
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

PROGRAM OF POSTGRADUATE STUDIES
”COMPUTER SYSTEMS: SOFTWARE AND HARDWARE”

Master’s Thesis

A Sample Index for Approximate Query Processing

Victor A. Giannakouris Salalidis

ATHENS

JUNE 2021

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ
”ΥΠΟΛΟΓΙΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ: ΛΟΓΙΣΜΙΚΟ ΚΑΙ ΥΛΙΚΟ”

Διπλωματική Εργασία

Ευρετήριο Δειγμάτων για την Επεξεργασία
Προσεγγιστικών Ερωτημάτων

Βίκτωρ Α. Γιαννακούρης Σαλαλίδης

ΑΘΗΝΑ

Ιούνιος 2021

M.Sc. THESIS

A Sample Index for Approximate Query Processing

Victor A. Giannakouris Salalidis
Student ID: CS3180002

SUPERVISOR: Ioannis Ioannidis, Professor

THREEMEMBER ADVISORY COMMITTEE:
Ioannis Ioannidis, Professor
Alexis Delis, Professor
Dimitrios Gunopoulos, Professor

Examination Date: June 4, 2021

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Ευρετήριο Δειγμάτων για την Επεξεργασία Προσεγγιστικών Ερωτημάτων

Βίκτωρ Α. Γιαννακούρης Σαλαλίδης
Α.Μ.:CS3180002

ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Ιωάννης Ιωαννίδης, Καθηγητής

ΤΡΙΜΕΛΗΣ ΕΠΙΤΡΟΠΗ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ:
Ιωάννης Ιωαννίδης, Καθηγητής
Αλέξης Δελής, Καθηγητής
Δημήτριος Γουνόπουλος, Καθηγητής

Ημερομηνία Εξέτασης: 4 Ιουνίου 2021

ABSTRACT

We introduce sample index, a novel index structure that aims to enhance the sampling per
formance in a database system. Our idea is based on the observation that the overheads
resulting from the expensive sampling steps during query execution can be mitigated by
leveraging an index that is created offline. Our index is able to serve fresh samples even
when queries are issued during continuous inserts in the database, i.e., during an ETL
process. Our experimental evaluation proves that our sample index implementation in
MonetDB can achieve performance improvements ranging from 2x to 4.5x better query
execution times.

SUBJECT AREA: Database Systems

KEYWORDS: Database System, Sampling, Index

ΠΕΡΙΛΗΨΗ

Σε αυτή την εργασία παρουσιάζεται το Ευρετήριο Δειγμάτων, μία δομή δεδομένων η ο
ποία αποσκοπεί στην βελτίωση της απόδοσης της διαδικασίας της δειγματοληψίας σε ένα
σύστημα διαχείρισης βάσης δεδομένων. Η κεντρική ιδέα βασίζεται στην παρατήρηση πως
ένα σημαντικό ποσοστό του κόστους εκτέλεσης ενός προσεγγιστικού ερωτήματος, λόγω
ορισμένων πολύπλοκων διαδικασιών που σχετίζονται με την δειγματοληψία, μπορεί να
μειωθεί με την χρήση ενός ευρετηρίου που έχει δημιουργηθεί ενόσω το σύστημα βρίσκεται
σε αδράνεια. Το Ευρετήριο Δειγμάτων που προτείνεται έχει την δυνατότητα να επιστρέφει
σε αποδοτικό χρόνο τα πιο πρόσφατα δείγματα ενός πίνακα, ακόμη και κατά την διάρκεια
συνεχών ενημερώσεων, όπως για παράδειγμα κατά την διάρκεια μιας ETL διαδικασίας.
Στην πειραματική αξιολόγηση αποδεικνύεται πως με την δομή που προτείνουμε μπορεί
να επιτευχθεί βελτίωση της απόδοσης η οποία κυμαίνεται από 2.4 έως και 4.5 ταχύτερους
χρόνους εκτέλεσης.greek

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Συστήματα Βάσεων Δεδομένων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Βάση Δεδομένων, Δειγματοληψία, Ευρετήριο

CONTENTS

1 INTRODUCTION 19
1.1 Motivation . 20

1.1.1 Experiment 1 . 21
1.1.2 Experiment 2 . 21
1.1.3 The Sample Index . 22
1.1.4 Contributions . 22
1.1.5 Outline . 23

2 BACKGROUND 25
2.1 The MonetDB Column Store . 25
2.2 Indexes . 26

2.2.1 The Basics . 26
2.2.2 System Specific Indexes . 26

2.3 Data Structure Preliminaries . 27
2.3.1 Priority Queues . 27

2.4 Sampling and Order Statistics . 29
2.4.1 Order Statistic . 29
2.4.2 Random Sampling . 29
2.4.3 A Random Sort Sampling Algorithm . 29

2.5 Summary . 31

3 THE SAMPLE INDEX 33
3.1 Introduction . 33

3.1.1 Problem Formulation . 33
3.2 Offline Construction . 35

3.2.1 Creating sample indexes . 35
3.2.2 Initial Construction . 36
3.2.3 Usage . 36

3.3 Continuous Insertions . 37
3.3.1 Leveraging a PriorityQueue to the Sample Index 38
3.3.2 Scanning the MinHeap Sequentially . 39

3.4 Summary . 41

4 EXPERIMENTAL EVALUATION 43

4.1 Setup . 43
4.1.1 Hardware . 43
4.1.2 Workload . 43

4.2 Results . 44
4.2.1 Proof of Concept . 44
4.2.2 TPCH . 46
4.2.3 Census, Abalone & Wine . 49

4.3 Online Sample Index Evaluation . 52
4.4 Summary . 54

5 RELATED WORK 57
5.1 Sampling Relational Databases . 57

5.1.1 Random Sampling from Databases . 57
5.1.2 Materialized Sample Views for Database Approximation 60

5.2 SamplingBased Approximate Query Processing . 60
5.2.1 Revisiting Reuse for Approximate Query Processing 60
5.2.2 BlinkDB . 61
5.2.3 VerdictDB . 62

5.3 Online Aggregation . 62
5.3.1 Continuous Sampling for Online Aggregation Over Multiple Queries 63

6 CONCLUSIONS AND FUTURE WORK 65

REFERENCES 68

LIST OF FIGURES

1.1 Sample operator: where time goes (increasing table size, 10% sample) . . 21
1.2 Sample operator: where time goes (increasing sample size, 10GB scale) . 21
1.3 Sample operator: rand() call distribution (constant table size) 21

2.1 Min Heap Insertion . 28
2.2 Random Sort Sampling Example . 30

3.1 A sample index on Table A . 35
3.2 Continuous insertion and querying . 37
3.3 Intersection of Elements . 40
3.4 Intersection Ratio (Correctness) / Heap Size (N) 41

4.1 Average Query Time Distribution TPCH 10GB 45
4.2 Execution Time per Sampling Size Ratio . 46
4.3 Average Execution Time and Speedup . 47
4.4 TPCH 10GB . 48
4.5 TPCH 20GB . 48
4.6 Census Execution Times . 50
4.7 Abalone Execution Times . 51
4.8 Wine Execution Times . 51
4.9 Average Execution Time and Speedup . 52
4.11 Standard Error Abalone . 54
4.10 Standard Error Census . 54
4.12 Standard Error Wine . 55

LIST OF TABLES

1.1 Query Time Distribution Constant k (%), Increasing Table Size 21
1.2 Query Time Distribution Increasing k (%), Constant Table Size 22

2.1 Binary Heap Traversal . 28
2.2 Binary Heap Operations Complexities . 29

4.1 Census Queries . 49
4.2 Abalone Queries . 49
4.3 Wine Queries . 50

A Sample Index for Approximate Query Processing

1. INTRODUCTION

Modern data analytics and scientific discovery rely on systems that can efficiently process
large amounts of data so the user can extract useful information and draw conclusions. In
most scenarios, the users, usually data scientists or business analysts, need to perform
several exploratory steps to get a better understanding of the data before they proceed
to the longrunning analysis. Approximate Query Processing (AQP) has been proven a
great tool for providing accurate answers in “humantime” when exploratory queries need
to be evaluated.

The predominate approach to AQP is to construct samples [4, 22, 21] where queries can
be tested for validity and usefulness before fired against large amounts of data. The ma
jority of the systems that support queries against samples implement one of the two ap
proaches: either precompute and store materialized fixedsize samples [20, 7, 12, 17], or
construct the sample during the timecritical path of query execution by invoking a random
number generator 1,2. There exists a large amount of research in sampling techniques for
database systems, however there are also some important shortcomings on these com
mon sample construction techniques that we believe have not yet been clearly identified
and addressed in the literature.

The following shortcomings are identified:

• Constructing and maintaining fixedsize samples is not efficient when many updates
are performed. Even in the case of bulk updates, the existing samples have to be
disregarded and new ones to be recomputed in order to provide an accurate repre
sentation of the latest data. This introduces huge update and maintenance costs,
rendering these solutions inefficient for applications with continuous insertions, such
as scientific discovery and business analysis. Moreover fixedsize samples do not
provide true random samples for sample sizes that are not equal to the predefined
fixed sizes.

• A plethora of commercial database engines, support arbitrary sample construction
during query evaluation time. In most cases, this approach significantly reduces
query processing performance due to the sampling operator overheads. More specif
ically, a sample operator needs to invoke multiple times a rand() function in order to
generate a random value and identify which rows of a base table should be part of
the sample. Clearly, such function calls significantly hinder the performance of query
evaluation. In addition, every random number that is produced must be checked if
it has been already drawn because in a correct data sample we cannot have the
same row picked twice. Hence, duplicate elimination is also a sizeable overhead
that reduces performance and can too significantly reduce query evaluation times
when large enough samples are requested. We analyze further the overheads that
result from this approach in the next subsection.

1https://www.monetdb.org/Documentation/ServerAdministration/Sampling
2https://docs.mongodb.com/manual/reference/operator/aggregation/sample/

19 V. Giannakouris Salalidis

https://www.monetdb.org/Documentation/ServerAdministration/Sampling
https://docs.mongodb.com/manual/reference/operator/aggregation/sample/

A Sample Index for Approximate Query Processing

1.1 Motivation

We present our findings of a preliminary analysis that we performed on the sampling op
erator of MonetDB. We focus on the overheads that hinder query performance when sam
ples are constructed during query execution. The sampling approach adopted by most
commercial database systems, including MonetDB, require the following steps.

1. Generate k unique random values and map each value to a row id by applying a
modulo operator.

2. Materialize the corresponding k tuples according to the row IDs acquired from the
first step.

We provide a pseudocode version of the this sampling algorithm (Algorithm 1). Taking
into account that this algorithm needs to be executed during query evaluation each time
a query requires a sample, we observe that this approach has the following drawbacks.
First, invoking k times a random value generator like rand() (line 5) can be expensive
for large sample sizes, as each invocation needs to execute a number of calculations in
order to produce a random row id. Furthermore, in order to construct a correct sample we
need to ensure that it contains only unique tuples. As a result, in each iteration requires a
lookup to check if the produced random value has been already drawn by some previous
iteration (line 7). Usually, this is done by leveraging a data structure, like a binary search
tree, that keeps track of the random values that have been drawn by past iterations. Thus,
for each new random value, an extra log(n) lookup is needed.

