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ABSTRACT

A matching of a graph is a set of pairwise disjoint edges and it is called perfect if
every vertex of the graph is incident to some edge of the matching. The purpose of
this thesis is the study of structural and algorithmic properties of graphs with perfect
matchings. In particular, we focus on the following question: Assuming that k is a
positive integer and G is a graph with perfect matching, is G k-extendable? That is, is
it true that for every matching M of cardinality & in G there exists a perfect matching
that entirely contains M?

There is a detailed structural characterization of bipartite graphs G with perfect
matchings in terms of the existence of disjoint paths with certain properties which is
a direct analogue of Menger’s theorem. Let (U, V') be the bipartition of G and M be
a perfect matching of G. Graph G is k-extendable if and only if there are k internally
disjoint M -alternating paths between every vertex of U and every vertex of V. More
strongly, it has been proven that someone can obtain the respective k paths for every
other perfect matching M by using the k paths for a specific perfect matching M.

From a computational perspective, the EXTENDABILITY problem focuses on the
question whether a graph G is k-extendable or not, where pair (G, k) is the input.
The extendability of a graph G, denoted by ext(G), is defined as the maximum & for
which G is k-extendable. In the general case, this problem is coNP-complete. In the
case where graph G is bipartite, there is a polynomial algorithm that computes ext(G).
Thus, the aforementioned problem can be decided in a polynomial amount of time on
the number of vertices and edges of G.

The results of this thesis appear on the papers [2], [3], [4] and [5].






XYNOYH

Taipioopa evOg Ypo@HATog eival évo GOVOAO OKHOV oL ortoieg dev £xouv kavéva
KOLVO Gk po kot AéyeTon TEAELO AV KABE KOPLPT] TOL YPAPHHATOC TTPOGTTLTEL O€ KATTOLOL
QKT TOV TALPLACHATOG. ZKOTOG TNG SUTAWUATIKAG elvar 1) HEAETT) aAyOpLOpLKOV Ko
SOpLKAOV LLOTHTWV YPOPNUATWV PE TEAELX TAULPLACHATR. LUYKEKPLEVA, EGTLALOVHE
otV akoAovdn epodTnomn: Yrobétovtag 6t To k eiva évag Beticdg aképorog ko G
eival éva yphonua, eivon to G k-emektdoyo; Andadn, eivor aiibeg 6TL yior kébe
taiproopo M oto G mAnBukdtntog k vdpyet kdmolo TEAELO TALPLACHA TTOV TTEPLEYEL
OAeg Tig axpég Tov M;

YrdpyeL AUECT) CUGYETLOT) GTOV SOULKO XAPAKTNPLOHO TV k-ETEKTAGIUOV SHEPDOV
ypagpnpatov G pe télewa toupldopoata kot oty vmoapén k Eévwv povomaticyv, o
elvou avéhoyo tov Bewpripatog tov Menger. Yrnofétovtag 6t to Ledyog (U, V) eivan
pia Swapépion Twv kopuedv Tov G ko M eivan éva téheo taipacpa tov, o G
elvon k—emektdoo edv ko povov edv vtdpyouvv k ecwtepikdg Srokekpévor M-
evoldlaoopevo povomatior petakd kébe kopugrg tov U ko k&be xopuerg tov V.
Ioyvpodtepa, amodetcvietar 6T eivan Suvatdv va PpeBodv avtd o k povomdTio yio
omotodnimote &AMo taiplacpa My tov G XpNOLHOTOIOVTAG TX YVWO T K HOVOTATI
Tov téAelov tapiiopatog M.

A6 vtoloyLoTIKTG O YEwS, To EXTENDABILITY TtpOPAnpa eoTidleL 670 edv évar
ypaonua G eivon k—emextdoyo, omov (G, k) elvon 1 eloodog. H enextaoipdmra
evog ypagrpatog G, n omoia cupforileton ext(G), opileton wg n péyiotn Ty tov k
ylx To omoio To G eivon k-emeKTAGIHO. 2TV YEVIKT] TEPIMTWOT], ALTO TO TPOPANHX
eival coNP-Afpeg. Ztnv mepintwon 6mov to G eivat dyepég, vITAPYEL TOAVWVUIIKOG
aly6piBpog mov violoyilel To ext(G). Svvendg, To TpoovapepOiv TpoPAnuo propel
VO UITOPAOLOTEL 0 TTOAVWOVUHLKO XPOVO G TPOG TOV aplOpd TwV KOPLPDOV KAl TOV
akpov tov G.

To amoteAéopata mov eppavifovton oe auth TNV dimAwpatiky Ppickoviol ota

apOpo [2], [B], [4] wou [B].
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CHAPTER 1

PRELIMINARY DEFINITIONS

1.1 General graphs

Definition 1.1. A graph is a pair G = (V, E), where V is a set whose elements are
called vertices or nodes and E is a set whose elements are sets of two distinct vertices
and they are called edges or lines. We can also write V(G), E(G) instead of V, E
respectively.

U Uz

Uy us

G

Figure 1.1: A graph G = (V, E) with vertex set V' = {uq, u2, us,us} and edge set

E = {{u1,u2}, {{uz, us}, {{us, ua}, {{ur, ua}}.

There are different kinds of graphs G according to the properties of the set of
edges E. For instance, a graph can contain loops, i.e. at least one edge that connects
a vertex with itself, or parallel edges, i.e. two or more edges that connect two distinct
vertices. Also, a graph can contain a set of either directed or undirected edges but not
both.

Definition 1.2. A directed graph is a graph, where set E’ contains directed edges, i.e.
every edge of F is an ordered pair of vertices of the graph.

For abbreviation, we will write digraphs instead of directed graphs.

Definition 1.3. An undirected graph is a graph, where set E contains undirected
edges.



1.1. GENERAL GRAPHS

Definition 1.4. A simple graph is a graph that does not contain loops and parallel
edges.

From now on, when we refer to a general graph without additional restrictions,
we will mean a simple and undirected graph.

Now, we proceed with the terminology “neighborhood of a vertex in a graph”.
First of all, if {u,v} € F for some graph G = (V, E), then u, v are called adjacent.
Fix the vertex u. Let {v1,...,v,} be the maximum set of vertices of G such that
{u,v;} € Eforeveryi=1,...,r. The elements of the set form the neighborhood of
win G.

Definition 1.5. Let G = (V, E) be a graph and u € V. The neighborhood of u in G,
denoted by N¢(u), is the set of vertices connected with u by an edge from F.

Observe that Ng(u) = {v € V|[{u,v} € E}. In Figure 1.2, Ng(u1) = {uz2,u4},
Ne(u2) = {u1,u3, us}, Na(uz) = {uz,us} and Ng(us) = {u1, uz, us}.
Definition 1.6. Let G = (V, E) be a graph and v € V. The degree of vertex u,
denoted by degg (u), is the total number of edges which are incident to it.

The minimum degree of graph is defined as §(G) = min{degg(u)|u € V'}.

The following observation is a direct result from Definition 1.5 and Definition 1.6.
It holds that degg (u) = | Ng(u)|. That is, the degree of a vertex in a graph equals the
total number of its neighbors.

Definition 1.7. Let G = (V, E) be a graph and let S C V. We define
G\ S=(V\S {{u,v} € E{u,v} NS = 0}).

Definition 1.8. Let G = (V, E) be a graph and let S C V. We consider the graph
G[S] = (S,E(S) = {{u,v} € Elu,v € S}). Then G[S] is called induced subgraph
of graph G.

Observe that G \ (V' \ S) = G[S]. Figure 1.2 shows an example of the process of
deletion of a vertex set. Notice that a graph is an induced subgraph of itself.

U1 U2

U1

Uy us

Uy us

G G’

Figure 1.2: Graph G is an induced subgraph of the initial graph G and it’s obtained
by deleting vertex us. Notice that S = {u1, us, uq}.

Definition 1.9. Let G = (V| E) be a graph and u;,u; € V. We define a {uy,u;}-
path P to be a sequence of edges {u1,us}, ..., {u;—1, 1w}, which joins a sequence of
distinct vertices {u1, ug, ..., u;—1,u; }. We will write P = wujus ... u;. The number

of edges defines the length of a path.
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Let P = ujus ... be a path in a graph GG. Observe that the length of P is equal
to |[V(P)| — 1, where V(P) denotes the set of vertices of this path. If u; = u;, we
say that the length of P is equal to zero and we call it a trivial path. Also, if we write
u; Pu;, we mean the part of path P from u; to u;.

