to avoid imbalance problem, so we split-
ted our data in order each fold to contains approximately the same percentage of samples
of each target class as the complete set [63]. This is called stratified cross-validation. For
this thesis, we used sklearn’s StratifiedKFold method [54] to perform 10-Fold cross vali-
dation which is an implementation of stratified cross-validation. As scoring metrics for the
above process, we used accuracy, precision, recall and F-measure which is a combina-
tion of precision and recall. We also used k fold’s split during this, to get train-test data
pairs in order to train our tuned model process and calculate mean true/false positive rate
for our AUC ROC curve an mean absolute error for MAE Folds curve. At the end of this
process, we get a fully trained model along with its calculated metrics.

4.4 Models Comparison
In this section, we compare models using the metrics that we defined earlier in following
two steps:

* The first step is the comparison between feature extraction techniques for every
learning algorithm, to find out which technique fits better to the specific learner and
to get the best model for that learner.

» The second step is the comparison between the best models that we find out on the
previous step, in order to get our final model for the specific problem. We wanted the
comparison to be as fair as possible, so every model is tuned with the best hyper-
parameters and fully trained using 10-fold method.

441 Comparison per Learner

In this section, we perform comparison of feature extraction techniques for every learning
algorithm, to find out which technique fits better to the specific learner and to get the best
model for that learner. At the end of the section, we provide conclusions about how every
feature extraction technique performs and a comparison based on our expectations.

Table B shows the results of every feature extraction method for AdaBoost classifier. We
can easily see that Average Word Vector(W2V) gives the worst results and the other me-
thods give almost the same results, with TF-IDF being marginally better on accuracy and
precision and BoW being better on recall. TF-IDF method is also marginally better on F-
measure that combine precision and recall, so we can say that TF-IDF method gives the
best results.

Table 3: AdaBoost Model Results

-
=Jo]o 0 AJaADO0Oo

Accuracy Precision Recall F-measure
Bo 0.927 0.908 0.914 0.911
D 0.928 0.914 0.911 0.912
D 0.912 0.910 0.868 0.889
0.900 0.878 0.878 0.878

Figure B shows the MAE diagrams for both training and testing process. We can spot a
small overfitting situation for Average Word Vector as the testing error is marginally higher
in almost every fold. The other models have almost the same error on both training and
testing process for every fold, so there isn’t any overfitting or underfitting situation. As we
can see Figure B shows the AUC ROC curve for every method and verifies the results of
Table § as BoW and TF-IDF have very good curves close to perfect, with TF-IDF being
marginally better with AUC score close to 0.98.
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Table f| shows the results of every feature extraction method for LogisticRegression clas-
sifier. We can easily see that Average Word Vector(W2V) gives the worst results and the
other methods give almost the same results, with TF-IDF being marginally better on ac-
curacy and recall and BoW being better on precision. TF-IDF method is also marginally
better on F-measure that combine precision and recall, so we can say that TF-IDF method
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Table 4: LogisticRegression Model Results

Logistic Regression (LogisticRegression)

-

Figure [7] shows the MAE diagrams for both training and testing process. We can’t spot
any overfitting or underfitting situation every model has the same error on both training
and testing process for every fold. Figure [ shows the AUC ROC curve for every method
and verifies the results of Table #l as Bow and TF-IDF have very good curves close to
perfect, with TF-IDF being marginally better with AUC score more than 0.98.
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Table B shows the results of every feature extraction method for ExtraTrees classifier. We
can see that Average Word Vector(W2V) gives the best results for almost every metric, but
that’s not true at all because this model is overfitted as we can see at Figure . The other
methods give almost the same results, with TF-IDF being marginally better on accuracy
and recall and SVD being better on precision. TF-IDF method is also marginally better on
F-measure that combine precision and recall, so we can say that TF-IDF method gives
the best results.