Algorithm 1 A naive sampling algorithm

1 i n t [] sample = new in t [k] ;
2 for (i =0; i < k ; i ++)
3 do
4 / / Generate a random row id
5 i n t r i d = random (0 , N−1) ;
6 / / Check i f t ha t row id ex i s t s (log (k))
7 bool ex i s t s = search (r i d , sample)
8 while (e x i s t s)
9 i n s e r t (sample , r i d) ;

In order to analyze further the aforementioned overheads, we modified the code of the
sampling operator of MonetDB in order to keep track of the execution metrics and analyze
the execution time distribution. We are particularly interested in exploring the total time
consumed by the sampling operator of MonetDB, the random number generator 3, and the
time required for duplicate checks. Next, we run the following two experiments, in which
we used the query ”select avg(l_quantity) from (select * from lineitem sample
k)”, where k denotes the sample size.

3https://github.com/MonetDB/MonetDB/blob/master/gdk/xoshiro256starstar.h

V. Giannakouris Salalidis 20

https://github.com/MonetDB/MonetDB/blob/master/gdk/xoshiro256starstar.h

A Sample Index for Approximate Query Processing

10GB 40GB

rand() calls & checking for duplicates
Other: sorting and materializing

91.06%

8.94%

93.84%

6.16%

Figure 1.1: Sample operator: where time goes (in
creasing table size, 10% sample)

Sample 10% Sample 40%

rand() calls & checking for duplicates
Other: sorting and materializing

91.11%

8.89%

92.87%

7.13%

Figure 1.2: Sample operator: where time goes (in
creasing sample size, 10GB scale)

Sample 20% Sample 40%

Useful rand() calls
Wasteful rand() calls

10.39%

89.61%

21.71%

78.29%

Figure 1.3: Sample operator: rand() call distribution (constant table size)

1.1.1 Experiment 1

We generated the lineitem table of the TPCH benchmark using the 10, 20, 40 and 80
GB scale factors. We executed the aforementioned query over a 10% sample of the
original table, for each particular scale. In other words, we increase the data size while we
keep the sample size ratio constant (10%). Table 1.1 depicts the query time distribution.
Figure 1.1 visualizes the time distribution of the sampling operator for the increasing table
size scenario. It can be seen that in all cases more than 90% of the sampling time is
consumed by the the random number generator and duplicate checks. Moreover, we can
see in all cases there is an extra 5% of rand() invocations due to duplicates.

Table 1.1: Query Time Distribution Constant k (%), Increasing Table Size

TPCH Scale Size (rows) Sample Size (k) Total (s) Sampling (s) rand (s) (% of sampling) rand() calls Unsuccessfull rand() calls
10 59986052 5998606 (10%) 9.54 7.995 (84%) 7.28 (91.06%) 6320956 322350 (5.1%)
20 119994608 11999461 (10%) 23.48 19.95 (85%) 18.31 (91.78%) 12643505 644044 (5.1%)
40 240012290 24001229 (10%) 55.25 44.43 (81%) 41.26 (92.87%) 25288844 1287615 (5.1%)
80 480025129 48002513 (10%) 162.97 100.22 (62%) 93.45 (93.25%) 50574196 2571683 (5.09%)

1.1.2 Experiment 2

In the second experiment, we used only the 10GB TPCH scale of the lineitem table. We
run the same query as in the previous experiment but now we increase the sample size

21 V. Giannakouris Salalidis

A Sample Index for Approximate Query Processing

ratio. We run the query using the sample sizes (k) of 10%, 20%, 40% and 50%. Table 1.2
depicts the query time distribution and figure 1.3 visualizes the distribution of the useful
and wasteful rand() invocations. The results are similar to the first experiment. Again,
we can see that more of 90% of the sampling time is spent by the rand() calls and the
duplicate checks in all experiments. Furthermore, this experiment showcases that the
number of false rand() invocations increases monotonically to the sample size. This
happens because by increasing the sample size, the probability of generating the same
a random number more than once is increased as well. Specifically, we observe that the
ratio of the unsuccessful rand() calls is near the half of the sample size ratio in all cases.

Table 1.2: Query Time Distribution Increasing k (%), Constant Table Size

TPCH Scale Size (rows) Sample Size (k) Total (s) Sampling (s) rand (s) % of sampling rand() calls Unsuccessfull rand() calls
10 59986052 5998605 (10%) 8.72 7.53 (86.36%) 6.86 (91.11%) 6320528 321923 (5.1%)
10 59986052 11997210 (20%) 21.6 20.11 (93.11%) 18.52 (92.1%) 13387174 1389964 (10.39%)
10 59986052 17995815 (30%) 37.12 35.39 (95.34%) 32.98 (93.2%) 21394070 3398255 (15.89%)
10 59986052 23994420 (40%) 57 54.98 (96.46%) 51.59 (93.84%) 30645731 6651311 (21.71%)
10 59986052 29993026 (50%) 75.92 73.65 (97.02%) 69.98 (95.02%) 41574955 11581929 (27.86%)

From this experiment is easy to come to the conclusion that if we were to remove the
rand() and duplicate checks from the timecritical path of query execution and move it
to an index that is created during loading and updates, then the sample queries will run
much faster.

1.1.3 The Sample Index

In this thesis we introduce a novel index that provides a variablesized sample without the
overhead of computing any random values during the timecritical path of query evaluation.
Our index is optimized for readintensive databases such as column stores. In addition,
the sample index can be updated during continuous insertions or bulk updates, a common
scenario for readoptimized engines that support scientific and business analysis. Our
index is capable of providing the user with “fresh” samples that include the latest data
whilst are being inserted. This feature is very important for our target applications since
data maybe injected for many hours (e.g., longrunning experiments or overnight ETL
processes) while the user (data scientist or business analyst) needs to start querying as
soon as possible.

Our sample index is an offline index in the sense that it computes, orders, and stores row
identifiers according to a uniform sample, supports online analysis since it will continuously
update its uniform sample to include the latest inserted data. Our experimental evaluation
over the opensource column store MonetDB proves that by using our sample index we
can achieve up to 5x speedups in running approximate queries.

1.1.4 Contributions

The contributions of this thesis are summarized as follows:

V. Giannakouris Salalidis 22

A Sample Index for Approximate Query Processing

1. We introduce the offline sample index, an novel index scheme that enhances the
performance of the sampling operator in a database system, by replacing the ex
cessive overheads of random number generation and duplicate elimination in query
time with a sequential index scan.

2. We present an architecture for continuous insertion support, that leverages a priority
queue that handles updateintensive workloads, namely a minheap priority queue.
During insertions, users are still able to run their queries without facing any down
time, while they are also served with fresh samples that contain the most recently
inserted data.

3. We present a detailed experimental evaluation using four datasets, and we prove
that our sample index can achieve up to 5x speedups for samplebased approxi
mate queries.

4. We present some interesting findings on how data are laidout in a minheap, when
records are indexed according to random numbers drew from a uniform distribution.
We identify a common layout pattern which allows us to reduce the cost of obtaining
a ksize sample from a minheap from O(k · log(n)) to k, by simply fetching the first
k elements from the heap array. We believe that this insight could also benefit other
applications that depend on priority queues.

1.1.5 Outline

The rest of this thesis is organized as follows.

In chapter 2 we present some preliminaries required for the proper understanding of the
rest of this thesis. We discuss topics including indexes in database systems, data struc
tures like priority queues, as well as some statistics background on sampling and order
statistics. If the reader is familiar with these concepts, this chapter can be skipped.

Chapter 3 presents the idea of sample index. We present the main architecture of sample
index and how it is constructed offline over a database table. We also present an archi
tecture that allows us to efficiently handle continuous insertions by employing an priority
queue. This idea is inspired by an ETL usecase, where the users need to issue analytical
queries and get updated results, while the database is being updated.

In chapter 4 we present the results of our experimental evaluation. We use four datasets,
including TPCH, Census, Abalone andWine, obtained fromUCI Machine Learning repos
itory. We compare the performance when a sample index is being used and when it is not.
We showcase that when a sample index is leveraged in the sampling process, queries can
be run in up to 5x better execution times.

Chapter 5 presents the related work, where we classify previously presented ideas into
three categories. These categories are i) sampling relational databases, ii) sampling
based approximate query processing and iii) online aggregation. We discuss what are the

23 V. Giannakouris Salalidis

A Sample Index for Approximate Query Processing

shortcomings when common techniques like fixedsize sample precomputation is used,
and how our proposed sample index can overcome these drawbacks.

Finally, we conclude this thesis by summarizing the highlights and describing the future
work.

V. Giannakouris Salalidis 24

A Sample Index for Approximate Query Processing

2. BACKGROUND

In this chapter we present the background needed for the understanding of the rest of this
thesis. We will be discussing topics including the MonetDB column store, priority queues,
indexes, order statistics and sampling.

2.1 The MonetDB Column Store

The idea of sample index presented in this thesis is implemented and evaluated over
MonetDB. MonetDB is an opensource database management system developed at the
Centrum Wiskunde & Informatica (CWI). It employs a columnar storage layout, which
means that the data are physically organized on disk in a columnmajor fashion.

In MonetDB, each table is represented by a set of binary association tables, called BATs.
A BAT is an abstraction that represents a column as a mapping between an oid and an the
corresponding attribute value. An oid represents the id of a specific record in the table,
and it is analogous to the row id in a rowbased database system. As a result, a table is
decomposed into a set of BATs and all attribute values of a specific tuple are positioned at
the same index of their corresponding BAT. BATs can be also thought of as parallel arrays
representing a table, where each array holds the data of a specific column.

In a typical database system, the optimizer produces the optimal SQL query plan before
execution, through some sophisticated optimization algorithm. The execution plan can be
usually explored by the explain clause. MonetDB is quite different, in that it first converts
an SQL query into an intermediate representation, called MonetDB Assembly Language
(MAL) plan. Further execution decisions including access methods, are being taken at
runtime.

The MAL intermediate representation of an SQL query is a sequence of operations be
tween BATs. The required tables are first loaded from disk into the corresponding set of
BATs, and each intermediate result is kept in a new BAT as well. For example, consider
the following query.

select * from test sample 5

By invoking the explain clause we can easily get the MAL execution plan. Partially, the
plan of this query should look like the following sequence of MAL expressions:

X_4:int := sql.mvc();
C_5:bat[:oid] := sql.tid(X_4:int, "sys":str, "test":str);
X_17:bat[:int] := algebra.projection(C_5:bat[:oid], X_8:bat[:int]);
C_20:bat[:oid] := sample.subuniform(X_17:bat[:int], 5:lng);
X_21:bat[:int] := algebra.projection(C_20:bat[:oid], X_17:bat[:int]);

25 V. Giannakouris Salalidis

A Sample Index for Approximate Query Processing

We can easily observe that plan is a chain between BAT dependencies, that is, C_5 de
pends on X_4, C_17 depends on X_C5 and so on. The sample clause is translated into the
sample.subuniformMAL function. Finally, the set of oids and the attributes are projected
with algebra.projection function and stored into X_21.