Let G be a graph and u, v be two distinct vertices of G. Furthermore, let P, Q)
be two {u,v}-paths. P, Q are internally disjoint if V(P) N V(Q) = {u, v}, i.e. they
share only the start and end vertex.

Note that a directed path in a digraph is a sequence of edges which joins a se-
quence of distinct vertices, but with the additional restriction that the edges must be
all directed in the same direction.

Definition 1.10. Let G = (V, E) be a graph. Then G is connected if and only if there
is a {u, v}-path for all pair of distinct vertices u,v of V.

If there is a pair of vertices such that there is no path between them, then the
graph is called disconnected.

Definition 1.11. Let G = (V, E) be a digraph. G is strongly connected if and only
if for every pair of distinct vertices u, v of V there is a path from u to v and there is
another path from v to w.

Uy e— e U2

Uy @

® U3

G

Figure 1.3: A strongly connected digraph G.

Definition 1.12. Let G = (V, E) be a connected graph and let S C V. We call S' a
separator of G if the subgraph G \ S of G is disconnected.

Definition 1.13. Let G = (V, E) be a graph. G is k-vertex-connected if |V| > k + 1
and every separator of GG has at least k vertices. We define the connectivity of a graph
G to be k(G) = max{k|G is k-vertex-connected}.

Now, we will define a class of graphs that it is going to concern us in the following
chapters. Before that, we define the term “independence of vertices” in a given graph.

Definition 1.14. Let G = (V, E) be a graph and let S C V. We say that S is an
independent set of G if there is no edge between any pair of two distinct vertices of .S.
Specifically, for every u,v € S with u # v it holds that {u,v} & F.

Definition 1.15. A graph G = (V, E) is called bipartite if there are two sets Sy, S C
V such that (i) S; U Sy = V, (i) S1 N Se = 0 and (iii) S, S> are independent sets of
G.



1.1. GENERAL GRAPHS

Figure 1.4: Petersen graph is 3-vertex-connected..

Figure 1.5: The graph G is a bipartite graph, since the sets .S;, S satisfy the desired
conditions.

If we refer to a bipartite graph G = (V, E') with bipartition (S, S2), we can write,
for abbreviation, G = (S1, S2, E). This alternative method provide us a way to easily
understand that the given graph is bipartite.

Definition 1.16. Let G = (V, E) be a graph. Let {u, v} be an edge from E. Let P,
be a path in G of odd length from u to v in such a way that it does not use the edge
{u,v}. Observe that G; = P; + {u, v} is an even cycle. Thus, G is a bipartite graph.
We proceed inductively to construct a sequence of bipartite graphs. Let the bipartite
graph G, = {u,v} + P, + --- + P,, where P, is a path of odd length joining two
vertices of different partitions of G’ and having no other common vertex with G, _;.
If G, = G, then G, is called an ear decomposition of G.

Figure 1.6 illustrates an ear decomposition of a graph G.

®---0O
/, ‘
Py L’ P
4 ,,
Py
u v
P

Figure 1.6: An ear decomposition of G with G, = {u,v} + P, + P> + Ps.
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1.2 Perfect matching

Definition 1.17. Let G = (V, E) be a graph. A matching of G isa set M C E of
vertex-disjoint or independent edges.

We will call a vertex matched with respect to a specific matching if it is an endpoint
of an edge of this matching. Otherwise, we will call it unmatched. Furthermore, we
will call an edge matched with respect to a specific matching if it belongs to this
matching. Otherwise, we will call it unmatched.

Definition 1.18. A perfect matching is a matching that matches all the vertices.

A direct observation is that a graph must have an even number of vertices in order
to contain a perfect matching. Otherwise, it is impossible. But, we have to be careful,
since this is not the only condition.

3% U2 us Uy

Figure 1.7: The set M = {{u1, w1}, {ua, wa}, {us, ws}, {us,ws}} C F is a perfect
matching of the graph G.

Definition 1.19. Let k be a positive integer and G be a graph with |V (G)| > 2k + 2.
G is k-extendable if G has a perfect matching and any k independent edges of G can
be extended to a perfect matching of G. That is, every matching of G of cardinality k&
is a subset of a perfect matching in G.

Definition 1.20. The extendability of a graph G is defined as the maximum value of
k for which G is k-extendable. It is denoted by ext(G).

The table in Figure 1.8 describes the main problem of this thesis.

EXTENDABILITY
Input: A graph G and a natural k.
Question: | Is the graph G k-extendable?

Figure 1.8: Description of the problem.

We remind you that in the previous section we defined the term path of a graph.
Now, we present alternative definitions about what a path is with respect to some
perfect matching.



1.3. ANOTHER WAY TO SEE BIPARTITE GRAPHS WITH PERFECT MATCHINGS

Definition 1.21. Let G be a connected and bipartite graph and M be a perfect match-
ing of G. An M-alternating path P of G is a path in G where edges in M and edges
in E'\ M appear on P alternately.

Let P be an M -alternating path of odd length. If the edges at the extremities of
P are unmatched then P is called free otherwise it is called saturated.

P

Q

Figure 1.9: P is a free M-alternating {u,v}-path whereas () is a saturated M-
alternating {u, v}-path.

Definition 1.22. Let GG be a connected and bipartite graph and M be a perfect match-
ing of G. An M-alternating cycle is an M -alternating path where the first and last
vertices of the path are the same.

Let G = (51, S2, E) be a graph with a perfect matching M. Let P = upu ... uy
be an M-alternating path and let C' = vgv; ... v,v9 be a M-alternating cycle. The
predecessor of a vertex is defined as follows:

(=P) _

i. Foreach 1 <14 <[, we define u; = Uj_1.

ii. For each 1 < ¢ < r — 1, the vertex v; has exactly two neighbors v;_1,v;41 in

C with, without loss of generality, {v;_1,v;} € M and {v;,v;1} € E\ M.
(—C) (=0)

Then, we define v, =v;_1,ifv; € S1,and v, = V41, 1f v; € So.

Definition 1.23. Let G = (S, S2, E) be a graph and M be a perfect matching of G.
We define as the residual graph of G, denoted by G'j, the graph obtained from G by
directing the edges in £\ M from S to S and the edges in M from S5 to 5.

Figure 1.10 illustrates the construction of a residual graph by a graph with a perfect
matching using the previous definition.

1.3 Another way to see bipartite graphs with perfect
matchings

A useful observation is that we can obtain a digraph by a bipartite graph with perfect
matching by following specific rules of construction and vice versa. We will explain
the first method of construction, where given a graph as described on the title of the
section, we obtain a digraph. Definition 1.24 defines the procedure of this construc-
tion. Figure 1.11 illustrates an example of this construction in act.

6
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®<——O
%.*)O\ Sl o
0 \o M —
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G Gum

Figure 1.10: A graph G = (51, S2, E) with perfect matching M and its residual graph
G-

Definition 1.24. Let G = (51, S2, F) be a bipartite graph and let M € M(G) be a
perfect matching of G, where M(G) is a family that consists of all perfect matchings
of G. The M-digraph D(G, M) is defined as follows. Suppose that M contains the
edges {a1,b1},...,{ajnm, bjar } with a; € Sy,0; € So fori = 1,...,|M]|. Then,

i V(D(G,M)) = {u,...,un}
ii. E(D(G,M)) = {{wi,u;}|{a;,b;} € E,i # j}.

Observe that the edges of M transform into vertices in D(G, M). Intuitively, we
give direction on the edges from S; to Sp. Two vertices u;, u; of D(G, M) connect
by an edge if there is an edge between a; and b; in G.

(o

.\ S1 O
e Uy

U3

ai az as 2

~ Y-

S @

U2

by by by by
G D(G, M)

Figure 1.11: The bipartite graph G = (51, S2, E) and the M-digraph D(G, M).

When we say that a bipartite graph with perfect matching is k-extendable, it’s
like we speak about the connectivity of an undirected graph. Furthermore, there is a
corresponding relation between the extendability of bipartite graphs and the strong
connectivity of digraphs. The last correlation is described in [3] and we are going to
deeply explore its usefulness in section 3.3.

