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ABSTRACT

A matching of a graph is a set of pairwise disjoint edges and it is called perfect if
every vertex of the graph is incident to some edge of the matching. The purpose of
this thesis is the study of structural and algorithmic properties of graphs with perfect
matchings. In particular, we focus on the following question: Assuming that k is a
positive integer andG is a graph with perfect matching, isG k-extendable? That is, is
it true that for every matchingM of cardinality k inG there exists a perfect matching
that entirely contains M?

There is a detailed structural characterization of bipartite graphs G with perfect
matchings in terms of the existence of disjoint paths with certain properties which is
a direct analogue of Menger’s theorem. Let (U, V ) be the bipartition of G and M be
a perfect matching ofG. GraphG is k-extendable if and only if there are k internally
disjointM -alternating paths between every vertex of U and every vertex of V . More
strongly, it has been proven that someone can obtain the respective k paths for every
other perfect matching M0 by using the k paths for a specific perfect matching M .

From a computational perspective, the Extendability problem focuses on the
question whether a graph G is k-extendable or not, where pair (G, k) is the input.
The extendability of a graph G, denoted by ext(G), is defined as the maximum k for
which G is k-extendable. In the general case, this problem is coNP-complete. In the
case where graphG is bipartite, there is a polynomial algorithm that computes ext(G).
Thus, the aforementioned problem can be decided in a polynomial amount of time on
the number of vertices and edges of G.

The results of this thesis appear on the papers [2], [3], [4] and [5].





ΣΥΝΟΨΗ

Ταίριασμα ενός γραφήματος είναι ένα σύνολο ακμών οι οποίες δεν έχουν κανένα
κοινό άκρο και λέγεται τέλειο εάν κάθε κορυφή του γραφήματος προσπίτει σε κάποια
ακμή του ταιριάσματος. Σκοπός της διπλωματικής είναι η μελέτη αλγοριθμικών και
δομικών ιδιοτήτων γραφημάτων με τέλεια ταιριάσματα. Συγκεκριμένα, εστιάζουμε
στην ακόλουθη ερώτηση: Υποθέτοντας ότι το k είναι ένας θετικός ακέραιος και G
είναι ένα γράφημα, είναι το G k-επεκτάσιμο; Δηλαδή, είναι αλήθες ότι για κάθε
ταίριασμαM στοG πληθυκότητας k υπάρχει κάποιο τέλειο ταίριασμα που περιέχει
όλες τις ακμές του M ;

Υπάρχει άμεση συσχέτιση στον δομικό χαρακτηρισμό των k-επεκτάσιμων διμερών
γραφημάτων G με τέλεια ταιριάσματα και στην ύπαρξη k ξένων μονοπατιών, που
είναι ανάλογο του θεωρήματος του Menger. Υποθέτοντας ότι το ζεύγος (U, V ) είναι
μία διαμέριση των κορυφών του G και M είναι ένα τέλειο ταίριασμα του, το G
είναι k−επεκτάσιμο εάν και μόνον εάν υπάρχουν k εσωτερικώς διακεκριμένα M -
εναλλασόμενα μονοπάτια μεταξύ κάθε κορυφής του U και κάθε κορυφής του V .
Ισχυρότερα, αποδεικνύεται ότι είναι δυνατόν να βρεθούν αυτά τα k μονοπάτια για
οποιοδήποτε άλλο ταίριασμα M0 του G χρησιμοποιώντας τα γνωστά k μονοπάτια
του τέλειου ταιριάσματος M .

Από υπολογιστικής απόψεως, το Extendability πρόβλημα εστιάζει στο εάν ένα
γράφημα G είναι k−επεκτάσιμο, όπου (G, k) είναι η είσοδος. Η επεκτασιμότητα
ενός γραφήματος G, η οποία συμβολίζεται ext(G), ορίζεται ως η μέγιστη τιμή του k
για το οποίο το G είναι k-επεκτάσιμο. Στην γενική περίπτωση, αυτό το πρόβλημα
είναι coNP-πλήρες. Στην περίπτωση όπου τοG είναι διμερές, υπάρχει πολυωνυμικός
αλγόριθμος που υπολογίζει το ext(G). Συνεπώς, το προαναφερθέν πρόβλημα μπορεί
να αποφασιστεί σε πολυωνυμικό χρόνο ως προς τον αριθμό των κορυφών και των
ακμών του G.

Τα αποτελέσματα που εμφανίζονται σε αυτή την διπλωματική βρίσκονται στα
άρθρα [2], [3], [4] και [5].
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CHAPTER1
PRELIMINARY DEFINITIONS

1.1 General graphs
Definition 1.1. A graph is a pair G = (V,E), where V is a set whose elements are
called vertices or nodes and E is a set whose elements are sets of two distinct vertices
and they are called edges or lines. We can also write V (G), E(G) instead of V,E
respectively.

u4 u3

u1 u2

G

Figure 1.1: A graph G = (V,E) with vertex set V = {u1, u2, u3, u4} and edge set
E = {{u1, u2}, {{u2, u3}, {{u3, u4}, {{u1, u4}}.

There are different kinds of graphs G according to the properties of the set of
edges E. For instance, a graph can contain loops, i.e. at least one edge that connects
a vertex with itself, or parallel edges, i.e. two or more edges that connect two distinct
vertices. Also, a graph can contain a set of either directed or undirected edges but not
both.

Definition 1.2. A directed graph is a graph, where set E contains directed edges, i.e.
every edge of E is an ordered pair of vertices of the graph.

For abbreviation, we will write digraphs instead of directed graphs.

Definition 1.3. An undirected graph is a graph, where set E contains undirected
edges.
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1.1. GENERAL GRAPHS

Definition 1.4. A simple graph is a graph that does not contain loops and parallel
edges.

From now on, when we refer to a general graph without additional restrictions,
we will mean a simple and undirected graph.

Now, we proceed with the terminology ”neighborhood of a vertex in a graph”.
First of all, if {u, v} ∈ E for some graph G = (V,E), then u, v are called adjacent.
Fix the vertex u. Let {v1, . . . , vr} be the maximum set of vertices of G such that
{u, vi} ∈ E for every i = 1, . . . , r. The elements of the set form the neighborhood of
u in G.

Definition 1.5. Let G = (V,E) be a graph and u ∈ V . The neighborhood of u in G,
denoted by NG(u), is the set of vertices connected with u by an edge from E.

Observe that NG(u) = {v ∈ V |{u, v} ∈ E}. In Figure 1.2, NG(u1) = {u2, u4},
NG(u2) = {u1, u3, u4}, NG(u3) = {u2, u4} and NG(u4) = {u1, u2, u3}.

Definition 1.6. Let G = (V,E) be a graph and u ∈ V . The degree of vertex u,
denoted by degG(u), is the total number of edges which are incident to it.

The minimum degree of graph is defined as δ(G) = min{degG(u)|u ∈ V }.
The following observation is a direct result from Definition 1.5 and Definition 1.6.

It holds that degG(u) = |NG(u)|. That is, the degree of a vertex in a graph equals the
total number of its neighbors.

Definition 1.7. Let G = (V,E) be a graph and let S ⊆ V . We define

G \ S = (V \ S, {{u, v} ∈ E|{u, v} ∩ S = ∅}).

Definition 1.8. Let G = (V,E) be a graph and let S ⊆ V . We consider the graph
G[S] = (S,E(S) = {{u, v} ∈ E|u, v ∈ S}). Then G[S] is called induced subgraph
of graph G.

Observe that G \ (V \ S) = G[S]. Figure 1.2 shows an example of the process of
deletion of a vertex set. Notice that a graph is an induced subgraph of itself.

u4 u3

u1 u2

G

u4

u1

u3

G′

u2

u4 u3

u1

Figure 1.2: Graph G′ is an induced subgraph of the initial graph G and it’s obtained
by deleting vertex u2. Notice that S = {u1, u3, u4}.

Definition 1.9. Let G = (V,E) be a graph and u1, ul ∈ V . We define a {u1, ul}-
path P to be a sequence of edges {u1, u2}, . . . , {ul−1, ul}, which joins a sequence of
distinct vertices {u1, u2, . . . , ul−1, ul}. We will write P = u1u2 . . . ul. The number
of edges defines the length of a path.
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CHAPTER 1. PRELIMINARY DEFINITIONS

Let P = u1u2 . . . ul be a path in a graph G. Observe that the length of P is equal
to |V (P )| − 1, where V (P ) denotes the set of vertices of this path. If u1 = ul, we
say that the length of P is equal to zero and we call it a trivial path. Also, if we write
ui
−→
P uj , we mean the part of path P from ui to uj .
Let G be a graph and u, v be two distinct vertices of G. Furthermore, let P,Q

be two {u, v}-paths. P,Q are internally disjoint if V (P ) ∩ V (Q) = {u, v}, i.e. they
share only the start and end vertex.

Note that a directed path in a digraph is a sequence of edges which joins a se-
quence of distinct vertices, but with the additional restriction that the edges must be
all directed in the same direction.