2.2 Indexes

In this section we present some background on indexes in database systems and how
operations like scans and selections can benefit from them.

An index is a data structure that is used to speedup data loading in query execution. The
speedup is at the cost of extra writing and updating overheads, as the index needs to be
maintained each time the column that it refers to is updated. In general, an index speeds
up either lookup, or range queries by pointing to specific positions of the columns and thus,
when a scan needs to be executed lots of irrelevant data to the scan can be pruned. As
a result, disk seek time and bandwidth is reduced significantly when one or more indices
are involved in query execution.

2.2.1 The Basics

An index on a column c is a nonclustered index, when the data is physically organized
with arbitrary order and not according to c. When a clustered index over one column is
created, then the data pages are physically laid out ordered by the values of that column.

2.2.2 System Specific Indexes

In addition to the stateoftheart index categories, there are also other forms of indexes
provided by each database management system. In the next subsection we discuss about
the order index, a particular index type provided by MonetDB. The sample index presented
in this thesis, is also an index structure that speedsup the sampling process in a database
system.

2.2.2.1 The Order Index

An order index1 is an index structure provided by MonetDB. The idea of an order index
is similar to the concept of the order statistic that we discuss in a latter section. Given a
table T that is unsorted on column A, an order index on A represents the position of each
rid of T if T were sorted on A. In other words, an order index on a column represents the
relative order of the table with respect to that column.

1https://www.monetdb.org/Documentation/Manuals/SQLreference/Indices

V. Giannakouris Salalidis 26

https://www.monetdb.org/Documentation/Manuals/SQLreference/Indices

A Sample Index for Approximate Query Processing

2.2.2.2 An Order Index Example

Let T a table with the column A with the following values: A = {5, 1, 3, 4}, and the set
Trid = {0, 1, 2, 3} the rids of table T . An order index on column A would look like Aoidx =
{1, 2, 3, 0}. It should be clear that each element in Aoidx represents the relative position of
each rid in T , that is, where each rid in T would be positioned if T were sorted according
to A.

2.3 Data Structure Preliminaries

In this section we briefly discuss some preliminaries on specific data structures that we
employ in the implementation of the sample index. We will focus on the priority queues,
and especially the min heap.

2.3.1 Priority Queues

A priority queue is an abstract data structure similar to a regular queue or stack. The
main difference is the following. In a priority queue, each record of the data is associated
with a value called a priority. Taking into account the priority value, each element will be
extracted from the queue according to its priority, and not solely its time of insertion. The
priority definition depends on the usecase and the type of the priority queue.

2.3.1.1 Binary Heaps

A binary heap is a treebased data structure similar to a binary search tree. In contrast
to a binarysearch tree, a binary heap is a complete binary tree, as when a new records
needs to be indexed will be alternately inserted left and right. That is, the first element
that will arrive will be the parent. The next one, will be inserted on the left, the next on
the right, the next again on the left and so on. As a result, each level of the binary heap
(probably except of the last one) will be always fully filled. The property of the binary heap
is that it always holds either the minimum or the maximum level at the root level. This
is guaranteed by a process called heapify that is invoked each time a new element is
inserted. If the root node holds the maximum key, then the binary heap is called a max
heap and otherwise a min heap.

A binary heap is usually backed up by an array. In general, an arraybased binary tree
can be traversed as follows. For a given node i, the corresponding left child is positioned
at 2*i and the right node by 2*1 + 1. Figure 2.1 depicts a min heap in three concrete
instances. On the left the key 3 is inserted into the empty heap and goes on the position 0
of the array. Next, 3 and 8 are inserted. Now 3 is the minimum element, so it is bubbledup
on the top of the tree through the heapify process. Finally, the key 5 is inserted. We can

27 V. Giannakouris Salalidis

A Sample Index for Approximate Query Processing

Figure 2.1: Min Heap Insertion

also see in the figure the mappings between the nodes in the tree and their positions the
underlying array.

2.3.1.2 Accessing ArrayBased Binary Heaps

Given a node i, its sibling nodes can be accessed by the following indexes, depicted in
table 2.1.

Table 2.1: Binary Heap Traversal

Node Index
Parent i/2
Left Child 2*i
Right Child 2*i +1

2.3.1.3 Cost of Operations in Binary Heaps

The costs of operations are similar to any tree structure. Insertion of an element is loga
rithmic, as each time we insert a new element in the tree we need to make sure that either
the minimum or the maximum is at the root level by the heapify process. As a result, the
insertion cost in a min heap is O(log(n)), where n the total elements in the heap. Peeking
the element with the highest priority needs a single operation, that is, O(1). On the other
hand, pop needs O(logn) steps, as each time an element is popped out of the heap, the
heapify process is called to put the rightmost element at rootlevel, and then sink it down.
Table 2.2 depicts the cost of each operation over a binary heap for the average and the
worst cases.

V. Giannakouris Salalidis 28

A Sample Index for Approximate Query Processing

Table 2.2: Binary Heap Operations Complexities

Operation Average Case Worst Case
Insert O(1) O(logn)
Delete O(logn) O(logn)
Peek O(1) O(1)
Pop O(logn) O(logn)

2.4 Sampling and Order Statistics

Now, we will give a brief explanation of the statistical concepts that are related to the idea
of the sample index.

2.4.1 Order Statistic

In a statistical sample, the kth order statistic of an individual represents its order (rank)
amongh the whole sample. For example, assume the sample A = {5, 1, 3, 4}. Then, the
order statistic of the first value of the set is 4, as if we put A in increasing order, then 5
would be the fourth element. The order statistic of 1 is 1, as its rank is 1. The order statistic
of 3 is 3 and so on. In fact, the set of the order statistics of a sample represents the relative
position of each element if that sample were sorted in ascending order. We will use the
notion of order statistic in order to formulate the problem that a sampling index addresses
in the next sections.

2.4.2 Random Sampling

We now give the formal definition of a random sample. Given a set A of size N , a random
sample of A is a subset of k individuals. Each individual i is chosen with equal probability
given by P (i) = 1

N
. When each element of A is chosen only once, then it is being said

that the random sample is created without replacement.

2.4.3 A Random Sort Sampling Algorithm

2.4.3.1 Algorithm Description

We now describe a random sampling algorithm by A.B. Sunter [23], called random sort.
The construction phase of the sample index described in the next chapter of this thesis
is based on this algorithm. A random sample can be obtained with the following method.
Given a set T with |T | = N elements, we need to perform a random sort on T as follows.
For each element of T , draw a random value from the rectangular distribution R(0, 1).
Next, sort T according to the random values. Let us call the resulting randomly sorted set

29 V. Giannakouris Salalidis

A Sample Index for Approximate Query Processing

Figure 2.2: Random Sort Sampling Example

Trandom. The first k elements (or any contiguous set of size k) of Trandom will form a ksized
true random sample of table T . Next, we give a detailed example of the algorithm.

2.4.3.2 A Random Sampling Example

Let T = {a, b, c, d} be a set with four elements, the corresponding random values V =
{0.5, 0.1, 0.3, 0.2} drew from R(0, 1) and their order statistics X = {4, 1, 3, 2}. Recall that
X represents the relative order of V . If we sort T according to X, then the output will be
Trandom = {b, d, c, a}. Then, for each k ∈ [1, 4] a subset of Trandom will be a ksize uniform
sample of T . From a more technical perspective, we could think of X as an ordered index
built on top of V .

Figure 2.2 depicts an example of the random sort algorithm over an example MonetDB
relation. The leftmost table represents the relation consisting of the oid and attr BATs,
the middle table represents the BAT with the random values while the rightmost one is the
final randomly sorted BAT. The k column is a helper column that represents the sample
size. Now it should be clear that the first k rows of the rightmost table form a ksize random
sample.

2.4.3.3 Cost Analysis

The cost analysis of the algorithm described above is relatively simple. The algorithm can
be described in two discrete steps. First, given a table T of size N we need to generate
a set V that contains N random values, drew by the rectangular distribution R(0, 1). The
asymptotic complexity is obviously O(N), while the total cost can be described by the
following formula:

Cr = N · Crand (2.1)

where Crand the cost of generating a single random number from R(0, 1). Next, we need
to sort the elements in table T according to V . On average, using any wellknown sorting
algorithm this would take O(n logn) steps. Finally, k more steps are needed to get the first

V. Giannakouris Salalidis 30

A Sample Index for Approximate Query Processing

k elements of the sample. As a result, the total cost for obtaining a ksize sample from T
will be

C = N · Crand +N · logN + k (2.2)

where N = |T |.

2.5 Summary

In this section we briefly presented the background of some concepts used for the devel
opment of the sample index scheme. We discussed topics including the MonetDB column
store, sampling, order statistics and indexes. Our cost analysis, as well as the experiment
that we presented in section 1.1 showcases that sampling can be a slow process when the
table or sample size k (or both) are high. Clearly, the construction phase which is order
of N can be frustrating in realtime applications, especially when the sampling algorithm
needs to be invoked multiple times.

31 V. Giannakouris Salalidis

A Sample Index for Approximate Query Processing

V. Giannakouris Salalidis 32

A Sample Index for Approximate Query Processing

3. THE SAMPLE INDEX

3.1 Introduction

In this section we present a novel sample index structure that aims at speeding up the
performance of the sampling operator by precomputing and preordering all random row
identifiers (row ids) to avoid the significant overhead of these operations during query time.
In addition, with the help of a priority queue we can update our sample index whilst new
data are been inserted. Consequently, the user will continuously have access to fresh
uniform samples that contain – with the same probability – a mix of old and newly inserted
rows.

To construct the sample index we use the random sort algorithm that was described by
Sunter in 1977 [23]. The algorithm simply assigns a random number between (0, 1) as a
key to each data point, and then by sorting using that key and selecting any contiguous
set of k points we can obtain a truly uniform sample of size k.

The main idea behind our sample index is to use the random sort algorithm to create and
store pairs of row ids and random values to be used to construct a sample of any size.
For that we keep on persistent storage a mapping between row ids and random values
sorted on the random value. This mapping is simply a two column structure. In order to
obtain a sample of size k we simply retrieve any contiguous set of k pairs of this mapping.
However, the pairs are sorted on the random value, so an extra sorting on row ids has to
be performed if the database engine is expecting always sorted row ids, e.g., for column
alignment and late materialization.

3.1.1 Problem Formulation

Let Q = {q0, q1, ..., qN} be a set of N queries that run over samples of the table T , and
S = {150, 200, 300, ..., sN} the corresponding sample sizes. That is, query q0 runs on a
sample of T of size k = 150, while q1 a sample of size k = 200, q2 a sample of size k = 300
and so on. The sample index addresses the following shortcomings of the stateoftheart
sampling approach adopted bymost commercial database engines that construct samples
during query execution.

