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ABSTRACT

The fundamental design of optimizing compilers has not changed for many decades. It is
oriented around passes, each of which tries to apply a specific transformation. A celeb
rated benefit of this design is the separation of concerns, because each pass is concerned
with a single transformation. But what is subtle is that it also hinders the separation of con
cerns.

In modern instances of this design, each pass has at least two responsibilities: performing
a transformation and deciding whether the transformation is profitable. Inevitably, the code
dealing with each of these responsibilities is tightly coupled and one can’t interface with
or change each piece separately.

However, each of these responsibilities is radically different and the people having the
expertise to improve one do not necessarily have the knowledge to even understand the
other. For instance, profitability could be picked up by a machinelearning researcher, who
is interested in improving the heuristics used but is not at all interested in learning how the
compiler performs the transformation.

In this thesis, we present a prototype of a transformation, implemented over the LLVM
framework, used to serve a broader goal; that of separating transformations in their own
independent, granular APIs. Such APIs should offer highcontrol and minimal cognitive
load to the user, whether this is a compiler expert or not.

The transformation we chose is loop distribution because it is easily comprehensible yet
potentially highly effective, while its implementation is comparable to LLVM’s upstream
version.

SUBJECT AREA: Compiler Optimization

KEYWORDS: compilers, transformations, API, loop distribution, LLVM



ΠΕΡΙΛΗΨΗ

Ο θεμελιώδης σχεδιασμός μεταγλωττιστών που έχουν ως κύριο στόχο βελτιστοποιούν τον
κώδικα δεν έχει αλλάξει εδώ και δεκαετίες. Προσανατολίζεται γύρω από τα περάσματα
(passes), κάθε ένα από τα οποία προσπαθεί να εφαρμόσει ένα συγκεκριμένο μετασχη
ματισμό. Ένα περίφημο όφελος αυτού του σχεδιασμού είναι ο διαχωρισμός των αρμο
διοτήτων, επειδή κάθε πέρασμα ασχολείται με έναν και μόνο μετασχηματισμό. Αλλά αυτό
που ίσως είναι δύσκολο να διακρίνουμε είναι ότι επίσης υπονομεύει τον διαχωρισμό των
αρμοδιοτήτων.

Στα σύγχρονα παραδείγματα αυτού του σχεδιασμού, κάθε πέρασμα έχει τουλάχιστον δύο
ευθύνες: να πραγματοποιήσει έναν μετασχηματισμό και να αποφασίσει αν ένας μετασχη
ματισμός είναι επικερδής. Αναπόφευκτα, ο κώδικας που ασχολείται με κάθε μία από αυτές
τις ευθύνες είναι στενά συνδεδεμένος και δε μπορεί κάποιος να έχει διεπαφή ή να αλλάξει
κάθε κομμάτι ξεχωριστά.

Ωστόσο, αυτές οι δύο ευθύνες είναι ριζικά διαφορετικές και οι άνθρωποι που έχουν την
τεχνογνωσία να βελτιώσουν τη μία δεν έχουν απαραίτητα ούτε καν τη γνώση να καταλά
βουν την άλλη. Για παράδειγμα, το πρόβλημα του κέρδους ενός μετασχηματισμού μπορεί
να αναληφθεί από έναν ερευνητή μηχανικής μάθησης ο οποίος ενδιαφέρεται να βελτιώσει
τις ευρεστικές αλλά δεν ενδιαφέρεται καθόλου να μάθει πως ο μεταγλωττιστής φέρνει εις
πέρας τους μετασχηματισμούς.

Σε αυτή την εργασία, παρουσιάζουνε ένα πρότυπο ενός μετασχηματισμού, υλοποιημένο
πάνω στο σύνολο εργαλείων LLVM, το οποίο χρησιμοποιούμε για να προάγουμε έναν
ευρύτερο στόχο. Αυτός ο στόχος είναι να απομονώσουμε τους μετασχηματισμούς στις
δικές τους ανεξάρτητες και με μεγάλο βαθμό λεπτομέρειας διεπαφές. Τέτοιες διεπαφές
θα πρέπει να προσφέρουν μεγάλο έλεγχο και ελάχιστο γνωστικό φορτίο στο χρήστη, είτε
αυτός εξειδικεύεται στους μεταγλωττιστές είτε όχι.

Ο μετασχηματισμός που επιλέξαμε είναι η ανακατανομή βρόγχων (loop distribution) επειδή
είναι εύκολα κατανοητός ενώ είναι δυνατόν να αποδειχθεί εξαιρετικά χρήσιμος. Η υλοποί
ησή του είναι συγκρίσιμη με αυτή της έκδοσης που χρησιμοποιείται αυτή τη στιγμή από
τους χρήστες του LLVM.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Βελτιστοποίηση Μεταγλωττιστών

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: μεταγλωττιστές, μετασχηματισμοί, αφηρημένες διεπαφές
προγραμματισμού, κατανομή βρόγχων, LLVM
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PREFACE

The ideas we present in this thesis were born, took shape and blossomed during my time
as a compiler researcher in NEC Deutschland GmbH. There, I worked closely with Simon
Moll and we needed a tool that just transforms loops and does not deal with legality or
profitability (we wanted to deal with those two separately). Moreover, we wanted to be
able to use that tool any time we wanted during a compilation. The standard steps when
one wants to program a transformation is to just create a pass. But, transformation passes
can’t be called at will from inside the compiler. Because of that, they cannot just transform
code. They have to deal with all prerequisites of a transformation; namely, legality and
profitability. Thus, it became apparent that a passoriented design would not do the trick.

I was excited to attack this problem and try to build an alternative infrastructure. What
followed was a deep dive into API design patterns. Fortunately, I was lucky enough to
have come across of Casey Muratori, who I consider a major figure in API design (he
is celebrated in Section 2.1). Furthermore, progressively I have been thinking more and
more about what benefits can we gain from decoupling transformations and profitability
heuristics. This exploration is still underway, but some premature thoughts and ambitious
hopes are scattered throughout this text.



Designing Decoupled Compiler Transformation APIs

1. INTRODUCTION

Consider Fig. 1.1.

1 for (int i = 0; i < n; ++i) {
2 a[i+1] = a[i] + b[i];
3 d[i] = e[i] + f[i];
4 }

Figure 1.1: Loopcarried Dependence

We can see that the first iteration writes to a[1] and the second iteration reads from it.
This implies that the second iteration depends on a result written by the first one, which
enforces an order between the two. Wemust execute the first iteration before the second,
so that the written data is available when the second iteration arrives. Similarly, the third
iteration depends on the second, the fourth on the third and so on, resulting in a chain of
dependences which ultimately enforces us to execute all the iterations in order.

This type of (data) dependence is called ”loopcarried” because data is carried from one
iteration to another. Loopcarried dependences are unfortunate for parallelization aficion
ados because they prevent them from executing their iterations in parallel. Sadly, usually
we cannot avoid loopcarried dependences because the serial execution they impose is
ingrained in the very nature of the computation at hand. It’s like eating in a restaurant;
you cannot start eating before the cook has prepared your food and this dependence is
inherent in the food preparation process.

Nevertheless, the impact of such dependences can be diminished by at least not executing
the rest of computations in the original order. For instance, in Fig. 1.1, if we could delete
line 2, each iteration of this loop would be independent of each other, which would let us
execute them in parallel. Well, we cannot delete it but what we can do is extract it from
this loop and put it on its own, like in Fig. 1.2.

1 for (int i = 0; i < n; ++i) {
2 a[i+1] = a[i] + b[i];
3 }
4

5 for (int i = 0; i < n; ++i) {
6 d[i] = e[i] + f[i];
7 }

Figure 1.2: Distributed Loop

Extracting parts of a loop into their own loop falls under the loop distribution transformation,
which simply divides a loop in multiple ones. It comes in handy when trying to break
dependences but this is not its only use case. Maybe we want to parallelize some parts of
a loop, while we want to vectorize some others. Or maybe we want to unroll just a fraction
of it and ideally, we would like this fraction to be in a separate loop.

Given its usefulness, it is no surprise then that loop distribution finds its place in LLVM, a
popular optimizing compiler. However, its implementation is less than ideal.

S. Baziotis 13
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Loop distribution in LLVM is implemented as a pass. Passes in LLVM, much like in any
other conventional compiler, have as their purpose to do a pass over the code and apply a
specific transformation. For example, one pass might be responsible for eliminating dead
code, that is, code which is useless, while another pass might be responsible for replacing
a call to a function with the body of the function itself.