Definition 1.10. LetG = (V,E) be a graph. ThenG is connected if and only if there
is a {u, v}-path for all pair of distinct vertices u, v of V .

If there is a pair of vertices such that there is no path between them, then the
graph is called disconnected.

Definition 1.11. Let G = (V,E) be a digraph. G is strongly connected if and only
if for every pair of distinct vertices u, v of V there is a path from u to v and there is
another path from v to u.

u4

u2

u3

u1

G

Figure 1.3: A strongly connected digraph G.

Definition 1.12. Let G = (V,E) be a connected graph and let S ⊆ V . We call S a
separator of G if the subgraph G \ S of G is disconnected.

Definition 1.13. Let G = (V,E) be a graph. G is k-vertex-connected if |V | ≥ k + 1
and every separator ofG has at least k vertices. We define the connectivity of a graph
G to be κ(G) = max{k|G is k-vertex-connected}.

Now, we will define a class of graphs that it is going to concern us in the following
chapters. Before that, we define the term ”independence of vertices” in a given graph.

Definition 1.14. Let G = (V,E) be a graph and let S ⊆ V . We say that S is an
independent set ofG if there is no edge between any pair of two distinct vertices of S.
Specifically, for every u, v ∈ S with u ̸= v it holds that {u, v} ̸∈ E.

Definition 1.15. A graphG = (V,E) is called bipartite if there are two sets S1, S2 ⊆
V such that (i) S1 ∪ S2 = V , (ii) S1 ∩ S2 = ∅ and (iii) S1, S2 are independent sets of
G.

3



1.1. GENERAL GRAPHS

Figure 1.4: Petersen graph is 3-vertex-connected..

G

S1

S2

Figure 1.5: The graph G is a bipartite graph, since the sets S1, S2 satisfy the desired
conditions.

If we refer to a bipartite graphG = (V,E)with bipartition (S1, S2), we can write,
for abbreviation,G = (S1, S2, E). This alternative method provide us a way to easily
understand that the given graph is bipartite.

Definition 1.16. Let G = (V,E) be a graph. Let {u, v} be an edge from E. Let P1

be a path in G of odd length from u to v in such a way that it does not use the edge
{u, v}. Observe thatG1 = P1+{u, v} is an even cycle. Thus,G1 is a bipartite graph.
We proceed inductively to construct a sequence of bipartite graphs. Let the bipartite
graph Gr = {u, v} + P1 + · · · + Pr , where Pr is a path of odd length joining two
vertices of different partitions of G and having no other common vertex with Gr−1.
If Gr = G, then Gr is called an ear decomposition of G.

Figure 1.6 illustrates an ear decomposition of a graph G.

P1

P2

P3

u v

Figure 1.6: An ear decomposition of G with Gr = {u, v}+ P1 + P2 + P3.
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CHAPTER 1. PRELIMINARY DEFINITIONS

1.2 Perfect matching
Definition 1.17. Let G = (V,E) be a graph. A matching of G is a set M ⊆ E of
vertex-disjoint or independent edges.

Wewill call a vertexmatched with respect to a specificmatching if it is an endpoint
of an edge of this matching. Otherwise, we will call it unmatched. Furthermore, we
will call an edge matched with respect to a specific matching if it belongs to this
matching. Otherwise, we will call it unmatched.

Definition 1.18. A perfect matching is a matching that matches all the vertices.

A direct observation is that a graph must have an even number of vertices in order
to contain a perfect matching. Otherwise, it is impossible. But, we have to be careful,
since this is not the only condition.

u1 u2 u3 u4

w1 w2 w3 w4

G

Figure 1.7: The set M = {{u1, w1}, {u2, w2}, {u3, w3}, {u4, w4}} ⊆ E is a perfect
matching of the graph G.

Definition 1.19. Let k be a positive integer andG be a graph with |V (G)| ≥ 2k+2.
G is k-extendable if G has a perfect matching and any k independent edges of G can
be extended to a perfect matching of G. That is, every matching of G of cardinality k
is a subset of a perfect matching in G.

Definition 1.20. The extendability of a graph G is defined as the maximum value of
k for which G is k-extendable. It is denoted by ext(G).

The table in Figure 1.8 describes the main problem of this thesis.

Extendability
Input: A graph G and a natural k.

Question: Is the graph G k-extendable?

Figure 1.8: Description of the problem.

We remind you that in the previous section we defined the term path of a graph.
Now, we present alternative definitions about what a path is with respect to some
perfect matching.
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1.3. ANOTHER WAY TO SEE BIPARTITE GRAPHS WITH PERFECT MATCHINGS

Definition 1.21. LetG be a connected and bipartite graph andM be a perfect match-
ing of G. An M -alternating path P of G is a path in G where edges in M and edges
in E \M appear on P alternately.

Let P be an M -alternating path of odd length. If the edges at the extremities of
P are unmatched then P is called free otherwise it is called saturated.

P

Q

u v

Figure 1.9: P is a free M -alternating {u, v}-path whereas Q is a saturated M -
alternating {u, v}-path.

Definition 1.22. LetG be a connected and bipartite graph andM be a perfect match-
ing of G. An M -alternating cycle is an M -alternating path where the first and last
vertices of the path are the same.

Let G = (S1, S2, E) be a graph with a perfect matching M . Let P = u0u1 . . . ul

be an M -alternating path and let C = v0v1 . . . vrv0 be a M -alternating cycle. The
predecessor of a vertex is defined as follows:

i. For each 1 ≤ i ≤ l, we define u(−P )
i = ui−1.

ii. For each 1 ≤ i ≤ r − 1, the vertex vi has exactly two neighbors vi−1, vi+1 in
C with, without loss of generality, {vi−1, vi} ∈ M and {vi, vi+1} ∈ E \M .
Then, we define v(−C)

i = vi−1, if vi ∈ S1, and v
(−C)
i = vi+1, if vi ∈ S2.

Definition 1.23. Let G = (S1, S2, E) be a graph and M be a perfect matching of G.
We define as the residual graph of G, denoted by GM , the graph obtained from G by
directing the edges in E \M from S1 to S2 and the edges in M from S2 to S1.

Figure 1.10 illustrates the construction of a residual graph by a graphwith a perfect
matching using the previous definition.

1.3 Another way to see bipartite graphs with perfect
matchings

A useful observation is that we can obtain a digraph by a bipartite graph with perfect
matching by following specific rules of construction and vice versa. We will explain
the first method of construction, where given a graph as described on the title of the
section, we obtain a digraph. Definition 1.24 defines the procedure of this construc-
tion. Figure 1.11 illustrates an example of this construction in act.

6



CHAPTER 1. PRELIMINARY DEFINITIONS

S1

S2

M

G GM

Figure 1.10: A graphG = (S1, S2, E)with perfect matchingM and its residual graph
GM .

Definition 1.24. Let G = (S1, S2, E) be a bipartite graph and let M ∈ M(G) be a
perfect matching ofG, whereM(G) is a family that consists of all perfect matchings
of G. The M -digraph D(G,M) is defined as follows. Suppose that M contains the
edges {a1, b1}, . . . , {a|M |, b|M |} with ai ∈ S1, bi ∈ S2 for i = 1, . . . , |M |. Then,

i. V (D(G,M)) := {u1, . . . , u|M |}

ii. E(D(G,M)) := {{ui, uj}|{ai, bj} ∈ E, i ̸= j}.

Observe that the edges of M transform into vertices in D(G,M). Intuitively, we
give direction on the edges from S1 to S2. Two vertices ui, uj of D(G,M) connect
by an edge if there is an edge between ai and bj in G.

a1 a2 a3 a4

b1 b2 b3 b4
G

u1

u4

u3 u2

D(G,M)

S1

S2

M

Figure 1.11: The bipartite graph G = (S1, S2, E) and the M -digraph D(G,M).

When we say that a bipartite graph with perfect matching is k-extendable, it’s
like we speak about the connectivity of an undirected graph. Furthermore, there is a
corresponding relation between the extendability of bipartite graphs and the strong
connectivity of digraphs. The last correlation is described in [3] and we are going to
deeply explore its usefulness in section 3.3.

As you have probably already noticed, there is an extensive reference to the spe-
cific class of graphs which are bipartite with perfect matching. We assure you that
there is a reason about it. In Chapter 2, we prove an important theoremwhich is quite
similar to Menger’s theorem for general graphs, whereas in Chapter 3 we prove the
hardness of Extendability problem depending on the input graph.

7
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CHAPTER2
STRUCTURAL CHARACTERIZATION OF

K-EXTENDABLE BIPARTITE GRAPHS

In this chapter, we assume that a graph G is always undirected, simple, connected
and bipartite. First, we present some basic theorems regarding graphs with perfect
matchings and k-extendability.

2.1 Basic theorems
Theorem 2.1 (Plummer [1]). LetG be a graph on n vertices with bipartition (S1, S2).
Suppose that k is a positive integer such that k ≤ n−2

2 . The following are equivalent:

i. G is k-extendable,

ii. |S1| = |S2| and for eachX ⊆ S1 such that |X| ≤ |S1|−k, |NG(X)| ≥ |X|+k,

iii. For all s11, . . . , s1k ∈ S1 and s21, . . . , s2k ∈ S2,G′ = G\ s11 \ · · · \ s1k \ s21 \ · · · \ s2k
has a perfect matching.

