

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ

ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ

Electricity use profiling and forecasting at

microgrid level

MSc Thesis

by

Enea Mele

Supervisors:

Charalambos Elias, Assistant Professor, TEI of Sterea Ellada

Aphrodite Ktena, Professor, TEI of Sterea Ellada

2018

This page is intentionally left blank

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ

ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ

Electricity use profiling and forecasting at microgrid level

Διπλωματική Εργασία

του

Ενέα Μέλε

Επιβλέποντες: Χαράλαμπος Ηλίας, Επίκουρος Καθηγητής, ΤΕΙ Στερεάς Ελλάδας

 Αφροδίτη Κτενά, Καθηγήτρια, ΤΕΙ Στερεάς Ελλάδας

Μεταπτυχιακή Διατριβή που υποβάλλεται για την μερική εκπλήρωση των υποχρεώσεων απόκτησης του τίτλου του

Προγράμματος Μεταπτυχιακών Σπουδών «Ευφυής Διαχείριση Ανανεώσιμων Ενεργειακών Συστημάτων» του

Τμήματος Ηλεκτρολόγων Μηχανικών ΤΕ του ΤΕΙ Στερεάς Ελλάδας

MSc Thesis submitted in partial fulfillment of the requirements for the degree of Master in “Intelligent Management

of Renewable Energy Systems”

Εγκρίθηκε από την τριµελή εξεταστική επιτροπή την 31 Μαΐου 2018

...................................

Χαράλαμπος Ηλίας

Επίκουρος Καθηγητής

...................................

Αφροδίτη Κτενά

Καθηγήτρια

...................................

Χρήστος Μανασής

Καθηγητής

2018

...................................

ΕΝΕΑ ΜΕΛΕ, Πτυχιούχος Ηλεκτρολόγος Μηχανικός Τ.Ε., M.Sc.

 © 2018 – All rights reserved

Abstract

The aim of this thesis is to create a flexible and easily customized tool applicable in microgrids

to carry out electricity use profiling and forecasting. This modular tool is called Divinus and its

architecture consists of several interconnected well-defined components where each one

interacts directly with the other. Τhe first three structural pillars of the platform are its database

where all the information is stored, the Django framework in which the code exists and finally

the website where all the results are displayed. Τhe next set of components are not as structural

as they are functional. Upon them is based the collection of data that will be saved in the

database, the use profile that will be performed on the collected data and the load forecasting

for which use profiling data will be used.

Through the Self-Organizing Map, that are competing networks that provide topological

mapping to the imported data, we perform the use profiling based on the collected data of

Technological Institute of Sterea Ellada, Psachna campus from 2010 till 2017. As soon as the

use profiling is complete and these data are placed in clusters based on their characteristics the

forecasting process is able to begin. The forecasting is performed based on the machine learning

methodology and more specifically with the k-neighbours algorithm.

From the tests that have been carried out so far, we observed that Divinus has a high accuracy

and low mean errors. More specifically based on forecasts made for the next five days, the next

month and the next year the average error does not exceed 5% for the next five days, 12% for

next month and 16% for the next year.

Therefore, at the current stage of the tools is we are able to say that it is quite promising tool

and that is likely to be used for both short-term and medium-term forecasts.

Key Words: Use Profiling, Self-Organizing Maps, Load Forecasting

Περίληψη

Σκοπός αυτής της διπλωματικής εργασίας είναι η δημιουργία ενός ευέλικτου και εύκολα

προσαρμόσιμου εργαλείου που θα εφαρμοστεί σε microgrids για την δημιουργία ενεργιακών

προφίλ χρήσης ηλεκτρικής ενέργειας και για την πρόβλεψη φορτίου. Το αρθρωτό αυτό

εργαλείο ονομάζεται Divinus και η αρχιτεκτονική του αποτελείται από πολλά διασυνδεδεμένα

και καλά καθορισμένα στοιχεία, όπου το καθένα αλληλεπιδρά άμεσα με το άλλο. Οι τρεις

πρώτοι δομικοί πυλώνες της πλατφόρμας είναι η βάση δεδομένων, στην οποία αποθηκεύονται

όλες οι πληροφορίες, το Django framework στο οποίο υπάρχει ο πηγαίος κώδικας και τέλος ο

ιστότοπος όπου εμφανίζονται όλα τα αποτελέσματα. Το επόμενο σύνολο στοιχείων δεν αφορά

τόσο την δομική όσο την λειτουργική πλευρά του Divinus. Στα στοιχεία αυτά εμπεριέχονται

διαδικασίες όπως είναι η συλλογή δεδομένων που θα αποθηκευτούν στη βάση, η δημιουργία

ενεργειακών προφίλ χρήση που θα εκτελεστεί πάνω στα δεδομένα που συλλέγονται καθώς και

η πρόβλεψη φορτίου για την οποία θα χρησιμοποιηθούν δεδομένα από τα ενεργειακά προφίλ

χρήσης.

Μέσω τον αυτοοργανωτικών χαρτών, που είναι ανταγωνιστικά δίκτυα που παρέχουν

τοπολογική χαρτογράφηση στα εισαγόμενα δεδομένα, πραγματοποιούμε τη δημιουργία

ενεργιακών προφίλ χρήσης ηλεκτρικής ενέργειας με βάση τα συλλεχθέντα δεδομένα από το

2010 έως το 2017 της περιοχής των Ψαχνών Ευβοίας του Τεχνολογικού Εκπαιδευτικού

Ινστιτούτου Στερεάς Ελλάδας. Μόλις η χαρτογράφηση των δεδομένων αυτών είναι πλήρης

τοποθετηθούν σε ομάδες βάσει των χαρακτηριστικών τους, η διαδικασία πρόβλεψης είναι σε

θέση να ξεκινήσει. Η πρόβλεψη πραγματοποιείται με βάση τη μεθοδολογία machine learning

και πιο συγκεκριμένα μέσω του αλγόριθμο k-neighbours.

Από τις δοκιμές που έχουν πραγματοποιηθεί μέχρι τώρα, παρατηρούμαι ότι το Divinus έχει

υψηλή ακρίβεια και μικρά σφάλματα. Πιο συγκεκριμένα, με βάση τις προβλέψεις που

πραγματοποιήθηκαν για τις επόμενες πέντε ημέρες, τον επόμενο μήνα και τον επόμενο χρόνο,

το μέσο σφάλμα δεν υπερβεί το 5% για τις επόμενες πέντε ημέρες, το 12% για τον επόμενο

μήνα και το 16% για το επόμενο έτος.

Ως εκ τούτου, στο στάδιο που βρίσκεται αυτήν την στιγμή το Divinus μπορούμε να πούμε ότι

αποτελεί ένα πολύ ελπιδοφόρο εργαλείο που είναι πιθανό να χρησιμοποιηθεί τόσο για

βραχυπρόθεσμες όσο και για μεσοπρόθεσμες προβλέψεις.

Λέξεις – Κλειδιά: Ενεργειακό Προφίλ, Aυτοοργανωτικοί Χάρτες, Πρόγνωση φορτίου

Table of Contents

Abstract .. 8

Περίληψη ... 10

Table of Contents ... 12

Index of Tables .. 14

Index of Figures ... 16

Introduction .. 17

1.1. Electrical Load Curves Clustering Methods ... 18

1.1.1. Classical K-means ... 18

1.1.2. Weighted Fuzzy Average (WFA) K-means .. 20

1.1.3. Modified Follow the Leader (MFTL) ... 21

1.1.4. Hierarchical algorithm... 21

1.1.5. Self-Organized Map .. 23

1.2. Benefits of Self Organised Map (SOM) among other Clustering Methods...... 25

1.3. Relational Database Management Systems .. 27

1.3.1. Oracle Database 12c .. 28

1.3.2. IBM DB2 ... 28

1.3.3. Microsoft SQL... 29

1.3.4. Teradata ... 30

1.3.5. MySQL .. 30

1.3.6. MariaDB .. 31

1.3.7. PostgreSQL ... 31

1.4. Benefits of PostgreSQL among other Relational Database Management

Systems .. 32

1.5. Programming Languages for the Developement Unsupervised Clustering and

Forecasting Tools through Machine Learning ... 34

1.5.1. C/C++ .. 34

1.5.2. JAVA ... 34

1.5.3. R .. 34

1.5.4. JavaScript .. 35

1.5.5. Python.. 35

1.6. Benefits of Python among other Programming Languages regarding Clustering

Methods.. 35

2. Electrical Load Data .. 38

2.1. Data Retrieval from the Administrator of the Greek Electricity Distribution

Network.. 38

2.2. Data Insertion in Divinus PostgreSQL Database .. 41

3. Clustering Electricity User Profiles Data through Self Organised Map (SOM) .. 44

3.1. Data Pre-Processing .. 44

3.2. Implementation of Self Organizing Map .. 52

3.3. Recreation of the Initial data to the created clusters ... 59

4. Forecasting Future Electricity User Profiles .. 61

4.1. First Stage of the forecasting process ... 61

4.2. Second Stage of the forecasting process ... 64

4.3. Final Stage of the forecasting process .. 67

5. Divinus Website ... 68

5.1. Object-relational mapper .. 68

5.2. Template ... 73

6. Conclusion ... 78

7. Bibliography .. 79

[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22],

[23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42],

[43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [53], [54]