Table 5: ExtraTrees Model Results

Decision Tree (ExtraTrees)

-

SVD

Figure g shows the MAE diagrams for both training and testing process. We can spot a
huge overfitting situation for Average Word Vector as the training error is close to 0.0 for
every fold and the testing error is very high in every fold. Figure 10 shows the AUC ROC
curve for every method and verifies the the results of Table § as BoW and TF-IDF have
very good curves close to perfect with AUC score more than 0.98.
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Figure 10: ROC Curve Diagram for ExtraTrees Models

Table [ shows the results of every feature extraction method for RandomForest classifier.
We can see that Average Word Vector(W2V) gives the best results for almost every metric,
but that's not true at all because this model is overfitted as we can see at Figure [i1].
The other methods give almost the same results, with TF-IDF being marginally better on
accuracy and recall and SVD being better on precision. TF-IDF method is also marginally
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better on F-measure that combine precision and recall, so we can say that TF-IDF method
gives the best results.

Table 6: RandomForest Model Results

Random Forests (RandomForest)

Figure 11 shows the MAE diagrams for both training and testing process. We can spot a
huge overfitting situation for Average Word Vector as the training error is close to 0.0 for
every fold and the testing error is very high in every fold. Figure 12 shows the AUC ROC
curve for every method and verifies the the results of Table § as Bow, TF-IDF and SVD
have very good curves close to perfect with AUC score close to 0.98.
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Figure 11: MAE Folds Diagrams for RandomForest Models
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Figure 12: ROC Curve Diagram for RandomForest Models

Table [l shows the results of every feature extraction method for SupportVectorMachine
classifier. We can easily see that Average Word Vector(W2V) gives the worst results
and the other methods give almost the same results, with TF-IDF being marginally better
on accuracy and precision and BoW being better on precision. TF-IDF method is also
marginally better on F-measure that combine precision and recall, so we can say that
TF-IDF method gives the best results.

Table 7: SupportVectorMachine Model Results

Support Vector Machine (SupportVectorMachine)

-

Figure [13 shows the MAE diagrams for both training and testing process. We can’t spot
any overfitting or underfitting situation every model has the same error on both training
and testing process for every fold. Figure 14 shows the AUC ROC curve for every method
and verifies the the the results of Table [ as Bow, TF-IDF and SVD have very good curves
close to perfect with AUC score close to 0.98.
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Table 8 shows the results of every feature extraction method for KNeighbors classifier. We
can see that Average Word Vector(W2V) gives the best results for almost every metric, but
that’s not true at all because this model is overfitted as we can see at Figure 15. We can
also see that SVD is clearly better on all metrics. The performance of KNN is dependent on
finding a meaningful distance function, thus making this technique a very dataset depen-
dent algorithm [55] , so we expected a technique like SVD to perform very well because it
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expands the feature space and produces more accurate word vector representations than
BoW and TF-IDF [56].

Table 8: KNeighbors Model Results

K-Nearest Neighbors (KNeighbors)

Figure [1§ shows the MAE diagrams for both training and testing process. We can spot a
huge overfitting situation for Average Word Vector as the training error is close to 0.0 for
every fold and the testing error is very high in every fold. Figure 16 shows the AUC ROC
curve for every method and verifies the the results of Table § as SVD has very good curve
with AUC score close to 0.97.
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Figure 15: MAE Folds Diagrams for KNeighbors Models
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Figure 16: ROC Curve Diagram for KNeighbors Models

From the previous comparisons, we can see that for every learner we get the poorest
results by using the Average Word Vector feature extraction technique. The cases that
this technique gave us the best results were overifitting situtations, so the model in every
case had learned the training data too well and failed to generalize to new unseen data.
When we started our research, we believed that this method could give the best results
for almost every algorithm, because it overcomes the semantic and syntactic limitation off
other methods, but that is the half true. This method surely tries to overcome those two
limitations, but it is based on Word2Vec method that so it requires a large corpus to pre-
train this model [57]. On our situation, the corpus was limited. Also as a word embedding
method, is ideal for problems involving a single word, such as translation problems. Based
on the above, we realized why we did not get the expected results.

