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ABSTRACT

In this thesis we explore different applications of the theory of Quantitative Informa
tion Flow (QIF). We present concepts and definitions having in mind readers some
what familiar with the subject or currently learning about it. The original form of this
thesis is that of Jupyter Notebooks and the goal was to create a more interactive
and approachable way of studying the theory of QIF. The Jupyter Notebooks can be
found at https://github.com/damik3/qifnotebooks.

SUBJECT AREA: Security and Privacy

KEYWORDS: security, privacy, quantitative information flow

https://github.com/damik3/qif-notebooks


ΠΕΡΙΛΗΨΗ

Σε αυτήν την εργασία εξερευνούμε διάφορες εφαρμογές της θεωρίας του
Quantitative Information Flow (QIF). Παρουσιάζουμε έννοιες και ορισμούς έχοντας
κατά νού αναγνώστες σχετικά οικείους με το αντικείμενο ή που επί του παρόντος μα
θαίνουν για αυτό. Η αρχική μορφή αυτής της εργασίας ήταν σε Jupyter Notebooks
με σκοπό να δημιουργήσουμε ένα πιο διαδραστικό και εφικτό τρόπο μελέτης και
εξοικίωσης με την θεωρία του QIF. Τα Jupyter Notebooks υπάρχουν διαθέσιμα στο
https://github.com/damik3/qifnotebooks.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Ασφάλεια και Ιδιωτικότητα

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: ασφάλεια, ιδιωτικότητα, quantitative information flow

https://github.com/damik3/qif-notebooks
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PREFACE

The essential part of this work was developed in Athens, Greece between October
2020 and March 2021. The initial challenge was to study and get familiar with the
different concepts of the theory of Quantitative Information Flow (QIF). After that, I
had to think of appealing ways for presenting those concepts, write the necessary
code and finally create the notebooks.



Applications of the Theory of Quantitative Information Flow

1. INTRODUCTION

Information Flow is the transfer of information from a source (who already knows
the information), to a target (who does not know it yet). In the field of Quantitative
Information Flow (QIF) we are working in the same context but we are mainly inter
ested in information leakage and how it can be measured. It is important to notice
that through this quantitative approach, we can mark some leaks more serious than
others and thus less tolerable. We can also model different adversaries that might
want to leak parts of the information but not all of it. And that makes this approach
more flexible and more applicable to a wider range of real life scenarios.

The main sections of this work can be split in two parts; theory and case studies.
Each section of the first part presents a basic concept of QIF using an example
scenario, while the second part examines a couple of additional cases using almost
all of the concepts presented in the first part. As also mentioned in the abstract,
our goal was to provide additional material for individuals who wish to learn more
about QIF through the interactive nature of Jupyter Noteboooks. At any moment
the reader can pause and experiment with different code blocks and observe the
results.

In section 2.1 we present the concept of a secret and an adversary who is trying to
find out about that secret and how we can measure the secret’s vulnerability. In the
next section, we give ways in which we can model different types of adversaries that
might want to learn different things about the secret. Continuing on with section 2.3
section 2.4 and section 2.5, we introduce the essential concept of channels and
posterior vulnerability, which basically gives a measure of leakage for the secret
after observing the channel’s output. Closing the theory part, we present the notion
of refinement, which provides a very useful way for comparing two channels and
their leakage.

In chapter 3 we put in use many concepts introduced in the previous part in order
to study and analyze elections and voting systems from the point of view of QIF.
And last but not least, we briefly touch the area of Differential Privacy  a some
what different and more targeted approach to information leakage  and compare its
differences and similarities to QIF.

Note that manyQIFmeasures are being computed using the libqif library available
at https://github.com/chatziko/libqif.

This thesis is mainly based on the book The Science of Quantitative Information
Flow [1] and each section of this work can be matched to a chapter of [1] as below:

M. Vargiamis 14
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Table 1.1: Thesis sections and book chapters matching

Thesis section Book Chapter
section 2.1 Chapter 2
section 2.2 Chapter 3

section 2.3, section 2.4, section 2.5 Chapter 4, Chapter 5
section 2.6 Chapter 9
section 3.1 Chapter 22
section 3.2 Chapter 23

M. Vargiamis 15
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2. THEORY

Starting off, we are going to use an example with pirates and hidden treasures to
present the concept of secrets and vulnerability.

2.1 Secrets And Vulnerability

EvilEye Henry was a pirate back in the day. He was not a famous one but he
sure accumulated a lot of wealth. He died unexpectedly and his treasure was never
found. It was buried in a secret spot that he never told anoyone about.

Recently you found an old book mentioning his name. One of his sailors mentioned
the following:

Arrrgh!

I am 100% sure that EvilEye Henry has buried his treasure in one of the
following locations:

1. Black Sand Haven
2. Dead Man’s Isle
3. Isle Of Mermaids
4. Kraken Reef
5. Monkey Bay
6. Old Salt Cavern

I am also sure that the probability of the treasure being buried in locations
1 or 2 is the same as the probability of it being buried in locations 3, 4,
5, or 6.

Arrrgh!

Before finding the book you had no idea where the treasure might be. But now you
know something more. How vunerable has EvilEye Henry’s secret become?

2.1.1 Probability distribution of X

Let’s call our secret X. It matches the X pirates used to mark treasures on their
maps. The possible values for X are {1, 2, 3, 4, 5, 6}. Each number corresponds to
a location in the order that they appear above. The probability distribution of X is
given by

π =

(
1

4
,
1

4
,
1

8
,
1

8
,
1

8
,
1

8

)
Why is that? From what the sailor said we can deduce that X is either in location 1
or 2 with probability 50% (uniformly) or in locations 3, 4, 5 or 6 with probability 50%
(uniformly again). So we could deduce that pX(1) = 1

4
and pX(2) =

1
4
because they

add up to 1
2
= 50%. And for the remaining locations uniformly distribute the other 1

2
.
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[2]: pi = [1/4, 1/4, 1/8, 1/8, 1/8, 1/8]
print(pi)

[0.25, 0.25, 0.125, 0.125, 0.125, 0.125]

2.1.2 Bayes vulnerability

One way to measure the vulnerability of a probability distribution is Bayes vulnerab
ility. It is basically the answer to the following question:

What is the probability of guessing X correctly in one try?

For our scenario if we had only one try to go and dig up a place in search of the
treasure we would naturally pick the one with the highest probability. Which would
be either 1 or 2. Either way we would succeed with probability 1

4
.

In our case, Bayes vulnerability is equal to:

[3]: print("Bayes vulnerability:", measure.bayes_vuln.prior(pi))

Bayes vulnerability: 0.25

2.1.3 Guessing entropy

Imagine now that you decide to go and search all of the locations. Eventually you
would find the true value of X. But a question naturally arises. Which locations
should you visit first?

The logical way of doing it would be to visit the ones with the highest probability first.
So there is a higher probability of finding the treasure sooner.

Guessing entropy is the average number of locations we would need to search in
order to find the true value of X.

In our case, guessing entropy is equal to:

[4]: print("Guessing entropy:", measure.guessing.prior(pi))

Guessing entropy: 3.0

2.1.4 Shannon entropy

Another way to measure the vulnerability of a probability distribution is Shannon
entropy. To better understand it imagine having in front of you someone who knows
the true value of X and you ask them questions according to the following train of
thought:

X ∈ {1, 2} with probability 1
2
and X ∈ {3, 4, 5, 6} with probability 1

2
. So I

ask:

Does X belong to {1, 2}?

M. Vargiamis 17
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If the answer is yes then X ∈ {1, 2}.

X ∈ {1} with probability 1
4
and X ∈ {2} with probability 1

4
. So I

ask:

Does X belong to {1}?

If the answer is yes then I have found the treasure! It
is buried in location 1 and it took me 2 questions to
reach to this conclusion! [This scenario happens with
probability pX(1)]

If the answer is no then X ∈ {2} and again, I have
found the treasure! It is buried in location 2 and it took
me 2 questions to reach to this conclusion! [This scen
ario happens with probability pX(2)]

If the answer is no then X ∈ {3, 4, 5, 6}.

X ∈ {3, 4} with probability 1
4
and X ∈ {5, 6} with probability 1

4
.

So I ask:

Does X belong to {3, 4}?

If the answer is yes then bla bla bla…

Shannon’s entropy is basically the average number of questions needed to com
pletely reveal the secret. In general, questions are in the form of “Does x belong to
S?”.

In our case, Shannon’s entropy is equal to:

[5]: print("Shannon entropy:", measure.shannon.prior(pi))

Shannon entropy: 2.5

2.1.5 So how vulnerable is EvilEye Henry’s secret?

The answer is, well, it depends!

If the person seeking to reveal the secret takes only one guess based on the secret’s
probability distribution, then Bayes Vulnerability is the measure of vulnerability we
should be using.

If the person seeking to reveal the secret tries all possible values of X in decreasing
probability order, then Guessing Entropy is the right measure of vulnerability for this
case.

And if they can ask questions in the form of “Does x belong to S?”, then Shannon
Entropy is the right choice.

In general, we need to have a general idea of the adversary who wants to reveal our
secret. What is their goal and what methods they can use.

M. Vargiamis 18
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The next step is to find a way for being able to take into account different adversaries
with different goals, while assessing the vulnerability of the secret. We are going do
that through gvulnerability.

2.2 gvulnerability

2.2.1 Defining g

In a more practical, real life scenario, we would have to consider how much we
would get from finding the treasure and how much it would costs us searching in
each location. When we take a guess and it is the right one, we get rewarded. In
our example the reward is the monetary value of the treasure. But if we take a guess
and it’s the wrong one, then we lose the money we spent traveling back and forth
and digging up the place. And that can be expressed with a negative number.

For our example let’s say that the treasure is worth $1500. But seraching at each
location has a different cost. The matrix below represents that idea.