Index of Tables

Table 1 - Pseudocode for the k-means clustering algorithm [15] 19

Table 2 - Pseudocode for the SOM clustering algorithm [32]. 24

Table 3 - PostgreSQL Limits and Values [37]... 32

Table 4 - DEDDIE Power Loads Code .. 41

Table 5 - SQL Insertion Command for the Active Power Loads Implemented through

Python .. 42

Table 6 - XLSX Removal Code ... 43

Table 7 – SOM Data Preprocessing ... 45

Table 8 - Pandas Dataset after the preprocessing is complete. It can now be used to

cluster the dates with SOM based on their daily consumptions 47

Table 9 - Code that converts date to epoch in order to be used in SOM algorithm 52

Table 10 - Creation of two numpy data arrays X and y. The X numpy array holds the

data that will be clustered while the y numpy array holds the data based on which the

clustering of X will take place ... 53

Table 11 – Initialization of the SOM algorithm with a 2x2 matrix 53

Table 12 – Pandas Dataset that belongs to the cluster [0,0] .. 54

Table 13 - SQLAlchemy Insertion Command for reshaped data 59

Table 14 - Process performed in order to link the intial data with the created clusters

.. 59

Table 15 - SQLAlchemy Insertion Command for intial data and the clusters that they

now belong ... 60

Table 16 - SOM algorithm trigged to run by the Forecasting Code 61

Table 17 - Checking the required dataset to make sure that all the required data exist

.. 61

Table 18 – Checking data such as year, month, day, hour and retrieving past data

based on these criteria. ... 62

Table 19 - Retrieving the data required for train and test and for the real forecast and

performing the modifications required .. 64

Table 20 - Splitting the dataset in X and y... 65

Table 21 - Training through sklearn and testing its predictions 66

Table 22 - Calculation of the test data overall mean prediction error 66

Table 23 - The timer contained in Divinus Forecasting process 67

Table 24 - Divinus Model.py file showing all the database information 68

Table 25 - Divinus Views.py file ... 73

Index of Figures

Figure 1 - K-means Clustering Visualization [17] ... 20

Figure 2 - A mean, median, and WFA of five points [19]. .. 21

Figure 3 - Dendrogram of the hierarchical clustering with average distance criterion.

.. 22

Figure 4 - Dendrogram of the hierarchical clustering with Ward linkage criterion. ... 23

Figure 5 - Different topologies [31] ... 25

Figure 6 - Neighborhood of a given winner unit [31] .. 25

Figure 7 - Oracle Database 12c Logo [35] ... 28

Figure 8 - IBM DB2 [35] ... 28

Figure 9 - Microsoft SQL Server Logo [35] .. 29

Figure 10 - Teradata Logo [35] .. 30

Figure 11 - MySQL Logo [35]... 30

Figure 12 - MariaDB Logo [35]... 31

Figure 13 - PostgreSQL Logo [35] .. 31

Figure 14 - Popularity of Machine Learning Languages [48] 36

Figure 15 - DEDDIE Login Page... 38

Figure 16 - DEDDIE Site where we choose the data we want to retrieve and the time

unit to which the data will be retrieved .. 39

Figure 17 - Active Load Graph Displaying the Selected Time Period 39

Figure 18 - Reactive Load Graph Displaying the Selected Time Period 40

Figure 19 - DEDDIE Excel Format ... 40

Figure 20 - DEDDIE CSV Format... 41

Figure 21 - pgAdmin Active Loads View.. 44

Figure 22 - Divinus Front Page .. 75

Figure 23 - Divinus Menu Selection .. 75

Figure 24 - Divinus Forecasting Page .. 76

Figure 25 - Divinus Clusters Page ... 76

Figure 26 - Divinus Comparison Page between Real & Forecasted Load 77

17

Introduction

Until recently, the electricity production and distribution systems were located far away from

end-use points. This caused a lot of losses during the energy transport. Moreover, it also

hindered the decentralization of power generation that made the dependence on large generation

plants even higher. However, the efforts made in order to cope with the increased energy

demands as well as transport costs lead to the creation of various techniques such as the energy

forecasting. The knowledge of future load behaviour in electrical distribution systems was of

fundamental importance in many electrical systems, being one of the main subjects discussed

in the operational areas of electricity utilities. Moreover, load forecasting was also used for

possible energy interchange with other utilities as well as to make the system more stable and

secure [1].

However, a conceptual change has been proposed so as to make the current supply system more

sustainable in economic and environmental terms, as reflected for instance in the Lisbon Treaty

[2]. As a result, in order to increase sustainability and optimize resource consumption, electric

utilities should constantly try to adjust their power supply to the energy demands. Moreover,

taking into account that it is extremely difficult to store energy at a large scale, power generation

has to be adjusted with the real time demand [1]. Therefore, it is of crucial importance that the

electric load forecasting to be as accurate as possible.

In order to succeed a high accuracy in load forecasting access is required to a wild variety of

electric power demand factors such as the day of the week, the month of the year as well as the

corresponding data at the respective days and months of past years along with past and future

environmental data such as humidity, temperature etc. However, as the data gathered in the

smart grid increases, the importance of clustering techniques that will classify those data

increases because huge amounts of data will need to be reduced in a reasonable way.

Decades ago, the clustering that was performed in electricity customers was performed only

based on pre-assigned contract types such as household, manufacturer, and school. The

clustering of customers is, however, now possible based on real-time energy consumption

patterns because of the richness of data in smart grids. Therefore, clustering is considered to be

a pre-processing stage in many data analysis scenarios [3].

Nowadays, the need for renewable energy resources led to the emergence of microgrids that

are environments of small electric power generation and demand. However, traditional

clustering and forecasting methods cannot have direct application to microgrids for two main

reasons. In microgrids the aggregated consumption figure is not only several times smaller than

in region-wide areas, but also the load curve presents a much higher variability [1].

Based on the aforementioned the purpose of this master thesis is the creation of a Short-Term

Load Forecasting two stage prediction methodology, called Divinus, which is based on the Self

Organised Map (SOM) clustering technique and on a custom made forecasting technique using

machine learning which can be applied in microgrids enviroments.

Due to the fact that there is a wide variety of clustering techniques, databases used for storing

data and programming languages used in machine learning techniques, in the Introduction

Section we analyse the reasons that led us to use these systems. Section 2 presents how and

from where the required data for the clustering phase were acquired. It is a crucial chapter due

to the fact those data consist the backbone of our methodology and therefore have to be as

accurate as possible. Section 3 describes how those data were implemented into the PostgreSQL

database. Section 4 describes how the data stored in the database were used by the Self

Organized Map for the clustering process. Section 5 presents the machine-learning forecasting

technique based on the data that were clustered previously and last but not least Section 6

18

analyses the results obtained, summarizes the conclusions of this study and proposes future

improvements on the proposed tool.

1.1. Electrical Load Curves Clustering Methods

Nowadays, the collection of scientific data is performed much easier and faster due to the

advances in modern mining techniques. Scientists are able to unearth implicit information from

huge databases and use them much easier and faster than it was done in the past. However,

these data mining techniques besides the benefits that they brought, they also resulted in a large

scale accumulation of data pertaining to diverse fields. It is practically impossible to extract

useful information from a huge load of data whose attributes might be totally different.

Therefore, an essential and effective method had to be found in order to deal with these issues.

Cluster analysis is such a method that was introduced to deal with these issues. The main aim

of cluster analysis is to find and associate patterns by forming groups of patterns that contain

similar attributes. In this way the pattern groups that will be formed will include objects that

have similar attributes compared to different clusters that differ considerably, with respect to

their attributes [4].

Many clustering approaches and algorithms have been proposed from time to time in literature

to suit various requirements [4], [5]. Many of them are based on conventional approaches are

such as the numerical clustering approach which assumes that patterns are points in a

dimensional space and perform clustering by defining a (dis)similarity measure. Another

conventional approach is the symbolic clustering approach which is suitable for clustering

patterns or objects that are often represented by qualitative or symbolic features. On the other

hand, knowledge-based clustering approaches use high-level knowledge pertaining to a set of

problems to perform the clustering task. In these approaches, knowledge is embedded into the

approach for solving a class of problems [5].

Recently, clustering analysis methods and techniques have been used in the field of electrical

engineering in order to cluster load curves [4]- [13]. These techniques are suitable in defining

typical load profile (TLP) of customers. Different applications are available for classification

of the load curve of customers. Accurate knowledge of the customers' consumption patterns

represents a worthwhile asset for electricity providers in the competitive electricity markets [6].

Classification of loads in terms of their time-varying power consuming behavior is an important

task for load forecasting, load data processing, locational customer services, power system

analysis and pricing [7]. With the electricity market liberalization, the electricity distribution

business looks for better market strategies based on adequate information about the

consumption patterns of the electricity customers. A fair insight into the customer's

consumption behavior allows the distribution utilities to better address the operation of the

distribution infrastructure and its future enhancement, not to mention the ability to design

specific tariff options for the various classes of customers in tune with real operation costs [8].

In order to cope with the ever-increasing demands of the market that arise, different methods

are used in clustering load curves. Some of the most popular methods used are the K Means,

the Modified Follow the Leader, the Self-Organizing Maps, etc.