As you have probably already noticed, there is an extensive reference to the spe-
cific class of graphs which are bipartite with perfect matching. We assure you that
there is a reason about it. In Chapter 2, we prove an important theorem which is quite
similar to Menger’s theorem for general graphs, whereas in Chapter 3 we prove the
hardness of EXTENDABILITY problem depending on the input graph.






CHAPTER 2

STRUCTURAL CHARACTERIZATION OF
K-EXTENDABLE BIPARTITE GRAPHS

In this chapter, we assume that a graph G is always undirected, simple, connected
and bipartite. First, we present some basic theorems regarding graphs with perfect
matchings and k-extendability.

2.1 Basic theorems

Theorem 2.1 (Plummer [[l]). Let G be a graph on n vertices with bipartition (S, S2).
Suppose that & is a positive integer such that £ < "T72 The following are equivalent:

i. G is k-extendable,
ii. |S1| = |S2| and for each X C S; such that | X| < |S1]|—k, |[Na(X)| > | X|+E,

iii. Forallsi,...,s; € S;ands?,...,s7 € So, G =G\ st\---\sp\s?\---\s?
has a perfect matching.

Figure 2.1: A 4-extendable graph G.

Theorem 2.2 (Dingjun Lou [[7]). Let G = (57, Sa, E) be a graph. If G is k-extendable,
then for each X C S; such that |S;| — k < | X| < |S1|, |[Ng(X)| = |S2|.

9



2.1. BASIC THEOREMS

Theorem 2.3 ([2]). Let G = (51, S2, E) be a k-extendable graph for a positive integer
k. Then for any X C Sy, if Ng(X) # Sa, then |[Ng(X)| > | X| + k.

Proof. Let X C S;. We consider only the case where | X| < |S1| — k, because if
|S1] — k < |X| < |S1], then Ng(X) = S,. Since G is k-extendable, it follows
directly from Theorem 2.1 that |Ng(X)| > | X| + k. O

Theorem 2.4 (Plummer [6]). If G is k-extendable, then x(G) > k + 1.

Observe that 6(G) > k(G). This observation together with Theorem 2.4 implies
that a k-extendable graph has §(G) > k+1. Furthermore, the extendability of a graph
is strictly smaller that 6(G). The last observation is a direct result from Theorem 2.1.

Theorem 2.5 (Plummer [f]). Let k be an integer such that 0 < k£ < n. If G is
k-extendable, then G is (k — 1)-extendable.

Lemma 2.6. (Lovasz, Plummer [[10]) G is 1-extendable if and only if G has an ear
decomposition.

Lemma 2.7. (Lovasz, Plummer [[10]) G is 1-extendable if and only if every edge of G
belongs to an alternating cycle.

Lemma 2.8. (Plummer [[1]) Let p, k be two integers such that0 < p < k < |[V(G)|. G
is k-extendable if and only if for every si, ..., 511, € S and for every s7,. .., 8127 € 5o,
G\st\si\---\sp\s2is (k— p)-extendable.

Lemma 2.9. ([3]) Let p, k be two integers such that 0 < p < k < |V(G)]. G is
k-extendable if and only if for every matching M, = {{s},s3},...,{s},s2}} of p
edges, G\ si \ s7\---\ s, \ s2is (k — p)-extendable.

Figure 2.2: G is 3-extendable, p = 2 and M), is a matching of 2 edges. The deletion of
the vertices incident to the edges of M), creates a 1-extendable graph.

Proof. Let G = (51,52, E) be a graph. Fix an arbitrary matching M, of p edges as
described. Further, let H = G\ 51 \ 57\ -+~ \ s, \ s2.

Assume that G is k-extendable. By Lemma 2.8, for the particular subset of vertices
si,...,s; € Syand s3,...,s2 such that {s{,s7},...,{s2,s3} € My, H is (k — p)-
extendable.

Assume that H is (k — p)-extendable. Then H has a perfect matching and every
matching of size k — p can be extended to a perfect matching. Let Mj,_, be such a
matching of H and let M be the perfect matching of H that contains Mj,_,,. Observe
that M’ = M U M, is a perfect matching of G. It follows that every matching
composed of M, and any other Mj,_,, extends to a perfect matching in G. Thus, G is
k-extendable. O

10



CHAPTER 2. STRUCTURAL CHARACTERIZATION OF K-EXTENDABLE BIPARTITE
GRAPHS

2.2 Alternating paths on a fixed perfect matching

Here, we focus on the following structural characterization of bipartite graphs with
perfect matchings.

Theorem 2.10 ([2]). Let G = (51, S2, F) be a graph with perfect matching. G is
k-extendable if and only if for any perfect matching M and for each x € S1,y € So,
there are k internally disjoint M -alternating paths P, ..., P, connecting x and y.
These paths start and end with edges in E'\ M.

x U2 us Uy xr U2 us Uy x U2 us Uy
w1 w2 w3 Yy w1 w2 w3 Y w1y w2 w3 Yy
G, M P, P,

Figure 2.3: A 2-extendable graph G with perfect matching M and M -alternating paths
Py, Ps.

Proof. Let S be a matching in G of k edges such that it is not contained in a perfect
matching. Suppose towards a contradiction that there are k internally disjoint M-
alternating paths between every pair of two distinct vertices of different bipartition
in G, where M is a perfect matching in G which contains as many edges of S as
possible. Observe that there is an edge e = {u,v} € E suchthate € Sande ¢ M.
Let u € Sy and v € S;. Since M is a perfect matching, there are vertices z,y in
S1, Sy respectively such that {u, 2}, {v,y} € M. Let P, ..., Py be the paths joining
x and y such that each P; starts and ends with edges in £\ M. Since |S\ e| =k —1,
there is at least one path that does not contain any edge from S. Let P; be this path.
We consider C' = P; + yvux. Observe that C is an M -alternating cycle. Let M’ =
MAE(C)=(M\ E(C))U (E(C)\ M). Then M’ is also a perfect matching of G.
The crucial observation is that every edge in M N S and e belong to M’. Thus, M’
contains strictly more edges from S than M. This result contradicts the choice of M.
Thus, there are no k internally disjoint M -alternating paths between every vertex of
S1 and every vertex of Ss.

Let G = (51,52, E) be a k-extendable graph, M be a perfect matching of G,
x € Sy and y € S2. We proceed with the introduction of the following terminology
and notation before we prove this part of the theorem.

Let P = x125...2;. Then{z;, z;11} € E\M,ifiisodd, and {z;, z;11} € M,ifi
is even. At this point, we suggest the reader to recall the definition of the predecessor
of a vertex in a path. For abbreviation, we omit the phrase "with respect to M”. Let
Y’ be the unique vertex such that {z,y’'} € M. It is possible y = y’. The following
paragraph describes the construction of a useful tool for the proof of this direction.

11



2.2. ALTERNATING PATHS ON A FIXED PERFECT MATCHING

C = P3 + yvux M’

Figure 2.4: A sketch of the first part of the proof given a graph G which is not 3-
extendable. Observe that [M' N S| > [M N S).

Let Py, ... Py_1 be alternating paths from x to y. Let ) be an alternating path
from x to some vertex v € S;. Note that if v = z, then Q is a trivial path. Also,
let T" be a set of alternating cycles in G. I may be an empty set. We say that K =
(Py,..., Pi_1,Q,T) is a k-system if the following conditions hold:

i Pp,..., Py, are alternating internally disjoint paths from z to y.
ii. Foreachl1 <i<k—-1,V(P)NV(Q) = {z}.
iii. Every pair of two elements of I" are vertex-disjoint.
iv. Foreach C € T, (U] V(P)UV(Q) nV(C) C {z,¢'}.

Let K be a k-system. We define

k—1

V(E)=Jveyuvu ] Vve)

i=1 cer

12
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and

k—1
E(K) = J BE(P)UE@U | E(C)

Cer

Letv € Sy \ y. We define the predecessor of v with respect to K as follows:
i. Ifv € V(P), then v~ () = ¢=(F),

ii. Ifv e V(Q), then v~ (E) = = (@),
C

(
iii. Ifv € V(C), then v=(F) = y=(©),
(

iv. Ifv ¢ V(K), then v~ ) = v, where u is a vertex such that {u,v} € M.

Moreover, we define V~(5) = {v=(F)|y € V}, foreach V C S5 \ 3.