Table 2.1: g function defined with a matrix

g TrueX = 1 TrueX = 2 TrueX = 3 TrueX = 4 TrueX = 5 TrueX = 6
Guess X = 1 $1100 −$400 −$400 −$400 −$400 −$400
Guess X = 2 −$800 $700 −$800 −$800 −$800 −$800
Guess X = 3 −$100 −$100 $1400 −$100 −$100 −$100
Guess X = 4 −$200 −$200 −$200 $1300 −$200 −$200
Guess X = 5 −$300 −$300 −$300 −$300 $1200 −$300
Guess X = 6 −$400 −$400 −$400 −$400 −$400 $1100

g’s first line corresponds to choosing to dig up location 1.

• g(1, 1)means we choose to search location 1 and the treasure is indeed there.
So we get our prize of $ $ 1500$ minus the digging expenses for location 1,
which are equal to $400. So in total we get $1100.

• g(1, 2) means we choose 1 and the treasure is in 2. But we spent $400 for
digging.

• g(1, 3) means we choose 1 and the treasure is in 3. Again, we spent $400
because we still chose to dig in location 1.

• …

The same logic applies to the rest of g.

What we have just done is define a gain function g. By definition, g(w, x) specifies
the gain that the adversary achieves by taking action w when the value of the secret
is x. In this example the role of the adversary is basically us trying to guess the
secret location X.

[3]: g = np.array([
[1100, -400, -400, -400, -400, -400],
[-800, 700, -800, -800, -800, -800],
[-100, -100, 1400, -100, -100, -100],
[-200, -200, -200, 1300, -200, -200],
[-300, -300, -300, -300, 1200, -300],

M. Vargiamis 19
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[-400, -400, -400, -400, -400, 1100],
])

2.2.2 Calculating gvulnerability

In general we cannot be sure about what we gain from each action we take. That
dependes on the true value of X. But we can make an estimate based on the
probability distribution of X by computing the average gain we obtain from each
action.

[2]: pi = [1/4, 1/4, 1/8, 1/8, 1/8, 1/8]

[4]: exp_gain = np.matmul(g, np.transpose(pi))
for i in range(len(exp_gain)):

print("Average gain when choosing location %d: $%.2f" % (i+1,␣
↪→exp_gain[i]))

Average gain when choosing location 1: $-25.00
Average gain when choosing location 2: $-425.00
Average gain when choosing location 3: $87.50
Average gain when choosing location 4: $-12.50
Average gain when choosing location 5: $-112.50
Average gain when choosing location 6: $-212.50

And now what would our best choice be? The one with the highest average winnings
of course!

[5]: print("Best choice: Location", np.argmax(exp_gain)+1)
print("Expected winnings: $", max(exp_gain), sep='')

Best choice: Location 3
Expected winnings: $87.5

So the distribution’s g vulnerability is equal to 87.5. And it achieved for guessing
X = 3.

Notice that location 1 has a higher probability of being the true value of X but it
costs us more if we are wrong. On the other hand, location 3 has a lower probability
of being the true value of X but it costs us less if we are wrong. But that lower
probability balances out with the smaller cost for when being wrong. And on average,
it makes for a better choice than location 1.

Also, without considering g, our best choice would have been to guess X = 1. But
given the information g provides us, X = 3 is a better guess.

2.2.3 Setting a threshold

Someone could argue that the average winnings, whichever location we chose,
might not be good enough for us to take action. For almost all but one location,

M. Vargiamis 20
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the average gain is negative, meaning in total we lose money. And in the one case
where the gain is positive, it is just not worth it.

So we might want to set a threshold for our gain. Meaning that, if the average gain
of an action is lower than the threshold, we never choose that action.

For our case someone could say that to choose an action, it should give an average
of at least $300 in order for it to be worth it.

In order to achieve that we can add an additional row to g like this:

[6]: g = np.array([
[1100, -400, -400, -400, -400, -400],
[-800, 700, -800, -800, -800, -800],
[-100, -100, 1400, -100, -100, -100],
[-200, -200, -200, 1300, -200, -200],
[-300, -300, -300, -300, 1200, -300],
[-400, -400, -400, -400, -400, 1100],
[300, 300, 300, 300, 300, 300],

])

Now, watch what happens when we compute the average gain for each action and
then pick the action with the highest gain.

[7]: exp_gain = np.matmul(g, np.transpose(pi))
for i in range(len(exp_gain)):

print("Average gain when choosing location %d: $%.2f" % (i+1,␣
↪→exp_gain[i]))

Average gain when choosing location 1: $-25.00
Average gain when choosing location 2: $-425.00
Average gain when choosing location 3: $87.50
Average gain when choosing location 4: $-12.50
Average gain when choosing location 5: $-112.50
Average gain when choosing location 6: $-212.50
Average gain when choosing location 7: $300.00

[8]: print("Best choice: Location", np.argmax(exp_gain)+1)
print("Expected winnings: $", max(exp_gain), sep='')

Best choice: Location 7
Expected winnings: $300.0

Of course there is no Location 7. It just means tha the best action is the last one,
which corresponds to:

“It’s not worth digging any of the other locations up. Just stay home and
study QIF.”

M. Vargiamis 21
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In the next three sections we introduce the concept of channels and posterior vul
nerability.

2.3 Channels and Posterior Vulnerability

The following is known as “The Three Prisoners Problem”.

Three prisoners, Alice, Bob and Charlie are senteced to death, but one of them
(uniformly chosen at random) is selected to be pardoned, so that just the two out of
the three prisoners will be executed. The warden knows which one will be pardoned,
but he is not allowed to tell the prisoners. Alice begs the warden to let her know the
identity of one of the others who will be executed saying:

“If Bob is pardoned, say Charlie’s name, and if Charlie is pardoned say
Bob’s. If I’m pardoned, chose randomly to name Bob or Charlie.”

We are interested in answering the following two questions: 1. Given the warden’s
answer, what is the probability of correctly guessing the pardoned prisoner? 2. Is
the warden’s answer useful for Alice?

2.3.1 Channel matrix

Let’s model this problem using a channelW that takes a secret inputX (the prisoner
to be pardoned) and produces an output Y (the warden’s answer). You can think of
W as being the warden in our problem. The possible values forX and Y are A,B,C
(short for Alice, Bob and Charlie).

W =

 0 1
2

1
2

0 0 1
0 1 0


W ’s first row corresponds to X = A, meaning the scenario where Alice is chosen
to be pardoned. In that case the channel’s output (or the warden’s saying) is not
deterministic, but has some degree of randomness. More specifically the warden
says Alice with probability 0, and chooses uniformly between Bob and Charlie, that
is with probability 1

2
each.

W ’s second row corresponds toX = B, meaning the scenario where Bob is chosen
to be pardoned. In that case, there is only one possible output, and that is Charlie.
In this case, W (the warden) behaves deterministically and this can be seen be
cause the second row ofW has 0 everywhere, except for one specific output, which
gets probability 1. Same happens with the third row, which corresponds to X = C,
meaning Charlie is chosen to be pardoned.

Remember that each row of W sums up to 1. This happens because each row
defines a probability distribution, which basically says howW (the warden) behaves
given a specific input X.

Let’s also define W using python and libqif:
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[2]: W = np.array([
# Y=A Y=B Y=C
[ 0, 1/2, 1/2], # X=A
[ 0, 0, 1], # X=B
[ 0, 1, 0], # X=C

])

Now, to answer Question 1 using QIF terminology, we want to find the posterior
vulnerability of W . That is, what is the probability of correctly guessing the secret
X after observing the channel’s output Y . Let’s see how we can compute that.

2.3.2 Prior distribution

The problem’s description clearly states that the prisoner to be pardoned is uniformly
chosen at random so we have

pX(A) = pX(B) = pX(C) =
1

3

or for short

π =

(
1

3
,
1

3
,
1

3

)
Let’s also define that in python:

[3]: pi = probab.uniform(3)
print(pi)

[0.33333333 0.33333333 0.33333333]

2.3.3 Joint Matrix

The joint matrix J contains the joint probabilities for each combination of X and Y .

J =

 0 1
6

1
6

0 0 1
3

0 1
3

0


Notice that J depends on the channelW , but also on the distribution π ofX. Mean
ing that it depends on all of the pX(A), pX(B), pX(C). Thus, if the pardoned prisoner
were not chosen at random (meaning π was different), then J would be different.

Remember that if we sum all of J ’s elements they add up to 1. That is excpected
because by the defitition of probabiliy, when we sum the probabilities of every pos
sible outcume, they must add up to 1. And that is exactly what happens when we
sum J ’s elements.

For computing its elements we use the rule pY,X(y, x) = pX(x) · pY |X(y|x) .
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2.3.4 Posterior Distributions

But we are most interested in what does the warden’s saying (W ’s output) tells us
about X. The posteriors distribution matrix P helps us with that. It basically tells us
the updated probability for X given that we’ve observed the value of Y .

P =

 0 1
3

1
3

0 0 2
3

0 2
3

0


P ’s first column gives us the probabilities of each prisoner being pardoned, given
that the warden has said Alice’s name. That is, the probabilities of X being A,B or
C given that Y = A. Here we have 0 everywhere because Y = A never happens.
We could basically remove this column because it corresponds to an output of Y
which happens with a probability of 0.

P ’s second column gives us the probabilities ofX beingA,B orC given that Y = B.
The same happens with the third column.

Remember that each non zero column gives us a new probability distribution (also
meaning that each column adds up to 1). That is, it tells us the updated probability
of each X after observing W ’s output.

P can be computed using the rules p(y) =
∑

x∈X pX,Y (x, y) and then pX|Y (x|y) =
pX,Y (x,y)

pY (y)
. Notice that we have already calculated all joint probabilities in J .

[4]: P = channel.posteriors(W, pi)
print(P)

[[ nan 0.33333333 0.33333333]
[ nan 0. 0.66666667]
[ nan 0.66666667 0. ]]

2.3.5 Finally solving the problem

Question 2 We are now ready to answer the two questions we set for ourselves.
First we will answer the question number 2, which asks

Is the warden’s answer useful for Alice?

Before hearing the warden’s saying (W ’s output), Alice knew that she had a 1
3
prob

ability of surviving (becuase the pardoned prisoner were chosen uniformly at ran
dom).