1.1.1. Classical K-means

K-means algorithm was first introduced by J.B. MacQueen in 1967 [12], [14]. K-means is a

type of unsupervised learning clustering algorithm, which means that it uses data without

having previously defined the categories or the groups that these data will be inserted. Data are

clustered based on feature similarities and the process consist of two separate phases. The first

phase is to define k centroids, one for each cluster. During this phase each data point based on

the Euclidean distance, which is considered to determine the distance between data points and

19

the centroids, is assigned to its nearest centroid. More specifically, if ci is the collection of

centroids in set C, then each data point x is assigned to a cluster based on the following formula:

𝑎𝑟𝑔 𝑚𝑖𝑛
𝐶𝑖 𝐸𝐶

𝑑𝑖𝑠𝑡(𝑐𝑖, 𝑥)2 (1.1)

Where dist(-) is the standard (L2) Euclidean distance. Let the set of data point assignments for

each ith cluster centroid be Si [16]. The first step is completed when all the points are included

in one of the cluster groups and an early grouping is performed.

In the second phase the centroids need to be recalculated as the inclusion of new points may

lead to a change in the cluster centroids. This is done by taking the mean of all data points

assigned to that centroid's cluster.

𝑐𝑖 =
1

|𝑆𝑖|
𝛴𝑥𝑖𝐸𝑆𝑖

𝑥𝑖 (1.2)

In this step, the centroids are recomputed. This is done by taking the mean of all data points

assigned to that centroid's cluster. The algorithm iterates between steps one and two until a

situation will be reached when the centroids do not move anymore [16]. This signifies the

convergence criterion for clustering. In Table 1 is presented a pseudocode for the k-means

clustering algorithm [15].

Table 1 - Pseudocode for the k-means clustering algorithm [15]

Input:

D = {d1, d2,......,dn} //set of n data items.

k // Number of desired clusters

Output:

A set of k clusters.

Steps:

1. Arbitrarily choose k data-items from D as initial centroids;

2. Repeat

Assign each item di to the cluster which has the closest centroid;

Calculate new mean for each cluster;

Until convergence criteria is met.

20

Figure 1 - K-means Clustering Visualization [17]

The k-means algorithm is the most extensively studied clustering algorithm. The major

drawback of this algorithm is that it produces different clusters for different sets of values of

the initial centroids. Quality of the final clusters heavily depends on the selection of the initial

centroids. The k-means algorithm is computationally expensive and requires time proportional

to the product of the number of data items, number of clusters and the number of iterations [15].

1.1.2. Weighted Fuzzy Average (WFA) K-means

Fuzzy logic is based in an intuitive theory based on human reason of approximation. It differs

from traditional logic methods due to the fact that each data point has a probability of belonging

to each cluster, while in traditional methods exact and solid results are expected. Zadelh was

the first that put forth the concept of fuzzy logic [18] and since 1975 it is used in problems

where the solution tends to be more approximate rather than exact. Therefore, due to its

principles fuzzy logic quickly became an integral part of solving clustering problems in which

their results were determined by some degree of closeness to true or to false.

Weighted Fuzzy Average k-means was proposed as a new method which could be used to

overcome the drawback of the k-means algorithm in the computation of the distance between

each vector and cluster center. The benefit of this new method over the previous one was that

it introduced a fuzzy averaging that puts the center prototype among more situated points [13],

[14]. The weighted fuzzy average (WFA) of the vectors in a cluster is done component-wise.

Let {X1,…, XP} be a set of P real numbers. To find its weighted fuzzy average, this algorithm

initially takes the sample mean μ(0) and variance σ2 to start the process. A Gaussian is centred

over the current approximate WFA µ(r) and iterates as follows [19]:

𝑤𝑝
(𝑟)

=
exp[−

(𝑥𝑝−𝜇(𝑟))

2𝜎2]

∑ exp [−
𝑥𝑚−𝜇(𝑟)

2𝜎2](𝑚=1,𝑃)

 (1.2)

𝜇(𝑟+1) = ∑ 𝑤𝑝
(𝑟)

(𝜌=1,𝑃) 𝑥𝑝, 𝑟 = 0,1,2, … (1.3)

The denominator in Equation (1.2) standardizes the weights so they all sum to unity. We

compute σ2 on each of three or four iterations and then leave it fixed. After about five iterations

the approximate WFA is sufficiently close to the true WFA. Schneider and Craig [1992] used

21

a weighted fuzzy expected value for histogram adjustment, but it was based on a decaying

exponential. Figure 2 below shows an example of five points (circles) that compares the mean,

median, and the WFA [19].

Figure 2 - A mean, median, and WFA of five points [19].

Even though this method was an improvement on the simple K-means, it still lacked the ability

of finding better centers, since mean does not always represent the center of a given data.

1.1.3. Modified Follow the Leader (MFTL)

In many communities such as social networks datasets there are usually some members who

play a key role. The reason why some members have a higher role within social network

analysis is their centrality. Members that have a high centrality have a greater structural

importance in the network and as a result can be named also as leaders. In the follow-the-leader

procedure a group is formed starting from the leader and new members are added based on the

relationship they have with the group. To put it in simple words, this algorithm process requires

to choose the vertex (Leader) with the highest centrality score that is not included in any

existing groups. Then after the new group containing a leader member has been created, a

repetitive process is required so as to add new vertexes. The new vertexes will be added only if

the new density of the newly extended group is above a given threshold [20].

As we understand from the aforementioned description, the Follow-the-leader algorithm does

not require cluster numbers initialization and uses an iterative process to compute the cluster

centroids. The first cycle of the algorithm, using a follow-the-leader approach that depends on

a distance threshold ρ, sets the K numbers of clusters and the number 𝑛(𝑘) of patterns belonging

to each cluster 𝑘 = 1, … , 𝐾. The subsequent cycles refine the clusters, by possibly reassigning

the patterns to closest clusters. The procedure stops when the number of patterns changing

clusters in a single cycle is zero. The process is essentially controlled by the distance threshold

ρ, which has to be chosen by a trial-and-error approach. This procedure has been modified to

fit the needs of the proposed classification, by taking into account the data dispersion in the

input vector [6], [22]. For this purpose, the Euclidean metric used in the original algorithm has

been modified by introducing for each index a weighting factor, where is the variance of the

ℎth feature computed from all the load patterns in the initial population, and 𝜎̅2 is the average

value of the variance 𝜎ℎ
2 for ℎ = 1, … , 𝐻. As such, the impact of the indexes having a high

variance is amplified in the computation of the weighted Euclidean distance [21].

1.1.4. Hierarchical algorithm

In hierarchical clustering, there are initially 𝑀 singleton clusters, as much as the number of

representative load patterns (RLTs) [21], [23]. At first, a 𝑀𝑥𝑀 similarity matrix is built using

the Euclidean norm distance criterion. Then the value expressing the similarity between the

clusters 𝑋(𝑞) and 𝑋(𝑠), which is the 𝛾(𝑞,𝑠), needs to be called. Afterwards, with the use of a

linkage criterion which is based on the similarity matrix, the 𝛭 RLPs are grouped into binary

22

clusters. The process is iteratively repeated by merging the clusters of each level into bigger

ones at the upper level, until all RLPs are grouped in a single cluster. The history of the process

is kept in order to form a binary tree structure, whose root is the cluster that contains the whole

data set [21].

The similarities between clusters at each level are measured by the linkage criterion which is

also responsible for determining the cluster formation at the upper level. The extreme cases for

these criteria include the single linkage, for which the similarity between two clusters depends

on the closest pair of members in the two clusters, and the complete linkage, for which the

similarity between two clusters depends on the farthest pair of members in the two clusters [24].

As a result, the single linkage criterion may lead to the formation of few large clusters, whereas

the complete linkage criterion may form too many clusters. In order to prevent these effects,

other linkage criteria, such as average distance and Ward [25], have been defined [21].

With the average distance criterion, grouping two clusters 𝑋(𝑠)and 𝑋(𝑡) depends on the average

distance as it shown in the following equation:

𝛾𝐴
(𝑠,𝑡)

= 𝑑(𝑋(𝑠), 𝑋(𝑡)) (1.3)

Once two clusters 𝑋(𝑠)and 𝑋(𝑡) have been merged to form 𝑋(𝑤), the similarity between the

new cluster and another cluster 𝑋(𝑔) becomes as it shown in the following equation:

𝛾𝐴
(𝑤,𝑔)

=
1

2
(𝛾𝐴

(𝑠,𝑔)
, 𝛾𝐴

(𝑡,𝑔)
) (1.4)

The hierarchical tree (or dendrogram) of Figure 3 is obtained by grouping the RLPs of the data

set by this method. The horizontal axis contains the RLP identifiers, whereas the height of each

vertical branch represents the similarity between each pair of merged clusters. The final clusters

are then constructed by choosing in the binary tree the maximum distance admissible or by

directly selecting the distance corresponding to the desired number of clusters [21].

Figure 3 - Dendrogram of the hierarchical clustering with average distance criterion.

Horizontal axis: RLP identifier. Vertical axis: similarity measure (5) between clusters [21].