Now, we are ready to continue with the proof. We proceed by induction on k. If
k = 0, then theorem is true. Suppose that k¥ > 1 and theorem is true for k—1. Assume
that there are no k alternating paths joining x and y in G. Since G is k-extendable, it
follows by Theorem 2.5 that G is (k — 1)-extendable. By induction hypothesis, there
are k — 1 alternating paths P, ..., P{_| from z to y. Let Q° = x be a trivial path.

Let KO = (PP,...,P) |,Q" 0). Observe that KU is a k-system.

For a natural 4, we recursively define:

Ai_{{x} i=0

A UB KD >

and

B; = 4, Z =0
Nevy(Aic1), i>1

Observe that this construction defines two infinite chains ) = By C B; C ...
and {z} = A9 C A; C .... Let A = |J2,A; and B = |J;-, B;. Observe that
ACSjand B C S;. Let h : AU B — N be the function that follows. Alternatively,
we can refer to this function as the height function of a vertex. For every w € AU B,

h(w) = min{i|lw € A;}, we A
| min{ijw € B;}, weB

Intuitively, the height of such a vertex w is equal to the length of x?u), where P is

the path that contains w. We proceed by proving three claims.

Claim 2.11 ([2]). For eachu € A, there exist a k-system K = (Py,..., Py_1,Q,T")
such that:

(1) w is the terminal vertex of Q).
(2) foreachv € Sy \ y, if h(v) > h(u) then v~ ) = =),

Proof. We prove this claim by induction on h(u). Let h(u) = 0. By the previ-
ous terminology, it follows that u = z. Observe that K is the required k-system
for the base case. Suppose that this claim holds in every case where h(u) < ¢ for

t > 0. Now, let h(u) = t. Thenu € A; \ A;—1. Since A; = A4 U B;(KO),

13
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—(K°) ; — (K
u € B, . There exists a vertex vo € B; such that u = v, . Observe that
vg € Bi_1, because, otherwise, we would have u € B;(lKD) C A;_1 which con-
tradicts the hypothesis. Hence, h(vg) = t. Let ug be a vertex in A;_; such that
vy € NG\y(uo). Observe that ug € A;_o, because, otherwise, we would have that
vo € Ng\y(At—2) = Bi_1. Hence, h(ug) = t — 1. By induction hypothesis, there
exist a k-system K’ = (Pll, el Pzéfp @', T’) such that (1) ug is the terminal vertex
of Q' and (2) for each v € Sy \ ¥, if h(v) > h(ug), then v~ (&) = y=(K") Since
h(vg) = t and h(ug) = ¢t — 1, va(K,) = Ua(KO) = u. We consider two cases de-
pending on whether {ug,vo} & M or {ug,vo} € M and we prove that there exists
a desired k-system for vertex u. The Figures of each different case can be found in
Figure 2.1. The paths P/, ..., P/_, are colored red. The path @’ is colored blue. The
alternating cycles that can be found in I'V are colored brown. And finally, we make
the edge connecting the vertices 1 and vy dashed. These illustrations aim to provide
intuition behind to understand the construction of the desired k-system.
Firstly, let us assume that {ug,vo} & M. Then we have to consider the following
four cases.

(i) Let vo € V(P,). Then UO_(K/)_:> vo_(Pi) = u. Then (P, ... Pk;>1’ Q,T)isak-
% 7 / U
system, where P; = 2Q"ugvo Py y, Pj = P, for j # i, Q = xPjuand I' = I".

Figure 2.5: The case where {ug,vo} ¢ M and vy € V(P/) for some index 1.

(i) Let vy € V(Q'). Then U(;(KI) = U(;(Q/) =u. Ifvg = ua(K/), then {ug,vo} €
M. This contradicts the hypothesis of this case. Thus, vy # u, (59 Observe

%
that C' = vpQ'ugvy is an alternating cycle. Furthermore, V(C) NV (C’) = 0,
for every C' € TV, (P,.. .L>Pk,1, Q,T) is a k-system, where P; = P;, for

everyl1 <i<k—1,Q=2QuandT =T"U{C} (see Figure 2.6).

(iii) Let vg € V(C"), for some C’' € I". Then vy B = 47 (€D
0 o

’ —
two cases to consider. If z € V(C), t}E)n let i = P, forevery i, Q = zC'u
and T = (I \ C") U C, where C = 2Q"uguoC’x is a new alternating cycle. If
x € V(C"), thenlet P, = Pi/, for every i, Q = Q' ugvgC’'uand ' =T\ C".

= u. We have

(iv) Let vg & V(K'). Let v’ be the unique vertex such that {vg,u'} € M. Then

o (K) — 4/ = u. We have two cases to consider depending on whether vy is

14
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Figure 2.7: The case where {ug,vo} € M, vg € V(C') and z € V(C").
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Figure 2.8: The case where {ug,vo} € M, vg € V(C') and z ¢ V(C").

equal or not to 3. If vy # o/, then u € V(K'). Suppose that u € V(K'). We
will prove that this assumption leads us to the contradiction vy € V(K'"). We
have thatu € V(P; ), for some i, oru € V(Q') oru € V(C’), for some C' € I".
Ifu e V(P,), thenvy € V(P,). Ifu € V(Q'), then vy € V(Q'). Ifu € V(C"),
then vy € V(C'). Let P, = P{, Q = xauovou and I' = I”. Assume that
vg = 7. Then UO_(Kl) =y~ &) Since vO_(K/) =wandy &) = 2, it follows
that z = u. Let P, = PZ-,, for every i, @ = x and ' = IV U {C}, where

_>
C = xQ’upy’ is a new alternating cycle (see Figures 2.9 and 2.10).

Now, let us assume that {ug,v9} € M. The assumption ug = z leads us to a
contradiction. If the equality holds, then vy = y’. That is because {z,y'} € M. It

15
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Figure 2.10: The case where {ug,vo} € M, vg € V(K') and vy # y'.

follows that u = y'~(X*) = z. This implies h(u) = h(z) = 0. This contradicts the
hypothesis that h(u) > 0. Hence, ug € V(Q') \ . Since {ug,vo} € M, vy € V(Q').

Furthermore, ua(Q/) = vg. Since vp € V(Q') and u = ’UO_(K ), we have that u =
UO_(Q ) Let P, = Pi/, forevery i, Q = 2zQ'uand ' =T".

Figure 2.11: The case where {ug,vo} € M.

We proved that there exist a k-system such that condition (1) of the claim holds.
Let K = (Py,..., Px_1,Q,T) be this k-system such that u is the terminal vertex of

16
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Q. For every v € S5 \ y, observe that:

—(K) _ {'U(K/)a v 7é Vo

U, v =g

Let h(v) > h(u) = t. Since h(vg) = t, v # vo. This implies v~ %) = =K On
the other hands, since h(v) > h(ug), v~ &) = =) Thus, v=F) = 4= &) and
condition (2) holds as well. O

Claim 2.12 ([2]). (1) y & Ng(A\ z).
(2) If{w,y} & M, theny ¢ Na(A).
Proof. (1) Suppose towards a contradiction that y € Ng(A \ x). Let u be a vertex

of A\ z in G. By Claim 2.7, there exist a k-system K = (P,...,P;_1,Q,T") such

that w is the terminal vertex of (). Observe that {u,y} € F \ M and, thus, zQuy
is an alternating path which is internally disjoint to every one of P, ..., P;_1. This
contradicts the initial assumption that there are no k alternating paths connecting x

and y in G. Thus, y € Ng(A\ z).

Figure 2.12: The forbidden path in case y € Ng(A \ ).

(2) Let y € Ng(A). Then there exist a vertex u € A such that y € Ng(u). By
Claim 2.7, there exist a k-system K = (P, ..., Pr—1,@Q,T) such that u is the terminal
vertex of (). We remind you that there are no k alternating paths from x to y. Hence,

xauy is not an alternating path. This occurs only if x = v and xQuy = {z,y} €
M. O

Claim 2.13 ([2]). (1) N, (A) = B.
(2) Ng(A\z) C B.
(3) If {z,y} & M, then B = Ng(A).
(4) A= B~E"),

Proof. (1) Let v € Ng\y(A). There exist a vertex u € A such that v € Ng(u).
Let h(u) = s, where s is a positive integer. Equivalently, u € A,. Hence, v €
Ne\y(As)) = Bsy1 € B. Thus, Nen,(A) € B. Let v € B and let h(v) = t, where
t is a positive integer. Then v € By = Ng\,(A¢) € Ng\y(A). Thus, B € Ng\,(A)
and the equality holds.