Now, using matrix P , we know that if the warden says Bob’s name (P ’s second
column), then Alice has a p(X = A|Y = B) = 1

3
probability of surviving.

With the same reasoning, we see that if the warden says Charlie’s name (P ’s third
column), then Alice has a p(X = A|Y = C) = 1

3
probability of surviving.

Notice that the warden never says Alice’s name (W never outputs A) and this can
be seen by verifying that pY (A) = 0.
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So before the warden’s answer, Alice survived with a probability of 1
3
. After the

warden’s answer, no matter which name the warden says, Alice again survives with
a probabiliy of 1

3
.

Looks like Alice should have picked her question more carefully, because the
warden’s answer is never useful for Alice.

Note that this question could have been answered by using basic probability theory
only. But since this is the original question of the problem and it fits quite well within
the QIF train of thought, we thought it would be natural to include it.

Question 1 Now we will answer question 1, which asks

Given the warden’s answer, what is the probability of correctly guessing
the pardoned prisoner?

Consider the case where the warden says Bob’s name (P ’s second column). Alice
has a probability of 1

3
of being pardoned, Bob 0 and Charlie 2

3
. What would be your

best guess for who has been pardoned? The logical answer would be Charlie, be
cause he has the highest probability among the others in that specific column. So
if the warden says Bob’s name, you know that your best guess is Charlie and you
have a probability of success 2

3
.

Using the same reasoning, we can see that if the warden says Charlie’s name (P ’s
third column), your best guess would Bob because he has the highest probability in
that specific column. So if the warden says Charlie’s name, you know that your
best guess is Bob and you have a probability of success 2

3
.

Before the warden’s answer our best guess for who is the pardoned prisoner would
be, well, anyone since they have the same probability of being pardoned. And our
probability of success is 1

3
.

This is the prior vulnerability of W , also called V (π). That is, the prob
ability of correctly guessing the secretW before observing the channel’s
output Y .

But after receiving the warden’s answer (W ’s output) we see that we can make a
guess with probability of success 2

3
! In the first case we have to guess Charlie and

in the second Bob.

This is the posterior vulnerability of W , also called V (π,C). That is, the
probability of correctly guessing the secret W after observing the chan
nel’s output Y .

So to answer the question, given the warden’s answer, the probability of correctly
guessing the pardoned prisoner is 2

3
.

Alice’s name never pops up so we don’t have to deal with that. In fact we could use
the same reasoning if we eliminated P ’s first row, since it has 0 everywhere.

Generalizing this, we can compute the posterior vulnerability of any channel W by
first computing its posterior distributionmatrix P , removing all 0 columns, then finding
for each column, its maximum element (which corresponds to the best guess when
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W ’s output is the one corresponding to that column). In our case the maximum
elements were 2

3
and 2

3
.

But we need a way to combine them and get one value representing the whole
channel. We can do that byweighing each value with the probability of each column
happening, that is by pY (y). In our case the second column (W outputs B) happens
with probability of pY (B) = 1

2
and the third column (W outputs C) happens with

probability of pY (C) = 1
2
. So if we combine them we get

V (π,C) =
1

2
· 2
3
+

1

2
· 2
3

V (π,C) =
2

3

which is what we intuitively got without specifically using the general definition of
posterior vulnerability.

We can use the following functions to get the channel’s prior or posterior vulnerability
with

[5]: print("Prior Bayes vulnerability:", measure.bayes_vuln.prior(pi))
print("Posterior Bayes vulnerability:", measure.bayes_vuln.

↪→posterior(pi, W))

Prior Bayes vulnerability: 0.3333333333333333
Posterior Bayes vulnerability: 0.6666666666666666

or the best strategy for guessing the pardoned prisoner observing W ’s output

[6]: print("Best guessing strategy:", measure.bayes_vuln.strategy(pi, W))

Best guessing strategy: [0 2 1]

Here 0 corresponds to Alice, 1 to bob and 2 to Charlie. The first element is for when
W ’s output is A, the second for when W ’s output is B and the third for C. The first
element in our case does not have a meaning because W never outputs A.

Compare libqif’s results with the oneswe computed ourselves. Did we get everything
right?
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2.4 Channels and Posterior Vulnerability (part 2)

In this part as well as the next one are going to examine a couple of variations of the
original Three Prisoners problem. The first one is:

2.4.1 What if the warden uses a biased coin to answer the question?

In the classic version of the problem Alice says to the warden

…If I’m pardoned, chose randomly to name Bob or Charlie.

which has basically the same meaning as

…If I’m pardoned, flip a fair coin and if it lands on heads says Bob’s
name otherwise say Charlie’s.

But what would happen if the warden flipped a biased coin and made his choice
according to that?

A biased coin is characterized by a probability p. For example if p = 2
3
then it means

that the coin lands on heads 2 out of 3 times and on tails 1 out of 3.

If you haven’t guessed it already, we are going to experiment with a couple dif
ferent values of p and for that we are going to define the get_W(p) and the
get_distribution(p) function that are going to speed things up a little.

For this variation we are going to keep assuming that the pardoned prisoner is
chosen uniformly.

[2]: def get_W(p):
C = np.array([

[0, p, 1-p],
[0, 0, 1],
[0, 1, 0],

])
return C

def get_distribution(p):
return np.array([p, (1-p)/2,(1-p)/2])

get_W(p) takes as input a probability p and creates the channel matrix W (as dis
cussed in the previous part) with the only difference that now the warden uses a
biased coin characterized by p.

get_distribution(p) takes as input a probability p and creates a distribution π
where:

• If p = 1/3, then you get the uniform distribution with each prisoner being
chosen with a probability of 1/3.

• If p > 1/3, then the first prisoner (Alice) is more likely to be pardoned than any
of the other two.

• If p < 1/3, then the first prisoner (Alice) is the least likely of all to be pardoned.
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Now consider the following cases.

2.4.2 Biased coin with p = 2
3

Let’s define W , and the prior distribution π in python.

[3]: W = get_W(2/3)
print("W\n", W)
pi = get_distribution(1/3)
print("pi\n", pi)

W
[[0. 0.66666667 0.33333333]
[0. 0. 1. ]
[0. 1. 0. ]]

pi
[0.33333333 0.33333333 0.33333333]

Now how does this change our answer to the questions we are interested in? Let’s
quickly remember these questions.

1. Given the warden’s answer, what is the probability of correctly
guessing the pardoned prisoner?

2. Is the warden’s answer useful for Alice?

For question 1, as we said in the previous part, the answer is basically given by the
posterior vulnerability of W . Let’s also print the prior vulnerability.

[4]: print("Prior Bayes vulnerability:", measure.bayes_vuln.prior(pi))
print("Posterior Bayes vulnerability =", measure.bayes_vuln.

↪→posterior(pi, W))

Prior Bayes vulnerability: 0.33333333333333337
Posterior Bayes vulnerability = 0.6666666666666666

We can see that it is exactly the same as in the original problem, where the coin was
not biased. Hmm, that looks a bit suspicious…

For question 2, we are also going to need the posteriors distribution matrix P .

[5]: P = channel.posteriors(W, pi)
print(P)

[[ nan 0.4 0.25]
[ nan 0. 0.75]
[ nan 0.6 0. ]]

Here, the answer is basically given by p(X = A|Y = y), by examining it for all
values of y. There are two possible values for y and these are B and C. Now,
p(X = A|Y = B) corresponds to P ’s firstrow secondcolumn element which is 0.4
and p(X = A|Y = C) corresponds to P ’s firstrow thirdcolumn element which is
0.25. So from that we can deduct that if the warden says Bob’s name then Alice has
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a 0.4 chance of surviving but if the warden says Charlie’s then it goes down to 0.25.
So here the warden’s answer is somewhat useful for Alice, meaning that it updates
her knowledge about the probability of her surviving in some cases.

2.4.3 Biased coin with p = 3
4

For question 1, doing the same thing as before we see that

[6]: W = get_W(3/4)
print("W\n", W, "\n")
print("Prior Bayes vulnerability:", measure.bayes_vuln.prior(pi))
print("Posterior Bayes vulnerability =", measure.bayes_vuln.

↪→posterior(pi, W))

W
[[0. 0.75 0.25]
[0. 0. 1. ]
[0. 1. 0. ]]

Prior Bayes vulnerability: 0.33333333333333337
Posterior Bayes vulnerability = 0.6666666666666666

We see that again, the posterior vunlerability of W is the same. This implies that
possibly, no matter the value of p, V (π,W ) stays the same. This indeed can be ex
perimentally verified by trying different values of p and plotting the results. But before
that, take a few moments to try yourself a few different values for the p parameter of
get_W(p) in the cell above and rerunning it.

[7]: ps = np.linspace(0, 1, 100)
plt.plot(ps, [measure.bayes_vuln.posterior(get_distribution(1/3),␣

↪→get_W(p)) for p in ps])
plt.xlabel('p')
plt.ylabel('Posterior vulerability on uniform prior')
None
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Figure 2.1: Posterior vulnerability on uniform prior

Here we clearly see that V (π,W ) indeed stays the same for all possible values of
p. Which means that no matter what p the warden uses to determine his answer,
our best guess will always succeed with probability 2

3
. We could say that all W

defined this way, have the same vulenrability against someone who tries to guess
the pardoned prisoner in one try.

To get a better insight of why this is happening take a look at the following piece of
code. For each p from 0 to 1, it prints the p parameter itself, then the distribution pY (y)
for y = B or C (remember that Alice’s name never pops up meaning pY (A) = 0, thus
y = A is omitted) and then array of the posterior distributions. Its output is in the
form of

-------------------------------
| p(Y=B) p(Y=C) |
-------------------------------
| p(X=A | Y=B) p(X=A | Y=C) |
| p(X=B | Y=B) p(X=B | Y=C) |
| p(X=C | Y=B) p(X=C | Y=C) |
-------------------------------

It also marks for each column its maximum element.