In the Ward linkage criterion, the clusters are formed in order to minimize the increase of the

within-cluster sums of squares. The similarity between the two clusters 𝑋(𝑠) and 𝑋(𝑡) is

measured as the increase of these squares sums if the two clusters were merged as it shown in

the following equation:

23

𝛾𝑊
(𝑠,𝑡)

=
𝑛(𝑠)𝑛(𝑡)

𝑛(𝑠)+𝑛(𝑡) 𝑑2(𝑐(𝑠), 𝑐(𝑡)) (1.5)

Where 𝑐(𝑠) and 𝑐(𝑡) are the centroids of the two clusters. Once two clusters 𝑋(𝑠) and 𝑋(𝑡) have

been merged to form 𝑋(𝑤), the similarity between the new cluster 𝑋(𝑤) and another cluster 𝑋(𝑔)

becomes as it shown in the following equation:

𝛾𝑊
(𝑤,𝑔)

=
(𝑛(𝑠)+𝑛(𝑔))𝛾𝑊

(𝑠,𝑔)
+(𝑛(𝑡)+𝑛(𝑔))𝛾𝑊

(𝑡,𝑔)
−𝑛(𝑔)𝛾𝑊

(𝑠,𝑡)

𝑛(𝑠)+𝑛(𝑡)+𝑛(𝑔) (1.6)

Figure 4 shows the dendrogram obtained by using the Ward linkage criterion. The comparison

between the two hierarchical trees shows that the average distance criterion forms large clusters

of similar RLPs and rejects the very dissimilar ones in small or singleton clusters, whereas the

Ward criterion prevents the formation of large clusters [21].

Figure 4 - Dendrogram of the hierarchical clustering with Ward linkage criterion.

Horizontal axis: RLP identifier. Vertical axis: similarity measure (7) between clusters [21].

1.1.5. Self-Organized Map

The Self-Organizing has been developed by professor Kohonen [26], is one of the most popular

artificial neural networks and has been proven useful in many applications [27].

To get a better understanding on what a SOM is we need to mention a few things regarding

Artificial Neural Networks (ANNs.) ANNs are based on the functions of the human brain and,

therefore, they consist powerful tools for modelling, especially when the underlying data

relationship is unknown. Moreover, they can identify and learn correlated patterns between

input data sets and corresponding target values [28], [29], [30]. They have been successfully

applied in a variety of scientific fields such as mathematics, engineering, medicine, economics,

meteorology, psychology, neurology and many other [28], [29]. The reason that they have been

successfully applied in so many scientific fields lies in the fact that they operate in accordance

with the four operating principles that are displayed below:

1. The fairly large database that is required, i.e. known inputs should be compared with

their corresponding outputs in order to "educate" the network.

2. The comparison of the output value that is produced with the real one and the

amendment of the weights in accordance with the "education rule".

3. The produced error that works as a guide, which decreases as the repetition is increased.

It is considered that the network has been educated when the error becomes smaller

than the threshold.

4. The certification that the system is adequately trained when it responds correctly to

24

new samples. The broad spectrum of the learning set is considered a criterion [30].

Due to the aforementioned, it is obvious that ANNs are educated through previous load patterns

also taking into account other influencing factors such as weather conditions and the day of the

week, as a result predicting new load patterns using recent load data [28]- [30].

The Self-Organizing Map as we mentioned is a type of ANN, however, it differs a lot from

them as it applies competitive learning as opposed to the methods used for training the classical

ANNs such as error-correction learning and in the sense that they use a neighbourhood function

to preserve the topological properties of the input space.

The Self-Organizing Map is based on unsupervised learning, which means that no human

intervention is needed during the learning and that little needs to be known about the

characteristics of the input data. It provides a topology preserving mapping from the high

dimensional space to map units. Map units, or neurons, usually form a two-dimensional lattice

and thus the mapping is a mapping from high dimensional space onto a plane. The property of

topology preserving means that the mapping preserves the relative distance between the points.

Points that are near each other in the input space are mapped to nearby map units in the SOM.

The SOM can thus serve as a cluster analyzing tool of high-dimensional data. Also, the SOM

has the capability to generalize. Generalization capability means that the network can recognize

or characterize inputs it has never encountered before. A new input is assimilated with the map

unit it is mapped to [31]. A description of the basic SOM training algorithm is presented below:

Table 2 - Pseudocode for the SOM clustering algorithm [32].

Let

X be the set of n training patterns 𝑥1, 𝑥2, . . 𝑥𝑛

W be a 𝑝 × 𝑞 grid of units 𝑤𝑖𝑗 where i and j are their coordinates on that grid

α be the learning rate, assuming values in]0,1[, initialized to a given initial

learning rate

r be the radius of the neighborhood function ℎ(𝑤𝑖𝑗 , 𝑤𝑚𝑛, 𝑟), initialized to a

given initial radius

1. Repeat

2. For k = 1 to n

3. For all 𝑤𝑖𝑗 ∈ W, calculate d ij = ‖xk − wij‖

4. Select the unit that minimizes d ij as the winner wwinner

5. Update each unit 𝑤𝑖𝑗 ∈ W: 𝑤𝑖𝑗 = 𝑤𝑖𝑗 + 𝑎 ℎ (wwinner, 𝑤𝑖𝑗 , 𝑟)‖xk − wij‖ :

6. Decrease the value of α and r

7. Until α reaches 0

The neighborhood function h is responsible for the interactions between different SOM units

and usually is a function that decreases with the distance (in the output space) to the winning

unit. During training, each unit will become more isolated from the effects of its neighbors and

as a result the radius of this function usually decreases. However, it should be noted that some

SOM implementations decrease this radius to one, while others decrease it to zero. This means

that the implementations with a reduction level of one will have even in the final stages of

training their units affected by their nearest neighbors, while the rest that have a reduction level

of zero will not have no affection at all from their neighbors [32].

The Self-Organizing Map as it is displayed in Figure 5 is a two-dimensional array of neurons.

One neuron is a vector called the codebook vector.

𝑀 = {𝑚𝑖1, … , 𝑚𝑖𝑛}

25

Figure 5 - Different topologies [31]

Moreover, the distance between the map units and the topology relations can be defined. One

can also define a distance between the map units according to their topology relations. By using

the concept of immediate neighbors we refer to the neurons that are adjacent. As a result the

immediate neighbors belong to the neighborhood 𝑁𝑐 of the neuron 𝑚𝑐. The neighborhood

function should be a decreasing function of time: 𝑁𝑐 = 𝑁𝑐(𝑡). Neighborhoods of different sizes

in a hexagonal lattice are illustrated in Figure 6.

Figure 6 - Neighborhood of a given winner unit [31]

In the smallest hexagon, there are all the neighbors belonging to the smallest neighborhood of

the neuron in the middle belonging to a hexagonal lattice. The topological relations between

the neurons are left out for clarity.

In the basic SOM algorithm, the topological relations and the number of neurons are fixed from

the beginning. This number of neurons determines the scale or the granularity of the resulting

model. Scale selection affects the accuracy and the generalization capability of the model. It

must be taken into account that the generalization and accuracy are contradictory goals. By

improving the first, we lose on the second, and vice versa.

1.2. Benefits of Self Organised Map (SOM) among other Clustering Methods

The clustering process is the first process that will be always run in Divinus and the forecast

that will run next will be based on the clusters that were created. As a result, the clusters must

be as accurate as possible so that the forecast that will run to have as little mean error as possible.

For this reason Self Organizing Maps where chosen as they can be applied in many areas

including the area that we are interested which is data clustering with great precision and

success.

The advantage of using this type of artificial neural network to cluster power loads is that they

group the loads in terms of the uniformity of the characteristics that define them, reducing the

26

size of the problem to a two-dimensional map while maintaining all the information about the

n features valued. In this way reducing the dimensionality and the grid clustering the data are

easier to observe.

Moreover, SOM is not sensitive to initialization, as k-means, which provides a more robust

learning. It preserves the topology of input data by assigning each datum to a neuron having

the highest similarity, and maps into adjacent neurons the data that contains similar attributes.

However, despite the positive or the negative aspects that a clustering algorithm may have,

there is no rule for the best matching clustering algorithm. In our tool based on the survey that

we conducted we chose to use SOM as our clustering algorithm on whose clusters the forecast

will be based.

27

1.3. Relational Database Management Systems

Relational Database Management System (RDMS) is responsible for defining a set of relation

schema that will allow information to be stored and retrieved without unnecessary redundancy.

RDMS consists a subset of Database Management System (DBMS) which in turn is a database

program. From a technical point of view, a database program is a software system that through

a standard method catalogs, retrieves and runs queries on data. Furthermore, a DBMS also

manages, organizes and provides ways for the incoming data to be modified and/or to be

extracted by other programs or users. However, databases in the early days were relatively

"flat," which means they were limited to simple rows and columns, like a spreadsheet. With

the passing of the time, the majority of the databases used in application to store or retrieve data

were made relational. In addition, relational databases allow users to access, update, and search

information based on the relationship of data stored in different tables but also allow them to

run queries that involve multiple databases. As a result, because nowadays almost all the

databases used are relational, the terms "database" and "relational database" are used most of

the times synonymously [33].