Figure 2.1: A 4-extendable graph G.

Theorem2.2 (Dingjun Lou [7]). LetG = (S1, S2, E) be a graph. IfG is k-extendable,
then for each X ⊆ S1 such that |S1| − k < |X| ≤ |S1|, |NG(X)| = |S2|.

9



2.1. BASIC THEOREMS

Theorem2.3 ([2]). LetG = (S1, S2, E) be a k-extendable graph for a positive integer
k. Then for any X ⊆ S1, if NG(X) ̸= S2, then |NG(X)| ≥ |X|+ k.

Proof. Let X ⊆ S1. We consider only the case where |X| ≤ |S1| − k, because if
|S1| − k < |X| ≤ |S1|, then NG(X) = S2. Since G is k-extendable, it follows
directly from Theorem 2.1 that |NG(X)| ≥ |X|+ k.

Theorem 2.4 (Plummer [6]). If G is k-extendable, then κ(G) ≥ k + 1.

Observe that δ(G) ≥ κ(G). This observation together with Theorem 2.4 implies
that a k-extendable graph has δ(G) ≥ k+1. Furthermore, the extendability of a graph
is strictly smaller that δ(G). The last observation is a direct result from Theorem 2.1.

Theorem 2.5 (Plummer [6]). Let k be an integer such that 0 < k < n. If G is
k-extendable, then G is (k − 1)-extendable.

Lemma 2.6. (Lovasz, Plummer [10]) G is 1-extendable if and only if G has an ear
decomposition.

Lemma 2.7. (Lovasz, Plummer [10])G is 1-extendable if and only if every edge ofG
belongs to an alternating cycle.

Lemma 2.8. (Plummer [1]) Let p, k be two integers such that 0 < p < k < |V (G)|. G
is k-extendable if and only if for every s11, . . . , s

1
p ∈ S1 and for every s21, . . . , s

2
p ∈ S2,

G \ s11 \ s21 \ · · · \ s1p \ s2p is (k − p)-extendable.

Lemma 2.9. ([3]) Let p, k be two integers such that 0 < p < k < |V (G)|. G is
k-extendable if and only if for every matching Mp = {{s11, s12}, . . . , {s1p, s2p}} of p
edges, G \ s11 \ s21 \ · · · \ s1p \ s2p is (k − p)-extendable.

Figure 2.2: G is 3-extendable, p = 2 and Mp is a matching of 2 edges. The deletion of
the vertices incident to the edges of Mp creates a 1-extendable graph.

Proof. Let G = (S1, S2, E) be a graph. Fix an arbitrary matching Mp of p edges as
described. Further, let H = G \ s11 \ s21 \ · · · \ s1p \ s2p.

Assume thatG is k-extendable. By Lemma 2.8, for the particular subset of vertices
s11, . . . , s

1
p ∈ S1 and s21, . . . , s

2
p such that {s11, s21}, . . . , {s2p, s2p} ∈ Mp, H is (k − p)-

extendable.
Assume that H is (k − p)-extendable. Then H has a perfect matching and every

matching of size k − p can be extended to a perfect matching. Let Mk−p be such a
matching ofH and letM be the perfect matching ofH that containsMk−p. Observe
that M ′ = M ∪ Mp is a perfect matching of G. It follows that every matching
composed of Mp and any other Mk−p extends to a perfect matching in G. Thus, G is
k-extendable.

10



CHAPTER 2. STRUCTURAL CHARACTERIZATION OF K-EXTENDABLE BIPARTITE
GRAPHS

2.2 Alternating paths on a fixed perfect matching
Here, we focus on the following structural characterization of bipartite graphs with
perfect matchings.

Theorem 2.10 ([2]). Let G = (S1, S2, E) be a graph with perfect matching. G is
k-extendable if and only if for any perfect matching M and for each x ∈ S1, y ∈ S2,
there are k internally disjoint M -alternating paths P1, . . . , Pk connecting x and y.
These paths start and end with edges in E \M .

x u2 u3 u4

w1 w2 w3 y

x u2 u3 u4

w1 w2 w3 y

x u2 u3 u4

w1 w2 w3 y

G,M P1 P2

Figure 2.3: A 2-extendable graphGwith perfectmatchingM andM -alternating paths
P1, P2.

Proof. Let S be a matching in G of k edges such that it is not contained in a perfect
matching. Suppose towards a contradiction that there are k internally disjoint M -
alternating paths between every pair of two distinct vertices of different bipartition
in G, where M is a perfect matching in G which contains as many edges of S as
possible. Observe that there is an edge e = {u, v} ∈ E such that e ∈ S and e ̸∈ M .
Let u ∈ S2 and v ∈ S1. Since M is a perfect matching, there are vertices x, y in
S1, S2 respectively such that {u, x}, {v, y} ∈M . Let P1, . . . , Pk be the paths joining
x and y such that each Pi starts and ends with edges in E \M . Since |S \ e| = k− 1,
there is at least one path that does not contain any edge from S. Let Pj be this path.
We consider C = Pj + yvux. Observe that C is an M -alternating cycle. Let M ′ =
M△E(C) = (M \ E(C)) ∪ (E(C) \M). Then M ′ is also a perfect matching of G.
The crucial observation is that every edge in M ∩ S and e belong to M ′. Thus, M ′

contains strictly more edges from S than M . This result contradicts the choice of M .
Thus, there are no k internally disjoint M -alternating paths between every vertex of
S1 and every vertex of S2.

Let G = (S1, S2, E) be a k-extendable graph, M be a perfect matching of G,
x ∈ S1 and y ∈ S2. We proceed with the introduction of the following terminology
and notation before we prove this part of the theorem.

LetP = x1x2 . . . xl. Then {xi, xi+1} ∈ E\M , if i is odd, and {xi, xi+1} ∈M , if i
is even. At this point, we suggest the reader to recall the definition of the predecessor
of a vertex in a path. For abbreviation, we omit the phrase ”with respect to M”. Let
y′ be the unique vertex such that {x, y′} ∈ M . It is possible y = y′. The following
paragraph describes the construction of a useful tool for the proof of this direction.

11
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v x

u y

e

G, S

v x

u y

G,M

v x

u y

P2

v x

u y

P1

v x

u y

P3e

C = P3 + yvux

v x

u y

M ′

Figure 2.4: A sketch of the first part of the proof given a graph G which is not 3-
extendable. Observe that |M ′ ∩ S| > |M ∩ S|.

Let P1, . . . Pk−1 be alternating paths from x to y. Let Q be an alternating path
from x to some vertex v ∈ S1. Note that if v = x, then Q is a trivial path. Also,
let Γ be a set of alternating cycles in G. Γ may be an empty set. We say that K =
(P1, . . . , Pk−1, Q,Γ) is a k-system if the following conditions hold:

i. P1, . . . , Pk−1 are alternating internally disjoint paths from x to y.

ii. For each 1 ≤ i ≤ k − 1, V (Pi) ∩ V (Q) = {x}.

iii. Every pair of two elements of Γ are vertex-disjoint.

iv. For each C ∈ Γ, (
∪k−1

i=1 V (Pi) ∪ V (Q)) ∩ V (C) ⊆ {x, y′}.

Let K be a k-system. We define

V (K) =

k−1∪
i=1

V (Pi) ∪ V (Q) ∪
∪
C∈Γ

V (C)

12
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and

E(K) =

k−1∪
i=1

E(Pi) ∪ E(Q) ∪
∪
C∈Γ

E(C)

.
Let v ∈ S2 \ y. We define the predecessor of v with respect to K as follows:

i. If v ∈ V (Pi), then v−(K) = v−(Pi).

ii. If v ∈ V (Q), then v−(K) = v−(Q).

iii. If v ∈ V (C), then v−(K) = v−(C).

iv. If v ̸∈ V (K), then v−(K) = u, where u is a vertex such that {u, v} ∈M .

Moreover, we define V −(K) = {v−(K)|v ∈ V }, for each V ⊆ S2 \ y.
Now, we are ready to continue with the proof. We proceed by induction on k. If

k = 0, then theorem is true. Suppose that k ≥ 1 and theorem is true for k−1. Assume
that there are no k alternating paths joining x and y in G. Since G is k-extendable, it
follows by Theorem 2.5 that G is (k − 1)-extendable. By induction hypothesis, there
are k − 1 alternating paths P 0

1 , . . . , P
0
k−1 from x to y. Let Q0 = x be a trivial path.