In addition, we can observe that every algorithm works fine with Bow, TF-IDF and SVD
methods with very similar results and TF-IDF being marginally better in almost every case.
When we started our research, we believed that the SVD method would perform better
than the other two methods because it expand the feature space, preserves the seman-
tic relationship between words and produces more accurate word vector representations
than BoW and TF-IDF [566]. We still believe that is true, because for memory reasons
we only used the 20% of the available features, we get very similar, and in some cases
better results with the previous methods that used all the available features. We would
like to explore how much better could this method perform by using a larger amount of
the available features but it requires huge amount of memory to store the co-occurrence
matrix.

O. Trispiotis 35



Real-time Fake-news Detection in Greek using a Browser Extension

4.4.2 Overall Comparison

In this section, we perform comparison between the best models that we find out on the
previous section, in order to get our final model for the specific problem. We also provide
our conlcusive remarks on how every model performs and a comparison.

Table 9: Overall Results

Overall Model Comparison

AdaBoost_TF_IDF
LogisticRegression_TF_IDF

ExtraTrees_TF_IDF
RandomForest_TF_IDF
SupportVectorMachine_TF_IDF
KNeighbors_SVD

1.0 ~ e —
-
..l,
r’,
Py
-
0.8 - g
Py
-
"f
8
£ 0.6 - R
= o
5] -
g
a 0.4 -
E *
= AdaBoost TF_IDF (AUC = 0.977)
—— LogisticRegression_TF_IDF (AUC = 0.982)
0.2 1 f,f’ —— ExtraTrees TF_IDF (AUC = 0.982)
’_,f“ —— PRandomForest_TF_IDF (AUC = 0.980)
s —— SupportVectorMachine _TF_IDF {(AUC = 0.980)
-
004 ¥ —— KNeighbors_SVD (AUC = 0.966)
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 17: ROC Curve Diagram for Best Models

Table [ shows results of the best models for every algorithm. We can easily see that
TF-IDF works perfect for every classification algorithm with accuracy from 0.928 to 0.946,
precision from 0.914 to 0.970, recall from 0.872 to 0.946 and F-measure from 0.912 to
0.935. The only exception is the KNN classifier where it seems to work better using non-
sparse features of SVD method, because is a dataset dependent algorithm. Figure
shows the AUC ROC curve for every method and verifies the above as all models that
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use TF-IDF as feature extraction technique have very good curve with score close to 0.98
and KNN-SVD combination has a curve with AUC score close to 0.97.

We can divide our models in three different groups based on their performance. In partic-
ular, we can see that LogisticRegression classifier and SVM have very good and similar
performance for every metric and we can add them to the first group. We expected Logis-
ticRegression’s good performance because as a method, for linear problems, it does not
require input features to be scaled or any hyper-parameter tuning [58]. On the other hand
SVM performs similar with LogisticRegression for linear problems [59].

On the second group, we can add ExtraTrees and RandomForest with almost same per-
formance on accuracy and precision. ExtraTrees has worst performance on recall metric
due to its sensitivity to small perturbations in the data [60]. We We expected Random-
Forest to better than ExtraTrees because, as we said in section 3 RFC is an extension of
DTCs as ExtraTrees [41].

On the third group we have AdaBoost and KNN. AdaBoost as a boosting algorithm has
many limitations and disadvantages, such as the computational complexity and loss of
interpretability [61]. On the other hand the performance of KNN is dependent on finding
a meaningful distance function, thus making this technique a very dataset dependent al-
gorithm [55]. Therefore, we believe that the small lack on their performance is due to the
above limitations.

Finally we had to chose a model, in order to use it as the core module to our browser
extension. Our main goal was to find a stable, accurate model to predict Greek fake news
in few milliseconds and without user discernible understanding of the service (real-time).
For this purpose we choose the combination of Logistic Regression algorithm along with
TF-IDF feature extraction method because as we can see on Table g it gives the best ac-
curacy (0.946), the best F-measure (0.935) and the best ROC AUC score( 0.982). Those
mean that the model is very accurated on its predictions and also capable of distinguishing
between classes.