Nowadays however, users are given more options regarding the databases they use. Depending

solely on how the data will be used, they can store them in SQL or NoSQL databases. To start

with, SQL database was created back in 1975 by IBM, the initial letters stand for "Structured

Query Language" and it is a query language used for accessing and modifying information in a

database. The most common commands that can be found in SQL include "Insert", "Update"

and “Delete" and it is mostly used for Web database development and management. Moreover,

by using scripting languages such as PHP we are given the opportunity to execute SQL

commands from a web page. Therefore, because of the possibilities SQL has given it is possible

to display different information on each webpage [33].

On the other hand, NoSQL which originally meant "non SQL" or "non relational" has existed

since the late 1960s, but gained popularity and necessity in the early twenty-first century

triggered by the needs of Web companies such as Google, Amazon and Facebook [34]. NoSQL

is a non-relational database that stores and accesses data using key-values. This means that

NoSQL databases store data without using the classical means such as rows and columns to

which the data are stored but rather identify each data individually with the use of a unique key.

Furthermore, NoSQL is a more flexible database compared to relational databases as it

does not require a structured schema that defines each table separately [33].

Moreover, while relational databases (like SQL) are ideal for storing structured data, their rigid

structure makes it difficult to add new fields and quickly scale the database. NoSQL provides

an unstructured or "semi-structured" approach that is ideal for capturing and storing user

generated content (UGC). This may include text, images, audio files, videos, click

streams, tweets, or other data. While relational databases often become slower and more

inefficient as they grow, NoSQL databases are highly scalable. In fact, you can add thousands

or hundreds of thousands of new records to a NoSQL database with a minimal decrease in

performance [33]. Therefore, NoSQL flexibity and scalability has led many large businesses

and organizations to start using NoSQL databases for the storage of their data. NoSQL

databases are especially common in applications such as cloud computing and are becoming

even more popular as storing solutions for big data applications.

Due to the aforementioned, we understand that there are many database management systems

available and it is very important for them to be able to communicate with each other. The

solution to this problem comes with the name of Open Database Connectivity (ODBC) which

is a driver that allows databases to integrate to others. In order to give a description of how the

ODBC we should have a look at the common SQL statements such as "Insert", "Select",

"Update" and “Delete". These statements through ODBC are translated from a program's

proprietary syntax into a syntax that other databases can understand.

28

In the tool that we developed the use of a Relational Database Management System was

necessary. For this reason, we present through a brief description the most widespread and

known databases such as Oracle Database 12c, Microsoft SQL, MySQL, IBM DB2, SQLite,

MariaDB, Teradata as well as PostgreSQL which is the one that we chose to use.

1.3.1. Oracle Database 12c

Figure 7 - Oracle Database 12c Logo [35]

Oracle began its journey in 1979 as the first commercially available relational database

management system (RDBMS) and today it supports a wide range of operating systems

multiple versions of Windows and multiple Unix and Linux variations. Oracle's name is

synonymous with enterprise database systems, unbreakable data delivery and fierce corporate

competition from CEO Larry Ellison. Powerful but complex database solutions are the

mainstay of this Fortune 500 Company [35].

The current release of Oracle's RDBMS is Oracle 12c. The "c" stands for cloud and is reflective

of Oracle's work in extending its enterprise RDBMS to enable firms to consolidate and manage

databases as cloud services when needed via Oracle's multitenant architecture and in-memory

data processing capabilities. Furthermore, there is an abundance of tools for Oracle database

administration, application development and data movement/management. In terms of

functionality, Oracle keeps pace with many new and advanced features such as JavaScript

Object Notation (JSON) support, temporal capabilities, multi-tenancy and new database options

such as Oracle Database that uses in-memory columnar technology to enable enterprises to

easily and transparently accelerate the performance of their business analytics [36].

Oracle heavily promotes its database appliance, Exadata, which combines software and

hardware engineered in order to provide a high-performance and high-availability platform for

running Oracle Database. Its architecture features a scale-out design with industry-standard

servers and intelligent storage, including flash technology and a high-speed InfiniBand internal

fabric. Elastic configurations enable systems to be tailored to specific database workloads,

including online transaction processing (OLTP), data warehousing, in-memory analytics and

mixed workloads. The key selling point of a database appliance is that it's easy to deploy and

includes all of the needed components to run the DBMS [36].

Oracle 12c Release 1 will be fully supported by Oracle through the end of July 2018, and a

newer update, Oracle Database 12c Release 2 (12.2), became available in early March 2017.

From a cost perspective, Oracle has a reputation as being expensive to license and support.

Additionally, according to surveys conducted at Gartner's annual IT Financial Procurement &

Asset Management summits in North America and Europe, Oracle ranked lowest in terms of

ease of doing business [36].

1.3.2. IBM DB2

Figure 8 - IBM DB2 [35]

http://www-01.ibm.com/software/data/db2/
http://www-01.ibm.com/software/data/db2/
http://www.oracle.com/
http://www-01.ibm.com/software/data/db2/

29

DB2 is Oracle's biggest competitor on Unix and Linux operating systems. DB2 11.1 The latest

release of DB2, runs on Linux, UNIX, Windows, the IBM iSeries and mainframes. IBM has

pitted its DB2 system squarely in competition with Oracle's, via the International Technology

Group, and the results showed significant cost savings for those that migrate to DB2 from

Oracle which is translated into 34 percent to 39 percent for comparative installations over a

three-year period. In addition to these two platforms, DB2 is available on Windows, z/OS

mainframe and iSeries midrange servers. The latest versions of DB2 are DB2 Version 11 for

Linux, Unix, Windows (LUW), DB2 11 for z/OS and DB2 for i v7.2. DB2 SQL is almost

identical between the z/OS and LUW platforms, but administratively there are significant

differences. Likewise, many development, data movement and DBA tools are available for

DB2, both from IBM and other independent software vendors (ISVs) [36].

In terms of functionality, DB2 is regularly revised and updated with market-leading features,

including JSON support, temporal capabilities, shadow tables and advanced compression being

among the recent advances. With the DB2 SQL compatibility feature, IBM delivers the ability

to run Oracle applications in DB2 for LUW with no changes to business logic in the client code,

triggers or stored procedures. Feature-wise, it would be remiss not to mention IBM's next-

generation database technology for DB2 called BLU Acceleration. It provides a combination

of in-memory performance techniques, compression capabilities and column store capabilities.

As is the case with Oracle, IBM regularly publishes benchmark results for DB2. As with any

benchmark, it's always advisable to perform your own performance benchmarks on your own

systems and workload if possible. IBM offers a database appliance called the PureData System,

which provides single part procurement including pre-installed and configured DB2. The

system is ready to load data in hours and provides open integration with third-party software.

PureData comes with an integrated management console for the entire system, a single line of

support, integrated system upgrades and maintenance. The PureData System is available in

different models that have been designed, integrated and optimized for analytics, operational

analytics and transaction processing [36].

1.3.3. Microsoft SQL

Figure 9 - Microsoft SQL Server Logo [35]

Microsoft is the most profitable technology company and the SQL server helped a lot to put it

there. It is almost certain that, Microsoft's desktop operating system is everywhere, but if you're

running a Microsoft Windows-based server, you're likely running SQL Server on it.

SQL Server's ease of use, availability and tight Windows operating system integration makes

it an easy choice for firms that choose Microsoft products for their enterprises. Microsoft

promotes the latest release, SQL Server 2016, as the platform for both on-premises and cloud

databases and business intelligence solutions.

Microsoft promotes SQL Server 2016 in helping enterprises build mission-critical applications

with high-performance, in-memory security technology across OLTP (online transaction

processing), data warehousing, business intelligence and analytics.

The most recent release of Microsoft SQL Server is Microsoft SQL Server 2016 SP1

(v13.0.4001.0), which debuted on November 15th, 2016. Microsoft is currently developing

SQL Server 2017, codenamed SQL Server vNext, but no release date has been announced for

the upcoming version at this time.

From a technology and functionality standpoint, Microsoft keeps abreast with the

market. Features added to the latest version include stretch database capabilities for integrating

on-premises with cloud, strong encryption capabilities, integration of Hadoop with relational

data using the Polybase feature and improved in-database analytics capabilities. With Azure,

Microsoft's cloud-integration vision for SQL Server is the strongest of the big three DBMS

vendors, including simplified backup to Azure and the ability to set up an Azure virtual machine

as an always-on secondary. Microsoft boasts strong performance benchmark results for SQL

http://searchsqlserver.techtarget.com/tip/Eight-key-SQL-Server-2014-features
http://searchsqlserver.techtarget.com/tip/Some-new-Windows-Azure-integration-features-in-SQL-Server-2014
http://www.microsoft.com/en-us/server-cloud/products/sql-server-benchmarks/industry.aspx
http://www.microsoft.com/

30

Server 2016, including TPC-E, which measures modern OLTP workloads and TPC-H, which

measures data warehousing workloads.

However, Microsoft lacks a database appliance like Oracle's Exadata and IBM's PureData

System. Therefore, if a user is looking for a pure plug-and-play database appliance, Microsoft

isn't a realistic option. However, there are third-party appliances that embed SQL Server, and

Microsoft also offers the Microsoft Analytics Platform System, an analytics appliance that

integrates SQL Server with data from Hadoop.

