Extendability of Graphs with Perfect Matchings

George Semertzakis

AL1180015

Examination committee:

Archontia C. Giannopoulou, Department of Informatics and Telecommunications, National and Kapodistrian University of Athens.
Stavros G. Kolliopoulos, Department of Informatics and Telecommunications, National and Kapodistrian University of Athens.
Dimitris Zoros, External Collaborator, ALMA.

[^0]\[

$$
\begin{aligned}
& \text { H } \pi \alpha \rho о \text { v́ } \alpha \alpha \Delta ı \pi \lambda \omega \mu \alpha \tau ı \kappa \eta ́ \text { Ep } \alpha \sigma \sigma^{\prime} \alpha
\end{aligned}
$$
\]

$\gamma \iota \alpha \tau \eta \nu \alpha \pi o ́ \kappa \tau \eta \sigma \eta$ тоט
$\pi \circ \cup \alpha \pi о \nu \varepsilon ́ \mu \varepsilon ı \tau о$
นov

Еүкрі́Өŋкє $\tau \eta \nu$ \qquad $\alpha \pi o ́ \mathrm{E} \xi \varepsilon \tau \alpha \sigma \tau \iota \kappa \mathfrak{~ E \tau \iota \tau \rho о \pi \eta ́}$ $\alpha \pi о \tau \varepsilon \lambda о и ́ \mu \varepsilon \nu \eta \tau^{\prime}$ тovऽ:
Ovoн $\alpha \tau \varepsilon \epsilon \dot{\omega} v \mu \boldsymbol{o}$ $\underline{B} \boldsymbol{\alpha} \boldsymbol{\mu} \boldsymbol{i} \delta \boldsymbol{\alpha}$ Yлоүр $\boldsymbol{\varphi} \varphi$ и́
1.
\qquad
2. \qquad
3. \qquad

A matching of a graph is a set of pairwise disjoint edges and it is called perfect if every vertex of the graph is incident to some edge of the matching. The purpose of this thesis is the study of structural and algorithmic properties of graphs with perfect matchings. In particular, we focus on the following question: Assuming that k is a positive integer and G is a graph with perfect matching, is $G k$-extendable? That is, is it true that for every matching M of cardinality k in G there exists a perfect matching that entirely contains M ?

There is a detailed structural characterization of bipartite graphs G with perfect matchings in terms of the existence of disjoint paths with certain properties which is a direct analogue of Menger's theorem. Let (U, V) be the bipartition of G and M be a perfect matching of G. Graph G is k-extendable if and only if there are k internally disjoint M-alternating paths between every vertex of U and every vertex of V. More strongly, it has been proven that someone can obtain the respective k paths for every other perfect matching M_{0} by using the k paths for a specific perfect matching M.

From a computational perspective, the Extendability problem focuses on the question whether a graph G is k-extendable or not, where pair (G, k) is the input. The extendability of a graph G, denoted by $\operatorname{ext}(G)$, is defined as the maximum k for which G is k-extendable. In the general case, this problem is coNP-complete. In the case where graph G is bipartite, there is a polynomial algorithm that computes $\operatorname{ext}(G)$. Thus, the aforementioned problem can be decided in a polynomial amount of time on the number of vertices and edges of G.

The results of this thesis appear on the papers [2], [3], [4] and [5].

 ó $\lambda \varepsilon \varsigma$ тıऽ $\alpha \kappa \mu \varepsilon ́ \varsigma ~ \tau о ⿱ ~ M ; ~$

 $\mu i ́ \alpha ~ \delta \iota \alpha \mu \varepsilon ́ \rho ı \sigma \eta ~ \tau \omega v ~ к о \rho \cup \varphi \varrho ́ v ~ \tau о ט ~ G ~ к \alpha ı ~ M ~ \varepsilon i ́ v \alpha ı ~ \varepsilon ́ v \alpha ~ \tau \varepsilon ́ \lambda \varepsilon ı о ~ \tau \alpha i ́ \rho ı \alpha \sigma \mu \alpha ~ \tau о v, ~ \tau о ~ G ~$

 $\alpha \kappa \mu \omega ́ v \tau 0 v G$.

T $\alpha \alpha \pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \mu \alpha \tau \alpha \pi о \cup \varepsilon \mu \varphi \alpha v i ́ \zeta о \nu \tau \alpha \iota ~ \sigma \varepsilon \alpha \nu \tau \eta ́ \tau \eta \nu \delta \iota \pi \lambda \omega \mu \alpha \tau \iota \kappa \eta ́ \beta \rho i ́ \sigma \kappa о \nu \tau \alpha \iota \sigma \tau \alpha$ $\dot{\alpha} \rho \theta \rho \alpha[2],[3],[4] \kappa \alpha _[5]$.

ACKNOWLEDGEMENTS

First and foremost i would like to express my deep gratitude to my advisor, Professor Archontia C. Giannopoulou for her valuable guidance, encouragement, patience and helpful critique throughout all stages of this work.

I would also like to give my sincere thanks to the other two members of my thesis examination committee, Professor Stavros G. Kolliopoulos and Dr. Dimitris Zoros, for their time, patience and support.

Also, i am thankful to the committee of the postgraduate program "Algorithms, Logic and Discrete Mathematics" for recognizing the course "Data Analytics - Big Data Mining Techniques". They gave me the opportunity to break into applications which are used in real world problems.

Furthermore, i would like to thank a professor from my undergraduate studies whose name is Nikolaos Tzanakis. He is the person who made mathematics even more attractive to me and suggested me to participate in this specific program for my graduate studies.

Finally, there are no words to thank my parents for being supportive and patient during the program.
1 Preliminary definitions 1
1.1 General graphs. 1
1.2 Perfect matching 5
1.3 Another way to see bipartite graphs with perfect matchings 6
2 Structural characterization of k-extendable bipartite graphs 9
2.1 Basic theorems 9
2.2 Alternating paths on a fixed perfect matching 11
2.3 Alternating paths on any perfect matching 21
3 Complexity of matching extendability problem 25
3.1 Computational complexity theory 25
3.2 coNP-completeness on general graphs 26
3.3 A polynomial algorithm for bipartite graphs 32
Bibliography 35

chapter 1

PRELIMINARY DEFINITIONS

1.1 General graphs

Definition 1.1. A graph is a pair $G=(V, E)$, where V is a set whose elements are called vertices or nodes and E is a set whose elements are sets of two distinct vertices and they are called edges or lines. We can also write $V(G), E(G)$ instead of V, E respectively.

G

Figure 1.1: A graph $G=(V, E)$ with vertex set $V=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and edge set $E=\left\{\left\{u_{1}, u_{2}\right\},\left\{\left\{u_{2}, u_{3}\right\},\left\{\left\{u_{3}, u_{4}\right\},\left\{\left\{u_{1}, u_{4}\right\}\right\}\right.\right.\right.$.

There are different kinds of graphs G according to the properties of the set of edges E. For instance, a graph can contain loops, i.e. at least one edge that connects a vertex with itself, or parallel edges, i.e. two or more edges that connect two distinct vertices. Also, a graph can contain a set of either directed or undirected edges but not both.

Definition 1.2. A directed graph is a graph, where set E contains directed edges, i.e. every edge of E is an ordered pair of vertices of the graph.

For abbreviation, we will write digraphs instead of directed graphs.
Definition 1.3. An undirected graph is a graph, where set E contains undirected edges.

Definition 1.4. A simple graph is a graph that does not contain loops and parallel edges.

From now on, when we refer to a general graph without additional restrictions, we will mean a simple and undirected graph.

Now, we proceed with the terminology "neighborhood of a vertex in a graph". First of all, if $\{u, v\} \in E$ for some graph $G=(V, E)$, then u, v are called adjacent. Fix the vertex u. Let $\left\{v_{1}, \ldots, v_{r}\right\}$ be the maximum set of vertices of G such that $\left\{u, v_{i}\right\} \in E$ for every $i=1, \ldots, r$. The elements of the set form the neighborhood of u in G.

Definition 1.5. Let $G=(V, E)$ be a graph and $u \in V$. The neighborhood of u in G, denoted by $N_{G}(u)$, is the set of vertices connected with u by an edge from E.

Observe that $N_{G}(u)=\{v \in V \mid\{u, v\} \in E\}$. In Figure 1.2, $N_{G}\left(u_{1}\right)=\left\{u_{2}, u_{4}\right\}$, $N_{G}\left(u_{2}\right)=\left\{u_{1}, u_{3}, u_{4}\right\}, N_{G}\left(u_{3}\right)=\left\{u_{2}, u_{4}\right\}$ and $N_{G}\left(u_{4}\right)=\left\{u_{1}, u_{2}, u_{3}\right\}$.

Definition 1.6. Let $G=(V, E)$ be a graph and $u \in V$. The degree of vertex u, denoted by $\operatorname{deg}_{G}(u)$, is the total number of edges which are incident to it.

The minimum degree of graph is defined as $\delta(G)=\min \left\{\operatorname{deg}_{G}(u) \mid u \in V\right\}$.
The following observation is a direct result from Definition 1.5 and Definition 1.6. It holds that $\operatorname{deg}_{G}(u)=\left|N_{G}(u)\right|$. That is, the degree of a vertex in a graph equals the total number of its neighbors.

Definition 1.7. Let $G=(V, E)$ be a graph and let $S \subseteq V$. We define

$$
G \backslash S=(V \backslash S,\{\{u, v\} \in E \mid\{u, v\} \cap S=\emptyset\}) .
$$

Definition 1.8. Let $G=(V, E)$ be a graph and let $S \subseteq V$. We consider the graph $G[S]=(S, E(S)=\{\{u, v\} \in E \mid u, v \in S\})$. Then $G[S]$ is called induced subgraph of graph G.

Observe that $G \backslash(V \backslash S)=G[S]$. Figure 1.2 shows an example of the process of deletion of a vertex set. Notice that a graph is an induced subgraph of itself.

Figure 1.2: Graph G^{\prime} is an induced subgraph of the initial graph G and it's obtained by deleting vertex u_{2}. Notice that $S=\left\{u_{1}, u_{3}, u_{4}\right\}$.

Definition 1.9. Let $G=(V, E)$ be a graph and $u_{1}, u_{l} \in V$. We define a $\left\{u_{1}, u_{l}\right\}$ path P to be a sequence of edges $\left\{u_{1}, u_{2}\right\}, \ldots,\left\{u_{l-1}, u_{l}\right\}$, which joins a sequence of distinct vertices $\left\{u_{1}, u_{2}, \ldots, u_{l-1}, u_{l}\right\}$. We will write $P=u_{1} u_{2} \ldots u_{l}$. The number of edges defines the length of a path.

Let $P=u_{1} u_{2} \ldots u_{l}$ be a path in a graph G. Observe that the length of P is equal to $|V(P)|-1$, where $V(P)$ denotes the set of vertices of this path. If $u_{1}=u_{l}$, we say that the length of P is equal to zero and we call it a trivial path. Also, if we write $u_{i} \vec{P} u_{j}$, we mean the part of path P from u_{i} to u_{j}.

Let G be a graph and u, v be two distinct vertices of G. Furthermore, let P, Q be two $\{u, v\}$-paths. P, Q are internally disjoint if $V(P) \cap V(Q)=\{u, v\}$, i.e. they share only the start and end vertex.

Note that a directed path in a digraph is a sequence of edges which joins a sequence of distinct vertices, but with the additional restriction that the edges must be all directed in the same direction.

Definition 1.10. Let $G=(V, E)$ be a graph. Then G is connected if and only if there is a $\{u, v\}$-path for all pair of distinct vertices u, v of V.

If there is a pair of vertices such that there is no path between them, then the graph is called disconnected.