3.1.1.1 Random Number Generation and Deduplication Overheads

It should be clear by section 1 that sample query performance suffer by constructing sam
ples during execution. The main reasons are the multiple invocations of the rand() func
tion and the lookups required to ensure that the sample contains only unique row IDs. For
example, to construct the sample required for query q0, the sampler will invoke rand() 300
times plus the number of duplicate values occurred. In section 1 we also presented some

33 V. Giannakouris Salalidis

A Sample Index for Approximate Query Processing

results that show that more that 90% of the sampling time is being spent on computing
random values and checking for duplicates.

3.1.1.2 Overlapping Samples

As long as all queries run on the same table T , but over samples of different sizes, they
could benefit by reusing a single, bigger sample, instead of rerunning the sampling al
gorithm each time a sample is requested. For example, q0 uses a smaller sample than q1
and could reuse the first 150 rows of the larger, 200row sample of q1. However, the cur
rent approach needs to execute the sampling algorithm from scratch for each new sample
request.

3.1.1.3 The Sample Index Abstraction

A sample index can speedup the sampling process by constructing offline a secondary
structure that represents a relative random order of the table. The construction steps
are two. First, each row ID of the table is assigned a random value, drew from the
uniform distribution [0, 1]. Next, the row IDs are sorted according to this random value.
For example, we assume a table A, its row IDs {1, 2, 3, 4, 5} and the corresponding ran
dom values R = {0.2, 0.5, 0.3, 0.1, 0.4}. The random values are aligned with the row IDs,
i.e., 0.2 is assigned to the row ID 1, 0.5 to the row ID 2 and so on. The relative order
of the table according to R will be S = {4, 1, 3, 5, 2}, because 4 is paired with 0.1 so it
goes first, 1 is paired with 0.2 and it will be placed after 4, and so on. The set of pairs
{(0.1, 4), (0.2, 1), (0.3, 3), (0.4, 5), (0.5, 2)} is the resulting sample index. We need to keep
the random values associated with the rows in order to be able to update the sample index
when new rows are inserted. In order to construct a ksized sample we simply need to
take any contiguous set of size k from the sample index. As a result, both of the aforemen
tioned shortcomings of the naive sampling approach are addressed, as random number
generation and deduplication overheads are replaced with a sequential scan on sample
index. Both processes are performed only once as part of the random sort algorithm, dur
ing index construction. Thus, running any sampling algorithm during query execution is
not required anymore.

Figure 3.1 depicts a sample index on the relation A. The leftmost table depicts the row
identifiers (rid) and the attributes of table A, and the middle column (R) the associated
random values. The right table shows the final sample index. On the right we can also see
the bounds of queries Q0, Q1 and Q2 and where they point to the sample index. Clearly,
there is a discrete overlap on the sample sizes of these three queries, as Q0 ⊂ Q1 ⊂ Q2.
The benefit gained from the sample index is that none of these queries need to execute
any complex processing in order to decide which rows will be included in the sample. The
sample is obtained just by fetching any contiguous set of size k from the index.

Through this example, it should be clear that by leveraging an access method like the
sample index, the sampling algorithm (random sort) needs to be run only once during the

V. Giannakouris Salalidis 34

A Sample Index for Approximate Query Processing

Figure 3.1: A sample index on Table A

index construction phase. Then, all requested samples of any size k can be served by the
same sample index.

3.2 Offline Construction

The offline construction of an index is typical in any database system. Usually, in a
database an index can be created offline by issuing a query like create index idx on
T (col). This query will create an index named idx on column col of table T. The index
will be created on top of the existing rows of the table, while the index is updated when
new rows are inserted into the table. In this section we explain how the sample index is
constructed offline.

3.2.1 Creating sample indexes

A sample index can be created in two ways.

• First, similarly with any other index, a sample index can be created by executing a
query of the form create sample index on T. In contrast with a traditional index, a

35 V. Giannakouris Salalidis

A Sample Index for Approximate Query Processing

sample index is created on the full table table, and not a specific column.

• A sample index can be also created when the first query that requires the sam
ple is executed. That is, when a query of the form select avg(c) from A sample
1000000 arrives, the index creation is triggered and executed as part of query pro
cessing. That is, the system generates first the sample index to obtain the requested
sample. Next, that sample index can be persisted in order to serve future sample
queries.

In both scenarios, the index is stored to persistent storage and can be reused to speedup
subsequent queries.

3.2.2 Initial Construction

First, given a table T with N rows, a column of size N and type double is initialized. Next,
N random values from the rectangular distribution R(0, 1) are generated and inserted to
the newly generated column. What is left, is to create an ordered index on that column,
and the resulting ordered index will be our sample index on table T . Recalling section 2,
an ordered index is an index type in MonetDB that can be created over any column of
the table and represents the relative order of the row identifiers according to that column.
Algorithm 2 is a pseudocode version of the construction phase of sample index.

Algorithm 2 Sample index construction

1 i n t [] sample_idx = new in t [N] ;
2
3 for (r i d =0; i < N; i ++)
4 do
5 / / Draw a random value
6 r = random (0 , 1) ;
7 / / Check i f t ha t random value ex i s t s
8 ex i s t s = search (r , sample_idx)
9 while (e x i s t s)
10 i nse r t _ so r t ed (sample_idx , (r , r i d)) ;

3.2.3 Usage

When a sample query is issued on table T , we first need to check whether T has a sample
index or not. If a sample index is available, then we need to load the index in memory.
For a sample query of size k, we finally return a contiguous set of k values that starts in a
random position of the index. This set contains the set of rids of the tuples that will form
our final sample.

V. Giannakouris Salalidis 36

A Sample Index for Approximate Query Processing

Figure 3.2: Continuous insertion and querying

3.3 Continuous Insertions

The sample index can support continuous insertions with the help of an intermediate struc
ture, namely a priority queue. The scenario that inspires such a feature is the demand
from the users to start their approximate query evaluations while data are being inserted
either because of a long running ETL process or a scientific experiment that produces vast
amounts of results. An important constrain is that each approximate query must be run
against fresh samples that contain with the same probability the latest inserted rows. This
idea is not included in our implementation yet, however, we present in detail the architec
ture and some highlevel experiments conducted on the algorithms and data structures
that we plan to use.

The approach to support such “online approximate queries” is to compute for each newly
inserted row a unique random value but instead of updating the sample index – which
would be costly at this point – insert the new pair in a priority queue, implemented here as
a minheap. The priority queue would always return the smallest random number and its
row id of the newly inserted row. Now, in order to return a sample of size k we would have
to consult both the existing sample index, and the priority queue. The goal is to merge the
two structures and return the k row ids that have the smallest random values from either
the sample index or the priority queue. Figure 3.2 demonstrates this algorithm when new
records are inserted in the priority queue while queries are run against both structures.
Finally, when the bulk insertion is finished, we can merge the existing sample index with
the entire priority queue in order to create a new sample index, ready to be used until new
updates are performed.

37 V. Giannakouris Salalidis

A Sample Index for Approximate Query Processing

3.3.1 Leveraging a PriorityQueue to the Sample Index

As previously mentioned, to insert a new element to the sample index we need to generate
a new random value, and based on that value, locate the correct position in the index and
perform the insertion. The intermediate minheap structure has an O(1) insertion cost
on the averagecase, offering a significantly better insertion cost than the direct insertion
to the sample index which requires to either sort the index with the new records from
scratch, or, find the correct position with a binary search. As a result, a user can issue
sample queries to the database while the table is being updated, without any delays due
to index reorganization or slow insertions.

3.3.1.1 Serving fresh samples during continuous updates

Our goal is to make sample index able to offer fresh samples that contain the most recently
inserted data during continuous insertions. If a sample is requested during insertions, the
query must mix data both from the sample index and the minheap, in order to provide a
valid, uptodate result. To achieve that, the sample will be constructed as follows. For
each new record that needs to be appended to the sample, we look at the next record of
the sample index, as well as the root record of the minheap. We compare the random
values of the two records, and we append the record with the minimum random value to
our sample, following the property of the random sort sampling algorithm. We provide a
detailed algorithm in pseudocode of this process (Algorithm 3).

Algorithm 3 Online sample construction of a ksize sample

1 i n t [] sample = new in t [k] ;
2 a = sample_idx . i t e r a t o r . next () ;
3 b = min_heap . i t e r a t o r . next () ;
4
5 for (i =0; i < k ; i ++)
6 i f (b == n u l l or a . key < b . key)
7 i n s e r t (sample , a . value) ;
8 a = sample_idx . i t e r a t o r . next () ;
9 else
10 i n s e r t (sample , b . value) ;
11 b = min_heap . i t e r a t o r . next () ;

The cost of line 2 isO(1), as it only requires to move to the next position of the sample index
and fetch the element. On the other hand, the cost of line 3 isO(log(n)), as the next() call
will fetch the next element of the minheap and it will trigger the heapify process in order
to move the next minimum element to the root. The cost of this algorithm is summarized

V. Giannakouris Salalidis 38

A Sample Index for Approximate Query Processing

in equation 3.1:

Csmpl = S + P log(n) (3.1)

In equation 3.1, S is the number of elements that will be pulled from the sample index, P
the number of elements that will be pulled from the minheap and n the minheap size.
Obviously, for a sample size k, S + P = k, while the values of S and P depend to the
random value distribution. We can easily observe that the cost of fetching S elements is
independent to the sample index size. However, the cost of fetching P elements from the
minheap is logarithmic to the size of the minheap (n). As a result, in case that either
P , n or both are large, our query performance will probably suffer. It can be seen in the
equation that the most expensive part of the algorithm, is to obtain the P size part of the
sample from the minheap. In the next section we explain our attempt to make cost of
reading that P size set from the minheap independent of the heap size n.

3.3.2 Scanning the MinHeap Sequentially

We performed an analysis on how data are laid out in the array when we create a random
minheap. As mentioned earlier in section 2.3.1, a minheap uses an inmemory array.
Given a parent node i, the left child is positioned at 2*i and the right child at 2*i + 1.
The order of the incoming keys is unknown. In the best case scenario, if the keys come
in a sorted order, then the array of the minheap will be sorted too. In practice, this is
unlikely to happen, especially when the keys are generated randomly. As a result, getting
the set of the topP minimum values from a minheap requires P log(n) steps, that is, P
key pop()s, while each pop() requires log(n) additional steps due to the heapify process.

As previously mentioned, Plog(n) steps is not the desirable performance for obtaining the
values from the minheap, especially for large P and n values. In the ideal case, we would
like to obtain the P sized set from the minheap both in linear time, and with sequential
memory access. Those two objectives led us to study how the elements are laidout in
the array of a random minheap.