Let K0 = (P 0
1 , . . . , P

0
k−1, Q

0, ∅). Observe that K0 is a k-system.
For a natural i, we recursively define:

Ai =

{
{x}, i = 0

Ai−1 ∪B
−(K0)
i , i ≥ 1

and

Bi =

{
∅, i = 0

NG\y(Ai−1), i ≥ 1

Observe that this construction defines two infinite chains ∅ = B0 ⊆ B1 ⊆ . . .
and {x} = A0 ⊆ A1 ⊆ . . . . Let A =

∪∞
i=0 Ai and B =

∪∞
i=0 Bi. Observe that

A ⊆ S1 and B ⊆ S2. Let h : A ∪B → N be the function that follows. Alternatively,
we can refer to this function as the height function of a vertex. For every w ∈ A∪B,

h(w) =

{
min{i|w ∈ Ai}, w ∈ A

min{i|w ∈ Bi}, w ∈ B

Intuitively, the height of such a vertex w is equal to the length of x−→P w, where P is
the path that contains w. We proceed by proving three claims.

Claim 2.11 ([2]). For each u ∈ A, there exist a k-system K = (P1, . . . , Pk−1, Q,Γ)
such that:

(1) u is the terminal vertex of Q.

(2) for each v ∈ S2 \ y , if h(v) > h(u) then v−(K) = v−(K0).

Proof. We prove this claim by induction on h(u). Let h(u) = 0. By the previ-
ous terminology, it follows that u = x. Observe that K0 is the required k-system
for the base case. Suppose that this claim holds in every case where h(u) < t for
t > 0. Now, let h(u) = t. Then u ∈ At \ At−1. Since At = At−1 ∪ B

−(K0)
t ,

13
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u ∈ B
−(K0)
t . There exists a vertex v0 ∈ Bt such that u = v

−(K0)
0 . Observe that

v0 ̸∈ Bt−1, because, otherwise, we would have u ∈ B
−(K0)
t−1 ⊆ At−1 which con-

tradicts the hypothesis. Hence, h(v0) = t. Let u0 be a vertex in At−1 such that
v0 ∈ NG\y(u0). Observe that u0 ̸∈ At−2, because, otherwise, we would have that
v0 ∈ NG\y(At−2) = Bt−1. Hence, h(u0) = t − 1. By induction hypothesis, there
exist a k-system K ′ = (P

′

1, . . . , P
′

k−1, Q
′,Γ′) such that (1) u0 is the terminal vertex

of Q′ and (2) for each v ∈ S2 \ y, if h(v) > h(u0), then v−(K′) = v−(K0). Since
h(v0) = t and h(u0) = t − 1, v−(K′)

0 = v
−(K0)
0 = u. We consider two cases de-

pending on whether {u0, v0} ̸∈ M or {u0, v0} ∈ M and we prove that there exists
a desired k-system for vertex u. The Figures of each different case can be found in
Figure 2.1. The paths P ′

1, . . . , P
′
k−1 are colored red. The path Q′ is colored blue. The

alternating cycles that can be found in Γ′ are colored brown. And finally, we make
the edge connecting the vertices u0 and v0 dashed. These illustrations aim to provide
intuition behind to understand the construction of the desired k-system.

Firstly, let us assume that {u0, v0} ̸∈M . Then we have to consider the following
four cases.

(i) Let v0 ∈ V (P
′

i ). Then v
−(K′)
0 = v

−(P
′
i )

0 = u. Then (P1, . . . Pk−1, Q,Γ) is a k-
system, where Pi = x

−→
Q′u0v0

−→
P

′

i y, Pj = P
′

j , for j ̸= i, Q = x
−→
P

′

i u and Γ = Γ′.

x u0 u

v0 y

Figure 2.5: The case where {u0, v0} ̸∈M and v0 ∈ V (P ′
i ) for some index i.

(ii) Let v0 ∈ V (Q′). Then v
−(K′)
0 = v

−(Q′)
0 = u. If v0 = u

−(K′)
0 , then {u0, v0} ∈

M . This contradicts the hypothesis of this case. Thus, v0 ̸= u
−(K′)
0 . Observe

that C = v0
−→
Q′u0v0 is an alternating cycle. Furthermore, V (C) ∩ V (C ′) = ∅,

for every C ′ ∈ Γ′. (P1, . . . , Pk−1, Q,Γ) is a k-system, where Pi = P
′

i , for
every 1 ≤ i ≤ k − 1, Q = x

−→
Q′u and Γ = Γ′ ∪ {C} (see Figure 2.6).

(iii) Let v0 ∈ V (C ′), for some C ′ ∈ Γ′. Then v
−(K′)
0 = v

−(C′)
0 = u. We have

two cases to consider. If x ∈ V (C), then let Pi = P
′

i , for every i, Q = x
−→
C ′u

and Γ = (Γ′ \ C ′) ∪ C , where C = x
−→
Q′u0v0

−→
C ′x is a new alternating cycle. If

x ̸∈ V (C ′), then let Pi = P
′

i , for every i, Q = x
−→
Q′u0v0

−→
C ′u and Γ = Γ′ \ C ′.

(iv) Let v0 ̸∈ V (K ′). Let u′ be the unique vertex such that {v0, u′} ∈ M . Then
v
−(K′)
0 = u′ = u. We have two cases to consider depending on whether v0 is

14
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x u0u

v0 y

Figure 2.6: The case where {u0, v0} ̸∈M and v0 ∈ V (Q′).

x u0u

v0 y

Figure 2.7: The case where {u0, v0} ̸∈M , v0 ∈ V (C ′) and x ∈ V (C ′).

x u0 u

v0 y

Figure 2.8: The case where {u0, v0} ̸∈M , v0 ∈ V (C ′) and x ̸∈ V (C ′).

equal or not to y′. If v0 ̸= y′, then u ̸∈ V (K ′). Suppose that u ∈ V (K ′). We
will prove that this assumption leads us to the contradiction v0 ∈ V (K ′). We
have that u ∈ V (P

′

i ), for some i, or u ∈ V (Q′) or u ∈ V (C ′), for someC ′ ∈ Γ′.
If u ∈ V (P

′

i ), then v0 ∈ V (P
′

i ). If u ∈ V (Q′), then v0 ∈ V (Q′). If u ∈ V (C ′),
then v0 ∈ V (C ′). Let Pi = P

′

i , Q = x
−→
Q′u0v0u and Γ = Γ′. Assume that

v0 = y′. Then v
−(K′)
0 = y′−(K′). Since v−(K′)

0 = u and y′−(K′) = x, it follows
that x = u. Let Pi = P

′

i , for every i, Q = x and Γ = Γ′ ∪ {C}, where
C = x

−→
Q′u0y

′x is a new alternating cycle (see Figures 2.9 and 2.10).

Now, let us assume that {u0, v0} ∈ M . The assumption u0 = x leads us to a
contradiction. If the equality holds, then v0 = y′. That is because {x, y′} ∈ M . It

15
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x = u u0

y′ = v0 y

Figure 2.9: The case where {u0, v0} ̸∈M , v0 ̸∈ V (K ′) and v0 = y′.

x u0 u

v0 y

Figure 2.10: The case where {u0, v0} ̸∈M , v0 ̸∈ V (K ′) and v0 ≠ y′.

follows that u = y′−(K0) = x. This implies h(u) = h(x) = 0. This contradicts the
hypothesis that h(u) > 0. Hence, u0 ∈ V (Q′) \ x. Since {u0, v0} ∈M , v0 ∈ V (Q′).
Furthermore, u−(Q′)

0 = v0. Since v0 ∈ V (Q′) and u = v
−(K′)
0 , we have that u =

v
−(Q′)
0 . Let Pi = P

′

i , for every i, Q = x
−→
Q′u and Γ = Γ′.

x u0u

v0 y

Figure 2.11: The case where {u0, v0} ∈M .

We proved that there exist a k-system such that condition (1) of the claim holds.
Let K = (P1, . . . , Pk−1, Q,Γ) be this k-system such that u is the terminal vertex of

16
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Q. For every v ∈ S2 \ y, observe that:

v−(K) =

{
v−(K′), v ̸= v0

u0, v = v0

Let h(v) > h(u) = t. Since h(v0) = t, v ̸= v0. This implies v−(K) = v−(K′). On
the other hands, since h(v) > h(u0), v−(K′) = v−(K0). Thus, v−(K) = v−(K0) and
condition (2) holds as well.

Claim 2.12 ([2]). (1) y ̸∈ NG(A \ x).

(2) If {x, y} ̸∈M , then y ̸∈ NG(A).

Proof. (1) Suppose towards a contradiction that y ∈ NG(A \ x). Let u be a vertex
of A \ x in G. By Claim 2.7, there exist a k-system K = (P1, . . . , Pk−1, Q,Γ) such
that u is the terminal vertex of Q. Observe that {u, y} ∈ E \M and, thus, x−→Quy
is an alternating path which is internally disjoint to every one of P1, . . . , Pk−1. This
contradicts the initial assumption that there are no k alternating paths connecting x
and y in G. Thus, y ̸∈ NG(A \ x).

x
. . .A

. . .

. . .
u

yy1 yk−1

Figure 2.12: The forbidden path in case y ∈ NG(A \ x).

(2) Let y ∈ NG(A). Then there exist a vertex u ∈ A such that y ∈ NG(u). By
Claim 2.7, there exist a k-systemK = (P1, . . . , Pk−1, Q,Γ) such that u is the terminal
vertex ofQ. We remind you that there are no k alternating paths from x to y. Hence,
x
−→
Quy is not an alternating path. This occurs only if x = u and x

−→
Quy = {x, y} ∈

M .