Definition 1.11. Let $G=(V, E)$ be a digraph. G is strongly connected if and only if for every pair of distinct vertices u, v of V there is a path from u to v and there is another path from v to u.

G

Figure 1.3: A strongly connected digraph G.

Definition 1.12. Let $G=(V, E)$ be a connected graph and let $S \subseteq V$. We call S a separator of G if the subgraph $G \backslash S$ of G is disconnected.

Definition 1.13. Let $G=(V, E)$ be a graph. G is k-vertex-connected if $|V| \geq k+1$ and every separator of G has at least k vertices. We define the connectivity of a graph G to be $\kappa(G)=\max \{k \mid G$ is k-vertex-connected $\}$.

Now, we will define a class of graphs that it is going to concern us in the following chapters. Before that, we define the term "independence of vertices" in a given graph.

Definition 1.14. Let $G=(V, E)$ be a graph and let $S \subseteq V$. We say that S is an independent set of G if there is no edge between any pair of two distinct vertices of S. Specifically, for every $u, v \in S$ with $u \neq v$ it holds that $\{u, v\} \notin E$.

Definition 1.15. A graph $G=(V, E)$ is called bipartite if there are two sets $S_{1}, S_{2} \subseteq$ V such that (i) $S_{1} \cup S_{2}=V$, (ii) $S_{1} \cap S_{2}=\emptyset$ and (iii) S_{1}, S_{2} are independent sets of G.

Figure 1.4: Petersen graph is 3-vertex-connected..

G

Figure 1.5: The graph G is a bipartite graph, since the sets S_{1}, S_{2} satisfy the desired conditions.

If we refer to a bipartite graph $G=(V, E)$ with bipartition $\left(S_{1}, S_{2}\right)$, we can write, for abbreviation, $G=\left(S_{1}, S_{2}, E\right)$. This alternative method provide us a way to easily understand that the given graph is bipartite.

Definition 1.16. Let $G=(V, E)$ be a graph. Let $\{u, v\}$ be an edge from E. Let P_{1} be a path in G of odd length from u to v in such a way that it does not use the edge $\{u, v\}$. Observe that $G_{1}=P_{1}+\{u, v\}$ is an even cycle. Thus, G_{1} is a bipartite graph. We proceed inductively to construct a sequence of bipartite graphs. Let the bipartite graph $G_{r}=\{u, v\}+P_{1}+\cdots+P_{r}$, where P_{r} is a path of odd length joining two vertices of different partitions of G and having no other common vertex with G_{r-1}. If $G_{r}=G$, then G_{r} is called an ear decomposition of G.

Figure 1.6 illustrates an ear decomposition of a graph G.

Figure 1.6: An ear decomposition of G with $G_{r}=\{u, v\}+P_{1}+P_{2}+P_{3}$.

1.2 Perfect matching

Definition 1.17. Let $G=(V, E)$ be a graph. A matching of G is a set $M \subseteq E$ of vertex-disjoint or independent edges.

We will call a vertex matched with respect to a specific matching if it is an endpoint of an edge of this matching. Otherwise, we will call it unmatched. Furthermore, we will call an edge matched with respect to a specific matching if it belongs to this matching. Otherwise, we will call it unmatched.

Definition 1.18. A perfect matching is a matching that matches all the vertices.
A direct observation is that a graph must have an even number of vertices in order to contain a perfect matching. Otherwise, it is impossible. But, we have to be careful, since this is not the only condition.

Figure 1.7: The set $M=\left\{\left\{u_{1}, w_{1}\right\},\left\{u_{2}, w_{2}\right\},\left\{u_{3}, w_{3}\right\},\left\{u_{4}, w_{4}\right\}\right\} \subseteq E$ is a perfect matching of the graph G.

Definition 1.19. Let k be a positive integer and G be a graph with $|V(G)| \geq 2 k+2$. G is k-extendable if G has a perfect matching and any k independent edges of G can be extended to a perfect matching of G. That is, every matching of G of cardinality k is a subset of a perfect matching in G.

Definition 1.20. The extendability of a graph G is defined as the maximum value of k for which G is k-extendable. It is denoted by $\operatorname{ext}(G)$.

The table in Figure 1.8 describes the main problem of this thesis.

Extendability	
Input:	A graph G and a natural k.
Question:	Is the graph $G k$-extendable?

Figure 1.8: Description of the problem.

We remind you that in the previous section we defined the term path of a graph. Now, we present alternative definitions about what a path is with respect to some perfect matching.

Definition 1.21. Let G be a connected and bipartite graph and M be a perfect matching of G. An M-alternating path P of G is a path in G where edges in M and edges in $E \backslash M$ appear on P alternately.

Let P be an M-alternating path of odd length. If the edges at the extremities of P are unmatched then P is called free otherwise it is called saturated.

Figure 1.9: P is a free M-alternating $\{u, v\}$-path whereas Q is a saturated M alternating $\{u, v\}$-path.

Definition 1.22. Let G be a connected and bipartite graph and M be a perfect matching of G. An M-alternating cycle is an M-alternating path where the first and last vertices of the path are the same.

Let $G=\left(S_{1}, S_{2}, E\right)$ be a graph with a perfect matching M. Let $P=u_{0} u_{1} \ldots u_{l}$ be an M-alternating path and let $C=v_{0} v_{1} \ldots v_{r} v_{0}$ be a M-alternating cycle. The predecessor of a vertex is defined as follows:
i. For each $1 \leq i \leq l$, we define $u_{i}^{(-P)}=u_{i-1}$.
ii. For each $1 \leq i \leq r-1$, the vertex v_{i} has exactly two neighbors v_{i-1}, v_{i+1} in C with, without loss of generality, $\left\{v_{i-1}, v_{i}\right\} \in M$ and $\left\{v_{i}, v_{i+1}\right\} \in E \backslash M$. Then, we define $v_{i}^{(-C)}=v_{i-1}$, if $v_{i} \in S_{1}$, and $v_{i}^{(-C)}=v_{i+1}$, if $v_{i} \in S_{2}$.

Definition 1.23. Let $G=\left(S_{1}, S_{2}, E\right)$ be a graph and M be a perfect matching of G. We define as the residual graph of G, denoted by G_{M}, the graph obtained from G by directing the edges in $E \backslash M$ from S_{1} to S_{2} and the edges in M from S_{2} to S_{1}.

Figure 1.10 illustrates the construction of a residual graph by a graph with a perfect matching using the previous definition.

1.3 Another way to see bipartite graphs with perfect matchings

A useful observation is that we can obtain a digraph by a bipartite graph with perfect matching by following specific rules of construction and vice versa. We will explain the first method of construction, where given a graph as described on the title of the section, we obtain a digraph. Definition 1.24 defines the procedure of this construction. Figure 1.11 illustrates an example of this construction in act.

G

G_{M}

Figure 1.10: A graph $G=\left(S_{1}, S_{2}, E\right)$ with perfect matching M and its residual graph G_{M}.

Definition 1.24. Let $G=\left(S_{1}, S_{2}, E\right)$ be a bipartite graph and let $M \in \mathcal{M}(G)$ be a perfect matching of G, where $\mathcal{M}(G)$ is a family that consists of all perfect matchings of G. The M-digraph $\mathcal{D}(G, M)$ is defined as follows. Suppose that M contains the edges $\left\{a_{1}, b_{1}\right\}, \ldots,\left\{a_{|M|}, b_{|M|}\right\}$ with $a_{i} \in S_{1}, b_{i} \in S_{2}$ for $i=1, \ldots,|M|$. Then,
i. $V(\mathcal{D}(G, M)):=\left\{u_{1}, \ldots, u_{|M|}\right\}$
ii. $E(\mathcal{D}(G, M)):=\left\{\left\{u_{i}, u_{j}\right\} \mid\left\{a_{i}, b_{j}\right\} \in E, i \neq j\right\}$.

Observe that the edges of M transform into vertices in $\mathcal{D}(G, M)$. Intuitively, we give direction on the edges from S_{1} to S_{2}. Two vertices u_{i}, u_{j} of $\mathcal{D}(G, M)$ connect by an edge if there is an edge between a_{i} and b_{j} in G.

Figure 1.11: The bipartite graph $G=\left(S_{1}, S_{2}, E\right)$ and the M-digraph $\mathcal{D}(G, M)$.
When we say that a bipartite graph with perfect matching is k-extendable, it's like we speak about the connectivity of an undirected graph. Furthermore, there is a corresponding relation between the extendability of bipartite graphs and the strong connectivity of digraphs. The last correlation is described in [3] and we are going to deeply explore its usefulness in section 3.3.

As you have probably already noticed, there is an extensive reference to the specific class of graphs which are bipartite with perfect matching. We assure you that there is a reason about it. In Chapter 2, we prove an important theorem which is quite similar to Menger's theorem for general graphs, whereas in Chapter 3 we prove the hardness of Extendability problem depending on the input graph.

CHAPTER 2

STRUCTURAL CHARACTERIZATION OF K-EXTENDABLE BIPARTITE GRAPHS

In this chapter, we assume that a graph G is always undirected, simple, connected and bipartite. First, we present some basic theorems regarding graphs with perfect matchings and k-extendability.

2.1 Basic theorems

Theorem 2.1 (Plummer [1]]). Let G be a graph on n vertices with bipartition $\left(S_{1}, S_{2}\right)$. Suppose that k is a positive integer such that $k \leq \frac{n-2}{2}$. The following are equivalent:
i. G is k-extendable,
ii. $\left|S_{1}\right|=\left|S_{2}\right|$ and for each $X \subseteq S_{1}$ such that $|X| \leq\left|S_{1}\right|-k,\left|N_{G}(X)\right| \geq|X|+k$,
iii. For all $s_{1}^{1}, \ldots, s_{k}^{1} \in S_{1}$ and $s_{1}^{2}, \ldots, s_{k}^{2} \in S_{2}, G^{\prime}=G \backslash s_{1}^{1} \backslash \cdots \backslash s_{k}^{1} \backslash s_{1}^{2} \backslash \cdots \backslash s_{k}^{2}$ has a perfect matching.

Figure 2.1: A 4-extendable graph G.

Theorem 2.2 (Dingjun Lou [7]). Let $G=\left(S_{1}, S_{2}, E\right)$ be a graph. If G is k-extendable, then for each $X \subseteq S_{1}$ such that $\left|S_{1}\right|-k<|X| \leq\left|S_{1}\right|,\left|N_{G}(X)\right|=\left|S_{2}\right|$.

Theorem 2.3 ([2] $)$. Let $G=\left(S_{1}, S_{2}, E\right)$ be a k-extendable graph for a positive integer k. Then for any $X \subseteq S_{1}$, if $N_{G}(X) \neq S_{2}$, then $\left|N_{G}(X)\right| \geq|X|+k$.

Proof. Let $X \subseteq S_{1}$. We consider only the case where $|X| \leq\left|S_{1}\right|-k$, because if $\left|S_{1}\right|-k<|X| \leq\left|S_{1}\right|$, then $N_{G}(X)=S_{2}$. Since G is k-extendable, it follows directly from Theorem 2.1 that $\left|N_{G}(X)\right| \geq|X|+k$.

Theorem 2.4 (Plummer [6]). If G is k-extendable, then $\kappa(G) \geq k+1$.
Observe that $\delta(G) \geq \kappa(G)$. This observation together with Theorem 2.4 implies that a k-extendable graph has $\delta(G) \geq k+1$. Furthermore, the extendability of a graph is strictly smaller that $\delta(G)$. The last observation is a direct result from Theorem 2.1.

Theorem 2.5 (Plummer [6]). Let k be an integer such that $0<k<n$. If G is k-extendable, then G is $(k-1)$-extendable.