(2) Recall that y ¢ Ng(A \ x). This implies Ng(A \ ) = Ng\, (A \ x). Since

17
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(3) Recall that if {z,y} & M, then y & Ng(A). This implies Ng(A) = N, (4).
Since N, (A) = B, B = Ng(4).

(4) Let u € A and let h(u) = s, where s is a positive integer. By the definition of

0
the height function, u € A;\ As_1. Hence, u € BS_(K ) C B~ Letu ¢ B—(K"),
Equivalently, there exist a vertex v € B such that u = v~ (¥ *). Let h(v) = t, where ¢
0

is a positive integer. Then v € B;. Hence, u € B;(K ) C A, C A. Thus, the equality
holds. O

Suppose that y; is the second vertex vertex of Pio, forevery 1 <1 < k—1. Observe
that for every pair of distinct vertices v1, v of Sz \ y, the equality v, (K% _ vy (K
holds only if v1,v2 € {¥',y1,...,Yx—1}. Furthermore, {¢/,y1,... ,yk_l}_(KO) =
{z}. By combining two previous notations, it holds that |[B—(K*)| > |B| — k + 1.

Since A = B~(K"), |A| > |B| — k + 1. The equality holds if {¢/, y1,...,yx—1} C B.

Figure 2.13: An illustration of the case where |A| = |B| — k + 1.

Let {z,y} ¢ M. Theny ¢ N¢(A) and therefore Ng(A) # Ss. By Theorem 2.3,
this implies that |Ng(A)| > |A| + k. On the other hands, recall that Ng(A) = B.
Hence, |[Ng(A)| = |B| < |[A]+k — 1.

Let {z,y} € M. Since Ng(A\x) C B, |Ng(A\z)| < |B|. Sincey ¢ Ng(A\x),
Ng(A\ ) # So. Hence, by Theorem 2.3, [Ng(A\ z)| > [A\z|+ k= |A|+ k-1
and therefore |B| > |A| + k — 1. However, recall that |B| < |A| + k& — 1. Thus,
|B| = |A| + k — 1. This implies that {¢/,y1,...,yx—1} C B. Since y’ is the unique
vertex such that {z,y’'} € M and {z,y} € M, the equality y = y’ follows. At this
point, observe thaty = ¥' € {¢', y1,...,ys—1} C B C S22\ v.

Observe that either case leads to a contradiction. Therefore, the theorem follows.

O

The following theorem tells us something stronger. Given a k-extendable bipartite
graph with a perfect matching, not only are there k internally disjoint M -alternating
paths between every pair of vertices of two different partitions of G, but also one
alternating path that starts and ends with an edge in M.

Theorem 2.14. ([3]) Let G = (51,52, F), k be a positive integer such that 0 <
k < |V(G)| and M be a perfect matching of G. G is k-extendable if and only if for
every pair of vertices u, v such that u € S1,v € Sy there are k-vertex-disjoint free
M -alternating paths and one saturated M -alternating path between v and v.

18
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ok
‘\7/

%

Figure 2.14: A 5-extendable graph with five free M -alternating paths and one satu-
rated M -alternating path.

Proof. Assume first that there are k-vertex-disjoint free M -alternating paths and one
saturated M -alternating path between every vertex of S; and every vertex of S;. We
will show by induction on k that G is k-extendable.

Let k = 1. Let {u,v} € M and let P be the free M-alternating path from u to
v. Then P U {u, v} is an M-alternating cycle. Let {u,v} € E'\ M and let Q) be the
saturated M -alternating path from w to v. Then QQ U{u, v} is an M-alternating cycle.
Thus, every edge of G belongs to an M -alternating cycle. By Lemma 2.7, this implies
that G is 1-extendable.

u

& ---—----0 ¢
o

N

Figure 2.15: A 2-extendable graph G in case {u,v} € M.

Suppose that the proposition is true for every p < |V (G)|—2. Recall that the max-
imum value of k such that G is k-extendable is at most |V (G)| — 1. This is the reason
for considering the specific upper bound of p. We will show that the proposition holds
for the value p + 1.

Assume that there are p + 1-vertex-disjoint free M -alternating paths and exactly
one saturated M -alternating path between every vertex of S and every vertex of .S.
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N

&---—----0¢
o

Figure 2.16: A 2-extendable graph G in case {u,v} € E\ M.

Let M, = {{s1,s7},...,{sp, s2}} be a matching with p edges. Furthermore, let
H=G\si\si\ - \s}\ s’ Wewould like to show that G is (p + 1)-extendable.
By Lemma 2.9, it suffices to show that H is 1-extendable.

By the induction hypothesis, G is p-extendable. Thus, we can assume for simplic-
ity that M contains every edge of M,,. Also, notice that for every edge {u,v} of H,
there is at least one free M -alternating path between u and v. Then every matched
edge of H belongs to an M-alternating cycle. Now, let {w, 2z} & M. Let w', 2’ be
vertices of G such that {w,w'}, {z, 2/} € M. Observe that these edges belong to H.
Furthermore, there is at least one free M-alternating path P in H between w’ and
z'. Observe that P U {w, z} U {w,w’} U {z, 2’} is an M-alternating cycle in H that
contains {w, z}. Hence, H is 1-extendable.

For the opposite direction, assume that G is k-extendable. By Theorem 2.4, this
implies that G is k + 1-vertex-connected. Let u € Sy and v € S3. By Menger’s
theorem, there are k+1 vertex-disjoint paths P, . . ., Px41 joining these two vertices.
Observe that the length of these paths is odd. By applying Theorem 2.5 k — 1 times,
G is 1-extendable. It follows by Lemma 2.6 that G has an ear decomposition. Let
H' = (51, 5%, E") be a subgraph of G formed by u,v and P,..., Pgy1. Then H' is
1-extendable([[10]). Let N be a perfect matching of H'.

Assume that {u,v} ¢ E’. Since the vertex-disjoint paths P,..., Py 1 have
odd length, then they are alternating paths. Let u/,v’ be two vertices such that
{u,uw'},{v,v'} € N. Without loss of generality, let {u,u'} € P;. Since P; is an
alternating path of odd length, then {v,v'} € P;. Observe that P, ..., Py41 are k-
vertex-disjoint free alternating paths and P, is saturated alternating path between u
and v.

G H'.N

Figure 2.17: A 3-extendable graph G and paths Py, Py, P3,Q in case {u,v} ¢ E'.

Assume that {u,v} € N. This edge is a saturated alternating path between u
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and v. Let P be this path. Then P, ..., Py41 are the desired k-vertex-disjoint free
alternating paths.

G H' N

Figure 2.18: A 3-extendable graph G and paths Py, Ps, Ps, @ in case {u,v} € N.

Assume that {u,v} € N. Let u',v’ be two vertices such that {u,u'}, {v,v'}
€ N. Without loss of generality, let {u,u'} € P;. Then {v,v'} € P; as well. Since
{u,v} € F’, then this edge is a free alternating path. Let P, be this path. Now,
observe that P, ..., Py41 are the other k£ — 1-vertex-disjoint free alternating paths.
Thus, P, ..., P,y are the desired k-vertex-disjoint free alternating paths and P; is
the saturated alternating path between v and v. O

Figure 2.19: A 3-extendable graph G and paths Py, Py, P3,Q in case {u,v} € N.

2.3 Alternating paths on any perfect matching

In the proof of sufficiency of Theorem 2.10 we proved that for a arbitrary perfect
matching M of a k-extendable graph G = (S, S, E) there exist k alternating paths
with respect to M between every pair of vertices z € Sy and y € Sy. If our target
was to find these paths for every possible perfect matching of G, the first idea would
be to check every perfect matching separately. Theorem 2.15 help us to avoid such
a situation. It guarantees us that the existence of paths with respect to a perfect
matching is sufficient in order to find the paths for every other perfect matching.

Theorem 2.15 ([4]). Let G = (57,52, F) be a graph with a perfect matching and let
x,y be two vertices such that x € 57,y € Ss. Let M, M be perfect matchings of G.
If G has k internally disjoint alternating {x, y }-paths with respect to My, then G has
k internally disjoint alternating {x, y }-paths with respect to M.