[8]: from print_hyper import print_hyper

for k in range(11):
print("\np=", k, "/10", sep='')
print_hyper(get_W(k/10), get_distribution(1/3),␣

↪→highlight_maxima=True)
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p=0/10
-------------------
| 0.33 0.67 |
-------------------
| 0.00 0.50 |
| 0.00 -->0.50 |
| -->1.00 0.00 |
-------------------

p=1/10
-------------------
| 0.37 0.63 |
-------------------
| 0.09 0.47 |
| 0.00 -->0.53 |
| -->0.91 0.00 |
-------------------

p=2/10
-------------------
| 0.40 0.60 |
-------------------
| 0.17 0.44 |
| 0.00 -->0.56 |
| -->0.83 0.00 |
-------------------

p=3/10
-------------------
| 0.43 0.57 |
-------------------
| 0.23 0.41 |
| 0.00 -->0.59 |
| -->0.77 0.00 |
-------------------

p=4/10
-------------------
| 0.47 0.53 |
-------------------
| 0.29 0.38 |
| 0.00 -->0.63 |
| -->0.71 0.00 |
-------------------

p=5/10
-------------------
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| 0.50 0.50 |
-------------------
| 0.33 0.33 |
| 0.00 -->0.67 |
| -->0.67 0.00 |
-------------------

p=6/10
-------------------
| 0.53 0.47 |
-------------------
| 0.38 0.29 |
| 0.00 -->0.71 |
| -->0.63 0.00 |
-------------------

p=7/10
-------------------
| 0.57 0.43 |
-------------------
| 0.41 0.23 |
| 0.00 -->0.77 |
| -->0.59 0.00 |
-------------------

p=8/10
-------------------
| 0.60 0.40 |
-------------------
| 0.44 0.17 |
| 0.00 -->0.83 |
| -->0.56 0.00 |
-------------------

p=9/10
-------------------
| 0.63 0.37 |
-------------------
| 0.47 0.09 |
| 0.00 -->0.91 |
| -->0.53 0.00 |
-------------------

p=10/10
-------------------
| 0.67 0.33 |
-------------------
| 0.50 0.00 |
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| 0.00 -->1.00 |
| -->0.50 0.00 |
-------------------

Notice how the maximum elemnts of each column stay at the same positions as p
increases. It means that upon observing a specific output y, our best guess always
stays the same regardless of the distribution of X.

Remember that the posterior vulnerability in our case is calculated by

V (π,W ) = pY (B) ·maxB + pY (C) ·maxC

where maxB and maxC are the maximum elements of the first and second columns
respectively.
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2.5 Channels and Posterior Vulnerability (part 3)

The next variation we are going to examine is:

2.5.1 What if the pardoned prisoner is not uniformly chosen at random?

Here we are going to assume the warden bevahes as in the original description
of the problem, but we are going to see what happens when we don’t choose the
pardoned prisoner uniformly. We are mainly interested in answering the following
question:

Given the warden’s answer, what is the probability of correctly guessing
the pardoned prisoner?

Remember that answering this questions in terms of QIF basically means finding
the posterior vulnerability of W , V (π,W ).

First let’s do some basic definitions in python.

[2]: def get_W(p):
C = np.array([

[0, p, 1-p],
[0, 0, 1],
[0, 1, 0],

])
return C

def get_distribution(p):
return np.array([p, (1-p)/2,(1-p)/2])

Now remember that if you call

[3]: get_distribution(1/3)

[3]: array([0.33333333, 0.33333333, 0.33333333])

you get the uniform distribution and if you call

[4]: get_W(1/2)

[4]: array([[0. , 0.5, 0.5],
[0. , 0. , 1. ],
[0. , 1. , 0. ]])

you get the original W .

We are going to keep the original W but experiment with get_distribution(p) for
different values of p and for each those values find out its prior and posterior vulner
ability.
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2.5.2 Prior vunlerability

Take a look at the following graph.

[5]: ps = np.linspace(0, 1, 100)
plt.plot(ps, [measure.bayes_vuln.prior(get_distribution(p)) for p in␣

↪→ps])
plt.xlabel('p')
plt.ylabel('Prior vulnerability with original W')
None

Figure 2.2: Prior vulnerability with original W

The xaxis corresponds to the p parameter of get_distribution(p) and the yaxis
to the vulnerability of the distribution produced by get_distribution(p).

The code below prints for each parameter p its corresponding distribution and marks
the element with the highest probability which is basically our best guess for that par
ticular distribution. Notice the maximum elemnts of each distribution as p increases.

[6]: from print_dist import print_dist

for i in range(11):
print("get_distribution(%2d" % i , "/10) = ", sep='', end='')
print_dist(get_distribution(i/10), highlight_maxima=True)

get_distribution( 0/10) = ( 0.00 -->0.50 -->0.50 )
get_distribution( 1/10) = ( 0.10 -->0.45 -->0.45 )
get_distribution( 2/10) = ( 0.20 -->0.40 -->0.40 )
get_distribution( 3/10) = ( 0.30 -->0.35 -->0.35 )
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get_distribution( 4/10) = ( -->0.40 0.30 0.30 )
get_distribution( 5/10) = ( -->0.50 0.25 0.25 )
get_distribution( 6/10) = ( -->0.60 0.20 0.20 )
get_distribution( 7/10) = ( -->0.70 0.15 0.15 )
get_distribution( 8/10) = ( -->0.80 0.10 0.10 )
get_distribution( 9/10) = ( -->0.90 0.05 0.05 )
get_distribution(10/10) = ( -->1.00 0.00 0.00 )

Basically what happens is:

• For p ∈
[
0, 1

3

)
our best guess for the pardoned prisoner is either B or C, and

as p gets bigger, our probability of success gets smaller.
• For p = 1

3
our best guess is either A or B or C, and gives us the minimum

chance of success among all possible values of p.
• For p ∈

(
1
3
, 1
)
our best guess for the pardoned prisoner is always A and as p

gets bigger, our probability of success gets bigger as well.
• For p = 1 our best guess is A and we succeed with probability of 1. That is,
always!

2.5.3 Posterior vunlerability

Now, take a look at the following graph.

[7]: ps = np.linspace(0, 1, 100)
plt.plot(ps, [measure.bayes_vuln.posterior(get_distribution(p),␣

↪→get_W(0.5)) for p in ps])
plt.xlabel('p')
plt.ylabel('Posterior vulnerability with original W')
None
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Figure 2.3: Posterior vulnerability with original W

The xaxis again corresponds to the p parameter of get_distribution(p) but now
the yaxis corresponds to the posterior vulnerability of W when based on the distri
bution produced by get_distribution(p). We can better understand this graph by
experimenting with some values of the p parameter.

The code below prints for each p the p parameter itself, then the distribution pY (y)
for y = B or C (remember that Alice’s name never pops up meaning pY (A) = 0,
thus y = A is omitted) and then array of the posterior distributions. Its output is in
the form of

-------------------------------
| p(Y=B) p(Y=C) |
-------------------------------
| p(X=A | Y=B) p(X=A | Y=C) |
| p(X=B | Y=B) p(X=B | Y=C) |
| p(X=C | Y=B) p(X=C | Y=C) |
-------------------------------

It also marks for each column its maximum element. Notice the maximum elemnts
of each column as p increases.

[8]: from print_hyper import print_hyper

for k in range(11):
print("\np=", k, "/10", sep='')
print_hyper(get_W(1/2), get_distribution(k/10),␣

↪→highlight_maxima=True)
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p=0/10
-------------------
| 0.50 0.50 |
-------------------
| 0.00 0.00 |
| 0.00 -->1.00 |
| -->1.00 0.00 |
-------------------

p=1/10
-------------------
| 0.50 0.50 |
-------------------
| 0.10 0.10 |
| 0.00 -->0.90 |
| -->0.90 0.00 |
-------------------

p=2/10
-------------------
| 0.50 0.50 |
-------------------
| 0.20 0.20 |
| 0.00 -->0.80 |
| -->0.80 0.00 |
-------------------

p=3/10
-------------------
| 0.50 0.50 |
-------------------
| 0.30 0.30 |
| 0.00 -->0.70 |
| -->0.70 0.00 |
-------------------

p=4/10
-------------------
| 0.50 0.50 |
-------------------
| 0.40 0.40 |
| 0.00 -->0.60 |
| -->0.60 0.00 |
-------------------

p=5/10
-------------------
| 0.50 0.50 |
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-------------------
| -->0.50 -->0.50 |
| 0.00 -->0.50 |
| -->0.50 0.00 |
-------------------

p=6/10
-------------------
| 0.50 0.50 |
-------------------
| -->0.60 -->0.60 |
| 0.00 0.40 |
| 0.40 0.00 |
-------------------

p=7/10
-------------------
| 0.50 0.50 |
-------------------
| -->0.70 -->0.70 |
| 0.00 0.30 |
| 0.30 0.00 |
-------------------

p=8/10
-------------------
| 0.50 0.50 |
-------------------
| -->0.80 -->0.80 |
| 0.00 0.20 |
| 0.20 0.00 |
-------------------

p=9/10
-------------------
| 0.50 0.50 |
-------------------
| -->0.90 -->0.90 |
| 0.00 0.10 |
| 0.10 0.00 |
-------------------

p=10/10
-------------------
| 1.00 0.00 |
-------------------
| -->1.00 -->1.00 |
| 0.00 0.00 |
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| 0.00 0.00 |
-------------------

Here we see that

• For p ∈
(
0, 1

2

)
our best guess is C when y = B and B when y = C. In both

cases we succeed with the same probability.
• For p = 1

2
our best guess is, well, anyone.

• For p ∈
(
1
2
, 1
)
our best guess is always A no matter the channels output.

2.5.4 Multiplicative leakage

The multiplicative leakage of a channel W and a distribution π is defined by

L×(π,W ) =
V (π,W )

V (π)

and its main purpose is to provide a measure of leakage with respect to the initial
vulnerability the prior distribution had.