1.3.4. Teradata

Figure 10 - Teradata Logo [35]

Teradata was founded as early as the late 1970s, and it laid the groundwork for the first data

warehouse before the term even existed. Teradata is known mostly for its analytics and data

warehousing capabilities. For organizations looking to run analytical processes, the Teradata

Database and the company's Active Enterprise Data Warehouse offers a gateway to

organizational knowledge based on advanced in-database analytics, intelligent in-memory

processing, parallel in-database execution of scripting languages, native JSON support and

transparent single query, multi-system processing. Teradata created the first terabyte database

for Wal-Mart in 1992. Since that time, data warehousing experts almost always say Teradata in

the same sentence as enterprise data warehouse. The version 15.10 of its RDBMS was released

by Teradata in early 2015 [35] ,[36].

1.3.5. MySQL

Figure 11 - MySQL Logo [35]

MySQL began as a niche database system for developers but grew into a major contender in

the enterprise database market and was sold to Sun Microsystems in 2008. Since then MySQL

has since become part of the Oracle empire and being more than just a niche database now,

MySQL powers commercial websites by the hundreds of thousands, and it also serves as the

backend for a huge number of internal enterprise applications. Today MySQL remains a very

popular option for use in Web applications and continues to serve as a central component of the

LAMP open-source Web application software stack, along with Linux, Apache and PHP (or

Python or Perl). At the same time, MySQL has seen support from users and developers erode

over the last few years following the acquisition by Oracle [35].

MySQL's decline has helped fuel the adoption of other open-source database options and forks

of MySQL like the fully-open source MariaDB, which doesn't feature closed-source modules

like some of those found in newer versions of MySQL Enterprise Edition, as well as Percona

and the cloud-optimized Drizzle database system. MySQL Community Server 5.7.x is the most

current release of the MySQL database system, with v5.7.19 having made its debut in July 2017

[35].

http://searchsqlserver.techtarget.com/feature/Vendors-introduce-three-new-SQL-Server-appliances
http://www.teradata.com/
http://www.mysql.com/

31

1.3.6. MariaDB

Figure 12 - MariaDB Logo [35]

MariaDB was created in 2009 by the original developers of MySQL, who created the fork

following concerns over MySQL's acquisition by Oracle. It is used by tech giants like

Wikipedia, Facebook, and even Google. MariaDB is a database server that offers drop-in

replacement functionality for MySQL. MariaDB has seen its popularity explode recently at the

expense of MySQL, particularly in its support by popular Linux distributions. In 2013 alone,

Red Hat Enterprise Linux (RHEL) ditched MySQL for MariaDB, Fedora opted for MariaDB

over MySQL in its Fedora 19 release, and both openSUSE and Slackware Linux made similar

switches to MariaDB over MySQL. Wikipedia also adopted MariaDB over MySQL as its

backend database in 2013.

Another key factor in moving MariaDB ahead of MySQL is its enhanced query optimizer and

other performance-related improvements, which give the database system a noticeable edge in

overall performance compared to MySQL. Last but not least, security is a top concern and

priority for MariaDB. Therefore, in each solution release, the developers also merge in all of

MySQL’s security patches and enhance them if need be.

The most recent "stable" release of MariaDB Enterprise Server is version 10.2 (v10.2.6 debuted

May 23, 2017), also known as the MariaDB Server 2017 release. The 10.x releases add better

protection for data against application and network-level attacks and also enables fast delivery

of new, high-performance applications.

1.3.7. PostgreSQL

Figure 13 - PostgreSQL Logo [35]

POSTGRES, now known as PostgreSQL, is considered to be the most advanced open-source

database available today. PostgreSQL, is an open-source object-relational database

management system (ORDBMS) that hides in such interesting places as online gaming

applications, data center automation suites and domain registries. PostgreSQL also enjoys some

high-profile duties at Skype and Yahoo! PostgreSQL is in so many strange and obscure places

that it might deserve the moniker, "Best Kept Enterprise Database Secret." PostgreSQL's

current stable release is PostgreSQL 9.6.3, which was released in late May 2017, and

PostgreSQL 10 is expected to debut in the second half of 2017, with PostgreSQL 10 Beta 2

available now. PostgreSQL runs on a wide variety of operating systems, including Linux,

Windows, FreeBSD and Solaris. And as of OS X 10.7 Lion, Mac OS X features PostgreSQL

as its standard default database in the server edition. PostgreSQL benefits from more than 25

years of development as a free, open-source database system, and it includes enterprise-grade

features comparable to Oracle and DB2 such as full ACID compliance for transaction reliability

and Multi-Version Concurrency Control for supporting high concurrent loads.

http://mariadb.com/
http://www.postgresql.org/

32

1.4. Benefits of PostgreSQL among other Relational Database Management

Systems

To choose the ideal database was to choose the one that would best fit for the needs of our tool.

Therefore, we relied on criteria that would help us delimit the options we had in order to make

the most accurate database choice for our tool.

The criteria that we relied on our decision were two. The first criterion, based on the type of

data we had, stated that the database should be a relational one. That meant that only Structured

Query Language (SQL) databases were accepted and as a result the NoSQL databases

automatically withdraw from competition. The second criterion stated that the relational

database that would be used should be low cost. This criterion restricted our choices even

further as now we had only the option of open-source relational databases. Therefore, we had

to find the most appropriate open-source relational database solution for our tool and that why

PostgreSQL was chosen.

After 15 years of active development and having a reliable architecture that ensures data

integrity and correctness, PostgreSQL is not just a relational database but rather a powerful

object-relational database. To start with, there is an extensive list of data types that PostgreSQL

supports such as Integer, Numeric, Boolean, Char, Varchar, Date, Interval and Timestamp [37].

Besides those date types, PostgreSQL boasts uuid, monetary, enumerated, geometric, binary,

network address, bit string, text search, xml, json, array, composite and range types, as well as

some internal types for object identification and log location. To be fair, open databases such

as MySQL and MariaDB each have some of these to varying degrees, but only PostgreSQL

supports them all [38].

Furthermore, PostgreSQL is highly scalable both in the sheer quantity of data it can manage as

well as in the number of concurrent users it can accommodate. There are active PostgreSQL

instances in production environments that are able to manage many terabytes of data, as well

as clusters managing petabytes [37]. However, open databases such as MySQL and MariaDB

are notorious for their 65,535 byte row size limit. Typically the data size is limited by the

operating system file size limit. Because PostgreSQL can store table data in multiple smaller

files, it can get around this limitation - though, it is important to note that too many files may

negatively impact performance. MySQL and MariaDB do, however, support more columns per

table (up to 4,096 depending on the data type) and larger individual table sizes than

PostgreSQL, but it is in rare conditions that the existing PostgreSQL limits would need to be

exceeded [38]. The PostgreSQL limits are displayed in the Table 3 below.

Table 3 - PostgreSQL Limits and Values [37]

Limit Value

Maximum Database Size Unlimited

Maximum Table Size 32 TB

Maximum Row Size 1.6 TB

Maximum Field Size 1 GB

Maximum Rows per Table Unlimited

Maximum Columns per Table 250 - 1600 depending on column types

Maximum Indexes per Table Unlimited

Due to the aforementioned and to the tolerable limitations it contains PostgreSQL has

won praise from its users and industry recognition, including the "Linux New Media Award for

Best Database System" and five time winner of the "The Linux Journal Editors' Choice Award"

for best DBMS [37].

33

PostgreSQL is both a standard compliant and a highly customizable database that offers a wide

range of features. It prides itself in standards compliance as its SQL implementation strongly

conforms to the ANSI-SQL:2008 standard. Moreover, it has full support for subqueries

(including subselects in the FROM clause), read-committed and serializable transaction

isolation levels. And while PostgreSQL has a fully relational system catalog which itself

supports multiple schemas per database, its catalog is also accessible through the Information

Schema as defined in the SQL standard. Another standard compliance feature is its data

integrity features that include (compound) primary keys, foreign keys with restricting and

cascading updates/deletes, check constraints, unique constraints, and not null constraints [37].

Other open-source databases such as MySQL and MariaDB are doing a lot to be SQL standard

compliant with the InnoDB/XtraDB storage engines. They now offer a STRICT option using

SQL modes, which determines the data validation checks that get used; however, depending on

the mode we use, invalid and sometimes silently-truncated data can be inserted or created on

update. Neither of these databases currently supports check constraints and there are also a host

of caveats for foreign key constraints. Additionally, data integrity may suffer significantly

depending on the storage engine selected. MySQL (and the MariaDB fork) has made no secret

that they have long made tradeoffs for speed and efficiency over integrity and compliance [38].

Last but not least, PostgreSQL has customizable features through which it is able to run stored

procedures in more than a dozen programming languages, including Java, Perl, Python, Ruby,

Tcl, C/C++, and its own PL/pgSQL, which is similar to Oracle's PL/SQL. Moreover, besides

the standard function library that is included, there are the hundreds of built-in functions that

range from basic math and string operations to cryptography and Oracle compatibility.

PostgreSQL also includes a framework that allows developers to define and create their own

custom data types along with supporting functions and operators that define their behavior [37].

Best of all PostgreSQL features though is that its source code is available under a liberal open

source license: the PostgreSQL License. This license provides the users with the freedom to

use, modify and distribute PostgreSQL in any form they like, open or closed source. As such,

PostgreSQL is not only a powerful database system capable of running the enterprise, it is a

development platform upon which to develop in-house, web, or commercial software products

that require a capable RDBMS [37].

