

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE

DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

GRADUATE PROGRAM
COMPUTER, TELECOMMUNICATIONS AND NETWORK ENGINEERING

MSc THESIS

Cache-Aware Adaptive Video Streaming in 5G Networks

Vasiliki D. Georgara
Georgios I. Kourouniotis

Supervisor: Lazaros Merakos, Professor

ATHENS

APRIL 2021

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΜΗΧΑΝΙΚΗ ΥΠΟΛΟΓΙΣΤΏΝ, ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΙ ΔΙΚΤΥΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Προσαρμοστική ροή video με γνώσεις ενταμίευσης σε δίκτυα
5G

Βασιλική Δ. Γεωργάρα
Γεώργιος Ι. Κουρουνιώτης

Επιβλέπων: Λάζαρος Μεράκος, Καθηγητής

ΑΘΗΝΑ

ΑΠΡΙΛΙΟΣ 2021

MSc Thesis

Cache-Aware Adaptive Video Streaming in 5G Networks

Vasiliki D. Georgara

S.N.: EN2190002

Georgios I. Kourouniotis

S.N.: EN2190003

SUPERVISOR: Lazaros Merakos, Professor

ADVISORY COMMITTEE: Lazaros Merakos, Professor
Nikolaos Passas, LTS member
Stathes Hadjiefthymiades, Professor

APRIL 2021

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Προσαρμοστική ροή βίντεο με γνώσεις ενταμίευσης σε δίκτυα 5G

Βασιλική Δ. Γεωργάρα

Α.Μ.: EN2190002

Γεώργιος Ι. Κουρουνιώτης

Α.Μ.: EN2190003

ΕΠΙΒΛΕΠΩΝ: Λάζαρος Μεράκος, Καθηγητής

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ: Λάζαρος Μεράκος, Καθηγητής
Νικόλαος Πασσάς, Μέλος Ε.ΔΙ.Π.

 Στάθης Χατζηευθυμιάδης, Καθηγητής

ΑΠΡΙΛΙΟΣ 2021

ABSTRACT

Dynamic Adaptive Streaming over HTTP (DASH) has prevailed as the dominant way of
video transmission over the Internet. This technology is based on receiving small sequential
video segments from a server. However, one challenge that has not been adequately
examined, is the obtainment of video segments from more than one server, in a way that
serves both the needs of the network and the improvement of the Quality of Experience
(QoE). This thesis will investigate this problem by simulating a network with multiple video
servers and a video client. It will then implement both the peer-to-many communication in
the context of adaptive video streaming and the video server caching algorithm based on
proposed criteria that will improve the status of the network and/or the user. All of this will
be explored in the environment of Mininet, which is a network emulator, in order to simulate
the DASH technology with the help of the emulator network nodes. Initially, the video was
split into small segments using the ffmpeg tool, and then experiments were conducted in
which a client requested the video from a cache server. If the segment could not be found
in the cache server, then a request was sent from the cache server to a server that contained
all segments of the video (main server). In these experiments, the added traffic was also
examined, by concluded to the fact that the Mininet environment causes unavoidable
limitations in the case of the traffic. What we observed was that the main server channel
remained inactive throughout the requests of the cache server, resulting in unrealistic
network conditions. For this reason, we have explored a new approach, eliminating the
Mininet environment and working on new techniques for adding web traffic and modifying
the communication of the servers, regarding the requests they receive. In this way, we were
able to clearly show the limitations of the previous approach but also to conclude that the
existence of caching servers is a useful tool in terms of increasing the quality of experience.
The general tendency was that, as the available buffer size increased, the video playback
quality increased to some extent. However, at the same time this improvement is linked to
the random selection algorithm. For even better results, it is considered necessary to find
an appropriate caching selection algorithm in order to take full advantage of the caching
technology.

The following chapters presented in this thesis are: Chapter 1 mentions the historical
background of the networks. Chapter 2 analyzes the Dynamic Adaptive Streaming over
HTTP. Chapter 3 analyzes the caching techniques. Chapter 4 presents the concept of
Quality of Experience and its correlation with many other factors. Chapter 5 describes in
detail the process of setting up the environment and the various necessary tools for our
implementation. Chapter 6 refers to the Mininet experiments, the topology, and the set-up,
as well as the reasons that led us to a different approach. Chapter 7 proposes the different
approach and presents the methodology and the metrics. Also, diagrams extracted from the
analysis of the metrics are analyzed in Chapter 7. Finally, Chapter 8 summarizes the
conclusions and issues of future research to improve the Quality of Experience even further.

SUBJECT AREA: Communication Networks

KEYWORDS: Quality of Experience, Video, Dynamic Adaptive Streaming over HTTP,

Mininet, Caching

ΠΕΡΙΛΗΨΗ

Η τεχνολογία προσαρμοστικής ροής video μέσω HTTP έχει επικρατήσει ως ο κυρίαρχος
τρόπος μετάδοσης video στο Internet. Η τεχνολογία αυτή βασίζεται στη λήψη μικρών
διαδοχικών τμημάτων video από έναν server. Μία πρόκληση που όμως δεν έχει διερευνηθεί
επαρκώς είναι η λήψη τμημάτων video από περισσότερους από έναν servers, με τρόπο που
να εξυπηρετεί τόσο τις ανάγκες του δικτύου όσο και τη βελτίωση της Ποιότητας Εμπειρίας
του χρήστη (Quality of Experience, QoE). Η συγκεκριμένη διπλωματική εργασία θα
διερευνήσει αυτό το πρόβλημα, προσομοιώνοντας ένα δίκτυο με πολλαπλούς video servers
και διάφορους video clients. Στη συνέχεια, θα υλοποιήσει τόσο την δυνατότητα επικοινωνίας
peer-to-many στα πλαίσια της προσαρμοστικής ροής video όσο και τον αλγόριθμο επιλογής
video server. Όλα αυτά θα διερευνηθούν στο περιβάλλον του Mininet, που είναι ένας
δικτυακός εξομοιωτής, για να προσομοιωθεί η τεχνολογία DASH με τη βοήθεια των κόμβων
του δικτύου του εξομοιωτή. Αρχικά, το βίντεο χωρίστηκε σε μικρά κομμάτια με τη βοήθεια
του εργαλείου ffmpeg και στη συνέχεια, υλοποιήθηκαν πειράματα που ένας πελάτης
ζητούσε το βίντεο από έναν server προσωρινής αποθήκευσης (cache server). Αν το
συγκεκριμένο τμήμα του βίντεο δεν υπήρχε εκεί, τότε στελνόταν αίτημα από τον server
προσωρινής αποθήκευσης σε έναν διακομιστή που περιείχε όλα τα τμήματα του βίντεο
(main server). Στα πειράματα αυτά εξετάστηκε και η προστιθέμενη δικτυακή κίνηση, με
τελικό συμπέρασμα ότι το περιβάλλον του Mininet προκαλεί αναπόφευκτους περιορισμούς
στη περίπτωση της δικτυακής κίνησης, καθώς παρατηρήσαμε πως το κανάλι του server
βάσης δεδομένων παρέμενε ανενεργό καθ’ όλη τη διάρκεια αιτημάτων από τον server
προσωρινής αποθήκευσης, με αποτέλεσμα να δημιουργούνται συνθήκες μη-ρεαλιστικού
δικτύου. Γι’ αυτόν τον λόγο, προβήκαμε στην υλοποίηση μιας νέας προσέγγισης,
εξαλείφοντας το Mininet περιβάλλον και δουλεύοντας πάνω σε νέες τεχνικές προσθήκης
δικτυακής κίνησης και τροποποιώντας την επικοινωνία των διακομιστών μεταξύ τους. Με
αυτόν τον τρόπο, καταφέραμε να δείξουμε σαφέστερα τους περιορισμούς της
προηγούμενης προσέγγισης αλλά και να συμπεράνουμε ότι η ύπαρξη servers προσωρινής
αποθήκευσης είναι ένα χρήσιμο εργαλείο υπό όρους αύξησης της ποιότητας εμπειρίας ενός
χρήστη. Η γενική τάση που παρατηρήθηκε ήταν ότι με την αύξηση του διαθέσιμου χώρου
αποθήκευσης, η ποιότητα αναπαραγωγής του βίντεο ανέβαινε σε κάποιο βαθμό.
Ταυτόχρονα όμως, το ποσοστό βελτίωσης αυτό, είναι άρρηκτα δεμένο με τον αλγόριθμο
επιλογής κομματιών βίντεο που χρησιμοποιείται. Για ακόμα καλύτερα αποτελέσματα λοιπόν,
θεωρείται αναγκαία η εύρεση της χρυσής τομής μεταξύ χωρητικότητας του χώρου
προσωρινής αποθήκευσης και αλγορίθμου επιλογής κομματιών.

Στην παρούσα διπλωματική παρουσιάζονται τα εξής κεφάλαια: Στο κεφάλαιο 1 αναφέρεται
η ιστορική αναδρομή της τεχνολογίας των δικτύων. Στο κεφάλαιο 2 αναλύεται η τεχνολογία
προσαρμοστικής ροής βίντεο μέσω HTTP. Στο κεφάλαιο 3 αναλύονται οι διαφορετικές
τεχνικές προσωρινής αποθήκευσης. Στο κεφάλαιο 4 παρουσιάζεται η έννοια της Ποιότητας
Εμπειρίας του χρήστη και η συσχέτισή της με πολλούς άλλους παράγοντες. Το κεφάλαιο 5
περιγράφεται αναλυτικά η διαδικασία στησίματος του περιβάλλοντος και τα διάφορα
απαραίτητα εργαλεία για την υλοποίησή μας. Το κεφάλαιο 6 αναφέρει τα πειράματα μέσω
Mininet, την τοπολογία και όλο το στήσιμο, καθώς και τους λόγους που μας οδήγησαν στην
πορεία μιας διαφορετικής προσέγγισης. Στο κεφάλαιο 7 προτείνεται η διαφορετική
προσέγγιση και παρουσιάζεται η μεθοδολογία και οι μετρικές. Επίσης, αναλύονται
διαγράμματα που εξάχθηκαν από την ανάλυση τω μετρικών. Τέλος, το κεφάλαιο 8 αφορά
τα συμπεράσματα και θέματα μελλοντικής έρευνας για βελτίωση της Ποιότητας Εμπειρίας
του χρήστη περαιτέρω.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Δίκτυα Επικοινωνιών

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Ποιότητα Εμπειρίας, Υπηρεσίες βίντεο, Dynamic Adaptive

Streaming over HTTP, Mininet, Προσωρινή Αποθήκευση

Θέλουμε να ευχαριστήσουμε για την ανεκτίμητη βοήθεια, και στήριξή τους

τις οικογένειές μας καθώς και τους φίλους μας.

CONTENTS

PREFACE .. 17

1. INTRODUCTION: NETWORK DEVELOPMENT ... 18

1.1 1G Mobile Communication System .. 18

1.2 2G Mobile Communication System .. 19

1.3 3G Mobile Communication System .. 20

1.4 4G Mobile Communication System .. 22

1.4.1 LTE Advanced .. 22

1.4.2 LTE Advanced Characteristics ... 23

1.4.3 LTE Architecture ... 26

1.4.4 OFDM/OFDMA/SC-FDMA ... 27

1.4.5 Quality of Service (QoS) in LTE ... 28

1.4.6 LTE Basic Parameters ... 29

1.5 5G Mobile Communication System .. 30

2. HTTP ADAPTIVE STREAMING ... 33

2.1 Introduction ... 33

2.2 Definition ... 33

2.3 How adaptive streaming solves the problems .. 34

2.4 Dynamic Adaptive Streaming (DASH) .. 35

2.4.1 Implementation ... 36

2.4.2 Additional Benefits .. 37

3. CACHING ... 39

3.1 Introduction ... 39

3.2 Types of caching .. 39

3.3 Caching for Video Streaming .. 40

3.3.1 Proxy caching for Video Streaming .. 40

3.3.2 CDN and video streaming .. 41

3.4 Caching in HTTP Adaptive Streaming .. 42

4. QUALITY OF EXPERIENCE (QOE) ... 44

4.1 Introduction ... 44

4.2 QoE Influencing Factors .. 44

4.3 QoE vs QoS ... 45

4.4 QoE Measurements .. 45

4.5 QoE Management ... 46

4.6 Big Data Analytics & QoE .. 47

4.7 HTTP Video Streaming influenced by QoE Factors .. 48

5. ENVIRONMENT SETUP .. 49

5.1 Introduction ... 49

5.2 System Requirements .. 49

5.2.1 Prepare Operating System (OS) .. 49

5.2.2 Java .. 49

5.2.3 Mininet .. 50

5.2.4 Mininet’s graphical user interface, MiniEdit .. 51

5.2.5 VLC Media Player .. 53

5.2.6 FFmpeg .. 56

5.2.7 Python 2.7 .. 56

5.2.8 Project on advanced content (GPAC) .. 57

6. MININET EXPERIMENTS .. 59

6.1 Preparation .. 59

6.2 Basic Client-Server Topology on Mininet .. 62

6.2.1 SimpleHTTPServer module.. 62

6.2.2 Implementation ... 63

6.3 Client- Cache Server- Main Server Topology on Mininet ... 65

6.3.1 Problem statement ... 65

6.3.2 CacheHTTPServer module .. 67

6.3.3 Caching Algorithms .. 70

6.3.4 Wireless Channel Emulation .. 70

6.3.5 Metrics .. 71

6.3.6 Raw file ... 73

6.3.7 Implementation ... 73

6.4 Limitations of the Mininet approach ... 79

7. PROPOSED SET OF EXPERIMENTS ... 80

7.1 Introduction ... 80

7.2 GBS Implementation .. 83

7.3 SWG Implementation.. 86

7.4 Automation .. 88

7.5 New Raw File and Metrics .. 89

7.6 Diagrams analysis .. 89

7.6.1 QoE metrics VS Fronthaul channel rate R1 .. 90

7.6.2 QoE metrics VS Buffer Size L .. 101

8. CONCLUSION AND FUTURE WORK ... 104

APPENDIX A ... 105

APPENDIX B ... 115

ABBREVIATIONS - ACRONYMS ... 127

REFERENCES .. 133

LIST OF FIGURES

Figure 1: Mobile Cellular Network Evolution Timeline [2] ... 18

Figure 2: From 2G to 3G [14] ... 21

Figure 3: Carrier Components ... 23

Figure 4:Types of MIMO base stations .. 24

Figure 5:A Relay Node paradigm [21] .. 26

Figure 6: Basic LTE Components .. 26

Figure 7: The Evolved Packet Core (EPC) components [23] ... 27

Figure 8: OFDM vs OFDMA ... 28

Figure 9: Simplified LTE architecture [24] .. 28

Figure 10: The QCI identifiers definition... 29

Figure 11: Comparison of key capabilities IMT-advanced and IMT-2020 30

Figure 12: A 5G network architecture [27] ... 32

Figure 13: The concept of HTTP Adaptive Streaming ... 33

Figure 14: HTTP Adaptive Streaming (HAS) ... 34

Figure 15: Video fitting to any available screen size .. 35

Figure 16: A simple DASH Implementation [32] ... 36

Figure 17: Web Browser Cache [41] .. 40

Figure 18: Client- Server connection with intermediate Proxy ... 41

Figure 19: A Content Distribution Network [45] .. 42

Figure 20: A bitrate oscillation problem .. 43

Figure 21: The IQX hypothesis diagram [49] ... 45

Figure 22: QoE Measurements .. 46

Figure 23: QoE Management Architecture ... 47

Figure 24: Taxonomy of machine learning algorithms [52] .. 48

Figure 25: HAS QoE Influence Factors .. 48

Figure 26: Correct output for JAVA 8 ... 50

Figure 27: Pingall Output of Mininet’s basic topology .. 51

Figure 28: MiniEdit main page ... 52

Figure 29: VLC Preferences (1) ... 54

Figure 30: VLC Preferences (2) ... 54

Figure 31: VLC Preferences (3) ... 55

Figure 32: Video playback ... 59

Figure 33 : The Manifest File ... 61

Figure 34: Segments created after the execution of bash script .. 61

Figure 35: Basic Miniedit Topology .. 63

Figure 36: MiniEdit’s Preferences .. 63

Figure 37: Miniedit commands ... 64

Figure 38: xterm Main Server .. 64

Figure 39: xterm Client... 64

Figure 40: Output of the HTTP Server terminal ... 64

Figure 41: Flow of Information without cache server ... 65

Figure 42: Implementation with an intermediate cache server ... 66

Figure 43: Flow of information with an intermediate cache server 67

Figure 44: Rate Traces for R1 = R2 = 5 Mbps (from R1_1.xls and R2.xls) 70

Figure 45: Rate Traces for R1 = R2 = 5 Mbps (from R1_2.xls and R2.xls) 71

Figure 46: MOS of a 1080p video .. 72

Figure 47: Enhanced topology with cache server .. 74

Figure 48: Starting the CLI ... 74

Figure 49: The cache folder (with no cache policy) .. 75

Figure 50: xterm Main Server .. 76

Figure 51: xterm Cache Server .. 76

Figure 52 : xterm s2 switch .. 76

Figure 53: xterm s3 switch ... 76

Figure 54: xterm Client... 76

Figure 55: Video playback ... 76

Figure 56: Output of the cache server terminal .. 77

Figure 57: Output of the main server terminal .. 77

Figure 58: Contents of the cache folder after the implementation 78

Figure 59: Output of an experiment ... 78

Figure 60: The metric.txt file .. 79

Figure 61: Average resolution vs time.. 81

Figure 62: Cache hits vs time .. 81

Figure 63: Number of stallings vs time ... 81

Figure 64: R1 and R2 vs time .. 82

Figure 65: The new topology without Mininet ... 82

Figure 66: Main Server command .. 84

Figure 67: Proxy Server command .. 85

Figure 68: Local Server command ... 85

Figure 69: Client command .. 85

Figure 70: Contents of cache folder after experiment and the output file 85

Figure 71: Output file format .. 86

Figure 72: Execution of the SWG proxy ... 86

Figure 73: Average resolution vs time.. 87

Figure 74: Cache hit vs time .. 87

Figure 75: Rate R1, R2 vs time .. 87

Figure 76: Example of the automation process .. 89

Figure 77: Average Resolution vs R1 (L=0) ... 90

Figure 78: Average Resolution vs R1 (L=100 MB) ... 90

Figure 79: Average Resolution vs R1 (L=1000 MB) ... 91

Figure 80: Average Altitude VS R1 for R2=5,20 Mbps (L=0 MB) 92

Figure 81: Average Altitude VS R1 for R2=5,20 Mbps (L=100 MB) 92

Figure 82: Average Altitude VS R1 for R2=5,20 Mbps (L=1000 MB) 92

Figure 83: Mean Network Throughput R1 vs R1 for L= 0 MB .. 93

Figure 84: Mean Network Throughput R1 vs R1 for L= 100MB ... 93

Figure 85: Mean Network Throughput R1 vs R1 for L= 1000MB 94

Figure 86 : Mean Network Throughput R2 vs R1 for L= 0 MB ... 95

Figure 87: Mean Network Throughput R2 vs R1 for L=100 MB ... 95

Figure 88: Mean Network Throughput R2 vs R1 for L=1000 MB 96

Figure 89: MOS vs R1 for L=0 MB ... 97

Figure 90: MOS vs R1 for L=100 MB ... 97

Figure 91: MOS vs R1 for L=1000 MB ... 98

Figure 92: Number of stallings vs R1 for L=0 MB .. 99

Figure 93: Number of stallings vs R1 for L=100 MB .. 99

Figure 94: Number of stallings vs R1 for L=1000 MB .. 100

Figure 95: Average resolution vs buffer size L ... 101

Figure 96: Mean network throughput progress vs buffer size L 102

Figure 97: Number of stallings vs buffer size for R1= 5 Mbps and R1= 20Mbps 103

LIST OF TABLES

Table 1: LTE operational parameters... 29

Table 2: Display Resolutions- Pixel Dimensions .. 55

Table 3: Used tools .. 58

Table 4: Video bitrates and sizes after the segmentation .. 60

Table 5: MOS of the available resolutions ... 72

PREFACE

The current MSc thesis was conducted in the Department of Informatics and
Telecommunications of the National and Kapodistrian University of Athens, and more
specifically under the support of the Communication Networks Laboratory of the
Telecommunications and Signal Processing sector. The thesis started being conducted in
August 2020 and ended in April 2021. Professor Lazaros Merakos, Dr. Eirini Liotou and Dr.
Dionysis Xenakis – to whom we owe special thanks - were the supervisors of this MSc
Thesis. We would also like to thank research associate Nikos Episkopos for his appreciated
help and willingness.

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 18

1. INTRODUCTION: NETWORK DEVELOPMENT

In the last few decades, all kinds of communication networks have experienced a
tremendous change in order to serve in a better way a huge number of users and
applications. The cellular wireless Generation (G) generally refers to a change in the nature
of the system, speed, technology, and frequency. Each generation has its own specification,
techniques and features which differentiate it from the previous one. However, sometimes
backward compatibility among the generations is possible.

The first generation(1G) mobile wireless communication network was analog used for voice
calls only while the second generation (2G) was the first digital approach which supported
text messaging as well. After this was 3G which provided multimedia support along with
higher data transmission rates and increased capacity. The fourth generation (4G) provides
access to a wide range of telecommunication services including advanced mobile services,
along with a support for low to high mobility application and raises the Quality of service
(QoS), increases the bandwidth and reduces the cost of resources. The 5G brings forward
a real Wireless World Wide Web (WWWW) making the Internet of Things (IoT) reality while
6G is proposed to integrate 5G with satellite networks for global coverage. Finally, 7G is
expected to deal with space roaming [1].

Figure 1: Mobile Cellular Network Evolution Timeline [2]

1.1 1G Mobile Communication System

The first generation (1G) of mobile networks was launched in the 1980s, and it was basically
a simple kind of network which provided the users only voice call capabilities and was used
by most people for a long time. The whole architecture of this model was based on the idea
of cellular networks [3].

Cellular networks are high-speed, high-capacity voice and data communication networks
with enhanced multimedia and seamless roaming capabilities for supporting cellular devices
such as mobile phones. Their characteristics may differ depending on the size and the shape
of the cells [4]. The whole geographical area is divided into cells, and every user can be

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 19

served by the nearest one. Neighboring cells are not able to share the same level of
frequency to avoid interference effects [5].

After the demonstration of the first handheld mobile cell phone by Motorola in 1973 and the
first automated commercial network by Nippon Telegraph and Telephone (NTT) in Japan in
1979, the development of the first generation of mobile network began. This first approach
consisted of 88 cells with base stations, or radio towers covering all districts of Tokyo and
the handover of the call among different cells was supported. In terms of technical
characteristics, the 1G systems were analog, they operated in the 150MHz band and calls
were automated switching without the need for a human switchboard operator [6].

Even though 1G networks were extremely revolutionary at that time, there were a lot of
drawbacks that led to the use of digital signals and the development of the next generation
of mobile networks. For example, the full analog mode of communication that 1G suggested,
resulted in inefficient use of spectrum and loss of a huge amount of resources. Furthermore,
the coverage was extremely limited, the security was totally weak, without any type of
encryption and the roaming between different operators was not supported, making the
communication between people significantly difficult [6].

Finally, the voice quality was poor because in 1G, the data can be carried by only one
channel from source to destination. This means that the two callers are not able to hear
each other simultaneously since the number of calls was limited [7].

1.2 2G Mobile Communication System

The first generation (1G) was created to make calls and not much else. Even though it was
a breakthrough, the substantial limitations kept the technology from spreading. The
appearance of the 2G network was an essential stage in the revolution of the communication
industry [8].

Second-generation (2G) mobile systems were introduced in the end of the 1980s. Compared
to first-generation systems, second-generation (2G) systems use digital multiple access
technology, such as TDMA (time division multiple access) and CDMA (code division multiple
access). Consequently, compared with first-generation systems, higher spectrum efficiency,
better data services, and more advanced roaming were offered by 2G systems. In the United
States, there were three lines of development in second-generation digital cellular systems.
The first digital system, introduced in 1991, was the IS-54 (North America TDMA Digital
Cellular), of which a new version supporting additional services (IS-136) was introduced in
1996. Meanwhile, IS-95 (CDMA One) was deployed in 1993. 2G communication is generally
associated with the global system for mobile (GSM) services [9].

The technology behind the Global System for Mobile communication (GSM) was originally
designed for operation in the 900 MHz band, it was soon adapted for 1800MHz. The
introduction of GSM into North America meant further adaptation to the 800 and 1900 MHz
bands. Over the years, the versatility of GSM has resulted in the specifications being
adapted to many more frequency bands.

GSM has a channel spacing of 200kHz and was designed principally for voice telephony,
but a range of bearer services was defined (a subset of those available for fixed line
Integrated Services Digital Networks, ISDN), allowing circuit-switched data connections at
up to 9600 bits/s. During the next few years, the General Packet Radio Service (GPRS) was
developed to allow aggregation of several carriers for higher speed, packet-switched
applications such as always-on Internet access. The first commercial GPRS offerings were
introduced in the early 2000s [10].