[9]: plt.plot(ps, [measure.bayes_vuln.mult_leakage(get_distribution(p),␣
↪→get_W(0.5)) for p in ps])

plt.xlabel('p')
plt.ylabel('Multiplicative leakage with original W')
None

Figure 2.4: Multiplicative leakage with original W

Here we see that:
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• For p ∈
(
0, 1

3

)
W makes the secret more vulnerable by doubling its prior vlu

nerability.
• For p ∈

(
1
3
, 1
2

)
W makes the secret less and less vulnerable compared to its

initial vulnerability.
• For p ∈

(
1
2
, 1
)
W keeps the secret as vulnerable as it was before entering the

channel.

Note that multiplicative leakage equal to 1 does not imply 0 vulnerability. Take for
example the prior with generated by get_distribution(9/10) fed into W . Both
the prior and posterior vulnerability are equal to 9

10
which agrees to the fact that the

multiplicative leakage is 1. But the secret is still quite vunerable. It can be guessed
correctly in one try with probability of success 9

10
.

It is also interesting to notice that L×(π,W ) has an inflexion point at p = 1
3
, the same

point where the prior vulnerability makes a turn. It also has another one at p = 1
2
,

the same point where the posterior vulnerability makes a turn.

2.5.5 Generalizing over any prior distribution

But what happens on other prior distributions? get_distribution() creates a very
specfic form of distributions, but there are many many more. Infintely many. How
can we be sure about our channels behaviour on other priors?

Here comes handy the theorem that states that

For any channel C, the maximum multiplicative Bayes leakage over all
priors is always realized on a uniform prior θ.

The channel’s multiplicative leakage on a uniform prior (which in our case is gen
erated by get_distribution(1/3)) is equal to 2. So according to this theorem we
can be sure that there is no prior which makes our channel’s posterior vulnerability
greater than 2 times its prior vulnerability.
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Having established the concepts of secrets, channels and vulnerability, a natural
question would arise: How can we compare two different channels in respect to how
much information do they leak? Here comes into play the concept of refinement.

2.6 Refinement

Consider a scenario where we are using an app that provides us with restaurant
suggestions near our location. But for privacy reasons we are not be very comfort
able with sharing our actual location, so before reporting it we use some mechanism
in order to add some noise to it.

For the sake of the following examples, consider the following locations

L1, L2, L3, L4

which are not too far apart from each other. So for example, we might be at L3 but
choose to report L1 and still get reasonable suggestions because we are still close
to it and at the same time we are not giving away our location 100%. But in what
way should we decide wether to report our actual location or not and how vulnerable
does our privacy become?

[2]: def get_pi(p, p_pos, n):
return np.array([p if i == p_pos else (1-p)/(n-1) for i in␣

↪→range(n)])

def get_C(p, n):
return np.array([get_pi(p, i, n) for i in range(n)])

[3]: # Number of possible locations
n = 4

2.6.1 Producing the actual location with probability p = 0.7

Consider the following channel matrix C1. It produces the actual location with prob
ability of 0.7 and distributes the remaining 0.3 to the other possible outcomes.

Table 2.2: C1 matrix

C1 L1 L2 L3 L4
L1 0.7 0.1 0.1 0.1
L2 0.1 0.7 0.1 0.1
L3 0.1 0.1 0.7 0.1
L4 0.1 0.1 0.1 0.7

[4]: C1 = get_C(0.7, n)
print("C1:\n", C1)
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C1:
[[0.7 0.1 0.1 0.1]
[0.1 0.7 0.1 0.1]
[0.1 0.1 0.7 0.1]
[0.1 0.1 0.1 0.7]]

Given a uniform prior, we compute its Posterior Bayes Vulnerability andMultiplicative
Bayes Capacity.

[5]: pi = probab.uniform(len(C1[0]))

[6]: print("Posterior Bayes Vulnerability:", measure.bayes_vuln.
↪→posterior(pi, C1))

print("Multiplicative Bayes Capacity:", measure.bayes_vuln.
↪→mult_capacity(C1))

Posterior Bayes Vulnerability: 0.7
Multiplicative Bayes Capacity: 2.8

Here the posterior vulnerability corresponds to the probability of guessing the actual
location by observing the location C1 outputs. Notice that the channel’s posterior
vulnerability is equal 0.7 which is equal to the p parameter.

2.6.2 Producing the actual location with probability p = 0.6

Let’s epxeriment with a smaller p of let’s say 0.6. Channel matrix C2 represents this
case.

Table 2.3: C2 matrix

C2 L1 L2 L3 L4
L1 0.6 0.133 0.133 0.133
L2 0.133 0.6 0.133 0.133
L3 0.133 0.133 0.6 0.133
L4 0.133 0.133 0.133 0.6

[7]: C2 = get_C(0.6, n)
# C2[1] = np.array(get_pi(1, 1, n))
print("C2:\n", C2)

C2:
[[0.6 0.13333333 0.13333333 0.13333333]
[0.13333333 0.6 0.13333333 0.13333333]
[0.13333333 0.13333333 0.6 0.13333333]
[0.13333333 0.13333333 0.13333333 0.6 ]]

Let’s also compute its Posterior Bayes Vulnerability and Multiplicative Bayes Capa
city again, under a uniform prior.
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[8]: print("Posterior Bayes Vulnerability:", measure.bayes_vuln.
↪→posterior(pi, C2))

print("Multiplicative Bayes Capacity:", measure.bayes_vuln.
↪→mult_capacity(C2))

Posterior Bayes Vulnerability: 0.6
Multiplicative Bayes Capacity: 2.4

Notice that again its posterior vulnerability is equal to the p parammeter which is the
probability of the actual location appearing on the output.

2.6.3 Comparing C1 and C2

The vulnerability of C2 is less than that of C1, so under that specific prior we are
sure that C2 leaks in general less information about our true location than C1. But
what happens under different priors? Maybe a specific adversary has a different
prior knowledge about what our true location might be before observing the chan
nel’s output. That would correspond to a different prior distribution.

Someone might say that C2 seems like leaking less information in general. C2 also
has a smaller multiplicative capacity. But can we be sure?

Let’s see what happens under a specific family of prior distritubtions generated by
get_pi(p).

[9]: ps = np.linspace(0, 1, 100)
plt.plot(ps, [measure.bayes_vuln.posterior(get_pi(p, 0, n), C1) for␣

↪→p in ps], label="C1")
plt.plot(ps, [measure.bayes_vuln.posterior(get_pi(p, 0, n), C2) for␣

↪→p in ps], label="C2")
plt.xlabel('p')
plt.ylabel('Posterior Bayes vulnerability')
plt.legend()
None

M. Vargiamis 44



Applications of the Theory of Quantitative Information Flow

Figure 2.5: Posterior Bayes Vulnerability

Looks like that the posterior vulnerability of C2 is always smaller than that of C1. But
if we want to be sure that this happens for every possible prior distribution (or even
for every possible gain function), then we have to check for refinement.

If C1 is refined by C2, then C2 is always more secure than C1. That is, it always has
a smaller vulnerability than C1.

[10]: refined = refinement.refined_by(C1, C2)
print("Is C1 refined by C2?", refined)

Is C1 refined by C2? True

Looks like our intuition was right!

Refinement also means that C2 is a post processing of C1. That means that there
exists a channel R such that takes every output of C1, processes it furtherly, pro
duces an output and in total, their combined behaviour (C1 and R) is exactly like that
of C2.

[11]: R = channel.factorize(C2, C1)
print("Is C1.R == C2? ", np.allclose(C1.dot(R), C2))
print("\nR:\n", R)
print("\nC1.R:\n", C1.dot(R))
print("\nC2:\n", C2)

Is C1.R == C2? True

R:
[[0.83333333 0.05555556 0.05555556 0.05555556]
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[0.05555556 0.83333333 0.05555556 0.05555556]
[0.05555556 0.05555556 0.83333333 0.05555556]
[0.05555556 0.05555556 0.05555556 0.83333333]]

C1.R:
[[0.6 0.13333333 0.13333333 0.13333333]
[0.13333333 0.6 0.13333333 0.13333333]
[0.13333333 0.13333333 0.6 0.13333333]
[0.13333333 0.13333333 0.13333333 0.6 ]]

C2:
[[0.6 0.13333333 0.13333333 0.13333333]
[0.13333333 0.6 0.13333333 0.13333333]
[0.13333333 0.13333333 0.6 0.13333333]
[0.13333333 0.13333333 0.13333333 0.6 ]]

2.6.4 Different p for some rows

What if we don’t use the same p for all the rows, but for some combinations of bits we
choose a different distribution? Maybe there occured a weird bug in our mechanism
and when the input is L2, then the output is always L2. Channel matrix C3 represents
this case.

Table 2.4: C3 matrix

C3 L1 L2 L3 L4
L1 0.7 0.1 0.1 0.1
L2 0 1 0 0
L3 0.1 0.1 0.7 0.1
L4 0.1 0.1 0.1 0.7

[12]: C3 = get_C(0.6, n)
C3[1] = np.array(get_pi(1, 1, n))
print("C3:\n", C3)

C3:
[[0.6 0.13333333 0.13333333 0.13333333]
[0. 1. 0. 0. ]
[0.13333333 0.13333333 0.6 0.13333333]
[0.13333333 0.13333333 0.13333333 0.6 ]]

Now how does C3 compare to C1? For 3 out of 4 inputs, C3 behaves just like C1, but
for 01 C3 always tells the truth. How does that affect the total vulnerability of C3?

[13]: print("Posterior Bayes Vulnerability:", measure.bayes_vuln.
↪→posterior(pi, C3))

print("Multiplicative Bayes Capacity:", measure.bayes_vuln.
↪→mult_capacity(C3))
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Posterior Bayes Vulnerability: 0.7
Multiplicative Bayes Capacity: 2.8

Looks like C3 has the same vulnerability under a uniform prior. Let’s experiment
with different priors and observe the vulnerabilities of the two channels.

[14]: ps = np.linspace(0, 1, 100)
plt.plot(ps, [measure.bayes_vuln.posterior(get_pi(p, 0, n), C1) for␣

↪→p in ps], label="C1")
plt.plot(ps, [measure.bayes_vuln.posterior(get_pi(p, 0, n), C3) for␣

↪→p in ps], label="C3")
plt.xlabel('p')
plt.ylabel('Posterior Bayes vulnerability')
plt.legend()
None

Figure 2.6: Posterior Bayes Vulnerability

Looks a bit more interesting than the previous plot! Here we see that for some
priors, C1 has the lowest vulnerability between the two, but for other priors C3 has
the lowest. This means that an adversary with a different knowledge about the prior
distribution might prefer one channel over the other.