This design has many benefits, one of them being the separation of concerns. Each pass
is responsible for applying one and only one transformation, while it allows us to compose
multiple of such passes to achieve a complex transformation result.

But, it is not always profitable to apply a transformation even if it is possible. For instance,
it is usually not profitable to replace all function calls with their bodies, as it is usually not
profitable to distribute all loops. This implies that we have to somehow take profitability
into account when we apply a transformation.

Consider for example again the case of loop distribution in Fig. 1.1. Let’s say that we do
a pass over this code with loop distribution in mind. We have to perform two actions. The
first is deciding whether distributing this loop is profitable and which instructions we should
extract. This involves reasoning like ”I see a loopcarried dependence, so maybe I can
put that in its own loop, which will enable parallelization”. In a different loop, the reasoning
for splitting it might be different e.g., ”these parts of the loop should be vectorized while
those should parallelized so let’s split them apart”.

If the first action decides that we should in fact extract some instructions, a second action is
triggered. This action is responsible for actually changing the code and it involves ”creating
a new loop, copying some instructions to the new loop, deleting these same instructions
from the original loop” etc.

The point here is that the code which implements the first action and that which implements
the second are wildly different. Not only do they serve distinct purposes, but also their
implementation requires a different arsenal of knowledge.

Ideally, then, we would like these two actions to be clearly separated within a compiler.
However, this is not usually the case. The parts of the code performing each of the actions
are usually entangled together, in such a way that it is nearly impossible to change one
without having to understand its deep connection with the other. And so, if a programmer
is only interested in changing the profitability code but does not have any knowledge of
the transformation code (neither does she care or should care to have), they are going to
face big problems.

The main purpose of this thesis is to provide a decoupled loop distribution API, implemen
ted over the LLVM infrastructure, whose sole purpose is to perform the loop distribution
transformation. A secondary purpose is to design this API so that it gives as much con
trol as possible to the user. Effectively, this API gives users the ability to split loops, by
choosing which instructions they want to extract and having a lot of control in which steps
of the transformation they want to perform and when.

More broadly, it serves as an example to promote a greater idea; that of separating trans
formations in their own, independent libraries. Such a design enables a novel separation
of concerns. Those concerned only with profitability can program it independently and
interface with the transformations when they want to, without having to understand their
internals.

S. Baziotis 14
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2. BACKGROUND

2.1 The Principles of API Design

We designed the loop distribution API based on the principles initially presented in [8]. In
the original video, the presenter bases his discussion on game development problems,
explanations, examples and solutions. Nonetheless, we believe that these design prin
ciples are not gamedevelopmentspecific and in fact are powerful for general API design.
To that end, we wish to bring them to the attention of the compiler developers and so, we
will include a short description for each of them with more generic rationale and examples.

2.1.1 Granularity

An API is granular depending on how much it gives the user the ability to separate a step
into smaller steps that achieve the same thing. As an example, consider Fig.2.1.

1 // Task: Allocate and zero N bytes of memory
2 // Using one big step: calloc()
3 void *m = calloc(N);
4

5 // Using two smaller steps: malloc() and memset()
6 void *m = malloc(N);
7 memset(/* base pointer */ m, /* byte to set */ 0,
8 /* how many bytes */ N);

Figure 2.1: Allocating Zeroed Memory

The reason granularity is useful is because it gives control to the user. Maybe they want
to complete some of the steps at a later point or interleave some steps in between and a
granular API gives them this ability.

On the other hand, if an API does not provide sufficient big steps, then it might require a
lot of boilerplate to use it when the user is only interested in the canonical cases.

This is especially true during the bootstrapping period of a project, which consists of the
initial moments of a project, where the programmers usually want to test highlevel ideas.
This period does not require much control and so users are fine with, and actually desire,
the big steps of an API.

On the contrary, when a project has progressed a lot and all the elaborate details have
been discovered, the user of an API wants as much control as possible over it so that he
can adapt it to his exact needs.

In short, the tradeoff of granularity is simplicity vs flexibility.

2.1.2 Redundancy

An API exposes redundancy when the user can accomplish the same thing in different
ways. The first usual case is directly related to granularity. If an API provides granularity,

S. Baziotis 15
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then it is usually redundant too because it gives the user multiple options as to where they
will use small or big steps.

The other common case is when the user can pass data to the same utility in different
forms. As an example, let’s say that we want to provide an API which calculates the Body
Mass Index (BMI) of a person. To compute this, we need the height and the weight of the
person.

In our program, we might have a data type Person representing a person, which among
other things, contains the height and weight.

Let’s say that the BMI calculator API provides two function calls, in Fig. 2.2.

1 float calculate_BMI(Person p);
2 float calculate_BMI(float height, float weight);

Figure 2.2: Two Alternatives to Calculate the BMI

This API gives us some redundancy on how we can calculate the BMI. We can either pass
a Person or we can pass directly the height and weight.

Redundancy is another way to provide control. The usage code of the API may have a
Person available on some places or individual heights and weights on others. If the API
provided only the first call, the latter places would have to pack the heightweight pairs in a
Person to be able to call the calculator. If on the other hand the API provided the second
call, the former places would have to unpack the height and weight from a Person.
However, we also have to consider that the more redundancy an API delivers, the less
orthogonal it becomes. Orthogonality is the exact opposite of redundancy. An API is
orthogonal when there is a single way to accomplish anything. Orthogonality can be de
sirable because it simplifies the usage of the API in multiple ways. First, the user does
not need to stress over which way is the best to use the API because there is only one.
Second, the user only needs to understand this one way. When an API is used across a
code base, in a nonorthogonal API, the user has to be able to understand and keep in
mind all the possible ways in which the API can be used.

So, the tradeoff in redundancy is orthogonality vs convenience.

2.1.3 Retention

Retention exists when the API forces the user to announce to it data she owns and it keeps
some form of a copy.

A classic example is strtok(). You give it a string and a delimiter and then, you call it
continuously to give you back the extracted strings of this specific string that you passed
on the start. So, strtok retains the original string. This makes the API unusable in the
case where e.g., the user wants to tokenize two strings in parallel.

Another not so obvious example of retention is the malloc() / free() combination. When
the user allocates memory with malloc(), he gives a size and he (hopefully) gets back a
pointer. When he wants to free the memory, he calls free() but giving it only the pointer.
However, most free() implementations can benefit from knowing the initial size when free
ing the memory [2]. It should be obvious that there is no general way of saving both a
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memory address and the size in a single pointer (which is what is passed to free()), which
means that the allocator has to somehow retain the size.

In general, retention is useful because it lets the API do a lot of things automatically. In
the first example above, the user does not need to keep intermediate state that strtok()
possibly needs to work and give it back to it in every call. In themalloc() / free() example,
the user simply does not need to keep track of the size.

However, retention can be bad for both the user and the API implementer. On the one
hand, it might enforce the user to synchronize their ”world” and course of action with that
of the API (just as with the strtok()). On the other hand, it may make the implementation
of the API difficult, as with the malloc() / free() interface. This interface has made the
implementation of allocators notoriously hard.

In short, the tradeoff of retention is synchronization vs automation.

2.1.4 FlowControl

Flowcontrol refers to whether the API ever calls back the user. In the case in which this is
not happening, if we imagine the call stack, then there is a point from which any functions
called beyond it are only API functions, like in Fig. 2.3.

1 ------------- Call Stack -------------
2 F
3 E
4 D
5 --------------- Anything below: user code.
6 Anything above: API code
7 C
8 B
9 A

Figure 2.3: Call Stack

The avoidance of callbacks gives the user more control over when everything is called,
and so, over the execution flow. If the user has to e.g., provide some kind of function
pointer to the API, the user now loses the ability to control when this function is called.

2.1.5 Coupling

Coupling exists when some action A implies B. Coupling is sort of the bad side of everything
mentioned above.

When the API is not granular enough, it means that you have one big step and you cannot
break it into smaller steps. That means that if you want to do only one of the small actions
contained in this big step, then it is implied that you have to do all of the rest. One prominent
form of coupling is the new operator in C++, which couples allocation with initialization. It
took a long time to C++ to provide a decoupled version of this API, using what is called
placement new.
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When the API is not redundant enough, there might be utility functions you want to use but
they accept only a specific type. So, calling these utility functions implies that you have to
convert to this type.

And of course coupling can come in higherlevel ideas. An obvious example is the trans
formation and costmodeling in modern compilers. They cannot be decoupled and use
each one separately.

Coupling is pretty much always bad and should be avoided when possible. Albeit, some
times it is not possible due to many reasons, one possible being the nature of the problem.