In the tool that we built it is more likely that most of the aforementioned advanced features will

not be used, but since data needs can evolve quickly, there is an undoubtedly clear benefit to

having them as our database capabilities. Therefore, due to the wide variety of capabilities, the

extensive data capacity, the data integrity and its exceptional documentation that can guide

experienced or fresh users in its use, PostgreSQL was chosen to be the relational database of

our tool.

34

1.5. Programming Languages for the Developement Unsupervised Clustering and

Forecasting Tools through Machine Learning

As the integration of internet in our lives rises, whether this is a good or a bad outcome, the

integration of information technology in mores areas of our lives also rises. Along with the rise

of internet and information technologies there is also an increase in the amounts of data

retrieved and as a result an increase in the importance of processing those data in large scales.

Based on recent estimates, 2.5 quintillion (1018) bytes of data are generated on a daily basis. In

order to get an understanding of the amount of data available nowadays we only need to realize

that 90 percent of the information that we store nowadays was generated in the past decade

alone. It is made obvious that this amount of data is beyond the means of standard analytical

methods or it is simply too vast for humans limited minds to even comprehend. In order to cope

with this infinite amount of data machine learning was developed. Through Machine Learning,

we enable computers to process, learn from, and draw actionable insights out of the otherwise

impenetrable walls of big data [39]. The goal of this section is to deliver a comparison of five

programming languages, which are C/C++, Java, R, JavaScript and Python in order to

determine the most appropriate of them in order to be used for electricity clustering and

forecasting in a microgrid level using machine learning technology.

1.5.1. C/C++

C is a general-purpose, imperative computer language and was originally developed by Dennis

Ritchie between 1969 and 1973 at Bell Labs and used to re-implement the Unix operating

system. Since then it has become one of the most widely used programming languages of all

time, with C compilers from various vendors available for the majority of existing computer

architectures and operating systems [40]. C++ on the other hand, is a middle-level programming

language that was also developed at Bell Labs by Bjarne Stroustrup in 1979. The purpose of its

creation was to bypass the difficulties of analyzing UNIX kernel for distributed systems that

arose using other available programming languages that were either too slow or low level. The

development of C++ was based on C because it was a general purpose language, very efficient

as well as fast in its operations. Nowadays, C++ is ranked 4th in popularity according to 2017

IEEE spectrum Top Programming Language ranking [41].

C/C++ is ideal for low-level software such as operating system components and

networking protocols where computational speed and memory efficiency are extremely

critical. For these same reasons, it is also a popular choice for implementing the guts of

Machine Learning procedures. However, its lack of idiomatic abstractions for data processing

and added overhead for memory-management can make it unsuitable for beginners, and

burdensome for developing complete end-to-end systems. In either case, there is no dearth of

Machine Learning libraries available in C/C++, e.g. LibSVM, Shark and mlpack [42].

1.5.2. JAVA

Java was developed by James Gosling at Sun Microsystems as a general-purpose computer-

programming language that was concurrent, class-based and object-oriented. It was released in

1995 as a core component of Sun Microsystems' Java platform and derived much of its syntax

from C and C++, but it had fewer low-level facilities than either of them [43]. Java became the

software engineer’s language of choice because of its clean and consistent implementation of

object-oriented programming, and platform-independence using JVMs. It sacrifices brevity

and flexibility for clarity and reliability, which makes it popular for implementing critical

enterprise software systems. In order to maintain that same level of reliability and to avoid

writing messy interfaces, companies that have been using Java may prefer to stick to it for their

Machine Learning needs [42].

1.5.3. R

R was created by Ross Ihaka and Robert Gentleman at the University of Auckland, New

Zealand. It was named partly after the first names of the first two R authors and partly as a play

35

on the name of S as it started as an implementation of the S programming language combined

with lexical scoping semantics inspired by Scheme. S was created by John Chambers in 1976,

while at Bell Labs. The R project was conceived in 1992, with an initial version released in

1995 and a stable beta version in 2000 [44].

R is a GNU package. The source code for the R software environment is written primarily

in C, Fortran, and R. R is freely available under the GNU General Public License, and pre-

compiled binary versions are provided for various operating systems. While R has a command

line interface, there are several graphical front-ends available [44].

R is used for statistical computing and is a clear winner for large-scale data-mining,

visualization and reporting. It provides an easy access to a huge collection of packages that

enable the users to apply almost all kinds of Machine Learning algorithms, statistical tests and

analysis procedures. The language itself has an elegant—albeit esoteric—syntax for expressing

relationships, transforming data and performing parallelized operations [42].

1.5.4. JavaScript

JavaScript was deployed for the first time in 1995 in the Netscape Navigator 2.0 beta. Until it

came to the name we know it today it had changed quite a bit. It started during its development

as Mocha, then it was officially named as Livescript when it first shipped in beta releases of

Netscape Navigator 2.0 and then changed again to the one that we know today [45].

JavaScript often abbreviated as JS, is a high-level, interpreted programming language which is

also characterized as dynamic, weakly typed, prototype-based and multi-paradigm.

Alongside HTML and CSS, JavaScript is one of the three core technologies of World Wide

Web content engineering. It is used to make webpages interactive and provide online programs,

including video games. The majority of websites employ it, and all modern web

browsers support it without the need for plug-ins by means of a built-in JavaScript engine.

Nowadays JavaScript is evolving with a rapid speed as it can be found on mobile

devices, desktop applications, embedded systems and backend applications. Therefore,

due to the wild range of its usage it can be used even in machine learning applications.

Perhaps it’s not the best idea to train machine learning models in the browser but using

pre-trained models in the browser might be a promising field in the future and it can be

used as the bridge for the web developers to enter the field of machine learning [45].

1.5.5. Python

Python got a definite seat among the modern high-languages as a general purpose programming

language. It was invented in the early 90s in CWI Netherlands by Guido Van Rossum in an effort

to find an alternative for the ABC language [46]. Python is one of the most popular programming

languages for machine learning and data science and therefore enjoys a large number of useful add-

on libraries developed by its great community. Although the performance of interpreted languages,

such as Python, for computation-intensive tasks is inferior to lower-level programming languages,

extension libraries such as NumPy and SciPy have been developed that build upon lower layer

Fortran and C implementations for fast and vectorized operations on multidimensional arrays. For

machine learning programming tasks, we will mostly refer to the scikit-learn library, which is one

of the most popular and accessible open source machine learning libraries as of today [39].

1.6. Benefits of Python among other Programming Languages regarding Clustering

Methods

The most decisive factor when selecting a language for machine learning is the type of project

that it will be used. In a survey, the results of which are displayed in Figure 14, developers

where asked would their choice be for machine learning languages in 17 different application

36

areas. Python was the programming language with the highest popularity, for machine learning

developers and data scientists, among the other languages regarding machine learning [47].

Figure 14 - Popularity of Machine Learning Languages [48]

Python leads the pack, with 57% of data scientists and machine learning developers using it

and 33% prioritizing it for development. This fact should not surprise us based on the fact that

there is a huge evolution in deep learning Python frameworks over the past 2 years, including

the release of TensorFlow and a wide selection of other libraries. Python ratio of usage is 57%

which is the highest ratio making it a primary choice for machine learning language among the

other five languages [47].

In addition, given all the evolution, Python is often compared to R, but they are nowhere near

comparable in terms of popularity: R comes fourth in overall usage (31%) and fifth in

prioritization (5%). R is in fact the language with the lowest prioritization-to-usage ratio among

the five, with only 17% of developers who use it prioritizing it. This means that in most cases

R is a complementary language, not a first choice in opposition to Python. Furthermore, Python

is ahead of many highly preferred languages such as C/C++ which is found second, both in

usage (44%) and prioritization (19%). Java follows C/C++ very closely, while JavaScript

comes fifth in usage, although with a slightly better prioritization performance than R (7%)

[47]. Moreover, those who responded to the survey about other programming languages used

in machine learning application also suggested the usual suspects of Julia, Scala, Ruby, Octave,

MATLAB and SAS, but they all fall below the 5% mark of prioritization and below 26% of

usage [47].

Machine learning scientists working on sentiment analysis prioritise Python (44%) and R (11%)

more and JavaScript (2%) and Java (15%) less than developers working on other areas. In

contrast, Java is prioritised more by those working on network security / cyber-attacks and fraud

detection, the two areas where Python is the least prioritised. Network security and fraud

37

detection algorithms are built or consumed mostly in large organisations — and especially in

financial institutions — where Java is a favourite of most internal development teams. In areas

that are less enterprise-focused, such as natural language processing (NLP) and sentiment

analysis, developers opt for Python which offers an easier and faster way to build highly

performing algorithms, due to the extensive collection of specialised libraries that come with it

[47]. C/C++ is mostly favoured for Artificial Intelligence (AI) in games (29%) and robot

locomotion (27%) which are two areas where the level of control, high performance and

efficiency are required. Therefore, a lower level programming language such as C/C++ that

comes with highly sophisticated AI libraries is a natural choice, while R, designed for statistical

analysis and visualizations, is deemed mostly irrelevant and is therefore prioritized in the lower

position in AI followed by speech recognition where the case is similar [47].