What we can derive from that is that C1 can’t be a refinement of C3 because if it
were, then it should always have a lower vulnerability than that of C3.

For the same reason C3 can’t be a refinement of C1.

This can also be verified by checking that there is no matrix R such that C3R = C1

or C1R = C3. This is what the refined_by function checks for.
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[15]: refined = refinement.refined_by(C1, C3)
print("Is C1 refined by C3?", refined)

refined = refinement.refined_by(C3, C1)
print("Is C3 refined by C1?", refined)

Is C1 refined by C3? False
Is C3 refined by C1? False

Notice also that C1 and C3 have the same capacity of 2.8. But that doesn’t say much
when it comes to comparing two channels. That’s because capacity talks about
worst case leakage happening on specific priors. But as seen in the plot above, for
other priors one channel might be more vulnerable than the other. So if we want
comparison under any prior, then we must check for refinement.

Absence of refinement also means that even under the same prior distribution π
there might be an adversary that prefers C3 and another one that prefers C1.

For example, consider the following gain functions modeling two different adversar
ies.

[16]: G1 = get_G1()
print(G1)

[[ 1 0 0 0]
[ 0 100 0 0]
[ 0 0 1 0]
[ 0 0 0 1]]

[17]: G2 = get_G2()
print(G2)

[[100 0 0 0]
[ 0 1 0 0]
[ 0 0 100 0]
[ 0 0 0 100]]

[18]: print("Posterior g1 vulnerability of C1:", measure.g_vuln.
↪→posterior(G1, pi, C1))

print("Posterior g1 vulnerability of C3:", measure.g_vuln.
↪→posterior(G1, pi, C3))

print("Posterior g2 vulnerability of C1:", measure.g_vuln.
↪→posterior(G2, pi, C1))

print("Posterior g2 vulnerability of C3:", measure.g_vuln.
↪→posterior(G2, pi, C3))

Posterior g1 vulnerability of C1: 25.0
Posterior g1 vulnerability of C3: 25.45
Posterior g2 vulnerability of C1: 55.0
Posterior g2 vulnerability of C3: 48.33333333333333
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Notice how adversary g1 prefers C3 because it has the highest vulnerability between
the two whereas the best choice for g2 is C1.
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3. CASE STUDIES

3.1 Voting systems

In the following section, we take concepts presented in previous sections of this work
and apply them to the real world scenario of elections and voting systems.

3.1.1 Modeling elections as channels

We are going to start with a simple example to set the scene. Consider the smallest
election ever with just 3 voters and 2 candidates. How can we model that using QIF
terminology?

[2]: num_voters = 3
num_candidates = 2

We know that a channel takes as input something secret and outputs something pub
lic. So what is secret in an election? The votes. But we have 3 persons voting. And
each person has 2 possible options for his vote. So in total there are the following
23 scenarios (c1 and c2 below stand for candidate 1 and candidate 2 respectively):

X = {
c1 c1 c1,
c1 c1 c2,
c1 c2 c1,
c1 c2 c2,
c2 c1 c1,
c2 c1 c2,
c2 c2 c1,
c2 c2 c2,
}

And that is how we can model the votes as our channel’s input X.

[3]: num_combinations = num_candidates ** num_voters

But what would the channel’s output be? It depends. It could be just the name of
the winning candidate; that is, the candidate which received the most votes. Or it
could be for each candidate, the votes they received. Or maybe something else.

For the first scenario, where only the winning candidate is announced, the possible
values for output Y are the candidates themselves, i.e.:

Y = { c1, c2 }

We model this scenario using channel matrix W .

[4]: W = get_W(num_voters, num_candidates)
print(W)
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Table 3.1: W matrix

W c1 c2
c1c1c1 1 0
c1c1c2 1 0
c1c2c1 1 0
c1c2c2 0 1
c2c1c1 1 0
c2c1c2 0 1
c2c2c1 0 1
c2c2c2 0 1

[[1 0]
[1 0]
[1 0]
[0 1]
[1 0]
[0 1]
[0 1]
[0 1]]

For the second scenario, where the votes for each candidate are announced, the
possible values for output Y are:

Y = { (3,0), (2,1), (1,2), (0,3) }

We model this scenario using channel matrix C.

Table 3.2: C matrix

C (3, 0) (2, 1) (1, 2) (0, 3)
c1c1c1 1 0 0 0
c1c1c2 0 1 0 0
c1c2c1 0 1 0 0
c1c2c2 0 0 1 0
c2c1c1 0 1 0 0
c2c1c2 0 0 1 0
c2c2c1 0 0 1 0
c2c2c2 0 0 0 1

[5]: C = get_C(num_voters, num_candidates)
print(C)

[[1 0 0 0]
[0 1 0 0]
[0 1 0 0]
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[0 0 1 0]
[0 1 0 0]
[0 0 1 0]
[0 0 1 0]
[0 0 0 1]]

We also assume no prior knowledge about which voter votes for which candidate,
so we use a uniform prior.

[6]: pi = probab.uniform(num_combinations)
print(pi)

[0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125]

3.1.2 Computing the vulnerability of W

If we take a look at the hyper distribution ofW , we see that each result happens with
the same probability and upon observing it, the possible voting combinations have
also happen with the same probability.

[7]: from print_hyper import print_hyper
print_hyper(W, pi)

-------------------
| 0.50 0.50 |
-------------------
| 0.25 0.00 |
| 0.25 0.00 |
| 0.25 0.00 |
| 0.00 0.25 |
| 0.25 0.00 |
| 0.00 0.25 |
| 0.00 0.25 |
| 0.00 0.25 |
-------------------

So it is natural to expect thatW ’s vulnerability is 0.25 that is, two times the channel’s
prior vulnerability (which was equal to 0.125).

[8]: print("Prior bayes vulnerability:", measure.bayes_vuln.prior(pi))
print("Posterior bayes vulnerability of W:", measure.bayes_vuln.

↪→posterior(pi, W))
print("Multiplicative leakage of W:", measure.bayes_vuln.

↪→mult_leakage(pi, W))

Prior bayes vulnerability: 0.125
Posterior bayes vulnerability of W: 0.25
Multiplicative leakage of W: 2.0
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3.1.3 Computing the vulnerability of C

If we do the same thing with C, we see that here the different values of y are not
equally likely and the resulting posterior vulnerability is 0.5 that is, 4 times its prior
vulnerability.

[9]: from print_hyper import print_hyper
print_hyper(C, pi)

---------------------------------------
| 0.12 0.38 0.38 0.12 |
---------------------------------------
| 1.00 0.00 0.00 0.00 |
| 0.00 0.33 0.00 0.00 |
| 0.00 0.33 0.00 0.00 |
| 0.00 0.00 0.33 0.00 |
| 0.00 0.33 0.00 0.00 |
| 0.00 0.00 0.33 0.00 |
| 0.00 0.00 0.33 0.00 |
| 0.00 0.00 0.00 1.00 |
---------------------------------------

[10]: print("Prior bayes vulnerability:", measure.bayes_vuln.prior(pi))
print("Posterior bayes vulnerability of C:", measure.bayes_vuln.

↪→posterior(pi, C))
print("Multiplicative leakage of C:", measure.bayes_vuln.

↪→mult_leakage(pi, C))

Prior bayes vulnerability: 0.125
Posterior bayes vulnerability of C: 0.5
Multiplicative leakage of C: 4.0

But as someone might expect, these numbers get very small really fast as we con
sider more voters. That happens because the possible values for X, i.e.the voting
combinations, grow exponentially to the number of voters. For example for an elec
tion of 10 voters and 2 candidates we have:

[11]: num_voters = 10
num_candidates = 2
num_combinations = num_candidates ** num_voters

[12]: print("Prior bayes vulnerability:", measure.bayes_vuln.prior(probab.
↪→uniform(num_combinations)))

print()
print("W Posterior bayes vulnerability:", measure.bayes_vuln.

↪→posterior(probab.uniform(num_combinations), get_W(num_voters,␣
↪→num_candidates)))

M. Vargiamis 53



Applications of the Theory of Quantitative Information Flow

print("W Multiplicative leakage:", measure.bayes_vuln.
↪→mult_leakage(probab.uniform(num_combinations), get_W(num_voters,␣
↪→num_candidates)))

print()
print("C Posterior bayes vulnerability:", measure.bayes_vuln.

↪→posterior(probab.uniform(num_combinations), get_C(num_voters,␣
↪→num_candidates)))

print("C Multiplicative leakage:", measure.bayes_vuln.
↪→mult_leakage(probab.uniform(num_combinations), get_C(num_voters,␣
↪→num_candidates)))

Prior bayes vulnerability: 0.0009765625

W Posterior bayes vulnerability: 0.001953125
W Multiplicative leakage: 2.0

C Posterior bayes vulnerability: 0.0107421875
C Multiplicative leakage: 11.0

Note that W ’s multiplicative leakage is again 2, but for C it has jumped up to 11. C
still leaks more than W .

3.1.4 Comparing the two channels

Let’s see the bigger picture using a graph with the number of voters ranging from 1
to 12.

[13]: c = 2 # number of candidates
vs = [v for v in range(1, 12)]

[14]: plt.plot(vs, [measure.bayes_vuln.posterior(probab.uniform(c ** v),␣
↪→get_W(v, c)) for v in vs], label="W")

plt.plot(vs, [measure.bayes_vuln.posterior(probab.uniform(c ** v),␣
↪→get_C(v, c)) for v in vs], label="C")

plt.xlabel('number of voters')
plt.ylabel('Posterior bayes vulnerability of W and C')
plt.legend()
None
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Figure 3.1: Posterior Bayes Vulnerability of W and C

Here we see that C exposes always more than W does. And that would not be a
surprise to someone if they have observed that C is a post processing of W or in
other words, C is a refinement of W .