3.3.2.1 Getting the P size set of the minheap faster

We attempt to address the following question. To get the topP minimum elements of the
minheap, we simply need to pop P elements from the heap, performing Plog(n) steps.
Instead, if we get the first P elements of the array as they are (randomly) laid out in mem
ory through the heap creation, how many of these elements are part of the actual topP
element set? In other words, if we compare the topP elements popped of the heap using
pop(), and the topP elements from the array of that heap, what will be the intersection
of these two sets? An important point on that, is that when we construct a ksize sample
we are interested in obtaining the rows that are associated to the topk minimum random

39 V. Giannakouris Salalidis

A Sample Index for Approximate Query Processing

Figure 3.3: Intersection of Elements

values, while we do not care if these random values are sorted or not. The only require
ment is to obtain the set of rows with the topk minimum random values. Thus, we are
only interested in the intersection between the two sets.

3.3.2.2 Experimental Intersection Comparison

After running a significant number of experiments, we observed that this intersection ratio
is ranges from 70% to 80%. Figure 3.4 depicts this result. We concluded to this result
after multiple experiments, by generating a number of uniformly random binary heaps of
various sizes. A uniformly random binary heap is either a min or max heap, generated by
repeatedly inserting random values in it. This structure is also known as a random binary
tree [1]. Each of our experiments consisted of the following steps. First, we initialize a
minheap and insert n random values. Next, we take ksize samples by obtaining the
topk elements of the minheap, where k = n

10
. Next, we get the topk elements from the

array. Finally, we compute the intersection ratio of these two sets. For each heap of size
n, we perform the same experiment 100 times and we keep the average intersection ratio.
The results lead to an interesting observation, showcasing that the ratio falls in the range
(0.7, 0.8) for the heap size ranging from 50 to 200000. Figure 3.3 depicts the results from
these experiments. Each bar shows the average intersection ratio per heap size.

3.3.2.3 Performance Gains

Clearly, getting the topk elements from the array in k steps has an obvious performance
benefit than pulling k elements using pop() which takes klog(n) time. However, on the av
erage case the 2030% of the elements are not part of the real topk elements. The critical

V. Giannakouris Salalidis 40

A Sample Index for Approximate Query Processing

Figure 3.4: Intersection Ratio (Correctness) / Heap Size (N)

question is how this deviation from the real topk elements will impact the randomness of
our sample, and consequently, the quality of the final result. Our assumption is that this
2030% of inaccuracy will not impact the randomness that much, so the final answer of
a samplebased approximate will be ”good enough”, taking into account the performance
gains that include both sequential memory access and complexity reduction from P logn
to P . To investigate that, we perform a series of experiments in that we compare the
qualities of the approximate answers of specific queries. We measure the error of the ap
proximate answer that includes the real topk elements that are extracted from the heap
and the topk elements of the underlying array. The results presented section 4 prove that
both methods provide answers with comparable errors.

3.4 Summary

In this section we presented the main idea and implementation details of sample index,
a novel index scheme that enhances the sampling procedure in a database system. We
explained how a sample index can eliminate the overheads of the multiple rand() invo
cations and duplicate checks that hinder query performance, when samples are created
during query execution. Furthermore, we presented an architecture that leverages a pri
ority queue, that allows users to access fresh samples during continuous insertions and
without delays due to the updates.

41 V. Giannakouris Salalidis

A Sample Index for Approximate Query Processing

V. Giannakouris Salalidis 42

A Sample Index for Approximate Query Processing

4. EXPERIMENTAL EVALUATION

This section presents a thorough performance evaluation of sample index. We imple
mented our sample index prototype in MonetDB, a commercial column store for high per
formance analytical queries. We compare the execution times of the queries included
in our benchmarks with, and without using a sample index. The following experiments
demonstrate that by leveraging a sample index we can achieve up to 4.5x speedups
compared to MonetDB’s vanilla sampler that constructs the samples during query execu
tion.

4.1 Setup

4.1.1 Hardware

All the experiments were run on a Macbook Pro with the following specifications:

• CPU: 2.9 GHz QuadCore Intel Core i7

• Memory: 16 GB 2133 MHz LPDDR3

• Storage: 500GB SSD

4.1.2 Workload

We run four individual benchmark setups. In the first setup, we used TPCH [2] from which
we generated data of 10 and 20GB scales. For the other three benchmarks, we used three
datasets obtained from UCI Machine Learning repository [3], namely Census, Abalone
and Wine. The TPCH benchmark consists of eight tables, from which we sample only
the lineitem table in each query. Each of the other three benchmarks (Census, Abalone,
and Wine) consist of a series of queries but a single table, so in each query we sample
the base table of the benchmark.

4.1.2.1 Sample Query Transformation

To transform each query into a sample query, we rewrite the queries as follows. For each
table that we need to sample, we replace the table name ”t” in the query with a subquery
of the form ”select * from t sample X”. For example, assume the following query:

select avg(l_quantity) from lineitem

If we want to run the query over a 10%size sample instead of the full lineitem table, the
query will be transformed as:

43 V. Giannakouris Salalidis

A Sample Index for Approximate Query Processing

select avg(l_quantity) from (select * from lineitem sample 0.1) as tmp

We do the same transformation in all queries that we used in our experiments, for the
varying sample size ratios (0.1, 0.2, 0.3 and 0.4).

4.2 Results

4.2.1 Proof of Concept

We begin by presenting the results of the evaluation a simple aggregation query over the
lineitem table of TPCH. We evaluate the avg() aggregate on the l_quantity column of
the lineitem table, similarly to the experiment of section 1.1. Recalling the results from
this introductory experiment, we showed that the sampling step of a query can occupy up
to 94% of the execution time in certain cases. We showcase how a sample index can
significantly reduce the time occupied by MonetDB’s vanilla sampler that constructs the
samples during query execution. We will be using the following query in this experiment:

select avg(l_quantity) from (select * from lineitem sample $k) as tmp

4.2.1.1 Excessive Sampling Overhead

We execute this query for the sampling factors of 0.1, 0.2, 0.3 and 0.4 on the lineitem
table of the 10GB TPCH dataset. For each sampling factor we run the query both with
and without using a sample index. Figure 4.1 depicts the average distribution of the query
execution time of all sampling factors. We can see that 82% of the execution time is
occupied by the sampling operator, while only 6.15% is occupied by the avg() operator
and 11.71% by the rest of the operations.

4.2.1.2 Minimizing Sampling Overheads

We can see in the second pie chart that the execution time distribution changes when a
sample index is used. The sampling overheads are mitigated, the time occupied by the
sampler is reduced and takes 50% of the total query time. Figure 4.2 depicts the execution
time per sampling size ratio. We can observe that the execution time of the query is
reduced significantly when the sample index is used. As the sample size increases, the
sample index can achieve up to 4.5x better execution time.

V. Giannakouris Salalidis 44

A Sample Index for Approximate Query Processing

(a) Query Time Distribution without sample index

(b) Query Time Distribution with sample index

Figure 4.1: Average Query Time Distribution TPCH 10GB

45 V. Giannakouris Salalidis

A Sample Index for Approximate Query Processing

10 20 30 40
0

20

40

60

Sample Size (%)

Ex
ec
ut
io
n
Ti
m
e
(%

)

Without sample index
With sample index

Figure 4.2: Execution Time per Sampling Size Ratio

4.2.2 TPCH

4.2.2.1 Average Query Execution Time

Webegin by comparing the average query execution time per sample size ratio in the TPC
H benchmark, both for the 10 and 20 GB scales. We summarize the results in figure 4.3.
The left line charts depict the average execution time per sample size ratio. The right line
charts depict the performance improvement (speedup) achieved by sample index, that
is, the fraction of the execution times (with a sample index / without a sample index).

We can observe that by using a sample index we always achieve at least x2 speedup.
Moreover, it can be seen that as the sample size grows, the performance gain increases,
and we can achieve more than 4x speedup in both TPCH scales.

V. Giannakouris Salalidis 46

A Sample Index for Approximate Query Processing

10 20 30 40
0
5

20

40

60

80

Ex
ec

Ti
m
e
(s
)

Average Time

10 20 30 40
2

3

4

10GB

Performance Gain

10 20 30 40
0

40

80

120

160

Sample Size (%)

Ex
ec

Ti
m
e
(s
)

10 20 30 40
2

3

4

Sample Size (%)

20GB

Without Sample Index With Sample Index

Figure 4.3: Average Execution Time and Speedup

4.2.2.2 Individual Query Performance

Next, we present the detailed execution times of all queries. The bar charts in figures 4.4
and 4.5 depict the execution time of each individual TPCH query, both for the 10GB and
20GB scales. By observing the bars, we can see that when the sample index is used we
always achieve significantly better execution time for all queries.

47 V. Giannakouris Salalidis

A Sample Index for Approximate Query Processing

10

20

Ex
ec

Ti
m
e
(s
)

Sample 10%

20

40

60

Sample 20%

1 3 4 6 7 8 9 10 12 14 15 17 18 19 20 21

50

100

Query ID

Ex
ec

Ti
m
e
(s
)

Sample 30%

1 3 4 6 7 8 9 10 12 14 15 17 18 19 20 21
0

50

100

150

Query ID

Sample 40%

Without Sample Index With Sample Index

Figure 4.4: TPCH 10GB

20

40

60

Ex
ec

Ti
m
e
(s
)

Sample 10%

50

100

Sample 20%

1 3 4 6 7 8 9 10 12 14 15 17 18 19 20 21
0

100

200

Query ID

Ex
ec

Ti
m
e
(s
)

Sample 30%

1 3 4 6 7 8 9 10 12 14 15 17 18 19 20 21
0

100

200

300

400

Query ID

Sample 40%

Without Sample Index With Sample Index

Figure 4.5: TPCH 20GB

V. Giannakouris Salalidis 48

A Sample Index for Approximate Query Processing

4.2.3 Census, Abalone & Wine

Next, we evaluate sample index over three datasets, namely Census, Abalone and Wine
obtained from UCI Machine Learning Repository [3]. Because all these three datasets are
relatively small, we scale up the data size of each dataset to fifty million rows, by randomly
replicating the initial records. Each of these benchmarks consists of a single table. In each
benchmark, we create a sample index for the base table of the benchmark. Similarly with
the TPCH benchmark, we compare the execution times of each query when the sample
index is used and when it is not.

4.2.3.1 Queries

We borrowed the SQL queries from a work of Galakatos et. al. [7]. We list the SQL queries
for the Census, Abalone and Wine datasets in tables 4.1, 4.2 and 4.3 respectively.