2.2 LLVM

2.2.1 The Rise of LLVM

LLVM [6] started out as LowLevel Virtual Machine and the goal was to ship programs in
a form of a targetindependent intermediate representation (IR), called LLVM IR. Having
programs in this form, one could do lifelong optimization and keep using newer and bet
ter compiler technology on this IR. Reality struck and that goal was abandoned due to
hardware definitions changing over time and the inability of LLVM IR to remain hardware
agnostic. However, LLVM survived, to say the least, as a highly successful optimizing
compiler back/middleend.

A compiler can be thought as a box taking a highlevel source language on one end,
usually called the frontend, and produces assembly at the other, usually called the back
end. In modern compiler designs, the frontend is not just a conceptual end, but a separate
software piece, performing part of the total work. The same goes for the backend, which
performs the rest of the work.

The frontend still takes a highlevel language but its job ends in translating it into a more
primitive (i.e., lowlevel) representation. This representation is usually called intermediate
representation (IR) because it sits in the middle of two ends. Then, the backend takes the
baton (which is the IR in this case) and continues the work to eventually produce (ideally
optimized) assembly.

One core benefit of having two ends communicating using this lowlevel IR, instead of a
single monolithic piece, is that such an IR can express multiple highlevel languages. For
instance, whether we are talking about C with its relatively closetothemachine attitude
or C++ with its crazy lambda/class/concept/template features, both can be boiled down
and expressed using simple operations like loads, stores, adds and jumps. So, instead
of creating a compiler for each language, we only create a piece of it, the frontend, all of
which translate to the same IR. Because in this way, we only need to create one compiler
to handle the the rest of the pipeline; one which takes IR and produces assembly.

Similarly, in the backend, a lot of optimizations are targetindependent. If a statement is
useless, it is useless whether we eventually aim to produce x86 or AArch64. So, removing
such statements is a targetindependent optimization. In that regard, and because the IR
is conceptually targetindependent, we perform such optimizations in the IR, instead of
programming this transformation for each different assembly.

These benefits are the main reason LLVM survived and succeeded, through the use of
LLVM IR. As mentioned, LLVM IR is not exactly targetindependent, but the fragments
that are not constitute edge cases. And because LLVM IR is so welldesigned and well

S. Baziotis 18



Designing Decoupled Compiler Transformation APIs

specified, it became the target of multiple frontends. Suddenly, anybody who wanted to
create language didn’t need to sweat writing an optimizer in order to get decent execut
ables. They just needed to write a frontend that translates to LLVM IR. The rest was left
to (the) LLVM (backend).

2.2.2 LLVM IR

LLVM IR [3] is for the most part welldesigned, wellspecified, wellunderstood and widely
used. However, it is also huge and complex. Furthermore, the problems that this thesis
tries to solve along with their solutions are not specific to LLVM or LLVM IR. Essentially,
LLVM acts as a means to an end and it is not the end itself. So, for the purposes of this
thesis, the reader only needs to have a rudimentary understanding of LLVM IR.

The main LLVM IR piece of reference is a module. A module contains functions, func
tions contain basic blocks and basic blocks contain instructions. Among those terms, a
”basicblock” is probably the most unfamiliar. It is simply an ordered list of nonbranching
instructions, one following the other, which eventually follows a branching (a.k.a. termin
ator) instruction. For our purposes, a branching instruction is going to be a branch or a
return instruction. A branch is simply a jump instruction which jumps to a different part of
the code and can be conditional or unconditional.

An important characteristic (or lack, thereof) of LLVM IR is that loops are not firstclass
objects. This means that there is no entity to represent a loop in LLVM IR. In other words,
a parser and semantic analyzer which parses LLVM IR is oblivious to any loops that might
exist. Loops are simply byproducts of the way LLVM IR is written and the user has to
discover them on their own (e.g., the user has to write code which finds whether there is
a basic block which we can visit multiple times, thereby implying a loop).

There is already some infrastructure that automatically finds loops for us and saves their
characteristics, structure and other information in LoopInfo; we will come across Loop
Info later. If the reader is interested in learning more about loops in LLVM, we recommend
the official loop terminology of LLVM [4] (which is in fact more than terminology and almost
a tutorial).

2.2.3 LLVM MiddleEnd and Core Infrastructure

Targetindependent optimizations are not a small part of the work of an optimizing compiler.
Actually, the are so important, that now compilers, and especially LLVM, are thought of
having a distinct piece for targetindependent optimizations, called the middleend. A
slight digression here to mention that the name middleend does not make much sense,
simply because nothing ends in it. But I guess the popularity of the terms ”frontend” and
”backend” made the establishment irresistible.

Anyhow, the LLVM middleend comes with a handy core infrastructure which lets the
LLVM developer represent and manipulate LLVM IR using C++ code. For instance, the
llvm::InstructionC++ class represents an LLVM IR instruction and it contains information
about it like its opcode. As a convention, we use the notation llvm::<some type> to make
clear that this is not a type of our own and instead belongs to the LLVM types of the core
infrastructure.

A characteristic of the LLVM types is that they are organized around inheritance relation
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ships. For example, llvm::Instruction inherits from a more generic type, llvm::Value,
which represents any value that can appear in LLVM IR code. But also, for each specific
instruction, there is a different specialized subclass which inherits from llvm::Instruction
and contains possibly additional fields and methods. For example, the llvm::LoadInst
C++ class represents an LLVM IR load instruction.

Except llvm::Instructions, the only other typewhich is of particular interest is the llvm::Loop.
This is just the representation of a loop discovered in LLVM IR (remember that loops in
LLVM IR are not firstclass objects and they have to be discovered by a separate analysis).

2.3 Dependences

Dependences that can arise in a program are not a central part of this thesis. Here, we
will provide an overview of what one needs to know to understand the content we present
later. For a full discussion on the topic, we refer the reader to [5].

2.3.1 Control and Data Dependences

If an instruction A is controldependent on an instruction B, then B controls whether the
execution will reach A. As an example, in Fig. 2.4, the instruction which implements the
condition if (a) controls whether the instruction b = 2 will be executed.

1 if (a) {
2 b = 2;
3 }
4 ...

Figure 2.4: Control Dependence

If an instruction A is datadependent on an instruction B, then B affects the data that
A operates on. For example, in Fig. 2.5, the instruction a = 2 affects the data used in
instruction b = a + 2.

1 a = 2;
2 b = a + 2;

Figure 2.5: Data Dependence

We should note that data dependences can be more subtle. In Fig. 2.6, we do not know
whether the pointers p and q alias. If two pointers alias, it means that they may access
overlapping memory. For instance, if p was set to point to &a (where a is a variable for the
sake of this example) and q was set to point to the same address, then the two pointers
alias.

If two pointers alias, then writing to the memory pointed by the one affects the memory
pointed by the other since by definition these twomemory ranges overlap. We do not know
if the arguments p and q alias, so we must assume they alias as a worstcase scenario.
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So, we must assume that the instruction *p = 2 affects the data read by return *q and thus
the latter is datadependent on the former.

1 int foo(int *p, int *q) {
2 *p = 2;
3 return *q;
4 }

Figure 2.6: Indirect Data Dependence

2.3.2 Program Dependence Graph

A Dependence Graph is a directed graph in which a vertex A is connected to B when one
depends on the other. If A depends on B, it is a matter of convention whether A points to
B or vice versa. In this thesis, we will adopt the convention that B points to A.

In a Program Dependence Graph (PDG) [1], the vertices are entities in a program and
for the purposes of this thesis, they are LLVM IR instructions. The edges denote control
and data dependences. A PDG comes in handy because it captures all the possible
dependences in a program and this is why we use it in the following sections.
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3. LOOP DISTRIBUTION

We will now turn our attention to the implementation details of an API that illustrates the
benefits, and challenges, of decoupling transformations from the rest of the machinery.
This strictly transformationonly API is simple enough for the reader to understand it as an
example of a broader idea, yet powerful enough to be almost ready for production.

We will consider loop distribution for the simplest and most common case, where we want
to distribute the original loop in 2 loops. It is easy to extend both the conceptual idea and
the implementation to be able to distribute a loop in more than two loops.

In this simple case, loop distribution essentially consists of extracting some instructions
from the original loop and placing them in a new one, which is a copy of the original. More
precisely, assume that the set L has all the instructions of the original loop. We want to
extract a set X ⊆ L to a new loop. The steps that we will follow are:

1. Create a copy of the original loop

2. Remove the instructions X from the original loop

3. Remove the instructions L−X from the new loop.

Let’s now see how we can bring this beautiful highlevel idea to an actual implementation
and how we can even extend it.