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 20

In order that the GSM system operates together as a complete system, the overall network
architecture brings together a series of data network identities, each with several elements.
The GSM network architecture is defined in the GSM specifications and it can be grouped
into four main areas [11]:

● Network and Switching Subsystem (NSS)

● Base-Station Subsystem (BSS)

● Mobile Station (MS)

● Operation and Support Subsystem (OSS)

Meanwhile, investigations had been continuing with a view to increasing the intrinsic bit rate
of the GSM technology via novel modulation techniques [10]. Before the 3G network came
around, interim 2.5G and 2.75G standards became available. Even though they aren’t
officially defined as wireless standards, they assisted with marketing efforts for new phones.
2.5G provided a new packet-switching technique, which offered better possibilities than the
2G technology. 2.75G provided an opportunity for a 300% speed increase. In the United
States, AT&T became the first GSM network to use 2.75G with EDGE (Enhanced Data-
rates for Global Evolution), which offers an almost three-fold data rate increase in the same
bandwidth.

The combination of GPRS and EDGE brings system capabilities into the range covered by
the International Telecommunication Union IMT-2000 (third generation) concept. It’s worth
noting that even though 2G was surpassed by 3G, 4G, and 5G technologies, it’s still widely
used around the world. For example, the European provider Vodafone is planning to support
2G until 2025. However, some companies in the USA have shut down their 2G networks
[12].

Overall, the main features of 2G and 2.5G are data speed up to 64kbps, digital signals,
services such as text messages, picture messages and MMS (Multimedia message), better
network quality and capacity [13].

1.3 3G Mobile Communication System

The need for faster speed, global compatibility and multimedia services has led to the
development of 3G systems. In an effort to consolidate existing incompatible mobile
environments into a seamless global network, ITU adopted a family of radio access methods
at its Radiocommunication Assembly in Istanbul in early May 2000. Known as International
Mobile Telecommunications-2000 (IMT-2000), this global standard was realized after years
of collaborative work between ITU and the global cellular community. At the end of May
2000, the World Radiocommunication Conference (also held in Istanbul) identified additional
frequency bands for 3G (IMT-2000) use. IMT-2000 consists of five different radio access
methods: W-CDMA (Wideband Code Division Multiple Access), CDMA20001X, TD-
SCDMA, EDGE (Enhanced Data Rates for GSM Evolution) and DECT (Digitally Enhanced
Cordless Telecommunications) [13].

The evolutionary path from 2G to 3G has been mapped out for existing networks (figure 2).
Migration differs depending on the existing 2G network. In general, W-CDMA would require
a brand-new network to be installed whereas CDMA2000 1X requires less investment as an
upgrade from existing second-generation CDMA networks. Among the five radio access
technologies approved as IMT-2000, W-CDMA and CDMA2000 1X have gained the most
support from regulators, mobile network operators and equipment manufacturers [14].

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 21

Figure 2: From 2G to 3G [14]

Among the terrestrial systems of the IMT-2000 family the most successful 3rd generation
mobile cellular technology was developed by the 3rd Generation Partnership Project (3GPP)
under the name Universal Mobile Telecommunications System (UMTS). There are/were
also other names used for this system: Universal Terrestrial Radio Access (UTRA), Freedom
of Mobile Multimedia Access (FOMA), 3GSM, etc. UMTS is the term Europe uses to refer
to 3G networks [14], while CDMA2000 is the name of American 3G variant. Also, the IMT-
2000 has accepted the new 3G standard from China, i.e. TD-SCDMA, is the air-interface
technology for UMTS.

UMTS is offering greater spectral efficiency than GSM and has 2 modes:

1) an FDD mode (Frequency Division Duplex) where uplink (user equipment UE =>
UTRA network = UTRAN) and downlink (UTRAN => UE) communication are
separated in the frequency domain via different frequency bands; this mode is also
called Wideband CDMA (WCDMA) or Direct Spread CDMA.

2) a TDD mode (Time Division Duplex) where uplink (UE => UTRAN) and downlink
(UTRAN => UE) communication are separated in the frequency domain via different
time slots; note: The 3.84Mchip/s option was also called TD-CDMA or HCR (high chip
rate) TDD.

Both modes use direct sequence CDMA (code division multiple access) to separate the
different users, i.e. each symbol of one user is multiplied by a user specific spreading code.
With this CDMA technique multiple users can transmit in the same (larger) band and the
decoder, knowing the user's spreading code, can pick up the data of this user. The data of
other users appears as noise in this decoding process.

Using a wide frequency band makes the system inherently resistant to many of the aspects
of radio communication which plague narrow band systems, such as burst-y noise, multipath
reflections, and other interfering transmissions [15].

The technology was improved to allow data up to 14 Mbps and more using packet switching.
It uses Wide Band Wireless Network with which clarity is increased. It also offers data
services, access to television/video, and new services like Global Roaming. It operates at a
range of 2100MHz and has a bandwidth of 15-20MHz used for high-speed Internet service,
video chatting. The main features of 3G are speed of 2 Mbps, introduction of smartphones,
increased bandwidth and data transfer rates to accommodate web-based applications,
audio and video files, faster communication, large email messages, high speed web/more
security/video conferencing/3D gaming, large capacities and broadband capabilities and TV
streaming/mobile TV/Phone calls [13].

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 22

Even though the 3G technology includes many upgrades in matters of security compared to
2G, the main goal for the domination of a global prototype was not achieved, apart from
America where three incompatible systems were developed. The data transmission rates
were not as expected, as voice cannot be transferred through the IP. Unfortunately, the 3G
network did not respond to the promises of its manufacturers. The technology of CDMA and
the architecture of UMTS was abandoned because there was a need for higher data rates,
bigger spectral efficiency, improved packet switching system, high quality services and lower
cost of infrastructure. However, this was the initial and trial version of the 3G experience.

1.4 4G Mobile Communication System

UTRA (Universal Terrestrial Radio Access) as a 3rd generation system, with the
enhancements provided by High-Speed Packet Access (HSPA), for both downlink and
uplink, will remain highly competitive for several years [16]. During the early 2000’s, there
had been several talks and proposals for 4G. By that time, it came to a mutual decision that
the next generation should be more of an “evolution” instead of a revolution as in the case
of the previous cellular networks [17]. That is why 4G is based on the previous 3G network,
only enhanced with a new technology called Long Term Evolution or LTE. So, the industry
that has developed the 3GPP technologies, launched the project in Dec. 2004 of LTE to
study requirements for a new air interface called Evolved UTRA (E-UTRA). The terms LTE
and E-UTRA are synonymous, however the radio specifications talk rather about E-UTRA
[16].

LTE is based on the GSM/EDGE and UMTS/HSPA technologies. It increases the capacity
and speed using a different radio interface together with core network improvements. It is
the upgrade path for carriers with both GSM/UMTS networks and CDMA2000 networks. The
different LTE frequencies and bands used in different countries mean that only multi-band
phones are able to use LTE in all countries where it is supported. The standard is developed
by the 3GPP and is specified in its Release 8 document series, with minor enhancements
described in Release 9. LTE is sometimes known as 3.95G and has been marketed both as
"4G LTE” but it does not meet the technical criteria of a 4G wireless service, as specified in
the 3GPP Release 8 and 9 document series for LTE Advanced. The requirements were
originally set forth by the ITU-R organization in the IMT Advanced specification. However,
due to marketing pressures and the significant advancements that WiMAX, Evolved High
Speed Packet Access, and LTE bring to the original 3G technologies, ITU later decided that
LTE together with the aforementioned technologies can be called 4G technologies. The LTE
Advanced standard formally satisfies the ITU-R requirements to be considered IMT-
Advanced [18].

1.4.1 LTE Advanced

LTE Advanced is a mobile communication standard and a major enhancement of the LTE
standard. It was formally submitted as a candidate 4G to ITU-T in late 2009 as meeting the
requirements of the IMT-Advanced standard and was standardized by the 3GPP in March
2011 as 3GPP Release 10 [19].

 LTE-A is the latest and most advanced technology for LTE. From now on all subsequent
improvements will be called LTE-A. LTE-A speeds reach 1 Gbps downlink and 500 Mbps
uplink and have additional LTE-like mechanisms such as carrier aggregation and relaying.
According to 3GPP in the release for LTE-A specs we can have downlink speeds of 1 Gbps
and uplink speeds of 500 Mbps. Additionally, less than 5ms Round Trip Time is also
reachable.

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 23

1.4.2 LTE Advanced Characteristics

The target figures for data throughput in the downlink is 1 Gbps for 4G LTE Advanced. Even
with the improvements in spectral efficiency it is not possible to provide the required headline
data throughput rates within the maximum 20 MHz channel. The only way to achieve the
higher data rates is to increase the overall bandwidth used. IMT Advanced sets the upper
limit at 100 MHz, but with an expectation of 40 MHz being used for minimum performance.
For the future it is possible the top limit of 100 MHz could be extended.

It is well understood that spectrum is a valuable commodity, and it takes time to reassign it
from one use to another. So, the cost of forcing users to move is huge as new equipment
needs to be bought. Accordingly, as sections of the spectrum fall out of use, they can be
reassigned. This leads to significant levels of fragmentation.

1) Carrier Aggregation:

To an LTE terminal, each component carrier appears as an LTE carrier, while an
LTE-Advanced terminal can exploit the total aggregated bandwidth. There are a
number of ways in which LTE carriers can be aggregated:

● Intra-band: This form of carrier aggregation uses a single band. There
are two main formats for this type of carrier aggregation:

o Contiguous: The Intra-band contiguous carrier aggregation is
the easiest form of LTE carrier aggregation to implement.
Here the carriers are adjacent to each other.

o Non-contiguous: Non-contiguous intra-band carrier
aggregation is somewhat more complicated than the instance
where adjacent carriers are used. No longer can the multi-
carrier signal be treated as a single signal and therefore two
transceivers are required. This adds significant complexity,
particularly to the UE where space, power and cost are prime
considerations.

● Inter-band non-contiguous: This form of carrier aggregation uses
different bands. It will be of particular use because of the fragmentation
of bands – some of which are only 10 MHz wide. For the UE it requires
the use of multiple transceivers within the single item, with the usual
impact on cost, performance, and power. In addition to this there are
also additional complexities resulting from the requirements to reduce
intermodulation and cross modulation from the two transceivers.

Figure 3: Carrier Components

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 24

The current standards allow for up to five 20 MHz carriers to be aggregated, although in
practice two or three is likely to be the practical limit. These aggregated carriers can be
transmitted in parallel to or from the same terminal, thereby enabling a much higher
throughput to be obtained [20].

2) MIMO, Multiple Input Multiple Output – or spatial multiplexing

Multiple Input Multiple Output antennas, which stands for MIMO, is a basic technique in
which multiple antennas are established. MIMO is used to increase the overall bitrate
through transmission of two (or more) different data streams on two (or more) different
antennas - using the same resources in both frequency and time, separated only through
the use of different reference signals - to be received by two or more antennas [21]. In LTE-
A base stations have up to 8 antennas and terminals, and up to 4 antennas. As far as how
multiple antennas can be used, there are three possibilities:

● Cooperative MIMO: Let's assume that a terminal is on the border of 3 different base
stations, and each of them uses 2 of its 8 antennas to transmit the signal. The terminal
receives the same weak signal 6 times because it is not very close to one of all the 3
base stations. In LTE-A, the terminal is capable of exploiting all these signal portions
so as to compose a high-quality signal.

● MU-MIMO (Multiple User MIMO): In this case a base station is able to send 2 different
signals to 2 users in order to provide more information to both of them.

● SU-MIMO (Single User MIMO): In this case a base station can send either the same
signal 4 times from its 4 antennas in order to strengthen it (so it will have fewer errors
and faster speeds) or send 4 completely different signals where the one will be a
continuation of the other.

Figure 4:Types of MIMO base stations

3) Heterogeneous Networks and eICIC (enhanced Inter-Cell Interference Coordination)

Generally, there are many interference problems. In order to address this problem, eICIC
(enhanced Inter-Cell Interference Coordination) is used, where base stations can
communicate with each other and coordinate:

● In Time: It is the most common method used. In this method there are the Almost
Blank Subframes (ABSFs), as they are called, which leave the macro cell deliberately
empty and inform the femtocell to send to them exclusively so that there is no
interference.

● In Frequency: In this case the stations understand the user who is having the
problem and give him another frequency (in the same bandwidth) to communicate
with no problem.

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 25

● In Power: In this case the base stations communicate after the problem and the
femtocell emission power is reduced which either way has always the best signal and
as a result its power loss does not cause any problems.

4) Coordinated Multi-Point transmission and reception (CoMP)

Coordinated multipoint transmission and reception refers to a wide range of techniques that
enable dynamic coordination or transmission and reception with multiple geographically
separated evolved base stations, called eNodeB (eNB). Its aim is to enhance the overall
system performance, utilize the resources more effectively and improve the end user service
quality.

4G LTE CoMP requires close coordination between several geographically separated eNBs.
They dynamically coordinate to provide joint scheduling and transmissions as well as
proving joint processing of the received signals. In this way a UE at the edge of a cell can
be served by two or more eNBs to improve signals’ reception / transmission and increase
throughput particularly under cell edge conditions.

In essence, 4G LTE CoMP, Coordinated Multipoint falls into two major categories [22]:

● Joint processing: Joint processing occurs where there is coordination between
multiple entities - base stations - that are simultaneously transmitting or receiving to
or from UEs.

● Coordinated scheduling or beamforming: This often referred to as CS/CB
(coordinated scheduling / coordinated beamforming) is a form of coordination where
a UE is transmitting with a single transmission or reception point - base station.
However, the communication is made with an exchange of control among several
coordinated entities.

5) Relay nodes (Broadcasting)

In LTE-Advanced, the possibility for efficient heterogeneous network planning – i.e. a mix of
large and small cells - is increased by introduction of Relay Nodes (RNs). The Relay Nodes
are low power base stations that will provide enhanced coverage and capacity at cell edges,
and hot-spot areas and it can also be used to connect to remote areas without fiber
connection. The Relay Node is connected to the Donor eNB (DeNB) via a radio interface,
Un, which is a modification of the E-UTRAN air interface Uu. Hence, in the Donor cell the
radio resources are shared between UEs served directly by the DeNB and the Relay Nodes.
When the Uu and Un use different frequencies the Relay Node is referred to as a Type 1a
RN, for Type 1 RN Uu and Un utilize the same frequencies (figure 5). In the latter case there
is a high risk for self-interference in the Relay Node, when receiving on Uu and transmitting
on Un at the same time (or vice versa). This can be avoided through time sharing between
Uu and Un or having different locations of the transmitter and receiver. The RN will to a large
extent support the same functionalities as the eNB – however the DeNB will be responsible
for MME selection.

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 26

Figure 5:A Relay Node paradigm [21]

1.4.3 LTE Architecture

The architecture of LTE is comprised by 3 main components:

Figure 6: Basic LTE Components

1) the User Equipment- UE, which internal architecture is identical to the one used by
UMTS and GSM.

2) the Evolved UMTST Terrestrial Radio Access Network (E-UTRAN), which handles
the radio communications between the mobile and the evolved packet core . It only
has one component, the eNB. Each eNB is a base station that controls the mobiles
in one or more cells. The base station that is communicating with a mobile is known
as its serving eNB. Each eNB connects with the EPC by means of the S1 interface
and it can also be connected to nearby base stations by the X2 interface, which is
mainly used for signaling and packet forwarding during handover.

3) the Evolved Packet Core (EPC) which belongs to the core network. The EPC is
comprised by several components like the PDN Gateway which is responsible for
communication with the outside world, and the Mobility Management Entity (MME)
which controls the high-level operation of the mobile in terms of signaling messages.
A brief presentation of all the EPC’s components is shown in the below figure.

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 27

Figure 7: The Evolved Packet Core (EPC) components [23]

1.4.4 OFDM/OFDMA/SC-FDMA

In OFDM (Orthogonal Frequency Division Multiplexing) systems, the original bandwidth is
subdivided into multiple subcarriers. Each of these subcarriers can then be individually
modulated. Typically, in OFDM systems, we can have hundreds of subcarriers with a content
spacing between them (15KHz on the LTE case). Since the multiple subcarriers in OFDM
are transmitted in parallel, it’s possible for each one to transmit with a lower symbol rate.
That improves robustness on the technology for mobile propagation conditions.

The chain to generate an OFDM signal starts by analyzing the symbols that need to be
transmitted, after they are modulated (in LTE the modulation can be QPSK, 16QAM,
64QAM). Then they are used as input bands for an Inverse Fast Fourier Transform (IFFT)
operation. This operation produces OFDM symbols, which will be transmitted. Notice that a
conversion from the frequency to the time domain was made when the IFFT was used.
Before the transmission, however, a cyclic prefix is included in the OFDM symbols in order
to avoid inter-symbol interference. This cyclic prefix in LTE has 5.2us on the first symbol,
4.7us for the rest of them and an extended cyclic prefix for larger cells. On the receiving side
of the OFDMA system we should expect an FFT operation that will convert the symbol to
the frequency domain again.

The main difference between an OFDM and an OFDMA (Orthogonal Frequency Division
Multiple Access) system is the fact that in the OFDM the user is allocated on the time domain
only while using an OFDMA system the user would be allocated by both time and frequency.
This is useful for LTE since it makes it possible to exploit frequency dependence scheduling.
For instance, it would be possible to exploit the fact that user 1 might have a better radio link
quality on some specific bandwidth area of the available bandwidth.

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 28

Figure 8: OFDM vs OFDMA

It is not possible to use OFDMA on the uplink since, as told before, it presents a high Peak-
to-average Power Ratio. SC-FDMA (Single Carrier FDMA) presents the benefit of a single
carrier multiplexing of having a lower Peak-to-average Power Ratio. On SC-FDMA before
applying the IFFT the symbols are pre coded by a DFT (Discrete Fourier Transform). This
way each subcarrier after the IFFT will contain part of each symbol. Looking at the figure
below, it is possible to see the difference between SC-FDMA and OFDMA. Also, it is possible
to notice that the inter-symbol interference will be reduced since all subcarriers on a period
of time represent the same symbol.

Figure 9: Simplified LTE architecture [24]

1.4.5 Quality of Service (QoS) in LTE

LTE Quality of Service (QoS) has become an important part of network planning & design
when deploying 4G/LTE fixed broadband wireless for data & voice services. There are
subscribers who use LTE services for critical operations (e.g. voice calls, bank transactions,
hospital operations), and there are subscribers who just want to enjoy premium Internet &
applications experiences. LTE was designed to meet these increased data and application
demands with reliable connections and low cost of deployment. As a result, the QoS was a
matter of high priority.

The QoS on LTE is provided through the bearers. “Bearer” means “Carrier” which takes and
carries the information from one point to another point. EPS (Evolved Packet System)
bearer, provides user plane IP connectivity between UE and the Packet Data Network
Gateway (PGW), in a virtual way. An initial EPS bearer is established when the UE registers
with the LTE network using an attach procedure which is called “EPS Bearer Activation”.
This bearer is known as the default EPS bearer. There are also other bearers which are

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 29

called dedicated. A dedicated bearer is established when there is a need to provide better
QoS to a specific service like a Voice over Internet Protocol (VoIP) or a video [25].

Bearers can be characterized based on the resource type as GBRs (Guaranteed Bit Rate)
or Non-GBRs. For an EPS bearer, with a GBR resource type the bandwidth of the bearer is
guaranteed. Only a dedicated EPS bearer can be a GBR type bearer and no default EPS
bearer can be GBR type. On the other hand, having a non-GBR resource type means that
the bearer is a best effort type bearer and its bandwidth is not guaranteed. A default EPS
bearer is always a Non-GBR bearer, whereas a dedicated EPS bearer can be either GBR
or non-GBR.

From QoS perspective, there are 9 different classes of bearers. Each class is characterized
firstly by the QCI (QoS Class Identifier) parameter which is an integer from 1 to 9 that
indicates nine different QoS performance characteristics of each IP packet. For example,
QCI 1 and 9 are defined as follows:

Figure 10: The QCI identifiers definition

Each class is also characterized by the ARP (Allocation and Retention Priority) indicator as
well, which defines the behavior of the network when the traffic is huge. ARP is an integer
value ranging from 1 to 15, with the 1 being the highest level of priority in high congestion
situations. [26]

1.4.6 LTE Basic Parameters

Table 1: LTE operational parameters

Parameters Description

Frequency range UMTS FDD bands and TDD bands

Duplexing FDD, TDD, half-duplex FDD

Mobility 350 km/h

Channel Bandwidth (MHz) 1.4, 3, 5, 10, 15, 20

Modulation Schemes QPSK, 16QAM, 64QAM

Multiple Access Schemes UL: SC-FDMA supports 50Mbps+
(20MHz spectrum)

DL: OFDM supports 100Mbps+ (20MHz
spectrum)

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 30

Multi-Antenna Technology UL: Multi-user collaborative MIMO

DL: Tx AA, spatial multiplexing, CDD, max
4x4 array

Peak data rate in LTE UL: 75 Mbps- 20MHz BW

DL: 150 to 300 Mbps- 20MHz BW

Coverage
5 - 100km with slight degradation after
30km

Latency Less than 10 ms

1.5 5G Mobile Communication System

With 4G approaching its limits, the 5G era is already upon us. Services are already available
in some regions all around the world, and several rollouts have been planned globally in the
years ahead. As we already know, the fifth generation of mobile communication systems
isn’t just a simple upgrade like its predecessors, but it changes the way devices connect to
the network or to one another. As seen in Figure 11, this is a comparison of key capabilities
of IMT-Advanced (4th generation) with IMT-2020 (5th generation) according to ITU-R
M.2083.

The rapid rise of the mobile data traffic, mostly due to video streaming, and the growing
number of mobiles and increased data forced the networks to increase the energy efficiency
and made the 5G networks necessary. Furthermore, the Internet of Things (IoT), which
purpose is to offer new services and applications in such a way to bridge the physical world
with the virtual one, requires networks that must handle billion more devices efficiently [27].

Figure 11: Comparison of key capabilities IMT-advanced and IMT-2020

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 31

The 5G communication system managed to overcome some significant challenges in terms
of network features that no other type of network was able to do so:

1) Higher network capacity: Network capacity is strongly connected with the number of
devices that a network is able to support. 5G networks have upped the devices that
can be supported to 1.000.000, while 4G networks remain at 100.000 per km2. That
means that the need of capacity is greater when we move from 4G to 5G. This is
because in IoT applications, everything will be connected even shoes. According to
communication principles, the shorter the frequency, the larger the bandwidth. So, in
order to deliver greater capacity, 5G will use new high bands known as millimeter
waves (between 30GHz and 300GHz) as well as underutilized UHF frequencies
between 300 MHz and 3 GHz. And to maintain a balance with coverage and capacity,
it will leverage the mid-bands from 4G networks (1 GHz to 6 GHz).

2) Higher data transmission rate up to 1 Gbps by using 25-QAM Modulation and coding
schemes. However, 5G download speed and other features may differ widely by area.
For instance, average 5G speed measures done in 2019 range from 220 Mbps in Las
Vegas to 950 Mbps in Minneapolis and Providence.

3) Low latency: Latency is the time it is needed for all the appropriate connections to be
made (lag time). With the 5G approach, latency will be almost nothing, lower than a
millisecond. This would be the key factor for a variety of breakthroughs such as
autonomous vehicles or remote surgeries.

4) Sustainable costs for providers: The operators would be able to offer new services
and applications, with the minimum cost.

5) Consistent Quality of Experience (QoE): The QoE (e.g., the measure of the delight
or annoyance of a customer's experiences with a service) will increase by providing
low latency, high bandwidth, and network traffic optimization techniques [28].

Perhaps the key ingredient enabling the full potential of 5G architecture to be realized is
network slicing. This technology adds an extra dimension to the Network Function
Virtualization (NFV) domain by allowing multiple logical networks to simultaneously run on
top of a shared physical network infrastructure. This becomes integral to 5G architecture by
creating end-to-end virtual networks that include both networking and storage functions.

As a result, the operators can effectively manage diverse 5G use cases with differing
throughput, latency and availability demands by partitioning network resources to multiple
users. Network slicing becomes extremely useful for applications like the IoT where the
number of users may be extremely high, but the overall bandwidth demand is low. Each 5G
vertical will have its own requirements, so network slicing becomes an important design
consideration for 5G network architecture [29].

As seen in figure 12, this is considered the general architecture of 5G networks:

https://blog.viavisolutions.com/2017/08/22/network-slicing-enabling-the-5g-future/

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 32

Figure 12: A 5G network architecture [27]

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 33

2. HTTP ADAPTIVE STREAMING

2.1 Introduction

Over the last few years, the delivery of videos, music or other multimedia content became
more crucial than ever. Nowadays, it is considered that video streaming applications are
responsible for more than half of the Internet traffic. To enable video streaming over the
Internet in a best-effort way, the concept of HTTP Adaptive Streaming (HAS) was
introduced. As shown in figure 13, video content is encoded at different quality levels.

Figure 13: The concept of HTTP Adaptive Streaming

Each quality level is determined by its corresponding average bitrate. In order to adaptively
stream media, we need to split the media up into chunks, so the content is divided in
segments that have a typical duration (most commonly one to ten seconds). Each segment
can be decoded independently of other segments. A HAS client initiates a new session by
downloading a manifest file. This manifest file is used to hold the information and description
of the various streams and the bandwidths they are associated with. Based on the network
conditions and the current buffer-filling level, the Rate Determination Algorithm (RDA) in the
HAS client determines the quality for the next segment download. The objective of the RDA
is to optimize the global Quality of Experience (QoE) determined by the occurrence of video
freezes, the average quality level, and the frequency of quality changes.

The main advantage of HAS over progressive download and common real-time streaming
is that it is able to adapt any video quality according to the available bandwidth so as to
avoid video stallings. Consequently, HAS facilitates video streaming over a best-effort
network. In addition, HTTP-based video streams can easily traverse firewalls and reuse the
already deployed HTTP infrastructure such as HTTP servers, HTTP proxies, and Content
Delivery Network (CDN) nodes. Because of these advantages, major players such as
Microsoft, Apple, Adobe, and Netflix massively adopted the adaptive streaming paradigm
[30].