21



2.3. ALTERNATING PATHS ON ANY PERFECT MATCHING

Proof. Suppose that G contains k internally disjoint alternating {x, y }-paths with re-

spect to My. Let Py, ..., Py be these paths. Let H = (V(G), Ule E(R)). Ifvisan
arbitrary vertex of H, then its degree equals to either 0, 2 or k. Specifically,

0, vg Ui, V(P)
degr(v) =42, velU, V(P)\ {z,y}

k, v=xorv=y

Furthermore, let K = (V(G), E(K)), where E(K) = E(H)AMyAM. 1t ob-
viously holds that E(K) C E(G). Let J be the intersection of the sets E(H), M
and My. Particularly, the set E(K) does not contain edges from (E(H) N M) \ J,

(E(H) N My) \ J and (M N M) \ J. Figure 2.20 is crucial for understanding the
proofs that follow.

E(H)

Figure 2.20: A set representation of E(K). All the edges of graph K belong to the
gray part.

Figure 2.21: A 3-extendable graph G with perfect matchings My, M
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T U9 Uus Uy Us x U2 us Uy Us
(@] (@]
[ J [ ]
wi w2 w3 Wy Yy w1 w2 ws Wy Yy
H K

Figure 2.22: Graphs H, K as obtained by 3-extendable graph G.

Claim 2.16 ([4]). For eachv € V(G) \ Ule V(P;), degk (v) = 0 ordegg (v) = 2.
Furthermore, if degi (v) = 2, then exactly one of the two edges of K incident with v
belongs to M.

Proof. Letv € V(G) \ Ule V(P;). Observe that v is not incident to any edge of H.
Since My, M are two different perfect matchings of G, there exist vertices vg, v’ such
that {v,v9} € My and {v,v'} € M. Notice that these edges do not belong to E(H).
We have two cases to consider. If vg = ¢/, then {v,v'} € (Mo N M)\ E(H). This
implies {v,v'} ¢ E(K). Thus, degk (v) = 0. If vg # ¢/, then {v, v} € My \ (M U
E(H)) and {v,v'} € M\ (Mo U E(H)). By construction of graph K, Nk (v) =
{vg, v'}. Thus, degi (v) = 2 and, furthermore, the last property holds trivially. [

Claim 2.17 ([4]). Foreachv € Ule V(P)\ {z,y}, degx(v) = 0 ordegi (v) = 2.
Furthermore, if degy (v) = 2, then exactly one of the two edges of K incident with v
belongs to M.

Proof. Letv € Ule V(P;) \ {z,y}. Specifically, v is a vertex of a path P;, where
j € {1,...,k}. It follows directly by construction of graph H that degy(v) = 2.
Let Ng(v) = {vi,ve}. Since P; is a {z,y}—alternating path with respect to Mo,
either {v,v1} € My or {v,v2} € My. We suppose that {v,v;} € E(H) N My and
{v,v2} € E(H) \ Mjy. Furthermore, let v3 be a vertex such that {v,v3} € M. The
following paragraph describes three different cases.

Let vy = v3. Then {v,v1} € E(H)NMyN M and {v,ve} € E(H) \ (MyU M).
Thus, Nk (v) = {v1,v2}, degk (v) = 2and {v,v1} € M. Letvs = vo. Then{v,v1} €
(E(H)N My)\ M and {v,v2} € (E(H)\ My) N M. Observe that {v,v1}, {v,v2} &
E(K). Thus, degk (v) = 0. Let vg # vy and v3 # va. Then {v,v1} € (E(H)N M) \
M and {v,vs} € E(H) \ (Mo U M). Furthermore, {v,v3} € M \ (E(H) U Mp).
Thus, Ni (v) = {ve,v3}, degi (v) = 2 and {v,v3} € M. O

Claim 2.18 ([4]). Letu € {z,y}. Thendegi (u) € {k,k + 2}. Ifdegk (u) = k, then
none of k edges in K incident with u belong to M. If degk (u) = k + 2, then exactly
one of the k + 2 edges in K incident with u belongs to M.

Proof. We consider only the case where u = y. By symmetry, we proceed in the same
way in case u = x. Let Ny(y) = {z1,...,2,} and {y,zo} € Mj. Observe that
xo & {x1,...,2}. Hence, fori € {1,...,k} itholds that {y,x;} € E(H) \ My and
{y,z0} € My \ E(H). Furthermore, let {y, 2’} € M. We have three cases to take
under consideration.
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Assume that ' = xg. Itholds that, fori € {1,...,k}, {y,x;} € E(H)\(MUM,)
and {y,zo} € (Mo\E(H))NM. Equivalently, {y,x;} € E(K)and {y,zo} &€ E(K).
Thus, Nk (y) = {z1,...,zr}. Notice that none of k edges {y,x1},...,{y, xr} be-
long to the perfect matching M.

Suppose that 2’ € {x1,..., 2 }. We may assume that 2’ = x;. Then {y, 2o} €
Mo\ (E(H)UM),{y,2'} € (E(H)\ My) "M and {y,z;} € E(H) \ (Mo U M),
fori € {2,...,k}. Observe that Nk (y) = {x0, 2, ..., 2} Notice that none of the
k edges {y,zo}, {y, 2}, ..., {y, 1} belong to the perfect matching M.

Finally, let ' & {zo,x1,...,2}. Then {y,x0} € Mo\ (E(H)U M), {y,2'} €
M\ (E(H)U M) and {y,z;} € E(H)\ (MyU M), fori € {1,...,k}. In this case,
observe that N (y) = {2/, o, x1, ..., 2 }. Furthermore, {y, 2’} € M. O

We are now ready to proceed with the proof of the theorem. It suffices to consider
only two cases.

Case I: degi (x) = k or degk (y) = k.

We assume that degg () = k and Nk (z) = {z1,...,z}. By Claims 2.11 and
2.12, for every i € {1,...,k}, there exists T; = aéz)agl) .. .al(:) in K with a((f) =z,
agi) = z; and al(:) € {x,y}. Each T; is an alternating path with respect to M. By
taking one 7T; which is as small as possible, we may assume that T; is either a cycle

or a {x,y}-path. Suppose, for contradiction, that T} is a cycle and al(:) = 2. Then

{al(f)_l, al(:)} ¢ M by composing the assumption of the case and Claim 2.18. Since 7;
is alternating, 7; is an odd cycle. This contradicts the fact that G is bipartite. There-
fore, each T; is an alternating {z,y}-path. Furthermore, T}, ..., T} are internally
disjoint. By assuming that there are two paths with a common vertex u, we conclude
to the contradiction that degy (u) = 4.

Case 2: degi (x) = degk (y) = k + 2.

Let N (z) = {2/, zo,x, ..., zx}and {z,2'} € M. Foreachi € {0,1,...,k}, we
can construct an alternating path 7; = aéi) gi) e al(:) in K with agi) =z, agi) =
and al(f) € {z,y}. We can assume that each T; is either a cycle or a {z, y}-path and
that Ty, 71, . . ., T} are internally disjoint. Suppose that al()]:) = x. Since G is bipartite,

l;, is even and {agf)_l, al(;:)} € M. It follows that al(f)_l = z’. Observe that we still

have k internally disjoint {x, y }-paths Ty, . .., Ty, with respect to M. O

24



CHAPTER 3

I_ COMPLEXITY OF MATCHING EXTENDABILITY
PROBLEM

3.1 Computational complexity theory

Definition 3.1. A decision problem is a problem that can be posed as a yes-no ques-
tion on the input values.

. ——> Yes
I t——( Al th
npu gorithm - No

Figure 3.1: If the input belongs to the decision problem, then the algorithm return Yes.
Otherwise, it returns No.

P and NP are the most famous among all the complexity classes. It still remains
an open problem whether P=NP or not. Researchers believe that the inequality most
probably holds.

Definition 3.2. Class P contains all decision problems that can be solved by a Turing
machine deterministically using a polynomial amount of computational time.

One problem which lies in P is Maximum MATcHING(Edmonds [9]). This problem
accepts as input a coding of a graph G and returns a maximum matching in G. In
graph theory, maximum matching of a graph is a matching of maximum size, i.e. no
matching in the graph has strictly more elements than it.