Figure [l shows that the previous metrics are not a result of overfitting, as the model which
combines LogisticRegression with TF-IDF gives the same error on both training and test-
ing process for every fold. Also models like the selected one which are based on Logisti-
cRegression algorithm are easy to retrain because they don’t require input features to be
scaled or any hyper-parameter tuning [58]. In addition, we checked the response time of
the selected model by using Python’s time() function and we outlined that it can predict if
a Greek article is fake or not in ~30 ms. All the above mean that the selected model is
accurate and can generalize to new unseen data. Also the selected model is fast enough
on its predictions, as a user does not have to wait for a prediction, and it can be retrained
with new data any time we want which is very important on a production environment.

The overall implementation of our evaluation process is available here: fake-news-detection-
evaluation
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5. RESTFUL A.P.l.
As we said earlier, the purpose of this this is to create an application that detects fake
news in few milliseconds and without user discernible understanding of the service (real-
time). Following all previous steps we outlined, we created a set of stable and accurate
ML models that given an article’s text and title can predict the probability this article to be
fake.

Therefore, the next step to our target was to pick up the best model based on our evalua-
tion process that we described earlier, and use it under real-time conditions. In addition,
we wanted to separate our backend implementation from various clients, in order to make
it modular and scalable compared to traditional monolithic approach. To achieve that we
thought that a good idea was to create a RESTFUL API based on our chosen model. We
choose to use REST because is the most logical, efficient and widespread standard in the
creationof APlIs for Internet services.

For this thesis, we used Python'’s flask library in order to create our REST API. We choose
flask [62] because it provides all the tools to create a lightweight, fast, secure and scalable
application, such as handling off HTTP requests, JSON responses etc. It also provides
lightweight Python server that can easily been deployed on every environment.

We implemented two different http POST methods on our API scraper and predict.

+ predict: The first method that gets the text and the title of an article from request’s
JSON body and calls our model, in order to predict the probability the given article
to be fake. It returns to client a JSON with the predicted probability on the body or
an error response if something goes wrong during prediction.

» scraper: The second method that gets from body a URL, using the same way as
previous and tries to scrap an article from the given URL's webpage. If this page
contains an article, the method returns to client a JSON with the text and the title of
this article on the body, otherwise it returns an error response. For article’s scraping
from URL, we used Python’s newspaper library on the same way as we used it during
dataset’s creation process.

Our application gets as parameter only the name of the chosen ML algorithm and the name
of the feature extraction method. Once server starts, the application loads the trained
model that we saved previously on a pickle file. If the file does not exist, the training
process that we described earlier is executed in order to get our trained model. After
those steps, we are ready to serve requests from every client. We also checked the
response time of our REST API by using Apache Jmeter [63] and we outlined that the
whole prediction process takes ~35 ms.

The implementation of our Restful A.P.l. is available here: fake-news-detection-rest-api
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6. BROWSER EXTENSION

The next and final step to our target was to use our API from a client, under real-time
conditions. As we said earlier, fake news has been very popular in recent years because
of the increasing popularity and use of social media, were that kind of news can be spread
out in a short amount of time. Also on the internet, anyone can find a plethora of websites
that contain articles of doubtful quality from untrustworthy sources. Therefore, we thought
that we should handle that kind of news during browsing session in order to warn users
before they read one of those articles. For that purpose, we implemented a web browser
extension that runs during browsing session and can has access to web page’s metadata.
We used React programming language for our extension, because is simple, easy to learn
and can be easily combined with google’s libraries for web extensions in order to create
a lightweight and fast extension.

Reactis based on components. Components let you split the Ul into independent, reusable
pieces, and think about each piece in isolation. They are also like JavaScript functions.
They accept arbitrary inputs (called “props”) and return React elements describing what
should appear on the screen. On the other hand, a browser extension is made of different,
but cohesive, elements. These elements can include background scripts, content scripts,
an options page, Ul elements and various logic files.

On our extension, we implemented only one React component that works as Ul page and
as content script. This component displays results and various other information to users
as we can see in Figure [18. It also prepares and sends some messages to the background
script, in order to get results and display them, so we can say that this component does
only jobs that change the DOM.