Claim 2.13 ([2]). (1) NG\y(A) = B.

(2) NG(A \ x) ⊆ B.

(3) If {x, y} ̸∈M , then B = NG(A).

(4) A = B−(K0).

Proof. (1) Let v ∈ NG\y(A). There exist a vertex u ∈ A such that v ∈ NG(u).
Let h(u) = s, where s is a positive integer. Equivalently, u ∈ As. Hence, v ∈
NG\y(As)) = Bs+1 ⊆ B. Thus, NG\y(A) ⊆ B. Let v ∈ B and let h(v) = t, where
t is a positive integer. Then v ∈ Bt = NG\y(At) ⊆ NG\y(A). Thus, B ⊆ NG\y(A)
and the equality holds.

(2) Recall that y ̸∈ NG(A \ x). This implies NG(A \ x) = NG\y(A \ x). Since
NG\y(A \ x) ⊆ NG\y(A) and NG\y(A) = B, NG(A \ x) ⊆ B.

17
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(3) Recall that if {x, y} ̸∈M , then y ̸∈ NG(A). This implies NG(A) = NG\y(A).
Since NG\y(A) = B, B = NG(A).

(4) Let u ∈ A and let h(u) = s, where s is a positive integer. By the definition of
the height function, u ∈ As \As−1. Hence, u ∈ B

−(K0)
s ⊆ B−(K0). Let u ∈ B−(K0).

Equivalently, there exist a vertex v ∈ B such that u = v−(K0). Let h(v) = t, where t
is a positive integer. Then v ∈ Bt. Hence, u ∈ B

−(K0)
t ⊆ At ⊆ A. Thus, the equality

holds.

Suppose that yi is the second vertex vertex ofP 0
i , for every 1 ≤ i ≤ k−1. Observe

that for every pair of distinct vertices v1, v2 of S2 \ y, the equality v
−(K0)
1 = v

−(K0)
2

holds only if v1, v2 ∈ {y′, y1, . . . , yk−1}. Furthermore, {y′, y1, . . . , yk−1}−(K0) =

{x}. By combining two previous notations, it holds that |B−(K0)| ≥ |B| − k + 1.
SinceA = B−(K0), |A| ≥ |B|−k+1. The equality holds if {y′, y1, . . . , yk−1} ⊆ B.

x

y′ y1
. . .

yk−1

. . .

. . .B

A . . .

y

k |B| − k

1 |B| − k

Figure 2.13: An illustration of the case where |A| = |B| − k + 1.

Let {x, y} ̸∈ M . Then y ̸∈ NG(A) and therefore NG(A) ̸= S2. By Theorem 2.3,
this implies that |NG(A)| ≥ |A| + k. On the other hands, recall that NG(A) = B.
Hence, |NG(A)| = |B| ≤ |A|+ k − 1.

Let {x, y} ∈M . SinceNG(A\x) ⊆ B, |NG(A\x)| ≤ |B|. Since y ̸∈ NG(A\x),
NG(A \ x) ̸= S2. Hence, by Theorem 2.3, |NG(A \ x)| ≥ |A \ x|+ k = |A|+ k − 1
and therefore |B| ≥ |A| + k − 1. However, recall that |B| ≤ |A| + k − 1. Thus,
|B| = |A| + k − 1. This implies that {y′, y1, . . . , yk−1} ⊆ B. Since y′ is the unique
vertex such that {x, y′} ∈ M and {x, y} ∈ M , the equality y = y′ follows. At this
point, observe that y = y′ ∈ {y′, y1, . . . , yk−1} ⊆ B ⊆ S2 \ y.

Observe that either case leads to a contradiction. Therefore, the theorem follows.

The following theorem tells us something stronger. Given a k-extendable bipartite
graph with a perfect matching, not only are there k internally disjointM -alternating
paths between every pair of vertices of two different partitions of G, but also one
alternating path that starts and ends with an edge in M .

Theorem 2.14. ([3]) Let G = (S1, S2, E), k be a positive integer such that 0 <
k < |V (G)| and M be a perfect matching of G. G is k-extendable if and only if for
every pair of vertices u, v such that u ∈ S1, v ∈ S2 there are k-vertex-disjoint free
M -alternating paths and one saturated M -alternating path between u and v.
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s21 s22 s23 s24 s25 s26 s27

s11 s12 s13 s14 s15 s16 s17

s21 s22 s23 s24 s25 s26 s27

s11 s12 s13 s14 s15 s16 s17

Figure 2.14: A 5-extendable graph with five free M -alternating paths and one satu-
rated M -alternating path.

Proof. Assume first that there are k-vertex-disjoint freeM -alternating paths and one
saturatedM -alternating path between every vertex of S1 and every vertex of S2. We
will show by induction on k that G is k-extendable.

Let k = 1. Let {u, v} ∈ M and let P be the free M -alternating path from u to
v. Then P ∪ {u, v} is an M -alternating cycle. Let {u, v} ∈ E \M and let Q be the
saturatedM -alternating path from u to v. ThenQ∪{u, v} is anM -alternating cycle.
Thus, every edge of G belongs to an M -alternating cycle. By Lemma 2.7, this implies
that G is 1-extendable.

u

v

u

v

Figure 2.15: A 2-extendable graph G in case {u, v} ∈M .

Suppose that the proposition is true for every p ≤ |V (G)|−2. Recall that the max-
imum value of k such thatG is k-extendable is at most |V (G)| − 1. This is the reason
for considering the specific upper bound of p. Wewill show that the proposition holds
for the value p+ 1.

Assume that there are p+ 1-vertex-disjoint free M -alternating paths and exactly
one saturatedM -alternating path between every vertex of S1 and every vertex of S2.
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u

v

u

v

Figure 2.16: A 2-extendable graph G in case {u, v} ∈ E \M .

Let Mp = {{s11, s21}, . . . , {s1p, s2p}} be a matching with p edges. Furthermore, let
H = G \ s11 \ s21 \ · · · \ s1p \ s2p. We would like to show that G is (p+ 1)-extendable.
By Lemma 2.9, it suffices to show that H is 1-extendable.

By the induction hypothesis, G is p-extendable. Thus, we can assume for simplic-
ity that M contains every edge of Mp. Also, notice that for every edge {u, v} of H ,
there is at least one free M -alternating path between u and v. Then every matched
edge of H belongs to an M -alternating cycle. Now, let {w, z} ̸∈ M . Let w′, z′ be
vertices of G such that {w,w′}, {z, z′} ∈M . Observe that these edges belong to H .
Furthermore, there is at least one free M -alternating path P in H between w′ and
z′. Observe that P ∪ {w, z} ∪ {w,w′} ∪ {z, z′} is an M -alternating cycle in H that
contains {w, z}. Hence, H is 1-extendable.

For the opposite direction, assume that G is k-extendable. By Theorem 2.4, this
implies that G is k + 1-vertex-connected. Let u ∈ S1 and v ∈ S2. By Menger’s
theorem, there are k+1 vertex-disjoint pathsP1, . . . , Pk+1 joining these two vertices.
Observe that the length of these paths is odd. By applying Theorem 2.5 k − 1 times,
G is 1-extendable. It follows by Lemma 2.6 that G has an ear decomposition. Let
H ′ = (S′

1, S
′
2, E

′) be a subgraph of G formed by u, v and P1, . . . , Pk+1. Then H ′ is
1-extendable([10]). Let N be a perfect matching of H ′.

Assume that {u, v} ̸∈ E′. Since the vertex-disjoint paths P1, . . . , Pk+1 have
odd length, then they are alternating paths. Let u′, v′ be two vertices such that
{u, u′}, {v, v′} ∈ N . Without loss of generality, let {u, u′} ∈ P1. Since P1 is an
alternating path of odd length, then {v, v′} ∈ P1. Observe that P2, . . . , Pk+1 are k-
vertex-disjoint free alternating paths and P1 is saturated alternating path between u
and v.

u

v

u

v

G H ′, N

Figure 2.17: A 3-extendable graph G and paths P1, P2, P3, Q in case {u, v} ̸∈ E′.

Assume that {u, v} ∈ N . This edge is a saturated alternating path between u

20



CHAPTER 2. STRUCTURAL CHARACTERIZATION OF K-EXTENDABLE BIPARTITE
GRAPHS

and v. Let P1 be this path. Then P2, . . . , Pk+1 are the desired k-vertex-disjoint free
alternating paths.

u

v

u

v

G H ′, N

Figure 2.18: A 3-extendable graph G and paths P1, P2, P3, Q in case {u, v} ∈ N .

