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Abstract
Undoubtedly, text constitutes an essential type of data within the biomedical field, as the

ever-increasing knowledge is still mostly expressed and stored in the form of unstructured

information. Vast numbers of biomedical and biology reports, providing valuable insights

about new discoveries, constantly supplement the already overwhelming amount of the

scientific literature. However, the inefficiency in retrieving and processing important

information both quickly and accurately is an inevitable challenge when handling large

quantities of unstructured data. Hence, the automated extraction and analysis of biomedical

terms from documents is becoming an absolute necessity. The particular thesis presents

OnTheFly2.0, a web-based, versatile tool dedicated to the extraction and subsequent analysis

of biomedical terms from individual files. More specifically, OnTheFly2.0 supports different file

formats, including plain texts, Office documents, PDF files or images, enabling simultaneous

file handling. The integration of the EXTRACT tagging service allows the implementation of

Named Entity Recognition (NER) for genes/proteins, chemical compounds, organisms,

tissues, environments, diseases, phenotypes and Gene Ontology terms, as well as the

generation of popup windows which provide concise, context related information about the

identified term, accompanied by links to various databases. Once named entities, such as

proteins, genes and chemicals are identified, they can be further explored via functional and

publication enrichment analysis or be associated with diseases and protein domains

reporting from protein family databases. Finally, visualization of protein-protein and

protein-chemical associations is possible through the generation of interactive networks from

the STRING and STITCH services, respectively. In order to demonstrate the potential and

efficiency of OnTheFly2.0, biomarkers of severe COVID-19 with clinical significance were

retrieved from six published articles and combined in a meta-analysis case study.

Interestingly, several inflammatory and senescence pathways that impact COVID-19

pathogenesis have been unraveled. OnTheFly2.0 currently supports 197 species and is

available at http://onthefly.pavlopouloslab.info.
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Aim and objectives
The aim of this thesis is to present OnTheFly2.0, a user-friendly, web-based application which

not only applies NER pipeline for the identification of biological named entities in a collection

of documents provided, but also enables further network and enrichment analyses. Text

mining and biomedical entity extraction can be performed in a plethora of different file

formats, including text documents, spreadsheets and image files, while the implementation

of NER methods facilitates the recognition and retrieval of various biological and biomedical

terms. A comprehensive dataset consisting of both extracted protein and chemical entities

can be generated for functional enrichment analysis, related literature finding, associations

with diseases and protein domain reporting from protein family databases. In addition to the

previously mentioned analyses, protein-protein and protein-chemical interaction networks

are generated via the STRING and the STITCH databases respectively, allowing the

visualization of associations between the collected entities.
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CHAPTER 1: Literature mining

The introduction of biomedical research to advanced high-throughput technologies and

large-scale experiments has led to the emergence of the “omics era”, characterized by an

unbridled growth of heterogeneous collection of raw biological data, including genomic

sequences, expression and metagenomic profiles as well as proteomic measurements 1. A

substantial proportion of the resulting biological discoveries and advancements is

communicated mostly by means of scientific publications and reports, in an electronic

text-based format, enabling the use of natural human language as a way to express and

transmit information 2. Currently, PubMed integrates more than 32 million publications,

PubMed Central contains a total of 6 million articles, while there are over 27 million

references in Medline as of April 2021.

However, the aforementioned search engines, whose aim is the facilitation of

traditional information retrieval, are characterized by the keyword-based approaches,

regularly resulting in a plethora of records, often not sorted by relevance 3. Therefore, even

though harnessing the easily accessible, yet vast, biomedical literature could reveal

biomedical concepts and ultimately lead to the acquisition of new information, it is hardly

surprising that manual handling and processing often becomes a tedious and error-prone

task 2. In an attempt to address the issues mentioned above, Natural Language Processing

(NLP) techniques, including Named Entity Recognition (NER), Information Extraction (IE),

Question/Answer (QA) and Text Summarization (TS) have emerged as a potential solution

and serve as bridges between computers and human languages to enable efficient,

systematic and automated discovery of knowledge 4.
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1.1 Natural Language Processing (NLP) techniques
in bioinformatics

1.1.1 Named Entity Recognition (NER)

The vagueness in human communication due to colloquialisms, abbreviations and

misspellings, as well as the difficulty in defining precisely the concept of term, are often

responsible for the challenges in analysis of natural language. This variability is inevitably

reflected in the scientific literature, as local dialects, jargons and idiosyncratic nomenclatures

are shaping a heterogenous text corpora 4. Despite these impediments, natural language

processing (NLP), a research subfield of artificial intelligence in computer science, aims to

develop computational models that simulate human linguistic abilities, by utilizing machine

learning algorithms and programs 5. Typically, semantic, syntax and content information are

the main aspects of a text, thus syntactic and semantic analysis constitute the predominant

techniques, that coupled with more articulated activities, such as the utilization of lexical

resources (e.g. lexicons, vocabularies, thesauri, ontologies) are employed in order to

accomplish NLP tasks 5. Machine Translation (MT), Information Extraction (IE), Information

Retrieval (IR), Automatic Text Summarization (ATS), Question-Answering System, Parsing,

Sentiment Analysis, Natural Language Understanding (NLU) and Natural Language

Generation (NLG) comprise the main tasks in NLP which ultimately produce a semantic

representation of data retrieved from unstructured corpora 6.

Particularly, Information Extraction (IE) refers to a widely used NLP technique which

aims at the automatic identification of structured information within unstructured or

semi-structured textual data 7. Since generally IE constitutes one of the primary stages in the

analysis pipeline, the effective conversion of unstructured collected data and their efficient

incorporation into machine readable databases determines the performance of the higher

level tasks 7,8. The decomposition of IE into various separate subtasks, including Named

Entity Recognition (NER), Relation Extraction (RE) and Coreference Resolution (CR),

illustrates the functionality of IE systems 6.

Οne of the first steps towards information retrieval, question answering and

co-reference resolution is Named Entity Recognition (NER), also referred to as entity

identification or entity extraction 9. NER consists a fundamental NLP subtask -especially in

the semantic part- which automatically identifies and extracts selective information (named

entities) within an unstructured text corpus, classifying them into predefined categories 9.

Named Entity Recognition and Classification (NERC) is an alternative, equally utilized term

of NER, pinpointing the subsequent classification of identified entities 9. The spectrum of the

detected entities used for term normalization can be significantly broad, depending on the
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field of interest, and may include words such as person names, cities, time expression as

well as scientific or technical terms. In the biomedical domain, NER is usually referred to as

Biomedical Named Entity Recognition (BioNER) and is considered an indispensable tool for

the extraction of biomedically relevant named entities, including genes/proteins,

chemicals/drugs, diseases, adverse effects, mutations/SNPs, species, tissues, metabolites

or pathways 10.

Notably, approaches to develop a NER system can be categorized into four classes:

Rule-based, Dictionary-based, Machine learning (ML)-based and Hybrid 10 (Figure 1).

However, it is not unusual for a NER system to combine more than one of the

aforementioned categories. Firstly, Rule-based approaches typically use a set of manually

crafted linguistic, grammatical and syntactic rules and patterns in combination with

dictionaries to extract and classify named entities 10,11. A major advantage of this approach

concerns the employment of context-based rules and domain specific features to distinguish

with sufficient accuracy multiple named entities 11. However, the high cost of rule

maintenance by experts, the lack of portability and adaptability across different disciplines as

well as the requirement of available resources are considered the main limitations of

Rule-based NER systems 12.

Dictionary-based NER approach relies on lexicon resources, utilizing stored lists of

terms in dictionaries for entity identification in given texts 11. These systems recognize and

extract specific entities either after searching the more relevant term in the dictionary or upon

implementing string-matching algorithms (exact matching and flexible or approximate

matching) 10. They are particularly effective in queries, where the available contexts could be

very limited due to their high precision 13. The completeness, quality, constant updating and

maintenance of the provided dictionary is a prerequisite for the robustness of the

dictionary-based approaches, whose apparent simplicity can sometimes be outweighed by

two major limitations 10. Firstly, the usefulness of these approaches is significantly degraded

in cases of spelling errors or/and variations in the text, while the generation of new words or

the identification of the same term as different depending on the context is quite frequent
11,13.

Furthermore, the Machine learning (ML)-based approaches, as the name indicates,

depend on machine learning algorithms and statistical models to recognize specific entities

in a document, without requiring a rule set or listed terms in a dictionary 10,11. More

specifically, Machine learning (ML) is a branch of artificial intelligence (AI) focused on

automating the learning of systems and improving their accuracy and efficiency over time by

implementing sophisticated algorithms and statistics on large-scale datasets 14. Typically, ML

approaches can be divided into three main categories; Supervised, Semi-supervised and

Unsupervised learning.
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The main purpose of supervised learning based approaches is to train learning

algorithms to map the relationship between a given set of inputs and outputs in order to be

able to distinguish negative from positive examples and ideally output a prediction from

unseen data 10,15. Example labeled instances of named entities, referred to as training data,

are a prerequisite to construct a statistical model for effective algorithm training. In recent

years, statistical methods based on supervised learning, including Hidden Markov Model

(HMM) 16, Support Vector Machine (SVM) 17 and Maximum Entropy Markov Model (MEMM)
16, have received the most research interest.

However, obtaining reliable and unbiased labeled training data from a large,

heterogeneous dataset is usually an expensive, laborious and time-consuming task.

Therefore, the implementation of semi-supervised learning approach could be proposed as a

promising solution to the previously mentioned problems, due to its partial independence

from labeled data 10. More precisely, semi-supervised learning allows the algorithms to learn

by using a small amount of labeled training examples (seed) for subsequent tagging of the

unlabeled data provided 15. The training of the system and the generation of more labeled

examples based on the algorithm’s outcome are continuous processes, until the acquisition

of an adequate accuracy 15. “Bootstrapping” is considered as one of the most prominent

methods for improving the efficiency of semi-supervised learning algorithms 18.

In unsupervised learning the model is trained without any labeled or classified data,

thus is mainly proposed in cases where text annotation is extremely limited or absent 12. The

goal of these programs is to generate representation models from data that can be utilized

for three main tasks: clustering, association, and dimensionality reduction 12.

Finally, the Hybrid method implements a combination of multiple NER approaches,

including rule-based and machine learning methods, harnessing their advantages in order to

perform more accurately and provide better results.

Figure 1: Types of NER approaches
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1.1.2 Co-occurrence analysis

The interpretation of results or the use of certain data analysis techniques is undoubtedly

challenging without accessing the meaning of words. Therefore, the detection of semantic

similarity and relatedness between two ontologies involves mainly the application of

co-occurrence methodologies which focus on the analysis of paired data, existing on the

same collection unit 19,20. Apart from punctuation signs, all the words and numbers are

included in the analysis, evaluating both their number of paired presence and their

concordances 21.

Notably, the use of the collected textual data by machine learning models requires

their numerical representation, also known as text vectorization, a fundamental process of

machine learning for the data analysis. Thus, data extraction is the basis for the generation

of co-occurrence matrices or word vectors, which subsequently produce tables or graphs,

enabling the analysis process 22. More specifically, co-occurrence matrix is a square,

asymmetric matrix, whose aim is to provide the associations between notions. It presents the

number of times ( ) where word j is inside a unit of text which contains word i, taking into𝑛
𝑖,𝑗

account the total number of identified bioentities 21 (Figure 2b). Weighted and directed

graphs are usually generated by these matrices where the vertices correspond to terms and

the values are the weights of the edges 21 (Figure 2c).𝑛
𝑖,𝑗

Particularly, co-occurrence networks are graphic visualizations of associations

between entities that appear in text data 23. Each vertice (V) of the corresponding graph G =

(V, E) represents a term/bioentity, while edges (E) depict semantic relationships between

these entities, implying a functional relevance as well . Co-occurrence is often defined based

on desired criteria, such as the segmentation of a text. Hence, co-occurrence networks can

be generated for terms identified in any unit of text, including sentence, paragraph, section

or even abstract 24. In case of sentence-based co-occurrence, the connections are created

between paired entities that exclusively appear in the same sentence, while abstract-based

co-occurrence requires the coexistence of terms in the same abstract text 24. Both of the

aforementioned network types are typically undirected graphs which represent the paired

presence of biomedical terms within a specified text corpus, inferring a potential action

between nodes. However, semantic co-occurrence networks depict the functionality between

two entities via the interactions of nodes with multiple and directed edges 24.

Nonetheless, it is not uncommon for graphs to contain a great number of

interconnected nodes, resulting from large data volumes which are produced by

co-occurrence analysis. As a consequence, networks inevitably become dense and

indecipherable, complicating the extraction of meaningful information. To this end, the

implementation of high-quality clustering algorithms and visualization techniques by
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specialized tools aims to accomplish an organization of functionally related terms in order to

decrease the complexity of the graph and facilitate the interpretation of the results 24.

Figure 2: (a) Protein names are highlighted in red and drug names in green for abstract [25]. (b)
sentence-based co-occurrence matrix presenting the interconnections between terms of the abstract.
(c) Sentence-base co-occurrence network. All the entities that appear in the same sentence of the
abstract are connected with undirected edges.
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1.1.3 Term Frequency-Inverse Document Frequency (TF-IDF)

As previously mentioned, co-occurrence analysis and particularly the resulting matrices

indicate the frequency of coexistence of terms within a specified text unit. However, the

relation between identified entities can not be easily deduced merely by raw frequency

measures, due to the lack of discrimination and partiality 26. For instance, articles and

pronouns are commonly used and could co-occur with almost any kind of word, hence the

determination of word associations is doubtful. It is hardly surprising that the more frequent

the coexistence of two entities, the more important the entities are. Yet words that are

ubiquitous, such as articles, tend to be insignificant 26. Thus, the problem of quantifying the

significance of terms arises.

One commonly used measure of word importance that is often applied in Information

Retrieval (IR), Text Mining and other NLP tasks to address the aforementioned issue is Term

Frequency-Inverse Document Frequency (TF-IDF). TF-IDF is a numerical statistic that

evaluates the relevance of terms to a document in a collection or corpus 27. By definition,

TF-IDF multiples two different quantities: Term Frequency that weights the occurrence

frequency of a term in a document or in a corpus and Inverse Document Frequency which

can be interpreted as the amount of information a word provides 27. The normalized TF value

is obtained by the division of the raw frequency of a term t in a document d by the total

number of terms in the document d, and then often the logarithm of the quotient is calculated

(Figure 3a) 27. IDF is the logarithm of the ratio of the total number of documents in collection,

by the number of documents in which term t appears 26. Consequently, the higher the

occurrence of a term in documents, the lower the weight that is assigned to this term, while

increased importance (IDF) is assigned to the rarely occurring terms (Figure 3b) 27.

Figure 3: (a) Term Frequency (TF) fraction. (b) Inverse Document Frequency (ITF) fraction

The multiplication of Term Frequency (TF) and Inverse Document Frequency (IDF) results in

the TF-IDF score of a word in a document. Despite the numerous variations of calculation,

the TF-IDF weighted value for the word t in the document d is usually defined as:𝑤
𝑡,𝑑

28.𝑤
𝑡,𝑑

 = 𝑡𝑓
𝑡,𝑑

 𝑥 𝑙𝑜𝑔
10

( 𝑁
𝑑𝑓

𝑡
)
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According to the previous mathematical equation, TF-IDF score increases proportionally to

the occurrence of a word in a document, indicating its importance in that particular document
28. Generally, even though all terms in a document are assigned a TF-IDF value, the

extraction of the most representative and significant ones is determined by a specified

threshold, below which the words are regarded as irrelevant and discarded 28.