Lemma 2.6. (Lovasz, Plummer [10]) G is 1-extendable if and only if G has an ear decomposition.

Lemma 2.7. (Lovasz, Plummer [10]) G is 1-extendable if and only if every edge of G belongs to an alternating cycle.

Lemma 2.8. (Plummer [1]) Let p, k be two integers such that $0<p<k<|V(G)| . G$ is k-extendable if and only if for every $s_{1}^{1}, \ldots, s_{p}^{1} \in S_{1}$ and for every $s_{1}^{2}, \ldots, s_{p}^{2} \in S_{2}$, $G \backslash s_{1}^{1} \backslash s_{1}^{2} \backslash \cdots \backslash s_{p}^{1} \backslash s_{p}^{2}$ is $(k-p)$-extendable.
Lemma 2.9. ([3]) Let p, k be two integers such that $0<p<k<|V(G)| . G$ is k-extendable if and only if for every matching $M_{p}=\left\{\left\{s_{1}^{1}, s_{2}^{1}\right\}, \ldots,\left\{s_{p}^{1}, s_{p}^{2}\right\}\right\}$ of p edges, $G \backslash s_{1}^{1} \backslash s_{1}^{2} \backslash \cdots \backslash s_{p}^{1} \backslash s_{p}^{2}$ is $(k-p)$-extendable.

Figure 2.2: G is 3-extendable, $p=2$ and M_{p} is a matching of 2 edges. The deletion of the vertices incident to the edges of M_{p} creates a 1-extendable graph.

Proof. Let $G=\left(S_{1}, S_{2}, E\right)$ be a graph. Fix an arbitrary matching M_{p} of p edges as described. Further, let $H=G \backslash s_{1}^{1} \backslash s_{1}^{2} \backslash \cdots \backslash s_{p}^{1} \backslash s_{p}^{2}$.

Assume that G is k-extendable. By Lemma 2.8, for the particular subset of vertices $s_{1}^{1}, \ldots, s_{p}^{1} \in S_{1}$ and $s_{1}^{2}, \ldots, s_{p}^{2}$ such that $\left\{s_{1}^{1}, s_{1}^{2}\right\}, \ldots,\left\{s_{p}^{2}, s_{p}^{2}\right\} \in M_{p}, H$ is $(k-p)$ extendable.

Assume that H is $(k-p)$-extendable. Then H has a perfect matching and every matching of size $k-p$ can be extended to a perfect matching. Let M_{k-p} be such a matching of H and let M be the perfect matching of H that contains M_{k-p}. Observe that $M^{\prime}=M \cup M_{p}$ is a perfect matching of G. It follows that every matching composed of M_{p} and any other M_{k-p} extends to a perfect matching in G. Thus, G is k-extendable.

2.2 Alternating paths on a fixed perfect matching

Here, we focus on the following structural characterization of bipartite graphs with perfect matchings.

Theorem 2.10 ([2] $]$). Let $G=\left(S_{1}, S_{2}, E\right)$ be a graph with perfect matching. G is k-extendable if and only if for any perfect matching M and for each $x \in S_{1}, y \in S_{2}$, there are k internally disjoint M-alternating paths P_{1}, \ldots, P_{k} connecting x and y. These paths start and end with edges in $E \backslash M$.

Figure 2.3: A 2-extendable graph G with perfect matching M and M-alternating paths P_{1}, P_{2}.

Proof. Let S be a matching in G of k edges such that it is not contained in a perfect matching. Suppose towards a contradiction that there are k internally disjoint M alternating paths between every pair of two distinct vertices of different bipartition in G, where M is a perfect matching in G which contains as many edges of S as possible. Observe that there is an edge $e=\{u, v\} \in E$ such that $e \in S$ and $e \notin M$. Let $u \in S_{2}$ and $v \in S_{1}$. Since M is a perfect matching, there are vertices x, y in S_{1}, S_{2} respectively such that $\{u, x\},\{v, y\} \in M$. Let P_{1}, \ldots, P_{k} be the paths joining x and y such that each P_{i} starts and ends with edges in $E \backslash M$. Since $|S \backslash e|=k-1$, there is at least one path that does not contain any edge from S. Let P_{j} be this path. We consider $C=P_{j}+y v u x$. Observe that C is an M-alternating cycle. Let $M^{\prime}=$ $M \triangle E(C)=(M \backslash E(C)) \cup(E(C) \backslash M)$. Then M^{\prime} is also a perfect matching of G. The crucial observation is that every edge in $M \cap S$ and e belong to M^{\prime}. Thus, M^{\prime} contains strictly more edges from S than M. This result contradicts the choice of M. Thus, there are no k internally disjoint M-alternating paths between every vertex of S_{1} and every vertex of S_{2}.

Let $G=\left(S_{1}, S_{2}, E\right)$ be a k-extendable graph, M be a perfect matching of G, $x \in S_{1}$ and $y \in S_{2}$. We proceed with the introduction of the following terminology and notation before we prove this part of the theorem.

Let $P=x_{1} x_{2} \ldots x_{l}$. Then $\left\{x_{i}, x_{i+1}\right\} \in E \backslash M$, if i is odd, and $\left\{x_{i}, x_{i+1}\right\} \in M$, if i is even. At this point, we suggest the reader to recall the definition of the predecessor of a vertex in a path. For abbreviation, we omit the phrase "with respect to M ". Let y^{\prime} be the unique vertex such that $\left\{x, y^{\prime}\right\} \in M$. It is possible $y=y^{\prime}$. The following paragraph describes the construction of a useful tool for the proof of this direction.

Figure 2.4: A sketch of the first part of the proof given a graph G which is not 3extendable. Observe that $\left|M^{\prime} \cap S\right|>|M \cap S|$.

Let $P_{1}, \ldots P_{k-1}$ be alternating paths from x to y. Let Q be an alternating path from x to some vertex $v \in S_{1}$. Note that if $v=x$, then Q is a trivial path. Also, let Γ be a set of alternating cycles in G. Γ may be an empty set. We say that $K=$ $\left(P_{1}, \ldots, P_{k-1}, Q, \Gamma\right)$ is a k-system if the following conditions hold:
i. P_{1}, \ldots, P_{k-1} are alternating internally disjoint paths from x to y.
ii. For each $1 \leq i \leq k-1, V\left(P_{i}\right) \cap V(Q)=\{x\}$.
iii. Every pair of two elements of Γ are vertex-disjoint.
iv. For each $C \in \Gamma,\left(\bigcup_{i=1}^{k-1} V\left(P_{i}\right) \cup V(Q)\right) \cap V(C) \subseteq\left\{x, y^{\prime}\right\}$.

Let K be a k-system. We define

$$
V(K)=\bigcup_{i=1}^{k-1} V\left(P_{i}\right) \cup V(Q) \cup \bigcup_{C \in \Gamma} V(C)
$$

and

$$
E(K)=\bigcup_{i=1}^{k-1} E\left(P_{i}\right) \cup E(Q) \cup \bigcup_{C \in \Gamma} E(C)
$$

Let $v \in S_{2} \backslash y$. We define the predecessor of v with respect to K as follows:
i. If $v \in V\left(P_{i}\right)$, then $v^{-(K)}=v^{-\left(P_{i}\right)}$.
ii. If $v \in V(Q)$, then $v^{-(K)}=v^{-(Q)}$.
iii. If $v \in V(C)$, then $v^{-(K)}=v^{-(C)}$.
iv. If $v \notin V(K)$, then $v^{-(K)}=u$, where u is a vertex such that $\{u, v\} \in M$.

Moreover, we define $V^{-(K)}=\left\{v^{-(K)} \mid v \in V\right\}$, for each $V \subseteq S_{2} \backslash y$.
Now, we are ready to continue with the proof. We proceed by induction on k. If $k=0$, then theorem is true. Suppose that $k \geq 1$ and theorem is true for $k-1$. Assume that there are no k alternating paths joining x and y in G. Since G is k-extendable, it follows by Theorem 2.5 that G is $(k-1)$-extendable. By induction hypothesis, there are $k-1$ alternating paths $P_{1}^{0}, \ldots, P_{k-1}^{0}$ from x to y. Let $Q^{0}=x$ be a trivial path.

Let $K^{0}=\left(P_{1}^{0}, \ldots, P_{k-1}^{0}, Q^{0}, \emptyset\right)$. Observe that K^{0} is a k-system.
For a natural i, we recursively define:

$$
A_{i}= \begin{cases}\{x\}, & i=0 \\ A_{i-1} \cup B_{i}^{-\left(K^{0}\right)}, & i \geq 1\end{cases}
$$

and

$$
B_{i}= \begin{cases}\emptyset, & i=0 \\ N_{G \backslash y}\left(A_{i-1}\right), & i \geq 1\end{cases}
$$

Observe that this construction defines two infinite chains $\emptyset=B_{0} \subseteq B_{1} \subseteq \ldots$ and $\{x\}=A_{0} \subseteq A_{1} \subseteq \ldots$. Let $A=\bigcup_{i=0}^{\infty} A_{i}$ and $B=\bigcup_{i=0}^{\infty} B_{i}$. Observe that $A \subseteq S_{1}$ and $B \subseteq S_{2}$. Let $h: A \cup B \rightarrow \mathbb{N}$ be the function that follows. Alternatively, we can refer to this function as the height function of a vertex. For every $w \in A \cup B$,

$$
h(w)= \begin{cases}\min \left\{i \mid w \in A_{i}\right\}, & w \in A \\ \min \left\{i \mid w \in B_{i}\right\}, & w \in B\end{cases}
$$

Intuitively, the height of such a vertex w is equal to the length of $x \vec{P} w$, where P is the path that contains w. We proceed by proving three claims.
Claim 2.11 ([[2]). For each $u \in A$, there exist a k-system $K=\left(P_{1}, \ldots, P_{k-1}, Q, \Gamma\right)$ such that:
(1) u is the terminal vertex of Q.
(2) for each $v \in S_{2} \backslash y$, if $h(v)>h(u)$ then $v^{-(K)}=v^{-\left(K^{0}\right)}$.

Proof. We prove this claim by induction on $h(u)$. Let $h(u)=0$. By the previous terminology, it follows that $u=x$. Observe that K^{0} is the required k-system for the base case. Suppose that this claim holds in every case where $h(u)<t$ for $t>0$. Now, let $h(u)=t$. Then $u \in A_{t} \backslash A_{t-1}$. Since $A_{t}=A_{t-1} \cup B_{t}^{-\left(K^{0}\right)}$,
$u \in B_{t}^{-\left(K^{0}\right)}$. There exists a vertex $v_{0} \in B_{t}$ such that $u=v_{0}^{-\left(K^{0}\right)}$. Observe that $v_{0} \notin B_{t-1}$, because, otherwise, we would have $u \in B_{t-1}^{-\left(K^{0}\right)} \subseteq A_{t-1}$ which contradicts the hypothesis. Hence, $h\left(v_{0}\right)=t$. Let u_{0} be a vertex in A_{t-1} such that $v_{0} \in N_{G \backslash y}\left(u_{0}\right)$. Observe that $u_{0} \notin A_{t-2}$, because, otherwise, we would have that $v_{0} \in N_{G \backslash y}\left(A_{t-2}\right)=B_{t-1}$. Hence, $h\left(u_{0}\right)=t-1$. By induction hypothesis, there exist a k-system $K^{\prime}=\left(P_{1}^{\prime}, \ldots, P_{k-1}^{\prime}, Q^{\prime}, \Gamma^{\prime}\right)$ such that (1) u_{0} is the terminal vertex of Q^{\prime} and (2) for each $v \in S_{2} \backslash y$, if $h(v)>h\left(u_{0}\right)$, then $v^{-\left(K^{\prime}\right)}=v^{-\left(K^{0}\right)}$. Since $h\left(v_{0}\right)=t$ and $h\left(u_{0}\right)=t-1, v_{0}^{-\left(K^{\prime}\right)}=v_{0}^{-\left(K^{0}\right)}=u$. We consider two cases depending on whether $\left\{u_{0}, v_{0}\right\} \notin M$ or $\left\{u_{0}, v_{0}\right\} \in M$ and we prove that there exists a desired k-system for vertex u. The Figures of each different case can be found in Figure 2.1. The paths $P_{1}^{\prime}, \ldots, P_{k-1}^{\prime}$ are colored red. The path Q^{\prime} is colored blue. The alternating cycles that can be found in Γ^{\prime} are colored brown. And finally, we make the edge connecting the vertices u_{0} and v_{0} dashed. These illustrations aim to provide intuition behind to understand the construction of the desired k-system.