Assume that {u, v} ̸∈ N . Let u′, v′ be two vertices such that {u, u′}, {v, v′}
∈ N . Without loss of generality, let {u, u′} ∈ P1. Then {v, v′} ∈ P1 as well. Since
{u, v} ∈ E′, then this edge is a free alternating path. Let P2 be this path. Now,
observe that P3, . . . , Pk+1 are the other k − 1-vertex-disjoint free alternating paths.
Thus, P2, . . . , Pk+1 are the desired k-vertex-disjoint free alternating paths and P1 is
the saturated alternating path between u and v.

u

v

u

v

G H ′, N

Figure 2.19: A 3-extendable graph G and paths P1, P2, P3, Q in case {u, v} ̸∈ N .

2.3 Alternating paths on any perfect matching
In the proof of sufficiency of Theorem 2.10 we proved that for a arbitrary perfect
matching M of a k-extendable graph G = (S1, S2, E) there exist k alternating paths
with respect to M between every pair of vertices x ∈ S1 and y ∈ S2. If our target
was to find these paths for every possible perfect matching of G, the first idea would
be to check every perfect matching separately. Theorem 2.15 help us to avoid such
a situation. It guarantees us that the existence of paths with respect to a perfect
matching is sufficient in order to find the paths for every other perfect matching.

Theorem 2.15 ([4]). Let G = (S1, S2, E) be a graph with a perfect matching and let
x, y be two vertices such that x ∈ S1, y ∈ S2. Let M,M0 be perfect matchings of G.
IfG has k internally disjoint alternating {x, y}-paths with respect toM0, thenG has
k internally disjoint alternating {x, y}-paths with respect to M .
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Proof. Suppose thatG contains k internally disjoint alternating {x, y}-paths with re-
spect to M0. Let P1, . . . , Pk be these paths. Let H = (V (G),

∪k
i=1 E(Pi)). If v is an

arbitrary vertex of H , then its degree equals to either 0, 2 or k. Specifically,

degH(v) =


0, v ̸∈

∪k
i=1 V (Pi)

2, v ∈
∪k

i=1 V (Pi) \ {x, y}
k, v = x or v = y

Furthermore, let K = (V (G), E(K)), where E(K) = E(H)△M0△M . It ob-
viously holds that E(K) ⊆ E(G). Let J be the intersection of the sets E(H),M
and M0. Particularly, the set E(K) does not contain edges from (E(H) ∩M) \ J ,
(E(H) ∩M0) \ J and (M ∩M0) \ J . Figure 2.20 is crucial for understanding the
proofs that follow.

E(H)

M0M

Figure 2.20: A set representation of E(K). All the edges of graph K belong to the
gray part.

G,M0

u1 u2 u3 u4 u5

w1 w2 w3 w4 w5

G,M

u1 u2 u3 u4 u5

w1 w2 w3 w4 w5

Figure 2.21: A 3-extendable graph G with perfect matchings M0, M .
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H

x u2 u3 u4 u5

w1 w2 w3 w4 y

K

x u2 u3 u4 u5

w1 w2 w3 w4 y

Figure 2.22: Graphs H,K as obtained by 3-extendable graph G.

Claim 2.16 ([4]). For each v ∈ V (G) \
∪k

i=1 V (Pi), degK(v) = 0 or degK(v) = 2.
Furthermore, if degK(v) = 2, then exactly one of the two edges of K incident with v
belongs to M .

Proof. Let v ∈ V (G) \
∪k

i=1 V (Pi). Observe that v is not incident to any edge of H .
SinceM0,M are two different perfect matchings ofG, there exist vertices v0, v′ such
that {v, v0} ∈M0 and {v, v′} ∈M . Notice that these edges do not belong to E(H).
We have two cases to consider. If v0 = v′, then {v, v′} ∈ (M0 ∩M) \ E(H). This
implies {v, v′} ̸∈ E(K). Thus, degK(v) = 0. If v0 ̸= v′, then {v, v0} ∈ M0 \ (M ∪
E(H)) and {v, v′} ∈ M \ (M0 ∪ E(H)). By construction of graph K , NK(v) =
{v0, v′}. Thus, degK(v) = 2 and, furthermore, the last property holds trivially.

Claim 2.17 ([4]). For each v ∈
∪k

i=1 V (Pi) \ {x, y}, degK(v) = 0 or degK(v) = 2.
Furthermore, if degK(v) = 2, then exactly one of the two edges of K incident with v
belongs to M .

Proof. Let v ∈
∪k

i=1 V (Pi) \ {x, y}. Specifically, v is a vertex of a path Pj , where
j ∈ {1, . . . , k}. It follows directly by construction of graph H that degH(v) = 2.
Let NH(v) = {v1, v2}. Since Pj is a {x, y}−alternating path with respect to M0,
either {v, v1} ∈ M0 or {v, v2} ∈ M0. We suppose that {v, v1} ∈ E(H) ∩M0 and
{v, v2} ∈ E(H) \M0. Furthermore, let v3 be a vertex such that {v, v3} ∈ M . The
following paragraph describes three different cases.

Let v1 = v3. Then {v, v1} ∈ E(H) ∩M0 ∩M and {v, v2} ∈ E(H) \ (M0 ∪M).
Thus,NK(v) = {v1, v2}, degK(v) = 2 and {v, v1} ∈M . Let v3 = v2. Then {v, v1} ∈
(E(H)∩M0) \M and {v, v2} ∈ (E(H) \M0)∩M . Observe that {v, v1}, {v, v2} ̸∈
E(K). Thus, degK(v) = 0. Let v3 ̸= v1 and v3 ̸= v2. Then {v, v1} ∈ (E(H)∩M0) \
M and {v, v2} ∈ E(H) \ (M0 ∪M). Furthermore, {v, v3} ∈ M \ (E(H) ∪M0).
Thus, NK(v) = {v2, v3}, degK(v) = 2 and {v, v3} ∈M .

Claim 2.18 ([4]). Let u ∈ {x, y}. Then degK(u) ∈ {k, k + 2}. If degK(u) = k, then
none of k edges in K incident with u belong to M . If degK(u) = k + 2, then exactly
one of the k + 2 edges in K incident with u belongs to M .

Proof. We consider only the case where u = y. By symmetry, we proceed in the same
way in case u = x. Let NH(y) = {x1, . . . , xk} and {y, x0} ∈ M0. Observe that
x0 ̸∈ {x1, . . . , xk}. Hence, for i ∈ {1, . . . , k} it holds that {y, xi} ∈ E(H) \M0 and
{y, x0} ∈ M0 \ E(H). Furthermore, let {y, x′} ∈ M . We have three cases to take
under consideration.
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Assume that x′ = x0. It holds that, for i ∈ {1, . . . , k}, {y, xi} ∈ E(H)\(M∪M0)
and {y, x0} ∈ (M0\E(H))∩M . Equivalently, {y, xi} ∈ E(K) and {y, x0} ̸∈ E(K).
Thus, NK(y) = {x1, . . . , xk}. Notice that none of k edges {y, x1}, . . . , {y, xk} be-
long to the perfect matching M .

Suppose that x′ ∈ {x1, . . . , xk}. We may assume that x′ = x1. Then {y, x0} ∈
M0 \ (E(H) ∪M), {y, x′} ∈ (E(H) \M0) ∩M and {y, xi} ∈ E(H) \ (M0 ∪M),
for i ∈ {2, . . . , k}. Observe that NK(y) = {x0, x2, . . . , xk}. Notice that none of the
k edges {y, x0}, {y, x2}, . . . , {y, xk} belong to the perfect matching M .

Finally, let x′ ̸∈ {x0, x1, . . . , xk}. Then {y, x0} ∈ M0 \ (E(H) ∪M), {y, x′} ∈
M \ (E(H)∪M0) and {y, xi} ∈ E(H) \ (M0 ∪M), for i ∈ {1, . . . , k}. In this case,
observe that NK(y) = {x′, x0, x1, . . . , xk}. Furthermore, {y, x′} ∈M .

We are now ready to proceed with the proof of the theorem. It suffices to consider
only two cases.

Case 1: degK(x) = k or degK(y) = k.
We assume that degK(x) = k and NK(x) = {x1, . . . , xk}. By Claims 2.11 and

2.12, for every i ∈ {1, . . . , k}, there exists Ti = a
(i)
0 a

(i)
1 . . . a

(i)
li

in K with a
(i)
0 = x,

a
(i)
1 = xi and a

(i)
li
∈ {x, y}. Each Ti is an alternating path with respect to M . By

taking one Ti which is as small as possible, we may assume that Ti is either a cycle
or a {x, y}-path. Suppose, for contradiction, that Ti is a cycle and a

(i)
li

= x. Then
{a(i)l1−1, a

(i)
li
} ̸∈M by composing the assumption of the case and Claim 2.18. Since Ti

is alternating, Ti is an odd cycle. This contradicts the fact that G is bipartite. There-
fore, each Ti is an alternating {x, y}-path. Furthermore, T1, . . . , Tk are internally
disjoint. By assuming that there are two paths with a common vertex u, we conclude
to the contradiction that degK(u) = 4.