2.2 Definition

Adaptive streaming or progressive streaming is a new streaming approach that it is designed
to deliver multimedia to the user in the most efficient way possible and in the highest
available quality for each specific user. The term “bitrate” is often used to describe the speed

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 34

of the Internet connection, which is why adaptive streaming is also called adaptive bitrate
streaming. A fast Internet connection has a higher bitrate than a slow Internet connection.
Bitrate is literally the rate at which bits of data travel to the users’ machine. To explain
adaptive streaming as simply as possible it is best to start by explaining what adaptive
streaming is not.

A progressive video stream is simply one single video file, usually an .mp4 or any other
format, being streamed over the Internet. The progressive video can be stretched and
squashed to fit different screen sizes, but regardless of the device playing it, the video file
will not change at all. The figure 14 below shows the journey of a 720p video from a server
to a web client, pointing that the file will remain the same. [31]

Figure 14: HTTP Adaptive Streaming (HAS)

2.3 How adaptive streaming solves the problems

There are two immediate problems when progressive streaming is used. The first is quality.
Obviously, a video that is only 1280 x 720 will never play at correct quality levels on a screen
that is 1920 x 1080px. It will be stretched and pixelated.

A solution to the quality problem is not very complex. Adaptive streaming allows the video
provider to create a different video for each of the resolutions that he or she wishes to target.
The figure 15 below very simply shows the way that we can stream any video file to fit
specific screen sizes, ensuring that the viewer always receives a video that will not look
deprecated.

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 35

Figure 15: Video fitting to any available screen size

The second problem is buffering which is an uncomfortable situation for all the users when
the video pauses sequentially. Buffering happens commonly when there is an unstable
Internet connection. Consequently, the video has to pause several times because it cannot
be downloaded quickly enough, in order to wait for more data and then start downloading
again. Most videos play at 24 frames per second, so the Internet connection needs to
download at least 24 frames every second to avoid buffering. This problem is very common,
especially on mobile devices, where the connection can vary greatly depending on the user’s
location and can cause bad user experience.

Adaptive streaming can resolve this second buffering problem by “adapting” to the speed of
the user’s Internet connection. A small video can be downloaded faster than a large video,
so if a user has a slow Internet connection, an adaptive video stream will switch to a smaller
video file size to keep the video playing. From a user's perspective, it is preferable to watch
a few minutes of lower quality video in order to avoid buffering, than to sit and watch a
spinning icon until the stream catches up [31].

2.4 Dynamic Adaptive Streaming (DASH)

MPEG (Motion Picture Expert Group) issued a Call for Proposal for an HTTP streaming
standard in April 2009. In the two years that followed, MPEG developed the specification
with participation from many experts and with collaboration from other standard groups, such
as the Third Generation Partnership Project (3GPP). More than 50 companies were involved
— Microsoft, Netflix, and Adobe included — and the effort was coordinated with other
industry organizations such as studio-backed digital locker initiator Digital Entertainment
Content Ecosystem, LLC (DECE), OIPF, and World Wide Web Consortium (W3C). This
resulted in the MPEG-DASH standard being developed [32].

MPEG-DASH (Dynamic Adaptive Streaming Over HTTP) is a flexible bitrate streaming
technique. MPEG has developed quite a few extensively used multimedia standards,
including MPEG-21, MPEG-7, MPEG-4 and MPEG-2. Their newest standard MPEG-DASH
is an effort to resolve the intricacies of media delivery to various devices with an integrated
common standard. When media content is delivered from conventional HTTP web servers,
MPEG-DASH empowers high quality streaming of this media content over the Internet.

Just like Apple’s HTTP Live Streaming (HLS) solution, MPEG-DASH can truly split a video
file into small HTTP-based file segments before it is set to play through a stream. As a
stream is playing, without causing disruption, each of these components can be combined

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 36

into the stream. Especially, this is suitable for users who are working on a sluggish network
because MPEG-DASH was developed to change up the bit rate delivery for these streams,
giving users with a slower Internet connection a higher speed rate.

For video content producers, DASH is an amazingly attractive technology. A unique
standard which allows them to encrypt once, and then distribute securely to a wide range of
players, from desktop through HTML5 or plug-ins to the mobile and Over the Top (OTT)
users. Without any special provisions, it also enables the deployment of the streaming
services by utilizing the existing inexpensive and wide-spread Internet set-up. It supports
both live streaming and on-demand. MPEG-DASH also works flawlessly with several DRM
solutions, thus protecting the rights of sports and movie producers [33].

2.4.1 Implementation

The image below illustrates a media streaming scenario between a simple HTTP server and
a DASH client. In figure 16, the multimedia content is captured and stored on an HTTP
server and is delivered using HTTP. The content exists on the server in two parts: Media
Presentation Description (MPD), which describes a manifest of the available content, its
various alternatives, their URL addresses, and other characteristics; and segments, which
contain the actual multimedia bitstreams in the form of chunks, in single or multiple files.

Figure 16: A simple DASH Implementation [32]

The MPEG-DASH Media Presentation Description (MPD) is basically an XML document
containing information about media segments, their relationships and information necessary
to choose between them, and other metadata that may be needed by clients. MPD’s
structure is the following [34]:

● Periods, contained in the top-level MPD element, describe a part of the content with
a start time and duration. Multiple Periods can be used for scenes or chapters, or to
separate ads from program content.

● Adaptation sets, which contain a media stream or a set of media streams

● Representations allow an Adaptation Set to contain the same content encoded in
different ways. In most cases, Representations will be provided in multiple screen

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 37

sizes and bandwidths in order to allow clients to request the highest quality content
that they can play without waiting to buffer or wasting bandwidth.

● Sub representations contain information that only applies to one media stream in a
Representation. They also provide information necessary to extract one stream from
a multiplexed container, or to extract a lower quality version of a stream.

● Media segments are the actual media files that the DASH client plays, generally by
playing them back-to-back as if they were the same file. Media Segment locations
can be described using BaseURL for a single-segment Representation, a list of
segments (SegmentList) or a template (SegmentTemplate).

● Index Segments come in two types: one Representation Index Segment for the
entire Representation which is always a separate file, or a Single Index Segment per
Media Segment which can be a byte range in the same file as the Media Segment.

In order to play the content, the DASH client first requests the MPD file from the server. The
MPD can be delivered in various ways such as via HTTP or email. By parsing the MPD, the
DASH client knows all the information about the program timing, media-content availability,
media types, resolutions, minimum and maximum bandwidths, and the existence of various
encoded alternatives of multimedia components, accessibility features and required digital
rights management (DRM), media-component locations on the network, and other content
characteristics. The client capitalizes the information and selects the appropriate encoded
alternative in order to start streaming the content by fetching the segments using HTTP GET
requests.

After appropriate buffering to allow for network throughput variations, the client continues
fetching the subsequent segments but keeps on monitoring the network bandwidth
fluctuations. Depending on its measurements, the client decides how to adapt to the
available bandwidth by fetching segments of different bitrates to avoid buffering.

The MPEG-DASH specification only defines the MPD and the segment formats. The delivery
of the MPD and the media encoding formats containing the segments, as well as the client
behavior for fetching, adaptation heuristics, and playing content, are outside of MPEG-
DASH’s scope [32].

2.4.2 Additional Benefits

One of the things that makes DASH streaming unique is its support for Encrypted Media
Extensions (EME) and Media Source Extension (MSE) [30]. They are standards-based APIs
for creating DRM schemes in the browser, generally for use with HTML5 & MPEG-DASH.
Digital rights management (DRM) is a term for access control technologies that are used by
hardware manufacturers, publishers, copyright holders and individuals to limit the use of
digital content. The term is used to describe any technology that inhibits the use of digital
content that is not desired or intended by the content provider and does not generally refer
to other forms of copy protection, which can be circumvented without modifying the file or
device, such as serial numbers or key files [35].

MSE is an API standard for JavaScript that generates video streams for playback over
HTML5 using standard media tags. JavaScript acts as the intermediary for the streams
which can be either live or on-demand. Because of this, video players can operate without
the use of a plug-in and enables leading streaming standards like HLS, time shifting, and
alternate audio tracks. MSE is not specific to any codec, container, or DRM scheme, so it
can work with any format the browsers support, creating the opportunity for seamless cross-
platform playback.

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 38

EME is a JavaScript API that is part of a larger content protection and delivery system for
HTML5. EME uses Content Decryption Modules (CDM) which are built into the browser, but
function independently of the browser. This was a requirement from the media and
entertainment industry since the browser is viewed as insecure and untrusted. The CDM is
the trusted component that content owners rely on for copyright protection. The DRM EME
uses a Key System instead of what is traditionally referred to as a DRM scheme. The Key
System is the component of the CDM that handles encryption and decryption of content. In
the case of the web browser, each browser would have its own unique key system, which
ensures cross browser compatibility [32].

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 39

3. CACHING

3.1 Introduction

With widespread penetration of the broadband Internet, multimedia service is getting
increasingly popular among users. Video streaming is considered to be a major source of
Internet traffic today and its usage continues to grow at a rapid rate. Being a very bandwidth-
consuming kind of application, video traffic is forecasted to represent 82% of all Internet
traffic by 2021 up from already observed 60% in 2016. Furthermore, Cisco predicts that we
expect a huge increase in virtual reality and augmented reality traffic by 2021 [36].

To cope with this new and massive source of traffic, operators have proposed a lot of
methods in order to reduce the amount of traffic traversing their networks and serve all the
customers in a better way. One of the basic techniques to decrease the volume of video
traffic circulating in the networks is what we call caching which allows every single user to
efficiently reuse previously retrieved or computed data [37].

Caching is actually an industry-recognized technology that has been employed in various
areas of the computer and networking industry for quite some time and it is widely used for
improving user response time and minimizing bandwidth utilization. Although there are many
different ways of implementing caching, this technology is a fairly simple concept. In fact, it
is the process of storing copies of frequently used data in an easily accessible and temporary
location so that time and resources are saved due to the fact that data does not have to be
retrieved from the original source (e.g. from a server). Because time and resources are
always a matter of great concern in the computer and networking industry, caches exist
everywhere and are used in all high-performance systems.

Caches are found in both software and hardware. In fact, the CPU of every networking
device such as a router or a switch takes advantage of caching in order to speed memory
access. Certainly, several hundred million devices utilize cache technology in their
processor, which illustrates the importance of caching, even at the hardware level [38].

3.2 Types of caching

Despite the fact that all the proposed caching mechanisms have the same purpose (e.g.,
reducing the loading time and minimizing the bandwidth), there are a lot of differences
among them in terms of implementation. What follows are short details on each of those
types of caching.

● Page Cache is a system that temporarily stores data such as web pages, images,
and similar media content when a web page is loaded for the first time. It remembers
the content and can quickly load the content each time something is requested by the
user. When a user visits a page for the first time, a site cache commits selected
content to memory. When that same page is visited again, the site cache can recall
the same content, and then load it much quicker when compared to the first visit.
Each visit to the same page is also loaded just as quickly from the cache [39].

● Web Browser Cache is used by the most widely used web browsers and it is founded
on almost all PCs (figure 17). For example, Google Chrome or Mozilla Firefox have
web caches for storing requested objects so that the same objects do not need to be
retrieved multiple times from the Web server. A browser cache can save temporarily
HTML pages, JavaScript scripts, images, or other types of multimedia content. In this
type of caching, the end user is able to clear out its browser’s cache whenever he
wants [40].

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 40

Figure 17: Web Browser Cache [41]

● Server Cache is completely different from the ones mentioned above, because,
instead of just storing temporary content, it is fully handled by the server without the
involvement of any end user or browser. There are a lot of types of server caching
such as Object Caching (or Proxy Caching) where the client sends a request for a
wanted object to a server and this request is inspected by an intermediate device that
is in between the client and origin server(e.g., a proxy) [40].

● Distributed Caching comprises of a cluster of cache memories which may be
distributed over a large geographical area. Distributed caching is primarily used by
the big timers such as Google and Facebook who have a global audience and
experience in high traffic volume. With the help of distributed caching, such
companies can serve user requests without fail, regardless of the user’s geographical
location. Thanks to a wide network of caches used in this type of caching, there is
virtually an infinite amount of data that can be cached and served when requested by
the user [41].

3.3 Caching for Video Streaming

3.3.1 Proxy caching for Video Streaming

A Video on Demand system (VoD) system, which provides service for users, typically
consists of two main components: the central server and clients. The central server has a
large storage space to store all the available videos for clients connected via a wide area
network (WAN) or a local area network (LAN). In such a framework, all the requests from
clients are handled at the central server. The request process starts with generating a
request message from clients to the central server. In response to the client’s request, the
central server serves each request individually with a dedicated channel. Although this
operation is simple to implement, the whole architecture is excessively expensive and
without scalability due to the fact that the bandwidth bottleneck of the central server limits
the number of clients it can serve which will lead to significant drop of the user’s QoE.
Furthermore, the introduction of long service latencies is another critical factor affecting the
system performance, which is especially crucial when the video is transmitted over the WAN
[42].

To leverage the workload of the central server and reduce the service latencies, an
intermediate device called proxy is placed between the central server and clients who make
requests to download their desirable content (figure 18). In the proxy-based architecture, a

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 41

portion of video is cached in the proxy [40]. Upon receiving the request, the proxy checks to
see if it has a copy of the requested object in its cache. If so, the proxy responds by sending
the cached object to the client (cache hit). Otherwise, it sends the request to the server
(cache miss). If the proxy requests the object from the origin server, that object data is
cached by the proxy so that it can fulfill future requests for the same object without retrieving
it again from the origin server. The result of serving a cached object is that there is zero
server-side bandwidth usage for the content and a huge improvement in response time for
the end user. Meanwhile, the central server also delivers the uncached portion of the video
to the client directly [43].

Figure 18: Client- Server connection with intermediate Proxy

Existing caching mechanisms about video streaming can be mainly classified into four
categories [43]:

● Sliding-interval caching which caches the playback interval between two requests.

● Prefix caching which divides the video into two parts named prefix and suffix. Prefix
is the leading portion of the video, which is cached in the proxy, while the suffix is the
rest of the video which is stored in the central server. Upon receiving a client’s
request, the proxy delivers the prefix to the client, meanwhile, it also downloads the
suffix from the central server and then relays to the client.

● Segment caching generalizes the prefix caching by partitioning a video object into
a number of segments. The proxy caches one or several segments based on the
caching decision algorithm.

● Rate-split is a type of caching where the central server stores the video frame with
the data rate. If the data rate of the video frame is higher than a threshold value,
which is called cutoff rate, it is partitioned into two parts where the cutoff is the
boundary such that the transmission rate of the central server can keep constant.

3.3.2 CDN and video streaming

Content distribution network (CDN) is an extension of the proxy caching and it is a critical
component of any modern video application. In such architecture, the delivery of content will
be improved by replicating commonly requested video files across a globally distributed set
of caching servers which are deployed at the edge of the network core. Unlike proxy, which
only stores a portion of the video, a full copy of the video is replicated in each CDN server.
Then, clients request the video from their closest CDN servers directly. This architecture
significantly reduces the workload of the central server and provides a better quality of
service (QoS) to clients.

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 42

CDNs do a lot more than just caching, such as delivering dynamic content that is unique to
the requestor and not cacheable. The advantage of having a CDN deliver dynamic content
is application performance and scaling. The CDN will establish and maintain secure
connections closer to the requestor and, if the CDN is on the same network as the origin, as
is the case for cloud-based CDNs, routing back to the origin to retrieve dynamic content is
accelerated. Caches have also become much more intelligent, providing the ability to inspect
information contained in the request header and vary the response based on device type,
requestor information, query string, or cookie settings. CDNs can be directed to retrieve
objects from multiple origins, enforce protocol policy, negotiate SSL connections, and restrict
object access by location or authentication credentials [44].

Figure 19: A Content Distribution Network [45]

3.4 Caching in HTTP Adaptive Streaming

From all the above, we can state that caching may improve the overall performance of
streaming protocols like DASH. As stated earlier, in DASH the same media is encoded at
different resolutions, bitrates and frame rates, called representations and each
representation is virtually or physically divided into segments. The client via this protocol can
download the appropriate segment according to its available bandwidth in order to have a
superior enough experience. Cache servers are deployed within the access network to
cache and store the available DASH segments according to the cache’s buffer size. This
allows clients to be served from the cache when we have a cash hit rather than retrieving
every video segment from the origin server. This leads to higher speeds, lower latency,
traffic avoidance and better Quality of Experience. However, the interplay between caching
and HTTP Adaptive Streaming (HAS) is known to be intricate, and possibly detrimental to
QoE.

Sometimes the client adaptation algorithm may overestimate the available path bandwidth
when a video segment is requested directly from the cache server. This overestimation may
force the client to upshift to a higher bitrate representation. If the subsequent segment for
the higher bitrate representation is not already stored in the cache server, the cache will
have to retrieve it from the origin server. As a result, increased delivery delay will be
observed by the client as a lower throughput. The client may then downshift to a lower bitrate
representation in response to the reduction in the throughput. If the subsequent segment for
the lower bitrate representation is stored in the cache server, the observed throughput will

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 43

increase. Consequently, an overestimation may be observed again. This undesired
repeated cycle is known as bitrate oscillation and it is depicted in the figure below. This
oscillation can deplete the playback buffer and cause the client algorithm to take drastic
measures to refill it at the expense of video quality. A way to solve this problem is to use a
HAS algorithm which is cache aware in order to benefit from the already cached video
chunks. Those bitrate oscillation’s problems can be easily eliminated if the client foreknew
which of the chunks are closest to him (cache hit) just so that the video bitrate could be
increased, and which are furthest from him (cache miss) so that the video bitrate could be
decreased [37].

Figure 20: A bitrate oscillation problem

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 44

4. QUALITY OF EXPERIENCE (QOE)

4.1 Introduction

Triggered by the exponential growth of mobile data and the proliferation of smart devices,
5G networks are expected to provide a wide range of services with the best Quality of service
(QoS) guarantees. For instance, video-based services are one of the most critical services
supported by 5G networks due to the fact that a very large percent of Internet traffic is video
traffic. In order to improve video quality, many efforts have been made to optimize the QoS
of the video transmission system, such as video compression optimization and network
resource allocation. In addition to monitoring and controlling QoS, it is more crucial to assess
video quality from users’ perspective, which is widely known as Quality of Experience (QoE).

Currently, there is no strict definition of QoE. At the International Telecommunication Union
(ITU-T), QoE is defined as “the overall acceptability of an application or service, as perceived
subjectively by the end user.” Recently, in the European Qualinet community, QoE was
defined as “the degree of delight or annoyance of the user of an application or service”. It
results from the fulfillment of his or her expectations with respect to the utility and/or
enjoyment of the application or service in the light of the user’s personality and current
state.”. However, the general understanding of QoE is the same to a large extent: QoE is a
new measurement approach for communication services, and it is determined by the
interactions between users and services.

There is a consensus that the user QoE is becoming one of the primary focuses and will be
the key to the competition in 5G wireless networks. Therefore, it is critical to investigate the
needs of users, measurements of the user’s subjective feelings, and methods to improve
the user QoE [46].

4.2 QoE Influencing Factors

There are several factors that may be responsible for the overall experience that a user
perceives. However, the main influencing factors related to QoE are categorized into three
domains: human, network, and context [47].

● Human factors: individual characteristics such as age, gender, memory, attention,
satisfaction, education standards, mood, social and psychological factors as well as
expectations are within the scope of the human domain.

● Network/ System: The state of the network plays a very important role in QoE. There
are many metrics about the network which are divided into 4 layers. Each layer has
the so-called Key Performance Indicators (KPIs). KPIs are values that measure what
is intended to be measured in order to offer a comparison that gauges the degree of
network performance change over time. These are:

o Video Specific: we care here about the frame rate, the video content, the
resolution, and the format of the video, as well as the type of the terminal
device.

o Video on Demand: Here are some examples like YouTube where we
care about the number and the duration of stalling events, the total
duration of the video and how long it takes for a video to start playing
after we press the play button.

o Transport / Network: Here are some network metrics such as round trip,
jitter, packet loss ratio and congestion period.

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 45

o Physical: Here are some metrics that refer to SNR / SIR / SINR,
bit/symbol rate, packet / symbol / bit error probability and energy
efficiency.

● Context: In this domain we care about the situation in which the user is. Some
examples are the urgency of a call, financial policy (such as if there is a high charge
for a specific service or not), energy consumption issues, environmental conditions
(such as the type of the weather) and customer support.

4.3 QoE vs QoS

As we stated earlier, QoE is the degree of delight or annoyance of the user of an application
or a service. On the other hand, QoS is “a set of technical quality requirements on the
collective behaviors of one or more objects in order to define the required performance
criteria”, but it does not reflect the user satisfaction. A lot of relationships have been
proposed in order to relate the QoS with the QoE. For example, Stevens's power law, which
is an empirical relationship in psychophysics between an increased intensity or strength in
a physical stimulus and the perceived magnitude increase in the sensation created by the
stimulus, has been proposed so as to relate these terms. This relationship was defined

as 𝑄𝑜𝐸 = 𝐾 ∗ 𝑄𝑜𝑆𝑏 [48]

However, there is an exponential relationship that is the best one for relating the QoS and

the QoE, which is called “the IQX hypothesis” and is defined as 𝑄𝑜𝐸 = 𝑎 ∗ 𝑒𝑥𝑝−𝑏∗𝑄𝑜𝑆 + 𝑐 .

Figure 21: The IQX hypothesis diagram [49]

As we can see in the above figure, the relationship is negatively exponential, meaning that
the less QoS we have available, the less QoE we expect to have. Furthermore, it is important
to highlight the 3 regions that appear in the graph. In region 1, any slight drop of the QoS
will not be perceived, and it will not have any impact on the user experience. This is very
crucial for the operators because they are able to reduce their operating expenses while the
user will not be annoyed by that, in terms of QoE. In region 2 instead, a very small QoS
disturbance will strongly decrease the user’s experience. In region 3, the QoS level is very
low and consequently the user will give up using this service or application.

4.4 QoE Measurements

QoE can be measured via QoE modelling. QoE assessment can be categorized into
subjective assessment and objective assessment. Subjective assessment is based on

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 46

psycho- acoustic/visual experiments, in which participant testers specify services in a
controllable environment and give quality scores based on their own experiences. Subjective
assessment is the most direct way to assess users’ QoE since the results are given by
humans directly. Nevertheless, the assessment methodology is excessively costly, which
makes it difficult to be employed in a large- scale assessment.

In objective assessment, QoE is mathematically modeled with some objectively measurable
factors as input variables, and the value of QoE is the corresponding output. The advantage
of objective methods is the convenience and tractability. However, the evaluated QoE from
the objective approach is an approximation, rather than the exact measurement for each
user [46]. Objective assessment employs statistical models (media layer, parametric, bit-
stream layer, hybrid etc.) for quality predictions.

The objective methods are algorithms and formulas that measure the quality of a video.
These methods can be classified into three categories depending on the amount of
information available for comparison with the original video [50]:

● Full reference: the original video and received video are available.

● No reference: only received video is available.

● Reduced reference: In addition to the received video, a description of the original
video and some of its features are available.

Figure 22: QoE Measurements

4.5 QoE Management

QoE management refers to the exploitation of QoE intelligence towards a more effective
and efficient network management, both to the end-users’ and the network operator’s
advantage. A high-level QoE management architecture is proposed in figure 23. In this
design, an intelligent QoE entity is implemented at a central, administrative location inside
the operator’s network, on top of the network infrastructure. This central entity is able to
obtain QoE-related input from appropriate elements and apply QoE-driven management
decisions. It consists of three main building blocks: QoE-Controller, QoE-Monitor and QoE-
Manager.

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 47

Figure 23: QoE Management Architecture

The QoE-Controller is the interface between the central QoE management entity and the
network infrastructure in charge of a) synchronizing the QoE-related data acquisition
process (1 and 2 in Figure 23), and b) imposing any QoE-related management decisions
back to the network (6). The QoE-Monitor implements the QoE estimation functions (a.k.a.
QoE models), namely it is running the appropriate QoE function per traffic flow. To operate,
it uses input provided by the QoE-Controller (3a), i.e. QoE=f (input1, input2...). This QoE
prediction/estimation is then provided as input to the QoE-Manager (4). The latter combines
the QoE awareness with awareness about the current network topology and state (3b), in
order to trigger any QoE-aware network management decisions to the network (5b) or
conduct any Customer Experience Management procedures in general (5a) [51].

4.6 Big Data Analytics & QoE

With the latest advances in information technologies, the newest Traffic Monitoring and
Analysis (TMA) solutions must have the ability to leverage the huge amount of information
available from network elements and interfaces in mobile networks in order to ensure users’
adequate QoE. With recent advances in information technologies, it is now possible to
process massive volumes of information with big data analytics (BDA) platforms. “Big data”
refers to data that cannot be processed by traditional means due to its volume, velocity, and
variety (e.g., connection traces or packet-level traffic). With BDA, operators can better
explain network performance by discovering hidden relationships between system variables
(self-awareness) and take corrective actions proactively by predicting trend changes (self-
adaptiveness). For this reason, specifying BDA systems has become a priority for
standardization bodies

Legacy TMA tools were focused on the overall network performance. In contrast, the latest
TMA solutions are able to passively monitor all the traffic crossing the network at a very fine
granularity. This is achieved by adding new network elements (deep packet inspectors) that
store a full or partial copy of each frame from different protocol layers. Then packet-level
traffic analysis allows building service-specific performance metrics with end-to-end network
visibility (service KPI, S-KPI), which can be mapped more easily into QoE figures. Such an
approach is already used by the newest TMA solutions based on big networking data.