Firstly, let us assume that $\left\{u_{0}, v_{0}\right\} \notin M$. Then we have to consider the following four cases.
(i) Let $v_{0} \in V\left(P_{i}^{\prime}\right)$. Then $v_{0}^{-\left(K^{\prime}\right)}=v_{0}^{-\left(P_{i}^{\prime}\right)}=u$. Then $\left(P_{1}, \ldots P_{k-1}, Q, \Gamma\right)$ is a k system, where $P_{i}=x \overrightarrow{Q^{\prime}} u_{0} v_{0} \overrightarrow{P_{i}^{\prime}} y, P_{j}=P_{j}^{\prime}$, for $j \neq i, Q=x \overrightarrow{P_{i}^{\prime}} u$ and $\Gamma=\Gamma^{\prime}$.

Figure 2.5: The case where $\left\{u_{0}, v_{0}\right\} \notin M$ and $v_{0} \in V\left(P_{i}^{\prime}\right)$ for some index i.
(ii) Let $v_{0} \in V\left(Q^{\prime}\right)$. Then $v_{0}^{-\left(K^{\prime}\right)}=v_{0}^{-\left(Q^{\prime}\right)}=u$. If $v_{0}=u_{0}^{-\left(K^{\prime}\right)}$, then $\left\{u_{0}, v_{0}\right\} \in$ M. This contradicts the hypothesis of this case. Thus, $v_{0} \neq u_{0}^{-\left(K^{\prime}\right)}$. Observe that $C=v_{0} \overrightarrow{Q^{\prime}} u_{0} v_{0}$ is an alternating cycle. Furthermore, $V(C) \cap V\left(C^{\prime}\right)=\emptyset$, for every $C^{\prime} \in \Gamma^{\prime} .\left(P_{1}, \ldots, P_{k-1}, Q, \Gamma\right)$ is a k-system, where $P_{i}=P_{i}^{\prime}$, for every $1 \leq i \leq k-1, Q=x \overrightarrow{Q^{\prime}} u$ and $\Gamma=\Gamma^{\prime} \cup\{C\}$ (see Figure 2.6).
(iii) Let $v_{0} \in V\left(C^{\prime}\right)$, for some $C^{\prime} \in \Gamma^{\prime}$. Then $v_{0}^{-\left(K^{\prime}\right)}=v_{0}^{-\left(C^{\prime}\right)}=u$. We have two cases to consider. If $x \in V(C)$, then let $P_{i}=P_{i}^{\prime}$, for every $i, Q=x \vec{C}^{\prime} u$ and $\Gamma=\left(\Gamma^{\prime} \backslash C^{\prime}\right) \cup C$, where $C=x \overrightarrow{Q^{\prime}} u_{0} v_{0} \overrightarrow{C^{\prime}} x$ is a new alternating cycle. If $x \notin V\left(C^{\prime}\right)$, then let $P_{i}=P_{i}^{\prime}$, for every $i, Q=x \overrightarrow{Q^{\prime}} u_{0} v_{0} \overrightarrow{C^{\prime}} u$ and $\Gamma=\Gamma^{\prime} \backslash C^{\prime}$.
(iv) Let $v_{0} \notin V\left(K^{\prime}\right)$. Let u^{\prime} be the unique vertex such that $\left\{v_{0}, u^{\prime}\right\} \in M$. Then $v_{0}^{-\left(K^{\prime}\right)}=u^{\prime}=u$. We have two cases to consider depending on whether v_{0} is

Figure 2.6: The case where $\left\{u_{0}, v_{0}\right\} \notin M$ and $v_{0} \in V\left(Q^{\prime}\right)$.

Figure 2.7: The case where $\left\{u_{0}, v_{0}\right\} \notin M, v_{0} \in V\left(C^{\prime}\right)$ and $x \in V\left(C^{\prime}\right)$.

Figure 2.8: The case where $\left\{u_{0}, v_{0}\right\} \notin M, v_{0} \in V\left(C^{\prime}\right)$ and $x \notin V\left(C^{\prime}\right)$.
equal or not to y^{\prime}. If $v_{0} \neq y^{\prime}$, then $u \notin V\left(K^{\prime}\right)$. Suppose that $u \in V\left(K^{\prime}\right)$. We will prove that this assumption leads us to the contradiction $v_{0} \in V\left(K^{\prime}\right)$. We have that $u \in V\left(P_{i}^{\prime}\right)$, for some i, or $u \in V\left(Q^{\prime}\right)$ or $u \in V\left(C^{\prime}\right)$, for some $C^{\prime} \in \Gamma^{\prime}$. If $u \in V\left(P_{i}^{\prime}\right)$, then $v_{0} \in V\left(P_{i}^{\prime}\right)$. If $u \in V\left(Q^{\prime}\right)$, then $v_{0} \in V\left(Q^{\prime}\right)$. If $u \in V\left(C^{\prime}\right)$, then $v_{0} \in V\left(C^{\prime}\right)$. Let $P_{i}=P_{i}^{\prime}, Q=x \overrightarrow{Q^{\prime}} u_{0} v_{0} u$ and $\Gamma=\Gamma^{\prime}$. Assume that $v_{0}=y^{\prime}$. Then $v_{0}^{-\left(K^{\prime}\right)}=y^{\prime-\left(K^{\prime}\right)}$. Since $v_{0}^{-\left(K^{\prime}\right)}=u$ and $y^{\prime-\left(K^{\prime}\right)}=x$, it follows that $x=u$. Let $P_{i}=P_{i}^{\prime}$, for every $i, Q=x$ and $\Gamma=\Gamma^{\prime} \cup\{C\}$, where $C=x \overrightarrow{Q^{\prime}} u_{0} y^{\prime} x$ is a new alternating cycle (see Figures 2.9 and 2.10).

Now, let us assume that $\left\{u_{0}, v_{0}\right\} \in M$. The assumption $u_{0}=x$ leads us to a contradiction. If the equality holds, then $v_{0}=y^{\prime}$. That is because $\left\{x, y^{\prime}\right\} \in M$. It

Figure 2.9: The case where $\left\{u_{0}, v_{0}\right\} \notin M, v_{0} \notin V\left(K^{\prime}\right)$ and $v_{0}=y^{\prime}$.

Figure 2.10: The case where $\left\{u_{0}, v_{0}\right\} \notin M, v_{0} \notin V\left(K^{\prime}\right)$ and $v_{0} \neq y^{\prime}$.
follows that $u=y^{\prime-\left(K^{0}\right)}=x$. This implies $h(u)=h(x)=0$. This contradicts the hypothesis that $h(u)>0$. Hence, $u_{0} \in V\left(Q^{\prime}\right) \backslash x$. Since $\left\{u_{0}, v_{0}\right\} \in M, v_{0} \in V\left(Q^{\prime}\right)$. Furthermore, $u_{0}^{-\left(Q^{\prime}\right)}=v_{0}$. Since $v_{0} \in V\left(Q^{\prime}\right)$ and $u=v_{0}^{-\left(K^{\prime}\right)}$, we have that $u=$ $v_{0}^{-\left(Q^{\prime}\right)}$. Let $P_{i}=P_{i}^{\prime}$, for every $i, Q=x \overrightarrow{Q^{\prime}} u$ and $\Gamma=\Gamma^{\prime}$.

Figure 2.11: The case where $\left\{u_{0}, v_{0}\right\} \in M$.
We proved that there exist a k-system such that condition (1) of the claim holds. Let $K=\left(P_{1}, \ldots, P_{k-1}, Q, \Gamma\right)$ be this k-system such that u is the terminal vertex of
Q. For every $v \in S_{2} \backslash y$, observe that:

$$
v^{-(K)}= \begin{cases}v^{-\left(K^{\prime}\right)}, & v \neq v_{0} \\ u_{0}, & v=v_{0}\end{cases}
$$

Let $h(v)>h(u)=t$. Since $h\left(v_{0}\right)=t, v \neq v_{0}$. This implies $v^{-(K)}=v^{-\left(K^{\prime}\right)}$. On the other hands, since $h(v)>h\left(u_{0}\right), v^{-\left(K^{\prime}\right)}=v^{-\left(K^{0}\right)}$. Thus, $v^{-(K)}=v^{-\left(K^{0}\right)}$ and condition (2) holds as well.

Claim 2.12 ([2] $]$). (1) $y \notin N_{G}(A \backslash x)$.
(2) If $\{x, y\} \notin M$, then $y \notin N_{G}(A)$.

Proof. (1) Suppose towards a contradiction that $y \in N_{G}(A \backslash x)$. Let u be a vertex of $A \backslash x$ in G. By Claim 2.7, there exist a k-system $K=\left(P_{1}, \ldots, P_{k-1}, Q, \Gamma\right)$ such that u is the terminal vertex of Q. Observe that $\{u, y\} \in E \backslash M$ and, thus, $x \vec{Q} u y$ is an alternating path which is internally disjoint to every one of P_{1}, \ldots, P_{k-1}. This contradicts the initial assumption that there are no k alternating paths connecting x and y in G. Thus, $y \notin N_{G}(A \backslash x)$.

Figure 2.12: The forbidden path in case $y \in N_{G}(A \backslash x)$.
(2) Let $y \in N_{G}(A)$. Then there exist a vertex $u \in A$ such that $y \in N_{G}(u)$. By Claim 2.7, there exist a k-system $K=\left(P_{1}, \ldots, P_{k-1}, Q, \Gamma\right)$ such that u is the terminal vertex of Q. We remind you that there are no k alternating paths from x to y. Hence, $x \vec{Q} u y$ is not an alternating path. This occurs only if $x=u$ and $x \vec{Q} u y=\{x, y\} \in$ M.

Claim 2.13 ([2] $). \quad$ (1) $N_{G \backslash y}(A)=B$.
(2) $N_{G}(A \backslash x) \subseteq B$.
(3) If $\{x, y\} \notin M$, then $B=N_{G}(A)$.
(4) $A=B^{-\left(K^{0}\right)}$.