3.1 The Barebones of the Transformation

To implement a very basic loop distribution, we need exactly three functions, one for each
step outlined above. Their prototypes can be seen in Fig.3.1.

1 Loop *cloneLoop(Loop *OrigLoop, ValueToValueMapTy &MapOrigToNew, LoopInfo &LI,
2 DominatorTree &DT);
3 void removeInstructionsFromOriginalLoop(
4 const std::set<Instruction *> &InstsToRemove);
5 void removeInstructionsFromNewLoop(
6 const Loop *OrigLoop, const std::set<Instruction *> &InstsExtracted,
7 const std::set<const Instruction *> &InstsToClone,
8 const ValueToValueMapTy &MapOrigToNew);

Figure 3.1: The Three Basic Primitives of Loop Distribution

Let’s begin with some conventions when we describe C++ code.

First, entities in LLVM code, as in a lot of C++ code, are represented and passed around
as pointers to an object instead of the object itself. For instance, you can see that cl
oneLoop() does not return a llvm::Loop, but rather, a pointer to a llvm::Loop. For the
rest of this discussion, we will omit the ”pointer to a” part for the sake of clarity. For
instance, we will say that ”cloneLoop() returns a llvm::Loop” instead of ”cloneLoop()
returns a pointer to a llvm::Loop”.
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Second, we consider different copies of the same instruction with the same contents as
different objects. For instance, the instruction add i32 1, 2might appear in multiple places
in an LLVM IR module. Each place is considered a different llvm::Instruction, both in the
very reality of the LLVM infrastructure (i.e., it keeps a separate llvm::Instruction object
for each), but also in our explanations in this text.

Third, the reader does not need to know the exact C++ definitions of types. For in
stance, the reader does not need to know that a ValueToValueMapTy is an alias of
ValueMap<const Value *, WeakTrackingVH> or what a ValueMap orWeakTrackingVH
are, to understand the essence of the code. They just need to know that it maps a
llvm::Value to a llvm::Value. Similarly, we will refer to entities of type std::set<T> as
just ”sets” and objects of type llvm::Loop as just ”loops”, because the fact that we use
this specific implementation of a set or a loop is irrelevant. Thus, in general we will omit
such details unless we think they are necessary to understand core properties of the code.

3.1.1 Primitive to Clone a Loop

cloneLoop() takes the original loop in OrigLoop, clones it, and it returns us the new loop.
However, as you can see, there are 3more arguments passed. MapOrigToNew is passed
by reference to be filled. It maps the original instructions to their copies in the new loop.
This map will be useful later when deleting instructions. The other two types are passed
because we want to preserve them.

We should take a moment to explain the term ”preserve”. In LLVM parlance, usually
preserving something means ”keeping it uptodate”. For instance, let’s say that we have
a program dealing with a box. A variable NumBalls in this program keeps how many balls
are present in this box. Let’s say we have a function whose purpose is to do something
with the box. Maybe it adds or removes a bunch of stuff from it, including possibly some
balls. We may pass a reference to NumBalls to this function so that the function can
”preserve” it. For example, if a call to this function adds two balls to the box, we want it to
add 2 to NumBalls, thereby keeping the information it holds uptodate.

Returning to our actual program, we want to preserve the information held in LoopInfo
and DominatorTree. LoopInfo contains info about what loops exist in a function, their
structure etc. When cloneLoop() returns, we would like LoopInfo to have been updated
automatically. Similarly, dominator tree is useful in many different places inside a compiler.
Preserving it automatically is desirable.

Before we go any further, we note that cloneLoop() provides a fine level of granularity
and minimal coupling among the loop distribution steps. The user can execute this one
step and completely skip the rest of the steps. Actually, cloneLoop() is one of the many
interesting examples of reusability; the user may not even be interested in loop distribu
tion at all, but she can still use one of its primitive steps because for use cases that are
potentially completely different.

This is one of the benefits of providing granular and decoupled APIs. If the API is not
granular, or it is but the steps are coupled, the user can use it only for the case that the
creator had in mind. But the more granular and decoupled it gets, the more the user can
arbitrarily pick individual steps from separate APIs and compose them together in a feast
of combinatoric madness.
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3.1.2 Preconditions to Clone a Loop

There are some preconditions which have to hold if we want to clone a loop. These are
not so much constraints that our API imposes directly, as much as the LLVM’s APIs which
cloneLoop() uses to clone a loop. Our API just inherits them.

To check these constraints, we provide the following two utilities in Fig. 3.2. The first
checks that the instructions we want to extract span exactly one loop. If so, it returns us
that loop. The second checks some more detailed structural characteristics of the loop
which we do not believe are of great interest to the reader. They are LLVMspecific and
do not add to the essence of the transformation.

1 Loop *InstsSpanOneLoop(const std::set<Instruction *> &InstsToExtract, const LoopInfo &LI);
2 bool isLoopDistributable(const Loop *L);

Figure 3.2: Utilities Checking Basic Preconditions for Loop Distribution

3.1.3 Primitive to Remove Instructions from the Original Loop

The next function is removeInstructionsFromOriginalLoop(), taking a single argument,
the instructions to be removed. To avoid the obvious, let’s not explain what it does but
what deserves an explanation is that we pass nothing else to this function. One might
expect to pass the loop from which the instructions are going to be removed from, but no.

The reason is that an llvm::Instruction has access to its parent, and so when deleting
it, it can update its parent automatically. A ”parent” in LLVM parlance can mean different
things in different contexts, but in most cases, saying ”X has Y as its parent” means that
the entity in which X is directly enclosed in is Y. What is a parent of what is subjective
and it is whatever the LLVM developers have agreed upon. For instance, the parent of a
llvm::BasicBlock is a llvm::Function. A llvm::BasicBlock is also inside a bigger entity,
a llvm::Module, but it is not its parent.
The parent of an llvm::Instruction is a llvm::BasicBlock. If we delete an llvm::Instruction,
it updates its parent llvm::BasicBlock. But what about the llvm::Loopwhich contains the
llvm::Instruction ? We don’t need to update that because a llvm::Loop holds references
only its llvm::BasicBlocks, not the individual instructions.

The preceding reasoning shows the power of hierarchical structure. When doing a local
change, like deleting or adding an instruction, we only need to update its direct parent,
in this case a basic block. That basic block is contained in a loop, which is contained
in a function, which is contained in a module, but we don’t need to update any of those.
They get the change for free because each of them considers the enclosed structures
as indivisible chunks. If we change something inside a chunk, it still looks like the same
chunk to its parent.

3.1.4 Deleting Terminator Instructions

However, there is a caveat; what if we order to delete a terminator instruction? This will
make the basic block fundamentally different, meaning, it cannot look like the same chunk
to its parent. This in turn will make both the loop and the function fundamentally different
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and thus we should give them a headsup. Welcome to the first limitation of our API. We
can’t extract terminator instructions from the loop, which means that we cannot change its
fundamental structure, its blueprint. Down the road, we will see that this will make our life
easier in other respects too.

It is important to note that this limitation is not particularly important. Most loop distribu
tion implementations, including the upstream version of LLVM, can’t extract terminator
instructions. It is a good tradeoff because it is rarely useful while it complicates the im
plementation significantly.

3.1.5 Primitive to Remove Instructions from the New Loop

The last primitive operation is the removeInstructionsFromNewLoop(). InstsExtracted
are the instructions extracted from the original loop (usually it is the same set as the Inst
sToRemove in the previous primitive). What we want is to delete all the other instructions,
except these! To do that, we also pass the OrigLoop. Under the hood, the function just
iterates over all instructions and deletes everything that is not in InstsExtracted.
However, there is a problem. We don’t want to delete them from the original loop, i.e.,
OrigLoop, but rather from the new one. And we don’t want to delete the original instruc
tions but their copies. This is where the previously mentioned MapOrigToNew comes in
handy. As its name suggests, it maps the original instructions to their new copies. When
the function deletes instructions, it goes through the original instructions, checks each of
them if it is in InstsExtracted (which contains original and not new instructions) and if not,
it finds their copy using MapOrigToNew and deletes their copy.

Let’s try to make that clearer with a madeup example, approaching reality, in Fig.3.3.
Each instruction has a unique ID, as a comment next to it and we will refer to them using
that. Remember that such a setup is not far from reality as each llvm::Instruction is
referenced using a pointer to it. So, each instruction can be identified using its address in
memory, which is unique.