Greek Fake News
Detection

Website:

www.tokoulouri.com

Page:

/society/loner/

To apBpo 27Ypovoc Xwpig pilovg
OVUTIOHOVEL VOl (PTACTEL TO OPLO OTNV
E0TiOON OTO VO ATONO ava TPAME]L

» To KouAovpt sivon kata 99.996 %
Yeudec!

A Report an Issue On .

Figure 18: Web Browser Extension
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On the other hand, the background script does the entire dirty job. It receives the mes-
sages from React component (Ul), communicates with the REST API by creating the two
REST requests that we analyzed earlier, gets the response and returns the results to the
React component. If the wanted results for an article are available from previous exe-
cution the background script simple returns those results without making any REST call
to the API. In addition, this script can handle various browser events, like tab change or
updated and has access to various metadata, so we implement many event handlers that
use these metadata, in order to get and save results for the active tab before the mounding
of React component.

By using the previous mechanism, we were on position to collect and save all useful data
from the browser and the REST API, on tab loading, so we had only to load them during
React component’s mount or to reload them if the user change page to current tab. As
you can see on our background script, we implemented a custom message API for the
communication between the Ul and the script and a custom cache that keeps the results
and other useful data from current page, in order to minimize the communication between
the client and the REST API and to make our client faster and more efficient.

The implementation of our browser extension is available here: fake-news-detection-client
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7. CONCLUSION

Fake news detection becomes a critical and challenging problem nowadays, so we cre-
ated a web browser extension that predicts the probability of a Greek article to be fake
using machine learning in few milliseconds (~35 ms) and without user discernible under-
standing of the service (real-time). The browser extension is implemented as a React web
client that calls a REST API based on a ML model. To create our APl we had to collect
and preprocess our data and to compare various machine learning algorithms along with
feature extraction techniques, in order to find out which combinations fits better to our
problem.

During our evaluation process, we found out that simple word frequency techniques like
TF-IDF outperform the more complicated word emending like Word2Vec for smaller amount
of data. That was unexpected at the start of our research because the Greek language is
very complex and full of semantic and syntactic meaning and that kind of methods have
some limitation to process this kind of language. We also confirmed that traditional clas-
sification algorithms performs very good with the availablel amount of data. Finally we
confirmed the strong and weak points of every classification algorithm and we find out the
simple and non data depended Logistic Regression algorithm, along with TF-IDF feature
extraction method fits better to our problem.

The evaluation results for the selected model were quite encouraging considering the
amount of available data and showed that our extension can predict with great accuracy
(~95%) if an article is fake or not. Moreover, our model is also stable and capable of
distinguishing between classes as it scores great precission (~93%), recall (~95%) and
ROC AUC score (~98.2%). Therefore the selected model is very fast as it can predict if
an article is fake or not in ~35 ms and easy to retrain.

There are several open issues for improvement and future research. Unfortunately, they
have not been developed mechanisms for automatic retrain of the selected model with
new data. In addition after various tests on semi-production environment, we noticed that
the rules that we use to decide if a web page contains an article or not, are naive and need
to be improved. Also we would like to explore some deep learning approaches like various
deep neural networks and see how we can use them in order to solve our problem.
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ABBREVIATIONS - ACRONYMS

ML Machine Learning

REST Representational State Transfer

APl Application Programming Interface

U.l. User Interface

BOW Bag of Words

TF-IDF Term Frequency — Inverse Document Fre-
quency

SVD Singular Value Decomposition

DTC Decision Tree Classifier

RF Random Forests

RFC Random Forests Classifier

SVM Support Vector Machine

SVC Support Vector Classifier

ID Identifier

HTML Hypertext Markup Language

WORD2VEC Word to Vector

LSTM Long Short-Term Memory

MAE Mean Absolute Error

AUC Area Under the Curve

ROC Receiver Operating Characteristics

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

URL Uniform Resource Locator

DOM Document Object Model
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