Definition 3.3. A problem II is in NP if there exists a polynomial p : N — N and a
polynomial time Turing machine V' (called the verifier for the problem) such that for
every input 2 it holds that « € Il if and only if Ju (called the certificate for the input)
of size at most p(z) such that V(z,u) = 1.

Polynomial time reductions is an interesting concept of Computational Complex-
ity Theory. Intuitively, it is a method for solving one problem using another. If there
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3.2. CONP-COMPLETENESS ON GENERAL GRAPHS

exists a hypothetical algorithm that solves the second problem, then the first prob-
lem can be solved by transforming its input into a new one for the second problem
and calling the algorithm one or multiple times. If the previous procedure is done in
polynomial time, then the first problem is polynomial time reducible to the second.

Definition 3.4. Let A,B be two problems. Then A reduces to B in polynomial time
if there exists a computable polynomial function f such that x € A if and only if
f(z) € B.

For abbreviation, we will write A < B.
Theorem 3.5. ([[14]) Let A,B,C be three problems. If A <Band B < C, then A <C.
Theorem 3.6. ([[15]) Let A,B be two problems. Then A < B if and only if A < B.

It is known that there exist problems that are at least as hard as any other problem
in NP. This property is called NP-hardness.

Definition 3.7. A problem L is NP-hard if for every L’ in NP it holds that L’ < L.
Definition 3.8. A problem is NP-complete if it is in NP and it is NP-hard.

One famous NP-complete problem is VERTEX CovER(Karp [8]). It contains pairs
(G, k) for which graph G has a vertex cover of size at most k. In graph theory, a vertex
cover of a graph G = (V, E) is a subset S C V such that for every e = {u,v} € E it
holdsu € Sorv € S.

Assume that A B are two problems such that A is NP-complete and we would like
to prove that B is NP-complete. By Definition 3.8, we have to prove two properties.
Firstly, we prove that B is in NP. Afterwards, notice that it is sufficient to reduce A to
B in order to prove the second property. That is because Theorem 3.5 holds and A is
NP-complete by assumption.

We define a new complexity class which contains the complements of problems
that are in NP.

Definition 3.9. A problem L is in coNP if L is in NP.

We define coNP-hardness and coNP-completeness in analogous way as NP-hardness
and NP-completeness respectively.

Theorem 3.10. A problem is NP-complete if and only if its complement is coNP-
complete.

Proof. Let L be a problem such that L is NP-complete. By Definition 3.8, L is in NP and
every other problem L’ in NP reduces to L in polynomial time. By Definition 3.9 and
Theorem 3.6, it follows that L is in coNP and every other problem L’ in coNP reduces
to L in polynomial time. Thus, L is coNP-complete. The opposite direction is proved
symmetrically. O

3.2 coNP-completeness on general graphs

Firstly, we mention a lemma which is going to be used afterwards.

Lemma 3.11. ([5]) Let G = (V, E) be a graph and k an integer. If there is no vertex
cover of size at most k in G, then there is a matching M in G which matches at least
k + 1 vertices.
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CHAPTER 3. COMPLEXITY OF MATCHING EXTENDABILITY PROBLEM

Figure 3.2: There is no vertex cover of size at most 2 in GG. Therefore, there is a
matching of size at least 3.

Proof. The MAXIMUM MATCHING problem, on input G, returns a maximum matching
M of G. Let S C V be the set of vertices incident to edges in M. Observe that S is
a vertex cover in G. If S was not a vertex cover in G, then there would exist an edge
e € FE such that no endpoint of it would belong to S and, as a result, M U e would
be a matching strictly larger than M. This outcome contradicts the fact that M is a
maximum matching in G. By hypothesis, there is no vertex cover of size at most & in
G. Thus, |S| > k + 1 and M matches at least k + 1 vertices. O

Theorem 3.12. EXTENDABILITY is coNP-complete.

Proof. We will show that EXTENDABILITY is NP-complete. It consists of pairs (G, k)
with the property that there exists a matching of size k£ which can not be extended to
a perfect matching in G. This proof is sufficient for proving that EXTENDABILITY is
coNP-complete.

Firstly we prove that EXTENDABILITY is in NP. We construct a verifier N that
accepts as input an encoding ((G = (V, E), k), M), where G is a graph, k is a natural
number and M is our certificate and verifies in polynomial time whether (G, k) is a
yes-instance of EXTENDABILITY or not. Since |M| = k < |V| — 1, M has polynomial
length. The verifier IV works as follows:

N= “Oninput ((G = (V, E), k), M):”
1. G’ := G\ Vi, where V) contains the vertices which are incident to an edge
of M
2. Run MAXIMUM MATCHING on input (G’) and obtain M’
3. If M’ is a perfect matching in G, then reject. Otherwise, accept.”

If M’ is a perfect matching in G’, then M U M’ is a perfect matching in G. Thus,
(G, k) is a no-instance of EXTENDABILITY. If M is not a perfect matching in G’, then
M can not be extended to a perfect matching in G. Thus, (G, k) is a yes-instance of
EXTENDABILITY. Observe that the verifier /V runs in polynomial time.

We proceed with the proof of NP-hardness. We prove it by reducing VERTEX
COVER in polynomial time to it. Let (Gy ¢, s) be a general instance of VERTEX COVER
and {v1, ..., v, } be the set of vertices of Gy . We assume that 0 < s < r — 1 and
E(Gvy¢) # 0. This is because if s = 0 or s = r — 1 we can decide in polynomial
time whether Gy ¢ has a vertex cover of at most the given size or not. We will map
(Gve, s) to a suitable instance (G, k). The following function f maps (Gy ¢, s) to a
new instance (G, k):

f(GV07S):
1. Set k := s.

2. Let W :={wy,...,w—1} and Qo241 := {q1,-- -, g2r+1}-
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3.2. CONP-COMPLETENESS ON GENERAL GRAPHS

.Let Eyw = {{v,w}lv € V(Gye),w € W}

. Let BEwq = {{w,q}lw € W,q € Qa,41}.
‘Let Bq = {{¢,4'}q, ¢’ € Qary1,0# ¢'}.

. Initialize graph G := 0.

. Set V(G) = V(Gvc) umwu Q2T+1.

. Set E(G) = E(Gvc) UWyw UEwqU Eq.
. Output (G, k)”

O 00 N1 N U W

Observe that (G, k) is constructed in polynomial time. Clearly, G is connected and
has 4r vertices, i.e. an even number. Furthermore, notice that a perfect matching G
can be found in the following way: Since E(Gy ) # 0, we choose an arbitrary edge
in Gy¢. Then we add r — 2 independent edges from Eyyy. Again, we take one edge
from Eyy g for the remaining node in . Finally, we add r independent edges from

Figure 3.3: An obtained graph G from f on input Gy ¢ with a perfect matching M.

We show that if Gy ¢ has a vertex cover S of size at most s, then G is not k-
extendable. If |S| < k, then extend S to a set of k vertices. The new .S is obviously
still a vertex cover. Assume that S = {vy,...,v5}. Let M = {{v;,w; }|i = 1,...,k}.
Since 0 < k < r — 1, M is well defined and |M| = k. We show that M can not
be extended to a perfect matching. By assuming the opposite, we observe that every
vertex of V(Gy¢) must be matched with a vertex of W. Since |V (Gy¢)| = r and
|W| = r — 1, this is not possible. Suppose that two distinct vertices v,v" € V(Gy¢)
can be matched. Since S is a vertex cover in Gy ¢, it holds that v € S orv’ € S. Thus,
v or v are already matched to some vertex w € W. Therefore, no edge in E(Gy¢)
can belong to a perfect matching that contains M as a subset. Since we found a
matching M of k vertices such that there is no perfect matching that contains it, G is
not k-extendable (see Figure 3.4).

Assume now that Gy ¢ has no vertex cover of size at most s. We will show that
G is k-extendable. Let M be a matching in G such that | M| = k. We set

ky =M N E(Gve)l,kvw = [M N Evw|, kwg = M N Ewql, kg = |M N Eq|.

Observe that k = ky + kyw + kwg + kg. Furthermore, the number of unmatched
vertices in V(Gy¢) is given by K{;Tee = r — 2ky — kyw. Similarly, the number of
unmatched vertices in W is given by the formula k{j&"ee =r—1—kyw — kwg. We
have two cases to take under consideration.