1 // Original Loop
2 for (int i = 0; i < n; ++i) {
3 a = b + c; // 1
4 d = e + f; // 2
5 }

Figure 3.3: Identified Instructions

Suppose that we want to extract the instruction with ID 1. We first call cloneLoop() to
clone the original loop and get the new one, resulting in Fig.3.4. Note that instructions 1
and 3 are different llvm::Instructions. The former is what we call the ”original” instruction,
while the latter is its ”copy”. The same is true for instructions 2,4.
cloneLoop() fills MapOrigToNew such that MapOrigToNew[1] = 3 (i.e., the copy of 1 is
3) and MapOrigToNew[2] = 4.
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1 // New Loop
2 for (int i = 0; i < n; ++i) {
3 a = b + c; // 3
4 d = e + f; // 4
5 }
6

7 // Original Loop
8 for (int i = 0; i < n; ++i) {
9 a = b + c; // 1

10 d = e + f; // 2
11 }

Figure 3.4: Cloned Loop

Then, we construct a set containing only the ID 1 and pass it to a call to removeInstruc
tionsFromOriginalLoop. This results in Fig. 3.5.

1 // New Loop
2 for (int i = 0; i < n; ++i) {
3 a = b + c; // 3
4 d = e + f; // 4
5 }
6

7 // Original Loop
8 for (int i = 0; i < n; ++i) {
9 d = e + f; // 2

10 }

Figure 3.5: Removed From Original

Finally, we construct the set InstsExtracted = {1} and pass it along with the original loop
andMapOrigToNew to removeInstructionsFromNewLoop(). This function enumerates
all the instructions in the original loop, starting with 1. It checks whether it is in InstsEx
tracted and it is, so, it skips deleting its copy (because remember, we want to keep the
copies of extracted instructions in the new loop). Then, it deals with instruction 2 and
checks whether it is in InstsExtracted. It is not, so the function looks up its copy in Map
OrigToNew, which is 4, and deletes it. The final state of the code can be seen in Fig.3.6.

1 // New Loop
2 for (int i = 0; i < n; ++i) {
3 a = b + c; // 3
4 }
5

6 // Original Loop
7 for (int i = 0; i < n; ++i) {
8 d = e + f; // 2
9 }

Figure 3.6: Removed From New
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There is one more argument passed in removeInstructionsFromNewLoop(), InstsTo
Clone, which we did not address. We will return to this argument later, but first, we need
to take a step back and understand the implications of extracting instructions from a loop.

3.2 Dependendeces: The Balkers of Loop Transformations

Let’s start by remembering why we extract instructions from a loop in the first place. The
reason is that we don’t want these instructions to appear in this loop. Either they cause
a problem, e.g., they create a loopcarried dependence, or they are in some way hetero
geneous with the rest of the instructions, e.g., they are the only ones which we want to
unroll. So, basically, we want them to be removed somehow.

But of course, we cannot just delete them, otherwise, we cut out a computation which
existed in the original program. Unless we prove it is useless (which we do not do as part
of loop distribution), then the original and transformed programs do not do the same thing.
This wrecks the correctness of our transformation. To avoid this, we just put them in a
new loop, so that they still exist somewhere in the program.

But there are two possible problems that we may give rise to if we move some instructions
to a new place. Call L the set of all instructions in the loop and call X ⊆ L the set of the
instructions that we want to extract. The first problem is that some instructions in L − X
might depend on some instructions inX. In this case, we cannot just moveX to a different
place, as this might potentially break the semantics. Consider the snippet in Fig.3.7.

1 for (int i = 0; i < ...; ++i) {
2 A[i] = ...; // S1
3 int l2 = A[i+1]; // S2
4 }

Figure 3.7: LX Depends on X

Let’s say that we want to extract the statement S1, which would be X in this case. S2,
along with the loop wrapper code, makes up L−X. Here, S2 depends on S1, as S2 reads
data from locations to which S1 writes. We should focus on the fact that for any location
A[k], for some k, the loop first reads (with S2) from it and then writes to it (with S1). For
instance, in the first iteration (i == 0), S2 reads from location A[1] in which S1 writes in the
second iteration.

Essentially, the reads read the ”old” data of the array, i.e., whatever data the array had
before we enter the loop. We want to preserve that. But if we extract S1 to a new loop
above the original (as we do in the transformation; the situation would be different if we
put the new loop below the original), all the writes will happen before any read. So, for
example, we will write to A[1] before S2 has any chance to read from it. The approach
we have taken is that if any instruction outside X depends on any instruction inside X,
then we consider the loop distribution illegal and we provide a utility, which we will mention
later, that helps the user to check it (although, the user is free to do the loop distribution
anyway).

The second problem is that the set of extracted instructions may not be selfsufficient.
It might depend on other instructions, call their set Y , in the loop. So, if we move X
around, we need to bring along a copy of Y . But Y might itself depend on another set
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of instructions Z and so on. In such a case, we say that X depends on Y and it also
depends transitively on Z. Transitively means that it does not depend directly on Z, but it
depends on something which depends on Z. And if Z depends on something, X depends
transitively on that too.

The takeaway here is that if we want to extract a set X, we need to bring along a copy of
all the instructions which X transitively depends on. Even though we do not need or want
to extract or copy them. We say that we need to clone these instructions.

Returning back to removeInstructionsFromNewLoop(), InstsToClone are unsurpris
ingly the instructions which we need to clone. So, the function will remove all instruction
copies in the new loop, except those in InstsExtracted and InstsToClone.
In the context of removeInstructionsFromNewLoop(), ”instructions to clone” might not
be the best terminology, because this function does not clone any of these instructions.
It just does not delete them. However, by referring to them as ”instructions to clone”, we
hope to make clear that these instructions appear in both the original and the new loop.

3.3 Discovering Dependences

Up to here, we have built the bare bones of a loop distribution API which can successfully
extract instructions into a new loop. The user can execute the steps separately, combine
them rather arbitrarily, or even skip some completely. This is a design that is far from the
monolithic nature of a loop distribution pass. Not only is there no profitability or legality
involved, but also the transformation is not a single huge step.

From now on, we will build upon this API to achieve different levels of granularity (see
Section 2.1.1) and provide useful utilities for the canonical cases. However, at the core,
the API will still have the same capabilities.

The first utility we will provide is one that enables the user to automatically find all the in
structions that the instructionstoextract depend on. In other words, the transitive depend
ences of this set. For this purpose, we will assume that we have a Program Dependence
Graph (PDG) (see Section 2.3.2) available.

There are two things to note here. First, assuming that the user’s code has some kind
of PDG available is a reasonable assumption, because PDG is ubiquitous in compiler
optimization. But even if a PDG is not available, the user is free to simply not use our
utility to find transitive dependences. They could find them on their own on whatever way
they desire. Or, they may pass an empty InstsToClone set. Or, even if they use our utility,
they could augment InstsToClone or remove elements from it. The important thing is that
whatever is the use case, the API gives full control to the user to adapt the API to their
needs.

In our implementation, we use a straightforward PDG type, named... PDG, which is an
adaptation of NOELLE’s [7] PDG. We do not describe the implementation because we
believe it is offtopic for this thesis and not particularly complex or interesting. For the
same reasons, we do not describe ways in which the reliance on a PDG could be made
more flexible (as for instance the user may want our utility to use a PDG but not our PDG).

Having a PDG type available, we introduce the utility findInstsToClone() in Fig. 3.8.
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1 void findInstsToClone(const std::set<Instruction *> &InstsToExtract,
2 const PDG *LoopPDG,
3 std::set<const Instruction *> &InstsToClone);

Figure 3.8: Utility To Find Transitive Dependences

This utility takes the InstsToExtract and the PDG of the original loop in LoopPDG. It
simply does a breadthfirstsearch over all the transitive edges in LoopPDG that point to
any instruction in InstsToExtract.
A second utility helps the user check if any instructions outside of InstsToExtract depend
on any instructions inside, depicted in Fig.3.9.

1 bool instsDependOnExtracted(const std::set<Instruction *> &InstsToExtract,
2 const Loop *OrigLoop, const PDG *LoopPDG);

Figure 3.9: Utility Which Checks If Any Instructions Depend on Those Extracted

3.4 BackChannel from the Transformation API to the User

By providing these utilities, particularly findInstsToClone(), the API opens the door to a
camouflaged but fascinating design pattern. The API becomes what Casey Muratori calls
[8] a component instead of a layer. Let’s try to understand this by first looking at Fig. 3.10.