The TF-IDF weighting is considered among the most popular term-weighting

schemes and is used to extract features across various NLP applications. The usefulness of

this technique lies mainly in its computational efficiency and the fact that manual annotation

is not required. Furthermore, TF-IDF assists the empowering of more complicated NLP

algorithms and query retrieval systems, due to the simplicity of its encoding 29. For example,

in Information Retrieval systems, TF-IDF complements text mining and search algorithms,

delivering the most relevant results according to a particular search query. However, a main

shortage is its failure to detect the semantic-sensitive content, including the position of a

term in the text and its co-occurrences with other words 29.
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1.2 Literature review of computational tools
A variety of computational tools and web services that implement NLP and NER techniques

have been proposed, including EXTRACT 30, PubTator 31, HunFlair 32, LitVar 33, Taxonfinder

(https://github.com/pleary/node-taxonfinder) and Tesseract 4.0

(https://github.com/tesseract-ocr/tesseract). More specifically, EXTRACT 2.0, an

easy-to-use, interactive annotation tool, offers the opportunity of versatile and

browser-based annotation of texts as well as identification and extraction of bioentity terms,

by pipelining Named Entity Recognition methods. EXTRACT is able to detect various

genes/proteins, chemical compounds, organisms, environments, tissues, diseases,

phenotypes and Gene Ontology terms mentioned in HTML pages exclusively, including

PubMed abstracts, full-text journal articles and web pages. The main feature of this tool, the

bookmarklet, is a browser bookmark containing a JavaScript script allowing both

selected-text-based entity extraction and full-page tagging. In addition to annotation,

EXTRACT enables the collection and mapping of identified terms to their corresponding

ontology/taxonomy entries via another important component called popup.

PubTator Central (PTC) is a user-friendly, web-based tool for the automated

annotation of bioentities, including genes/proteins, genetic variants, diseases, chemicals,

species and cell lines, in 29 million PubMed abstracts and in 3 million PubMed Central full

text biomedical articles. The annotation depends on integration of text-mining systems and

disambiguation modules based on deep learning. Currently, the PTC web interface enables

the generation of full text corpus and the visualization of each annotated document, while

annotations are freely downloadable in various formats (XML, JSON and tab delimited) via

the online interface, a RESTful web service and bulk FTP.

Moreover, HunFlair is a freely accessible and easily installed biomedical Named

Entity Recognition (NER) tagger, incorporating 23 biomedical NER corpora. HunFlair

accurately identifies five biomedical entities (cell lines, chemicals, diseases, genes and

species) by implementing a character-level language model, pre-trained in a cross-corpus

setting of approximately 24 million biomedical abstracts and 3 million full texts. Text parsing,

document classification, hedge detection and the use of other language models are

available, since HunFlair is integrated into the NLP framework Flair.

LitVar is another tool which provides a graphical web interface and is focused on the

identification and extraction of standardized variant information obtained from more than 27

million PubMed abstracts, up to 1.8 million full-text articles from PubMed Central Open

Access Subset, dbSNP 34, and ClinVar 35. By performing Named Entity Recognition (NER) on

both abstracts and full-text articles via tmVar 36, LitVar enables the normalization and

standardization of multiple names of the same variant, while the implementation of text
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mining techniques provides associations between variants and other bioentities, such as

diseases and chemicals/drugs.

Besides the aforementioned biomedical research driven applications, a web tool that

focuses exclusively on taxonomic entity extraction is Taxonfinder. By employing a

dictionary-based approach, morphological analysis and Levenshtein Distance algorithm.

Taxonfinder is able to identify various latin scientific organism names including Kingdom,

Phylum, Class, Order, Family, Genus, Species, Subspecies, in the literature. The application

can be installed and run locally or can be accessed programmatically via an API.

Finally, Tesseract 4.0 is an updated, freely accessible, and open-source command

line Optical Character Recognition (OCR) engine, which has been sponsored by Google

since 2006 and currently recognizes over 100 languages. It is a well-documented engine,

written in C/C++ with Unicode (UTF-8) support and it has recently implemented a Long-Short

Term Memory (LSTM) OCR module and a new neural net (LSTM) based OCR engine which

is focused on line recognition. Notably, tesseract returns various output formats, including

plain text, hOCR (HTML), PDF, invisible-text-only PDF and TSV, while ALTO (XML) output is

experimentally supported in the master branch.

Altogether, these tools leverage unstructured knowledge to detect and extract named

entity mentions, such as genes/proteins, genetic variants, diseases, chemical compounds,

organisms, diseases and cell lines in biomedical documents.
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CHAPTER 2: Functional enrichment analysis

The introduction of high-throughput technologies in biology has necessitated the

development of novel data analysis techniques, in order for the interpretation and

comprehensive understanding of the sheer volume of experimental data produced to be

accomplished. The harnessing and integration of complex genomics, proteomics, and

metabolomics datasets identified by these methods facilitates the acquisition of a holistic

view and provides insight into the dynamics of biological systems at the organismal level.

However, living cells can be characterized as intricate networks of molecular interactions,

indicating the significance of perception of how each biomolecule influences a specific

phenotype. Therefore, establishing the functional roles of individual molecules of interest in a

particular experimental context is often invaluable in drawing conclusions from the

experimental data 37. To this end, a widely used downstream analytical application is the

Functional Enrichment analysis, which is implemented for the identification of molecules of

interest in a high-throughput dataset. In particular, functional enrichment determines classes

(subset) from a long list of biological elements that are over-represented in a large collection

of the corresponding element, each representing a biological relevant label (e.g. Gene

Ontology term, molecular pathway, protein domain, disease, etc.) 37. Statistically enriched

biological elements are then identified by comparing their frequency against a reference

background list.

Importantly, the hypergeometric test or its variants including the binomial and Fisher’s

exact tests, are widely applicable to many existing procedures that detect enrichment,

especially due to its simplicity 38. It utilizes the hypergeometric distribution to measure the

statistical significance of having drawn exactly items, classified as success, out of𝑘 𝑛

random sample draws from a population of size comprising of successes 39. For𝑁 𝐾

instance, in a high-throughput experiment, the classical hypergeometric P-value of

enrichment is the probability of randomly observing or more differentially expressed genes𝑛

annotated to the GO term and is calculated by:

,

where is defined as the binomial coefficient, is the number of genes
𝑚
𝑛( )  =  𝑚!

𝑛!(𝑚−𝑛)! 𝑔

annotated to a certain GO term, is the total number of genes evaluated and is the total𝑓 𝑑

number of differentially expressed genes detected in the particular experiment 37. Notably,

the hypergeometric distribution is modeled based on a null hypothesis which indicates that
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the functional term is irrelevant to the experiment, meaning that a gene being annotated by

the GO term and this gene being differentially expressed are independent events 37.

2.1 Steps of functional enrichment
Generally, different enrichment strategies can be tailored by a plethora of tools aiming to

perform functional enrichment analysis. Despite the minor but existing differences of each

protocol, these tools share similar basic principles, which enable the assessment of the

statistical significance of the observed functional patterns when transitioning from the

genome to functional level 37. Since functional enrichment analysis is the application of

enrichment analysis to data generated by “omics” techniques, ranked or unranked, raw lists

of biomolecules (e.g. genes, proteins or metabolites) are used as an input 40. As might be

expected, the desired outcome usually determines the type of the list selected (ranked or

unranked) as well as the tool used for the analysis.

The first step in a standard enrichment analysis method involves the calculation of

the enrichment score. The careful selection/generation of the appropriate background

dataset of identified molecules, against which to test for over-representation, is of utmost

importance, for the elimination of any biases and the improvement of the accuracy of the

enrichment score 37,41. Once the mapping of each molecule from the gene list to ontology

terms is complete, the comparison of ontology terms for the query and background list

follows in order to assess the enrichment of different terms and processes 37. It is of note that

the query molecule list must be a subset of the reference/background dataset. Enriched

processes/pathways or functions are considered those that are over-represented in the

query dataset relative to the background dataset. The resulting enrichment score is a

qualitative value, determining the statistically significant functionalities of molecules, rather

than the quantification of their alteration 42.

Subsequently, the enrichment score significance is evaluated by implementing the

Binomial, Fisher's exact, Hypergeometric or Chi-square tests. However, alternative

mathematical approaches can be used, according to the user’s preference. More concretely,

when a relatively small background dataset is available, the Fisher’s exact, Chi-square and

Hypergeometric distributions are more efficient, whereas the analysis of a larger list is better

accomplished with use of the Binomial probability 43. The majority of methods are based on

the p-value for the quantification of the enrichment score’s statistical significance. All terms

below a predefined p-value threshold are considered to be significantly enriched, while a

more strict and enforced analysis may require at least 2-fold differences 43. Interestingly, in

contrast to p-value, sample frequency and semantics of each term are valuable measures
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for the biological interpretation of results and not just for the identification of enriched terms
42.

Finally, the exclusion of random events that falsely appear significant in a list of hits

originated from high-throughput experiments is vital in functional enrichment analysis. For

this reason, the adjustment for multiple hypothesis testing is used in functional enrichment

analysis, as multiple comparisons are being made simultaneously, resulting in the

performance of numerous separate hypothesis tests. Multiple testing refers to any instance

that involves the simultaneous testing of more than one hypothesis 44. This implies that the

probability of false positive results is high, if individual hypotheses are in accordance with the

unadjusted marginal p-values 44. Generally, upon the performance of hypothesis tests, the𝑛

probability of at least 1 false positive can be calculated as follows:

,𝑃 (𝑚𝑎𝑘𝑖𝑛𝑔 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 1 𝑒𝑟𝑟𝑜𝑟 𝑖𝑛 𝑛 𝑡𝑒𝑠𝑡𝑠) =  1 −  (1 −  𝑎)𝑛

where . It becomes evident that as the number of hypothesis𝑃 (𝑚𝑎𝑘𝑖𝑛𝑔 𝑎𝑛 𝑒𝑟𝑟𝑜𝑟) =  𝑎

tests increases, the probability of making at least one error increases as well 45. Herein, most

of the widely utilized multiple test corrections, including the family-wise error rate (FWER)

and the false discovery rate (FDR), rely on controlling type I errors. FWER provides

corrected p-values by controlling the probability of even a single erroneous rejection of the

null hypothesis, whereas FDR controls the ratio of false discoveries, producing q-values

which indicate the ratio of accepted false discoveries, when rejecting the null hypothesis 42.
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2.2 Functional enrichment tools
Representative tools used for enrichment analysis include DAVID 46, PANTHER 47, Flame 48,

WebGestalt 49, aGOtool 41 and g:Profiler 50,51, each performing different statistical analysis

and supporting different enrichment options. Some of these tools are briefly described in this

section.

In detail, the Database for Annotation, Visualization and Integration Discovery

(DAVID) is a user-friendly and web-based program, which aims to facilitate the biological

interpretation of large genome-scale datasets encoded by human, mouse, rat or fly. It

integrates a broad spectrum of functional genomic annotation resources in combination with

graphical displays, improving the quality of high-throughput functional annotation analysis.

Visualization tools are also provided and assist the comprehensive annotation of lists of

genes/proteins according to functional classification, biochemical pathway maps, and

conserved protein domain architectures. All data is freely downloadable in text format.

In addition, g:Profiler consists of distinct tools that are part of computational analysis

pipelines. g:GOSt is used for the functional enrichment analysis of individual or multiple gene

lists provided by the user. The data are imported from Gene Ontology 52, pathways from

KEGG 53, Reactome 54 and WikiPathways 55, protein complexes from CORUM 56, expression

data from Human Protein Atlas 41, regulatory motifs from TRANSFAC 57 and miRTarBase 58,

and phenotypes from the Human Phenotype Ontology 59. g:Convert maps gene and protein

identifiers between numerous namespaces and converts them based on information from

the Ensemble database. g:Orth is a tool for mapping orthologous genes across multiple

species based also in Ensemble data. Finally, g:SNPense maps human SNP identifiers to

gene names, chromosomal locations and variant consequence terms from Sequence

Ontology.

Similarly, aGOtool is an open-source, publicly accessible web tool for Gene Ontology

(GO) enrichment analysis. It focuses on proteins and identifies terms from the UniProt

keyword classification system 60, Kegg and Wiki pathways, Reactome, protein families and

domains from Pfam 61 and InterPro 62, as well as human diseases and tissues from the

DISEASES database 63 and Brenda tissue database 64 respectively.
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CHAPTER 3: Fundamental concepts in Graph theory

3.1 Algebraic graph theory elements
Since the onset of graph theory in recreational math problems 65, it has been proven a really

powerful and useful tool in numerous and seemingly diverse fields of science, ranging from

mathematics, engineering and computer science to biosciences, chemistry, sociology and

linguistics 66,67. It is considered one of the main subjects of study in the domain of discrete

mathematics, especially due to its interesting mathematical properties, and is used to depict

the relations between objects or entities 67.

Conceptually, a graph or network is the pictorial representation of a set of vertices

(points or nodes), connected by edges (arcs or lines) 67. However, formally, a graph G can be

defined as a pair of sets (V(G), E(G)), consisting of a set V(G) of vertices and a set E(G),

disjoint from V(G), of edges, together with an incidence function that associates withΨ
𝐺

each edge of G an unordered pair of (not necessarily distinct) vertices of G 68. Even though

there are multiple different ways for one graph to be depicted, two different graphs, whose

sets of edges and vertices are of the same number and their connectivity is retained, are

called isomorphic 67. A subgraph G’ = (V’ , Ε’) of the graph G = (V, E) is a graph where V’ is a

subset of V and E’ a subset of E 69. A finite graph G is a graph whose V(G) and E(G) are

finite sets 70. It is of note that the existence of loops (an edge which is drawn from a vertex to

itself) and multiple edges is possible in any type of graph, apart from simple graphs. When

any two vertices are joined by more than one edge, the graph is called a multigraph

(multi-edge graph) 70. Examples are presented in Figure 4.
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Figure 4: Simple graph and multigraph. (a) A graphical representation of a finite, simple graph G =

(V, E). (b) A graphical representation of a subgraph G’ = (V′, E′). (c) An alternative representation of

the graph G. (d) A multigraph G’’ = (V′’, E′’). (e) A simple graph G with a loop. (f) Graph H = (V’’’, E’’’)

is isomorphic to graph G = (V, E).

Besides simple and multi-edge graphs there are plenty of other graph types,

including directed, undirected, connected, disconnected, weighted, bipartite and trees. A

graph is considered directed (or digraph) if each edge bears an arrow mark, indicating its

direction, while undirected (or non-directed) is the graph which has a single connection

defined as E = {(i, j)|, i, j ∊ V} between vertices i and j 69. It is important to note that in a

directed graph an edge is defined by an ordered pair of nodes, distinguishing it from an

undirected graph. If between every pair of vertices in a graph exists a path, this graph is

called connected and if two or more vertices are not connected, the graph is called

disconnected 67. A weighted graph is defined as a graph where E is a set of edges between

the vertices i and j (E = {(i, j) | i, j ∈ V}) associated with a weight function w: E → R, where R

denotes the set of all real numbers 69. A bipartite graph is a simple, undirected graph G = (V,

E) with vertex partition into two disjoint sets V1 and V2 that (i, j) ∈ E implies either (i ∈ V′

and j ∈V′′) or (j ∈ V′ and i ∈ V′′). In general, in a bipartite graph an edge should connect

any vertex in set V1 to any vertex in set V2, but not the vertices that belong to the same set
69. Finally, a tree comprises a connected, undirected graph with no cycles 66. Examples of the

aforementioned graph types are shown in Figure 5.
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Figure 5: Different types of networks. (a) Undirected graph = ( , ). (b) Directed graph = ( , ). (c)𝐺
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3.2 Basic network properties
Graphs are characterized by various properties, depending on their structures. These

network properties, and particularly topological features, are important to unravel the data

included in a graph and analyse its complexity by extracting information from individual

components. The topology of a network refers to the arrangement of nodes and edges and

is applicable both to the whole network and to individual nodes and edges. Some of the most

used topological properties and concepts are the degree, degree distribution, density,

clustering coefficient, distance 69.