Proof. (1) Let $v \in N_{G \backslash y}(A)$. There exist a vertex $u \in A$ such that $v \in N_{G}(u)$. Let $h(u)=s$, where s is a positive integer. Equivalently, $u \in A_{s}$. Hence, $v \in$ $\left.N_{G \backslash y}\left(A_{s}\right)\right)=B_{s+1} \subseteq B$. Thus, $N_{G \backslash y}(A) \subseteq B$. Let $v \in B$ and let $h(v)=t$, where t is a positive integer. Then $v \in B_{t}=N_{G \backslash y}\left(A_{t}\right) \subseteq N_{G \backslash y}(A)$. Thus, $B \subseteq N_{G \backslash y}(A)$ and the equality holds.
(2) Recall that $y \notin N_{G}(A \backslash x)$. This implies $N_{G}(A \backslash x)=N_{G \backslash y}(A \backslash x)$. Since $N_{G \backslash y}(A \backslash x) \subseteq N_{G \backslash y}(A)$ and $N_{G \backslash y}(A)=B, N_{G}(A \backslash x) \subseteq B$.
(3) Recall that if $\{x, y\} \notin M$, then $y \notin N_{G}(A)$. This implies $N_{G}(A)=N_{G \backslash y}(A)$. Since $N_{G \backslash y}(A)=B, B=N_{G}(A)$.
(4) Let $u \in A$ and let $h(u)=s$, where s is a positive integer. By the definition of the height function, $u \in A_{s} \backslash A_{s-1}$. Hence, $u \in B_{s}^{-\left(K^{0}\right)} \subseteq B^{-\left(K^{0}\right)}$. Let $u \in B^{-\left(K^{0}\right)}$. Equivalently, there exist a vertex $v \in B$ such that $u=v^{-\left(K^{0}\right)}$. Let $h(v)=t$, where t is a positive integer. Then $v \in B_{t}$. Hence, $u \in B_{t}^{-\left(K^{0}\right)} \subseteq A_{t} \subseteq A$. Thus, the equality holds.

Suppose that y_{i} is the second vertex vertex of P_{i}^{0}, for every $1 \leq i \leq k-1$. Observe that for every pair of distinct vertices v_{1}, v_{2} of $S_{2} \backslash y$, the equality $v_{1}^{-\left(K^{0}\right)}=v_{2}^{-\left(K^{0}\right)}$ holds only if $v_{1}, v_{2} \in\left\{y^{\prime}, y_{1}, \ldots, y_{k-1}\right\}$. Furthermore, $\left\{y^{\prime}, y_{1}, \ldots, y_{k-1}\right\}^{-\left(K^{0}\right)}=$ $\{x\}$. By combining two previous notations, it holds that $\left|B^{-\left(K^{0}\right)}\right| \geq|B|-k+1$. Since $A=B^{-\left(K^{0}\right)},|A| \geq|B|-k+1$. The equality holds if $\left\{y^{\prime}, y_{1}, \ldots, y_{k-1}\right\} \subseteq B$.

Figure 2.13: An illustration of the case where $|A|=|B|-k+1$.

Let $\{x, y\} \notin M$. Then $y \notin N_{G}(A)$ and therefore $N_{G}(A) \neq S_{2}$. By Theorem 2.3, this implies that $\left|N_{G}(A)\right| \geq|A|+k$. On the other hands, recall that $N_{G}(A)=B$. Hence, $\left|N_{G}(A)\right|=|B| \leq|A|+k-1$.

Let $\{x, y\} \in M$. Since $N_{G}(A \backslash x) \subseteq B,\left|N_{G}(A \backslash x)\right| \leq|B|$. Since $y \notin N_{G}(A \backslash x)$, $N_{G}(A \backslash x) \neq S_{2}$. Hence, by Theorem 2.3, $\left|N_{G}(A \backslash x)\right| \geq|A \backslash x|+k=|A|+k-1$ and therefore $|B| \geq|A|+k-1$. However, recall that $|B| \leq|A|+k-1$. Thus, $|B|=|A|+k-1$. This implies that $\left\{y^{\prime}, y_{1}, \ldots, y_{k-1}\right\} \subseteq B$. Since y^{\prime} is the unique vertex such that $\left\{x, y^{\prime}\right\} \in M$ and $\{x, y\} \in M$, the equality $y=y^{\prime}$ follows. At this point, observe that $y=y^{\prime} \in\left\{y^{\prime}, y_{1}, \ldots, y_{k-1}\right\} \subseteq B \subseteq S_{2} \backslash y$.

Observe that either case leads to a contradiction. Therefore, the theorem follows.

The following theorem tells us something stronger. Given a k-extendable bipartite graph with a perfect matching, not only are there k internally disjoint M-alternating paths between every pair of vertices of two different partitions of G, but also one alternating path that starts and ends with an edge in M.
Theorem 2.14. ([3]) Let $G=\left(S_{1}, S_{2}, E\right)$, k be a positive integer such that $0<$ $k<|V(G)|$ and M be a perfect matching of $G . G$ is k-extendable if and only if for every pair of vertices u, v such that $u \in S_{1}, v \in S_{2}$ there are k-vertex-disjoint free M-alternating paths and one saturated M-alternating path between u and v.

Figure 2.14: A 5-extendable graph with five free M-alternating paths and one saturated M-alternating path.

Proof. Assume first that there are k-vertex-disjoint free M-alternating paths and one saturated M-alternating path between every vertex of S_{1} and every vertex of S_{2}. We will show by induction on k that G is k-extendable.

Let $k=1$. Let $\{u, v\} \in M$ and let P be the free M-alternating path from u to v. Then $P \cup\{u, v\}$ is an M-alternating cycle. Let $\{u, v\} \in E \backslash M$ and let Q be the saturated M-alternating path from u to v. Then $Q \cup\{u, v\}$ is an M-alternating cycle. Thus, every edge of G belongs to an M-alternating cycle. By Lemma 2.7, this implies that G is 1-extendable.

Figure 2.15: A 2-extendable graph G in case $\{u, v\} \in M$.

Suppose that the proposition is true for every $p \leq|V(G)|-2$. Recall that the maximum value of k such that G is k-extendable is at most $|V(G)|-1$. This is the reason for considering the specific upper bound of p. We will show that the proposition holds for the value $p+1$.

Assume that there are $p+1$-vertex-disjoint free M-alternating paths and exactly one saturated M-alternating path between every vertex of S_{1} and every vertex of S_{2}.

Figure 2.16: A 2-extendable graph G in case $\{u, v\} \in E \backslash M$.

Let $M_{p}=\left\{\left\{s_{1}^{1}, s_{1}^{2}\right\}, \ldots,\left\{s_{p}^{1}, s_{p}^{2}\right\}\right\}$ be a matching with p edges. Furthermore, let $H=G \backslash s_{1}^{1} \backslash s_{1}^{2} \backslash \cdots \backslash s_{p}^{1} \backslash s_{p}^{2}$. We would like to show that G is $(p+1)$-extendable. By Lemma 2.9, it suffices to show that H is 1-extendable.

By the induction hypothesis, G is p-extendable. Thus, we can assume for simplicity that M contains every edge of M_{p}. Also, notice that for every edge $\{u, v\}$ of H, there is at least one free M-alternating path between u and v. Then every matched edge of H belongs to an M-alternating cycle. Now, let $\{w, z\} \notin M$. Let w^{\prime}, z^{\prime} be vertices of G such that $\left\{w, w^{\prime}\right\},\left\{z, z^{\prime}\right\} \in M$. Observe that these edges belong to H. Furthermore, there is at least one free M-alternating path P in H between w^{\prime} and z^{\prime}. Observe that $P \cup\{w, z\} \cup\left\{w, w^{\prime}\right\} \cup\left\{z, z^{\prime}\right\}$ is an M-alternating cycle in H that contains $\{w, z\}$. Hence, H is 1 -extendable.

For the opposite direction, assume that G is k-extendable. By Theorem 2.4, this implies that G is $k+1$-vertex-connected. Let $u \in S_{1}$ and $v \in S_{2}$. By Menger's theorem, there are $k+1$ vertex-disjoint paths P_{1}, \ldots, P_{k+1} joining these two vertices. Observe that the length of these paths is odd. By applying Theorem $2.5 k-1$ times, G is 1-extendable. It follows by Lemma 2.6 that G has an ear decomposition. Let $H^{\prime}=\left(S_{1}^{\prime}, S_{2}^{\prime}, E^{\prime}\right)$ be a subgraph of G formed by u, v and P_{1}, \ldots, P_{k+1}. Then H^{\prime} is 1-extendable([10]). Let N be a perfect matching of H^{\prime}.

Assume that $\{u, v\} \notin E^{\prime}$. Since the vertex-disjoint paths P_{1}, \ldots, P_{k+1} have odd length, then they are alternating paths. Let u^{\prime}, v^{\prime} be two vertices such that $\left\{u, u^{\prime}\right\},\left\{v, v^{\prime}\right\} \in N$. Without loss of generality, let $\left\{u, u^{\prime}\right\} \in P_{1}$. Since P_{1} is an alternating path of odd length, then $\left\{v, v^{\prime}\right\} \in P_{1}$. Observe that P_{2}, \ldots, P_{k+1} are k -vertex-disjoint free alternating paths and P_{1} is saturated alternating path between u and v.

Figure 2.17: A 3-extendable graph G and paths P_{1}, P_{2}, P_{3}, Q in case $\{u, v\} \notin E^{\prime}$.

Assume that $\{u, v\} \in N$. This edge is a saturated alternating path between u
and v. Let P_{1} be this path. Then P_{2}, \ldots, P_{k+1} are the desired k-vertex-disjoint free alternating paths.

Figure 2.18: A 3-extendable graph G and paths P_{1}, P_{2}, P_{3}, Q in case $\{u, v\} \in N$.
Assume that $\{u, v\} \notin N$. Let u^{\prime}, v^{\prime} be two vertices such that $\left\{u, u^{\prime}\right\},\left\{v, v^{\prime}\right\}$ $\in N$. Without loss of generality, let $\left\{u, u^{\prime}\right\} \in P_{1}$. Then $\left\{v, v^{\prime}\right\} \in P_{1}$ as well. Since $\{u, v\} \in E^{\prime}$, then this edge is a free alternating path. Let P_{2} be this path. Now, observe that P_{3}, \ldots, P_{k+1} are the other $k-1$-vertex-disjoint free alternating paths. Thus, P_{2}, \ldots, P_{k+1} are the desired k-vertex-disjoint free alternating paths and P_{1} is the saturated alternating path between u and v.

Figure 2.19: A 3-extendable graph G and paths P_{1}, P_{2}, P_{3}, Q in case $\{u, v\} \notin N$.

2.3 Alternating paths on any perfect matching

In the proof of sufficiency of Theorem 2.10 we proved that for a arbitrary perfect matching M of a k-extendable graph $G=\left(S_{1}, S_{2}, E\right)$ there exist k alternating paths with respect to M between every pair of vertices $x \in S_{1}$ and $y \in S_{2}$. If our target was to find these paths for every possible perfect matching of G, the first idea would be to check every perfect matching separately. Theorem 2.15 help us to avoid such a situation. It guarantees us that the existence of paths with respect to a perfect matching is sufficient in order to find the paths for every other perfect matching.
Theorem 2.15 ([4]). Let $G=\left(S_{1}, S_{2}, E\right)$ be a graph with a perfect matching and let x, y be two vertices such that $x \in S_{1}, y \in S_{2}$. Let M, M_{0} be perfect matchings of G. If G has k internally disjoint alternating $\{x, y\}$-paths with respect to M_{0}, then G has k internally disjoint alternating $\{x, y\}$-paths with respect to M.

Proof. Suppose that G contains k internally disjoint alternating $\{x, y\}$-paths with respect to M_{0}. Let P_{1}, \ldots, P_{k} be these paths. Let $H=\left(V(G), \bigcup_{i=1}^{k} E\left(P_{i}\right)\right)$. If v is an arbitrary vertex of H, then its degree equals to either 0,2 or k. Specifically,

$$
\operatorname{deg}_{H}(v)= \begin{cases}0, & v \notin \bigcup_{i=1}^{k} V\left(P_{i}\right) \\ 2, & v \in \bigcup_{i=1}^{k} V\left(P_{i}\right) \backslash\{x, y\} \\ k, & v=x \text { or } v=y\end{cases}
$$

Furthermore, let $K=(V(G), E(K))$, where $E(K)=E(H) \triangle M_{0} \triangle M$. It obviously holds that $E(K) \subseteq E(G)$. Let J be the intersection of the sets $E(H), M$ and M_{0}. Particularly, the set $E(K)$ does not contain edges from $(E(H) \cap M) \backslash J$, $\left(E(H) \cap M_{0}\right) \backslash J$ and $\left(M \cap M_{0}\right) \backslash J$. Figure 2.20 is crucial for understanding the proofs that follow.