Case 2: degK(x) = degK(y) = k + 2.
LetNK(x) = {x′, x0, x, . . . , xk} and {x, x′} ∈M . For each i ∈ {0, 1, . . . , k}, we

can construct an alternating path Ti = a
(i)
0 a

(i)
1 . . . a

(i)
li

in K with a
(i)
0 = x, a(i)1 = xi

and a
(i)
li
∈ {x, y}. We can assume that each Ti is either a cycle or a {x, y}-path and

that T0, T1, . . . , Tk are internally disjoint. Suppose that a(k)lk
= x. SinceG is bipartite,

lk is even and {a(k)lk−1, a
(k)
lk
} ∈ M . It follows that a(k)lk−1 = x′. Observe that we still

have k internally disjoint {x, y}-paths T0, . . . , Tk−1 with respect to M .
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CHAPTER3
COMPLEXITY OF MATCHING EXTENDABILITY

PROBLEM

3.1 Computational complexity theory
Definition 3.1. A decision problem is a problem that can be posed as a yes-no ques-
tion on the input values.

Input Algorithm>
>
>

Yes
No

Figure 3.1: If the input belongs to the decision problem, then the algorithm return Yes.
Otherwise, it returns No.

P and NP are the most famous among all the complexity classes. It still remains
an open problem whether P=NP or not. Researchers believe that the inequality most
probably holds.

Definition 3.2. Class P contains all decision problems that can be solved by a Turing
machine deterministically using a polynomial amount of computational time.

One problem which lies in P is Maximum Matching(Edmonds [9]). This problem
accepts as input a coding of a graph G and returns a maximum matching in G. In
graph theory, maximum matching of a graph is a matching of maximum size, i.e. no
matching in the graph has strictly more elements than it.

Definition 3.3. A problem Π is in NP if there exists a polynomial p : N → N and a
polynomial time Turing machine V (called the verifier for the problem) such that for
every input x it holds that x ∈ Π if and only if ∃u (called the certificate for the input)
of size at most p(x) such that V (x, u) = 1.

Polynomial time reductions is an interesting concept of Computational Complex-
ity Theory. Intuitively, it is a method for solving one problem using another. If there

25
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exists a hypothetical algorithm that solves the second problem, then the first prob-
lem can be solved by transforming its input into a new one for the second problem
and calling the algorithm one or multiple times. If the previous procedure is done in
polynomial time, then the first problem is polynomial time reducible to the second.

Definition 3.4. Let A,B be two problems. Then A reduces to B in polynomial time
if there exists a computable polynomial function f such that x ∈ A if and only if
f(x) ∈ B.

For abbreviation, we will write A ≤ B.

Theorem 3.5. ([14]) Let A,B,C be three problems. If A ≤ B and B ≤ C, then A ≤ C.

Theorem 3.6. ([15]) Let A,B be two problems. Then A ≤ B if and only if A ≤ B.

It is known that there exist problems that are at least as hard as any other problem
in NP. This property is called NP-hardness.

Definition 3.7. A problem L is NP-hard if for every L’ in NP it holds that L’ ≤ L.

Definition 3.8. A problem is NP-complete if it is in NP and it is NP-hard.

One famous NP-complete problem is VeRtex CoveR(Karp [8]). It contains pairs
(G, k) for which graphG has a vertex cover of size at most k. In graph theory, a vertex
cover of a graph G = (V,E) is a subset S ⊆ V such that for every e = {u, v} ∈ E it
holds u ∈ S or v ∈ S.

Assume that A,B are two problems such that A is NP-complete and we would like
to prove that B is NP-complete. By Definition 3.8, we have to prove two properties.
Firstly, we prove that B is in NP. Afterwards, notice that it is sufficient to reduce A to
B in order to prove the second property. That is because Theorem 3.5 holds and A is
NP-complete by assumption.

We define a new complexity class which contains the complements of problems
that are in NP.

Definition 3.9. A problem L is in coNP if L is in NP.

We define coNP-hardness and coNP-completeness in analogousway asNP-hardness
and NP-completeness respectively.

Theorem 3.10. A problem is NP-complete if and only if its complement is coNP-
complete.

Proof. Let L be a problem such that L isNP-complete. By Definition 3.8, L is inNP and
every other problem L’ in NP reduces to L in polynomial time. By Definition 3.9 and
Theorem 3.6, it follows that L is in coNP and every other problem L’ in coNP reduces
to L in polynomial time. Thus, L is coNP-complete. The opposite direction is proved
symmetrically.

3.2 coNP-completeness on general graphs
Firstly, we mention a lemma which is going to be used afterwards.

Lemma 3.11. ([5]) Let G = (V,E) be a graph and k an integer. If there is no vertex
cover of size at most k in G, then there is a matching M in G which matches at least
k + 1 vertices.
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Figure 3.2: There is no vertex cover of size at most 2 in G. Therefore, there is a
matching of size at least 3.

Proof. The Maximum Matching problem, on input G, returns a maximum matching
M of G. Let S ⊆ V be the set of vertices incident to edges in M . Observe that S is
a vertex cover in G. If S was not a vertex cover in G, then there would exist an edge
e ∈ E such that no endpoint of it would belong to S and, as a result, M ∪ e would
be a matching strictly larger than M . This outcome contradicts the fact that M is a
maximum matching in G. By hypothesis, there is no vertex cover of size at most k in
G. Thus, |S| ≥ k + 1 and M matches at least k + 1 vertices.

Theorem 3.12. Extendability is coNP-complete.

Proof. We will show that Extendability is NP-complete. It consists of pairs (G, k)
with the property that there exists a matching of size k which can not be extended to
a perfect matching in G. This proof is sufficient for proving that Extendability is
coNP-complete.

Firstly we prove that Extendability is in NP. We construct a verifier N that
accepts as input an encoding ((G = (V,E), k),M), whereG is a graph, k is a natural
number and M is our certificate and verifies in polynomial time whether (G, k) is a
yes-instance of Extendability or not. Since |M | = k ≤ |V | − 1, M has polynomial
length. The verifier N works as follows:

N= “On input ((G = (V,E), k),M):”
1. G′ := G\VM , where VM contains the vertices which are incident to an edge
of M

2. Run Maximum Matching on input (G′) and obtain M ′

3. If M ′ is a perfect matching in G, then reject. Otherwise, accept.”

If M ′ is a perfect matching in G′, then M ∪M ′ is a perfect matching in G. Thus,
(G, k) is a no-instance of Extendability. IfM ′ is not a perfect matching inG′, then
M can not be extended to a perfect matching in G. Thus, (G, k) is a yes-instance of
Extendability. Observe that the verifier N runs in polynomial time.

We proceed with the proof of NP-hardness. We prove it by reducing VeRtex
CoveR in polynomial time to it. Let (GV C , s) be a general instance of VeRtex CoveR
and {v1, . . . , vr} be the set of vertices of GV C . We assume that 0 < s < r − 1 and
E(GV C) ̸= ∅. This is because if s = 0 or s = r − 1 we can decide in polynomial
time whether GV C has a vertex cover of at most the given size or not. We will map
(GV C , s) to a suitable instance (G, k). The following function f maps (GV C , s) to a
new instance (G, k):

f(GV C , s):
1. Set k := s.
2. Let W := {w1, . . . , wr−1} and Q2r+1 := {q1, . . . , q2r+1}.
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3. Let EVW = {{v, w}|v ∈ V (GV C), w ∈W}.
4. Let EWQ = {{w, q}|w ∈W, q ∈ Q2r+1}.
5. Let EQ = {{q, q′}|q, q′ ∈ Q2r+1, q ̸= q′}.
6. Initialize graph G := ∅.
7. Set V (G) := V (GV C) ∪W ∪Q2r+1.
8. Set E(G) := E(GV C) ∪WVW ∪ EWQ ∪ EQ.
9. Output (G, k).”

Observe that (G, k) is constructed in polynomial time. Clearly, G is connected and
has 4r vertices, i.e. an even number. Furthermore, notice that a perfect matching G
can be found in the following way: Since E(GV C) ̸= ∅, we choose an arbitrary edge
in GV C . Then we add r − 2 independent edges from EVW . Again, we take one edge
from EWQ for the remaining node in W . Finally, we add r independent edges from
EQ.

GV C W Q7

Figure 3.3: An obtained graph G from f on input GV C with a perfect matching M .

We show that if GV C has a vertex cover S of size at most s, then G is not k-
extendable. If |S| < k, then extend S to a set of k vertices. The new S is obviously
still a vertex cover. Assume that S = {v1, . . . , vk}. LetM = {{vi, wi}|i = 1, . . . , k}.
Since 0 < k < r − 1, M is well defined and |M | = k. We show that M can not
be extended to a perfect matching. By assuming the opposite, we observe that every
vertex of V (GV C) must be matched with a vertex of W . Since |V (GV C)| = r and
|W | = r − 1, this is not possible. Suppose that two distinct vertices v, v′ ∈ V (GV C)
can be matched. Since S is a vertex cover inGV C , it holds that v ∈ S or v′ ∈ S. Thus,
v or v′ are already matched to some vertex w ∈ W . Therefore, no edge in E(GV C)
can belong to a perfect matching that contains M as a subset. Since we found a
matchingM of k vertices such that there is no perfect matching that contains it, G is
not k-extendable (see Figure 3.4).