3.2.1 Degree

Firstly, the degree deg(v) (Figure 6a) of an undirected graph is defined as the number of

vertices adjacent to a vertex V 69 and is a fundamental characteristic which influences other

parameters. In a simple graph G with n number of vertices, the degree of any vertex is

deg(v) = n – 1 ∀ v ∈ G, because as mentioned before there are no loops in simple graphs,

thus the degree of vertex will be up to the number of vertices in the graph (n) minus 1, itself
66. In case of a directed graph, the degree of a node can not be easily described by a single

number, as the underlying information of an incoming and an outgoing edge may be of great

importance and should be taken into consideration. Instead, by the calculation of all the
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edges incident from a vertex and the edges incident to a vertex, one can obtain two numbers

for the degree of a node, the indegree and the outdegree respectively, a𝑑𝑒𝑔(𝑉)𝑖𝑛 𝑑𝑒𝑔(𝑉)𝑜𝑢𝑡

terminology that reflects the direction of the edges. The sum of the indegree and𝑑𝑒𝑔(𝑉)𝑖𝑛

the outdegree is defined as the total degree of the directed graph 69. The average𝑑𝑒𝑔(𝑉)𝑜𝑢𝑡

degree of a graph G = (V, E) measures the number of edges that are included in set E

compared to the number of vertices in set V. Each edge is incident to two vertices and

counts in the degree of both vertices, thus the average degree of an undirected graph is
69.2 * |𝐸|

|𝑉|

3.2.1 Degree distribution

An arguably fundamental quantity associated with the network structure is the degree

distribution , a parameter which aims to capture the variance in the degree of nodes𝑃
𝑑𝑒𝑔

(𝑘)

in a graph, while providing useful information about the structure of the network and how

centralized or distributed it is 69. It is a quantitative parameter, but its alteration can have a

rather qualitative effect on the network. The degree distribution can be calculated by simply

counting the number of randomly selected nodes with a degree equal to k and can be

defined as the fraction of nodes in the graph with a degree k. In other words, it gives the

observed frequency of a node of degree k 71. Notably, a spectrum of network’s degree

distributions can be defined starting from homogeneous to heterogeneous. A degree

distribution is homogeneous (Figure 6b), if all nodes have relatively similar degrees, like in

Poisson and Gaussian distributions, whereas if there is great disparity between the node’s

degrees, the distribution is heterogeneous (Figure 6c). The latter can be described as a

scale-free network if the distribution of the vertex degree (k) follows a power-law distribution

of the form 72. One of the main properties of this type of network is the formation of𝑃(𝑘)𝑘−γ

highly connected nodes, named hubs, while other poorly connected nodes are also linked to

these hubs 72.
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Figure 6: Degree and degree distribution. (a) Simple, undirected graph G = (V, E), |V| = 9, |E| = 12.

Each node’s size has been adjusted according to its degree. (b) Column chart which depicts a

homogeneous degree distribution of a graph (Poisson distribution). (c) Column chart which depicts a

heterogeneous degree distribution of a graph.

3.2.1 Density

Another significant property of graphs is the density, which is described as the ratio

between the number of edges in a graph and the number of possible edges in the same

graph. In particular, the maximum number of edges of a simple, undirected graph is |V| *

, implying that the density is D = 2 * , while for a simple, directed graph(|𝑉| −1)
2

|𝐸|
(|𝑉| * (|𝑉| − 1))

the density is D = , as this type of graph can have at most |V| * (|V| - 1) number|𝐸|
(|𝑉| * (|𝑉| − 1))

of edges 69. A graph is considered complete (Figure 7) when there's an edge between any

two nodes, dense (Figure 7) if the number of edges is close to the maximal number of edges

(|E| , 2 > k > 1), whereas a graph with fewer edges (|E| ≃ |V| or |E| ≃ , k ≤ 1), it is≃|𝑉|𝑘 |𝑉|𝑘

considered as sparse (Figure 7) 69.

Figure 7: Density and Clustering coefficient. Representation of a simple, undirected complete

graph (left), dense graph (middle) and sparse graph (right).
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CHAPTER 4: Bioentity interaction databases

Traditionally, biological research has been dominated by an explanatory and methodological

reductionism approach, providing a wealth of building explanations based on the dissection

of biological systems into their constituent parts 73. Even though the research at deep levels

of organisation can potentially reveal hidden mechanisms, reductive research strategies

neglect their context, limiting biological insights 74. Therefore, considering that the specificity

of even a discrete biological function is rarely attributed to individual molecules, biases and

distortions of reduction method arise 73,74. Instead, integrative strategies attempt to

understand and further explain the structure and dynamics of the complex intercellular and

intracellular systems at different levels, utilizing findings from multiple scientific fields 74.

This challenge of contemporary biology to embark on a systems-based approach is

significantly supported by the technological advancements of high-throughput techniques of

the last decade. For instance, microarray and RNAseq technologies provide insights about

gene expression, while scRNAseq technology organizes cells into groups based on their

gene expression profiles. As far as the proteins are concerned, mass spectrometry identifies

proteins based on their molecular weights and mass-to-charge ratio, whereas Nuclear

Magnetic Resonance (NMR) and X-Ray crystallography are used for the determination of 3D

protein structures in space. In addition, whole genome and whole transcriptome analysis

along with metabolomics are used to study small molecules and metabolites within cells,

biofluids, tissues or organisms 75. By harnessing these methods, researchers are enabled to

catalogue vast numbers of information in the form of component molecules of biological

networks at a genome-wide scale and under a large number of different experimental

conditions 76.

As modern biomedical research evolves to address the inherent complexity of

biological systems by combining multiple -omics approaches (e.g., genomics, proteomics,

transcriptomics, metabolomics), specialized tools and repositories become a necessity in

order for this complexity to be revealed, represented and interpreted. One advanced

integration and visualization technique involves the use of biological interaction networks. In

particular, Network Biology often attempts to illustrate a holistic picture of the interdependent

relationships between biological entities and processes via the implementation of graph

theory methods, statistics, mathematical modeling and visualization tools 77. Graphs are

mainly the means to model and portray compartments of whole systems and their

biomolecular interactions. Commonly, a node represents a biomolecule (e.g., gene, protein,

chemical, compound, disease) whereas an edge the relationship between them (e.g.,

co-expression, co-occurrence, sequence similarity, coevolution, orthology, homology, fusion,

common function) 78. Inarguably, biological interaction networks have been proven as an
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invaluable tool in a wide range of diverse fields of biological analyses, including the

organization of trophic webs, protein interactions, brain circuits and gene regulation.

However, the most characteristic example is the Human Interactome Network 79, a

proteome-scale analysis of protein-protein interactions for the entire human proteome, that

has allowed the detection of previously unknown functional relationships and it is currently a

reference map for the human proteome and its interactions.

Apparently, the increasing availability of interaction data originated from high

throughput methods or generated through computational predictions often provide sufficient

knowledge to acquire a dimensional view of many potential functional activities 80. Numerous

biomedical repositories, namely Pubmed 81, UniProt 60, GenBank 82 or Ensembl 83, store such

evidence, offering organized datasets to be further investigated. Nonetheless, the intrinsic

interrelatedness of biological phenomena as well as the successful generation and analysis

of interaction networks indicates the necessity of a three-dimensional view and the majority

of the aforementioned databases are not dedicated to the analysis of interactions. Therefore,

biological interaction databases have emerged, appearing as specialized repositories for

providing evidence on gene, protein, and small molecule interactions, as well as

associations of these interactions with metabolic pathways, host-pathogen relationships,

diseases, and even ecological data.

Typically, the type of interactions, the source of information and the data curation

procedure define the classification of bioentity interaction databases. Particularly, the identity

of a database primarily depends on the interaction type provided. For example, the physical

or/and functional protein-protein or protein-small molecules interactions determine the

protein interaction databases, whereas gene co-expression databases describe interactions

based on similar expression patterns. According to the source of information and the

data-acquisition policy, interaction databases can be further divided into three main groups:

i) primary, ii) secondary and iii) predictive. More specifically, as primary are characterized the

databases that independently compile the evidence collected from multiple primary sources

(i.e., scientific publications or or from deposited interaction datasets, such as those derived

from high-throughput experiments). Secondary or meta-databases however combine and

annotate data curated by several primary databases in a single repository, rather than collect

information directly from primary sources. Finally, predictive databases contain both

experimentally verified and computationally predicted interaction evidence derived from

various methods, such as sequence or structure analysis, or from automatic methods for

parsing the literature (e.g., text mining). The categorization of databases is also specified by

their data curation policy which involves the annotation, publication and presentation of

integrated data originating from various sources. Data acquisition can be manual (i.e.,

handled by curators, or by the scientific community) or automated which is performed using
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computational methods. Sometimes, high-throughput automation complements manual

curation, resulting in a combination of the two previously mentioned methods 84. In addition

to the type of curation, level can also indicate two distinct categories of databases which

include the lightly and the deeply curated. Lightly curated databases aim to publish the

maximum amount of interaction information obtained from computational methods, without

necessarily focusing on their detailed aspects. Therefore, errors, redundancy and

overlapping information are common shortcomings of lightly curated databases. Instead,

deeply curated databases offer more detailed information which is periodically manually

annotated, validated through multiple sources and checked for redundancy. To date, various

types of biological interactions have been characterized and provided by numerous different

databases, some of which are discussed below.

31

https://www.zotero.org/google-docs/?QjMrsf


4.1 Gene co-expression databases
Gene co-expression networks are transcript - transcript association networks, generally

reported as undirected graphs, where each node corresponds to a gene and a pair of nodes

is connected with an edge, if a significant co-expression association exists between them.

Notably, functionally related genes generally share similar expression patterns on

spatio-temporal states or environmental conditions. These genes are of great biological

interest as they may participate in the same biological pathway or due to the fact that their

regulation depends most probably on the same transcriptional regulatory program. Thus,

they provide powerful information to estimate the functions of uncharacterized genes 85. The

modules or/and the highly connected subgraphs presented in a gene co-expression network

depict the gene groups, which have analogous function or mediate the same biological

processes, thus resulting in numerous interactions among themselves.

Gene co-expression networks are usually constructed using gene expression data

from high-throughput gene expression profiling technologies (e.g. microarrays or more

recently RNA-seq). The calculation of co-expression values and the selection of an

appropriate significance threshold are prerequisites for building this type of network.

Normally, the co-expression similarity score is calculated with the use of metrics like Pearson

or Spearman. In this paragraph are mentioned several examples of co-expression network

databases as well as information describing gene-gene relationships across various

organisms.

COXPRESdb 86 (Figure 8a) is a database that deals with condition-independent

co-expression data of protein-coding RNAs retrieved from 11 different model organisms. In

order to improve the reliability of information and remove the biased relationships,

COXPRESdb compares multiple coexpression data derived by different transcriptomics

technologies and from various species. Specifically, the last update combines gene

expression data from 23 different co-expression platforms, οut of which, 123 experiments

concern Human, 154 Mouse and 154 Rat, released by Gene Expression Omnibus (GEO). In

total, COXPRESdb hosts 12 co-expression networks for various species created from

approximately 157,000 microarray and 10,000 RNA-seq samples.

GeneMANIA 87 (Figure 8b) is an easy-to-use repository which identifies functionally

similar genes to a set of input genes, utilizing a wealth of genomics and proteomics data

originated from various sources, including GEO, the Biological General Repository for

Interaction Datasets (BioGRID) 88, IRefIndex and Interologous Interaction Database (I2D) . In

the current version, GeneMANIA has 2,300 networks consisting of approximately 600 million

interactions between almost 164,000 genes of 9 different organisms (A. thaliana, C. elegans,
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D. rerio, D. melanogaster, E. coli, H. sapiens, M. musculus, R. norvegicus and S. cerevisiae)

are supported.

Figure 8: COXPRESdb and GeneMANIA databases. (a) User Interface and services of

COXPRESdb. (b) Gene co-expression network example and visualization parameters of

GeneMANIA.

Moreover, GeneFriends 89, Immuno-Navigator 90 and COEXPEDIA 91 are

co-expression and gene expression databases for H. sapiens and M. musculus. In particular,

the latest version of GeneFriends integrates updated gene and transcript networks based on

RNA-seq data from 46,475 human and 34,322 mouse samples, whereas the

Immuno-Navigator tool offers cell-type specific gene expression and correlation of

expression data in cells of the immune system. Currently, it contains data from 4639 human

samples, obtained from 19 cell types from 191 studies, as well as 3434 mouse samples,

obtained from 24 cell types from 261 studies. In contrast to the databases mentioned above,

COEXPEDIA provides 8 million co-functional co-expressions data, resulting from statistical

assessment and derived from 384 and 248 GEO individual studies associated with

biomedical information.

In addition to the biomedical-driven databases, various repositories are dedicated to

gene co-expression networks for plant species, such as ATTED-II 92 (Figure 9a), CoP 93

(Figure 9a) and PlaNet 94 (Figure 9a), while the Arabidopsis Co-expression Tool (ACT) 95 and

AraNet are A. Thaliana-specific. Currently, ATTED-II focuses on co-regulated gene

relationships for nine plant species, supported by microarrays and RNA sequencing

(RNAseq)-based co-expression data. Similarly, CoP provides condition-independent

co-expression data associated with biological processes assembled from microarray

datasets of 8 different plant species (Figure 9b). PlaNet is an online platform that offers

various tools enabling the visualization and analysis of co-expression networks for
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photosynthetic organisms (Figure 9b), while ACT and AraNet incorporate co-expressions

between 21,273 A. Thaliana genes from microarrays and genome-scale functional networks.

Figure 9: Gene co-expression databases for plant species. (a) User Interface and search options

of ATTED II, CoP and PlaNet databases. (b) Search results based on an input query in the CoP

database. (c) Search results based on a gene identifier input in the PlaNet database.
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4.2 RNA interaction databases
RNA molecules are indispensable cellular components and participate in almost every

essential biological process, such as transcriptional and post-transcriptional regulation,

storage and flow of information and signal transduction through environmental sensing 96.

However, their functions and regulation are crucially dependent on the specificity and the

efficacy of their intermolecular and intramolecular interactions. Diverse RNA types have the

ability to interact with other RNAs, DNA, proteins, lipids, and metabolites, forming complex

molecular networks 96. Modification of these interactions is closely related to multiple

different disease phenotypes. Therefore, the description of RNA interactions networks helps

the unraveling of the underlying mechanisms of RNA functions which are mediated by the

various different interactions.

4.2.1 RNA-protein interactions

The inherent instability of RNA molecules coupled with the diversity and versatility of their

functions are largely responsible for their constant chaperoning by a plethora of different

protein complexes. Besides the regulatory binding of proteins to RNA molecules, RNAs also

interact with specific proteins to accomplish functions, reflecting both a protein-centric and

an RNA-centric approach, respectively 97. Notably, despite the significant contribution of the

recently developed transcriptome-wide methods and integrative analyses, deciphering the

intricate principles of these networks is undoubtedly challenging.

In order to facilitate the understanding of the complex, yet vital interactions for many

biological processes, RNA-protein interaction databases integrate experimentally validated

and computationally predicted data from published literature and high-throughput

technologies, visualizing the RNA interactome in reference to the collected information 98.

Regarding the contents provided by each resource, RNA-protein interaction databases could

be characterized either as comprehensive, incorporating data from multiple sources,

specialized, emphasizing mainly on a category of interactions validated by various

experimental methods or predictive, utilizing computational methods, apart from

experimental data, to predict possible interactions.