Table 4.1: Census Queries

ID Query
1 select count(*) from adult as tmp group by sex
2 select count(*) from adult as tmp group by education
3 select count(*) from adult as tmp where sex = 'Female' group by education
4 select count(*) from adult as tmp where sex = 'Male' group by education
5 select count(*) from adult as tmp group by education, sex
6 select count(*) from adult as tmp where education = 'Doctorate' group by sex
7 select count(*) from adult as tmp group by capital_gain
8 select count(*) from adult as tmp where education = 'Doctorate' group by capital_gain
9 select count(*) from adult as tmp group by sex, capital_gain
10 select count(*) from adult as tmp where sex = 'Female' group by capital_gain
11 select count(*) from adult as tmp where education = 'Doctorate' group by capital_gain
13 select count(*) from adult as tmp where sex <> 'Female' and education = 'Doctorate' group by capital_gain
14 select count(*) from adult as tmp group by age
15 select count(*) from adult as tmp where age >= 20 and age < 40 and sex <> 'Female' and education = 'Doctorate' group by capital_gain

Table 4.2: Abalone Queries

ID Query
1 select count(*) from abalone as tmp group by age
2 select count(*) from abalone as tmp group by whole_weight
3 select count(*) from abalone as tmp where age >= 16
4 select count(*) from abalone as tmp where age < 8 group by whole_weight
5 select count(*) from abalone as tmp group by sex
6 select count(*) from abalone as tmp where age >= 16 group by sex
7 select count(*) from abalone as tmp group by whole_weight, sex
8 select count(*) from abalone as tmp where whole_weight >= 2 group by age
9 select count(*) from abalone as tmp where whole_weight >= 2 and sex = 'I' group by age
10 select count(*) from abalone as tmp where whole_weight >= 2 and sex <> 'I' group by age
11 select count(*) from abalone as tmp where whole_weight < 0.4 group by age
12 select count(*) from abalone as tmp where whole_weight < 0.4 and sex = 'I' group by age

49 V. Giannakouris Salalidis

A Sample Index for Approximate Query Processing

5

10

15

20

Ex
ec

Ti
m
e
(s
)

Sample 10%

10

20

30

Sample 20%

1 2 3 4 5 6 7 8 9 10 11 12 13 14

10

20

30

40

Query ID

Ex
ec

Ti
m
e
(s
)

Sample 30%

1 2 3 4 5 6 7 8 9 10 11 12 13 14

20

40

60

Query ID

Sample 40%

Without Sample Index With Sample Index

Figure 4.6: Census Execution Times

Table 4.3: Wine Queries

ID Query
1 select count(*) from wine as tmp group by score
2 select count(*) from wine as tmp group by abv
3 select count(*) from wine as tmp where score >= 8 group by abv
4 select count(*) from wine as tmp where score < 8 group by abv
5 select count(*) from wine as tmp group by so2
6 select count(*) from wine as tmp where score >= 8 group by so2
7 select count(*) from wine as tmp where score < 8 group by so2
8 select count(*) from wine as tmp group by so2, abv
9 select count(*) from wine as tmp where abv >= 13 group by score
10 select count(*) from wine as tmp where so2 >= 100 and so2 <= 200 and abv >= 8 group by score
11 select count(*) from wine as tmp where abv >= 8 group by score
13 select count(*) from wine as tmp where so2 >= 100 and so2 <= 200 group by score

4.2.3.2 Results

Similarly to the TPCH experiments, we present the speedups achieved and the execution
time of each individual query. Figure 4.9 depict the speedups, while figures 4.6,4.7 and
4.8 depict the individual execution times for each query. Again, we can see that in all
cases the sample index outperforms the vanilla sampling implementation of MonetDB,
with similar speedups that increase to the sample size ratio as in TPCH experiments.

V. Giannakouris Salalidis 50

A Sample Index for Approximate Query Processing

5

10

15

Ex
ec

Ti
m
e
(s
)

Sample 10%

10

20

Sample 20%

1 2 3 4 5 6 7 8 9 10 11 12

10

20

30

40

Query ID

Ex
ec

Ti
m
e
(s
)

Sample 30%

1 2 3 4 5 6 7 8 9 10 11 12

20

40

60

Query ID

Sample 40%

Without Sample Index With Sample Index

Figure 4.7: Abalone Execution Times

5

Ex
ec

Ti
m
e
(s
)

Sample 10%

5

10

15

20

Sample 20%

1 2 3 4 5 6 7 8 9 10 11 12

10

20

30

Query ID

Ex
ec

Ti
m
e
(s
)

Sample 30%

1 2 3 4 5 6 7 8 9 10 11 12

20

40

Query ID

Sample 40%

Without Sample Index With Sample Index

Figure 4.8: Wine Execution Times

51 V. Giannakouris Salalidis

A Sample Index for Approximate Query Processing

10 20 30 40
0

20

40

Ex
ec

Ti
m
e
(s
)

Average Time

10 20 30 40
2

3

4

Census

Performance Gain

10 20 30 40

20

40

Ex
ec

Ti
m
e
(s
)

10 20 30 40
1.5

2

2.5

3

Abalone

10 20 30 40
0

20

40

Sample Size (%)

Ex
ec

Ti
m
e
(s
)

10 20 30 40
2

3

4

Sample Size (%)

Wine

Without Sample Index With Sample Index

Figure 4.9: Average Execution Time and Speedup

4.3 Online Sample Index Evaluation

In section 3.3, we presented an architecture that employs a minheap priority queue in
order to handle continuous insertions efficiently. We explained how this architecture is
able to provide fresh samples to the user by mixing data both from the persisted sample
index and the minheap. We highlighted that pulling data from the minheap is expensive,
as for each single record that we need to fetch, we need log(n) steps due to the heapify
process that minheap runs in order to move the next minimum element to the root. In
order to mitigate this logarithmic overhead, we presented an approach in that instead of
pulling k elements from the minheap using the pop() method, we simply pick the topk

V. Giannakouris Salalidis 52

A Sample Index for Approximate Query Processing

elements from the array of the heap sequentially. Our preliminary analysis lead us to the
conclusion that by picking the topk elements of the array of the minheap, the result is
70 − 80% correct compared to the 100% correct result that we could get using the pop()
method, which always return the next minimum element.

In this section, we explore the accuracy of the aforementioned approach. We run same
series of approximate queries as in the previous experiments over the Census, Abalone
and Wine datasets. Now, instead of measuring the performance, we evaluate the result
accuracy. To do that, we index each of the aforementioned datasets into a minheap using
a random value generator to create a random key for each record. Then, we run each of
our queries in each benchmark over a 10% sample of the dataset. We obtain the sample
with two ways: i. by fetching the k samples using the pop()method which ensures that we
get the correct k minimum elements and ii. by fetching the topk elements of the array of
the minheap. We then execute the queries over the samples and we compare the result
accuracy over these two methods.

4.3.0.1 Workload and Dataset

We used the queries presented in [7], and we executed them over the Census, Abalone
and Wine datasets. Similar to [7], we treat each query as a categorical random random
variable θ. For example, if a query contains the selection WHERE sex = 'Male' on a table
T and the number of rows that satisfy the selection are s, then the theta value of that query
will be θMale =

s
|T | . For multiple categories, we compute theta for all distinct categories.

Now, in order to produce approximate answers for each distinct category x we use a
maximum likelihood estimator (MLE). Thus, the approximate answer for a sample of size
n, will be estimated as θ̂MLE

x = nx

n
, where nx the number of instances in the sample of the

category x.

4.3.0.2 Error Metric

In order to quantify the result error, we use the standard error formula, normalized by the
MLE θ̂x. Thus, the normalized error formula is error(x) = 1

θ̂x

√
θx(1−θx)

n
.

4.3.0.3 Results

We compare the errors between answering queries using samples generated by fetching
the real top k values from the heap using the pop() versus the top k values obtained by
fetching the first k elements of the array. As aforementioned, the latter includes a 2030%
of falsely selected samples, in terms of randomness. In this experiment we do not expect
to achieve low error in all cases, as we use uniform/random sampling and we do not take
into account corner cases like rare subpopulations, which affects the quality of the result.

53 V. Giannakouris Salalidis

A Sample Index for Approximate Query Processing

1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

Query

St
an
da
rd
Er
ro
r

topk heap topk array

Figure 4.11: Standard Error Abalone

However, we showcase that the 2030% randomness error has negligible impact on the
error final result, as both approaches result into similar errors. The bar charts 4.10, 4.11
and 4.12 depicts the results. We can see that in all cases the sample obtained with the first
k elements from the heap’s array results into a similar error with the samples obtained by
obtaining the true random samples, using the pop() operation of the heap. The conclusion
of this experiment, is that even if the sample is not a 100% random sample, the quality of
the result will be not affected, compared to a true random sample.

As a result, in the continuous insertion scenario in which we combine data both from the
sample index and the minheap, this finding allows us to replace the expensive logarithmic
read of the minheap with a sequential scan in the array, without worrying about the quality
of the sample.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.2

0.4

0.6

0.8

Query

St
an
da
rd
Er
ro
r

topk heap topk array

Figure 4.10: Standard Error Census

4.4 Summary

In this chapter we presented the results of our experimental evaluation. We used queries
and data generated from the TPCH benchmark using the scales of 10GB and 20GB.
Furthermore, we used three additional datasets, namely Census, Abalone and Wine. By

V. Giannakouris Salalidis 54

A Sample Index for Approximate Query Processing

1 2 3 4 5 6 7 8 9 10 11 12
0.4

0.6

0.8

1

Query

Ex
ec

Ti
m
e
(s
)

topk heap topk array

Figure 4.12: Standard Error Wine

mitigating the overheads of the naive sampling approach, our results showcase that our
MonetDB implementation with sample index can achieve up to 4.5x speedups in sample
queries, by enhancing the sampling operator performance.

First, we analyzed the distribution of the execution time of a sample query, and showed
that on average, 87% of the time is occupied by the sampler, and that most of the sam
pling time is taken by the excessive rand() invocations. We showed how a sample index
can eliminate these overheads by precomputing the random values only once, during in
dex construction. Next, we evaluated our implementation over four benchmarks: TPCH,
Census, Abalone and Wine. Our results proved that when a sample index is used, we can
always achieve better execution time than the vanilla MonetDB sampler implementation.

55 V. Giannakouris Salalidis

A Sample Index for Approximate Query Processing

V. Giannakouris Salalidis 56

A Sample Index for Approximate Query Processing

5. RELATED WORK

In this section we present the related work on sampling in database systems. We classify
the related works into three categories. The first category is called sampling relational
databases and presents the stateofthe art methods and early works on how sampling
methods are integrated with core components of a relational database system, like re
lational operators and materialized views. The next section namely samplingbased ap
proximate query processing describes works that focus on how sampling methods, like
uniform and stratified sampling, can be leveraged in approximate query processing sys
tems. Finally, in the last section entitled online aggregation we discuss about approaches
that focus on how the user can be periodically informed about the query result during
query execution. Most of these works are based on uniform or stratified sampling, where
fixedsized samples are usually precomputed offline, or, created during query execution.

5.1 Sampling Relational Databases

5.1.1 Random Sampling from Databases

Random sampling has a long history in database systems research. One of the first at
tempts wasmade by Frank Olken back at 1986 in one of his works entitled Simple Random
Sampling from Relational Databases [18] and his Ph.D. dissertation [17]. His work can
be described as a framework that consists of methods for obtaining random samples from
relational operators like scan, select and join. The goal his work is to achieve execution
time proportional to the sample size, when samplebased queries are issued to the sys
tem. Leveraging a sampling operator in query evaluation can reduce data access costs,
i.e. disk page I/O, in this type of queries. Of course, all these techniques are suitable for
usecases in that the full data is not required, and an fast approximate answer is more
preferable.