Assume now that GV C has no vertex cover of size at most s. We will show that
G is k-extendable. Let M be a matching in G such that |M | = k. We set

kV = |M ∩ E(GV C)|, kVW = |M ∩ EVW |, kWQ = |M ∩ EWQ|, kQ = |M ∩ EQ|.

Observe that k = kV + kVW + kWQ + kQ. Furthermore, the number of unmatched
vertices in V (GV C) is given by Kfree

V = r − 2kV − kVW . Similarly, the number of
unmatched vertices in W is given by the formula kfreeW = r − 1− kVW − kWQ. We
have two cases to take under consideration.
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GV C W

Q9

Figure 3.4: A case where GV C has a vertex cover of size at most 2 and G is not 2-
extendable.

Let kfreeV ≤ kfreeW . Then at least one edge in GV C belongs to M . We can extend
M to a perfect matching.The idea is to match every remaining v ∈ V (GV C) with an
unmatched w ∈ W , then match any remaining w ∈ W to some q ∈ Q and finally
match the remaining vertices in Q. The crucial observation is that the number of
unmatched vertices in W after the first step is odd. In what follows we discuss the
reason of this situation. For simplicity, let M ′ be the perfect matching that contains
M and let M ′

VW be a matching such that M ′
VW ⊂M ′ ∩EVW and M ′

VW ∩M = ∅.

• Assume that r is even.

– Let kfreeV is odd. Then observe that necessarily an odd number of edges in
EVW can be in M . After the first step, notice that |M ′

VW | is odd. Since
kfreeV is odd, r− 1 is odd and |M ′

VW | is odd, it follows that the number of
the remaining unmatched vertices in W is odd (see Figure 3.5).

WGV C

Figure 3.5: A case where GV C is has no vertex cover of size 2, kfreeV ≤ kfreeW , r is
even and kfreeV is odd. Color red the edges ofM , dashed black the edges ofM ′

VW and
gray the remaining unmatched vertices in W .

– Let kfreeV is even. Then observe that necessarily an even number of edges
inEVW can be inM . After the first step, notice that |M ′

VW | is even. Since
kfreeV is even, r− 1 is odd and |M ′

VW | is even, it follows that the number
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of the remaining unmatched vertices in W is odd (see Figure 3.6).

WGV C

Figure 3.6: A case where GV C is has no vertex cover of size 2, kfreeV ≤ kfreeW , r is
even and kfreeV is even. Color red the edges of M , dashed black the edges of M ′

VW

and gray the remaining unmatched vertices in W .

• Assume that r is odd.

– Let kfreeV is odd. Then observe that necessarily an even number of edges
inEVW can be inM . After the first step, notice that |M ′

VW | is odd. Since
kfreeV is odd, r− 1 is even and |M ′

VW | is even, it follows that the number
of the remaining unmatched vertices in W is odd (see Figure 3.7).

WGV C

Figure 3.7: A case whereGV C is has no vertex cover of size 3, kfreeV ≤ kfreeW , r is odd
and kfreeV is odd. Color red the edges ofM , dashed black the edges ofM ′

VW and gray
the remaining unmatched vertices in W .

– Let kfreeV is even. Then observe that necessarily an odd number of edges
inEVW can be inM . After the first step, notice that |M ′

VW | is even. Since
kfreeV is even, r− 1 is even and |M ′

VW | is odd, it follows that the number
of the remaining unmatched vertices in W is odd (see Figure 3.8).

Let kfreeV > kfreeW . ThenGV C has 1−2kV +kWQ more unmatched vertices than
W . Figure 3.9 illustrates a case where kfreeV = 7 > 4 = kfreeW .
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WGV C

Figure 3.8: A case whereGV C is has no vertex cover of size 3, kfreeV ≤ kfreeW , r is odd
and kfreeV is even. Color red the edges of M , dashed black the edges of M ′

VW and
gray the remaining unmatched vertices in W .

Q17

WGV C

Figure 3.9: A case where GV C has no vertex cover of size 3 and G is 3-extendable.

LetG′
V C be a subgraph ofGV C induced by all the vertices which are not incident

to an edge in M . Observe that vertices in G′
V C can be matched with either a distinct

vertex inG′
V C or an unmatched vertex inW . We want to find a matchingM ′ inG′

V C

which matches at least 1− 2kV + kWQ vertices.
Since GV C does not contain a vertex cover of size k and G′

V C has 2kV + kVW

vertices less than GV C , it follows directly that G′
V C does not have a vertex cover of

size k − 2kV − kVW = kQ + kWQ − kV . Notice that the right term is non-negative.
This is because kV ≥ 0 and kV ≤ kWQ−kV . By using Lemma 3.11, we get that there
is a matchingM ′ inG′

V C whichmatches at least 1+kQ+kWQ−kV . Observe that the
following inequalities hold: 1+kQ+kWQ−kV ≥ 1+kWQ−kV ≥ 1−2kV +kWQ.
Thus, M ′ matches the desired number of vertices in G′

V C .
NowM can be extended to a perfect matching. Firstly, we add the edges inM ′ to

M . After that wematch every remaining unmatched v ∈ V (GV C)with somew ∈W .
Notice that the second step is now possible. Next, we match every remaining w ∈W
with some q ∈ Q. Finally, we match the remaining even number of vertices inQ.
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3.3 A polynomial algorithm for bipartite graphs
In this section the graph G is undirected, simple, connected and bipartite and has a
perfect matching.

Lemma3.13. ([3]) LetM be a perfectmatching ofG = (S1, S2, E). G is k-extendable
if and only if its residual graph GM is strongly connected and there are k-vertex-
disjoint directed paths between every vertex of S1 and every vertex of S2 in GM .

v

u

v

u

Figure 3.10: A 2-extendable graph G and its residual graph GM .

Proof. Firstly, we discuss about a direct observation. Let u ∈ S1 and v ∈ S2. A
free alternating path in G from u to v becomes a directed path from u to v in GM .
Furthermore, a saturated alternating path in G from u to v becomes a directed path
from v to u in GM . Consequently, G has k internally disjoint free M -alternating
paths and one saturated between every vertex u ∈ S1 and every vertex v ∈ S2 if and
only if there are k internally disjoint directed paths from u to v and one directed path
from v to u in GM (see Figure 3.10).

Assume that G is k-extendable. By Theorem 2.14, there are k internally disjoint
free M -alternating paths and one saturated between u and v. Observe that there are
k internally disjoint directed paths from u to v and one directed path from v to u in
GM . Thus, GM is strongly connected.

For the other direction, we assume that there are k internally disjoint directed
paths from u to v and GM is strongly connected. These paths are free M -alternating
paths inG. SinceGM is strongly connected, there is a directed path from v to u. This
path is saturated M -alternating path in G and is disjoint with every aforementioned
path. Thus, G is k-extendable.

Themaximization version of Extendability problem focuses on finding the max-
imum value of k for which the input graph G is k-extendable. Initially, we describe
the operation of some functions which are used in the algorithm. Then, the algorithm
follows and finally we describe its time complexity.

• find-perfect-matching(G) searches for a perfect matching in G. It returns ∅ if
G does not contain a perfect matching.

• is-perfect-matching(G,M ) returns true if M is a perfect matching of G. If M
is not a perfect matching in G, then it returns false.
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• direct(G,M ) returns the residual graph of G = (S1, S2, E).

• is-strongly-connected(G) returns true if G is strongly connected. Otherwise, it
returns false.

• max-disjoint-paths(G, s, t) returns themaximumnumber of vertex-disjoint paths
in G between s and t, where s is the source node and t is the target node.

Algorithm 1 finds the extendability of the input graph G = (S1, S2, E)

MAIN FUNCTION: find-extendability(G)
k ← +∞
M ← find-perfect-matching(G)
perfect_matching← is-perfect-matching(G,M )
if perfect_matching then
G′ ← direct(G,M )
strongly_connected← is-strongly-connected(G′)
if strongly_connected then
for u ∈ S1 do
for v ∈ S2 do
paths← max-disjoint-paths(G′, u, v)
k ← min(k, paths)

end for
end for

else
k ← 0

end if
else
k ← 0

end if
return k

It is known that finding a perfect matching in a bipartite graph can be done in
O(E
√
V )(Hopkroft, Karp [11]). We can decide in O(E) time whereas M is a perfect

matching inG. We simply take all the vertices incident to some edge ofM and check
their number equals the total number of vertices. G′ can be constructed in O(E).
Checking if G′ is strongly connected can be done in O(E)([12]). Finding the maxi-
mum number of vertex-disjoint paths between every vertex of S1 and every vertex of
S2 can be done in O(E ·min(k3 + V, k · V ))([13]). Thus, the total running time of
the above algorithm is O(E ·min(k3 + V, k · V )).

LetG be a bipartite graph and k be a positive integer. Let (G, k) be the input of the
Extendability. Observe that in this particular case it is very easy to decide whether
this input is yes or no instance of the problem. It suffices to compute the extendability
of the graph G, denoted by ext(G), and check whether k is at most ext(G) or not.
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