Figure 2.20: A set representation of $E(K)$. All the edges of graph K belong to the gray part.

Figure 2.21: A 3-extendable graph G with perfect matchings M_{0}, M.

CHAPTER 2. STRUCTURAL CHARACTERIZATION OF K-EXTENDABLE BIPARTITE

 GRAPHS

Figure 2.22: Graphs H, K as obtained by 3-extendable graph G.

Claim 2.16 ([4]]. For each $v \in V(G) \backslash \bigcup_{i=1}^{k} V\left(P_{i}\right)$, $\operatorname{deg}_{K}(v)=0$ or $\operatorname{deg}_{K}(v)=2$. Furthermore, if $\operatorname{deg}_{K}(v)=2$, then exactly one of the two edges of K incident with v belongs to M.
Proof. Let $v \in V(G) \backslash \bigcup_{i=1}^{k} V\left(P_{i}\right)$. Observe that v is not incident to any edge of H. Since M_{0}, M are two different perfect matchings of G, there exist vertices v_{0}, v^{\prime} such that $\left\{v, v_{0}\right\} \in M_{0}$ and $\left\{v, v^{\prime}\right\} \in M$. Notice that these edges do not belong to $E(H)$. We have two cases to consider. If $v_{0}=v^{\prime}$, then $\left\{v, v^{\prime}\right\} \in\left(M_{0} \cap M\right) \backslash E(H)$. This implies $\left\{v, v^{\prime}\right\} \notin E(K)$. Thus, $\operatorname{deg}_{K}(v)=0$. If $v_{0} \neq v^{\prime}$, then $\left\{v, v_{0}\right\} \in M_{0} \backslash(M \cup$ $E(H))$ and $\left\{v, v^{\prime}\right\} \in M \backslash\left(M_{0} \cup E(H)\right)$. By construction of graph $K, N_{K}(v)=$ $\left\{v_{0}, v^{\prime}\right\}$. Thus, $\operatorname{deg_{K}}(v)=2$ and, furthermore, the last property holds trivially.

Claim 2.17 ([4]]). For each $v \in \bigcup_{i=1}^{k} V\left(P_{i}\right) \backslash\{x, y\}$, $\operatorname{deg}_{K}(v)=0$ or $\operatorname{deg}_{K}(v)=2$. Furthermore, if $\operatorname{deg}_{K}(v)=2$, then exactly one of the two edges of K incident with v belongs to M.

Proof. Let $v \in \bigcup_{i=1}^{k} V\left(P_{i}\right) \backslash\{x, y\}$. Specifically, v is a vertex of a path P_{j}, where $j \in\{1, \ldots, k\}$. It follows directly by construction of graph H that $\operatorname{deg}_{H}(v)=2$. Let $N_{H}(v)=\left\{v_{1}, v_{2}\right\}$. Since P_{j} is a $\{x, y\}$-alternating path with respect to M_{0}, either $\left\{v, v_{1}\right\} \in M_{0}$ or $\left\{v, v_{2}\right\} \in M_{0}$. We suppose that $\left\{v, v_{1}\right\} \in E(H) \cap M_{0}$ and $\left\{v, v_{2}\right\} \in E(H) \backslash M_{0}$. Furthermore, let v_{3} be a vertex such that $\left\{v, v_{3}\right\} \in M$. The following paragraph describes three different cases.

Let $v_{1}=v_{3}$. Then $\left\{v, v_{1}\right\} \in E(H) \cap M_{0} \cap M$ and $\left\{v, v_{2}\right\} \in E(H) \backslash\left(M_{0} \cup M\right)$. Thus, $N_{K}(v)=\left\{v_{1}, v_{2}\right\}$, $\operatorname{deg}_{K}(v)=2$ and $\left\{v, v_{1}\right\} \in M$. Let $v_{3}=v_{2}$. Then $\left\{v, v_{1}\right\} \in$ $\left(E(H) \cap M_{0}\right) \backslash M$ and $\left\{v, v_{2}\right\} \in\left(E(H) \backslash M_{0}\right) \cap M$. Observe that $\left\{v, v_{1}\right\},\left\{v, v_{2}\right\} \notin$ $E(K)$. Thus, $\operatorname{deg}_{K}(v)=0$. Let $v_{3} \neq v_{1}$ and $v_{3} \neq v_{2}$. Then $\left\{v, v_{1}\right\} \in\left(E(H) \cap M_{0}\right) \backslash$ M and $\left\{v, v_{2}\right\} \in E(H) \backslash\left(M_{0} \cup M\right)$. Furthermore, $\left\{v, v_{3}\right\} \in M \backslash\left(E(H) \cup M_{0}\right)$. Thus, $N_{K}(v)=\left\{v_{2}, v_{3}\right\}, \operatorname{deg}_{K}(v)=2$ and $\left\{v, v_{3}\right\} \in M$.

Claim 2.18 ([4]). Let $u \in\{x, y\}$. Then $\operatorname{deg}_{K}(u) \in\{k, k+2\}$. If $\operatorname{deg}_{K}(u)=k$, then none of k edges in K incident with u belong to M. If $\operatorname{deg}_{K}(u)=k+2$, then exactly one of the $k+2$ edges in K incident with u belongs to M.

Proof. We consider only the case where $u=y$. By symmetry, we proceed in the same way in case $u=x$. Let $N_{H}(y)=\left\{x_{1}, \ldots, x_{k}\right\}$ and $\left\{y, x_{0}\right\} \in M_{0}$. Observe that $x_{0} \notin\left\{x_{1}, \ldots, x_{k}\right\}$. Hence, for $i \in\{1, \ldots, k\}$ it holds that $\left\{y, x_{i}\right\} \in E(H) \backslash M_{0}$ and $\left\{y, x_{0}\right\} \in M_{0} \backslash E(H)$. Furthermore, let $\left\{y, x^{\prime}\right\} \in M$. We have three cases to take under consideration.

Assume that $x^{\prime}=x_{0}$. It holds that, for $i \in\{1, \ldots, k\},\left\{y, x_{i}\right\} \in E(H) \backslash\left(M \cup M_{0}\right)$ and $\left\{y, x_{0}\right\} \in\left(M_{0} \backslash E(H)\right) \cap M$. Equivalently, $\left\{y, x_{i}\right\} \in E(K)$ and $\left\{y, x_{0}\right\} \notin E(K)$. Thus, $N_{K}(y)=\left\{x_{1}, \ldots, x_{k}\right\}$. Notice that none of k edges $\left\{y, x_{1}\right\}, \ldots,\left\{y, x_{k}\right\}$ belong to the perfect matching M.

Suppose that $x^{\prime} \in\left\{x_{1}, \ldots, x_{k}\right\}$. We may assume that $x^{\prime}=x_{1}$. Then $\left\{y, x_{0}\right\} \in$ $M_{0} \backslash(E(H) \cup M),\left\{y, x^{\prime}\right\} \in\left(E(H) \backslash M_{0}\right) \cap M$ and $\left\{y, x_{i}\right\} \in E(H) \backslash\left(M_{0} \cup M\right)$, for $i \in\{2, \ldots, k\}$. Observe that $N_{K}(y)=\left\{x_{0}, x_{2}, \ldots, x_{k}\right\}$. Notice that none of the k edges $\left\{y, x_{0}\right\},\left\{y, x_{2}\right\}, \ldots,\left\{y, x_{k}\right\}$ belong to the perfect matching M.

Finally, let $x^{\prime} \notin\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}$. Then $\left\{y, x_{0}\right\} \in M_{0} \backslash(E(H) \cup M),\left\{y, x^{\prime}\right\} \in$ $M \backslash\left(E(H) \cup M_{0}\right)$ and $\left\{y, x_{i}\right\} \in E(H) \backslash\left(M_{0} \cup M\right)$, for $i \in\{1, \ldots, k\}$. In this case, observe that $N_{K}(y)=\left\{x^{\prime}, x_{0}, x_{1}, \ldots, x_{k}\right\}$. Furthermore, $\left\{y, x^{\prime}\right\} \in M$.

We are now ready to proceed with the proof of the theorem. It suffices to consider only two cases.

Case 1: $\operatorname{deg}_{K}(x)=k$ or $\operatorname{deg}_{K}(y)=k$.
We assume that $\operatorname{deg}_{K}(x)=k$ and $N_{K}(x)=\left\{x_{1}, \ldots, x_{k}\right\}$. By Claims 2.11 and 2.12, for every $i \in\{1, \ldots, k\}$, there exists $T_{i}=a_{0}^{(i)} a_{1}^{(i)} \ldots a_{l_{i}}^{(i)}$ in K with $a_{0}^{(i)}=x$, $a_{1}^{(i)}=x_{i}$ and $a_{l_{i}}^{(i)} \in\{x, y\}$. Each T_{i} is an alternating path with respect to M. By taking one T_{i} which is as small as possible, we may assume that T_{i} is either a cycle or a $\{x, y\}$-path. Suppose, for contradiction, that T_{i} is a cycle and $a_{l_{i}}^{(i)}=x$. Then $\left\{a_{l_{1}-1}^{(i)}, a_{l_{i}}^{(i)}\right\} \notin M$ by composing the assumption of the case and Claim 2.18. Since T_{i} is alternating, T_{i} is an odd cycle. This contradicts the fact that G is bipartite. Therefore, each T_{i} is an alternating $\{x, y\}$-path. Furthermore, T_{1}, \ldots, T_{k} are internally disjoint. By assuming that there are two paths with a common vertex u, we conclude to the contradiction that $\operatorname{deg}_{K}(u)=4$.

Case 2: $\operatorname{deg}_{K}(x)=\operatorname{deg}_{K}(y)=k+2$.
Let $N_{K}(x)=\left\{x^{\prime}, x_{0}, x, \ldots, x_{k}\right\}$ and $\left\{x, x^{\prime}\right\} \in M$. For each $i \in\{0,1, \ldots, k\}$, we can construct an alternating path $T_{i}=a_{0}^{(i)} a_{1}^{(i)} \ldots a_{l_{i}}^{(i)}$ in K with $a_{0}^{(i)}=x, a_{1}^{(i)}=x_{i}$ and $a_{l_{i}}^{(i)} \in\{x, y\}$. We can assume that each T_{i} is either a cycle or a $\{x, y\}$-path and that $T_{0}, T_{1}, \ldots, T_{k}$ are internally disjoint. Suppose that $a_{l_{k}}^{(k)}=x$. Since G is bipartite, l_{k} is even and $\left\{a_{l_{k}-1}^{(k)}, a_{l_{k}}^{(k)}\right\} \in M$. It follows that $a_{l_{k}-1}^{(k)}=x^{\prime}$. Observe that we still have k internally disjoint $\{x, y\}$-paths T_{0}, \ldots, T_{k-1} with respect to M.

CHAPTER 3

3.1 Computational complexity theory

Definition 3.1. A decision problem is a problem that can be posed as a yes-no question on the input values.

Figure 3.1: If the input belongs to the decision problem, then the algorithm return Yes. Otherwise, it returns No.

P and NP are the most famous among all the complexity classes. It still remains an open problem whether $\mathrm{P}=\mathrm{NP}$ or not. Researchers believe that the inequality most probably holds.