User Generated CodeTransformation 
API

Figure 3.10: Conventional Conceptual Idea of Using a Transformation API

As we havementioned, in ordinary compiler design, even the idea of separating transform
ations in their own APIs is revolutionary. But if we do separate them, we think of them sort
of what we see in Fig. 3.10. That is, the user decides what they want to transform (e.g.,
in our case of loop distribution, what instructions should be extracted, what is the original
loop etc.) and then calls the API which transforms the code. There is no real communic
ation between the user and the API; the user just orders the API to do something. This is
what Casey Muratori calls a layer.

However, a utility like findInstsToClone() gives birth to a backchannel of communication,
depicted in Fig. 3.11. The user now does not just order the API. It asks the API for
information. In this case, ”if I want to extract these instructions, what instructions do I
need bring along with me?”.

User Transformation 
API Generated Code

Figure 3.11: BackChannel Between From the API to the User
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Let’s see how that becomes useful when the user is a costmodel, as we expect the most
common case to be. Suppose that the costmodel tries to decide whether it is profitable
to extract some instructions from a loop. It knows the instructions but it does not know
on what instructions they depend, i.e., what instructions will be brought along. But it is
important to know that in order to costmodel the upcoming extraction correctly!

For instance, maybe the costmodel ponders whether it should extract 3 instructions. And
it may cast the extraction profitable. But if it learns that to extract these 3 instructions, it
needs to copy along another 40, which may contain slow instructions (like multiple loads
and stores), then it might change its mind. Its decision might change because these 40
instructions will now be executed twice, once for each loop. This might cancel out the
benefits of removing the 3 instructions from the original loop.

The backchannel essentially provides the user with the ability to see the indirect implic
ations of the transformation that is about to happen; implications that might be difficult to
guess (for instance, here the user has to guess the intricate structure of the PDG). What
are the options if such a backchannel does not exist?

The first option is for the costmodel to guess. This is not horrible, especially because
nowadays costmodels are pretty good at guessing. But it is definitely unnecessary. The
costmodel, in this case, should concern itself just with direct decisions like ”should these
instructions be removed?”. If we can provide it the implications, we definitely should. Let’s
not make a costmodel more of a forecaster than it needs to be.

The second option is for the transformation API to take part in the costmodeling. For
instance, the user asks to extract 3 instructions but the transformation API finds out that
it needs to copy along another 40. It then takes the liberty to abort the mission in favor of
performance. We should appreciate such heroic actions but this one in particular defeats
the whole goal of creating a transformationonly API.

3.5 Preserving the PDG

The last utility that we will provide preserves the PDG. We remind the reader that when
”preserve” is thrown around in a compilersrelated context, it usually means ”keep upto
date” and so does here.

Preserving the PDG turned out to be more complicated than expected, so we will devote
some space to explain it. The first thing is that we need to have access to alter the full
PDG, not just the loop’s subPDG. ”Full” here depends on the PDG implementation and
for ours, it means the PDG for the whole function. The reason we want the full PDG is
that adding a new loop means that we transcend the PDG of a single loop (the original).

A second thing to note is that the preservation of the PDG is coupled with the removal
of instructions from both loops (essentially, the combination of removeInstructionsFro
mOriginalLoop() and removeInstructionsFromNewLoop()). We can trivially break the
preservation of the PDG in two steps. One after cloneLoop() and one after removing
instructions from both loops. What we did not succeed in doing is break the preserva
tion between the two calls that remove instructions. It is essential for the preservation
algorithm to assume that the instructions have been removed from both loops. In that
regard, our function performs both the preservation and the removal.

With that, we are ready to see the function prototype in Fig.3.12.
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1 void preservePDGAndRemoveInstructions(PDG *FunctionPDG, Loop *OrigLoop,
2 Loop *NewLoop, const std::set<Instruction *> &InstsExtracted,
3 const std::set<const Instruction *> &InstsToClone,
4 ValueToValueMapTy &MapOrigToNew);

Figure 3.12: Function that Preserves the PDG

Now, let’s explain the internals of this function. On a highlevel, it is just 2 lines, those in
Fig. 3.14.

1 preservePDG(ModulePDG, OrigLoop, NewLoop,
2 InstsExtracted, InstsToClone, MapOrigToNew);
3 removeInstructions(OrigLoop, NewLoop, InstsExtracted,
4 InstsToClone, MapOrigToNew);

Figure 3.13: Implementation of preservePDGAndRemoveInstructions

removeInstructions is literally a call to removeInstructionsFromOriginalLoop() fol
lowed by a call to removeInstructionsFromNewLoop(). The meat of the preservation
happens in preservePDG(). But before wemove to its implementation, we wanted to bring
to your attention that we preserve the PDG first and then we remove the instructions. This
is because removing the instructions means deallocating their memory, making them dis
appear for their parent basic block etc. It just makes our life easier to first manipulate the
graph having all the instructions present in memory and on their places, albeit assuming
their upcoming deletion, and then actually deleting them.

Before we move to the core of the preservation algorithm, we will present a handy predic
ate used throughout the code, IsInNewLoop(), in Fig.

1 auto IsInNewLoop = [&InstsExtracted, &InstsToClone](const Value *V) -> bool
2 {
3 Instruction *I = (Instruction *)dyn_cast<Instruction>(V);
4 if (!I)
5 return false;
6 return InstsExtracted.count(I) || InstsToClone.count(I);
7 };

Figure 3.14: Check If a Value Will Stay in the New Loop

It’s a C++ lambda, which we can think of as a simple function, and it tells us if V is an
instruction of those that will stay in the new loop. And as we know, those that will stay are
the union of InstsExtracted and InstsToClone.
Let’s take a moment to explain some utilities used. The call to the method count(X) of a
std::set counts the number of occurrences of the element X in the set. Here, it is used
to simply check if an element exists (in which case, count() will return a positive result,
which will be cast to true).
The second utility is dyn_cast. It is useful when we want to check if the dynamic type
of an element is actually more constrained than its static type. And if so, we cast it to
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that more constrained type. For instance, llvm::Instruction inherits from llvm::Value.
llvm::Value is the more generic type (i.e., an llvm::Instruction is always a llvm::Value)
while llvm::Instruction is the more constrained type. A llvm::Value is not necessarily
an llvm::Instruction and that is what we check using dyn_cast. If it is, it gives us a
llvm::Instruction which enables us to use all the auxiliary methods (not available in a
llvm::Value) of this child type. If not, it just returns null.
Now, let’s move to the algorithm, which we will split in 4 main parts. There is something
important to remember throughout our discussion of this algorithm. We proceed in the
algorithm based on the original instructions. And we also remind that InstsExtracted and
InstsToClone contain the original instructions. Whenever we want to refer to the copy of
an original instruction in the new loop, we use MapOrigToNew.
The first part of the algorithm is the easiest and it just creates a copy of the subPDG of
the original loop. We present a simplified version in Fig. 3.15.

1 for (Instruction *I : OrigLoop) {
2 if (isInNewLoop(I)) {
3 FunctionPDG->createNode(I);
4 }
5 }

Figure 3.15: Create a Copy of the SubPDG of the Original Loop

The createNode()method of a PDG wraps an llvm::Instruction in a PDG node and adds
it to the PDG.

The second and third parts are both two forloops and they live together under the same
loop, shown in Fig. 3.16. The second part adds the incoming edges and it is the loop in
lines 930. The third part adds outgoing edges and it is the loop in lines 3347.
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1 for (Instruction *OrigInst : OrigLoop) {
2 if (!IsInNewLoop(&OrigInst))
3 continue;
4 // Get the corresponding new instruction
5 Instruction *NewInst = MapOrigToNew[&OrigInst];
6 // Get the original node
7 PDGNode *OrigNode = FunctionPDG->fetchNode(OrigInst);
8 // Add incoming edges to the new node.
9 for (PDGEdge *Edge : OrigNode->getIncomingEdges()) {

10 // i.e. the tail of the original edge
11 const Value *OrigFromValue = Edge->getOutgoingValue();
12 // i.e. the tail of the new edge
13 const Value *NewFromValue;
14 if (!MapOrigToNew.count(OrigFromValue)) {
15 // If the original "from" value is _not_ in MapOrigToNew,
16 // then it is outside (and is also before) both loops
17 // and the NewFromValue is the same as the OrigFromValue.
18 NewFromValue = OrigFromValue;
19 } else {
20 NewFromValue = MapOrigToNew[OrigFromValue];
21 }
22 FunctionPDG->addEdge(NewFromValue, NewInst);
23 }
24

25 // Add outgoing edges to the new node
26 for (PDGEdge *Edge : OrigNode->getOutgoingEdges()) {
27 const Value *OrigToValue = Edge->getIncomingValue();
28 const Value *NewToValue;
29 if (!MapOrigToNew.count(OrigToValue)) {
30 NewToValue = OrigToValue;
31 } else { // Inside the loop
32 NewToValue = MapOrigToNew[OrigToValue];
33 }
34 FunctionPDG->addEdge(NewInst, NewToValue);
35 }
36 }

Figure 3.16: Adding Incoming and Outgoing Edges

We won’t describe every part of the code in detail because we believe that it is going to
be less effective than if the reader studies the code. However, we will point out some
delicate reasoning. For the rest of this discussion, we remind to the reader that in our
PDG implementation, if A points to B, then B depends on A (and not vice versa).