28
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Figure 3.4: A case where Gy ¢ has a vertex cover of size at most 2 and G is not 2-
extendable.

Let k:{fee < k:{:;ee. Then at least one edge in Gy ¢ belongs to M. We can extend
M to a perfect matching.The idea is to match every remaining v € V(Gy¢) with an
unmatched w € W, then match any remaining w € W to some ¢ € @ and finally
match the remaining vertices in ). The crucial observation is that the number of
unmatched vertices in W after the first step is odd. In what follows we discuss the
reason of this situation. For simplicity, let M’ be the perfect matching that contains
M and let M{,;, be a matching such that M{,;, C M’ N Eyw and M{,,,, " M = (.

« Assume that r is even.

— Let k{/is odd. Then observe that necessarily an odd number of edges in
Eyw can be in M. After the first step, notice that |M{, ;| is odd. Since

k‘f,ree is odd, 7 — 1is odd and | M7, | is odd, it follows that the number of
the remaining unmatched vertices in W is odd (see Figure 3.5).

Figure 3.5: A case where Gy ¢ is has no vertex cover of size 2, k{:ree < k‘{;ee, ris

even and k:{,me is odd. Color red the edges of M, dashed black the edges of M{,;, and
gray the remaining unmatched vertices in W.

- Let k‘(,ree is even. Then observe that necessarily an even number of edges
in By canbe in M. After the first step, notice that | M{,, | is even. Since

k‘f;ee is even, r — 1 is odd and | M, ;| is even, it follows that the number

29



3.2. CONP-COMPLETENESS ON GENERAL GRAPHS

of the remaining unmatched vertices in W is odd (see Figure 3.6).

Figure 3.6: A case where Gy ¢ is has no vertex cover of size 2, k‘f/ree < k{:&ee, r is

even and k{;ee is even. Color red the edges of M, dashed black the edges of M7,
and gray the remaining unmatched vertices in W.

« Assume that r is odd.

- Let k{,ree is odd. Then observe that necessarily an even number of edges
in Eyw canbe in M. After the first step, notice that | M{,y;,| is odd. Since
k{,me is odd, r — 1 is even and | M, | is even, it follows that the number
of the remaining unmatched vertices in W is odd (see Figure 3.7).

Figure 3.7: A case where Gy ¢ is has no vertex cover of size 3, k:"f,Tee < k{;ee, 7 is odd

and k‘f/ree is odd. Color red the edges of M, dashed black the edges of M7,y;, and gray
the remaining unmatched vertices in W.

— Let ki is even. Then observe that necessarily an odd number of edges
in By canbe in M. After the first step, notice that | M{,; | is even. Since

k‘f/ree is even, r — 1 is even and | M{,y;/| is odd, it follows that the number
of the remaining unmatched vertices in W is odd (see Figure 3.8).

Let k:{fee > k{;ee. Then Gy ¢ has 1 — 2ky + ky ¢ more unmatched vertices than
W. Figure 3.9 illustrates a case where k‘f/ree =7>4= k{;ee.
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Figure 3.8: A case where Gy ¢ is has no vertex cover of size 3, k:{fee < k{;ee, ris odd

and k{,ree is even. Color red the edges of M, dashed black the edges of M{,;, and
gray the remaining unmatched vertices in .

Figure 3.9: A case where G'y ¢ has no vertex cover of size 3 and G is 3-extendable.

Let G, be a subgraph of G ¢ induced by all the vertices which are not incident
to an edge in M. Observe that vertices in G, can be matched with either a distinct
vertex in G, or an unmatched vertex in W. We want to find a matching M’ in G,
which matches at least 1 — 2ky + kg vertices.

Since Gy ¢ does not contain a vertex cover of size k and G, has 2ky + kyw
vertices less than Gy ¢, it follows directly that G, does not have a vertex cover of
size k — 2ky — kyw = kg + kwg — kv. Notice that the right term is non-negative.
This is because ky > 0 and ky < kyw g — ky. By using Lemma 3.11, we get that there
is a matching M’ in G}, which matches atleast 1+ kg +kw g —ky. Observe that the
following inequalities hold: 1+ kg +kwo —kv > 1+kwo —kv > 1 —-2ky +kwq.
Thus, M’ matches the desired number of vertices in G, .

Now M can be extended to a perfect matching. Firstly, we add the edges in M’ to
M. After that we match every remaining unmatched v € V(Gy¢) with somew € W.
Notice that the second step is now possible. Next, we match every remaining w € W
with some ¢ € Q. Finally, we match the remaining even number of vertices in Q). [
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3.3 A polynomial algorithm for bipartite graphs

In this section the graph G is undirected, simple, connected and bipartite and has a
perfect matching.

Lemma 3.13. ([3]) Let M be a perfect matching of G = (51, Sa, E). G is k-extendable
if and only if its residual graph G is strongly connected and there are k-vertex-
disjoint directed paths between every vertex of S; and every vertex of Sy in G y.

Figure 3.10: A 2-extendable graph G and its residual graph G ;.

Proof. Firstly, we discuss about a direct observation. Let uw € S; and v € S2. A
free alternating path in G from wu to v becomes a directed path from u to v in Gy.
Furthermore, a saturated alternating path in G from u to v becomes a directed path
from v to u in G;. Consequently, G has k internally disjoint free M -alternating
paths and one saturated between every vertex u € S and every vertex v € S, if and
only if there are k internally disjoint directed paths from u to v and one directed path
from v to u in Gp;(see Figure 3.10).

Assume that G is k-extendable. By Theorem 2.14, there are k internally disjoint
free M-alternating paths and one saturated between u and v. Observe that there are
k internally disjoint directed paths from u to v and one directed path from v to w in
G . Thus, Gy is strongly connected.

For the other direction, we assume that there are %k internally disjoint directed
paths from u to v and G is strongly connected. These paths are free M -alternating
paths in G. Since G is strongly connected, there is a directed path from v to u. This
path is saturated M -alternating path in G and is disjoint with every aforementioned

path. Thus, G is k-extendable. O

The maximization version of EXTENDABILITY problem focuses on finding the max-
imum value of k£ for which the input graph G is k-extendable. Initially, we describe
the operation of some functions which are used in the algorithm. Then, the algorithm
follows and finally we describe its time complexity.

. find-perfect-matching(G) searches for a perfect matching in G. It returns @ if
G does not contain a perfect matching.

« is-perfect-matching(G, M) returns true if M is a perfect matching of G. If M
is not a perfect matching in G, then it returns false.
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« direct(G, M) returns the residual graph of G = (S, So, E).

« is-strongly-connected(G) returns true if G is strongly connected. Otherwise, it
returns false.

« max-disjoint-paths(G, s, t) returns the maximum number of vertex-disjoint paths
in GG between s and ¢, where s is the source node and ¢ is the target node.

Algorithm 1 finds the extendability of the input graph G = (S, 52, F)

MAIN FUNCTION: find-extendability(G)
k < 400
M < find-perfect-matching(G)
perfect_matching < is-perfect-matching(G, M)
if perfect_matching then
G’ «+ direct(G, M)
strongly_connected < is-strongly-connected(G’)
if strongly_connected then
for u € S7 do
for v € S5 do
paths < max-disjoint-paths(G’, u, v)
k < min(k, paths)
end for
end for
else
k<0
end if
else
k<0
end if
return k

It is known that finding a perfect matching in a bipartite graph can be done in
O(E~/V)(Hopkroft, Karp [fL1]). We can decide in O(E) time whereas M is a perfect
matching in G. We simply take all the vertices incident to some edge of M and check
their number equals the total number of vertices. G’ can be constructed in O(E).
Checking if G’ is strongly connected can be done in O(F)([12]). Finding the maxi-
mum number of vertex-disjoint paths between every vertex of S; and every vertex of
S5 can be done in O(E - min(k® + V, k - V))([13]). Thus, the total running time of
the above algorithm is O(E - min(k® + V. k - V)).

Let G be a bipartite graph and k be a positive integer. Let (G, k) be the input of the
EXTENDABILITY. Observe that in this particular case it is very easy to decide whether
this input is yes or no instance of the problem. It suffices to compute the extendability
of the graph G, denoted by ext(G), and check whether k is at most ext(G) or not.
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