Firstly, Protein–RNA interaction database (PRD) 99 is a comprehensive database

which integrates literature-based physical RNA-protein interactions at the gene level. The

current version of PRD contains 10,817 interactions among proteins and protein-coding

RNAs, tRNAs, rRNAs, miRNAs and viral RNAs in 22 organisms, corresponding to 1539

unique gene pairs. Each interaction is enriched with further information curated from multiple

other resources, concerning RNA and protein binding sites/motifs, Gene Ontology (GO)

terms 100, detected methods and biological functions.
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The RNA Interactome Database (RNAInter) 101, previously named RAID, is another

comprehensive and manually curated database of RNA-associated interactions

(RNA–Protein/RNA-RNA), integrating experimentally validated and computationally

predicted data from published literature and 35 other resources. Apart from the fuzzy/batch

search (Figure 10), interaction network and RNA dynamic expression that are included in

RNAInter, four RNA interactome tools are also embedded, namely, RIscoper 102, IntaRNA ,

PRIdictor 103 and DeepBind 104. Currently, RNAInter contains 41,322,577 RNA-associated

interactions of 22 different RNA types in 154 species, including 34,106,998 RPIs. Identifiers

for external databases such as miRBase, NCBI, HGNC, Ensembl, Online Mendelian

Inheritance in Man (OMIM) 105, Human Protein Reference Database (HPRD) 106 and

UniProtKB are also provided. Data can be browsed by interaction type, detection method or

species and are downloadable in text format, as well as obtainable through an API.

Figure 10: RNAInter database search options. Fuzzy/batch search as well as four RNA

interactome tools available in RNAInter, namely, RIscoper, IntaRNA, PRIdictor and DeepBind.

Furthermore, POSTAR2 107 and doRiNA 108 constitute more specialized repositories,

concerning post-translational regulatory RNA–Protein interactions. Both databases provide

functional association prediction and contain structural information about binding sites of

RNA-binding proteins and RNAs originating from cutting-edge high-throughput sequencing

techniques. In particular, POSTAR2 provides the largest collection of RNA-binding proteins

(RBP) binding sites and functional annotations in 6 species, including human, mouse, fly,

worm, A. thaliana and yeast. Three modules (RBP, RNA and translatome modules) and

RBP–RNA interaction network in H. sapiens are supported, offering both functional and

structural insights into translational and post-translational regulation. On the other hand,
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doRiNA integrates experimentally validated RBPs and miRNA target sites data for H.

sapiens, M. musculus and C. elegans, while computational methods for all species are also

used for miRNA target sites prediction.

As far as predictive databases are concerned, Protein–RNA Interface Database

(PRIDB) 109 contains a total of 30,056 RNA-Protein interactions (5694 unique RNA chains

and 1702 unique protein chains) and incorporates structural information facilitating the

analysis of RNA-protein complexes and their interface, by providing a user-friendly format.

The RNA-Binding Protein DataBase (RBPDB) 110 is a manually curated resource of

experimentally observed RNA-binding data for 1171 RBPs in humans, mice, flies and

worms. Finally, RNA binding site DataBase (RsiteDB) 111 is another predictive database

aiming to describe, classify and predict interactions between protein binding sites and

single-stranded RNA bases.

4.2.2 RNA-DNA interactions

The recent advancement in technology and the development of high-throughput techniques

has significantly altered the analysing methods of RNA structures and interactions. The

combination of biochemical reactions and transcriptome-wide analysis has enabled the

studying of not just one but multiple RNA interactions, including RNA-DNA 112. The formation

of RNA-DNA hybrids as well as RNA-DNA interactions possess key roles in diverse

biological processes through both genetic and epigenetic regulations, such as dosage

compensation, imprinting, development process and disease progression 96. Therefore, in

this paragraph, databases focusing on RNA interactions with DNA molecules are presented.

NPInter 113 (Figure 11a) is one example of a manually curated database which

includes experimentally verified functional interactions between various types of ncRNAs

and biomolecules such as proteins, RNAs and DNAs. Currently, NPInter incorporates a total

of 1,100,658 interactions among 35 different organisms based on interaction data from the

RISE 114. NcRNA entries are annotated against NONCODE 115, miRBase 116 and circBase 117,

while proteins from UniProt, Ensembl and RefSeq 118. Additional metadata concerning the

interaction class and the tissue/cell line of the experiment complement the interaction

information provided.

Tarbase 119 (Figure 11b) is another manually curated database of experimentally

supported miRNA-DNA interactions which gathers data primarily from the literature as well

as from raw libraries like GEO and the DNA Data Bank of Japan (DDBJ) 120. The latest

version contains more than 1 million entries, corresponding to approximately 670,000

miRNA-target pairs. derived from more than 33 high-throughput techniques, applied to 516

cell types and 85 tissues, under 451 experimental conditions, across 18 species. Tarbase
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also supports identifiers from Ensembl and miRBase and is interconnected with other

DIANA-tools, like microT-CDS 121 for in silico identification of miRNA targets, LncBase v2.0
122 for miRNA–lncRNA interactions identification and DIANA-miRPath v3.0 123 for miRNA

functional characterization.

Figure 11: NPInter and TarBase v.8 database. (a) Browse interface of NPInter database. It provides

various search options regarding the interaction class and level, species, data source, tissue and cell

line. (b) Searching filters of TarBase v.8 database.

In addition to databases that incorporate interactions verified from high-throughput

pipelines, data of EVLncRNAs 124 and LncRNA2Target 125 are validated mainly by

low-throughput experiments. Particularly, EVLncRNAs is manually curated from the literature

and is dedicated to lncRNA interactions with biomolecules such as DNA, RNA, proteins and

TFs, supplemented by entries originated from other repositories (e.g., LncRNADisease 126

and Lnc2Cancer 127). Its current version (v2.0, July 2020) covers 4,010 total lncRNAs and

6244 biomolecular interactions across 124 species, and 11,257 lncRNA-disease

associations across 10,82 diseases. A network visualization of all available interactions is

offered, as well as links to tools for lncRNA prediction. Similarly, LncRNA2Target is a

comprehensive manually curated resource over 152 thousands of lncRNA-target gene
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among H.sapiens and M.musculus associations inferred from lncRNA knockdown or

overexpression experiments followed by high-throughput microarray/RNA-seq. All lncRNAs

were annotated by NCBI Genbank, Ensembl, GENCODE 128 and Entrez ID/symbols and

gene targets by Entrez ID/symbols 129.

Finally, as far as the plant-based resources are concerned, the Plant Non-coding

RNA Database (PNRD) 130, which is an updated version of PMRD (plant microRNA

database) 131, incorporates plant-related ncRNAs and is currently composed by 25,739

entries, from 11 different ncRNA types across 150 plant species. Notably, PNRD focuses on

miRNA-target relationships, providing 178,138 target pairs across 46 plant species. The

target information is enriched through psRNATarget 132 and the literature and concerns

protein-coding genes, literature ncRNAs and NONCODE lncRNAs. Importantly, PNRD hosts

a Cytoscape service for constructing miRNA-gene regulatory networks.

4.2.3 LncRNA-disease interactions

Undoubtedly, the interactions of RNA with other biomolecules unveils a plethora of

regulatory functions that can be fulfilled, ranging from coding of proteins to catalysis.

Consequently, as it becomes evident from the previous paragraphs, it is not surprising that

multiple databases are dedicated to these relationships which are of great importance for

cellular function and development. However, the normal function of cells depends largely on

the accurate expression of both protein coding and non-coding RNAs. Especially, Long

non-coding RNAs (lncRNAs) are transcripts that are longer than 200 nucleotides in length

and significantly help to decipher the underlying mechanisms related to the pathogenesis of

various diseases. Databases integrating information about LncRNA interactions with

diseases are discussed in the paragraph below.

Firstly, LncRNADisease 2.0 126 is a user-friendly, manually curated database which

documents over 200,000 lncRNA-disease and circular RNA-disease associations across 4

different species, either experimentally or computationally validated. The computational

prediction is based on LRLSLDA 133, LDAP 134, RWRlncD 135 and LncDisease 136, while the

experimentally supported data is divided into strong and weak evidence. Importantly, each

lncRNA-disease association entry contains detailed information, including gene symbol,

gene category, disease information, regulatory relationship and PubMed information

accompanied by a confidence score and each disease name is mapped to Disease Ontology

(DO) 137 and Medical Subject Headings (MeSH) 138.

Another comprehensive repository of associations between lncRNAs and circular

RNAs with diseases and specifically with various human cancer subtypes, is Lnc2Cancer 127.

This database comprises a collection of 10,303 experimentally supported interaction
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evidence between 2,659 human lncRNAs, 743 circRNAs and 216 human cancer subtypes.

All information is manually curated from the literature and additional metadata concerning

regulatory mechanisms (miRNA, TF, genetic variant, methylation and enhancer), biological

functions (cell growth, apoptosis, autophagy, EMT, immunity and coding ability) and clinical

applications (metastasis, recurrence, circulation, drug-resistance, and prognosis) are

provided.

Moreover, lncRNASNP2 139 and LincSNP 140 are two SNP-centric databases,

correlating diseases with information on functional SNPs and mutations in lncRNAs. To

begin with, lncRNASNP2 (v2) is a comprehensive collection of SNPs in human and mouse

lncRNAs, as well as their impact on lncRNA structure and function. 10,205,295 SNPs on

141,353 H. sapiens lncRNA transcripts and 5,104,701 SNPs on 117,405 M. musculus

lncRNA transcripts are currently provided by lncRNASNP2, which are retrieved from 170,002

NONCODE lncRNA genes. In addition, it contains noncoding variants from COSMIC 141

cancer data as well as TCGA cancer mutations, whereas lncRNA-miRNA interactions and

lncRNA-disease associations were predicted based on data originated from miRBase and

the Human microRNA Disease Database (HMDD) 142 accordingly. Similarly, LincSNP stores

and annotates experimentally supported disease or phenotype-associated variants, including

SNPs, linkage disequilibrium SNPs (LD SNPs), somatic mutations and RNA editing in

human lncRNAs and circRNAs or their regulatory elements.
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4.3 Protein interactions databases
Protein molecules participate and often orchestrate a myriad of cellular activities, maintaining

health or causing a number of pathological conditions. Herein, the investigation of these

relationships is vital for the discovery of biological processes and next-generation

therapeutics as well as the study of disease mechanisms. Protein interaction databases

constitute an important source of knowledge of the intrinsic physical and functional protein

associations with other proteins or with chemical compounds, such as ligands, drugs, and

others. For this reason, a great number of the specific type of databases have emerged in

the literature and a subset of them is described in the following paragraph.

4.3.1 Protein-protein interactions

Protein-Protein interactions are a key feature of the biological organization in all organisms

as they are involved in the vast majority of cellular functions, mediating both physiological

and pathological processes. These interactions are becoming one of the main objectives of

system biology, assisting the understanding of the underlying functional relationships

between proteins and the elucidation of various mechanisms. Therefore, their

characterization has drawn attention in recent years, developing various experimental and

predicting methods. As a result, a significant number of databases have emerged in order to

catalog and annotate these interactions.

To this end, IntAct 143 (Figure 12) and MINT (Molecular INTeraction) 144 are manually

curated resources that focus on experimental evidence derived from peer-reviewed

publications. Specifically, IntAct constitutes one of the largest biomolecular interaction

databases, offering over 11 million binary interactions, the majority of which refer to

protein-protein complexes. It is a major participant in the International Molecular Exchange

(IMEx) Consortium, a combined effort to provide an integrative, non-redundant dataset of

biomolecular interactions 145. The data provided are enriched by the integration of additional

experimental evidence deposited to IntAct by curators, including MINT,

UniProtKB/Swiss-Prot and PDB. Similarly to IntAct, MINT currently provides 4568 physical

(direct) and functional (indirect) interactions evidence, accompanied by further information

on promoter regions, mRNA transcripts and the functional annotation of its protein partners.

In addition, each association can be displayed graphically via the MINT Viewer, while a

numerical score (IntAct Mi-score) is applied for the evaluation of data88 confidence.

41

https://www.zotero.org/google-docs/?TuoD3U
https://www.zotero.org/google-docs/?zbHR6H
https://www.zotero.org/google-docs/?5FQnh6
https://www.zotero.org/google-docs/?UWBzBF


Figure 12: User interface of IntAct database. (a) Quick and Batch search of IntAct database. The

user can query by gene names, Uniprot ACs, Pubmed, protein names, Complex ACs. (b) Search

results depicted in table format. Filtering options enabling different views are provided as well. (c)

Interaction network visualization of Complex ACs: CPX-5742.

In contrast to the MINT and IntAct, the Database of Interacting Proteins (DIP) 146 and

the Integrated Interactions Database (IID) 147 are comprehensive repositories which

incorporate mainly experimentally validated protein-protein interactions, manually as well as

automatically curated, using computational approaches. The information provided in DIP is

extracted from various sources and cross-references to major biological repositories (e.g.

UniProt, RefSeq, and GO) is used for annotation of each association. IID comprises over 4.8

million in 18 species, including human, 5 model organisms and 12 domesticated species,

while experimental evidence derived from other databases is combined based on several

computational predictions. It also supports tools for topological and enrichment analyses of

PPIs. Importantly, MINT, DIP, and IID are all active participants in the IMEx Consortium.
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Two of the largest biological interaction repositories are BioGRID 88 (Figure 13a) and

STRING 148. The latter is thoroughly described in Chapter 6. BioGRID, in its current version,

catalogs 1,740,000 protein-protein interactions curated from both high-throughput datasets

and individual focused studies, derived from over 70,000 publications as well as genetic and

chemical interactions and post-translational modifications. Both databases provide

programmatic access through a REST API, as well as integration with Cytoscape. Even

though BioGRID is not an active participant in the IMEx Consortium, it is a Prospective IMEx

Consortium member, classified as IMEx Observer. Notably, I2D 149, formerly known as Online

Predicted Human Interaction Database (OPHID), is another web-based collection of

eukaryotic protein-protein interactions, which retrieves experimental evidence provided by

BioGRID or IntAct, in addition to data obtained from high-throughput experiments. Predicted

interactions are also offered and they are inferred by mapping experimental results between

different species. In order to visualize and further analyze the PPI networks derived from its

data, I2D implements NAViGaTOR 90, an online network analysis platform. I2D remains one

of the most comprehensive sources of both known and predicted eukaryotic PPIs for model

organisms, such as S. cerevisiae, C. elegans, D. melonogaster, R. norvegicus, M. musculus,

and H. sapiens.

CORUM (Comprehensive Resource of Mammalian protein complexes) 56 (Figure

13b) is a resource of manually annotated mammalian protein complexes, whose information

is retrieved exclusively from individual experiments published in literature. Despite the

relatively few total number of interactions provided, data curation for each entry is

significantly more detailed compared to other repositories. Particularly, CORUM 3.0

integrates 4274 mammalian protein complexes, while its annotation is based on the PSI-MI

standard and includes protein complex function, localization, subunit composition, literature

references, functional enrichment with GO terms, and associations with diseases.
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Figure 13: BioGRID and CORUM databases. (a) Different views of search results provided in the

BioGRID database. (b) Advanced search options and table of query results in the CORUM database.

On the other hand, ComplexPortal 150 is a manually curated and annotated database

of macromolecular complexes which even though covers a smaller number of mammalian

protein complexes than CORUM, provides a broader species range. More specifically,

ComplexPortal emphasized more on protein-protein associations, whereas it also provides

protein-nucleic acid, and protein-small molecule complexes supported by experimental

evidence, extracted and cross-referenced from the literature and deposited in IntAct. Another

fundamental difference between CORUM and ComplexPortal is the definition of the term

“macromolecular complex”. The latter is describing “complex” as an assembly of any two or

more bioentities that are stable enough in vitro to be reconstituted and have been
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demonstrated to have a specific molecular function. Thus, only constant protein-protein

complexes are included in the database, while transient interactions are discarded.