The one detail has to do with incoming edges to an extracted instruction (”extracted” in
structions are also referred as ”new” interchangeably), i.e., with the values it depends on.
The first case is that the instruction depends on a value outside the original loop, like in
Fig. 3.17
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1 int b = 2;
2 for (int i = 0; i < n; ++i) {
3 a[i] = b;
4 }

Figure 3.17: Instruction Depends on Outside Value

Here, the statement in line 3 depends on b.
In such a case, where an extracted instruction A depends on an outside instruction X,
there are two things to keep in mind. First, X will not be in MapOrigToNew. Second, the
copy of A instruction will depend on X too.

The other case is when X is inside the original loop. In such a case, the first thing to note is
that X will be copied along and thus will be in InstsToClone because we find the transitive
dependences of all the instructions we extract. Unless X is also one of the instructions
we extract, in which case it will be in InstsExtracted. In any case, the copy of X will not
be removed from the new loop and thus we can create an edge from this copy to our
extracted instruction A.
Adding outgoing edges follows a similar reasoning.

The final part just removes the nodes from the PDG that correspond to the original extrac
ted instructions. A simplified view is shown in Fig. 3.18.

1 for (Instruction *InstExtracted : InstsExtracted) {
2 FunctionPDG->removeNode(InstExtracted);
3 }

Figure 3.18: Remove Nodes for Extracted Instructions

3.6 Ascending the Granularity Ladder

We can provide 2 small utilities which help the user in the canonical cases. For instance, it
will be common that the user wants to extract some instructions without needing the control
of doing all the steps separately. For this reason, we provide splitLoopUnchecked() in
Fig. 3.19.

1 void splitLoopUnchecked(const std::set<Instruction *> &InstsExtracted,
2 const std::set<const Instruction *> &InstsToClone,
3 PDG *ModulePDG, LoopInfo &LI, DominatorTree &DT,
4 Loop *OrigLoop);

Figure 3.19: CoarseGrained Call to Split a Loop

This utility automatically clones a loop, removes instructions from both of the loops and
preserves the PDG, the dominator tree and the loop info. It is called ”unchecked” in the
sense that we assume that the user has checked the preconditions in Section 3.1.2. This
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is why it returns void, because it is not supposed to fail. And finally, we also give them
the ability to define themselves the instructions to clone.

However, even that function might be too detailed when you just want to split a loop. For
this reason, we provide the final and most coarsegrained API function, splitLoop(), in
Fig. 3.20.

1 bool splitLoop(const std::set<Instruction *> &InstsExtracted,
2 PDG *ModulePDG, LoopInfo &LI,
3 DominatorTree &DT);

Figure 3.20: HighLevel Function to Split a Loop

This function gets the instructions to extract, the PDG, the loop info and the dominator
tree. It just does all the work mentioned thus far, under the hood. And with that, we
believe we have successfully and gradually ascended the granularity of the API, giving
the user enough control for the edge cases and enough convenience for the canonical
cases.

3.7 Limitations

3.7.1 Removing Terminator Instructions

As we have mentioned in Section 3.1.4, one limitation of this API is that we cannot extract
branches out of a loop. This is not so much a weakness on what the API can achieve,
because the user is rarely interested to extract branches. But it is a weakness in the
usage pattern it enforces. It is an assumption that exists throughout the API but it is not
in any way apparent to the user. The user just needs to know that and be sure that all the
terminator instructions are cloned, by putting them in InstsToClone.
We could have chosen to just assume it explicitly inside the code (i.e., explicitly skip ter
minator instructions) but this problematic if the user wants to use the lowlevel primitives.
In that case, they may want to delete terminator instructions, which will not cause a prob
lem to the API, and deal with it in any way they like. So, in the end, we think that the
current design is a good tradeoff which does not withhold control in the extreme cases.

3.7.2 Distributing in More than Two Loops Directly

This API currently lets the user only split a loop in two. Loop distribution is more general
in that a loop can be split to an arbitrary number of loops. This can be accomplished with
this API. For instance, if we want to distribute in 3 loops, we first split the first loop out,
and then we resplit the original loop, to get a total of 3. It is just that the user cannot do it
directly, which we believe is not important for a prototype implementation.
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4. EVALUATION

4.1 Against API Design Principles

In this section, we will try to evaluate our API against the principles presented in Section
2.1. We do not know of a scientific way to measure the conformance to these principles,
because designing based on them is for the most part a trade. However, we do believe
that we should take a moment to articulate how we tried to design the API against the
tradeoffs of these principles.

4.1.1 Granularity

We think that granularity has been explored to its limits! The user can perform the indi
vidual steps of cloning, removing instructions and preserving, all the way to just a simple
and single call to splitLoop().

4.1.2 Redundancy

We do get a lot of redundancy because of the granularity of the API, however, there is a
place where could have provided redundancy in the data types we accept. Currently, we
only accept std::set for sets and no other type.

There is an infinite number of set implementations so cannot account for all of them in a
simple manner. There are alternatives using the C++ type system, but that would probably
cause more harm (and complexity) than good. It would also make the API less orthogonal
without a tangible benefit. A sensible balance would be attained if we accepted LLVM’s set
implementation, DenseSet, since this code is supposed to live under LLVM infrastructure.
We consider this one of the weaknesses of the API against the principles.

4.1.3 Retention

This API retains nothing (such APIs are called stateless or functional)! But we could use
some retention. For instance, instead of InstsExtracted and InstsCloned being passed
around continuously, we could retain them.

However, we believe that if the user wants to use the lowlevel API, it is better give them
as much control as possible and not retain anything. The need for passing these things
around is a byproduct of using the findgrained primitives. If the user does not want to
deal with that, then they probably do not need to use the finegrained primitives anyway.
So, they can avoid passing things around by just calling splitLoopUnchecked() or split
Loop().

4.1.4 FlowControl

This API never calls the user back.
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4.1.5 Coupling

We consider the API as noncoupled in general. The user can separate the steps without
one implying others. However, we will mention again one place where coupling exists and
that is the preservation of the PDG which requires the removal of instructions. For more
information, see Section 3.5.

4.2 Against Test Cases

In the common case, compiler transformations used during optimization are evaluated
by measuring the change in some kind of metric in the final, output code. Usually, this
metric is either the running time of the executable or its size. And we evaluate a large and
indicative set of input programs trying to discern a statistical improvement in this metric,
caused by the transformation.

However, this is not the correct way to evaluate a transformationonly (!) API. First, it is
not always legal to apply a transformation even if we can. And second, it is not always
profitable to apply a transformation, even if we can. So, to measure for example, the
running time improvement that loop distribution might give us, we have to have a legality
analysis and profitability heuristic for it. But even if we have them, this measurement will
not measure the transformation exclusively. The capabilities of the legality and profitability
analyses will influence the measurements.

For this reason, the correct way to evaluate a transformationonly API is to explore the
limits of what it can handle, regardless of metrics in the generated code. The evaluation
should give us answers in questions like ”Can it remove instructions from any part of the
loop? Can it handle all the types of instructions?” etc. And most importantly, whether it
can handle the most common cases.

So, we created custom test cases that show the capabilities of this loop distribution API.
Before we present the test cases and discuss the API’s behavior over them, we have to
take some time to explain the setup and the format of the test cases.

First of all, we have mentioned already, anything presented in this thesis is not LLVM
specific, even though the implementation is over LLVM. For this reason, any code snippets
we have seen are in C++ and not in LLVM IR, because one could implement the same
API in different compilers with only slight variations. This trend will continue in the test
cases, which will be shown in C++. However, we note that the actual test cases were first
translated to LLVM IR and then fed to the API.