Definition 3.2. Class P contains all decision problems that can be solved by a Turing machine deterministically using a polynomial amount of computational time.

One problem which lies in P is Maximum Matching(Edmonds [9]). This problem accepts as input a coding of a graph G and returns a maximum matching in G. In graph theory, maximum matching of a graph is a matching of maximum size, i.e. no matching in the graph has strictly more elements than it.

Definition 3.3. A problem Π is in NP if there exists a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a polynomial time Turing machine V (called the verifier for the problem) such that for every input x it holds that $x \in \Pi$ if and only if $\exists u$ (called the certificate for the input) of size at most $p(x)$ such that $V(x, u)=1$.

Polynomial time reductions is an interesting concept of Computational Complexity Theory. Intuitively, it is a method for solving one problem using another. If there
exists a hypothetical algorithm that solves the second problem, then the first problem can be solved by transforming its input into a new one for the second problem and calling the algorithm one or multiple times. If the previous procedure is done in polynomial time, then the first problem is polynomial time reducible to the second.

Definition 3.4. Let A, B be two problems. Then A reduces to B in polynomial time if there exists a computable polynomial function f such that $x \in A$ if and only if $f(x) \in B$.

For abbreviation, we will write $\mathrm{A} \leq \mathrm{B}$.
Theorem 3.5. ([14]) Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be three problems. If $\mathrm{A} \leq \mathrm{B}$ and $\mathrm{B} \leq \mathrm{C}$, then $\mathrm{A} \leq \mathrm{C}$.
Theorem 3.6. ([15]) Let A, B be two problems. Then $\mathrm{A} \leq \mathrm{B}$ if and only if $\overline{\mathrm{A}} \leq \overline{\mathrm{B}}$.
It is known that there exist problems that are at least as hard as any other problem in NP. This property is called NP-hardness.

Definition 3.7. A problem L is NP-hard if for every L' in NP it holds that L' $\leq \mathrm{L}$.
Definition 3.8. A problem is NP-complete if it is in NP and it is NP-hard.
One famous NP-complete problem is Vertex Cover(Karp [8]). It contains pairs (G, k) for which graph G has a vertex cover of size at most k. In graph theory, a vertex cover of a graph $G=(V, E)$ is a subset $S \subseteq V$ such that for every $e=\{u, v\} \in E$ it holds $u \in S$ or $v \in S$.

Assume that A, B are two problems such that A is NP-complete and we would like to prove that B is NP-complete. By Definition 3.8, we have to prove two properties. Firstly, we prove that B is in NP. Afterwards, notice that it is sufficient to reduce A to B in order to prove the second property. That is because Theorem 3.5 holds and A is NP-complete by assumption.

We define a new complexity class which contains the complements of problems that are in NP.

Definition 3.9. A problem L is in coNP if \bar{L} is in NP.
We define coNP-hardness and coNP-completeness in analogous way as NP-hardness and NP-completeness respectively.

Theorem 3.10. A problem is NP-complete if and only if its complement is coNPcomplete.

Proof. Let L be a problem such that L is NP-complete. By Definition 3.8, L is in NP and every other problem L' in NP reduces to L in polynomial time. By Definition 3.9 and Theorem 3.6, it follows that $\overline{\mathrm{L}}$ is in coNP and every other problem $\overline{\mathrm{L}^{\prime}}$ in coNP reduces to $\overline{\mathrm{L}}$ in polynomial time. Thus, $\overline{\mathrm{L}}$ is coNP-complete. The opposite direction is proved symmetrically.

3.2 coNP-completeness on general graphs

Firstly, we mention a lemma which is going to be used afterwards.
Lemma 3.11. ([5]) Let $G=(V, E)$ be a graph and k an integer. If there is no vertex cover of size at most k in G, then there is a matching M in G which matches at least $k+1$ vertices.

Figure 3.2: There is no vertex cover of size at most 2 in G. Therefore, there is a matching of size at least 3 .

Proof. The Maximum Matching problem, on input G, returns a maximum matching M of G. Let $S \subseteq V$ be the set of vertices incident to edges in M. Observe that S is a vertex cover in G. If S was not a vertex cover in G, then there would exist an edge $e \in E$ such that no endpoint of it would belong to S and, as a result, $M \cup e$ would be a matching strictly larger than M. This outcome contradicts the fact that M is a maximum matching in G. By hypothesis, there is no vertex cover of size at most k in G. Thus, $|S| \geq k+1$ and M matches at least $k+1$ vertices.

Theorem 3.12. Extendability is coNP-complete.
Proof. We will show that $\overline{\text { ExTENDABILITY }}$ is NP-complete. It consists of pairs (G, k) with the property that there exists a matching of size k which can not be extended to a perfect matching in G. This proof is sufficient for proving that Extendability is coNP-complete.

Firstly we prove that $\overline{\text { Extendability }}$ is in NP. We construct a verifier N that accepts as input an encoding $((G=(V, E), k), M)$, where G is a graph, k is a natural number and M is our certificate and verifies in polynomial time whether (G, k) is a yes-instance of EXTENDABILITY or not. Since $|M|=k \leq|V|-1, M$ has polynomial length. The verifier N works as follows:
$N=$ "On input $((G=(V, E), k), M)$:"

1. $G^{\prime}:=G \backslash V_{M}$, where V_{M} contains the vertices which are incident to an edge of M
2. Run Maximum Matching on input $\left(G^{\prime}\right)$ and obtain M^{\prime}
3. If M^{\prime} is a perfect matching in G, then reject. Otherwise, accept."

If M^{\prime} is a perfect matching in G^{\prime}, then $M \cup M^{\prime}$ is a perfect matching in G. Thus, (G, k) is a no-instance of Extendability. If M^{\prime} is not a perfect matching in G^{\prime}, then M can not be extended to a perfect matching in G. Thus, (G, k) is a yes-instance of Extendability. Observe that the verifier N runs in polynomial time.

We proceed with the proof of NP-hardness. We prove it by reducing Vertex Cover in polynomial time to it. Let $\left(G_{V C}, s\right)$ be a general instance of Vertex Cover and $\left\{v_{1}, \ldots, v_{r}\right\}$ be the set of vertices of $G_{V C}$. We assume that $0<s<r-1$ and $E\left(G_{V C}\right) \neq \emptyset$. This is because if $s=0$ or $s=r-1$ we can decide in polynomial time whether $G_{V C}$ has a vertex cover of at most the given size or not. We will map $\left(G_{V C}, s\right)$ to a suitable instance (G, k). The following function f maps $\left(G_{V C}, s\right)$ to a new instance (G, k):
$f\left(G_{V C}, s\right)$:

1. Set $k:=s$.
2. Let $W:=\left\{w_{1}, \ldots, w_{r-1}\right\}$ and $Q_{2 r+1}:=\left\{q_{1}, \ldots, q_{2 r+1}\right\}$.
3. Let $E_{V W}=\left\{\{v, w\} \mid v \in V\left(G_{V C}\right), w \in W\right\}$.
4. Let $E_{W Q}=\left\{\{w, q\} \mid w \in W, q \in Q_{2 r+1}\right\}$.
5. Let $E_{Q}=\left\{\left\{q, q^{\prime}\right\} \mid q, q^{\prime} \in Q_{2 r+1}, q \neq q^{\prime}\right\}$.
6. Initialize graph $G:=\emptyset$.
7. Set $V(G):=V\left(G_{V C}\right) \cup W \cup Q_{2 r+1}$.
8. Set $E(G):=E\left(G_{V C}\right) \cup W_{V W} \cup E_{W Q} \cup E_{Q}$.
9. Output (G, k)."

Observe that (G, k) is constructed in polynomial time. Clearly, G is connected and has $4 r$ vertices, i.e. an even number. Furthermore, notice that a perfect matching G can be found in the following way: Since $E\left(G_{V C}\right) \neq \emptyset$, we choose an arbitrary edge in $G_{V C}$. Then we add $r-2$ independent edges from $E_{V W}$. Again, we take one edge from $E_{W Q}$ for the remaining node in W. Finally, we add r independent edges from E_{Q}.

Figure 3.3: An obtained graph G from f on input $G_{V C}$ with a perfect matching M.
We show that if $G_{V C}$ has a vertex cover S of size at most s, then G is not k extendable. If $|S|<k$, then extend S to a set of k vertices. The new S is obviously still a vertex cover. Assume that $S=\left\{v_{1}, \ldots, v_{k}\right\}$. Let $M=\left\{\left\{v_{i}, w_{i}\right\} \mid i=1, \ldots, k\right\}$. Since $0<k<r-1, M$ is well defined and $|M|=k$. We show that M can not be extended to a perfect matching. By assuming the opposite, we observe that every vertex of $V\left(G_{V C}\right)$ must be matched with a vertex of W. Since $\left|V\left(G_{V C}\right)\right|=r$ and $|W|=r-1$, this is not possible. Suppose that two distinct vertices $v, v^{\prime} \in V\left(G_{V C}\right)$ can be matched. Since S is a vertex cover in $G_{V C}$, it holds that $v \in S$ or $v^{\prime} \in S$. Thus, v or v^{\prime} are already matched to some vertex $w \in W$. Therefore, no edge in $E\left(G_{V C}\right)$ can belong to a perfect matching that contains M as a subset. Since we found a matching M of k vertices such that there is no perfect matching that contains it, G is not k-extendable (see Figure 3.4).

Assume now that $G_{V C}$ has no vertex cover of size at most s. We will show that G is k-extendable. Let M be a matching in G such that $|M|=k$. We set

$$
k_{V}=\left|M \cap E\left(G_{V C}\right)\right|, k_{V W}=\left|M \cap E_{V W}\right|, k_{W Q}=\left|M \cap E_{W Q}\right|, k_{Q}=\left|M \cap E_{Q}\right|
$$

Observe that $k=k_{V}+k_{V W}+k_{W Q}+k_{Q}$. Furthermore, the number of unmatched vertices in $V\left(G_{V C}\right)$ is given by $K_{V}^{f r e e}=r-2 k_{V}-k_{V W}$. Similarly, the number of unmatched vertices in W is given by the formula $k_{W}^{f r e e}=r-1-k_{V W}-k_{W Q}$. We have two cases to take under consideration.

Figure 3.4: A case where $G_{V C}$ has a vertex cover of size at most 2 and G is not 2extendable.

Let $k_{V}^{f r e e} \leq k_{W}^{f r e e}$. Then at least one edge in $G_{V C}$ belongs to M. We can extend M to a perfect matching. The idea is to match every remaining $v \in V\left(G_{V C}\right)$ with an unmatched $w \in W$, then match any remaining $w \in W$ to some $q \in Q$ and finally match the remaining vertices in Q. The crucial observation is that the number of unmatched vertices in W after the first step is odd. In what follows we discuss the reason of this situation. For simplicity, let M^{\prime} be the perfect matching that contains M and let $M_{V W}^{\prime}$ be a matching such that $M_{V W}^{\prime} \subset M^{\prime} \cap E_{V W}$ and $M_{V W}^{\prime} \cap M=\emptyset$.

- Assume that r is even.
- Let $k_{V}^{f r e e}$ is odd. Then observe that necessarily an odd number of edges in $E_{V W}$ can be in M. After the first step, notice that $\left|M_{V W}^{\prime}\right|$ is odd. Since $k_{V}^{f r e e}$ is odd, $r-1$ is odd and $\left|M_{V W}^{\prime}\right|$ is odd, it follows that the number of the remaining unmatched vertices in W is odd (see Figure 3.5).

Figure 3.5: A case where $G_{V C}$ is has no vertex cover of size $2, k_{V}^{\text {free }} \leq k_{W}^{\text {free }}, r$ is even and $k_{V}^{f r e e}$ is odd. Color red the edges of M, dashed black the edges of $M_{V W}^{\prime}$ and gray the remaining unmatched vertices in W.