Besides the previously mentioned comprehensive databases that cover a large

spectrum of protein-protein interactions, a plethora of more specialized web services exist,

focusing on specific associations and systems. For instance, databases such as the

GPCRdb 151, the PrimesDB (Protein interaction machines in oncogenic EGF receptor

signalling) 152 and the Channelpedia 153 are devoted to the interactions of particular groups of

proteins with biomedical or pharmacological interest. Firstly, GPCRdb, as its name implies,

catalogs structural and functional data on the interactions of G-protein coupled receptors

(GPCRs) with ligands and heterotrimeric G-proteins. Moreover, PrimeDB focuses exclusively

on the signaling mechanisms of Receptor-Tyrosine Kinases (RTKs) associations, including

EGFR and ERBB, which are often implicated in diseases both as biomarkers and drug

targets. This database also offers tools for the visualization of PPI networks and is a

participant in the IMEx Consortium. Finally, Channelpedia is essentially a knowledge base

providing both structured and unstructured evidence on ion channels and interactions

between their subunits. Interestingly, the IUPHAR/BPS Guide to Pharmacology 154, which is

another specialized online resource, concentrates and presents molecular interactions

between all the protein classes mentioned above and their ligands in human, mouse and rat.

Lastly, in addition to protein-specific repositories, there is a plethora of databases

which accommodate information on PPIs observed in specific subcellular locations. One

example is MitoProteome 155 that provides interaction evidence on mitochondrial proteins,

while PerMemDB 156 includes experimental data along with computationally predicted

evidence on peripheral membrane proteins, including their interactions with transmembrane

proteins. MatrixDB 157 is another manually curated repository of protein-protein interactions

located at the extracellular matrix (ECM).

4.3.2 Protein-small molecule interactions

The interactions of proteins with small molecules are vital for a wide range of biological

functions. Inside a cell, small molecules play a twofold role as substrates and products in

various biochemical reactions and as ligands or hormones which regulate protein functions
158. Additionally, bioactive small molecules are often used as probes to identify therapeutic

protein targets in drug discovery. Information on the structures, calculated properties, and

bioactivities for a large number of chemicals and drug-like compounds is integrated in

specialized databases, including PubChem 159, ChEMBL 160 and SIDER 161, aiming to

decipher their properties and facilitate the drug discovery process. Another essential data

resource involves databases focused on protein-chemical interactions, which gather
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information on the existence, stoichiometry and biological or biomedical relevance of

protein-small molecule complexes 162.

The primary, and most often used source of information in protein-small molecule

interactions comes from databases focusing on experimentally studied protein-chemical

complexes. DrugBank 163 (Figure 14a) is currently one of the most popular databases in this

category. It is a manually curated and publicly available resource that provides primarily

experimental information about small molecules (i.e. chemical, pharmacological and

pharmaceutical) and their protein targets (i.e. sequence, structure, metabolic pathways). In

addition to drug-drug interactions, the database incorporates information for physical

drug-target interactions and interactions with proteins known to metabolize a compound.

Despite its name, however, the database does not focus solely on drugs, but also provides

information on other compound types, such as metabolites. DrugBank is a frequently

updated resource and the latest release (04/2021) integrates 14,524 drug entries, including

2,684 approved small molecule drugs, 1,464 approved biologics (proteins, peptides,

vaccines, and allergenics), 131 nutraceuticals and over 6,654 experimental

(discovery-phase) drugs. Finally, 5,249 non-redundant protein (i.e. drug

target/enzyme/transporter/carrier) sequences are associated with the aforementioned drug

entries. Another important, experimentally focused protein-small molecule interaction

database is BindingDB 111. BindingDB (Figure 14b) is a specialized repository of

experimentally validated and measured binding affinities between drug-like compounds and

therapeutically relevant protein targets. In particular, the latest version of BindingDB

incorporates 41,328 Entries, each with a DOI, containing 2,259,122 binding data for 977,487

small molecules, which are mapped to 8,516 protein targets. The database is continuously

curated, deriving data mainly from scientific articles as well as from US patents. The search

interface is well-designed and enables combined query criteria, including target name,

sequence, molecular weight, source organism, compound name, SMILES string, binding

potency and article or patent information, while restrict search by data source (e.g.,

BindingDB, ChEMBL, PubChem, and patents) are also allowed.
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Figure 14: DrugBank and the BindingDB databases. (a) Browse and search options of the

DrugBank database. (b) Example of drugs’ display upon selecting the Drugs from Browse options

(upper figure). Search interface based on molecular weight. (c) Table view of search results in the

BindingDB.

Apart from the primary databases described above, several secondary repositories

also exist, combining information from multiple sources. STITCH (Search Tool for

Interactions of Chemicals) 164, the “sister” database of STRING, is a manually curated

resource to explore both known and predicted interactions between 9,600,000 proteins from

2,031 eukaryotic and prokaryotic genomes and over 430,000 chemicals. Known interaction

evidence is mainly derived from experimentally validated data as well as from manually

curated datasets, including KEGG and Reactome. Protein-small molecule interactions are

also accompanied by protein-protein interaction evidence, derived from STRING, to help

illustrate the effect of chemicals on supramolecular assemblies. Text-mining based

associations are compiled after parsing articles from PubMed Central (PMC) and PubMed.

Like STRING, STITCH offers a REST API for programmatic access, as well as integration

with Cytoscape.

A major field of interest in the study of protein-small molecule interactions involves

the structural analysis of protein-ligand complexes. A number of specialized databases exist

for this purpose. Some of these repositories are, essentially, subsets of PDB, containing

analysis on the stoichiometry of protein - heteroatom interactions often found in the PDB
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entries of experimental 3D structures. PLI (Protein-Ligand Interaction) 165 and PLIC

(Protein-Ligand Interaction Clusters) 166 are two such databases that, as their names

indicate, focus on protein-ligand associations. PLI database incorporates all the interactions

between proteins and small molecules identified in the PDB with a Het_id code, while PLIC,

by analyzing the similarities in binding sites and employing computational tools, provides

clusters of similar binding sites from PDB. Notably, PLIC, unlike other protein-ligand specific

databases, not only reports similarities in interactions but also hosts data on attributes like

binding site shape, protein–ligand contacts and energetics among similar protein–ligand

interactions.

In addition to the above, a number of structural databases also exist that

complement crystallographic evidence with computational predictions, often derived from

energy calculations, protein-ligand docking predictions or ab initio simulations. NLDB

(Natural Ligand Database) 167 is a predictive database focusing on 3D protein-ligand

interactions, specifically in enzymatic reactions of metabolic pathways registered in KEGG.

Based on the latest update, NLDB offers data about known human genome polymorphisms

on protein structures, as well as 87,400 experimentally validated protein-ligand complex

structures in PDB, defined as natural complexes, while 31,672 analog complexes and

70,570 Ab initio complexes were predicted based on known protein structures in a complex

with a similar ligand and by docking simulations accordingly. In case of unknown complex

structures, 3D interactions are predicted by implementing state-of-the-art software programs

and subsequently generating a database of the 3D protein-ligand interactions in various

enzymatic reactions. NLDB also provides an enrichment analysis function based on a set of

KEGG compound IDs. PoSSuM (Pocket Similarity Search using Multi-Sketches) 168 is

another predictive database that aims to retrieve similar small-molecule binding pockets on

proteins with both different and similar global folds, contributing to the structure-based drug

discovery. It employs the SketchSort 169 algorithm for all-pair similarity searches, resulting in

more than 163 million similar pairs of binding sites with annotations. Finally, PDID

(Protein-Drug Interaction Database) 170 is a database of predicted protein-ligand interactions

in the structural human proteome. PDID incorporates 9,652 structures from 3,746 proteins

and provides a comprehensive set of 16,800 putative protein-drug interactions between 51

popular, FDA-approved drugs and over 10,000 protein structures, which were generated

from approximately 1.1 million all-atom structure-based predictions.

The databases described above offer generalized information on the existence and

properties of protein-small molecule complexes. However, specialized repositories also exist,

focusing on the protein-chemical interactions associated with specific systems, phenotypes

or diseases. One characteristic example involves cancer-specific databases, such as

CancerDR 171 (Figure 15a), CAncerREsource 2 172 (Figure 15b) and canSAR 173 (Figure 15c).
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As their names indicate, these databases focus on protein-drug interactions related

particularly to cancer. CancerDR incorporates 148 anticancer drugs which are mapped to

116 drug targets in 1000 cancer cell lines, offering also information about the function,

structure, and gene sequences of each of these targets. In addition, CancerREsource 2

contains not only comprehensive data on 90,744 interactions between drugs and

cancer-relevant protein targets, but also mRNA expression and non-synonymous mutation

data from large-scale cancer genomics experiments. Similarly to the previously mentioned

databases, canSAR is a comprehensive database which integrates protein-drug interactions

between 564,407 proteins from all species and 3,312,866 compounds with unique chemical

structures, as well as genomic and structural data.

Figure 15: CancerDR, canSAR and CancerResource databases. (a) In the CancerDR database

users are allowed to search by drug targets, cell lines, drugs and structure. Moreover, multiple

sequence alignment of variants of drug targets, clustering mutants and predicting the tertiary and

secondary structure of a drug target are also provided. (b) Simple (upper figure) and advanced search

options of canSAR database. (c) CancerResource enables searching by compound, gene/target, cell

line, mutation and pathways.
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4.4 Signaling and metabolic pathways interactions
databases
Signal transduction pathways, or else cell signaling, is the transmission of environmental and

molecular signals from a cell’s exterior to its interior (nucleus or target molecules), by

cascades of modifications 54 . On the other hand, metabolic pathway networks describe the

chemical reactions and/or the regulatory interactions between metabolites, that are mostly

small biomolecules and enzymes. The simulation of these biological pathways has become

almost a prerequisite in the majority of the fields in Biology, in order for a more efficient

conceptualization to be accomplished.

First of all, one of the major biological pathway databases is Reactome 54 (Figure 16).

The retrieval of information concerning cellular processes on a molecular level from 33,453

literature references enables the generation of numerous pathways and superpathways,

which essentially constitute an extended metabolic map of H. sapiens. By corresponding

human proteins to their molecular functions, Reactome plays a twofold role. Particularly, it is

both a tool which facilitates the uncovering of functional relationships and a repository of

biological processes, including transport and DNA replication, signal transduction as well as

intricate metabolic functions. Currently, the database (version 76) contains 10,867 human

genes, 415 drugs, 1,856 small molecules which serve as natural substrates, catalysts or

regulators, 11,073 discrete proteins and 13,732 reactions incorporated into 2,516 human

pathways grouped in 26 superpathways. Reactome data is downloadable in various formats

and can be queried via an API.

Figure 16: Reactome database. (a) The Reactome database enables the browsing and analysis of

biological pathways as well as disease-related pathways and network patterns. (b) Interactive

visualization of multiple different biological pathways (left). Graphical representation of a selected

pathway.
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In addition to Reactome, another important resource of signaling and metabolic

pathways is KEGG 53. The distinctiveness of KEGG lies in the integration of eighteen

different databases which are manually curated and categorized into systems, genomic,

chemical and health information. The central database of KEGG is KEGG PATHWAY 174 that

consists of biological pathways represented graphically by manually drawn maps, similar to

Reactome. Interestingly, within the pathway maps, fully sequenced genomes of cellular

organisms are linked in a way to infer high-level functions. Such functions are depicted by a

web of interactions and chemical reactions, drawn in the format of KEGG pathway maps,

BRITE hierarchies, and KEGG modules. KEGG contains 34,042,792 genes, 781,759

pathways and 11,505 reactions pertaining to 545 eukaryotes, 6234 bacteria, and 343

Archaea (April 2021).

Another publicly accessible and user-friendly repository is WikiPathways 55. It is a

community-driven database, enabling its maintenance and curation by and for the scientific

community. Herein, it facilitates the contribution of data on an almost daily basis, enhancing

and complementing existing resources, such as KEGG and Reactome. Building based on

the MediaWiki software, WikiPathways incorporates custom graphical tools for the

representation of a plethora of biological pathways (Figure 17), while it also includes content

originated from a large selection of databases covering major gene, protein, and

small-molecule systems. A total of 2958 pathways (April 2021) and 46,105 interactions

between proteins, genes, metabolites, and drugs are provided for 30 different species. The

database offers an API for programmatic access as well as integration with PathVisio 175 and

Cytoscape for further pathway analysis.

Figure 17: WikiPathways database. Overview of several available biological pathways of Homo

sapiens in WikiPathways database.
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Lastly, CBN (Causal Biological Network) 176 is a manually curated database which

provides more than 120 network models using Biological Expression Language (BEL) 177

supported by over 80,000 unique, literature-based pieces of evidence. These causal

networks represent the relationships in signaling pathways in 3 species (H. sapiens, M.

musculus and R. norvegicus), covering a wide spectrum of biological processes, such as cell

fate, cell stress, cell proliferation, inflammation, tissue repair and angiogenesis in the

pulmonary and vascular systems (Figure 18a). Interactive data visualizations of proteins,

DNA variants, coding and non-coding RNAs, chemicals, lipids, and processes (e.g.,

phosphorylation) is provided, allowing the user to model a network at will (Figure 18b).

Notably, most of the pathway components and associations are annotated with a variety of

metadata, regarding species, tissue and cell type.

Figure 18: CBN database. (a) Several of the resulting biological pathways upon querying by a

specific gene name (tp53). (b) Example of dna damage-tp53 pathway visualization.
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4.5 Disease-related interactions databases
Disease-related elements networks have been proven a powerful way to elucidate the

obvious as well as the hidden connections among the molecular origins of the disease and

the resulting phenotypes 178. In this type of networks, nodes could correspond to multiple

different molecular entities, including RNAs, genes, proteins and diseases along with their

phenotypes, while the links between them represent the underlying biochemical interactions.

Notably, the untangling of these sometimes complex relationships has been beneficial,

especially in the field of drug repurposing.

First of all, two specialized repositories focused on human disease-related

intermolecular interactions are CIDeR 179 (Figure 19) and MiRNA SNP Disease Database

(MSDD) 180. Both databases are manually curated, providing data retrieved from the

literature and accompanied by metadata. However, their main difference lies in the

information each database is composed of. CIDeR is dedicated to metabolic and

neurological disorders, containing 109,779 interactions between 12,406 biological entries

(e.g. biomolecules, pathways, biological processes, phenotype), derived from 11,341 parsed

articles. Furthermore, a plethora of interaction types is supported, such as expression

patterns, co-occurrence, co-localization, processing, phosphorylation, transport, and folding.

All entries are enriched with their corresponding PubMed ID and other related diseases, in

addition to metadata which refer to the affected organism, tissue/cell line, and gender.

Interconnectivity with Entrez Gene, KEGG, OMIM, miRBase, GO, CORUM, Mammalian

Phenotype Ontology (MPO) 181 and BRENDA Tissue Ontology (BTO) 64 as well as 2D

network visualization are also provided. On the other hand, MSDD contains 525 associations

between 182 human miRNAs and 197 SNPs, regarding 153 genes and 164 human

diseases, mined from 2,387 articles (last update: June 2017). Each interaction is

accompanied by metadata, regarding tmiRNAs, SNPs, miRNA target genes and disease

names, SNP locations and alleles, the miRNA dysfunctional pattern, experimental

techniques, a brief functional description, the original reference and additional annotation,

while data are freely downloadable in text format.
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Figure 19: CIDeR database. (a) List of the interactions implicated in COVID-19 blood coagulation. (b)
Graphical representation of the interactions between gene/proteins and processes in COVID-19 blood

coagulation.