The data collected by TMA can be used offline as well for knowledge discovery by data
analytics. Figure 24 shows several interrelated disciplines involved in this process, from the
simplest data visualization steps in exploratory data analysis (EDA) to the most
sophisticated machine learning (ML) algorithms. The aim here is to build models for

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 48

classifying, characterizing, and predicting the performance of each individual session, for
which the most important features must be selected.

Figure 24: Taxonomy of machine learning algorithms [52]

4.7 HTTP Video Streaming influenced by QoE Factors

HTTP video streaming is a combination of download and concurrent playback. It transmits
the video data to the client via HTTP where it is stored in an application buffer. After a
sufficient amount of data has been downloaded (i.e., the video file download does not need
to be complete yet), the client can start to play out the video from the buffer. However,
network issues are possible to occur and they will decrease the throughput and introduce
delays at the application layer. Such network issues are packet loss, insufficient bandwidth,
jitter, and delay. Consequently, the buffer will not fill up as quickly as desired, so the video
has to be interrupted until enough data has been received. These interruptions are known
as stallings or rebuffering and they are one of the most important factors that influence QoE.

In general, the QoE influence factors can be categorized into technical and perceptual
influence factors as depicted in figure 25. The perceptual influence factors are directly
perceived by the end user of the application and are dependent but decoupled from the
technical development [53].

Figure 25: HAS QoE Influence Factors

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 49

5. ENVIRONMENT SETUP

5.1 Introduction

Software-defined networking (SDN) technology is an approach to network management that
enables dynamic, programmatically efficient network configuration in order to improve
network performance and monitoring, making it more like cloud computing than traditional
network management. SDN is meant to address the fact that the static architecture of
traditional networks is decentralized and complex while current networks require more
flexibility and easy troubleshooting. SDN attempts to centralize network intelligence in one
network component by disassociating the forwarding process of network packets (data
plane) from the routing process (control plane). The control plane consists of one or more
controllers, which are considered the brain of the SDN network where the whole intelligence
is incorporated. However, the intelligent centralization has its own drawbacks when it comes
to security, scalability, and elasticity and this is the main issue of SDN. SDN was commonly
associated with the OpenFlow protocol (for remote communication with network plane
elements for the purpose of determining the path of network packets across network
switches) since the latter's emergence in 2011 [54].

OpenDaylight (ODL) allows cloud engineers to programmatically deploy, configure and
control virtual network services. As written on the OpenDaylight website, ODL helps Internet
Service Providers, Academics and Cloud Service Providers to enable the following services:
On-demand service delivery, Network Function Virtualization, Network Resource
Optimization, Situational Awareness.

In other words, SDN is a technique that can be used to mimic the behavior of a traditional
hardware network allowing to achieve the same behavior in a software environment. The
control and data plane are separated giving you a centralized control to achieve this
behavior. In this chapter we demonstrate all the steps that we followed, in order to set up
the SDN environment.

5.2 System Requirements

5.2.1 Prepare Operating System (OS)

For the setup, the operating system used is the Ubuntu 18.04.1 LTS. To ensure that the
server receives all of the most recent security and application packages, we run the following
command:

$ sudo apt-get update

5.2.2 Java

A Java virtual machine (JVM) is a virtual machine that enables a computer to run Java
programs as well as programs written in other languages that are also compiled to Java
bytecode. Having a specification ensures interoperability of Java programs across different
implementations so that program authors using the Java Development Kit (JDK) need not

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 50

worry about idiosyncrasies of the underlying hardware platform. The JVM reference
implementation is developed by the OpenJDK project as open-source code [55].

OpenDaylight includes Karaf containers, OSGi (Open Service Gateway Initiative) bundles,
and Java class files, which are portable and can run on any Java 8-compliant JVM.

We run the commands shown below to install the Java JRE:

$ sudo add-apt-repository ppa:openjdk-r/ppa

$ sudo apt-get update

$ sudo apt-get install openjdk-8-jdk

To ensure that Ubuntu points to JAVA 8 we run the following command:

$ sudo update-alternatives --config java

The output should be the following:

Figure 26: Correct output for JAVA 8

With the path in hand, we run the following command to update the BASHRC file and then
source the file. Lastly, we check to ensure $JAVA_HOME lives in the environment.

$ echo 'export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/jre' >> ~/.bashrc

$ echo 'export TERM=xterm-color' >> ~/.bashrc

$ source ~/.bashrc

$ echo $JAVA_HOME

5.2.3 Mininet

Mininet is a network emulator, or perhaps more precisely a network emulation orchestration
system. It runs a collection of end-hosts, switches, routers, and links on a single Linux kernel.
It uses lightweight virtualization to make a single system look like a complete network,
running the same kernel, system, and user code. A Mininet host behaves just like a real
machine; we can ssh into it (if we start up sshd and bridge the network to our host) and run
arbitrary programs (including anything that is installed on the underlying Linux system.) The
programs we run can send packets through what seems like a real Ethernet interface, with
a given link speed and delay. Packets get processed by what looks like a real Ethernet
switch, router, or middlebox, with a given amount of queueing. When two programs, like an
iperf client and server, communicate through Mininet, the measured performance should
match that of two (slower) native machines.

In short, Mininet's virtual hosts, switches, links, and controllers are the real thing – they are
just created using software rather than hardware – and for the most part their behavior is
similar to discrete hardware elements. It is usually possible to create a Mininet network that
resembles a hardware network, or a hardware network that resembles a Mininet network,
and to run the same binary code and applications on either platform [56].

To install Mininet natively from source, first we need to get the source code:

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 51

$ git clone https://github.com/mininet/mininet

Once we have the source tree, the command to install Mininet is:

$ mininet/util/install.sh -a

The -a option installs everything that is included in the Mininet VM, including dependencies
like Open vSwitch as well the additions like the OpenFlow Wireshark dissector and POX. By
default, these tools will be built in directories created in our home directory.

After the installation has completed, to test the basic Mininet functionality:

$ sudo mn --test pingall

The output of the above command is shown below:

Figure 27: Pingall Output of Mininet’s basic topology

5.2.4 Mininet’s graphical user interface, MiniEdit

MiniEdit is an experimental tool created to demonstrate how Mininet can be extended. To
show how to use MiniEdit to create and run network simulations, we will work through a
tutorial that demonstrates how to use MiniEdit to build a network, configure network
elements, save the topology, and run the simulation. To open it, we execute the following
command in the directory where the Mininet folder is:

$ python ./mininet/examples/miniedit.py

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 52

MiniEdit has a simple user interface that presents a canvas with a row of tool icons on the
left side of the window, and a menu bar along the top of the window [57].

Figure 28: MiniEdit main page

A simple guide on the icons:

The Select tool is used to move nodes around on the canvas. Click and drag
any existing node. Interestingly the Select tool is not needed to select a node
or link on the canvas. To select an existing node or link, just hover the mouse
pointer over it — this works regardless of the tool that is currently active —
and then either right-click to reveal a configuration menu for the selected
element or press the Delete key to remove the selected element.

The Host tool creates nodes on the canvas that will perform the function of
host computers. Click on the tool, then click anywhere on the canvas you wish
to place a node. As long as the tool remains selected, you can keep adding
hosts by clicking anywhere on the canvas. The user may configure each host
by right-clicking on it and choosing Properties from the menu.

The Switch tool creates OpenFlow-enabled switches on the canvas. These
switches are expected to be connected to a controller. The tool operates the
same way as the Hosts tool above. The user may configure each switch by
right-clicking on it and choosing Properties from the menu.

The Legacy Switch tool creates a learning Ethernet switch with default
settings. The switch will operate independently, without a controller. The
legacy switch cannot be configured and is set up with Spanning Tree disabled,
so we should not connect legacy switches in a loop.

The Legacy Router tool creates a basic router that will operate independently,
without a controller. It is basically just a host with IP Forwarding enabled. The
legacy router cannot be configured from the MiniEdit GUI.

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 53

The NetLink tool creates links between nodes on the canvas. Create links by
selecting the NetLink tool, then clicking on one node and dragging the link to
the target node. The user may configure the properties of each link by right-
clicking on it and choosing Properties from the menu.

The Controller tool creates a controller. Multiple controllers can be added. By
default, the MiniEdit creates a Mininet OpenFlow reference controller, which
implements the behavior of a learning switch. Other controller types can be
configured. The user may configure the properties of each controller by right
clicking on it and choosing Properties from the menu.

The Run starts Mininet simulation scenario currently displayed in the MiniEdit
canvas. The Stop button stops it. When MiniEdit simulation is in the “Run”
state, right-clicking on network elements reveals operational functions such as
opening a terminal window, viewing switch configuration, or setting the status
of a link to “up” or “down”.

5.2.5 VLC Media Player

VLC media player (VLC) is a free and open-source, portable, cross-platform media player
software and streaming media server developed by the VideoLAN project. VLC is available
for desktop operating systems and mobile platforms, such as Android, iOS, iPadOS, Tizen,
Windows 10 Mobile and Windows Phone. VLC is also available on digital distribution
platforms such as Apple's App Store, Google Play, and Microsoft Store. VLC supports many
audio and video compression methods and file formats, including DVD-Video, video CD and
streaming protocols. It is able to stream media over computer networks and to transcode
multimedia files.

The default distribution of VLC includes many free decoding and encoding libraries, avoiding
the need for finding/calibrating proprietary plugins. The libavcodec library from the FFmpeg
project provides many of VLC's codecs, but the player mainly uses its own muxers and
demuxers. It also has its own protocol implementations. It also gained distinction as the first
player to support playback of encrypted DVDs on Linux and macOS by using the libdvdcss
DVD decryption library, however this library is legally controversial and is not included in
many software repositories of Linux distributions as a result [58].

We execute the below command to install VLC media player:

$ sudo apt install vlc

Now, we need to make a few changes to VLC, so as to support Adaptive Streaming for
DASH/HLS. To do that, we open the program, click on the Tools tab, and select Preferences.
We check the All option in the Show setting section. Then, we type “dash” in the search bar
on the top of the window.

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 54

Figure 29: VLC Preferences (1)

We navigate to the adaptive option and we can see that there are several adaptive logic
algorithms: Predictive, Near Optimal, Bandwidth Adaptive, Fixed bandwidth, Lowest
Bandwidth/Quality, Highest Bandwidth/Quality one. Some of them will be tested in our
Mininet experiments, in the following chapters. For now, we set the parameters as follows:

Figure 30: VLC Preferences (2)

Below we present a table for the maximum device width and height available in the VLC
interface for manipulation, which are the resolutions that we will use later in our experiments.

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 55

Table 2: Display Resolutions- Pixel Dimensions

Maximum Device Width Maximum Device Height

3840 2160 (4K)

2560 1440 (2K)

1920 1080 (FHD)

1280 720 (HD)

640 480

640 360

Then, we clear the dash filter, in order to select the Stream filters option, and finally, check
the box that says HTTP Dynamic Streaming. Building VLC is a tricky procedure and is not
recommended even from the developers, but it is possible by following the steps of this
website https://wiki.videolan.org/Category:Building/, in case anyone wants to be more in
charge of the adaptive logic by changing the code and building it again.

Figure 31: VLC Preferences (3)

After all that, we save our preferences.

https://wiki.videolan.org/Category:Building/

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 56

5.2.6 FFmpeg

FFmpeg is a free and open-source software project consisting of a large suite of libraries
and programs for handling video, audio, and other multimedia files and streams. At its core
is the FFmpeg program itself, designed for command-line-based processing of video and
audio files, and widely used for format transcoding, basic editing (trimming and
concatenation), video scaling, video post-production effects, and standards compliance
(SMPTE, ITU).

FFmpeg includes libavcodec, an audio/video codec library used by many commercial and
free software products, libavformat (Lavf), an audio/video container mux and demux library,
and the core FFmpeg command-line program for transcoding multimedia files.

FFmpeg is part of the workflow of hundreds of other software projects, and its libraries are
a core part of software media players such as VLC and has been included in core processing
for YouTube and iTunes. Codecs for the encoding and/or decoding of most audio and video
file formats is included, making it highly useful for the transcoding of common and
uncommon media files into a single common format.

The name of the project is inspired by the MPEG video standards group, together with "FF"
for "fast forward". The logo uses a zigzag pattern that shows how MPEG video codecs
handle entropy encoding [59].

To install the latest version of FFmpeg on Ubuntu 20.04 we start by updating the packages
list [60]:

$ sudo apt update

Next, install FFmpeg by typing the following command:

$ sudo apt install ffmpeg

To validate that the package is installed properly use the ffmpeg -version command which
prints the FFmpeg version:

$ ffmpeg -version

5.2.7 Python 2.7

Python is an interpreted, high-level and general-purpose programming language. Python's
design philosophy emphasizes code readability with its notable use of significant
whitespace. Its language constructs and object-oriented approach aim to help programmers
write clear, logical code for small and large-scale projects [61].

Python was created in the late 1980s, and first released in 1991, by Guido van Rossum as
a successor to the ABC programming language. Python 2.0, released in 2000, introduced
new features, such as list comprehensions, and a garbage collection system with reference
counting, and was discontinued with version 2.7 in 2020. Python 3.0, released in 2008, was
a major revision of the language that is not completely backward compatible, and much
Python 2 code does not run unmodified on Python 3. With Python 2’s end-of-life, only Python
3.6.x and later are supported, with older versions still supporting e.g., Windows 7 (and old
installers not restricted to 64-bit Windows) [62].

So, we need to install python and pip. Pip (recursive acronym for “Pip Installs Packages” or
“Pip Installs Python“) is a cross-platform package manager for installing and managing

https://en.wikipedia.org/wiki/Interpreted_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/General-purpose_programming_language
https://en.wikipedia.org/wiki/Code_readability
https://en.wikipedia.org/wiki/Off-side_rule
https://en.wikipedia.org/wiki/Off-side_rule
https://en.wikipedia.org/wiki/Language_construct
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Programmers

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 57

Python packages (which can be found in the Python Package Index (PyPI)) that comes with
Python 2 >=2.7.9 or Python 3 >=3.4 binaries that are downloaded from python.org [63]. To
install pip in Linux, we run the appropriate command for our distribution as follows:

$ sudo apt install python-pip

The command above will install Python2, Pip and all the dependencies required for building
Python modules. Python usually comes preinstalled on most Linux systems. To check if
python is installed in our system, we run the following command:

$ python -V

This should return a version number. In our case it’s 2.7.17.
Also, we should verify the installation by printing the pip version number:

$ pip --version

The version number may vary, but it will look something like this:

$ pip 9.0.1 from /usr/lib/python2.7/dist-packages (python 2.7)

Python’s SimpleHTTPServer module is a labor-saving tool that we can leverage for turning
any directory in our system into an uncomplicated web server. It comes packaged with a
simple HTTP server that delivers standard GET and HEAD request handlers. We will use
that module in our implementation.

With a built-in HTTP server, we are not required to install or configure anything to have our
web server up and running. To start the server, we run the below command:

If Python version returned above is 3.X

$ python3 -m http.server

If Python version returned above is 2.X

$ python -m SimpleHTTPServer

In our system, we have installed Python 2.7, so we will be using SimpleHTTPServer.

By default, this will run the contents of the directory on a local web server, on port 8000. We
can go to this server by going to the URL localhost:8000 in our web browser. Here we’ll see
the contents of the directory listed.

The last thing that we need to install is the requests module. Requests is an Apache2
Licensed HTTP library, written in Python, for human beings [62]. Requests allow us to send
HTTP/1.1 requests extremely easily. There is no need to manually add query strings to our
URLs, or to form-encode our POST data. Keep-alive and HTTP connection pooling are
100% automatic, thanks to urllib3 [64]. To install Requests, simply:

$ pip install requests

5.2.8 Project on advanced content (GPAC)

GPAC Project on Advanced Content (GPAC, a recursive acronym) is an implementation of
the MPEG-4 Systems standard written in ANSI C. GPAC provides tools for media playback,
vector graphics and 3D rendering, MPEG-4 authoring, and distribution.

GPAC provides three sets of tools based on a core library called libgpac:

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 58

● A multimedia player, cross-platform command-line based MP4Client or with a GUI
Osmo4.

● A multimedia packager, MP4Box.

● Some server tools, around multiplexing and streaming (under development).

For this thesis, we will use the MP4Box, which segments the file and creates a Media
Presentation Description (MPD). To install the MP4Box, we run the following command:

$ sudo apt-get install gpac

In the table that follows, we present all the tools that we used for our thesis, along with the
versions:

Table 3: Used tools

TOOL VERSION

openjdk 1.8.0_275

Mininet 2.3.0d6

VLC 3.0.8.0 Vetinari

FFmpeg 3.4.8-0ubuntu0.2

Python 2.7.17 and 3.6

MP4Box – GPAC 0.5.2-DEV-revVersion

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 59

6. MININET EXPERIMENTS

6.1 Preparation

For our experiments, we need a video with a resolution of 3840x2160 (4K-UHD), which we
recorded with a mobile phone. The video size is 1.8 GB.

Figure 32: Video playback

We create a bash.sh script, which converts every .mp4 file in the current folder and
subfolder, to a multi-bitrate video in MP4 -DASH. This script will create six different quality
versions of the video, an audio file and an .mpd manifest file with all the appropriate
information about the given resolutions. So, we open a new terminal window inside the file,
where the video is located, and we execute the bash.sh script. First, we change its
permissions to make it executable.

$ chmod +x bash.sh

$./bash.sh

To explain the bash code, which can be found in Appendix A, first, we find the current
directory name and we save it to a variable. Then, we have to check the location of the
needed programs. If they are not installed correctly, an error message will inform the user
in order to reinstall them [66].

Then, we save the name of every file without the file’s extension, and we start the procedure
of converting each file to a multi-bitrate video in MPEG-DASH.

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 60

Our first step is to convert the audio file with the help of the ffmpeg commands about the
audio and video codec [66][67].

Next, we convert the video file to six different quality versions. The video codec that is used
is H.264. We know that in this codec, the frames are organized in I,P, and B frames and I
frames appear every 30 frames. A series of grouping frames is called GOP (Group of
Pictures). The first frame in a GOP is an intra-frame called an I frame which contains most
of the vital information for the following sequence of P frames which are forward predictive
and B frames which are both forward and backward (bi-directional) predictive. A B frame
estimates changes to the frame based on the previous and following frames. What’s
important to keep in mind is that I frames contain more data than P and B frames [68].

● -i is the input file

● -an: do not encode the audio

● -c:v libx264 is used because we want H:264 codec

● The keyint option determines the maximum number of frames in the GOP

● no-scenecut option is necessary in order not to add any additional IntraFrame I

● -b:v is the wanted bitrate to encode

● -bufsize tells the encoder how often to calculate the average bit rate and check to see
if it conforms to the average bit rate specified

● -vsync 1 option makes the sum of the size of every chunk to be exactly the same with
the complete video size so as to lose nothing in terms of MBs

After all that, we have all the video and audio files that we need and it’s time to create the
following with the help of the MP4Box tool.

The result of the execution of the bash file are the following files:

● a manifest-mpd file, which will store all the needed information about our project. This
file will contain all the available video resolutions, their bitrates, and their size. In our
project, a client, who wants to see a specific video, will ask about the manifest file
(figures 33, 34).

Table 4: Video bitrates and sizes after the segmentation

● all the video segments are of 5 seconds (the dash option below, defines the duration
of each segment to 5000ms) for all the available resolutions and for the audio. For
this reason, because our video is 5 minutes long, for each resolution the segments
that are created are 61 (5 minutes = 300 seconds and 300 seconds / 5 seconds = 60
segments, and 1 more segment for initialization).

Resolution Video Bitrate (Mbps) Size (MBs)

2160p 45 1700

1440p 16 597.6

1080p 8 299.1

720p 5 187.3

480p 2.5 94.1

360p 1 37.7

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 61

● an initialization file in order to start loading the segments (manifest_set1_init.mp4).

Figure 33 : The Manifest File

Figure 34: Segments created after the execution of bash script

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 62

6.2 Basic Client-Server Topology on Mininet

6.2.1 SimpleHTTPServer module

In order to implement our experiment, we will make use of Python’s SimpleHTTPServer
module. The SimpleHTTPServer module that comes with Python is a simple HTTP server
that provides standard GET and HEAD request handlers. The default code that is provided
will be used for the main server and a modification of it will be used for the cache server.
The default code is presented in the Appendix A, extracted from the official GitHub
repository.

To explain this code, the SimpleHTTPServer module defines a single class,
SimpleHTTPRequestHandler, which is interface-compatible with the
BaseHTTPServer.BaseHTTPRequestHandler.

class SimpleHTTPServer.SimpleHTTPRequestHandler(request, client_address,
server)

This class serves files from the current directory and below, directly mapping the directory
structure to HTTP requests. A lot of the work, such as parsing the request, is done by the
base class BaseHTTPServer.BaseHTTPRequestHandler. This class implements the
do_GET() and do_HEAD() functions.

The following are defined as class-level attributes of SimpleHTTPRequestHandler:

● server_version: This will be "SimpleHTTP/" + __version__, where __version__ is
defined at the module level.

● extensions_map: A dictionary mapping suffixes into MIME types. The default is
signified by an empty string and is considered to be application/octet-stream. The
mapping is used case-insensitively, and so should contain only lower-cased keys.

The SimpleHTTPRequestHandler class defines the following methods:

● do_HEAD(): This method serves the 'HEAD' request type: it sends the headers it
would send for the equivalent GET request. See the do_GET() method for a more
complete explanation of the possible headers.

● do_GET(): The request is mapped to a local file by interpreting the request as a path
relative to the current working directory. If the request was mapped to a directory, the
directory is checked for a file named index.html or index.htm (in that order). If found,
the file’s contents are returned; otherwise, a directory listing is generated by calling
the list_directory() method. This method uses os.listdir() to scan the directory and
returns a 404-error response if the listdir() fails. If the request was mapped to a file, it
is opened, and the contents are returned. Any IOError exception in opening the
requested file is mapped to a 404, 'File not found' error. Otherwise, the content type
is guessed by calling the guess_type() method, which in turn uses the
extensions_map variable. A 'Content-type:' header with the guessed content type is
output, followed by a 'Content-Length:' header with the file’s size and a 'Last-
Modified:' header with the file’s modification time. Then follows a blank line signifying
the end of the headers, and then the contents of the file are output. If the file’s MIME
type starts with text/ the file is opened in text mode; otherwise binary mode is used.

The test() function in the SimpleHTTPServer module is an example which creates a server
using the SimpleHTTPRequestHandler as the Handler [65].

To run this module, we simply type:

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 63

$ python -m SimpleHTTPServer 8000

The default port number will change, as we will see in the next chapters.

6.2.2 Implementation

A simple server-client topology in MiniEdit looks like this in the figure below. In order to
rename the hosts, we click on its host icon and select properties.

Figure 35: Basic Miniedit Topology

To set the wanted MiniEdit Preferences, we click on Edit-→ Preferences and check the Start
CLI option, so as to be able to use it during our simulation. Now we can click the Run button.

Figure 36: MiniEdit’s Preferences

After starting the experiment, we pingall in order to test the reachability and then we execute
the xterm command of each host.

Figure : Simple Topology

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 64

Figure 37: Miniedit commands

In the different terminals, we execute the following commands

Figure 38: xterm Main Server

Figure 39: xterm Client

We start the HTTP server in the Main host, using the port 8000. Secondly, we load the .mpd
file in the Client, using the vlc-wrapper command. Finally, we are now ready to watch the
video playing with the VLC interface. The Main terminal output will demonstrate the first
request for the manifest file and all the requested chunks of the video and audio. The client’s
buffer starts to fill up with chunks of the lowest available resolution, in order to avoid stallings
and when VLC understands that there is enough available bandwidth, it serves the client
with a better-quality video.

Figure 40: Output of the HTTP Server terminal

When we want to stop the simulation, we hit the stop button in MiniEdit’s terminal, and type
exit to quit from the Mininet’s CLI Window.

Figure : Starting the CLI

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 65

6.3 Client- Cache Server- Main Server Topology on Mininet

6.3.1 Problem statement

In the previous topology, it is investigated how to deliver DASH-based content from a single
server (called main) through the Mininet’s environment. A custom Mininet topology is
created with a client/server communication scheme through a switch, connected with the
controller. The server-client implementation for video streaming had an HTTP Adaptive
Video Streaming logic on top of this environment. A set of experiments were conducted
under varying bandwidth conditions that indicated that the transmitted data is utterly
connected with the existing traffic in the network. More precisely, the higher the bandwidth
the higher the resolution selected by the media player. Furthermore, in some cases, the
resolution of the broadcasted video would not change instantly. Six different resolutions
were offered in the channel: 360p, 480p, 720p,1080p, 1440p and 2160p, and they were the
only factors that were influenced by the change in the bandwidth.

Figure 41: Flow of Information without cache server

Now we are called to implement a more enhanced network topology, regarding the basic
topology. The main actors in this implementation are three:

1) The client who wants to see a video at the best available quality.

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 66

2) The cache server, which has in store some of the video segment according to a
caching algorithm and limited by its buffer size, as well as the manifest file.

3) The main server, which is equipped with all the video resolution chunks.