The second thing we should mention is the way the API was called. The standard work
flow in this API starts by a module, which exists inside the compiler, which finds some
instructions it wants to extract out of a loop. Then, it calls the API to do this extraction.

We, the human, will pretend to be such a module. Looking at some LLVM IR, we can find
instructions we want to extract. But the problem is that we are not inside the compiler. So,
we want to design a module that will be, whose only purpose is to act on our behalf and
call the API with the instructions we want. The way we do that is simple. First, we stub
the instructions we want to extract with metadata, which are data about data.

It might be difficult to wrap your head around the idea of ”data about data”, so we will
provide an analogy. Suppose you are filling a form which asks you for your name, phone
number etc. Under the box which is to be filled with your phone number, there is another
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box which asks ”Is this your primary phone number?”, which is followed by two check
boxes, ”yes” and ”no”. The first box, asks you about some data; your phone number. The
second box, asks you about some data too, but this is data about some other data in the
form. Hence, it is data about data a.k.a. metadata.

Returning back to our test cases, having stubbed the instructions we want to extract with
metadata, then a module inside the compiler can search for them. It gathers them all,
does a bunch of preliminary checks (e.g., that they are all in the same loop) and then calls
the loop distribution API. In that way, we have created a work flow where we can stub
instructions in LLVM IR and then call the API to extract them. Next, we will present the
test cases, by mentioning which parts of the code we stubbed in the LLVM IR.

4.2.1 Simple

1 void foo(int64_t *p, int64_t len) {
2 int64_t i = 0;
3 int64_t j = 0;
4 while (i < len) {
5 ++i;
6 ++j; // Stubbed
7 p[i] = i;
8 }
9 }

Figure 4.1: Simple: Before

Here we simply want to remove the handful of instructions that implement the ++j. It is a
very simple test case and after we pass this through the API, we see Fig.4.2.

1 void foo(int64_t *p, int64_t len) {
2 int64_t i = 0;
3 int64_t j = 0;
4 while (i < len) {
5 ++j;
6 }
7 while (i < len) {
8 ++i;
9 p[i] = i;

10 }
11 }

Figure 4.2: Simple: After
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4.2.2 Basic Reordering

1 for (i = 0; i < n; i++) {
2 d = D[i];
3 A[i + 1] = A[i] * B[i]; // Stubbed (this whole line)
4 C[i] = d * E[i];
5 }

Figure 4.3: Basic Reordering: Before

This is a more realistic test case as we remove line 3, which creates a loopcarried de
pendence (see Chapter 1). Besides being a realworld test case, it is also particularly
interesting because LLVM’s loop distribution cannot handle this. The reason is the legality
analysis it uses, which we remind that it is coupled with the transformation. This analysis
thinks that to distribute the loop, one would need to reorder lines 2 and 3 and since this
analysis does not allow reordering memory operations, this fails.

This failure is yet another example where coupling creates problems. Here, we could
simply use a different legality analysis and use the transformation. Or in any case, to put
it more simply, the transformation code has nothing to do with the legalityrelated stuff we
described previously. For us, the after can be seen in Fig.4.4.

1 for (i = 0; i < n; i++) {
2 A[i + 1] = A[i] * B[i];
3 }
4 for (i = 0; i < n; i++) {
5 d = D[i];
6 C[i] = d * E[i];
7 }

Figure 4.4: Basic Reordering: After

4.2.3 Simple ControlFlow Inside the Loop

1 for (i = 0; i < x; i++) {
2 C[i] = D[i] * E[i];
3 A[i + 1] = A[i] * B[i]; // Stubbed
4 if (F[i])
5 G[i] = H[i] * J[i];
6 }

Figure 4.5: Simple ControlFlow: Before

In this test case, there is controlflow inside the loop, the if in line 4. As we have mentioned
in Section 3.1.4, we are not expected to remove branches using this API, so after loop
distribution, the code looks like Fig. 4.6.
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1 for (i = 0; i < x; i++) {
2 A[i + 1] = A[i] * B[i];
3 if (F[i])
4 }
5 for (i = 0; i < x; i++) {
6 C[i] = D[i] * E[i];
7 if (F[i])
8 G[i] = H[i] * J[i];
9 }

Figure 4.6: Simple ControlFlow: After

There are a couple of things to note here. First, the stubbed loopcarried dependence
was correctly distributed, as we desired. Second, as we expected, the branch in line 4 (in
Fig. 4.5) was cloned, because we clone all branches. Third, this branch was not copied
alone (i.e., we didn’t just clone an empty if()), rather everything it was datadependent on,
in this case, F[i], was cloned too, which is another instance that shows that the discovery
of dependences works correctly.

However, the body of the if is (correctly) not cloned and what was left from the if, which is
just reading from F[i], has no observable behavior. Thus, we can just delete the branch
altogether.

This API will not do that and we would not like it to do it. This is logic that we think is the job
of different passes (e.g., passes that do deadcode elimination and ControlFlowGraph
simplification) and these passes will in fact delete the if. So, in the end, we will be left with
a much nicer code, shown in Fig. 4.7.

1 for (i = 0; i < x; i++) {
2 A[i + 1] = A[i] * B[i];
3 }
4 for (i = 0; i < x; i++) {
5 C[i] = D[i] * E[i];
6 if (F[i])
7 G[i] = H[i] * J[i];
8 }

Figure 4.7: Simple ControlFlow: After Cleanup

4.2.4 Distributing an Inner Loop

1 for (int64_t i = 0; i < n; i++) {
2 for (int64_t j = 0; j < m; ++j) {
3 C[i] = D[i] * E[i];
4 A[j + 1] = A[j] * B[j]; // Stubbed
5 }
6 }

Figure 4.8: Distributing Inner Loop: Before
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Here we want to test that we can distribute a loop that is inside a loop (such loops are
called inner loops). What we want, and get, is shown in Fig. 4.9.

1 for (int64_t i = 0; i < n; i++) {
2 for (int64_t j = 0; j < m; ++j) {
3 A[j + 1] = A[j] * B[j];
4 }
5 for (int64_t j = 0; j < m; ++j) {
6 C[i] = D[i] * E[i];
7 }
8 }

Figure 4.9: Distributing Inner Loop: After

4.2.5 Distributing an Outer Loop

1 for (int64_t i = 0; i < n; i++) {
2 for (int64_t j = 0; j < m; ++j) {
3 C[i] = D[i] * E[i];
4 }
5 A[i + 1] = A[i] * B[i]; // Stubbed
6 }

Figure 4.10: Distributing Outer Loop: Before

Here, we want to test that we can distribute an outer loop, that is, a loop which contains a
loop. Similar to the test in Section 4.2.3, the loop distribution will bring all the controlflow
with it, so after it the code will look like in Fig. 4.11.

1 for (int64_t i = 0; i < n; i++) {
2 for (int64_t j = 0; j < m; ++j) {
3 }
4 A[i + 1] = A[i] * B[i];
5 }
6 for (int64_t i = 0; i < n; i++) {
7 for (int64_t j = 0; j < m; ++j) {
8 C[i] = D[i] * E[i];
9 }

10 }

Figure 4.11: Distributing Outer Loop: After

But again as in Section 4.2.3, other cleanup passes will us with Fig. 4.11.
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1 for (int64_t i = 0; i < n; i++) {
2 A[i + 1] = A[i] * B[i];
3 }
4 for (int64_t i = 0; i < n; i++) {
5 for (int64_t j = 0; j < m; ++j) {
6 C[i] = D[i] * E[i];
7 }
8 }

Figure 4.12: Distributing Outer Loop: After Cleanup
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5. CONCLUSIONS AND FUTURE WORK

The architecture of modern optimizing compilers is not in fact that modern and could be
characterized as archaic at this point. We should start being bold about whether funda
mental principles of compiler design and their implications are actually useful. For ex
ample, the passoriented design seems to entice developers to mesh profitability, legality
and transformation together. But they are dissimilar, even though they work together
towards a common goal, and this entanglement causes problems if people want to ma
nipulate them separately.

In this thesis we have provided an example of how to design a transformationonly API,
which can appear as a separate piece of the puzzle of compiler optimization. Moreover,
we tried to present how to design APIs which give the user both an easy interaction for
the canonical cases and high levels of control for the edge cases.

In the future, we hope to combine such decoupled transformation APIs with powerful prof
itability analyses to get an endtoend improvement in compiler optimization. We also
believe that welldesigned APIs offering high levels of control will not only become useful
to the compiler developer but the compiler user too. We aim to expose the compiler in
ternals to the user so that they can affect the compilation pipeline in ever more imaginable
ways.
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