Besides CIDeR and MSDD, there are also other databases that document direct

biomolecule-disease associations. DisGeNET 182 for instance is one of the largest versatile

platforms of genes and variants involved in human diseases. It integrates data from curated

repositories, GWAS catalogues, animal models and the scientific literature, regarding

disease-gene, disease-variant, and disease-disease associations. It is regularly updated and

it currently covers 1,134,942 gene-disease and 369,554 variant-disease associations, based

on 30,170 disease entries (UMLS 183), 21,671 genes (NCBI), and 194,515 variants (dbSNP).

DisGeNET data is downloadable in tab-delimited and SQLite database formats. All

interaction data are also accessible programmatically through a REST API, an RDF API, the

disgenet2r R package and the Cytoscape application.

Additionally, EnDisease 184 (Figure 20) is a manually curated database specialised

exclusively in enhancer-disease associations. It incorporates 535 experimentally verified

associations between 133 diseases and 454 enhancers, extracted from 199 published

articles in 11 species. The interaction data are freely downloadable in text format and

represent the chromosomal position of the enhancer, the targeted gene and its UCSC

identifier, and the related disease, with a respective entry link to the OMIM database.
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Figure 20: EnDisease database. (a) EnDisease database allows searching by enhancer, disease,

gene and species. (b) Results displayed in a table view upon searching by disease.

A distinct category of disease-related associations includes host-pathogen

interactions, which are available in various different repositories. Viruses.STRING 185, an

extension of the STRING database mentioned in previous paragraph, provides exclusively

intra-virus and virus-host protein-protein interactions. Particularly, 1,380,838,440 physical or

functional interactions between 2,031 organisms and more than 9,5 million viral proteins are

covered and supported by experimental and text-mining evidence. Importantly, the database

enables interactive visualization via the generation of networks based on the queried

interactions where all node entries are linked to Uniprot. Viruses.STRING is freely available

and all data can be accessed and analyzed through a REST API and the Cytoscape

STRING app, while they are also downloadable in text format and the whole database

schema in SQL format.

Lastly, ViRBase 186 is a manually curated viral-host interactions online repository of

virus-host ncRNA-associated interactions. The current version (v.21) consists of 781,476

viral and cellular ncRNA interactions between 93 viruses and 27 hosts, derived from 491

articles. In particular, microRNA entries were collected from miRBase, lncRNAs from

lncRNAdb and the functional lncRNA database 187, snoRNAs from sno/scaRNAbase 188 and

snoRNA-LBME-db, whereas ICTVdb (International Committee on Taxonomy of Viruses) 189

records provided virus names and abbreviations. Furthermore, users are allowed to query

these interactions through an API and download them in XLSX and text formats.
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4.6 Ecological interactions databases
The different species in a particular habitat are interlinked by symbiotic, mutualistic

(bidirectional) or competitive (host-parasite) relationships, which lead to the formation of

networks depicted mostly as food webs or interspecies interactions 190. Therefore, databases

that incorporate information on ecosystems and ecological network’s structure are essential

for the uncovering of the population dynamics, biodiversity and ecosystem function. For this

reason, resources dedicated to species interactions and trophic webs are described in the

following paragraph.

To begin with, Global Biotic Interactions (GloBI) 190 (Figure 21) is an extensive, online

infrastructure of manually curated species interactions, retrieved from 284 open datasets

(data journals and APIs) via an open source software. Besides the GloBI web interface,

Encyclopedia of Life (EOL) 191 and Gulf of Mexico Species Interactions (GoMexSI) 192

projects incorporate structured species-interaction information from GloBI. Currently, it

integrates 33 different interaction types (e.g. eats, kills, interacts with, parasite of) and a total

of 8,148,483 interaction records, between more than 700,000 taxa, regarding predator-prey,

pollinator-plant, pathogen-host, parasite-host relationships. Importantly, each record is

attributed to a scientist, research institution, or other source, while entries that contain known

taxa are additionally cross-referenced with entries in NCBI, World Register of Marine

Species (WoRMS) 193, Integrated Taxonomic Information System (ITIS) (https://www.itis.gov),

and Global Biodiversity Information Facility (GBIF) (https://www.gbif.org). GloBI enables

programmatic access through a REST API, R (rglobi), JavaScript (eol-globi-data-js) libraries

or SPARQL as well as Cypher queries.

Figure 21: GloBI database. (a) The user is enabled to search the interactions of interest by

specifying the focal taxa and interaction type. (b) Hairball (left) and bundle diagram (right)

representation of the interactions between different taxa. In the hairball diagram taxa are represented

by nodes and their connections are indicated by the edges.
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Similarly, the Web of life 194 (Figure 22) is another user-friendly, web-based service of

ecological interactions which provides a graphical user interface, based on Google Maps for

visualizing, searching and downloading ecological networks in a coordinate-based system.

In contrast to GloBI, Web of Life is focused especially on relationships between

animal-plants, plants-plants and host-plants, providing only “interacts with” type of

association. At this moment, Web of Life contains 186 interaction networks, regarding

13,244 animal and plant species, which have been assembled by data from both published

and unpublished projects. All data can be downloaded in various formats and a data

transmission webservice in JavaScript Object Notation is also provided.

Figure 21: Web of life database. (a) Different available views of search results. (b) Species

interactions depicted in matrix format.

Moreover, another freely accessible tool that provides an online collection of direct

trophic interactions between approximately 7000 animals and plants is Food Web

(GlobalWeb) 195. The database currently hosts over 360 food webs, retrieving information

manually from more than 120 reference papers. Each food web is enriched with data

concerning the type of food web (e.g. marine/freshwater/terrestrial), the habitat (e.g.

lake/river/estuary), the location, the size, the resolution of the web as well as additional

characteristics.

Finally, Bat Eco-Interactions 196 is an online platform dedicated to bat interactions with

plants and arthropods. More specifically, 13,383 interactions that occur between 479 bat

species and 2,135 other organisms are provided, referring to several types of associations

including consume, host, transport, cohabitate, roost, or be consumed. All information is

gathered from 622 published and peer-reviewed articles and they are available in CSV

format after registration. The database receives regular updates with bat-parasite and

bat-mammal interactions, which include taxonomic and location metadata.
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CHAPTER 5: Biological network analysis

5.1 Visualization tools for biological networks
Systematic understanding of genomic scale data is often required so as to better analyze

and interpret complex biological concepts. Especially with the advent of “omics” science,

established high-throughput technological advances have significantly contributed to the

emergence of a networked perspective of contemporary biology, promoting a holistic,

interconnected picture of cells with myriad intermolecular interactions. These associations

reflect the inherent dynamics and heterogeneity of biological systems which is inevitably

accompanied by great complexity. Therefore, the development of efficient, advanced and

informative visualization tools becomes a necessity as flexible and comprehensible graphical

representations enhance the ability to perceive and interpret the high dimensionality and

interconnectivity of vast amount of data 197.

Biomolecular interactions are usually characterized as extensive networks of

numerous vertices and edges which represent the components of a biological system (e.g.

genes, proteins, metabolites, other small molecules etc.) and their relationship

respectively198. Exploiting the versatility of graphs, edges express various different types of

associations between bioentities, including physical interaction, functional annotation,

evolutionary relationship, gene co-expression and literature co-occurrence, often resulting in

multi-edge networks in order to capture the whole range of information 199. Such variability in

network types implies divergent properties and topological features, highlighting the

importance of graph theory 200.

Currently, a variety of specialized and multifunctional visualization tools have been

developed, enabling the data storage, retrieval, exploration, comparison and analysis.

Certain representative examples are: Cytoscape 201, Gephi 52, Pajek 202, Ondex 203, Proviz 204,

VisANT 205, Medusa 197, Osprey 206, Arena3D 207, and BioLayout Express 208. Briefly, Proviz is

a tool focused on protein-protein interactions, Ondex is a comprehensive database whose

implementation allows graph-based analysis, Gephi and Pajek are mainly used to visualize

large-scale generic networks, Medusa is specialized in network clustering and visualization

of multi-edged graphs, while Arena3D in 3D multi-layer networks and BioLayout Express in

advanced 3D visualizations. Finally, Osprey and Cytoscape have several plugins which

enable the visualization and annotation of heterogeneous data 209.

A similar list of widely used tools for pathway analysis and visualization include:

WikiPathways 55, a publicly accessible database for biological pathway editing maintained by

the scientific community, KEGG 53 and KaPPA View 210 which focus on metabolic pathways

from multiple organisms, as well as Interactive Pathways Explorer (iPath) 211 and PathVisio
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175, interactive tools for analysis, visualization and editing of biological pathways.

MetaboAnalyst 212 is another important web-based tool suitable for statistical, functional and

integrative analysis of metabolomic data 209.

5.2 The STRING database

5.2.1 Usage

STRING (v11.5, 11/2020) (Search Tool for the Retrieval of Interacting Genes and proteins)

is a publicly accessible online metadatabase available at https://string-db.org/, which

integrates experimentally validated and computationally inferred protein interaction networks

for 5090 different genome-sequenced organisms 148. All the interactions provided are

annotated as direct (physical) or indirect (functional) and they are consolidated by data

derived from various sources, including prior knowledge about experimentally determined

associations, pathways and protein complexes from curated databases, as well as

computationally predicted interactions from literature text mining of scientific texts,

systematic co-expression analysis, genome-wide association studies and gene orthology
69,148. In addition, STRING is programmatically accessible via a REST API, packages for the

R and Python languages and direct integration with Cytoscape.

Users have the opportunity to query STRING via protein name(s) or identifier(s) of a

specific organism of interest or via protein family by searching the clusters of orthologous

groups (“COGs”). Alternatively, the raw amino acid sequence(s) can be supplied in any

format as well as an entire experiment given as a list of proteins, optionally accompanied by

a ranking value (e.g., fold-change or P-value). When at least one of the input forms have not

been filled, a disambiguation page will be generated for this purpose 209.

Once querying criteria are applied, a fully interactive network visualization platform is

provided in a results page for the analysis of the protein-protein interactions and the

topological features (Figure 8a). A summary view of the network legend and the predicted

functional links -ranked by estimated confidence- are also available (Figure 8b). The

confidence score is scaled between zero and one and is calculated for all protein

interactions by combining all the individually measured scores. In addition, a popup window

is generated upon clicking a node or an edge of the graph containing concise information on

the particular node or the associations respectively (Figure 8c). STRING also enables

automated functional enrichment and network functional annotation with terms originated

from various established repositories, including PubMed, OMIM 213, KEGG 53, Reactome
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pathways 54, UniProt 214, Ensembl 83, GeneCards 215, RefSeq 118, Pfam 61, InterPro 216 and

SMART 217.

Figure 8: Network viewer in STRING. (a) A typical protein-protein association network as a

multi-edge graph, where nodes represent proteins and edges represent their connection. As the

legend indicates, each edge is colored based on the type of evidence that supports the particular

interaction. (b) A table that contains predicted functional links ranked by estimated confidence scores.

(c) Popup windows generated upon clicking on the MTAP node and the MTAP-STAT4 edge.
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5.2.2 Database content

Each interaction type depicted as an edge of different color in the network visualization,

stems from the combination of separately scored and specified association evidence, which

is divided into one or more of the eight distinct “channels”, depending on the origin and type

of the evidence (Figure 9). Notably, all channels provide interaction scores and viewers,

while they can also be disabled individually or in combinations. Briefly, the prediction

channels are:

Experiments -- This view focuses on experimentally validated protein-protein

interaction data (e.g. biochemical, biophysical and genetic experiments), reported in primary,

curated databases, including BIND 218, DIP 146, GRID, HPRD, IntAct 219, MINT 144, and PID 220.

The individual scores are calculated upon re-evaluation of the interaction records and their

mapping against the KEGG database.

Databases -- In this channel, manually curated interaction evidence is imported from

external pathway databases, such as KEGG 53, Reactome 54, BioCyc 221, Biocarta, PID and

Gene Ontology 222. Notably, due to data filtering which indicates the existence of only direct

protein interactions, the confidence score of all associations -solely in the databases

channel- is uniform (0.900).

Text-mining -- Statistical sentence or abstract based co-occurrence analysis across

PubMed abstracts, articles from the PMC, OMIM (46) and SGD (47) is conducted for the

text-mining channel. Updated dictionaries which contain a plethora of gene and protein

names are implemented for accurate Name Entity Recognition (NER), while Natural

Language Processing (NLP) is used to identify semantic links between proteins. Following

the extraction of co-mentioned proteins from the literature, each pair is assigned an

association score reflecting their frequency of co-occurrence 209.

Co-expression -- The output of this channel results from the collection, normalization,

redundancy reduction and subsequent correlation of gene expression experiments (using

both transcriptome and proteome measurements) deposited in the NCBI Gene Expression

Omnibus (NCBI GEO) 223. Similarly to the aforementioned channels, each protein pair is

assigned an association score, calculated by a Pearson correlation against KEGG pathway

maps. The greater the similarity in normalized expression patterns of a protein pair, the

higher their co-expression score.

Fusion -- This view presents the individual gene fusion events per species and a

dendogram depicts the clustering of these species in which a fusion event occurs. An

association score is given to a pair of proteins that are likely the result of a fusion event. The

score depends on the fusion of respective orthologs in at least one other organism/genome.

A higher score is a better predictor of orthology of the participating genes.
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Neighborhood -- Genes that are consistently reported to be located at short physical

distance in the genome are shown in this channel. Specifically, the association score given

to a pair of proteins is determined based on their proximity to each other on the chromosome

(e.g. conserved, co-transcribed operons), as well as on their genomic similarity with other

species, implying shared protein functions between co-expressed, neighboring genes. The

functionality of this channel is mostly relevant for Bacteria and Archaea.

Co-occurrence -- In this channel, the similarity of occurrence patterns of a pair of

genes throughout evolution is evaluated. Such similarities may be the consequence of

transfer, loss or duplication of these genes at the same period during evolution. Orthologs

that have a tendency to be present or absent in the same subsets of organisms, are

assigned an association score.

Figure 9: The eight prediction “channels”. The prediction channels are: Network, Experiments,

Databases, Text Mining, Neighbourhood, Fusion, Co-occurrence and Co-expression and they can be

disabled individually or in combination. An interaction score and a unique viewer are provided in each

channel.
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5.3 The STITCH database

5.3.1 Sources of protein-compound interactions and database
access

The significance of interactions between small molecules and proteins is evident in any

biological system, as intracellularly they participate in various biochemical reactions both as

substrates and products, regulating many protein functions. Particularly in diseases, which

are often induced by alterations in the same biological pathway or protein complex,

protein-small molecule interactions are essential to better understand the cellular impact of a

drug. Additionally, numerous bioactive small molecules are often used as probes to identify

therapeutic protein targets in drug development area. Therefore, the integration and

combination of multiple sources of protein-chemical interactions from pathway databases,

text mining and drug–target predictions facilitate the gaining of a holistic view.

Among the several online database focused on protein-chemical interaction

networks, the STITCH 5 (Search Tool for Interactions of Chemicals) is a user-friendly and

manually curated resource, which enables the investigation and analysis of both known and

predicted interactions between 430,000 compounds and over 9,600,000 proteins across

2031 eukaryotic and prokaryotic genomes. The association evidence is mainly derived from

manually curated datasets, including DrugBank 163, GPCR-ligand database (GLIDA) 224,

Matador 225, the Therapeutic Targets Database (TTD) 226, the Comparative Toxicogenomics

Database (CTD) 227 and several pathway databases such as the Kyoto Encyclopedia of

Genes And Genomes (KEGG) 53, Reactome 54, and BioCyc 221. This information is also

combined with protein–protein interactions stored in the STRING database.