Figure 42: Implementation with an intermediate cache server

The cache server is designed to be a simple repository for our video content, providing local
clients with accelerated access to cached files. The main server is intended to provide a
content management service which runs entirely behind the user interface of our custom
application, creating the backhaul connection with the cache server, and containing all the
given resolutions and the coding rates. In fact, the main server acts the same as the one of
the first setup, but it doesn’t interact directly with the client.

Specifically, the cache server will contain a few segments from some of the video
resolutions, meaning that it will have some caching capabilities. So, the basic connection
will be between the client and the cache server. The backhaul connection, between the
cache and the main server, will be utilized so the cache server can be able to receive chunks
with a fixed rate from the main server, that contains all the segments. The number of the
chunks that will be stored in the cache server depends on its available buffer size L and the
implemented caching algorithm. The link rate between client and cache will be referred as
R1 and the link rate between cache and main server as R2.

The roles of the actors of our problem statement are the following:

● Client: The client requests a video. The video has to be displayed in the best
resolution, based on the available bandwidth. Practically, the client requests the
manifest file from the cache server which contains all the available video details. For
this reason, the cache must have available information about the manifest.

● Cache Server: The cache server has some chunks of the video in specific resolutions
(according to the caching policies that we will introduce later). It interacts both with
the client at one end and with the main server at the other end. The cache server as
we have already stated, needs to set up a session with the main server that has all
the video chunks in order to cache as many chunks as it can. As long as the segments
are stored in the cache, the client requests the video and a new fronthaul connection
with the cache server is set up. Each time a request is received, the cache checks
the cache buffer and if there is a cache hit, the cache server sends it directly to the
client and the channel cache-main is not utilized at all. Otherwise, in the case of a
cache failure, the cache asks from the main, the wanted chunk in order to serve the
client’s request.

● Main Server: The main server has all the possible resolutions of the video (360p,
480p, 720p, 1080p,1440p, 2160p) that are defined by the manifest file. This server
interacts only with the cache server providing specific video chunks. In setup 1, its
role is to give the best quality of the video to the client according to the bandwidth. In

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 67

setup 2, its role is only to give the manifest file to the cache (only in cases that the
cache isn’t already equipped with it) and serve the client when there is a cache miss.
In case that the cache has all the available chunks of the video, meaning that it can
fully serve the client, the backhaul link is not used at all.

Figure 43: Flow of information with an intermediate cache server

6.3.2 CacheHTTPServer module

Based on our knowledge gained by the SimpleHTTPServer in the previous section for the
basic implementation, we use the above code for the cache server, with an objective of
adding caching capabilities. So, we have modified the module of the SimpleHTTPServer,
which is given as an open-source by Python 2.7, to be able to serve as a cache-enabled
device. We create a file as “CacheHTTPServer.py” and copy the code of the
SimpleHTTPServer in it, in order to change it. The highlighted parts are the personal
additions to the default code. They are included in a tag named “#THESIS DI” for further
understanding.

First of all, we have imported the requests module, which allows us to send HTTP requests
using Python. The HTTP request returns a Response Object with all the response data
(content, encoding, status, etc.). We have analyzed the requests module further in previous
chapters. The next part of the code is unchanged.

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 68

In the try-except part, we add the appropriate code block, included in the “#THESIS DI”
comment. In general, what we have tried to do is, when a file is not found (404 error) in the
cache, it will not return None as before, but instead, it will print that we have come up with a
“CACHE MISS” case. So, when the file is not in the cache, we search the path, in order to
extract the filename. In the variable “splitted”, we save the last part from the full path, which
is the name of the segment. Then, we will request this file from the main server, by using
the IP and the port of the main server (10.0.0.3:8003), followed by the name of the segment
that was not found in the cache (splitted). With the open command, the segment is copied
locally in the cache, so it downloads the specific file that was not found before. Lastly, the 3
last lines are what the code used to do before our additions, so they are commented out.

try:

 # Always read in binary mode. Opening files in text mode may cause

 # newline translations, making the actual size of the content

 # transmitted *less* than the content-length!

 print("Correct Directory Path:")

 print(path + "\n")

 f = open(path, 'rb')

 except IOError:

 # THESIS DI ...

 print('CACHE MISS')

 print("Path:")

 print(path + "\n")

 splitted = path.rsplit('/', 1)[1]

 print("Splitted Path:")

 print(splitted + "\n")

 url_IP = "http://10.0.0.3:8003/"

 url = url_IP + splitted;

 r = requests.get(url)

 open(splitted, 'wb').write(r.content)

 # print len(r.content)

 # self.send_error(404, "File not found")

 # return None

The next highlighted code block, starting from the “ if os.path.isdir(path):” and ending in the
tag “# THESIS DI” is copied from above so that in the case of a 404 error, instead of returning
None, it should return normally the new path for the segment not found in the cache.

 if os.path.isdir(path):

 parts = urlparse.urlsplit(self.path)

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 69

 if not parts.path.endswith('/'):

 # redirect browser - doing basically what apache does

 self.send_response(301)

 new_parts = (parts[0], parts[1], parts[2] + '/',

 parts[3], parts[4])

 new_url = urlparse.urlunsplit(new_parts)

 self.send_header("Location", new_url)

 self.end_headers()

 return None

 for index in "index.html", "index.htm":

 index = os.path.join(path, index)

 if os.path.exists(index):

 path = index

 break

 else:

 return self.list_directory(path)

 ctype = self.guess_type(path)

 f = open(path, 'rb')

 # ... THESIS DI

 try:

 self.send_response(200)

 self.send_header("Content-type", ctype)

 fs = os.fstat(f.fileno())

 self.send_header("Content-Length", str(fs[6]))

 self.send_header("Last-Modified", self.date_time_string(fs.st_mtime))

 self.end_headers()

 return f

 except:

 f.close()

 raise

The rest of the code is identical.

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 70

6.3.3 Caching Algorithms

As we have described above, another factor in conducting the experiments to extract the
wanted metrics is the caching algorithms. For this Thesis, we have a simple random caching
algorithm. It downloads segments and saves them in the cache, as we will explain below.
The buffer size can be changed depending on the capacity of the cache.

The algorithm generates two random numbers, one for the resolution and one for the
segment. So, the range to choose for the resolution is 360, 480, 720, 1080, 1440 or 2160,
and the range to choose for the segment is [1,61], because each resolution has 61
segments. After, randomly choosing the file, it checks if it fits into the buffer. If it fits, it copies
in from the main server’s public folder. If it doesn’t it moves to the next one only if the
available buffer size is less than the size of the smallest available non-cached segment.

In the code that we provide below, the buffer size is set to 1000MBs and that can change
manually. The file is named random_file.sh and it is presented in the Appendix A as well.

6.3.4 Wireless Channel Emulation

If we type the command “links” in the Mininet’s CLI, we will find out the interfaces that we
will apply our rate rules in order to change the traffic conditions. These are the interfaces
S2-eth2 for R1 and S3-eth2 for R2. Due to the fact that we want to simulate a wireless
channel, the rates R1 and R2 will not be constant at all, but they will be distributed in a
specific way. We will use two different Rayleigh distributions for R1, and one for R2 (figure
43,44). The files for the rates were given to us offline and they are extracted from a MATLAB
simulation to touch real time values, and we use them in order to run our rate scripts.

To be more specific, every line of the of R1.xls files matches with a rate distribution. The first
line is for 1 Mbps, the second for 2 Mbps, etc. For R2, the first line is for 0.5 Mbps, the
second for 1 Mbps, the third for 2 Mbps, etc. Every cell is the current rate’s value for 100ms
and each next cell is for the next 100ms etc. The R1_1.xls presents a uniform Rayleigh
distribution while the R1_2.xls simulates the existence of an obstacle in the middle of the
distribution or a handover process. However, distributions have the same mean value.

Figure 44: Rate Traces for R1 = R2 = 5 Mbps (from R1_1.xls and R2.xls)

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 71

Figure 45: Rate Traces for R1 = R2 = 5 Mbps (from R1_2.xls and R2.xls)

In order to implement the rate scripts, we present in the Appendix A the core body of the
code for the rate R1. The code will be the same for the R2 with the difference that we have
to apply the correct rate distribution in the corresponding interface. Inside the parenthesis of
the rates variable in the 3rd line of the script we copy and paste the corresponding line of
excel sheet (like the one that it is presented in Figure 44 if we want R1=5Mbps).

6.3.5 Metrics

In order to exploit the data of the experiments that we conducted, we have collected some
metrics that are relative to the QoE and we present them below.

• The Average Resolution refers to the average over all segments that have been
selected by the media player, where each segment can take resolution values from
this set {2160, 1440, 1080, 720, 480, 360}.

• Sum of Switches refers to the sum of changes of resolutions that has occurred during
the video playback.

• The Average Altitude refers to the average value of the jumps between the previous
and the current segment over all segments that have been selected by the VLC,
where each segment can take altitude values from the set [0,6]. For example, if the
first segment is 480p and the second is 1440p, then the altitude, or the jumps, are 3.

• The Average Video Bitrate (Mbps) refers to the average bitrate over all segments
that have been selected by the media player, where each segment size is divided by
5 seconds, which is its duration.

• The Network Usage Time in seconds refers to the duration of the video playback,
from the time of delivery of the first segment until the time of delivery of the last
segment.

• The Mean Network Throughput R1 (Mbps) refers to the size of all the segments
(cached and non-cached) that have been selected by the media player over the
network usage time.

• The Mean Network Throughput R2 (Mbps) refers to the size of all the segments not
stored in the cache, over the network usage time.

• The Mean Opinion Score (MOS) for stallings refers to the numerical measure of
the overall quality of an event, system or experience in networks and
telecommunications. It is a crucial parameter for the domain of QoE and is expressed
as a single rational number, typically in the range 1–5, where 1 is lowest perceived

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 72

quality, and 5 is the highest perceived one. This MOS value, based on stallings, is

computed with the formula : 𝑀𝑂𝑆𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑔𝑠 = 3.5 ∗ 𝑒−(0.15𝑀+0.19)𝑁 + 1.5 , where M =

mean stalling duration and N = number of stallings [69].

• The Mean Opinion Score (MOS) for resolutions has been defined by ITU-T in
several ways. We will use the ITU-T p.1203 Standalone Implementation for the MOS
based on resolutions. In order to use this tool, we install it from the official repository
from GitHub: https://github.com/itu-p1203/itu-p1203.The ITU-T Rec. P.1203.1 model
is restricted to information provided to it by an appropriate bit stream analysis module
or set of modules. The model is applicable to progressive download and adaptive
streaming, where the quality experienced by the end user is affected by audio-coding
and/or video degradations due to coding, spatial re-scaling or variations in video
frame rates, as well as delivery degradations due to initial loading delay, stalling, and
media adaptations [70].
The model’s input consists of information that are obtained by a prior stream
inspection. There are four different modes of inspection which result in models of
different complexity. We will use the Mode 0 where the information is obtained from
available metadata during the adaptive streaming (for example from manifest files
used in DASH, about codec and bitrate, and initial loading delay and stalling). Due to
our mode, we will not have score fluctuations among the same resolution.
An example of how we ran offline QoE evaluation is shown in the next command:

The output of the command for one of our video resolutions is shown in the next
figure. The tool will calculate per second video scores. We will execute this command
six times in order to extract the MOS of all the available resolutions. As a result, each
resolution is matched with a MOS score.

Figure 46: MOS of a 1080p video

The MOS values that we have extracted for the “mode 0” of the tool are the following:

Table 5: MOS of the available resolutions

Resolution MOS (Mean Opinion Score)

2160p 4.58036

1440p 4.52586

1080p 4.47112

720p 3.97185

480p 3.02246

360p 2.07744

$ python3 -m itu_p1203 input --mode 0 --only-pv --print-intermediate

https://github.com/itu-p1203/itu-p1203

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 73

Compared to the MOS based on stallings, we will not use the MOS based on resolutions
because the QoE depends mostly on how much the video freezes and not on the resolution
changes. For example, it is preferred to watch a video on 720p without it freezing all the
time, than on 1440p with many stallings.

• The Number of Stallings refers to the sum of stalling events. A stalling occurs when
a segment has been delivered in more than 5 seconds, which is its duration.

• The Total Stalling Time refers to the sum of stalling durations of all the segments.

• The Mean Stalling Time refers to the total stalling time over all stallings occurred in
a video playback.

• The Initial Playback Delay in seconds, refers to the time of delivery of the first
segment from the time of the arrival of the manifest file, which is the start of the
experiment.

• The Number of Cached Bits delivered refers to the sum of size in bits of the
segments that were already stored in the cache.

• Number of Non-Cached bits delivered refers to the sum of size in bits of the segments
that were not stored in the cache but were served by the main server.

• Last, the Cache Hit Ratio refers to the sum of segments that were already in the
cache over all the segments cached and non-cached, in percentage.

6.3.6 Raw file

In order to extract metrics from the output of experiment, we have made a bash shell script
called “raw.sh” that takes as an input the output of the cache server and measures all the
metrics that we need. To collect all the metrics that we want, we export the output of the
cache server into a text file, named metrics.txt.

All those metrics are written in csv files, for a better manipulation to make the diagrams. The
code of the raw.sh is presented in the Appendix A.

6.3.7 Implementation

Everything that was explained and described in the previous sections, will now be
implemented. The process of producing the segments of the video for each quality version
and the manifest file that describes it all, has been completed already.

So, the custom topology for the client, cache, and main server, demonstrated with the use
of MiniEdit, is shown below.

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 74

Figure 47: Enhanced topology with cache server

We have renamed the hosts h1, h2 and h3 to client, cache and main, accordingly, for our
convenience. Having enabled the CLI option in Preferences, we hit the Run button in the
lower left corner. In the Mininet CLI, we type the command “dump”, in order to be presented
with the IP’s of each node. As we can see, the IP of the client is 10.0.0.1, the IP of the cache
is 10.0.0.2, and the IP of the main server is 10.0.0.3.

Figure 48: Starting the CLI

So, for our simulation, we have created two separate folders, one for the cache and one for
the main server, the R1.sh script and the R2.sh script.

The main server’s public folder contains the manifest file as well as every segment for each
quality. So, the public folder, as it is its role, contains everything. On the other hand, the
cache folder contains the “CacheHTTPServer.py” file in Python for the cache server, the
manifest file, some video segments according to the appropriate caching policy and the
raw.sh script.

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 75

Figure 49: The cache folder (with no cache policy)

We must be sure that before the start of any experiment, we should clear the cache folder.
If we wanted to use a caching policy, we would run the script random_file.sh to fill the cache
, before the start of the experiment.

Next, we type the following command in the Mininet CLI, and the xterms for all the hosts will
appear:

$ xterm Client Cache Main s2 s3

In each xterm, we execute the following commands that are shown in the figure below. First,
in the main window, we navigate into the public folder and start running the main server in
port 8003 with the command:

$ python -m SimpleHTTPServer 8003

Next, in the same way, we navigate into the cache folder and start the cache server to listen
in port 8002 by typing the following command in the cache xterm:

$ python -m CacheHTTPServer 8002 &> output.txt

After we execute this command, the output.txt file is created in the cache, and all the metrics
will be saved there. Now it’s time to execute the scripts for the rate control by typing in s2

$./r1.sh

 and in s3

$./r2.sh

And, last but not least, we start the video player in the client xterm to request the manifest
file from the IP and port of the cache server:

$ vlc-wrapper http://10.0.0.2:8002/manifest.mpd

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 76

Figure 50: xterm Main Server

Figure 51: xterm Cache Server

Figure 52 : xterm s2 switch

Figure 53: xterm s3 switch

Figure 54: xterm Client

After executing the command in the client window, we are able to watch the video.

Figure 55: Video playback

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 77

To follow the flow of information, we present the below two screenshots to show what is
happening between the two servers. So, the video starts playing, by requesting the manifest
from the cache server. Then, sequential requests for each segment are starting towards the
cache server. The start is always with the lowest quality, so the initialization file is asked
first, and the first segments (.m4s files) are asked second. Those files are all in the cache,
so, we see the messages printed in the cache console. In the case where a file is requested
by the client from the cache and the cache does not have it, the main server is enabled, and
the cache requests it from it. In the red rectangle we see that after some segments that are
found in the cache, there is a cache miss for the video_1440_3.m4s segment (same for
video_2160_4.m4s), so it is requested from the main server. The main server responses
with the correct file, and then the video is continued.

Figure 56: Output of the cache server terminal

Figure 57: Output of the main server terminal

And as we can see in the next figure, the missing segments from the cache have now been
downloaded in the cache folder.

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 78

Figure 58: Contents of the cache folder after the implementation

After the completion of an experiment, we will find in cache folder the .txt with the information
about the segments that played in this experiment. The format of this output follows:

Figure 59: Output of an experiment

This output will be used from the raw.sh script, in order to export all the wanted experiment
metrics in txt file, named metrics.txt

$ raw.sh &> metrics.txt

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 79

Figure 60: The metric.txt file

6.4 Limitations of the Mininet approach

After conducting many experiments with different combinations of [R1, R2, L], we have
concluded to the fact that this approach had many drawbacks that led to a result that did not
meet realistic scenarios. The restrictions that we met was the following:

● The channels were not utilized to a full extent despite the fact that we had enough
resources available. For example, if we had a backhaul connection channel of 5 Mbps
available, only 3 Mbps were used. This problem persists mostly due to the limitations
of the Mininet interface but also due to the Get Before Send technique.

● The rate control was not accurate at all. In terms of explaining, we noticed that the
Mininet interface had a default bandwidth value of 50 Gbps. What we observed was
that while the rate was changing in our scripts, by applying one rule after the other,
there was a gap between these rules. During this gap, the default value of the Mininet
interface was applied, as it was the dominant one. This resulted to a higher data rate
than the one anticipated by the experiment setup.

● The fact that the Mininet interface was restricting us from automating the procedure,
made us conduct every experiment separately and that was exhausting and risky.

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 80

7. PROPOSED SET OF EXPERIMENTS

For all the reasons that we mentioned in the previous section, we have given up on the
Mininet approach and we have continued our Thesis with a new perspective. Now that we
do not depend on Mininet and its limitations, our new approach is implemented in regular
gnome terminals with the IPs of the localhost 127.0.0.1. We will see how this approach is
implemented in the next chapters.

7.1 Introduction

All things considered, the changes we have made for this approach are several. In the first
place, along with Mininet, we have also eliminated the trace files that we used to add traffic
to the fronthaul and the backhaul channel. Now the rate values change every second that
passes with the help of the Rayleigh distribution formula within the cache code [71].

Furthermore, the caching policy remains the same, we fill the cache with random files until
the buffer is full and the metrics that we collect are the same as well. We have automated
the procedure with a single file that when is executed, all the experiments for all the different
R1, R2, and L, which is the buffer size, run back to back without us needing to run each
experiment separately. Also, for each set of [R1, R2, L] we conduct the experiment three
times and we name it as a different sample, in order to see the differences and extract a
mean value of the three experiments. These will become clearer below, where we give
examples of the implementation and the code itself.

One thing to notice is that we have conducted two different sets of experiments. The first
set, given the name “Get Before Send”, or GBS for short, is an approach where the data
from the server is fetched serially, meaning that the second segment is sent to the client
only after the first segment has been fetched. This approach is expecting to show that the
traffic R1 that we applied in the fronthaul channel and the traffic R2 that we applied in the
backhaul channel were under-utilized. This was one of the main problems that we noticed
in the previous GBS implementation and it’s something that we expect to be more noticeable
if we compare the GBS with the second set of experiments.

This under-utilization can be easily seen in the figures below, if we execute a simple GBS
experiment, with R1=20 Mbps, R2=10 Mbps, and L=1000 MB and export some specific
metrics as time passes. As one can easily observe, by comparing the 4 diagrams below,
despite the fact that the buffer is big enough, the client is not able to exploit the bandwidth
at all. At the same time, the number of stallings that cause the QoE to drop, is a matter of
concern. As a result, a lot of bitrate oscillations, that lead to resolution changes, can be
depicted. Last but not least, at the last diagram, it is clear that the backhaul channel is not
fully utilized, as it is able to transmit data at a rate of 10 Mbps, and due to GBS technique it
is almost at the 2/3 of that. The same experiment that we executed, will also be executed
for the second set of experiments , in order to verify what we have claimed for the GBS
restrictions.

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 81

Figure 61: Average resolution vs time

Figure 62: Cache hits vs time

Figure 63: Number of stallings vs time

0

500

1000

1500

2000

2500

0

1
5

2
0

3
5

4
4

5
0

6
4

7
6

8
8

9
6

1
0

8

1
3

2

1
3

7

1
4

3

1
5

4

1
5

8

1
6

7

1
8

1

1
9

0

2
0

2

2
1

6

2
3

1

2
4

5

2
5

4

2
5

5

2
7

1

2
8

1

3
0

0

3
1

3

3
2

7

3
3

2

A
ve

ra
ge

 R
es

o
lu

ti
o

n

Time (sec)

Fronthaul R1=20Mbps - Backhaul R2=10Mbps

0

0.2

0.4

0.6

0.8

1

1.2

0

1
5

2
0

3
5

4
4

5
0

6
4

7
6

8
8

9
6

1
0

8

1
3

2

1
3

7

1
4

3

1
5

4

1
5

8

1
6

7

1
8

1

1
9

0

2
0

2

2
1

6

2
3

1

2
4

5

2
5

4

2
5

5

2
7

1

2
8

1

3
0

0

3
1

3

3
2

7

3
3

2

C
ac

h
e

H
it

s

Time (sec)

Fronthaul R1=20Mbps - Backhaul R2=10Mbps

0

0.2

0.4

0.6

0.8

1

1.2

0

1
5

2
0

3
5

4
4

5
0

6
4

7
6

8
8

9
6

1
0

8

1
3

2

1
3

7

1
4

3

1
5

4

1
5

8

1
6

7

1
8

1

1
9

0

2
0

2

2
1

6

2
3

1

2
4

5

2
5

4

2
5

5

2
7

1

2
8

1

3
0

0

3
1

3

3
2

7

3
3

2

St
al

lin
gs

Time (sec)

Fronthaul R1=20Mbps -Backhaul R2=10Mbps

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 82

Figure 64: R1 and R2 vs time

The second set of experiments named “Send While Get”, or SWG, as the name suggests,
is more efficient than the first and the segments are fetched from the server simultaneously
and are sent to the client without the need of any queue. For example, in the GBS approach,
a segment was sent to the client chunk-by-chunk, and the second segment was not sent
until the whole first segment was fetched. In the SWG approach, when a chunk of the first
segment has been sent, then the request of the second segment is starting to be served,
regardless of how many chunks of the first segment have been sent by that time. In this
approach, given the fact that it is smarter than the first, is expected to show that the channels
are utilized in a better way, leading us to better results in all the QoE metrics that we will
export later after conducting a variety of experiments.

The new topology that we have come up with is the following.

Figure 65: The new topology without Mininet

We have also added an extra server to the topology, called Local Server, where its objective
is, in case of a smart caching policy aware of the contents in the cache, to download
proactively more segments, directly from the Main Server, which are more likely to be
selected by the media player. However, in our case, the existence of the Local Server is not
of this use and acts only as a regular server that if the request can be served then it
responds, and not in the opposite case.

So, the client part of our topology is considered both the VLC client and the Local Server
and that’s why in the figure above they exist in the same node. Moving on, the Proxy Server
is the cache to our topology with the available buffer sizes 0, 100, 1000, 3000 MBs and the
Main Server is the database that contains all the segments of all the different resolutions,
3000 MBs in total. We have created 3 folders:

0

2

4

6

8

10

12

14
0

1
5

2
0

3
5

4
4

5
0

6
4

7
6

8
8

9
6

1
0

8

1
3

2

1
3

7

1
4

3

1
5

4

1
5

8

1
6

7

1
8

1

1
9

0

2
0

2

2
1

6

2
3

1

2
4

5

2
5

4

2
5

5

2
7

1

2
8

1

3
0

0

3
1

3

3
2

7

3
3

2

R
1

,R
2

 (
M

b
p

s)

Time (sec)

Fronthaul R1=20Mbps - Backhaul R2=10Mbps

R1(Mbps) R2(Mbps)

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 83

• the local folder: starts out empty before each experiment and only contains the
local.py code file.

• the cache folder: filled with random segments based on the buffer size and contains
the 2 proxy code files (GBS and SWG approaches). These code files were given to
us by the group of researchers that we worked together.

• the public folder: contains every file that the other servers may request along with the
main.py code file.

We continue with the explanation of each set of experiments.

7.2 GBS Implementation

For the first set of experiments is the GBS implementation, as we have already explained, if
a cache hit takes place, the proxy server forwards the video segment (locally cached)
directly. If a cache failure takes place, the proxy downloads the full video segment before
forwarding it to the client. It must become clear that all servers are HTTP servers written in
python 3.6. We will explain the proxy-get-before-send.py code below.

The code starts with all the necessary imports and with the BaseHTTPRequestHandler
class. This class is used to handle the HTTP requests that arrive at the server. By itself, it
cannot respond to any actual HTTP requests; it must be subclassed to handle each request
method (e.g. GET or POST). BaseHTTPRequestHandler provides a number of class and
instance variables, and methods for use by subclasses. The handler will parse the request
and the headers, then call a method specific to the request type. The method name is
constructed from the request [72].

The do_HEAD() method serves the 'HEAD' request type: it sends the headers it would send
for the equivalent GET request. In the do_GET() method the request is mapped to a local
file by interpreting the request as a path relative to the current working directory [72].