5.1.1.1 Sampling Methods

Various sampling methods are presented in the paper including sampling with and without
replacement, as well as weighted random sampling techniques like acceptance/rejection
sampling and partial sum trees. For example, in the acceptance/rejection approach, the
jth record (rj) of aN size population is selected with inclusion probability pj = wj

wmax
, where

wj the weight of the jth row and wmax the maximum weight. Then, another uniform value
uj is drawn and rj is accepted if uj < pj .

57 V. Giannakouris Salalidis

A Sample Index for Approximate Query Processing

5.1.1.2 Sampling Relational Operators

As aforementioned, Olken’s work focuses on integrating sampling algorithms with rela
tional operators and construct random samples from the output of these operators. He
presents a formal framework that can be used to describe various sampling methods over
relational operators with the following notations. First, the sampling operator is repre
sented as ψ, while an expression like ψSRS,100(R) represents a simple random sample
without replacement of the relation R. Next, more complex schemes are represented by
iteration operators like WR(s,< expr >). WR stands for with replacement, while the
expression < expr > will be applied repeatedly until a sample of size s is obtained.

5.1.1.3 OperatorSpecific Sampling

• Selection: First, selection (a.k.a. where clause) naturally integrates with sampling,
as sampling from the result of a selection is equivalent to selecting from a sample.
All records that do not satisfy the selection predicate have zero inclusion probability,
while the rest of the records have equal inclusion probability of being included in
the sample p = s

npred
, where s the sample size and npred the number of records that

satisfy the predicate. Multiple sampling algorithms can be utilized for the selection
operator depending on weather there is an index or not. In the latter case case, a
full scan is issued first.

• Projection: Projection (a.k.a. select clause) is more complex, if the projected at
tributeA is not a primary key of the relation, then the projection cannot commute with
simple random sampling. The main reason is that projection removes duplicates. As
a result, each value α of attribute A appears only once when A is projected. For
mally, this can be represented by the relation ψs(πA(R)) ⇍⇒ πA(ψs(R)). In other
words, projecting a sample is not the same as sampling a projection.

• Join: Similarly to selection, sampling a join operator depends on a number of fac
tors. For example, we should question when the join attribute is a key in one or more
relations, if the relations are indexed or hashed by the join attribute and also, what
is the cardinality of the join output. Given two relations R and T , a simple random
sampling algorithm over that join is the following. First, sample one element from
R, join it with T and produce the intermediate result V . Finally, sample one element
from V with accept/reject sampling, with acceptance probability proportional to the
cardinality of V . This procedure should be repeated until a sample of the desirable
size is obtained. This is the join without key algorithm. The join with key algorithm
is much simpler. If the join attribute X is a key on one relation, let’s say T , then
we can obtain an ssize simple random sample from the join operator by iteratively
obtaining a random record from R and then joining it with T until we get a the ssize
sample.

V. Giannakouris Salalidis 58

A Sample Index for Approximate Query Processing

5.1.1.4 Maintaining Sample Views

In the final chapter of his dissertation, Olken presents the idea of maintaining what he
calls Materialized Sample Views. This is one of the early attempts to reuse fixedsized,
precomputed samples to enhance sampling query performance.

Briefly, a view is a relation derived from a query. It can be either virtual or materialized. If
the view is virtual, each time the view is referred the associated query needs to be run in
order to produce the view result. If it is materialized, then the query is executed once and
the result is stored as a materialized view. In the latter case, when a table that somehow
relates with that view (base relation) is updated, the materialized view needs to be updated
as well. Subsequently, a sample view is an analogous scenario to the traditional view, but
the underlying query is a samplebased query.

Olken’s dissertation focuses on strategies for updating materialized sample views. A
change in the base relation can be either an insert, an update or a delete. The main
tenance strategy depends on the change and the view type. For example, a view can be
selection on a single relation, or a join between two or more relations.

For each update type, there is a corresponding strategy that is followed. For a view that
results from a selection on one relation the strategy is simple. For example, in case of
insertion the possible paths are two. If the newly inserted record satisfies the selection
predicate, then an insertion algorithm is invoked which decides if the record is going to be
included in the sample or not. If the new record does not qualify the selection predicate,
no action is required. In case of deletion, if the deleted record is included in the sample,
then another sample of size 1 needs to be obtained to replace the deleted record. Finally,
in case of update, three paths are possible. If the updated record satisfies the selection
predicate after the update, an insertion algorithm should be invoked, similarly to what
happens in case of the insertion. If the update changes the record so it does not qualify
the predicate, then it analogous to the deletion scenario. Finally, if the change does not
affect the predicate state, no action is required. Similar strategies are followed for project
views, while more complex ones for joins.

To conclude, Frank Olken’s work on Simple Random Sampling on Relational Databases
introduces a complete framework that includes algorithms, mathematical formulas and
their corresponding proofs for obtaining random samples from relational operators. His
methods are also integrated with the usecase of materialized views.

One shortcoming in the aforementioned methods, is that there is no an appropriate access
method for obtaining samples efficiently during query execution. The algorithms presented
need to execute part of the relational operator and sample from it, which can be expensive
for some operators. For example, in the case of joins, the full join should be executed
before sampling. Furthermore, the idea of materialized sample views require extra storage
for maintaining redundant information that already exists in the base relations, while they
also pose a significant maintenance overhead in case that frequent updates are issued. In
that case, the materialized views might become invalid frequently and will either i) return
outdated results or ii) result into a downtime before queries can be issued until the sample

59 V. Giannakouris Salalidis

A Sample Index for Approximate Query Processing

view is updated. In contrast, our proposed sample index requires negligible update cost
due to the underlying priority queue structure, while it can serve fresh samples to the user
by combining data both from the sample index and the recently inserted data in the priority
queue.

5.1.2 Materialized Sample Views for Database Approximation

We now continue our discussion on materialized sample views. In this paper, Shantanu
Joshi et al. [12] introduce a concept similar to the one of F. Olken, but more efficient for
range queries. Briefly, this work presents materialized views backed up by an indexing
scheme called ACE Tree, such as a materialized view is indexed on a specific column. As
a result, the proposed indexing abstraction provides good performance for range sampling
queries.

We will give a brief description of the ACE tree. A leaf node L is associated with a set of
h ranges, where h the tree size. Each range L.Ri is also associated with a section L.Si

that contains a simple random sample of all records in the table within this range. In fact,
each leaf node contains sample sets for all internal nodes in its path from the root. An
internal node is associated with a range R, a value that splits the range to the left and
right children, the pointers, and the count of each child. As a result, given a range query
Q = [l, r] where l the left bound and r the right bounds of the range, the query will traverse
all nodes that overlap with [l, r] until the corresponding leaf nodes that contain the samples
are reached.

The ACE tree is characterized by three properties. First, Appendability means that the
union of the ith sections of two leaves, that is, Lj.Si∪Lk.Si is always a true random samples
of all records in the range Lj.Ri ∪ Lk.Ri. Next, the Combinability property lets samples
retrieved from different leaves to be combined in order to produce an ever increasing
sample. Finally, Exponentiality guarantees all records that fall in L.Ri are twice than the
records that fall in L.Ri+1.

The ACE tree has a key drawback. It is developed upon the assumption of static data
and bulk creation, while incremental updates are not supported. The lack of incremental
updates is very restricting for realtime applications where lots of updates are issued, and
the downtime due to the ACE tree reconstruction would be unacceptable. In contrast, the
sample index supports efficient incremental/batch updates by leveraging an inmemory
priority queue structure that is merged with the persisted sample index periodically.

5.2 SamplingBased Approximate Query Processing

5.2.1 Revisiting Reuse for Approximate Query Processing

Galakatos et al. [7] presented an approximate query processing framework with low er
ror bounds that takes advantage of previously computed results and reuses them. The

V. Giannakouris Salalidis 60

A Sample Index for Approximate Query Processing

approach treats each query as a random variable. For example, consider following query:

select sex, count(*)
from census
group by sex

In this example, the sex attribute is considered as a categorical random variable that be
longs in the set of subpopulations {Male, Female}. If 1/3 of the samples are females, it
is represented as θFemale ≈ 1/3. The system aims at providing approximate answers in
terms of maximum likelihood estimation, described as θ̂MLE

x . The architecture consists of
a Sample Store that is populated by a stream of tuples from an integrated data source
through some random sampling method. The generated approximate results are stored
in the Result Cache of the system. The cached results can be used by the Query Engine
for future query evaluation. In addition, the system provides a hashbased data structure
called Tail Index that keeps track of rare subpopulations in the Sample Store. By utiliz
ing Tail Indexes, the system can maintain a low approximation error while preserving the
required randomness.

However, the Tail Index requires precomputation of fixedsize samples that might be
come invalid frequently in case of vast updates are issued, and the system will need to
reconstruct the samples.

5.2.2 BlinkDB

BlinkDB [4] is a system that aims in achieving balance between efficiency and generality of
the query workload by providing time or error bound constraints. It assumes that queries
are predictable based on the column set (QCS) frequencies of past queries. In order to re
duce sampling error due to rare subpopulations when a groupaggregate query is issued,
BlinkDB employs stratified sampling [16]. Given an input query, for each stratified sample
kept, BlinkDB creates a latencyerror profile (ELP). Based on ELP and the contstraint’s
defined by the user, BlinkDB picks the appropriate sample to serve the query. Depending
on the query and objective, BlinkDB will select the appropriate stratified samples in order
to meet the error and execution time requirements provided by the user.

However, BlinkDB assumes that the query column sets (QCS) used in aggregation func
tions remain stable over time, which can be restricting in case that the query workload
changes. Moreover, it depends on historical data of past QCS frequencies in order to
precompute fixedsized samples and serve future queries. As a result, fixedsized pre
computed samples need to be recomputed again in case that the workload or the under
lying data changes.

61 V. Giannakouris Salalidis

A Sample Index for Approximate Query Processing

5.2.3 VerdictDB

Another, yet more commercial project is VerdictDB [20], that introduces a databaseagnostic
technology calledUniversal ApproximateQuery Processing (UAQP). VerdictDB introduces
a universal solution that can be plugged in any relational database without any further mod
ification to the internals of the attached system. As a result, in can connect through the
appropriate JDBC/ODBC driver to any SQLbased database engine (e.g. Spark SQL, Im
pala or Azure SQL). Its architecture contains an Query Parser that parses a rawtext SQL
query and an AQP Rewriter that rewrites the SQL query accordingly to perform AQP to
the underlying database. VerdictDB prepares the samples for specific tables offline, using
either uniform, hashed [9] or stratified sampling. VerdictDB paper also introduces a novel
error estimator technique, called variational subsampling, a variation of subsampling, but
with smaller time complexity.

While VerdictDB is a samplingbased AQP engine, differs from our sample index ap
proach, as its main goal is to support multiple execution engines without modifying them.
Furthermore, VerdictDB also needs to precompute fixedsized samples for each table in
the database.