Experimentally validated data constitute another important source of interactions

information, collected from ChEMBL 160, PDSP Ki Database 228, Protein Data Bank (PDB) 229

and two high-throughput kinase–ligand interactions studies 230,231. Finally, automated text

mining and a structure based prediction method 232 are implemented after parsing articles

and abstracts from MEDLINE, PubMed Central and NIH RePORTER

(https://projectreporter.nih.gov/). Both co-occurrence analysis and NLP methods are applied

in the text-mining pipeline.

Besides the web interface which is available at http://stitch.embl.de/, STITCH also

offers full programmatic access via an extensive API, allowing the alteration of all network

parameters and the creation of images. Large-scale analysis is enabled via the freely

downloadable precomputed network and the supplementary information 164.
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5.3.2 Network channels and views

As an entry point, users can search by providing at least one identifier, chemical or protein

name of interest accompanied by a selected organism. STITCH also allows the query of

chemical structures as SMILES strings and proteins as amino acid sequences in any format.

A disambiguation page will appear if neither an organism nor a chemical/protein has been

added to input forms.

Notably, the results page of the STITCH and the STRING databases share many

similarities. Firstly, in both resources the network viewer is a visualization of interactions,

accompanied by a confidence score calculated for each association. Particularly, STITCH

depicts both protein-protein and protein-chemical associations as edges, while protein and

chemical structures are represented as nodes with a slightly different shape. More detailed

information can be retrieved from a popup window generated once the user clicks on a node

or an edge of the graph, as well as from external resources such as PubChem 159, PDB 229

and SMART 217.

Similarly to STRING, the types of the interaction evidence are scored separately and

divided into five different channels, which can be disabled individually or in combinations by

the user. The co-expression and the experiments channels import experimentally validated,

functional genomics data mainly from primary databases. In the co-expression channel, all

the collected evidence is normalized, compared and scored based on the similarity of gene

expression profiles, whereas in the experiments channel, the interaction records are

assigned a score following the benchmarking against KEGG 53. Furthermore, both databases

and text-mining channels process established knowledge on protein-protein and

protein-chemical associations, parsed from curated pathway databases and abstracts or

texts from the scientific literature accordingly 232.

Moreover, in order to facilitate the investigation and interpretation of interactions,

STITCH provides the same settings for the meaning of edges as STRING which include the

confidence, the evidence, the molecular action and the binding affinity view (Figure 12). In

the confidence view, the thickness of the edges indicates the confidence score of the

association, whereas in the binding affinity view the width of the line is equivalent to the

binding affinity between proteins and chemicals. Additionally, in the evidence view, each

interaction is illustrated with a color that corresponds to the type of evidence that supports it,

while the different colors of edges in the molecular action view are used to visualize the type

of interaction between nodes (e.g. activation, inhibition or metabolization).
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Figure 12: Meaning of network edges. (a) confidence: thickness of the edges is equivalent to the

confidence score of the association. (b) evidence: the color of the edges indicates the type of the

evidence. (c) molecular action: the shape of the edges illustrates the type of the molecular action

between the connected nodes. (d) binding affinity: interactions between protein and chemicals that

indicate their binding affinity.
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CHAPTER 6: OnTheFly2.0

6.1 What is OnTheFly2.0

OnTheFly2.0 is a web application aiming at providing a user-friendly and comprehensive

environment to facilitate the knowledge integration, information extraction and visualization.

It is the updated version of OnTheFly1.0 233 and it has been redeveloped to utilize state-of-art

technologies and efficiently address various previously existing limitations. Firstly, the

creation and designing of Graphical User Interface (GUI) was implemented with the use of

R, Shiny, CSS, HTML and JavaScript technologies, instead of depending on a Java applet

as its predecessor. Moreover, the replacement of commercial Windows-based converters

with open-source, Unix-based ones, was another significant alteration, ameliorating the

backend document format conversion and preservation of the original document layout. In

addition to the aforementioned improvements, OnTheFly2.0 is able to identify a broader

spectrum of term types while it also supports 197 different organisms and OCR technology

for processing multiple image files. Importantly, uploaded files are only stored temporarily in

the OnTheFly2.0 server just for parsing and no file backups, copies or personal data are kept.

A more detailed comparison between OnTheFly1.0 and OnTheFly2.0 is presented in Table 1.

Functionality OnTheFly1.0 OnTheFly2.0

Named Entity Recognition
genes, proteins,

chemical
compounds

genes/proteins, chemical compounds,
organism names, environments, tissues,

diseases, phenotypes, gene ontology
terms

Supported files in textual
formats

PDF (.pdf),
Office texts

(.doc), Flat text
(.txt, .tsv, .csv)

PDF (.pdf) Microsoft Word (.doc and
.docx) OpenOffice Writer(.odt) Microsoft
Excel (.xls, .xlsm and .xlsx) OpenOffice

Calc (.ods) Flat text (.txt, .tsv, .csv)

Image files with the use of
OCR N/A

Images (.bmp, .png, .jpg, .tif), PostScript
(.ps, .eps) tesseract-ocr package

Interaction networks STRING STRING, STITCH

Infrastructure
Windows-based

server

Unix-based (Linux) server and
standalone package, compatible with

Windows through WSL (Windows
Subsystem for Linux)

File Converters

Commercial
converters: ultra

shareware,
verypdf (PDF

Freely available, open-source
converters: pdf2htmlEX, LibreOffice,

ImageMagick (PDF, Text, spreadsheet &
image layout preservation with minimal
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layout loss) losses)

Tagging service REFLECT EXTRACT

GUI Implementation
Java Applet
(obsolete) R/Shiny, JavaScript

Functional Enrichment

Link to
BioCompendium

(outdated and
Human/Mouse

only)

In-house analysis based on g:Profiler
and aGOtool. Enrichment terms include

Gene Ontology, biological pathways,
regulatory motifs, protein databases,

human phenotype ontology etc.

Organisms
Human and

Mouse 197 species

Combination of files and
entity selection N/A Offered

Parameterization N/A
Offered (e.g., functional enrichment

options)

Browser Compatibility
Java Applets

are not
supported
anymore

Safari, Tor, Firefox, Chrome, Edge,
Opera

Table 1: Comparison of OnTheFly1.0 and OnTheFly2.0 .

The data pipeline of OnTheFly2.0 consists of four interdependent steps: i) uploading of

documents and simultaneous conversion from their original format to HTML, ii)

implementation of EXTRACT services for the identification and extraction of bioentities from

the input files, iii) functional and/or publication enrichment analysis on a created dataset of

selected identifiers and iv) visualization and analysis of protein-protein and protein-chemical

interaction networks. Each step is thoroughly described in the following subchapters.
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6.2 Analysis pipelines

6.2.1 Text input and file conversion pipeline

Currently, OnTheFly2.0 supports annotation for multiple different file formats, including PDF

files (.pdf), Office-formatted documents (.doc, .docx, .ods, .odt), Spreadsheets (.xls, .xlsx),

flat text files (.txt, .tsv, .csv), Rich Text Format (.rtf ), images (.bmp, .jpg, .png, .tiff), as well as

PostScript-compliant image file formats (.ps and .eps). In the online version, OnTheFly2.0

provides the option to simultaneously upload multiple documents or paste/write a text in an

input field and then process them separately or in combination. A maximum of 10 documents

can be accommodated in each session with a file size that cannot exceed 10MBs, while

image files are preferable to have a resolution / pixel density of at least 150 ppi/dpi. Notably,

a GitHub repository (https://github.com/PavlopoulosLab/OnTheFly) is available enabling the

download of the application in order to run locally.

The conversion of the uploaded files to HTML format is a prerequisite for the

document annotation, thus OnTheFly2.0 integrates a variety of tools and pipelines to

efficiently cover a wide range of different file formats, while maintaining overall layout, text

formatting, formulas and images to the extent possible. Hence, pdf2htmlEX, an open-source

package 234 is used for the conversion of PDF files, whereas Office-formatted documents,

Spreadsheets, flat text files, Rich Text Format and PostScript are converted with the

LibreOffice universal converter (unoconv). Importantly, unoconv is able to separately convert

and handle each sheet of a spreadsheet file. In addition, Optical Character Recognition

(OCR) scan is implemented in case of image files with no text encoding. Both the

open-source package ImageMagick and the tesseract-ocr package 235 are utilized for file

format conversion and OCR scanning, respectively. After the OCR scanning has been

completed, PDF files with parseable text are produced, which are then processed as

previously described. The quality and resolution of the imported images can determine the

overall outcome of the OCR scanning, therefore images containing text elements in rotated

orientation or embedded in complex graphical shapes, or images with low resolution may

result in poor OCR results.

Once the uploading and conversion of files have been completed, a checkbox list will

appear, containing all the uploaded files and/or submitted texts, while deletion and renaming

of one or multiple files are also allowed. Any additional uploaded/created documents are

appended to the selection list. The resulting HTML version of the selected file(s) can be

inspected in a reactive tab panel that displays each choice in a separate tab. By selecting or

deselecting a file from the checkbox list, the corresponding tab will be dynamically inserted

or removed accordingly. This allows the user to identify conversion or OCR problems before
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continuing the analysis. An overview of the annotation file conversion pipeline is shown in

Figure 13.

Figure 13: Flowchart of the OnTheFly2.0 backend pipeline for file conversion, named entity recognition

and data analysis.

6.2.2 Document annotation using Named Entity Recognition (NER)

6.2.2.1 Annotation parameters

OnTheFly2.0 implements the EXTRACT tagging service 30 to perform dictionary-based

Named Entity Recognition (NER) and biological annotation of the uploaded documents.

Specifically, by integrating the tagger software 236, EXTRACT efficiently identifies 14 different

entity types, including environment descriptive terms from Environment Ontology (e.g.,

desert, forest) 237, organism mentions from NCBI Taxonomy 238, tissue terms from BRENDA

Tissue Ontology 64, disease mentions from Disease Ontology 137, phenotypes from

Mammalian Phenotype Ontology 181, biological processes, cellular components, molecular

functions from Gene Ontology 100,239, small chemical molecules from PubChem 159,

non-coding RNAs from RAIN 240, and protein-coding genes from STRING 148. Currently,

OnTheFly2.0 supports a set of 197 organisms, a more detailed list of which is available in a

separate tab, containing the g:Profiler ID and KEGG code in addition to the species name,

common name and the taxonomy ID. Notably, OnTheFly2.0 gives the opportunity to select

one or more entity types for which NER can be performed, whereas in case of protein

identification, the user has to choose one organism, whose proteins will be detected in the

text.
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6.2.2.2 Annotation results

Upon setting the annotation parameters, based on which NER process is accomplished, the

selected document will be tagged with all of the recognized terms linked and highlighted

using different colors. A legend which assigns each entity term category to a specific color

as well as a table with the parameters used during the annotation of the document are

available. By hovering the mouse cursor over highlighted terms, OnTheFly2.0 will generate a

popup window that matches each word to the corresponding type, name and identifier and

provides concise information about the particular biomedical entity, enriched with links to

external databases. In case of term disambiguation (e.g., when a term comes from several

organisms or corresponds to more than one entity type), all of the possible options are

reported.

For further analysis and in-depth view of the identified bioentities, an interactive table

is provided, containing the name and entity type of all the extracted terms accompanied by

their database identifiers as hyperlinks. The identifiers for each term are retrieved from

various databases such as ENSEMBL 83 for proteins and genes, NCBI PubChem 159 for

chemical compounds, NCBI Taxonomy browser 238 for organisms, EMBL-EBI's QuickGO 241

browser for Gene Ontology terms, BRENDA 64 for tissues, Disease Ontology (DOID) 242 for

diseases and finally EMBL-EBI Phenotype Ontology 242 for phenotypes. The table results can

be filtered by entity type at any stage, while the entire table, as well as filtered results, can be

exported as a CSV file. Similarly to the graphical view of the text, a table with the text-mining

parameters used for the annotation is provided. The overall process of document annotation

is presented in Figure 14.

70

https://www.zotero.org/google-docs/?wpQ9aU
https://www.zotero.org/google-docs/?keqUF1
https://www.zotero.org/google-docs/?2be9Pb
https://www.zotero.org/google-docs/?FBRcDz
https://www.zotero.org/google-docs/?8EPU0g
https://www.zotero.org/google-docs/?pUXHc7
https://www.zotero.org/google-docs/?ztYB0j


Figure 14: Document annotation using NER for article by Chang H Kim, 2009 243. (a) Abstract file in

its initial form prior to annotation. (b) Annotated abstract using the H. sapiens as organism and all the

available entity types. (c) A summary of the Interactive table containing the extracted entities identified

in the abstract. (d) Example of the popup window with information about a specific identified term. The

term is colored according to its type and original links to external databases are provided.

6.2.3 Dataset creation

OnTheFly2.0 enables the creation of a customizable dataset consisting of extracted proteins

and chemical compounds identified during the annotation process in one or multiple

documents (Figure 15a). All the selected entities are collected and displayed in a reactive

table with four different columns: the identifier, the type (e.g., gene, protein), the name of the

term as well as the name of the document it originated from (Figure 15b). The table can be

narrowed down after filtering by entity type and can also be downloaded in CSV, Excel or

PDF format. In addition, the user is able to delete the entire dataset or single entities at will.

Once submitted, further analysis can be performed in the resulting dataset, including

Functional Enrichment Analysis using the g:Profiler, Literature Search with aGOtool, Protein

Domain Search/Literature search which maps the selected proteins against the scientific

literature and Protein-Protein Network or Protein-Chemical Network (Figure 15b). Each

analysis method is thoroughly described in the next paragraphs.
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Figure 15: Creation of dataset for further analysis. (a) Summary of interactive datatable which

displays all the proteins and chemical compounds identified in the uploaded files. (b) Resulting

dataset depicted in the form of a table with four columns. The user is able to choose up to five

different functionalities (functional enrichment analysis, literature search, protein domain

search/literature search and Protein-Protein Network or Protein-Chemical Network) for further data

analysis of the selected entities.

6.2.4 Functional enrichment analysis

6.2.4.1 Input and functional enrichment parameters

OnTheFly2.0 integrates two tools, g:Profiler 50,51 and aGOtool 41, to perform rich functional

enrichment analysis for a selected dataset of genes/proteins orginited from one or multiple

annotated documents. Several parameters can be customized in order for the enrichment

analysis to be performed, including the selection of an organism among a list of 197 species

(Figure 16b), the selection of data sources and protein ID as well as the setting of threshold

type and cut-off value. More specifically, OnTheFly2.0 exploits g:Profiler services to identify

enriched functional terms from Gene Ontology 100,239, pathways from KEGG 53, Reactome 54

and WikiPathways 55, protein complexes from CORUM 56, expression data from Human

Protein Atlas 244, regulatory motifs from TRANSFAC 57 and miRTarBase 58, and phenotypes

from the Human Phenotype Ontology 245 (Figure 16a). Further enrichment analyses can be

performed by the aGOtool, which is utilized for the identification of enriched terms from the

UniProt keyword classification system, protein families and domains from Pfam 61 and

InterPro 216, as well as human diseases from the DISEASES database 236 (Figure 16a).
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g:Profiler and aGOtool test for statistically significant enrichment by using Fisher’s

exact test to compare the user’s input dataset (foreground) to a background set from

organism-specific genes annotated in the Ensembl database 83 and UniProt Reference

Proteomes 60, respectively. As far as the g:Profiler is concerned, the resulting p-values are

corrected for multiple testing using either g:SCS, Bonferroni correction or

Benjamini-Hochberg false discovery rate (FDR), whereas in the case of aGOtool, p-values

are corrected using Bonferroni correction or FDR. Enrichment analysis can also be

performed as previously mentioned using ENSEMBL IDs as input, while results can be

reported as Entrez, UniProt 60, EMBL 246, ENSEMBL 83 and RefSeq gene/protein

names/identifiers, based on the user’s selection criteria.