That can also be realizedmore intuitevly if you think of the process of announcing the
winner of the election. First the votes for each candidate are counted (which is what
W does), then they are compared to see who has the most, and finally the winner’s
name is annnounced. So the process of comparing the votes for each candidate
and deciding who has the most is the post processing of W .

This can also be done using a post process matrix R.

[15]: plt.plot(vs, [measure.bayes_vuln.mult_leakage(probab.uniform(c **␣
↪→v), get_W(v, c)) for v in vs], label="W")

plt.plot(vs, [measure.bayes_vuln.mult_leakage(probab.uniform(c **␣
↪→v), get_C(v, c)) for v in vs], label="C")

plt.xlabel('number of voters')
plt.ylabel('Multiplicative bayes leakage of W and C')
plt.legend()
None
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Figure 3.2: Multiplicative Bayes Leakage of W and C

Another interesting fact comes from observing each channel’smultiplicative leakage.
While W ’s leakage stays 2 no matter the number of voters, C ’ leakage increases
linearly. This comes from the fact that as the number of voters increases, the number
of possible outcomes also increases ending up with a more detailed partition of Y .
Thus we can make a better guess once we observe that specific result.

But in general both posterior vulnerabilities drop down to 0 quite fast. So from around
6 voters or more we could argue that our secret is quite safe. But safe against who?
Until now we used bayes vulnerability which corresponds to an adversary trying to
correctly guess the whole voting combination that occured. But that is usually not
the case.

3.1.5 Different Adversarial Models

We are now going to take into account two different, more realistic adversaries. We
are going to do that through g vulnerability.

3.1.5.1 Adversary 1

Suppose that an adversary will benefit from guessing correctly how some voter
voted, but their benefit does not depend on which voter they choose or who the voter
voted for: any victim, and any vote will be a gain for them. We define for that a gain
function g1 which allows an adversary to choose from action set Candidates×V oters,
where (c, v) is their action of guessing that candidate c was selected by voter v.

g1 can be defined as:
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g1((c, v), z) =

{
1 if c = z(v)
0 if c ̸= z(v)

where z(v) is the candidate voted for by voter v in voting pattern z.

If we construct G1 with the possible actions as rows and the possible values of X as
columns we get:

Table 3.3: g1 function defined with a matrix

G1 c1c1c1 c1c1c2 c1c2c1 c1c2c2 c2c1c1 c2c1c2 c2c2c1 c2c2c2
(c1, e1) 1 1 1 1 0 0 0 0
(c1, e2) 1 1 0 0 1 1 0 0
(c1, e3) 1 0 1 0 1 0 1 0
(c2, e1) 0 0 0 0 1 1 1 1
(c2, e2) 0 0 1 1 0 0 1 1
(c2, e3) 0 1 0 1 0 1 0 1

[2]: num_voters = 3
num_candidates = 2
num_combinations = num_candidates ** num_voters

[3]: G1 = get_G1(num_voters, num_candidates)
print(G1)

[[1 1 1 1 0 0 0 0]
[1 1 0 0 1 1 0 0]
[1 0 1 0 1 0 1 0]
[0 0 0 0 1 1 1 1]
[0 0 1 1 0 0 1 1]
[0 1 0 1 0 1 0 1]]

The posterior vulnerability under g1 gives us the probability that an adversary cor
rectly guesses what some voter voted for. For channel matrix W (as defined in the
previous part) it is equal to:

[4]: pi = probab.uniform(num_combinations)

[5]: W = get_W(num_voters, num_candidates)

[6]: print("Prior g vulnerability:", measure.g_vuln.prior(G1, pi))
print("Posterior g vulnerability of W:", measure.g_vuln.

↪→posterior(G1, pi, W))
print("Multiplicative g leakage of W:", measure.g_vuln.

↪→mult_leakage(G1, pi, W))
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Prior g vulnerability: 0.5
Posterior g vulnerability of W: 0.75
Multiplicative g leakage of W: 1.5

If we do the same with channel matrix C, we observe the exact same results.

[7]: C = get_C(num_voters, num_candidates)

[8]: print("Prior g vulnerability:", measure.g_vuln.prior(G1, pi))
print("Posterior g vulnerability of C:", measure.g_vuln.

↪→posterior(G1, pi, C))
print("Multiplicative g leakage of C:", measure.g_vuln.

↪→mult_leakage(G1, pi, C))

Prior g vulnerability: 0.5
Posterior g vulnerability of C: 0.75
Multiplicative g leakage of C: 1.5

As it turns out there is a theorem adressing the more general case of any number
of voters which states that under the uniform prior π we have that:

L×
g1
(π,W ) = L×

g1
(π,C)

We can verify that results by observing the following plots.

[9]: c = 3 # number of candidates
vs = [v for v in range(1, 10)]

[10]: plt.plot(vs, [measure.g_vuln.mult_leakage(get_G1(v, c), probab.
↪→uniform(c ** v), get_W(v, c)) for v in vs])

plt.xlabel('number of voters')
plt.ylabel('Mupliplicative leakage of W')
None
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Figure 3.3: Multiplicative Leakage of W

[11]: plt.plot(vs, [measure.g_vuln.mult_leakage(get_G1(v, c), probab.
↪→uniform(c ** v), get_C(v, c)) for v in vs])

plt.xlabel('number of voters')
plt.ylabel('Mupliplicative leakage of C')
None

Figure 3.4: Multiplicative Leakage of C
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Intuitevly this can be understood by the following thought process.

For any announcement of tallies for an election whose voting pattern is
z, most voters voted for the candidate with the majority, and so the ad
versary’s optimum guessing strategy is to pick (maj(z), v) for any voter
v, which is exactly the same guessing strategy if only the winner is an
nounced. Hence since the optimal guessing strategies are the same for
both W and C, the leakage with respect to g1 must also be the same.

3.1.5.2 Adversary 2

Another adversary might benefit if they can find a voter/candidate pair such that the
voter did not vote for that candidate. For this adversary we define g0 as follows:

g0((c, v), z) =

{
1 if c ̸= z(v)
0 if c = z(v)

[12]: G0 = get_G0(num_voters, num_candidates)
print(G0)

[[0 0 0 0 1 1 1 1]
[0 0 1 1 0 0 1 1]
[0 1 0 1 0 1 0 1]
[1 1 1 1 0 0 0 0]
[1 1 0 0 1 1 0 0]
[1 0 1 0 1 0 1 0]]

Notice that G0 is the complement of G1, meaning that it results from switching the
1s with 0s and vice versa.

[13]: print("Prior g vulnerability:", measure.g_vuln.prior(G0, pi))
print("Posterior g vulnerability of W:", measure.g_vuln.

↪→posterior(G0, pi, W))
print("Multiplicative g leakage of W:", measure.g_vuln.

↪→mult_leakage(G0, pi, W))

Prior g vulnerability: 0.5
Posterior g vulnerability of W: 0.75
Multiplicative g leakage of W: 1.5

[14]: print("Prior g vulnerability:", measure.g_vuln.prior(G0, pi))
print("Posterior g vulnerability of C:", measure.g_vuln.

↪→posterior(G0, pi, C))
print("Multiplicative g leakage of C:", measure.g_vuln.

↪→mult_leakage(G0, pi, C))

Prior g vulnerability: 0.5
Posterior g vulnerability of C: 0.75
Multiplicative g leakage of C: 1.5
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Again, the vulnerability and leakage ofC andW look the same. But as it turns out, for
3 candidates or more, this type of adversary has more to gain from elections where
they announce the votes for each candidate (i.e. channel matrix C). Translated into
QIF, it basically means that

L×
g0
(π,W ) < L×

g0
(π,C)

for |Candidates| ≥ 3.

The following plot vefiries that. Remember that the posterior vulnerability under g0
gives us the probability that an adversary correctly guesses what some voter did
not vote for.

[15]: c = 3 # number of candidates
vs = [v for v in range(1, 10)]

[16]: plt.plot(vs, [measure.g_vuln.mult_leakage(get_G0(v, c), probab.
↪→uniform(c ** v), get_W(v, c)) for v in vs], label="W")

plt.plot(vs, [measure.g_vuln.mult_leakage(get_G0(v, c), probab.
↪→uniform(c ** v), get_C(v, c)) for v in vs], label="C")

plt.xlabel('number of voters')
plt.ylabel('Muptiplicative leakages of W and C')
plt.legend()
None

Figure 3.5: Multiplicative Leakages of W and C

This result also has a more intuitive explanation.
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When tallies are released, the adversary can increase their gain by
guessing that the candidate who received the least number of votes is
most likely not someone the voter selected. That information is not avail
able in W .
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3.2 Differential Privacy

Differential Privacy and Quantitative Information Flow can be seen as having es
sentially the same goal, namely to control the leakage of sensitive information. In
this section, we are going to try to explore similarities and differences bewteen the
two approaches.

3.2.1 An example scenario

Assume we are interested in the eye color of a certain population I =
{Alice, Bob, Charlie}. Let the possible values for each person in I be defined by
the set V = {a, b, g}, where a stands for absent (i.e. the person is not in this specific
database), b stands for black and g for green. Each dataset is a tuple x0x1x2 ∈ V 2

where x0 represents the eye color of Alice, x1 of Bob and x2 of Charlie.

The possible values of X are

X = {
aaa, aab, aag,
aba, abb, abg,
aga, agb, agg,
baa, bab, bag,

...
gga, ggb, ggg
}

Consider the following counting query.

SELECT COUNT(*)
FROM X
WHERE eye_color = 'b';

Its possible output values are

Y = {0, 1, 2, 3}

We can model this query as a deterministic channel f as below.

Table 3.4: f function defined with a matrix

f 0 1 2 3
aaa 1 0 0 0
aab 0 1 0 0
aag 1 0 0 0
aba 0 1 0 0
... ... ... ... ...
ggg 1 0 0 0

Now insted of reporting the true answer y, we process it further by passing it through
a noise channel H and report a slightly different answer z.
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Here are going to use the following mechanism for H.