Then, the send_head() method is responsible for the GET and HEAD commands and it
directs to the right method if the file exists in the cache (cache hit), or not (cache miss). Also,
the name of the output file is constructed here, based on the arguments as:
output_r1_r2_L_sample.txt and the moment of the GET request is written in it. If all the files
have been written in the txt file, then a Keyboard Interrupt is raised, in order to stop the
experiment.

The respond() and the request_and_respond() method are called in case of a cache hit and
cache miss accordingly. The procedure is similar. The file that has been requested is given
whole, byte by byte, and with the help of a counter to count each second that has passed,
we change the rate that is applied to the fronthaul channel with the Rayleigh distribution. If
the file is not in the cache, we must retrieve it from the main server, so we establish a
connection with it and request the file from there, doing the exact procedure for the traffic in
the backhaul channel now.

The rest of the code for the proxy is pretty straightforward. We need it to search the cache
for types of files like .mp4, .mp4 and .mpd. There are options for default arguments, but we
choose to pass them through the terminal for convenience in the understanding. The proxy
server’s IP is 127.0.0.3 and its port is 8003.

The code for the local.py and the main.py is the same with the only differences being that
we change the IPs and the ports when we execute them in the terminals and the default rate
for the local server is a large number (1000000) because we consider the local and the client
as one entity. The IP and port of the local server is 127.0.0.2 and 8002 accordingly and for
the main server 127.0.0.4 and 8004. The code for the local.py and main.py is presented
below:

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 84

The commands to run an example experiment [R1, R2, L, sample] = [10, 5, 100, 1] for each
node are the following:

In the public folder:

$ python3 main.py -a 127.0.0.4 -p 8004 -s1 127.0.0.4 -p1 8004 -s2 127.0.0.4 -p2 8004
-r 5

• -a: is the address of the server

• -p: is the serving port

• -s1: is the remote server No. 1, in this case it is the same address as the main server
has no other connections

• -p1: serving port of remote server No. 1, same as itself

• -s2: is the remote server No. 2, in this case it is the same address as the main server
has no other connections

• -p2: serving port of remote server No. 2, same as itself

• -r: the data rate of the backhaul channel

In the cache folder:

$ python3 proxy-get-before-send.py -a 127.0.0.3 -p 8003 -sa 127.0.0.4 -sp 8004 -r1 10
-r2 5 -l 100 -sample 1

• -a: is the address of the proxy server

• -p: is the serving port

• -sa: is the remote server address of the main server

• -sp: is the remote server port of the main server

• -r1: the data rate r1 of the fronthaul channel

• -r2: the data rate r2 of the backhaul channel

• -l: is the buffer size

• -sample: is the number of the sample

In the local folder:

$ python3 local.py -a 127.0.0.2 -p 8002 -s1 127.0.0.3 -p1 8003 -s2 127.0.0.3 -p2 8003

The arguments of the local server are the same as the main server, but the remote server
No.1 and 2 is the address of the cache server as there is no other connection for it.

In the directory where the above folders are, we execute the command for the VLC to start:

$ vlc-wrapper http://127.0.0.2:8002/manifest.mpd

A visualization of all the above commands is shown below in the figures:

Figure 66: Main Server command

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 85

Figure 67: Proxy Server command

Figure 68: Local Server command

Figure 69: Client command

When this experiment is finished, in the cache folder, along with all the segments that
already existed in the cache or have been requested, we can find the output txt. Its format
can be shown below.

Figure 70: Contents of cache folder after experiment and the output file

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 86

Figure 71: Output file format

7.3 SWG Implementation

In this second set of experiments, we use the Send While Get technique, which means that
the Proxy Server does not wait for a single segment to be delivered to the Local Server, but
while a segment is sent, the next one is already beginning the process of being requested
and delivered. If a cache hit takes place, the proxy server forwards the video segment
(locally cached) directly. If a cache failure takes place, we have configured the proxy server
to read the proxy-to-main socket packet per packet (8192) and forward directly the packets
upon reception.

The commands for an example experiment [r1, r2, L, sample] = [20, 10, 1000, 3] are shown
below for the new proxy, the rest remain the same:

$ python3 proxy-send-while-get.py -a 127.0.0.3 -p 8003 -s1 127.0.0.4 -p1 8004 -s2
127.0.0.4 -p2 8004 -r1 20 -r2 10 -l 1000 -sample 3

The arguments follow the same logic as with the GBS technique.

Figure 72: Execution of the SWG proxy

After the demonstration of how to run this technique, we will conduct a simple experiment
with the data of R1=20 Mbps, R2=10 Mbps, L=1000 MB like the one that we did before for
the GBS approach. The manipulation of the raw data gave us the below figures.

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 87

Figure 73: Average resolution vs time

Figure 74: Cache hit vs time

Figure 75: Rate R1, R2 vs time

0

500

1000

1500

2000

2500

0 4

1
5

2
1

2
8

4
4

5
0

5
2

7
1

8
1

9
4

9
5

9
9

1
1

7

1
2

5

1
2

6

1
4

6

1
6

0

1
7

4

1
7

4

1
7

5

2
0

7

2
1

5

2
1

9

2
2

3

2
3

9

2
4

1

2
5

5

2
7

8

2
8

1

2
8

2

A
ve

ra
ge

 R
es

o
lu

ti
o

n

Time (sec)

Fronthaul R1=20 Mbps, Backhaul R2=10 Mbps

0

0.2

0.4

0.6

0.8

1

1.2

0 4

1
5

2
1

2
8

4
4

5
0

5
2

7
1

8
1

9
4

9
5

9
9

1
1

7

1
2

5

1
2

6

1
4

6

1
6

0

1
7

4

1
7

4

1
7

5

2
0

7

2
1

5

2
1

9

2
2

3

2
3

9

2
4

1

2
5

5

2
7

8

2
8

1

2
8

2

C
ac

h
e

H
it

s

Time (sec)

Fronthaul R1=20Mbps, Backhaul R2=10Mbps

0

5

10

15

20

0 4

1
5

2
1

2
8

4
4

5
0

5
2

7
1

8
1

9
4

9
5

9
9

1
1

7

1
2

5

1
2

6

1
4

6

1
6

0

1
7

4

1
7

4

1
7

5

2
0

7

2
1

5

2
1

9

2
2

3

2
3

9

2
4

1

2
5

5

2
7

8

2
8

1

2
8

2

R
1

,R
2

 (
M

b
p

s)

Time (sec)

Fronthaul R1=20Mbps, Backhaul R2=10Mbps

R1 R2

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 88

By studying the above diagrams , what we can say with certainty is that there are no stallings
in this approach, which means that the QoE is increased for the user. Also, the bitrate
oscillations are fewer, resulting in the client exploiting better the cache hits. However, the
most significant observation is that both the fronthaul and the backhaul channel, are utilized
to a better extent , due to the fact that no channel stays inactive for a long period of time.

7.4 Automation

In order to automate the procedure and run many experiments back to back, we have
implemented an automation.py script that does that for us.

At first, before each experiment, the contents of the folder of the Local and the Proxy Server
must be cleared from all the .mpd, .mp4 and .m4s files:

Next, depending on the type of cache (where it has a buffer capacity of 0, 100 or 1000MB),
it fills it as close to that number as possible. It tries to find randomly files from the public
folder and checks if they fit in the cache. If the segment fits, it copies it, if it doesn’t then it
tries up to 20 times to find another to fit. This happens because there are segments that are
of 30MB and others of some kilobytes.

If the buffer size of the cache is 3000MB that means that all content from the public folder
can be copied in the cache.

Finally, when an experiment is finished, we explained above that the output file is written in
the cache folder and the proxy terminal is accepting a keyboard interrupt, so it closes. When
the output file has been created, there is no need to continue the experiment even if the
video has not finished because we have all the information we need. So, we kill all the other
terminals in order to open the new ones for the next experiment. This can be achieved by
finding the process ID of the terminal commands of the local, main and client, along with the
window of the VLC still playing, and killing them all.

After finishing with all the methods, the main program consists of the matrices of the data
for the experiments (R1, R2, L, sample) and 4 consecutive for loops. Then, the commands
for each terminal are stored in some variables and we use the subprocess.Popen function
to open the four different terminals. The subprocess module allows us to spawn new
processes, connect to their input/output/error pipes, and obtain their return codes. This
module takes several input arguments. We use the cwd to change the working directory, as
the python files exist in different folders. Also, we use the option shell=True to cause the
subprocess to spawn an intermediate shell process and tell it to run the command. We add
the sleep function between opening the terminals to avoid over-congesting the hard drive of
our PC. When the terminals have opened and the commands have been executed, there is
no way to find out when the experiment has finished, except when the output file has been
created in the cache folder. So, we start an endless loop for searching for that output and
when we find it, we kill all the open processes in order for the new experiment to start. The
code can be seen in the Appendix B.

The IDE we use for the automation.py is the PyCharm Community Edition 2021.1. We simply
press the play button and let the editor run the experiments back to back. The combination
of the set of data in the code ran for 3 days. We present an output of the interface.

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 89

Figure 76: Example of the automation process

7.5 New Raw File and Metrics

Now that the format of the output file has changed, we need a new file that calculates the
metrics for the new experiments. The metrics that we need are the same that we explained
in chapter 6.3.5. After the completion of all the experiments we have many output files. We
transfer those files in a folder within the public folder called “outputs”. We also create a folder
named “metrics” in the public folder. This is because the raw.py file needs to be with all the
segments because it scans each segment written in the output file and finds its size. The
raw file is run by executing:

$ python3 raw.py

The result of this run is the creation of a metrics txt file, corresponding to the output file,
created in the metrics folder along with a csv where all the average values are passed in
cells for each experiment for our convenience. Each set of experiments is executed three
times, and the average value of the three samples is calculated, in order to eliminate the
bias. These average values are used in the diagrams below.

The code of the raw.py is found in the Appendix B.

7.6 Diagrams analysis

In chapter 7.6.1, we will analyze the QoE metrics and their evolvement over the fronthaul
traffic R1, for 3 different buffer sizes. They will be compared with each other, in
contemplation of the optimal combination of caching and QoE, so that the available network
resources will be fully utilized.

In chapter 7.6.2, we will examine some metrics and their evolvement over the increase of
the buffer size for four pairs of fronthaul R1 and backhaul R2 values.

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 90

7.6.1 QoE metrics VS Fronthaul channel rate R1

In the 3 next diagrams we can see how the average resolution improves with the increase
of the buffer size L, for different values of the fronthaul channel with rate R1.

Figure 77: Average Resolution vs R1 (L=0)

Figure 78: Average Resolution vs R1 (L=100 MB)

200

400

600

800

1000

1200

1400

1600

1800

2000

0 10 20 30 40 50 60

A
ve

ra
ge

 R
es

o
lu

ti
o

n

R1 (Mbps)

Average Resolution Progress (L=0 MB) SWG, R2=60
Mbps
GBS, R2=60
Mbps
SWG, R2=20
Mbps
GBS, R2=20
Mbps
SWG, R2=10
Mbps
GBS, R2=10
Mbps
SWG, R2=5
Mbps
GBS, R2=5
Mbps
SWG, R2=1
Mbps
GBS, R2=1
Mbps

200

400

600

800

1000

1200

1400

1600

1800

2000

0 10 20 30 40 50 60

A
ve

ra
ge

 R
es

o
lu

ti
o

n

R1(Mbps)

Average Resolution Progress (L=100 MB) SWG, R2=60
Mbps
GBS,R2=60
Mbps
SWG, R2=20
Mbps
GBS, R2=20
Mbps
SWG, R2=10
Mbps
GBS, R2=10
Mbps
SWG, R2=5
Mbps
GBS, R2=5
Mbps
SWG, R2=1
Mbps
GBS, R2=1
Mbps

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 91

Figure 79: Average Resolution vs R1 (L=1000 MB)

After plotting the graphs, we can come to the conclusion that:

• As it is reasonable, the higher the backhaul R2 (for the same R1), the higher the
average resolution playing for the client.

• We notice an increase of the average resolution at every curve of the figure, while
R2<R1. When R2>=R1 is valid, the value of the quality of the video stabilizes to some
extent and can be further improved only if we have big enough buffer available.

• For R2 = 1, 5 or 10 Mbps, a false image is given that the GBS approach gives better
results. The fact in this case is that the HAS algorithm is over-optimistic, making the
media player increase the quality. However, this increase is not justified in terms of
bandwidth, and this is the reason of the continuous occurrences of bitrate oscillations
and as a result, of stallings. On the other hand, the SWG approach has less stallings
than the GBS one, so it is the one that gives better results in terms of QoE.

• The right approach that shows the dominance of the SWG technique is mostly shown
at the curves of the figures for R2 = 20 and 60 Mbps, regardless of buffer size.

• While the buffer size L is increased, we can notice an increase of the average
resolution for the same R1 and R2 values. The positive impact of caching is clearly
noticeable. To make the example more understandable, in case of an R1 = 20 Mbps
and R2 = 10 Mbps, if the buffer size L = 0 MB, then the average resolution ranges
between 1100 and 1200, but if the L = 1000MB, then the average resolution is almost
increased at about 100 units, reaching a value close to 1300.

On the next 3 figures, we can see the average altitude for 2 distinct values of R1, in the 3
different buffer sizes that we have available in our experiment.

200

400

600

800

1000

1200

1400

1600

1800

2000

0 10 20 30 40 50 60

A
ve

ra
ge

 R
es

o
lu

ti
o

n

R1(Mbps)

Average Resolution Progress (L = 1000 MB)
SWG, R2=60
Mbps
GBS, R2=60
Mbps
SWG, R2=20
Mbps
GBS, R2=20
Mbps
SWG, R2=10
Mbps
GBS, R2=10
Mbps
SWG, R2=5
Mbps
GBS, R2=5
Mbps
SWG, R2=1
Mbps
GBS, R2=1
Mbps

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 92

Figure 80: Average Altitude VS R1 for R2=5,20 Mbps (L=0 MB)

Figure 81: Average Altitude VS R1 for R2=5,20 Mbps (L=100 MB)

Figure 82: Average Altitude VS R1 for R2=5,20 Mbps (L=1000 MB)

• The peak of the curve in the figure for R1 = 5 Mbps, is a good example for someone
to notice the over-optimism of the HAS algorithm, which causes many bitrate
oscillations, leading to the increase of the altitude value.

• If the channel is of a higher rate, this impact is eliminated, and the average altitude
reaches to very low values.

• In order to fully extinguish the impact and cause it to reach lower values, a higher R2
is needed, as shown by comparing the figures above.

• The higher the R2, the SWG approach remains the best option.

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 93

• The increase of the buffer size does not demonstrate any big difference in the
behavior of the curve in the figure. A quite general conclusion is that the higher the
buffer size L, the lower the average altitude.

Concerning the mean network throughput R1, we are able to observe the followings in terms
of buffer sizes 0, 100 and 1000MB:

Figure 83: Mean Network Throughput R1 vs R1 for L= 0 MB

Figure 84: Mean Network Throughput R1 vs R1 for L= 100MB

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60

M
ea

n
 N

et
w

o
rk

 T
h

ro
u

gh
p

u
t

R
1

 (
M

b
p

s)

R1 (Mbps)

Mean Network Throughput R1 Progress (L=0 MB)
SWG, R2=60
Mbps

GBS, R2=60
Mbps

SWG, R2=20
Mbps

GBS, R2=20
Mbps

SWG, R2=5
Mbps

GBS, R2=5 Mbps

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60

M
ea

n
 N

et
w

o
rk

 T
h

ro
u

gh
p

u
t

R
1

 (
M

b
p

s)

R1(Mbps)

Mean Network Throughput R1 Progress (L =100MB)

SWG, R2=60
Mbps

GBS, R2=60
Mbps

SWG, R2=20
Mbps

GBS, R2=20
Mbps

SWG, R2=5
Mbps

GBS, R2=5
Mbps

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 94

Figure 85: Mean Network Throughput R1 vs R1 for L= 1000MB

• The results are quite expected, as the mean throughput is increased linearly until the
point where R1 = R2, where it reaches the highest value (for L=0).

• For R2 = 60 Mbps, the throughput is not 60 as expected, but it is lower because the
highest available quality (2160p) has an average bitrate of almost 45Mbps.

• The higher the buffer size, meaning that the fronthaul channel R1 is used more often
than the backhaul, the higher the mean throughput R1.

• There is better utilization of the channels in the SWG approach, especially when then
buffer size is higher.

• In the GBS approach, the network resources remain unutilized, something prohibited
for any vendor.

• The gap shown in the diagram between the 2 curves of SWG and GBS (for the same
R2 value), moves to higher values of the R1 throughput. In other words, the R2
increase is responsible for the change of place of the gap in the right direction
upwards.

In the next 3 figures, we validate the behavior of the backhaul R2 for the buffer sizes of 0
MB, 100 MB and 1000 MB .

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60

M
ea

n
 N

et
w

o
rk

 T
h

ro
u

gh
p

u
t

R
1

 (
M

b
p

s)

R1(Mbps)

Mean Network Throughput R1 Progress (L=1000MB)
SWG, R2=60
Mbps

GBS, R2=60
Mbps

SWG, R2=20
Mbps

GBS, R2=20
Mbps

SWG, R2=5
Mbps

GBS, R2=5
Mbps

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 95

Figure 86 : Mean Network Throughput R2 vs R1 for L= 0 MB

Figure 87: Mean Network Throughput R2 vs R1 for L=100 MB

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60

M
ea

n
 N

et
w

o
rk

 T
h

ro
u

gh
p

u
t

R
2

 (
M

b
p

s)

R1(Mbps)

Mean Network Throughput R2 Progress (L=0MB)

SWG, R2=60
Mbps

GBS, R2=60
Mbps

SWG, R2=20
Mbps

GBS, R2=20
Mbps

SWG, R2=5 Mbps

GBS, R2=5 Mbps

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60

M
ea

n
 N

et
w

o
rk

 T
h

ro
u

gh
p

u
t

R
2

 (
M

b
p

s)

R1(Mbps)

Mean Network Throughput R2 Progress(L =100MB)

SWG, R2=60
Mbps

GBS, R2=60
Mbps

SWG,
R2=20Mbps

GBS, R2=20
Mbps

SWG, R2=5
Mbps

GBS, R2=5
Mbps

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 96

Figure 88: Mean Network Throughput R2 vs R1 for L=1000 MB

We can easily notice that:

• The curve is linear until it reaches an upper limit.

• Again, better utilization of the channel is shown in the SWG approach, compared to
the GBS approach that leaves resources even more unutilized.

• As the buffer size increases, the mean network R2 throughput is reduced for the
same R1 rate. This happens because the fronthaul link is used more often due to the
fact that we have more cache hits.

• However, the use of a non-smart algorithm and the non-existence of a multithread
approach makes the backhaul channel idle for a long time, in case of a cache hit.

• Ideally, in case of a cache hit where the fronthaul channel would serve the client, the
backhaul channel should download new segments to the cache, in order to benefit
later, in terms of QoE and network resources.

• The SWG approach is generally more beneficial, but the biggest benefit comes in the
points from R1 = 0 to 10 Mbps, where there is a range of available resolutions. The
higher the R1 than those values, there is no more benefit, due to the absence of
another higher resolution.

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

M
ea

n
 N

et
w

o
rk

 T
h

ro
u

gh
p

u
t

R
2

 (
M

b
p

s)

R1(Mbps)

Mean Network Throughput R2 Progress(L=1000 MB)

SWG, R2=60
Mbps

GBS, R2=60
Mbps

SWG,
R2=20Mbps

GBS, R2=20
Mbps

SWG, R2=5
Mbps

GBS, R2=5
Mbps

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 97

The Mean Opinion Score, that a client may extract if he watches a video, is depicted below
for 3 different kind of cache servers:

Figure 89: MOS vs R1 for L=0 MB

Figure 90: MOS vs R1 for L=100 MB

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 10 20 30 40 50 60

M
O

S

R1(Mbps)

Mean Opinion Scpre (L=0 MB)

SWG, R2=60
Mbps
GBS, R2=60
Mbps
SWG, R2=20
Mbps
GBS, R2=20
Mbps
SWG, R2=5
Mbps
GBS, R2=5
Mbps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 10 20 30 40 50 60

M
O

S

R1(Mbps)

Mean Opinion Score (L=100 MB)
SWG, R2=60 Mbps

GBS, R2=60 Mbps

SWG, R2=20 Mbps

GBS, R2=20 Mbps

SWG, R2=5 Mbps

GBS, R2=5 Mbps

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 98

Figure 91: MOS vs R1 for L=1000 MB

We can conclude that :

• The MOS metric demonstrates the client’s preference towards the SWG approach.

• The HAS algorithm, due to the fact that acts as over-optimistic for the available
bandwidth, leads to the video freezing many times (stalling events), and as a result
the client is not satisfied.

• The bottom line is that the caching algorithms and the HAS algorithms are always
interdependent because if the HAS algorithm is not cache-aware then the caching
does not help very much. In other words, we are wasting resources for storage,
without it being beneficial.

• The higher the R2 value, the less the bottleneck, so there is a benefit in the MOS
value.

• For R2 = 5 Mbps, the stallings that occur are so many that they lead to the worst
value of the MOS. As a result, both approaches do not differ that much in terms of
what the client feels while watching the video.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 10 20 30 40 50 60

M
O

S

R1(Mbps)

Mean Opinion Score (L=1000MB)
SWG, R2=60 Mbps

GBS, R2=60 Mbps

SWG, R2=20 Mbps

GBS, R2=20 Mbps

SWG, R2=5 Mbps

GBS, R2=5 Mbps

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 99

Lastly, concerning the number of stallings of our experiments, we conclude to the following
results :

Figure 92: Number of stallings vs R1 for L=0 MB

Figure 93: Number of stallings vs R1 for L=100 MB

0

10

20

30

40

50

60

1 3 5 10 14 20 40 60

N
u

m
b

er
 o

f
St

al
lin

gs

R1(Mbps)

Number of Stallings Progress (L=0 MB)

SWG, R2=20 Mbps

GBS, R2=20 Mbps

SWG, R2=10 Mbps

GBS, R2=10 Mbps

SWG, R2=1 Mbps

GBS, R2=1 Mbps

0

10

20

30

40

50

60

1 3 5 10 14 20 40 60

N
u

m
b

er
 o

f
St

al
lin

gs

R1 (Mbps)

Number of Stallings Progress (L=100 MB)

SWG, R2=20 Mbps

GBS, R2=20 Mbps

SWG, R2=10 Mbps

GBS, R2=10 Mbps

SWG, R2=1 Mbps

GBS, R2=1 Mbps

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 100

Figure 94: Number of stallings vs R1 for L=1000 MB

• To highlight a clear conclusion, it is possible that more samples were needed.

• Generally, there is a tendency for stallings to decrease while the R1 increases and
while the buffer increases, since more segments are found cached and the media
player uses them in his favor to avoid freezing.

• For a stable value of R1, there are more stallings for lower values of R2.

• The GBS approach compared to the SWG presents more stallings in the majority of
cases. If we had more samples, the GBS approach would always have more stallings.

• The existence of a larger buffer benefits in terms of stallings, mostly in cases of higher
R1 values. In cases of lower R1 values, there is also an improve in terms of stallings,
but it is a smaller improve compared to higher R1 values.

0

5

10

15

20

25

30

35

40

45

1 3 5 10 14 20 40 60

N
u

m
b

er
 o

f
St

al
lin

gs

R1(Mbps)

Number of Stallings Progress (L=1000MB)

SWG, R2=20 Mbps

GBS, R2=20 Mbps

SWG, R2=10 Mbps

GBS, R2=10 Mbps

SWG, R2=1 Mbps

GBS, R2=1 Mbps

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 101

7.6.2 QoE metrics VS Buffer Size L

The average resolution progress, as the buffer size is increased is shown in the next figure.

Figure 95: Average resolution vs buffer size L

We can observe that:

• The increase of the buffer size creates a satisfying profit over resolution, in the case
of larger R1 values.

• If the R1 is low, there is a slightly smaller increase, or no increase at all, which means
that caching is not always beneficial, but should be accompanied with high-speed
channels.

• The SWG approach in this diagram is much better than the GBS.

• For R1= 20Mbps and R2 = 10Mbps in the SWG approach, we notice that the average
resolution for L= 0 is 1100. If we decide to up the buffer size at L = 100MB, the
average resolution only increases by 10%, reaching a value of 1200. If we increase
the buffer size from 100MB to 1000MB, the expected increase of the average
resolution should be more than 10%, but in our case it’s just a 10% increase. The
question is if any vendor prefers to waste resources in terms of storage for just a
small improvement in the resolution.

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

0 500 1000 1500 2000 2500 3000

A
ve

ra
ge

 R
es

o
lu

ti
o

n

Buffer L (MBs)

Average Resolution Progress
SWG, R1=20
Mbps, R2=10
Mbps
GBS, R1=20 Mbps,
R2=10 Mbps

SWG, R1=20
Mbps, R2=5 Mbps

GBS, R1=20 Mbps,
R2=5 Mbps

SWG, R1=5 Mbps,
R2=10 Mbps

SWG, R1=5 Mbps,
R2=10 Mbps

SWG, R1=5 Mbps,
R2=5 Mbps

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 102

As for the backhaul throughput progress over the buffer size (Figure 96), we can conclude
that:

Figure 96: Mean network throughput progress vs buffer size L

• The underutilization of the channels is clear, especially in the GBS approach.

• This is demonstrated more clearly when the buffer size is big enough and a large
portion of segments are cached. In this case there is a big waste of resources,
especially for larger R2 values.