5.3 Online Aggregation

Online Aggregation [11] is a query processing technique that can be used to inform the
user about the query process during execution. For example, consider an aggregation
(like AVG) function over a table scan or a groupby clause. Traditionally, this is executed
in a batch manner, that is, the user has to wait until completion. With online aggregation
the user is able to get an approximate answer as query executes, with some confidence
interval and probability. Key objectives in online aggregation are the time required until a
useful result is presented, the time required to produce the final query answer, as well as
the rate in that the result is updated during execution. The access method is critical of a
correct online approximation, as the records should be accessed in a random order. As a
result, heap files are more desirable, or index scans in case that the aggregation attribute
is not indexed.

As aforementioned, providing a useful result in a short time is a key objective for an on
line aggregation system. Joins are one of the most expensive operations in a database
system, but are usually optimized to run in a batch manner. Ripple joins [8] address this
problem in online aggregation systems, by providing a set of join algorithms for provid
ing a precise approximate result in reasonable time. Usually, the sampling method for a
join operator requires a number of sampling steps of one relation, and for each sampling
step a full join with the other relation is required. This is completely avoided by Ripple
joins, as both relations are sampled at each steps, and the joins is performed between
the samples. Again, all these algorithms work under the assumption that the records of
a table are retrieved in a random order. The reason is that the data being processed is
helpful to be viewed as a random sample. In a followup paper entitled ”Informix under

V. Giannakouris Salalidis 62

A Sample Index for Approximate Query Processing

CONTROL”, Hellerstein et al. [10] present a set of access methods and database phys
ical design suitable for randomized data access. The main solution is to store records
of a table in random order, ensuring that the records fetched always constitute a random
sample. Furthermore, if the database system supports some kind of rand() function and
functional indices, a secondary index can be created to preserve random ordering. How
ever, a secondary index requires a random I/O per record. Moreover, as random ordering
is not always desirable, a userdefined ordering stage is provided where the user can de
fine a custom reordering of the data. The reordering process takes place during query
execution.

Join optimization for online aggregation has been also studied in [25], a method that aims
to optimize random sampling over multiway joins. Furthermore, Wander Join [14, 13, 15]
presents another method for optimizing joins for online aggregation by employing random
walks instead of sampling or random ordering. Online aggregation has also gained sig
nificant attention in the domain of Big Data and distributed data processing paradigms.
Notably, [6, 19, 5] introduce how online aggregation can be integrated with MapReduce
frameworks.

Most of these works require the data to retrieved in a random order. However, none of
these methods provides some access method to efficiently fetch the data in random or
der, and the randomization process takes place during query execution. Our experimental
evaluation showcases that adding randomization during the critical path of the query ex
ecution usually takes over the 90% of the sampling time.

5.3.1 Continuous Sampling for Online Aggregation Over Multiple Queries

Next, COSMOS [24] is another samplingbased system for online aggregation, optimized
for processing efficiently multiple queries. The key component is the data Scrambler. Tra
ditionally, the samples are generated during query execution, or they are precomputed in
fixedsizes. Instead, with the Scrambler feature the initial dataset in shuffled, by perform
ing multiple passes over the whole dataset and putting each element into some random
position. Updates are collected as batches, and the whole table needs to rescrambled
in order for the updates to get integrated. The system treats a set of multiple queries as
a dissemination graph, where each edge represents a dependency between two queries.
Thus, results from parent nodes can be reused from descendant nodes.

COSMOS has the following major drawbacks. First, the scramble algorithm needs to be
executed multiple times over the full dataset. For large tables, this will lead in exces
sive preprocessing time. Furthermore, the scrambling algorithm does not guarantee the
output uniformity, as simple random sampling does [23]. Updates are also handled in
a batchmanner, which means that the full dataset needs to be rescrambled, while no
queries can be executed while updating. For realtime applications, this downtime is un
acceptable.

63 V. Giannakouris Salalidis

A Sample Index for Approximate Query Processing

V. Giannakouris Salalidis 64

A Sample Index for Approximate Query Processing

6. CONCLUSIONS AND FUTURE WORK

We presented sample index, a new index structure that enhances the sampling operator’s
performance in a database system. We showed that the stateofthe art approach that
constructs samples during query execution can significantly hinder query performance,
due to the costly sampling steps involved in the process. We explained how we can
eliminate the overheads by replacing the expensive sampling steps in query execution
with a sequential scan on our sample index. Through our experimental evaluation, we
demonstrated that we can achieve up to 5x performance improvements.

There are several ongoing extension ideas that we are working on in order to enrich the
abilities of the sample index. One of our main future goals is to support horizontal parti
tioning of the sample index for multithreaded execution. This can be achieved by merging
multiple priority queues, each corresponding to a different partition. In addition, we are in
terested in improving the expensive logarithmic read cost of the min heap priority queue by
replacing it with a sequential scan. Our current solution slightly sacrifices the randomness
of the sample. However, as our experimental evaluation proves, our first findings show
that this slight ”loss” in the randomness of the sample has negligible impact in the quality
of the final approximate query results, which implies that we could afford to exchange this
loss with a significant read performance improvement.

65 V. Giannakouris Salalidis

A Sample Index for Approximate Query Processing

V. Giannakouris Salalidis 66

A Sample Index for Approximate Query Processing

BIBLIOGRAPHY

[1] Random Binary Trees. Wikipedia. https://en.wikipedia.org/wiki/Random_binary_tree.

[2] TPCH. http://www.tpc.org/tpch/.

[3] UCI Machine Learning Repository. https://archive.ics.uci.edu/ml/index.php.

[4] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden, and Ion Stoica.
Blinkdb: queries with bounded errors and bounded response times on very large data. In Proceed
ings of the 8th ACM European Conference on Computer Systems, pages 29–42, 2013.

[5] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M Hellerstein, Khaled Elmeleegy, and Russell Sears.
Mapreduce online. In Nsdi, volume 10, page 20, 2010.

[6] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M Hellerstein, John Gerth, Justin Talbot, Khaled
Elmeleegy, and Russell Sears. Online aggregation and continuous query support in mapreduce. In
Proceedings of the 2010 ACM SIGMOD International Conference on Management of data, pages 1115–
1118, 2010.

[7] Alex Galakatos, Andrew Crotty, Emanuel Zgraggen, Carsten Binnig, and Tim Kraska. Revisiting reuse
for approximate query processing. Proceedings of the VLDB Endowment, 10(10):1142–1153, 2017.

[8] Peter J Haas and Joseph M Hellerstein. Ripple joins for online aggregation. ACM SIGMOD Record,
28(2):287–298, 1999.

[9] Marios Hadjieleftheriou, Xiaohui Yu, Nick Koudas, and Divesh Srivastava. Hashed samples: selectivity
estimators for set similarity selection queries. Proceedings of the VLDB Endowment, 1(1):201–212,
2008.

[10] Joseph M Hellerstein, Ron Avnur, and Vijayshankar Raman. Informix under control: Online query
processing. Data Mining and Knowledge Discovery, 4(4):281–314, 2000.

[11] Joseph M Hellerstein, Peter J Haas, and Helen J Wang. Online aggregation. In Proceedings of the
1997 ACM SIGMOD international conference on Management of data, pages 171–182, 1997.

[12] Shantanu Joshi and Christopher Jermaine. Materialized sample views for database approximation.
IEEE Transactions on Knowledge and Data Engineering, 20(3):337–351, 2008.

[13] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. Wander join: Online aggregation for joins. In Proceedings
of the 2016 International Conference on Management of Data, pages 2121–2124, 2016.

[14] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. Wander join: Online aggregation via random walks. In
Proceedings of the 2016 International Conference on Management of Data, pages 615–629, 2016.

[15] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. Wander join and xdb: online aggregation via random
walks. ACM Transactions on Database Systems (TODS), 44(1):1–41, 2019.

[16] Sharon L Lohr. Sampling: design and analysis. Nelson Education, 2009.

[17] Frank Olken. Random sampling from databases. PhD thesis, University of California, Berkeley, 1993.

[18] Frank Olken and Doron Rotem. Simple random sampling from relational databases. 1986.

67 V. Giannakouris Salalidis

https://en.wikipedia.org/wiki/Random_binary_tree
http://www.tpc.org/tpch/
https://archive.ics.uci.edu/ml/index.php

A Sample Index for Approximate Query Processing

[19] Niketan Pansare, Vinayak Borkar, Chris Jermaine, and Tyson Condie. Online aggregation for large
mapreduce jobs. Proceedings of the VLDB Endowment, 4(11):1135–1145, 2011.

[20] Yongjoo Park, Barzan Mozafari, Joseph Sorenson, and Junhao Wang. Verdictdb: Universalizing ap
proximate query processing. In Proceedings of the 2018 International Conference on Management of
Data, pages 1461–1476, 2018.

[21] Lefteris Sidirourgos, Martin Kersten, and Peter Boncz. Scientific discovery through weighted sampling.
In 2013 IEEE International Conference on Big Data, pages 300–306. IEEE, 2013.

[22] Lefteris Sidirourgos, Martin L Kersten, and Peter Boncz. Sciborq: Scientific data management with
bounds on runtime and quality. In CIDR, volume 11, pages 296–301, 2011.

[23] AB Sunter. List sequential sampling with equal or unequal probabilities without replacement. Journal
of the Royal Statistical Society: Series C (Applied Statistics), 26(3):261–268, 1977.

[24] Sai Wu, Beng Chin Ooi, and KianLee Tan. Continuous sampling for online aggregation over multiple
queries. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of data,
pages 651–662, 2010.

[25] Zhuoyue Zhao, Robert Christensen, Feifei Li, Xiao Hu, and Ke Yi. Random sampling over joins revis
ited. In Proceedings of the 2018 International Conference on Management of Data, pages 1525–1539,
2018.

V. Giannakouris Salalidis 68

	CONTENTS
	Introduction
	Motivation
	Experiment 1
	Experiment 2
	The Sample Index
	Contributions
	Outline

	Background
	The MonetDB Column Store
	Indexes
	The Basics
	System Specific Indexes

	Data Structure Preliminaries
	Priority Queues

	Sampling and Order Statistics
	Order Statistic
	Random Sampling
	A Random Sort Sampling Algorithm

	Summary

	The Sample Index
	Introduction
	Problem Formulation

	Offline Construction
	Creating sample indexes
	Initial Construction
	Usage

	Continuous Insertions
	Leveraging a Priority-Queue to the Sample Index
	Scanning the Min-Heap Sequentially

	Summary

	Experimental Evaluation
	Setup
	Hardware
	Workload

	Results
	Proof of Concept
	TPC-H
	Census, Abalone & Wine

	Online Sample Index Evaluation
	Summary

	Related Work
	Sampling Relational Databases
	Random Sampling from Databases
	Materialized Sample Views for Database Approximation

	Sampling-Based Approximate Query Processing
	Revisiting Reuse for Approximate Query Processing
	BlinkDB
	VerdictDB

	Online Aggregation
	Continuous Sampling for Online Aggregation Over Multiple Queries

	Conclusions and Future Work
	REFERENCES