Table 3.5: H matrix

H 0 1 2 3
0 3

4
1
6

1
18

1
36

1 1
4

1
2

1
6

1
12

2 1
12

1
6

1
2

1
4

3 1
36

1
18

1
6

3
4

What H does is basically add noise to the true answer of f and it does that by using
the (truncated) geometric mechanism with parameter a = 1

3
. One thing to notice

here is that the true answer of f has the highest probability within its row.

So the whole channel, fromX to Z, i.e. from the database to the fuzzy query answer,
can be depicted as below.

Table 3.6: C matrix

C 0 1 2 3
aaa 3

4
1
6

1
18

1
36

aab 1
4

1
2

1
6

1
12

aag 3
4

1
6

1
18

1
36

aba 1
4

1
2

1
6

1
12

... ... ... ... ...
ggg 3

4
1
6

1
18

1
36

[2]: num_persons = 3
values = ['a', 'b', 'g']
num_values = len(values)
query_value = 'b'

[3]: C = get_C(num_persons, values, query_value)
print(C)

[[0.75 0.16666667 0.05555556 0.02777778]
[0.25 0.5 0.16666667 0.08333333]
[0.75 0.16666667 0.05555556 0.02777778]
[0.25 0.5 0.16666667 0.08333333]
[0.08333333 0.16666667 0.5 0.25 ]
[0.25 0.5 0.16666667 0.08333333]
[0.75 0.16666667 0.05555556 0.02777778]
[0.25 0.5 0.16666667 0.08333333]
[0.75 0.16666667 0.05555556 0.02777778]
[0.25 0.5 0.16666667 0.08333333]
[0.08333333 0.16666667 0.5 0.25 ]

M. Vargiamis 64



Applications of the Theory of Quantitative Information Flow

[0.25 0.5 0.16666667 0.08333333]
[0.08333333 0.16666667 0.5 0.25 ]
[0.02777778 0.05555556 0.16666667 0.75 ]
[0.08333333 0.16666667 0.5 0.25 ]
[0.25 0.5 0.16666667 0.08333333]
[0.08333333 0.16666667 0.5 0.25 ]
[0.25 0.5 0.16666667 0.08333333]
[0.75 0.16666667 0.05555556 0.02777778]
[0.25 0.5 0.16666667 0.08333333]
[0.75 0.16666667 0.05555556 0.02777778]
[0.25 0.5 0.16666667 0.08333333]
[0.08333333 0.16666667 0.5 0.25 ]
[0.25 0.5 0.16666667 0.08333333]
[0.75 0.16666667 0.05555556 0.02777778]
[0.25 0.5 0.16666667 0.08333333]
[0.75 0.16666667 0.05555556 0.02777778]]

Notice that Z can also occur from the matrix multiplication of f and H, that is

f ·H = Z

The following image graphically depicts the whole setting (ingore the notions of leak
age and utility for now).

Figure 3.6: Leakage and utility for oblivious mechanisms

3.2.2 Assesing information leakage through QIF

To measure the leakage with QIF we must first define the prior distribution π overX.
If we don’t have any particular knowledge about it we use the uniform distribution.

[4]: pi = probab.uniform(num_persons ** num_values)
print(pi)

[0.03703704 0.03703704 0.03703704 0.03703704 0.03703704 0.03703704
0.03703704 0.03703704 0.03703704 0.03703704 0.03703704 0.03703704
0.03703704 0.03703704 0.03703704 0.03703704 0.03703704 0.03703704
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0.03703704 0.03703704 0.03703704 0.03703704 0.03703704 0.03703704
0.03703704 0.03703704 0.03703704]

Next, we compute the posterior distributions which depend both on C and π.

[5]: from print_hyper import print_hyper
print_hyper(C, pi)

---------------------------------------
| 0.35 0.31 0.21 0.13 |
---------------------------------------
| 0.08 0.02 0.01 0.01 |
| 0.03 0.06 0.03 0.02 |
| 0.08 0.02 0.01 0.01 |
| 0.03 0.06 0.03 0.02 |
| 0.01 0.02 0.09 0.07 |
| 0.03 0.06 0.03 0.02 |
| 0.08 0.02 0.01 0.01 |
| 0.03 0.06 0.03 0.02 |
| 0.08 0.02 0.01 0.01 |
| 0.03 0.06 0.03 0.02 |
| 0.01 0.02 0.09 0.07 |
| 0.03 0.06 0.03 0.02 |
| 0.01 0.02 0.09 0.07 |
| 0.00 0.01 0.03 0.22 |
| 0.01 0.02 0.09 0.07 |
| 0.03 0.06 0.03 0.02 |
| 0.01 0.02 0.09 0.07 |
| 0.03 0.06 0.03 0.02 |
| 0.08 0.02 0.01 0.01 |
| 0.03 0.06 0.03 0.02 |
| 0.08 0.02 0.01 0.01 |
| 0.03 0.06 0.03 0.02 |
| 0.01 0.02 0.09 0.07 |
| 0.03 0.06 0.03 0.02 |
| 0.08 0.02 0.01 0.01 |
| 0.03 0.06 0.03 0.02 |
| 0.08 0.02 0.01 0.01 |
---------------------------------------

For each column of the matrix above, i.e. each possible outcome z, QIF models
the threat as the highest probability within that column, i.e. the probability of sucess
of the best possible guess for which database x we are dealing with. So we pick
the maximum probability for each column and then we weigh each one with its
respective outer probability, i.e. the probability of each z occuring. And the result is
the vulnerability of C.

[6]: print("QIF posterior vulnerability:", measure.bayes_vuln.
↪→posterior(pi, C))
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QIF posterior vulnerability: 0.09259259259259259

3.2.3 Assesing information leakage through Differential Privacy

Differential privacy works a bit differently.

First of all, it uses the notion of adjacent or neighbor databases which is used to
indicate two databases that differ in the presence of, or in the value associated with,
exactly one individual. We use x1 ∼ x2 to indicate that x1 and x2 are adjacent. For
example bbg ∼ bag and aba ∼ bba but bba ≁ bgb.

Now, for each column of C, i.e. each possible outcome z, ϵdifferential privacy is
satisfied if there exists an ϵ ≥ 0 such that

Cx,z

Cx′,z
≤ eϵ

for all x, x′ in X such that x ∼ x′.

From each column of C, we keep the biggest ϵ so that the above inequality holds for
all columns. This way, ϵ represents the level of privacy of the whole channel.

[7]: # The following function overestimates the real value of epsilon,
# but provides an upper bound for it.
print("Differential Privacy epsilon:", get_worst_epsilon(C))

Differential Privacy epsilon: 3.295836866004329

Let’s verify that indeed that is the worstcase ϵ by observing the ϵ values for each
column of C.

[8]: for i in range(num_values+1):
print("epsilon for column", i, "=", get_worst_epsilon(C, i))

epsilon for column 0 = 3.295836866004329
epsilon for column 1 = 2.1972245773362196
epsilon for column 2 = 2.1972245773362196
epsilon for column 3 = 3.295836866004329

Another way to think about it is that for each column of C, differential privacy meas
ures the threat as the biggest difference between two adjacent x

3.2.4 Comparing the two approaches

First of all let’s consider the basic ideas behind each approach.

QIF vulnerablity measures the probability that an adversary has of correctly guessing
the secret x (i.e. the whole database in our case) upon observing the channel’s
output z.

ϵdifferential privacy’s basic idea on the other hand, is that that the presence or
absence of any individual in a database, or changing the data of any individual,
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should not significantly affect the probability of obtaining any specific answer for a
certain query.

So clearly, they don’t have the same goal or the same adversary in mind.

Going a little further we see that QIF vulnerability is sensitive to the prior distribution
of X whereas ϵdifferential privacy is not.

For example consider the uniform and point distrubtions below.

[9]: pi1 = probab.uniform(num_persons ** num_values)
print("pi1\n", pi1, "\n")
pi2 = probab.point(num_persons ** num_values)
print("pi2\n", pi2)

pi1
[0.03703704 0.03703704 0.03703704 0.03703704 0.03703704 0.03703704
0.03703704 0.03703704 0.03703704 0.03703704 0.03703704 0.03703704
0.03703704 0.03703704 0.03703704 0.03703704 0.03703704 0.03703704
0.03703704 0.03703704 0.03703704 0.03703704 0.03703704 0.03703704
0.03703704 0.03703704 0.03703704]

pi2
[1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
↪→ 0.
0. 0. 0.]

If we measure the information leakage thrgouh QIF for both cases we get:

[10]: print("QIF posterior vulnerability for pi1:", measure.bayes_vuln.
↪→posterior(pi1, C))

print("QIF posterior vulnerability for pi2:", measure.bayes_vuln.
↪→posterior(pi2, C))

QIF posterior vulnerability for pi1: 0.09259259259259259
QIF posterior vulnerability for pi2: 1.0

But differential privacy does not consider the prior distribution of X, so we get:

[11]: print("Differential Privacy epsilon for pi1:", get_worst_epsilon(C))
print("Differential Privacy epsilon for pi2:", get_worst_epsilon(C))

Differential Privacy epsilon for pi1: 3.295836866004329
Differential Privacy epsilon for pi2: 3.295836866004329

Which is also obvious from the fact that the get_worst_epsilon function does not
take a pi parameter.

Another difference between the two is that QIF vulnerability is defined as the result
of averagind the contribution of all the columns to the vulnerability, while differential
privacy represents the worst case (i.e.the maximum ϵ for all z).
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Hence there could be a column with a very high ϵ value which does not contribute
very much to the average (typically because the corresponding output has very low
probability of happening). In that case, QIF vulnerability could be very small, and
still ϵdifferential privacy would have a really big ϵ value.
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4. CONCLUSIONS

With this thesis, we have provided individuals interested in learning about QIF with
an interactive way of getting in touch with the subject and exploring different scen
arios where its theory can be applied. Since there are not many additional sources
online for studying QIF, there is still room for additional tutorials or articles about it,
making it more accessible to the interested reader.
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ABBREVIATIONS  ACRONYMS

QIF Quantitative Information Flow
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