• If we dealt with a multithread approach or a cache aware HAS algorithm, then the
curve would not fall progressively to zero (until all the segments of main will be
cached), but the available R2 would be used to download even more segments
proactively, optimizing the QoE of the client.

0

2

4

6

8

10

12

0 500 1000 1500 2000 2500 3000

M
ea

n
 N

et
w

o
rk

 T
h

ro
u

gh
p

u
t

R
2

 (
M

b
p

s)

Buffer L (MBs)

Mean Network Throughput R2 Progress
SWG, R1=20 Mbps,
R2=10 Mbps

GBS, R1=20 Mbps,
R2=10 Mbps

SWG, R1=20 Mbps,
R2=5 Mbps

GBS, R1=20 Mbps,
R2=5 Mbps

SWG, R1=5 Mbps,
R2=10 Mbps

SWG, R1=5 Mbps,
R2=10 Mbps

SWG, R1=5 Mbps,
R2=5 Mbps

GBS, R1=5 Mbps,
R2=5 Mbps

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 103

Now, if we compare the number of stallings that have occurred for two different fronthaul
rate values, we can say that :

Figure 97: Number of stallings vs buffer size for R1= 5 Mbps and R1= 20Mbps

• In both cases, the GBS approach has more stallings than the SWG approach. This
is clear for R1 = 20Mbps.

• The higher R1 values can benefit to a larger extent from the increase of the buffer
size and decrease the stallings in those cases.

• If the value of the R1 is low, there is no reason for any vendor to up the available
resources and provide extra buffer size, since, at the end of the day, the QoE
perceived by the client will not show many differences on the stallings perspective.
Stallings will still occur, and they will annoy the client.

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 104

8. CONCLUSION AND FUTURE WORK

In this thesis, we examined how to deliver DASH-based content with the help of an
intermediate server, apart from the main server, in order to demonstrate possible caching
benefits for different sizes of intermediate storage servers. The goal was to exploit and take
full advantage of the available bandwidth, along with the advantages of the caching
approach. For this reason, we created a simple client-cache-main topology in the Mininet
environment to implement the HTTP Adaptive logic, where if the cache server contained
some segments, it served them immediately. Otherwise, the main server was delivering the
missing segments. However, the limitations imposed on us by Mininet, the difficulty of the
automation process and the under-utilization of the channels concerning the available
bandwidth, pushed us to try another approach outside of Mininet.

With this new approach, we changed the testing environment and tried to compare the basic
Get Before Send logic of exchanging requests (a similar logic implemented in Mininet), with
a slightly smarter Send While Get approach, so that it can serve some requests at the same
time of requesting the next segment. Our aim was to increase the performance of our
experiment to some extent and, consequently, the Quality of Experience of the client while
watching the video.

The two main findings of our research are that the SWG logic enhances the performance of
almost all QoE-wised metrics, especially when accompanied by a satisfactory caching
policy, and reduces the under-utilization that we observed in our initial approach. We also
noticed that the chosen HAS algorithm plays an important role in our experiments due to the
dangers hidden by its over-optimism of which segment (in terms of resolution) will be the
next to be played. So, if the media player is not aware of what is available on the intermediate
server, this may lead to many stallings happening in the experiment, resulting in the loss of
any benefit we had due to caching.

So, moving in this direction, and knowing that it is difficult to manipulate with the VLC code
to change the HAS algorithm, we tried to give an idea for a future work on this issue. It would
be quite interesting if the local server that we have placed close to the client, was configured
to receive proactively the remaining segments that are very likely to be chosen by the media
player, because in our case the local server does not have a specific responsibility. This will
give even better results in the user experience.

Finally, the caching algorithm that we used in all the implementations, responsible for filling
the buffer of the intermediate server, is random and does not contain any particular
intelligence in how to fill the cache with segments. An implementation of a smarter algorithm
for future work is proposed, not based on randomness, but on the possibility of playing
certain segments instead of others. For example, if the channels had a traffic of 5Mbps, then
there is no reason to cache the segments of the 4K resolution, but certainly smaller than
that. This would point out the assistance provided by the caching policy to all video streaming
services.

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 105

APPENDIX A

Chapter 6 code files

1. bash.sh

#!/bin/bash

THIS SCRIPT CONVERTS EVERY MP4 (IN THE CURRENT FOLDER AND SUBFOLDER) TO A

MULTI-BITRATE VIDEO IN MP4-DASH

For each file "videoname.mp4" it creates a folder "dash_videoname"

containing a dash manifest file "stream.mpd" and subfolders containing video

segments.

MYDIR=$(dirname $(readlink -f ${BASH_SOURCE[0]}))

SAVEDIR=$(pwd)

Check programs

if [-z "$(which ffmpeg)"]; then

 echo "Error: ffmpeg is not installed"

 exit 1

fi

if [-z "$(which MP4Box)"]; then

 echo "Error: MP4Box is not installed"

 exit 1

fi

cd "$MYDIR"

TARGET_FILES=$(find ./ -maxdepth 1 -type f \(-name "*.mov" -or -name "*.mp4"

\))

for f in $TARGET_FILES

do

 fe=$(basename "$f") # fullname of the file

 f="${fe%.*}" # name without extension

 if [! -d "${f}"]; then #if directory does not exist, convert

 echo "Converting \"$f\" to multi-bitrate video in MPEG-DASH"

 ffmpeg -i "${fe}" -c:a copy -vn "${f}_audio.mp4"

 ffmpeg -i "${fe}" -an -c:v libx264 -x264opts 'keyint=30:min-keyint=30:no-

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 106

scenecut' -b:v 45000k -maxrate 45000k -bufsize 90000k -vf 'scale=-1:2160'

"${f}_2160.mp4" -async 1 -vsync 1

 ffmpeg -i "${fe}" -an -c:v libx264 -x264opts 'keyint=30:min-keyint=30:no-

scenecut' -b:v 16000k -maxrate 16000k -bufsize 32000k -vf 'scale=-1:1440'

"${f}_1440.mp4" -async 1 -vsync 1

 ffmpeg -i "${fe}" -an -c:v libx264 -x264opts 'keyint=30:min-keyint=30:no-

scenecut' -b:v 8000k -maxrate 8000k -bufsize 16000k -vf 'scale=-1:1080'

"${f}_1080.mp4" -async 1 -vsync 1

 ffmpeg -i "${fe}" -an -c:v libx264 -x264opts 'keyint=30:min-keyint=30:no-

scenecut' -b:v 5000k -maxrate 5000k -bufsize 10000k -vf 'scale=-1:720'

"${f}_720.mp4" -async 1 -vsync 1

 ffmpeg -i "${fe}" -an -c:v libx264 -x264opts 'keyint=30:min-keyint=30:no-

scenecut' -b:v 2500k -maxrate 2500k -bufsize 5000k -vf 'scale=-1:478'

"${f}_480.mp4" -async 1 -vsync 1

 ffmpeg -i "${fe}" -an -c:v libx264 -x264opts 'keyint=30:min-keyint=30:no-

scenecut' -b:v 1000k -maxrate 1000k -bufsize 2000k -vf 'scale=-1:360'

"${f}_360.mp4" -async 1 -vsync 1

 rm -f ffmpeg*log*

 # if audio stream does not exist, ignore it

 if [-e "${f}_audio.mp4"]; then

 #MP4Box -dash 1000 -rap -frag-rap -bs-switching no -profile

"dashavc264:live" "${f}_1080.mp4" "${f}_720.mp4" "${f}_480.mp4"

"${f}_360.mp4" "${f}_242.mp4" "${f}_audio.mp4" -out "manifest.mpd"

 MP4Box -dash 5000 -rap -frag-rap -segment-name %s_ "video_2160.mp4"

"video_1440.mp4" "video_1080.mp4" "video_720.mp4" "video_480.mp4"

"video_360.mp4" "video_audio.mp4" -out "manifest.mpd"

 fi

 # create a jpg for poster. Use imagemagick or just save the frame directly

from ffmpeg is you don't have cjpeg installed.

 ffmpeg -i "${fe}" -ss 00:00:00 -vframes 1 -qscale:v 10 -n -f image2 - |

cjpeg -progressive -quality 75 -outfile "${f}"/"${f}".jpg

 fi

done

cd "$SAVEDIR"

2. SimpleHTTPServer.py

 """Simple HTTP Server.

This module builds on BaseHTTPServer by implementing the standard GET

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 107

and HEAD requests in a fairly straightforward manner.

"""

__version__ = "0.6"

__all__ = ["SimpleHTTPRequestHandler"]

import os

import posixpath

import BaseHTTPServer

import urllib

import cgi

import sys

import shutil

import mimetypes

try:

 from cStringIO import StringIO

except ImportError:

 from StringIO import StringIO

class SimpleHTTPRequestHandler(BaseHTTPServer.BaseHTTPRequestHandler):

 """Simple HTTP request handler with GET and HEAD commands.

 This serves files from the current directory and any of its

 subdirectories. The MIME type for files is determined by

 calling the .guess_type() method.

 The GET and HEAD requests are identical except that the HEAD

 request omits the actual contents of the file.

 """

 server_version = "SimpleHTTP/" + __version__

 def do_GET(self):

 """Serve a GET request."""

 f = self.send_head()

 if f:

 self.copyfile(f, self.wfile)

 f.close()

 def do_HEAD(self):

 """Serve a HEAD request."""

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 108

 f = self.send_head()

 if f:

 f.close()

 def send_head(self):

 """Common code for GET and HEAD commands.

 This sends the response code and MIME headers.

 Return value is either a file object (which has to be copied

 to the output file by the caller unless the command was HEAD,

 and must be closed by the caller under all circumstances), or

 None, in which case the caller has nothing further to do.

 """

 path = self.translate_path(self.path)

 f = None

 if os.path.isdir(path):

 if not self.path.endswith('/'):

 # redirect browser - doing basically what apache does

 self.send_response(301)

 self.send_header("Location", self.path + "/")

 self.end_headers()

 return None

 for index in "index.html", "index.htm":

 index = os.path.join(path, index)

 if os.path.exists(index):

 path = index

 break

 else:

 return self.list_directory(path)

 ctype = self.guess_type(path)

 try:

 # Always read in binary mode. Opening files in text mode may cause

 # newline translations, making the actual size of the content

 # transmitted *less* than the content-length!

 f = open(path, 'rb')

 except IOError:

 self.send_error(404, "File not found")

 return None

 self.send_response(200)

 self.send_header("Content-type", ctype)

 fs = os.fstat(f.fileno())

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 109

 self.send_header("Content-Length", str(fs[6]))

 self.send_header("Last-Modified", self.date_time_string(fs.st_mtime))

 self.end_headers()

 return f

 def list_directory(self, path):

 """Helper to produce a directory listing (absent index.html).

 Return value is either a file object, or None (indicating an

 error). In either case, the headers are sent, making the

 interface the same as for send_head().

 """

 try:

 list = os.listdir(path)

 except os.error:

 self.send_error(404, "No permission to list directory")

 return None

 list.sort(key=lambda a: a.lower())

 f = StringIO()

 displaypath = cgi.escape(urllib.unquote(self.path))

 f.write('<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">')

 f.write("<html>\n<title>Directory listing for %s</title>\n" %

displaypath)

 f.write("<body>\n<h2>Directory listing for %s</h2>\n" % displaypath)

 f.write("<hr>\n\n")

 for name in list:

 fullname = os.path.join(path, name)

 displayname = linkname = name

 # Append / for directories or @ for symbolic links

 if os.path.isdir(fullname):

 displayname = name + "/"

 linkname = name + "/"

 if os.path.islink(fullname):

 displayname = name + "@"

 # Note: a link to a directory displays with @ and links with /

 f.write('%s\n'

 % (urllib.quote(linkname), cgi.escape(displayname)))

 f.write("\n<hr>\n</body>\n</html>\n")

 length = f.tell()

 f.seek(0)

 self.send_response(200)

 encoding = sys.getfilesystemencoding()

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 110

 self.send_header("Content-type", "text/html; charset=%s" % encoding)

 self.send_header("Content-Length", str(length))

 self.end_headers()

 return f

 def translate_path(self, path):

 """Translate a /-separated PATH to the local filename syntax.

 Components that mean special things to the local file system

 (e.g. drive or directory names) are ignored. (XXX They should

 probably be diagnosed.)

 """

 # abandon query parameters

 path = path.split('?',1)[0]

 path = path.split('#',1)[0]

 path = posixpath.normpath(urllib.unquote(path))

 words = path.split('/')

 words = filter(None, words)

 path = os.getcwd()

 for word in words:

 drive, word = os.path.splitdrive(word)

 head, word = os.path.split(word)

 if word in (os.curdir, os.pardir): continue

 path = os.path.join(path, word)

 return path

 def copyfile(self, source, outputfile):

 """Copy all data between two file objects.

 The SOURCE argument is a file object open for reading

 (or anything with a read() method) and the DESTINATION

 argument is a file object open for writing (or

 anything with a write() method).

 The only reason for overriding this would be to change

 the block size or perhaps to replace newlines by CRLF

 -- note however that this the default server uses this

 to copy binary data as well.

 """

 shutil.copyfileobj(source, outputfile)

 def guess_type(self, path):

 """Guess the type of a file.

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 111

 Argument is a PATH (a filename).

 Return value is a string of the form type/subtype,

 usable for a MIME Content-type header.

 The default implementation looks the file's extension

 up in the table self.extensions_map, using application/octet-stream

 as a default; however it would be permissible (if

 slow) to look inside the data to make a better guess.

 """

 base, ext = posixpath.splitext(path)

 if ext in self.extensions_map:

 return self.extensions_map[ext]

 ext = ext.lower()

 if ext in self.extensions_map:

 return self.extensions_map[ext]

 else:

 return self.extensions_map['']

 if not mimetypes.inited:

 mimetypes.init() # try to read system mime.types

 extensions_map = mimetypes.types_map.copy()

 extensions_map.update({

 '': 'application/octet-stream', # Default

 '.py': 'text/plain',

 '.c': 'text/plain',

 '.h': 'text/plain',

 })

def test(HandlerClass = SimpleHTTPRequestHandler,

 ServerClass = BaseHTTPServer.HTTPServer):

 BaseHTTPServer.test(HandlerClass, ServerClass)

if __name__ == '__main__':

 test()

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 112

3. random_cache.sh

#!/bin/bash

THIS SCRIPT GENERATES A RANDOM NUMBER BETWEEN 1 and 61 TO CHOOSE A RANDOM

SEGMENT

IT ALSO CHOOSES A RANDOM RESOLUTION FOR THE RANDOM SEGMENT

THIS RANDOM FILE IS COPIED IN THE CACHE FOLDER IF THE AVAILABLE BUFFER

ALLOWS IT

AND THEN IT IS DELETED FROM THE NONCACHED BUFFER FOLDER SO THAT IT IS NO

LONGER COPIED

rm -r noncached/

cp -R public/ noncached/

folder_size=0

buffersize=$((539 * 1024))

echo “Buffer ${buffersize}”

search=1

for I in {1..366} :

do

 while [$search -eq 1]

 do

 segment=$((($RANDOM%61)+ 1))

 echo “random segment generated: $segment”

 resolution=(“360” “480” “720” “1080” “1440” “2160”)

 rand_res=$(($RANDOM%6))

 echo “random resolution generated: ${resolution[$rand_res]}”

 random_file=”video_${resolution[$rand_res]}_${segment}.m4s”

 echo “random file: ${random_file}”

 #disk_usage=$(du -hs -m)

 ls_output=$(ls -l —block-size=KB “noncached/${random_file}”)

 echo “${ls_output}”

 # OUTPUT: -rw-r—r—1 valia valia 3MB Jan 14 08:36

noncached/video_1080_2.m4s

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 113

 if [[$ls_output != *”cannot access”*]]; then

 search=0

 segment_size=${ls_output%kB*} # retain the part before the kB

 segment_size=${segment_size##*valia} # retain the part after the

last valia

 echo “segment size: $segment_size”

 fi

 done

 total=”$((folder_size + segment_size))”

 if [[$total -lt $buffersize && search -eq 0]]; then

 echo “Segment will be copied in the cache”

 #cp file

 cp -n noncached/${random_file} 2cache/

 echo “File is copied”

 echo “${random_file}” >> files_in_cache.txt

 folder_size=”$(($segment_size + folder_size))”

 echo “FOLDER SIZE--------- ${folder_size}”

 #delete file after it has been put in cache

 delete=$(rm -rf “noncached/${random_file}”)

 else

 echo “Cache is full”

 fi

 search=1

done

echo “done”

4. r1.sh

#!/bin/bash

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 114

rate=()

i=0

while :

do

 tc qdisc replace dev s3-eth1 root handle 1: tbf rate 100mbit burst 250000

limit 500000

 tc qdisc replace dev s2-eth2 root handle 1: tbf rate 100mbit burst 250000

limit 500000

 tc -r qdisc show dev s3-eth1

 i=$((i+1))

 if [$i == 3001]; then # 3000 einai h teleytaia thesi tou pinaka, kai

meta tha ksekinaei ap oth arxh

 echo “from scratch”

 i=0

 fi

 sleep 1

done

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 115

APPENDIX B

Chapter 7 code files

1. automation.py

#!/usr/bin/env python

import os

import random

import re

import shutil

import subprocess

import time

def clear_folder(path):

 directory = path

 files_in_directory = os.listdir(directory)

 mpd_files = [file for file in files_in_directory if file.endswith(".mpd")]

 mp4_files = [file for file in files_in_directory if file.endswith(".mp4")]

 m4s_files = [file for file in files_in_directory if file.endswith(".m4s")]

 for file in mpd_files:

 path_to_file = os.path.join(directory, file)

 os.remove(path_to_file)

 for file in mp4_files:

 path_to_file = os.path.join(directory, file)

 os.remove(path_to_file)

 for file in m4s_files:

 path_to_file = os.path.join(directory, file)

 os.remove(path_to_file)

def fill_cache(buffers_size):

 files_in_directory = os.listdir('./public')

 segments_size = {}

 sum_size = 0.0

 attempts = 0

 transfer_segments = []

 for segment in files_in_directory:

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 116

 if segment.endswith('.m4s') and 'audio' not in segment:

 segments_size[segment] = int(os.path.getsize('./public/' +

segment)) / 1000000

 segments = list(segments_size.keys())

 while True:

 print('--')

 rd = random.randint(0, len(segments_size.keys()) - 1)

 current_segment = segments[rd]

 sum_size = sum_size + segments_size[current_segment]

 print('Choose segment --> ' + current_segment + ' with size ' +

str(segments_size[current_segment]))

 if sum_size <= buffers_size:

 if current_segment not in transfer_segments:

 print("copy to cache --> " + current_segment + " with total

size " + str(sum_size))

 shutil.copy('./public/' + current_segment, './cache')

 transfer_segments.append(current_segment)

 else:

 print('I have already copy file ' + current_segment + ', so I

will remove the size')

 sum_size = sum_size - segments_size[current_segment]

 else:

 if attempts == 20:

 print("reached maximum capacity")

 break

 else:

 print('Trying one more time...')

 print()

 sum_size = sum_size - segments_size[current_segment]

 attempts += 1

def copy_all_to_public():

 files_in_directory = os.listdir('./public')

 for file in files_in_directory:

 if file.endswith('.m4s') or file.endswith('.mpd') or

file.endswith('mp4'):

 shutil.copy('./public/' + file, './cache')

def kill_all(name, vlc=False):

 if vlc:

 child = subprocess.Popen(["ps aux | grep -i 'vlc'"],

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 117

stdout=subprocess.PIPE, shell=True)

 else:

 child = subprocess.Popen(["ps aux | grep -i '" + name + "'"],

stdout=subprocess.PIPE, shell=True)

 result = child.communicate()[0].decode('utf-8').split('\n')

 for i in result:

 i = re.sub(' +', ' ', i)

 parts = i.split(' ')

 this_name = ''

 if len(parts) < 1:

 continue

 if vlc:

 if len(parts) > 10:

 if 'vlc' in parts[10]:

 os.system('kill ' + parts[1])

 else:

 for j in parts[10:]:

 this_name = this_name + j + ' '

 if this_name == name + ' ':

 os.system('kill ' + parts[1])

-------------------------Open terminals and start running experiments-----

r1_values = [5, 10, 20, 50, 100]

r2_values = [0.5, 2.5, 5, 10, 20, 25, 50, 100, 200, 500, 1000]

buffer_size = [0, 100, 500, 1000, 3000]

samples = [1, 2, 3]

print(' (r1, r2, L, sample)')

for r1 in r1_values:

 for r2 in r2_values:

 for L in buffer_size:

 for sample in samples:

 # ----------Clear Local Folder-----------------

 clear_folder("./local")

 # ---------------Clear Cache Folder------------

 clear_folder("./cache")

 # ---

 if L == 0:

 pass

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 118

 elif L == 3000:

 copy_all_to_public()

 else:

 fill_cache(L)

 time.sleep(5)

 print('Running (' + str(r1) + ',' + str(r2) + ', ' + str(L) +

', ' + str(sample) + ')')

 main_command = "python3 main.py -a 127.0.0.4 -p 8004 -s1

127.0.0.4 -p1 8004 -s2 127.0.0.4 -p2 8004 -r " + str(r2)

 # smart proxy

 proxy_command = "python3 proxy-send-while-get.py -a 127.0.0.3

-p 8003 -s1 127.0.0.4 -p1 8004 -s2 127.0.0.4 -p2 8004 -r1 " + str(r1) + " -

r2 " + str(r2) + " -l " + str(L) + " -sample " + str(sample)

 # dummy proxy

 # proxy_command = "python3 proxy-get-before-send.py -a

127.0.0.3 -p 8003 -sa 127.0.0.4 -sp 8004 -r1 " + str(r1) + " -r2 " + str(r2)

+ " -l " + str(L) + " -sample " + str(sample)

 local_command = "python3 local.py -a 127.0.0.2 -p 8002 -s1

127.0.0.3 -p1 8003 -s2 127.0.0.3 -p2 8003"

 client_command = "vlc-wrapper

http://127.0.0.2:8002/manifest.mpd"

 main = subprocess.Popen(["gnome-terminal -- " + main_command],

cwd='public/', shell=True)

 time.sleep(1)

 proxy = subprocess.Popen(["gnome-terminal -- " +

proxy_command], cwd='cache/', shell=True)

 time.sleep(1)

 local = subprocess.Popen(["gnome-terminal -- " +

local_command], cwd='local/', shell=True)

 time.sleep(1)

 client = subprocess.Popen(["gnome-terminal -- " +

client_command], shell=True)

 counter = 0

 while True:

 time.sleep(2)

 file_path = 'cache/output_' + str(float(r1)) + '_' +

str(float(r2)) + '_' + str(L) + '_' + str(

 sample) + '.txt'

 if os.path.exists(

 file_path) or counter == 2400: # if counter reach

1800 it means that 1800*2=3600 seconds passed or 3600 / 60 = 1 hour passed

 if counter == 2400:

 print(

 'Tuple (r1,r2) has errors --> (' + str(r1) +

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 119

', ' + str(r2) + ',' + str(L) + ', ' + str(

 sample) + ')')

 elif counter == 0:

 print('Experiment (' + str(r1) + ', ' + str(r2) +

') already exists in cache')

 # Proxy output has been completed

 else:

 print('Experiment completed')

 print()

 time.sleep(1)

 kill_all(main_command)

 if counter == 0:

 kill_all(proxy_command)

 kill_all(local_command)

 # kill_all(client_name)

 kill_all(client_command, vlc=True)

 time.sleep(2)

 break

 counter += 1

2. raw.py

 import re

import time

import os

import math

import glob

import sys

resolution_to_altitude = {'360': 1, '480': 2, '720': 3, '1080': 4, '1440': 5,

'2160': 6}

outputs = []

if len(sys.argv) > 1:

 outputs = [str(sys.argv[1])]

else:

 for q in glob.glob('outputs/*.txt'):

 outputs.append(q[8:])

output_file_number = None

file = open('metrics/all_metrics.csv', 'w')

file.writelines(['Name,r1,r2,L(buffer size),#sample,MOS(resolution),Average

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 120

Resolution,Sum of Switches,Average Altitude,Average Video Bitrate,'

 'Mean Network Throughput r1,Mean Network Throughput

r2,MOS(stallings),Stallings,'

 'Total Stalling Time,Mean Stalling Time,Total Network Usage

Time,Initial Playback Delay,'

 'Number of cached bits delivered,Number of non-cached bits

delivered,Cache Miss Ratio,'

 'Cache Hit Ratio,Backhaul traffic ratio\n'])

file.close()

for output_file in outputs:

 if len(sys.argv) > 1:

 output_file_number = re.search('_.*\.txt', output_file).group()

 print(output_file_number)

 file = open('outputs/' + output_file, 'r')

 Lines = file.readlines()

 data_to_csv = []

 pattern = '%Y-%m-%d %H:%M:%S'

 resolution_before = None

 seconds_before = None

 my_lines = []

 manifest_time = 0

 td_1 = 0

 number_of_stallings = 0

 sum_mos_res = 0

 sum_stalling_duration = 0

 sum_size = 0

 sum_bitrate = 0

 sum_resolution = 0

 sum_switches = 0

 sum_cache_hit = 0

 sum_size_cache_hit = 0

 sum_altitude = 0

 time_1st = 0

 time_61st = 0

 for line in Lines:

 if line.startswith('INFO:root:[') and 'audio' not in line:

 if 'manifest.mpd' in line:

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 121

 date_time_m = re.search('\[([^.]+)', line).group()[1:]

 manifest_time = int(time.mktime(time.strptime(date_time_m,

pattern)))

 if 'video_' in line:

 video_name = line.split(' ')[2]

 date_time = re.search('\[([^.]+)', line).group()[1:]

 resolution = re.search('_.*_', line).group()[1:-1]

 segment = re.search('_[0-9]*\.', line).group()[1:-1]

 # timestamp in epoch time

 seconds = int(time.mktime(time.strptime(date_time, pattern)))

 if resolution == '360':

 mos_res = 2.07744

 elif resolution == '480':

 mos_res = 3.02246

 elif resolution == '720':

 mos_res = 3.97185

 elif resolution == '1080':

 mos_res = 4.47112

 elif resolution == '1440':

 mos_res = 4.52586

 elif resolution == '2160':

 mos_res = 4.58036

 sum_mos_res += mos_res

 if resolution_before is None:

 resolution_before = resolution

 if seconds_before is None:

 seconds_before = seconds

 seconds_diff = seconds - seconds_before

 sum_resolution += int(resolution)

 td_2 = td_1 + seconds_diff - 5

 if segment == '1':

 time_1st = seconds

 td_1 = 0

 td_2 = 0

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 122

 if segment == '61':

 time_61st = seconds

 if td_2 > 0:

 number_of_stallings += 1

 stalling = 1

 stalling_duration = td_2

 td_1 = 0

 else:

 stalling = 0

 stalling_duration = 0

 td_1 = td_2

 sum_stalling_duration += stalling_duration

 # Size calculation

 size = int(os.path.getsize(video_name))

 sum_size += size

 # Bitrate calculation to bps

 bitrate = (size / 5) * 8

 # to mbps

 bitrate = bitrate / 1000000

 sum_bitrate += bitrate

 # Altitude

 altitude = abs(resolution_to_altitude.get(resolution) -

resolution_to_altitude.get(resolution_before))

 sum_altitude += altitude

 switch = 0

 if resolution != resolution_before:

 switch = 1

 sum_switches += switch

 # ip = re.search('[0-9]*\.[0-9]*\.[0-9]*\.[0-9]',

line).group()

 ip = line.split(' ')[-1].rstrip()

 cache_hit = 0

 if ip == 'HIT':

 cache_hit = 1

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 123

 sum_cache_hit += 1

 sum_size_cache_hit += size

 momentary_network_usage = seconds - manifest_time

 momentary_throughput_r1 = ((sum_size * 8) /

momentary_network_usage) / 1000000 # Mbps

 momentary_throughput_r2 = (((sum_size - sum_size_cache_hit) *

8) / momentary_network_usage) / 1000000 # Mbps

 if momentary_throughput_r2 == 0.0:

 r1_divided_by_r2 = 0

 else:

 r1_divided_by_r2 = momentary_throughput_r1 /

momentary_throughput_r2

 print('----------')

 print(line)

 print('video_name', video_name)

 print('CACHE ' + str(ip))

 print('date_time', date_time)

 print('resolution_before', resolution_before)

 print('resolution', resolution)

 print('size', size)

 print('bitrate', bitrate)

 print('segment', segment)

 print('seconds', seconds)

 print('seconds_before', seconds_before)

 print('seconds_diff', seconds_diff)

 print('altitude', altitude)

 print('sum_size', sum_size)

 data_to_csv.append(

 str(segment) + ', ' + str(resolution) + ', ' + str(switch)

+ ', ' + str(altitude) + ', ' + str(bitrate) + ', ' + str(cache_hit) + ', ' +

str(size) + ', ' + str(stalling) + ', ' + str(mos_res) + ', ' +

str(seconds_diff) + ', ' + str(stalling_duration) + ', ' +

str(momentary_throughput_r1) + ', ' + str(momentary_throughput_r2) + '\n')

 print('----------')

 resolution_before = resolution

 seconds_before = seconds

 my_lines.append(line)

 '''

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 124

 METRICS

 '''

 if time_1st == 0 or time_61st == 0 or manifest_time == 0:

 raise Exception('cant find 1st or 61st segment or manifest.mpd')

 avg_bitrate = sum_bitrate / 61

 avg_altitude = sum_altitude / 61

 avg_resolution = sum_resolution / 61

 avg_mos_res = sum_mos_res / 61

 percentage_cache_hit = (sum_cache_hit / 61) * 100

 percentage_cache_miss = ((61 - sum_cache_hit) / 61) * 100

 sum_size_cache_miss = sum_size - sum_size_cache_hit

 traffic_ratio_percentage = (sum_size_cache_miss / sum_size) * 100

 if number_of_stallings != 0:

 mean_stalling_time = sum_stalling_duration / number_of_stallings

 else:

 mean_stalling_time = 0

 mos_stallings = (3.5 * math.exp((-(0.15 * mean_stalling_time + 0.19)) *

number_of_stallings)) + 1.5

 network_usage = time_61st - manifest_time

 throughput_r1 = ((sum_size * 8) / network_usage) / 1000000 # Mbps

 throughput_r2 = ((sum_size_cache_miss * 8) / network_usage) / 1000000 #

Mbps

 initial_playback_delay = time_1st - manifest_time

 '''

 write to csv

 '''

 all_metrics = [

'===

==================================' +

 '\nAverage Resolution

= ' + str(avg_resolution) +

 '\n--

--' +

 '\nSum of Switches

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 125

= ' + str(sum_switches) +

 '\n--

--' +

 '\nAverage Altitude

= ' + str(avg_altitude) +

 '\n--

--' +

 '\nAverage Video Bitrate

= ' + str(avg_bitrate) + ' Mbps' +

 '\n--

--' +

 '\nMean Network Throughput r1 = (non-cached +cached bits) / total

network usage time = ' + str(throughput_r1) + ' Mbps' +

 '\n--

--' +

 '\nMean Network Throughput r2 = non-cached / total network usage time

= ' + str(throughput_r2) + ' Mbps' +

 '\n--

--' +

 '\nMOS (for stallings)

= ' + str(mos_stallings) +

 '\n--

--' +

 '\nMOS (for resolutions)

= ' + str(avg_mos_res) +

 '\n--

--' +

 '\nStallings =

' + str(number_of_stallings) +

 '\n--

--' +

 '\nTotal Stalling Time

= ' + str(sum_stalling_duration) + ' seconds' +

 '\n--

--' +

 '\nMean Stalling Time

= ' + str(mean_stalling_time) + ' seconds' +

 '\n--

--' +

 '\nTotal Network Usage Time

= ' + str(network_usage) + ' seconds' +

 '\n--

--' +

 '\nInitial Playback Delay

= ' + str(initial_playback_delay) + ' seconds' +

 '\n--

--' +

 '\nNumber of cached bits delivered

= ' + str(sum_size_cache_hit) + ' bits' +

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 126

 '\n--

--' +

 '\nNumber of non-cached bits delivered

= ' + str(sum_size_cache_miss) + ' bits' +

 '\n--

--' +

 '\nCache Miss Ratio

= ' + str(percentage_cache_miss) + '%' +

 '\n--

--' +

 '\nCache Hit Ratio

= ' + str(percentage_cache_hit) + '%' +

 '\n--

--' +

 '\nBackhaul traffic ratio = non cached bits / total size

= ' + str(traffic_ratio_percentage) + '%' +

'\n===

====================================']

 file.close()

 if len(sys.argv) > 1:

 file1 = open('metrics/metrics' + output_file_number, "w")

 else:

 file1 = open("metrics/metrics" + str(output_file[6:]), "w")

 file1.writelines(['Segment Number, Resolution, Switch, Altitude, Video

Bitrate (Mbps), Cache hit ,Size (Bytes) ,'

 'Stallings, MOS, Segment Duration, Stalling Duration,

R1, R2 \n'] + data_to_csv + all_metrics)

 file1.close()

 with open('metrics/all_metrics.csv', 'a') as fd:

 parts = output_file.split('_')

 fd.write(

str([output_file,float(parts[1]),float(parts[2]),int(parts[3]),int(parts[4][

:-4]), avg_mos_res, avg_resolution,

 sum_switches, avg_altitude,avg_bitrate, throughput_r1,

throughput_r2, mos_stallings,

 number_of_stallings, sum_stalling_duration,

mean_stalling_time, network_usage, initial_playback_delay,

 sum_size_cache_hit, sum_size_cache_miss,

percentage_cache_miss, percentage_cache_hit,

 traffic_ratio_percentage])[1:-1] + '\n')

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 127

ABBREVIATIONS - ACRONYMS

1G First-Generation Cellular Network

2G Second-Generation Cellular Network

3G Third-Generation Cellular Network

3GPP 3rd Generation Partnership Project

4G Fourth-Generation Cellular Network

5G Fifth-Generation Cellular Network

6G Sixth- Generation Cellular Network

7G Seventh- Generation Cellural Network

ABR Adaptive Bit Rate

ABS Adaptive Bitrate Streaming

ABSF Almost Blank Subframes

API Application Programming Interface

ARP Allocation and Retention Priority

AT&T American Telephone and Telegraph Company

BDA Big Data Analytics

BSS Base Station Subsystem

BW Bandwidth

CDD Code Division Duplex

CDM Content Decryption Modules

CDMA Code Division Multiple Access

CDN Content Delivery Networks

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 128

CoMP Coordinated Multi-Point transmission and reception

DASH Dynamic Adaptive Streaming

DECE Digital Entertainment Content Ecosystem

DECT Digitally Enhanced Cordless Telecommunications

DeNB Donor-eNB

DFT Discrete Fourier Transform

DL Downlink

DRM Digital Right Management

EDA Exploratory Data Analysis

EDGE Enhanced Data-rates for Global Evolution

elCIC enhanced Inter-Cell Interference Coordination

EME Encrypted Media Extensions

eNB evolved Base Stations

EPC Evolved Packet Core

EPS Evolved Packet System

E-UTRA Evolves Terrestrial Radio Access Network

FDD Frequency Division Duplex

FHD Full High Definition

FOMA Freedom of Mobile Multimedia Access

GBS Get Before Send

GOP Group of Pictures

GPRS General Packet Radio Service

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 129

GSM Global System for Mobile

GUI Graphical User Interface

HAS HTTP Adaptive Streaming

HCR High Chip Rate

HD High Definition

HLS HTTP Live Streaming

HSPA High Speed Packet Access

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IFFT Inverse Fast Fourier Transform

IoT Internet Of Things

IP address Internet Protocol address

IPv4 Internet Protocol Version 4

IPv6 Internet Protocol Version 6

ISDN Integrated Services Digital Networks

ITU International Telecommunication Union

JDK Java Development Kit

JRE Java Runtime Environment

JVM Java Virtual Machine

KPI Key Performance Indicator

LAN Local Area Network

LTE Long Term Evolution

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 130

LTE-A LTE Advanced

MIMO Multiple Input Multiple Output

ML Machine Learning

MME Mobility Management Entity

MMS Multimedia Message

MOS Mean Opinion Score

MPD Media Presentation Description

MPEG Motion Picture Expert Group

MS Mobile Station

MSE Media Source Extension

MU-MIMO Multiple User- Multiple Input Multiple Output

NFV Network Function Virtualization

NSS Network and Switching Subsystem

NTT Nippon Telegraph and Telephone

ODL OpenDaylight

OFDM Orthogonal Frequency Division Multiplexing

OFDMA Orthogonal Frequency Division Multiple Access

OS Operating System

OSGi Open Service Gateway initiative

OSS Operation and Support Subsystem

OTT Over The Top

PGW Packet Data Network

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 131

PyPI Python Package Index

QAM Quadrature Amplitude Modulation

QCI QoS Class Identifier

QoE Quality of Experience

QoS Quality of Service

QPSK Quadrature Phase Shift Keying

RDA Rate Determination Algorithm

RN Relay Node

SC-FDMA Single Carrier FDMA

SDN Software Defined Networking

SINR Signal to Interference plus Noise Ratio

SIR Signal to Interference Ratio

S-KPIs Service Key Performance Indicators

SNR Signal to Noise Ratio

SSL Secure Socket Layer

SU-MIMO Single User- Multiple Input Multiple Output

SWG Send While Get

TDD Time Division Duplex

TDMA Time Division Multiple Access

TD-SCDMA Time Division Synchronous Code Division Multiple Access

TMA Traffic Monitoring and Analysis

UE User Equipment

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 132

UE-AMBR User Equipment - Aggregate Maximum Bit Rate

UHD Ultra-High Definition

UL Uplink

UMTS Universal Mobile Telecommunications System

URL Uniform Resource Locator

UTRAN UMTS Terrestrial Radio Access Network

VoD Video on Demand

VoIP Voice over Internet Protocol

WAN Wide Area Network

WCDMA Wideband Code Division Multiple Access

W-CDMA Wideband Code Division Multiple Access

WiMAX Worldwide Interoperability for Microwave Access

WWWC

(W3C)

World Wide Web Consortium

WWWW Wireless World Wide Web

XML Extensible Markup Language

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 133

REFERENCES

[1] Anju Uttam Gawas, “An Overview on Evolution of Mobile Wireless Communication Networks: 1G-6G”,

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Vol 3, Issue 5, 2015.

[2] Garg, Atul. (2014). Digital Society from 1G to 5G: A Comparative Study. International Journal of Application
or Innovation in Engineering & Management. Volume 3. 186 to 193.

[3] https://www.linkedin.com/pulse/mobile-wireless-communication-technology-journey-0g-mutabazi/

[4] INTRODUCTION TO DIGITAL COMMUNICATION AND COMMUNICATION NETWORKS Vijay K. Garg,
Yih-Chen Wang, in The Electrical Engineering Handbook, 2005

[5] https://en.wikipedia.org/wiki/Cellular_network

[6] https://blog.xoxzo.com/en/2018/07/24/history-of-1g/

[7] https://www.ijemr.net/DOC/FeaturesAndLimitationsOfMobileGenerations(57-61).pdf

[8]https://www.intraway.com/blog/the-history-of-2g/?utm_source=rss&utm_medium=rss&utm_campaign=the-
history-of-2g

[9] Sharma, Purnima & Sharma, D. & Singh, R K. (2015). Evolution of mobile wireless communication networks
(0G-8G). International Journal of Applied Engineering Research. 10. 14765-14778.

[10] https://www.etsi.org/technologies/mobile/2g

[11] https://www.electronics-notes.com/articles/connectivity/2g-gsm/network-architecture.php

[12]https://www.intraway.com/blog/the-historyof2g/?utm_source=rss&utm_medium=rss&utm_campaign=the-
history-of-2g

[13] Salih, Azar & Zeebaree, Subhi & Abdulraheem, Ahmed & Zebari, Rizgar & Mohammed Sadeeq,
Mohammed & Ahmed, Omar. (2020). Evolution of Mobile Wireless Communication to 5G Revolution.
Technology Reports of Kansai University. 62. 2139-2151.

[14] https://www.itu.int/itunews/issue/2003/06/thirdgeneration.html

[15] https://www.etsi.org/technologies/mobile/3g

[16] https://www.etsi.org/technologies/mobile/4g

[17] https://whatsag.com/mobile-technology/the-history-of-4g.php

[18] https://en.wikipedia.org/wiki/LTE_(telecommunication)

[19] https://en.wikipedia.org/wiki/LTE_Advanced

[20] https://www.cablefree.net/wirelesstechnology/4glte/lte-carrier-aggregation/

[21] https://www.3gpp.org/technologies/keywords-acronyms/97-lte-advanced

[22] https://www.electronics-notes.com/articles/connectivity/4g-lte-long-term-evolution/coordinated-multipoint-
comp.php

[23] https://www.tutorialspoint.com/lte/lte_network_architecture.html

[24]https://www.gta.ufrj.br/ensino/eel879/trabalhos_vf_2014_2/rafaelreis /ofdma_scfdma.html

[25] https://www.netmanias.com/en/post/blog/5933/lte-qos/lte-qos-part-2-lte-qos-parameters-qci-arp-gbr-mbr-
and-ambr

[26] https://bectechnologies.net/wordpress/wp-content/uploads/2015/08/QoS.pdf

[27] https://www.etsi.org/technologies/mobile/5g

[28] https://www.thalesgroup.com/en/markets/digital-identity-and-security/mobile/inspired/5G

[29] https://www.viavisolutions.com/en-us/5g-architecture

[30] HTTP/2-Based Methods to Improve the Live Experience of Adaptive Streaming

[31] https://bitmovin.com/adaptive-streaming/

[32] https://www.encoding.com/mpeg-dash/

https://en.wikipedia.org/wiki/Cellular_network
https://blog.xoxzo.com/en/2018/07/24/history-of-1g/
https://www.intraway.com/blog/the-history-of-2g/?utm_source=rss&utm_medium=rss&utm_campaign=the-history-of-2g
https://www.intraway.com/blog/the-history-of-2g/?utm_source=rss&utm_medium=rss&utm_campaign=the-history-of-2g
https://www.etsi.org/technologies/mobile/2g
https://www.electronics-notes.com/articles/connectivity/2g-gsm/network-architecture.php
https://www.intraway.com/blog/the-historyof2g/?utm_source=rss&utm_medium=rss&utm_campaign=the-history-of-2g
https://www.intraway.com/blog/the-historyof2g/?utm_source=rss&utm_medium=rss&utm_campaign=the-history-of-2g
https://www.itu.int/itunews/issue/2003/06/thirdgeneration.html
https://www.etsi.org/technologies/mobile/3g
https://www.etsi.org/technologies/mobile/4g
https://whatsag.com/mobile-technology/the-history-of-4g.php
https://en.wikipedia.org/wiki/LTE_(telecommunication)
https://en.wikipedia.org/wiki/LTE_Advanced
https://www.cablefree.net/wirelesstechnology/4glte/lte-carrier-aggregation/
https://www.3gpp.org/technologies/keywords-acronyms/97-lte-advanced
https://www.electronics-notes.com/articles/connectivity/4g-lte-long-term-evolution/coordinated-multipoint-comp.php
https://www.electronics-notes.com/articles/connectivity/4g-lte-long-term-evolution/coordinated-multipoint-comp.php
https://www.gta.ufrj.br/ensino/eel879/trabalhos_vf_2014_2/rafaelreis%20/ofdma_scfdma.html
https://www.netmanias.com/en/post/blog/5933/lte-qos/lte-qos-part-2-lte-qos-parameters-qci-arp-gbr-mbr-and-ambr
https://www.netmanias.com/en/post/blog/5933/lte-qos/lte-qos-part-2-lte-qos-parameters-qci-arp-gbr-mbr-and-ambr
https://bectechnologies.net/wordpress/wp-content/uploads/2015/08/QoS.pdf
https://www.etsi.org/technologies/mobile/5g
https://www.thalesgroup.com/en/markets/digital-identity-and-security/mobile/inspired/5G
https://www.viavisolutions.com/en-us/5g-architecture
https://bitmovin.com/adaptive-streaming/
https://www.encoding.com/mpeg-dash/

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 134

[33] https://www.muvi.com/wiki/mpeg-dash-dynamic-adaptive-streaming-http.html

[34] https://www.brendanlong.com/the-structure-of-an-mpeg-dash-mpd.html

[35] https://www.encoding.com/digital-rights-management-drm/

[36] Cisco (2017). Vni global IP traffic forecast, 2016 - 2021

[37] Lee, Danny & Dovrolis, Constantine & Begen, Ali. (2014). Caching in HTTP adaptive streaming: Friend or
Foe? Proceedings of the 24th ACM Workshop on Network and Operating Systems Support for Digital Audio
and Video, NOSSDAV 2014. 10.1145/2578260.2578270.

[38] https://docs.broadcom.com/doc/caching-technologies-en

[39] https://www.ironistic.com/four-major-caching-types-and-their-differences/

[40] https://docs.broadcom.com/doc/caching-technologies-en

[41] https://pressidium.com/blog/2017/browser-cache-work/

[42] https://swiftcachelite.swiftserve.com/different-types-of-caching-and-their-differences/

[43] (2008) Proxy-Caching for Video Streaming Applications. In: Furht B. (eds) Encyclopedia of Multimedia.
Springer, Boston, MA

[44] https://aws.amazon.com/caching/cdn

[45] https://www.cloudflare.com/learning/cdn/what-is-caching/

[46] Wang, Ying & Li, Peilong & Jiao, Lei & Su, Zhou & Cheng, Nan & Shen, Xuemin & Zhang, Ping. (2017).
A Data-Driven Architecture for Personalized QoE Management in 5G Wireless Networks. IEEE Wireless
Communications. 24. 102-110. 10.1109/MWC.2016.1500184WC.

[47] Laghari, Khalil & Connelly, Kay. (2012). Toward Total Quality of Experience: A QoE Model in a
Communication Ecosystem. Communications Magazine, IEEE. 50. 58-65. 10.1109/MCOM.2012.6178834.

[48] https://en.wikipedia.org/wiki/Stevens%27s_power_law

[49] https://docplayer.gr/47701296-Quality-of-experience.html

[50] T. Abar, A. Ben Letaifa and S. El Asmi, "Objective and subjective measurement QoE in SDN networks,"
2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia,
2017, pp. 1401-1406, doi: 10.1109/IWCMC.2017.7986489.

[51] Liotou, Eirini & Tsolkas, Dimitris & Samdanis, K. & Passas, Nikos & Merakos, Lazaros. (2016). Towards
Quality of Experience Management in the Next Generation of Mobile Networks.

[52] García, Antonio & Toril, Matias & Oliver Balsalobre, Pablo & Luna-Ramírez, Salvador & Garcia, Rafael.
(2019). Big Data Analytics for Automated QoE Management in Mobile Networks. IEEE Communications
Magazine. 57. 91-97. 10.1109/MCOM.2019.1800374.

[53] Seufert, Michael & Egger-Lampl, Sebastian & Slanina, Martin & Zinner, Thomas & Hossfeld, Tobias &
Tran-Gia, Phuoc. (2014). A Survey on Quality of Experience of HTTP Adaptive Streaming. Communications
Surveys & Tutorials, IEEE. 17. 10.1109/COMST.2014.2360940.

[54] https://en.wikipedia.org/wiki/Software-defined_networking

[55] https://en.wikipedia.org/wiki/Java_virtual_machine

[56] https://github.com/mininet/mininet/wiki/Introduction-to-Mininet

[57] http://www.brianlinkletter.com/how-to-use-miniedit-mininets-graphical-user-interface/

[58] https://en.wikipedia.org/wiki/VLC_media_player

[59] https://en.wikipedia.org/wiki/FFmpeg

[60] https://linuxize.com/post/how-to-install-ffmpeg-on-ubuntu-18-04/

[61] https://en.wikipedia.org/wiki/Python_(programming_language)

[62] https://www.tecmint.com/install-pip-in-linux/

[63] https://pypi.org/project/requests/2.7.0/

[64] https://requests.readthedocs.io/en/master/

[65] https://docs.python.org/2/library/simplehttpserver.html#module-SimpleHTTPServer

https://www.muvi.com/wiki/mpeg-dash-dynamic-adaptive-streaming-http.html
https://www.brendanlong.com/the-structure-of-an-mpeg-dash-mpd.html
https://www.encoding.com/digital-rights-management-drm/
https://docs.broadcom.com/doc/caching-technologies-en
https://www.ironistic.com/four-major-caching-types-and-their-differences/
https://docs.broadcom.com/doc/caching-technologies-en
https://pressidium.com/blog/2017/browser-cache-work/
https://swiftcachelite.swiftserve.com/different-types-of-caching-and-their-differences/
https://aws.amazon.com/caching/cdn
https://www.cloudflare.com/learning/cdn/what-is-caching/
https://en.wikipedia.org/wiki/Stevens%27s_power_law
https://docplayer.gr/47701296-Quality-of-experience.html
https://en.wikipedia.org/wiki/Software-defined_networking
https://en.wikipedia.org/wiki/Java_virtual_machine
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet
http://www.brianlinkletter.com/how-to-use-miniedit-mininets-graphical-user-interface/
https://en.wikipedia.org/wiki/VLC_media_player
https://linuxize.com/post/how-to-install-ffmpeg-on-ubuntu-18-04/
https://en.wikipedia.org/wiki/Python_(programming_language)
https://www.tecmint.com/install-pip-in-linux/
https://pypi.org/project/requests/2.7.0/
https://requests.readthedocs.io/en/master/
https://docs.python.org/2/library/simplehttpserver.html#module-SimpleHTTPServer

Cache-Aware Adaptive Video Streaming in 5G Networks

V. Georgara – G. Kourouniotis 135

[66] https://rybakov.com/blog/mpeg-dash/

[67] https://blog.desgrange.net/post/2017/04/17/encode-videos-dynamic-adaptive-streaming-http.html

[68] https://www.haivision.com/resources/streaming-video-definitions/group-of-pictures/

[69] Hossfeld, Tobias & Schatz, Raimund & Biersack, Ernst & Plissonneau, Louis. (2013). Internet Video
Delivery in YouTube: From Traffic Measurements to Quality of Experience. 10.1007/978-3-642-36784-7_11.

[70] http://gain.di.uoa.gr/casper/files/Deliverables/d6.1.pdf

[71] https://numpy.org/doc/stable/reference/random/generated/numpy.random.rayleigh.html

[72]https://docs.python.org/3/library/http.server.html

https://rybakov.com/blog/mpeg-dash/
https://blog.desgrange.net/post/2017/04/17/encode-videos-dynamic-adaptive-streaming-http.html
https://www.haivision.com/resources/streaming-video-definitions/group-of-pictures/
http://gain.di.uoa.gr/casper/files/Deliverables/d6.1.pdf
https://numpy.org/doc/stable/reference/random/generated/numpy.random.rayleigh.html
https://docs.python.org/3/library/http.server.html