Figure 16: Customization of functional enrichment parameters. (a) Input parameters for functional

enrichment analysis by g:Profiler and aGOtool. (b) A summary of the table containing the list of the

197 organisms available for analysis.
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6.2.4.2 Functional enrichment results

Firstly, functional enrichment results are displayed in interactive searchable tables,

organized by source (e.g., KEGG, Reactome, CORUM, etc.) and composed of seven distinct

columns, providing comprehensive data about each functional term. The columns include

the term ID, which is a hyperlink that points to the corresponding data source of the term, the

term name that briefly describes the function, the hypergeometric p-value, resulting upon

correction for multiple testing, the term size and query size, referring to the number of genes

that are annotated to the term and included in the query respectively, the no. of positive hits

which is the number of genes in the input query that are annotated to the corresponding term

and the positive hits which constitute the last, hidden column of the result table and

correspond to the identified genes/proteins from the query that found to be associated with

the functional term. One can expand each row of the table to observe the positive hits.

In addition, an interactive bar blot is available for the visualization of enrichment

results retrieved from both g:Profiler and aGOtool analysis. The x-axis in the plot denotes the

enrichment metric function, while the y-axis represents the term name. Importantly, the user

is able to adjust certain control parameters, including the database, the enrichment metric

and the number of terms, in order to change the bar plot contents at will. Particularly, the

database control option allows the selection of database(s) to plot, coloring each database

type differently. The two options of enrichment metric control, which can change the bar

lengths, are either -log10(P-value) or an enrichment score, defined as the % ratio of

observed over expected terms, whereas the plot height can alter by adapting the number of

terms that appear in the plot. An interactive and responsive datatable containing all the

terms and information displayed in the plot, according to the control parameters,

accompanies the graphical visualization and enables the download in various formats.

Lastly, only in case of g:Profiler, an interactive Manhattan plot is offered as well to

supplement the visualization options. In this plot, the x-axis represents the color-coded,

grouped functional terms, while the y-axis shows the significance (p-value) of each term. In

order for the user to acquire a better overview, hovering over a data point reveals a tooltip

with key information about the particular functional term. Finally, the most significant

functional terms are shown as a bar chart, which the user can customize to show the desired

number of terms. Notably, all of the aforementioned reports and visualization can be

exported and saved in various file formats (CSV, XLS, PDF).
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Figure 17: Functional enrichment analysis results. (a) Summary table with the functional terms and

the corresponding identified entities. Results from REACTOME are shown. (b) Functional enrichment

overview with the use of a Manhattan plot. (c) Bar plot representation of enriched genes distributed

into metabolic pathways obtained from KEGG, Reactome and WikiPathways. The results of each

database are color coded, while the bar length is proportional to the extent of enrichment for each

term, as represented by the enrichment score value. Additionally, A KEGG pathway is shown which

includes the genes identified in the document.

6.2.4 Literature enrichment analysis

In addition to functional enrichment analysis, OnTheFly2.0 implements the aGOtool API to

perform literature enrichment analysis for a gene/protein list extracted from the uploaded

input files. As its name indicates, literature enrichment analysis is oriented towards the

facilitation of retrieval of scientific publications that are strongly relevant to a given

gene/protein list. Particularly, all PubMed abstracts and full-text articles from the PubMed

Central Open Access subset are parsed by the same NER tagger used in EXTRACT and the

results are updated with new documents on a weekly basis. Consequently, genes existing

within the previously mentioned text corpora are automatically annotated and retrieved,

generating millions of gene sets that are subsequently used by aGOtool in the same manner

as all other gene sets.
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The publication enrichment functionality in OnTheFly2.0 can be performed on a list of

197 organisms from which the user is able to select up to 1,000 genes and proteins

identified in the input files. The created list is subsequently submitted to aGOtool that tests

each document from the precomputed corpus for statistically significant enrichment, again

using Fisher’s exact test. The resulting p-values as well as Bonferroni-corrected p-values

and Benjamini-Hochberg FDR values can be used for filtering the results. In addition, the

protein ID type (e.g., Entrez, ENSEMBL, Uniprot), that will be used in the analysis and the

output is defined by the user.

Similarly to the functional enrichment analysis, results are reported in interactive

searchable tables containing detailed information about each literature term (scientific

publication or disease), such as the term ID, the term name, the P-value, the FDR, the term

and query size, the number of positive hits as well as the positive hits themselves. Links are

provided for publications and diseases to PubMed. Barchart plot visualization is also

provided, enabling the ranking of publications based on their significance and the filtering of

results by number of displayed reports. Both the table and the plot can be downloaded and

saved in various file formats (CSV, XLS, PDF).

6.2.5 Interaction network analysis

So as to supplement the aforementioned enrichment functionalities and acquire a deeper

understanding of the overall associations of the extracted bioentities, the visualization of

interaction networks becomes almost a necessity. Thus, OnTheFly2.0 by integrating the APIs

of the STRING 148 and STITCH 164 databases, offers the capability to generate and depict

protein-protein and protein-chemical interactions for a set of 197 organisms, respectively.

Once the dataset creation is completed and submitted, the user is able to retrieve the

associations between the extracted biomolecules and visualize the results as networks with

the entities presented as nodes and their interactions as edges. For computational efficiency

reasons, in its current version, OnTheFly2.0 allows a maximum of 500 proteins per request for

STRING and 100 proteins or small molecules per request for STITCH.

Following the same logic as the functionalities described previously, OnTheFly2.0

requires the customization of certain setting options in order to construct the network as

efficiently as possible, meeting the visualization needs of the user (Figure 18). Specifically,

both STRING and STITCH classify the interactions as either physical, meaning that

interacted entities constitute the same biomolecular complex, or functional, which refer to the

entities involved in the same pathway/process. Consequently, the options include the Full set

of interactions (both physical and functional) or the Physical subnetwork exclusively. In

addition, users can adjust the interaction score and apply a cutoff on the edges. Regardless
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of the type of interactions supported by the networks (functional or physical), the meaning of

the edges can also alter, reflecting the evidence on which the interactions depend upon

(Evidence mode), the interaction score (Confidence mode), the type and effect of each

protein-chemical interaction (Molecular Action) as well as the the binding affinity between the

proteins and bound chemicals (Binding affinity). In case of the confidence and binding affinity

modes, the thickness of the edges is equivalent to a stronger interaction, whereas the

different colors in the evidence and molecular action modes indicate the different types of

interactions.

The resulting network, generated based on the visualization criteria customized by

the user, is displayed in a separate Network Viewer panel. The interactivity as well as the

characteristic STRING and STITCH network layout and style is preserved. An example of

such networks is shown in Figure 18. One can export the displayed network as an image or

as a TSV file, containing all the biomolecular interactions, while the redirection to the

STRING or STITCH database for further analysis is also allowed.

Figure 18: Visualization of interaction networks. (a) Setting options and visualization of a

protein-protein interaction network with the STRING layout. (b) Setting options and visualization of a

protein-chemical interaction network with the STITCH layout.
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6.3 Implementation
OnTheFly2.0 is a web application implemented in R and JavaScript, while the R/Shiny

package, HTML and CSS are utilized for the creation of the Graphical User Interface (GUI).

Both Shiny and ShinyJS serve as interoperable packages, establishing the connection

between the R and JavaScript functions. In addition, several APIs are integrated to increase

the versatility of this tool. Specifically, the API of the EXTRACT web service is used for the

performance of NER via the tagger text mining utility, whereas the functional enrichment

analyses are offered by R/gprofiler2 library and aGOtool API. Biological networks are

constructed and visualized using the STRING API, as implemented in the STRING and

STITCH databases. Various R libraries are also used for the creation of the interactive

visualizations. Manhattan plots are generated with the implementation of plotly library 247, bar

plots with ggplot 248 and the interactive datatables through the DT library.

OnTheFly2.0 is available as a web service, and as a standalone package through a

GitHub repository. The web service is fully functional in all major web browsers (Google

Chrome, Mozilla Firefox, Microsoft Edge, Tor, Apple Safari, Opera). Linux and other

Unix-based operating systems are the native environment OnTheFly2.0 is designed to

operate in. The existence of a Windows Subsystem for Linux (WSL) or other similar

compatibility layers (e.g., Cygwin) is a prerequisite in order OnTheFly2.0 run on Windows.
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6.4 Case study
Six published meta-analysis reports on clinical biomarkers of severe COVID-19 were

analysed 249–254, so as to demonstrate the capabilities of OnTheFly2.0 in a real case study and

denote its functionality in extracting biological information. Briefly, COVID-19 is a newly

emerged disease caused by the severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2). Typically, pathogenesis of SARS-CoV-2 infection involves the entry of the

virus into host cells through the ACE2 receptor and the release of its genome in order to

accomplish viral replication 255. This attack results in the upregulation of the immune system

in an attempt to eliminate the virus from the body. However, the failure in downregulating this

response ultimately induces a hyperinflammatory stage of COVID-19 called cytokine storm
255, which is characterized by an excessive production and secretion of pro-inflammatory

cytokines and chemokines, promoting uncontrolled systemic inflammation. While the

majority of coronaviruses affect the respiratory tract cells predominantly, SARS-CoV-2 virus

can potentially lead to mutli-organ failure due to its ability to enter numerous mammalian

body tissues 256. Even though signs of COVID-19 vary according to the patient, the most

common symptoms appearing at the earlier stage of the disease include fever, fatigue, dry

cough, myalgia, anorexia and dyspnea 255.

Starting from the uploading and conversion of the articles from PDF to HTML format,

the annotation pipeline was performed with the use of NER. Extracted bioentities were

filtered in order to manually discard the false positives and were subsequently processed for

both functional and publication enrichment analysis. As might be expected, the most

significantly enriched diseases included “Respiratory failure”, “Pneumonia” and “COVID-19”.

Specifically, several GO terms retrieved from GO enrichment for biological processes were

found to participate in inflammation, cell activation and response to stress, indicating a

potential relation to exaggerated lung inflammation and systemic immune dysfunction,

frequently appearing symptoms of COVID-19 as previously mentioned. Similarly, the

extracted terms were also significantly enriched for molecular functions involved in cytokine

activity and cytokine receptor signaling. In addition, Uniprot keyword analysis was

implemented, denoting “Cytokine”, “Inflammatory response”, “Host-virus interaction”, and

“Host cell receptor for virus entry” terms to all be enriched, in line with the functional

enrichment results.

Furthemore, based on established knowledge on coronaviruses, it was not surprising

that extracellular space (GO:0005615, GO:0005576) and plasma membrane (GO:0009897,

GO:0009986, GO:0098552) predicted to be extracellular components associated with

biomarkers of severe COVID-19. Interestingly though, membrane microdomains (also called

“membrane rafts”; GO:0098857, GO:0045121), known for mediating the initial binding of
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SARS-CoV-2 to ACE2 receptor, virus internalization and cell-to-cell transmission 255, also

appeared as essential cellular components in the pathogenesis of SARS-CoV-2, without

prior reference in any of the six meta-analysis reports that were interrogated, unveiling the

ability of OnTheFly2.0 for rapid knowledge discovery.

The STRING option of OnTheFly2.0 enabled the acquisition of a visual representation

and discovery of both physical and functional protein-protein interactions. The analysis

revealed a cluster of interacting cytokines and other immune components that is pertinent to

the “cytokine storm” of severe COVID-19 (Figure 19). Notably, the results were further

supported by a publication enrichment analysis, as the majority of studies about COVID-19

included cytokines references.

In order to acquire a more holistic view, identified terms were mapped onto biological

pathways via the pathway enrichment analysis option of OnTheFly2.0. Firstly, KEGG

pathways were extracted, including “coronavirus disease - COVID-19” (KEGG: 05171), “viral

protein interaction with cytokine and cytokine receptor” (KEGG: 04061) and

“cytokine-cytokine receptor interaction” (KEGG: 04060). Intriguingly, “Yersinia infection”

(KEGG: 05135) was also identified as a relevant KEGG pathway with high probability

(p-value < 10-8 ). It is of note that Yersinia pestis, a Gram-negative bacterium which is the

etiological pathogen of plague 257, activates the inflammasome-mediated IL-1β/IL-18 cytokine

release 257 of pneumocytes and alveolar macrophages during pneumonic plague. Even

though inflammasome activation has a protective role against a number of pathogens, in

case of pneumonic plague, inflammasome contributes to neutrophil influx and exaggerated

inflammation that ultimately results in lung tissue damage 257. The similarity of immune

responses and lung tissue reactions between Yersinia pestis and severe SARS-CoV-2

infection 258 warrant further insights into the immunological mechanisms of response to these

unrelated pathogens. Of additional interest is the predicted involvement of the “IL-17

signaling pathway” (KEGG: 04657) in severe COVID-19 which is supported by a recent

study reporting T cell skewing towards Th17, a specialized CD4+ effector T cell lineage

characterized by secretion of IL-17 and IL-17F cytokines in patients with COVID-19

pneumonia 259.

In addition to KEGG, the REACTOME option of OnTheFly2.0 was also explored in

order to further detect the over-represented pathways, resulting in significant enrichment of

several cytokine pathways associated with biomarkers of severe COVID-19. Similar to

membrane microdomains mentioned previously, the “cellular senescence” pathway was

predicted to be significantly enriched despite the absence of specific references to this

biological term in any of the six annotated meta-analysis reports under study. In line with this

prediction, COVID-19 pneumonia has recently been associated with immunosenescence 259

and accelerated aging of pneumocytes 260. Overall, the aforementioned case study analysis
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highlights the practical utility OnTheFly2.0 and its capability to rapidly extract biological

information from multiple documents and hence assisting knowledge discovery (Figure 19).

Figure 19: Analysis of clinical biomarkers of severe COVID-19 using OnTheFly2.0. (a) List of enriched

pathways from the KEGG, Reactome and WikiPathways databases. (b) Analysis of putative

protein-protein interactions through the STRING option of OnTheFly2.0. A cluster of interacting

components of inflammatory/immune pathways, each represented by a different color.
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Conclusions
OnTheFly2.0 is a powerful and user-friendly web based tool which enables the identification

of various biological terms in locally stored documents found in a plethora of different file

formats, including PDFs, texts, Office and image files. The document annotation is

accomplished according to the selection of entity type(s) by users such as proteins, genes,

chemical compounds, organisms, tissues, environments, diseases, phenotypes and gene

ontologies, while popup windows with informative summaries about a term and its links to

external repositories are also generated. Furthermore, OnTheFly2.0 efficiently combines

multiple functionalities, covering a broad spectrum of analyses from functional and

publication enrichment to protein-protein and protein-chemical interaction network

visualization. These analyses are performed in a customizable dataset which is composed of

selected bioentities extracted from the uploaded documents. Notably, OnTheFly2.0 is

designed to facilitate the annotation of locally stored documents and further exploration and

analysis of their identified biomedical entities in a fully automated way. Considering the

reliability, ease of use and accuracy of the offered capabilities, OnTheFly2.0 can reach out to

many users varying from experimentalists to highly specialized bioinformaticians.
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Availability

OnTheFly2.0 application:

http://onthefly.pavlopouloslab.info or http://bib.fleming.gr:3838/OnTheFly/

OnTheFly2.0 source code and instructions:

https://github.com/PavlopoulosLab/OnTheFly
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