- Let $k_{V}^{\text {free }}$ is even. Then observe that necessarily an even number of edges in $E_{V W}$ can be in M. After the first step, notice that $\left|M_{V W}^{\prime}\right|$ is even. Since $k_{V}^{\text {free }}$ is even, $r-1$ is odd and $\left|M_{V W}^{\prime}\right|$ is even, it follows that the number
of the remaining unmatched vertices in W is odd (see Figure 3.6).

Figure 3.6: A case where $G_{V C}$ is has no vertex cover of size $2, k_{V}^{\text {free }} \leq k_{W}^{f r e e}, r$ is even and $k_{V}^{f r e e}$ is even. Color red the edges of M, dashed black the edges of $M_{V W}^{\prime}$ and gray the remaining unmatched vertices in W.

- Assume that r is odd.
- Let $k_{V}^{f r e e}$ is odd. Then observe that necessarily an even number of edges in $E_{V W}$ can be in M. After the first step, notice that $\left|M_{V W}^{\prime}\right|$ is odd. Since $k_{V}^{f r e e}$ is odd, $r-1$ is even and $\left|M_{V W}^{\prime}\right|$ is even, it follows that the number of the remaining unmatched vertices in W is odd (see Figure 3.7).

Figure 3.7: A case where $G_{V C}$ is has no vertex cover of size $3, k_{V}^{f r e e} \leq k_{W}^{f r e e}, r$ is odd and $k_{V}^{\text {free }}$ is odd. Color red the edges of M, dashed black the edges of $M_{V W}^{\prime}$ and gray the remaining unmatched vertices in W.

- Let $k_{V}^{f r e e}$ is even. Then observe that necessarily an odd number of edges in $E_{V W}$ can be in M. After the first step, notice that $\left|M_{V W}^{\prime}\right|$ is even. Since $k_{V}^{f r e e}$ is even, $r-1$ is even and $\left|M_{V W}^{\prime}\right|$ is odd, it follows that the number of the remaining unmatched vertices in W is odd (see Figure 3.8).

Let $k_{V}^{\text {free }}>k_{W}^{\text {free }}$. Then $G_{V C}$ has $1-2 k_{V}+k_{W Q}$ more unmatched vertices than W. Figure 3.9 illustrates a case where $k_{V}^{\text {free }}=7>4=k_{W}^{\text {free }}$.

Figure 3.8: A case where $G_{V C}$ is has no vertex cover of size $3, k_{V}^{\text {free }} \leq k_{W}^{f r e e}, r$ is odd and $k_{V}^{\text {free }}$ is even. Color red the edges of M, dashed black the edges of $M_{V W}^{\prime}$ and gray the remaining unmatched vertices in W.

Figure 3.9: A case where $G_{V C}$ has no vertex cover of size 3 and G is 3-extendable.

Let $G_{V C}^{\prime}$ be a subgraph of $G_{V C}$ induced by all the vertices which are not incident to an edge in M. Observe that vertices in $G_{V C}^{\prime}$ can be matched with either a distinct vertex in $G_{V C}^{\prime}$ or an unmatched vertex in W. We want to find a matching M^{\prime} in $G_{V C}^{\prime}$ which matches at least $1-2 k_{V}+k_{W Q}$ vertices.

Since $G_{V C}$ does not contain a vertex cover of size k and $G_{V C}^{\prime}$ has $2 k_{V}+k_{V W}$ vertices less than $G_{V C}$, it follows directly that $G_{V C}^{\prime}$ does not have a vertex cover of size $k-2 k_{V}-k_{V W}=k_{Q}+k_{W Q}-k_{V}$. Notice that the right term is non-negative. This is because $k_{V} \geq 0$ and $k_{V} \leq k_{W Q}-k_{V}$. By using Lemma 3.11, we get that there is a matching M^{\prime} in $G_{V C}^{\prime}$ which matches at least $1+k_{Q}+k_{W Q}-k_{V}$. Observe that the following inequalities hold: $1+k_{Q}+k_{W Q}-k_{V} \geq 1+k_{W Q}-k_{V} \geq 1-2 k_{V}+k_{W Q}$. Thus, M^{\prime} matches the desired number of vertices in $G_{V C}^{\prime}$.

Now M can be extended to a perfect matching. Firstly, we add the edges in M^{\prime} to M. After that we match every remaining unmatched $v \in V\left(G_{V C}\right)$ with some $w \in W$. Notice that the second step is now possible. Next, we match every remaining $w \in W$ with some $q \in Q$. Finally, we match the remaining even number of vertices in Q.

3.3 A polynomial algorithm for bipartite graphs

In this section the graph G is undirected, simple, connected and bipartite and has a perfect matching.

Lemma 3.13. ([3]) Let M be a perfect matching of $G=\left(S_{1}, S_{2}, E\right)$. G is k-extendable if and only if its residual graph G_{M} is strongly connected and there are k-vertexdisjoint directed paths between every vertex of S_{1} and every vertex of S_{2} in G_{M}.

Figure 3.10: A 2-extendable graph G and its residual graph G_{M}.

Proof. Firstly, we discuss about a direct observation. Let $u \in S_{1}$ and $v \in S_{2}$. A free alternating path in G from u to v becomes a directed path from u to v in G_{M}. Furthermore, a saturated alternating path in G from u to v becomes a directed path from v to u in G_{M}. Consequently, G has k internally disjoint free M-alternating paths and one saturated between every vertex $u \in S_{1}$ and every vertex $v \in S_{2}$ if and only if there are k internally disjoint directed paths from u to v and one directed path from v to u in G_{M} (see Figure 3.10).

Assume that G is k-extendable. By Theorem 2.14, there are k internally disjoint free M-alternating paths and one saturated between u and v. Observe that there are k internally disjoint directed paths from u to v and one directed path from v to u in G_{M}. Thus, G_{M} is strongly connected.

For the other direction, we assume that there are k internally disjoint directed paths from u to v and G_{M} is strongly connected. These paths are free M-alternating paths in G. Since G_{M} is strongly connected, there is a directed path from v to u. This path is saturated M-alternating path in G and is disjoint with every aforementioned path. Thus, G is k-extendable.

The maximization version of Extendability problem focuses on finding the maximum value of k for which the input graph G is k-extendable. Initially, we describe the operation of some functions which are used in the algorithm. Then, the algorithm follows and finally we describe its time complexity.

- find-perfect-matching (G) searches for a perfect matching in G. It returns \emptyset if G does not contain a perfect matching.
- is-perfect-matching (G, M) returns true if M is a perfect matching of G. If M is not a perfect matching in G, then it returns false.
- $\operatorname{direct}(G, M)$ returns the residual graph of $G=\left(S_{1}, S_{2}, E\right)$.
- is-strongly-connected (G) returns true if G is strongly connected. Otherwise, it returns false.
- max-disjoint-paths (G, s, t) returns the maximum number of vertex-disjoint paths in G between s and t, where s is the source node and t is the target node.

```
Algorithm 1 finds the extendability of the input graph \(G=\left(S_{1}, S_{2}, E\right)\)
    MAIN FUNCTION: find-extendability \((G)\)
    \(k \leftarrow+\infty\)
    \(M \leftarrow\) find-perfect-matching \((G)\)
    perfect_matching \(\leftarrow\) is-perfect-matching \((G, M)\)
    if perfect_matching then
        \(G^{\prime} \leftarrow \overline{\operatorname{direct}}(G, M)\)
        strongly_connected \(\leftarrow\) is-strongly-connected \(\left(G^{\prime}\right)\)
        if strongly_connected then
            for \(u \in S_{1}\) do
            for \(v \in S_{2}\) do
                    paths \(\leftarrow\) max-disjoint-paths \(\left(G^{\prime}, u, v\right)\)
                    \(k \leftarrow \min (k, p a t h s)\)
            end for
            end for
        else
            \(k \leftarrow 0\)
        end if
    else
        \(k \leftarrow 0\)
    end if
    return \(k\)
```

It is known that finding a perfect matching in a bipartite graph can be done in $O(E \sqrt{V})($ Hopkroft, Karp [11]). We can decide in $O(E)$ time whereas M is a perfect matching in G. We simply take all the vertices incident to some edge of M and check their number equals the total number of vertices. G^{\prime} can be constructed in $O(E)$. Checking if G^{\prime} is strongly connected can be done in $O(E)([12])$. Finding the maximum number of vertex-disjoint paths between every vertex of S_{1} and every vertex of S_{2} can be done in $O\left(E \cdot \min \left(k^{3}+V, k \cdot V\right)\right)([13])$. Thus, the total running time of the above algorithm is $O\left(E \cdot \min \left(k^{3}+V, k \cdot V\right)\right)$.

Let G be a bipartite graph and k be a positive integer. Let (G, k) be the input of the Extendability. Observe that in this particular case it is very easy to decide whether this input is yes or no instance of the problem. It suffices to compute the extendability of the graph G, denoted by $\operatorname{ext}(G)$, and check whether k is at most $\operatorname{ext}(G)$ or not.
[1] M.D. Plummer. Matching extension in bipartite graphs. Proceedings of the 17th Southeastern Conference on Combinatorics, Graph Theory and Computing, Congress Numer 54, Utilitas Math., Winnipeg, 1986, pp. 245-258.
[2] R.E.L. Aldred, D.A. Holton, Dingjun Lou, Akira Saito. M-alternating paths in n extendable bipartite graphs. Discrete Mathematics 269 (2003), pp. 3-7.
[3] J. Lakhal, L. Litzler. A polynomial algorithm for the extendability problem in bipartite graphs. Information Processing Letters 65 (1998), pp. 11-15.
[4] Dingjun Lou, Akira Saito, Lihua Teng. A note on internally disjoint alternating paths in bipartite graphs. Discrete Mathematics 290 (2005), pp. 105-108.
[5] Jan Hackfeld, Arie M. C. A. Koster. The matching extension problem in general graphs is co-NP-complete. Springer Science+Business Media, LLC, parti of Springer Nature 2017, J Comb Optim (2018), pp. 854-858.
[6] M.D. Plummer. On n-extendable graphs. Discrete Mathematics 31 (1980), pp.201210.
[7] Dingjun Lou. On the structure of minimallyn-extendable bipartite graphs. Discrete Mathematics 202 (1999), pp. 173-181.
[8] Karp RM (1972). Reducibility among combinatorial problems. In: Miller RE, Thatcher JW (eds) Complexity of computer computations. Plenum, New York, pp 85-103.
[9] Edmonds J (1965). Paths, trees and flowers. Can J Math 17:449-467.
[10] L. Lovasz, M.D. Plummer. Matching Theory. Annals of Discrete Mathematics 29, North-Holland, Amsterdam, 1986 (544 pp.).
[11] J.E. Hopkroft, R.M. Karp. A $n^{1 / 2}$ algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2 (4) (1973) 225-231.
[12] M. Gondran, M. Minoux. Graphes et Algorithmes. Editions Eyrolles, 1985.
[13] M.R. Henzinger, S. Rao, H.N. Gabow. Computing vertex connectivity: new bounds from old techniques. in: Proc. 37th Ann. Symp. on Foundations of Computer Science, 1996,pp.462-471.
[14] Sanjeev Arora, Boaz Barak. Computational Complexity: A Modern Approach. Princeton University.
[15] Michael Sipser. Introduction to the Theory of Computation, Second edition. Massachusetts Institute of Technology.

[^0]: Supervisor:
 Archontia C. Giannopoulou, Assistant Professor,
 Department of Informatics and Telecommunications,
 National and Kapodistrian University of Athens.