Although surveys can indicate a programming language being more appropriate for an

application than another, there is no rule for the best machine learning language. In our

application based on the survey and on the fact that our effort of creating a predictive tool is

our maiden journey in machine learning, Python will be used as the best option, given its

wealth of libraries and ease of use.

38

2. Electrical Load Data

Nowadays, data are the most important source in each program and they are the basis of its

success. This means that if the data we import are good then the system we are making is likely

to work properly and to have a high precision. On the other hand if the data we put into the

system are incomplete, or lack the precision required than the most likely scenario is that the

system that is implemented will have limited precision and will not function properly.

2.1. Data Retrieval from the Administrator of the Greek Electricity Distribution

Network

Taking the aforementioned under consideration and after searching the best possible ways to

retrieve the data we came to the decision to get our data from the Administrator of the Greek

Electricity Distribution Network (Greek: Διαχειριστής Ελληνικού Δικτύου Διανομής

Ηλεκτρικής Ενέργειας, or ΔΕΔΔΗΕ) which was formed by the separation of the Distribution

Department of Greece's Public Power Corporation in order to comply with the 2009/72/EC EU

Directive relative to the electricity market organization. Its mission is to assume the

responsibilities of the Distributor for the Network Operation of Greece. It is a 100% subsidiary

of the public power corporation (Greek: ΔΕΗ), however, it is independent, maintaining all the

independence requirements embodied in the above legislative framework. Therefore, through

the smart metering system that it contains we were able to obtain past data of both active and

reactive loads of the Technological Institute of Sterea Ellada for the Chalkis location only by

entering in the following site:

https://meteringnet.deddie.gr/login.aspx?ReturnUrl=%2fbilling.aspx

Figure 15 - DEDDIE Login Page

https://meteringnet.deddie.gr/login.aspx?ReturnUrl=%2fbilling.aspx

39

After we have successfully logged in the website we were able to choose the time periods of

the loads on which we would rely our solution. In order to have a sufficient amount of data we

draw data from January 1, 2010 to January 31, 2018. From the data retrieved 95% will be used

for training and the rest of them for testing as it will be explained in chapter 5.

We are given the ability to retrieve the data per hour or per quarter. Based on the Divinus

requirements we decide to retrieve the data per hour.

Figure 16 - DEDDIE Site where we choose the data we want to retrieve and the time unit to which the

data will be retrieved

As soon as the data are ready to be downloaded we are able to view two graphs one for the

active and one for the reactive load as it is shown in Figure 16.

Figure 17 - Active Load Graph Displaying the Selected Time Period

40

Figure 18 - Reactive Load Graph Displaying the Selected Time Period

These data can be exported from the site in three possible formats: a) excel b) csv and c) pdf.

The pdf format was automatically excluded due to the fact that it is a non-manageable format

type. Therefore, the excel and the csv formats are the only that we could handle. We will

proceed with the excel format.

Figure 19 - DEDDIE Excel Format

41

Figure 20 - DEDDIE CSV Format

As soon as we have downloaded the data required for Divinus we are able to proceed to the

next step which is the insertion of these data to our program’s database.

2.2. Data Insertion in Divinus PostgreSQL Database

The next thing that needs to be done after the data have been successfully downloaded is the

insertion to the database and as a result to Divinus itself. This action is performed with the use

of a python library called pandas.

Pandas is an open source, software library written for Python and is used for data manipulation

and analysis. Its name derives from the term "panel data" and as it is expected it offers solutions

regarding data structures and operations for manipulating numerical tables and time series. It is

easy to use and a very useful tool when it comes to the management of a wide variety of data.

The first use of pandas is to enter the data in Divinus in order to check whether they are properly

structured. In case they are not, corrective actions are performed on the data and then they are

store in the database. Table 4 contains the code that performs the aforementioned actions.

Table 4 - DEDDIE Power Loads Code

'''
Created on Mar 4, 2018

@author: dimitris mele
'''

import os
import threading
import pandas as pd
from glob import glob
from Database.Insert import insert_to_ap, insert_to_rp
from Core.XLS_Removal import XLS_Removal_Energeia, XLS_Removal_Aerga

def Deddie_active_power_data():

 for file in glob(r'C:\Users\dimit\Downloads\Loads\Energeia___*.*'):
 directory = (os.path.abspath(file))
 print("--
--------------------------")

42

 print ('A file found: {}'.format(directory))
 print ("")

 get_ap, = pd.read_html(directory, thousands='.', decimal=',',
header=0)

 get_ap.rename(columns={'Î—Î¼ÎµÏ•Î¿Î¼Î·Î½Î¯Î±':'date_time',
'Î•Î½Î­Ï•Î³ÎµÎ¹Î±':'active_power_kwh'}, inplace=True)
 get_ap['date_time'] = get_ap['date_time'].apply(pd.Timestamp)

 for i in range(len(get_ap)):
 insert_to_ap(get_ap['date_time'][i],
get_ap['active_power_kwh'][i])
 print("Data were successfully inserted in the database")
 print("--
--------------------------")

 XLS_Removal_Energeia()

 seconds=1.0
 minutes=seconds*60
 hour=minutes*60

 threading.Timer(hour, Deddie_active_power_data).start()

Deddie_active_power_data()

The aforementioned code runs every hour. This means that every hour it will search at

(C:\Users\dimit\Downloads\Loads\) which is the location where the DEDDIE files are saved.

Once it identifies files whose names start with "Energeia" or "Aerga" it will try to integrate

them through pandas in Divinus, perform corrections wherever they are needed and store them

in the database. The integration into the database is performed through the SQL insert functions.

Table 5 - SQL Insertion Command for the Active Power Loads Implemented through Python

def insert_to_ap(date_time, active_power_kwh):
 conn=psycopg2.connect ("host='localhost' dbname='postgres'
user='postgres' password='123456q!'")
 cur=conn.cursor()
 cur.execute ("INSERT INTO active_power VALUES (%s,%s) ON CONFLICT
(date_time) DO NOTHING",(date_time, active_power_kwh))
 conn.commit()
 conn.close()

The insertion functions are implemented by inserting and executing the SQL commands

through python. In order for the SQL commands to work in python the first thing that needs to

be done is to set the information regarding the database in which they will be saved. The

information required are the host, the database name, the user and the password. By giving

these information we are able to log into the database and define the command we want to

execute. In our case the command we want to execute is the insertion command and it will be

executed as follows:

INSERT INTO TABLE VALUES (%s,%s) ON CONFLICT (VALUE) DO NOTHING

43

The bold words in the SQL command should be replaced by the corresponding table and the

corresponding table column.

INSERT INTO active_power VALUES (%s,%s) ON CONFLICT (date_time) DO

NOTHING

The last step in the data retrieval process is the deletion of the files after the data have been

successfully inserted in the database. Therefore, as soon as the files are successfully inserted

into the database the functions XLS_Removal_Energeia() starts running. Its purpose is to delete

the downloaded xlsx files from the directory that they are stored in order to release computing

resources.

Table 6 - XLSX Removal Code

'''
Created on 8 Μαρ 2018

@author: d.mele
'''

import os
from glob import glob

def XLSX_Removal_Energeia():

 for file in glob(r'C:\Users\dimit\Downloads\Loads\Energeia___*.*'):
 os.remove(file)

After all the functions and the processes have been successfully completed we are able to enter

the database and check that the data required for Divinus to start working are inserted in the

corresponding tables. To do that pgadmin package is required to be downloaded. pgAdmin is a

free and open source graphical user interface administration tool for PostgreSQL, which is

supported on many computer platforms.

Here end the data insertion process. The same process is also followed for the reactive power

loads.

44

3. Clustering Electricity User Profiles Data through Self Organised

Map (SOM)

Having all the data ready allow us to move to the next step which is to implement the first of

the two algorithms through which the use profiling goal is achieved. The algorithm chosen for

this goal as it is already mentioned in Chapter 1 is the Self Organizing Map which is an

unsupervised learning algorithm. SOM is a type of Artificial Neural Networks able to convert

complex, nonlinear statistical relationships between high-dimensional data items into simple

geometric relationships on a low-dimensional display [49].

3.1. Data Pre-Processing

In order to implement the SOM algorithm, data pre-processing is required. The data that are

loaded in our system are hourly values which means that they contain a timestamp and the

hourly consumption. A depiction of how these data are stored in the database can viewed in

Figure 21. This format however is not the desired one because although it can be clustered by

SOM the clusters will not make any sense. The data need to be reorganized in a format that will

be more logical and the clusters created afterwards could be easily used.

Figure 21 - pgAdmin Active Loads View

As a result, the first pre-processing step in SOM’s implementation is to reorganize the data in

the appropriate format. In order to do that we make use of some real helpful data structures and

analysis libraries such as pandas, minisom [49], sklearn preprocessing, and sqlalchemy. The

first step as it shown in Table 8 is to retrieve the data from the database with the use of

45

sqlalchemy. Through the sqlalchemy we are given the ability to choose the data we want and

set specific rules. For instance, as it shown in Table 8 we choose to retrieve the active power

data where the consumption field is not null. In this way we get all the required data avoiding

to have information that are incomplete (e.g. date without consumption). The next thing that

should be done as soon as we retrieve the data required is to put them in pandas dataset with

the required format. In order to do that we need to create a unique day that will contain 24

empty slots, one for each of the hourly consumptions of that day. As it is shown in Table 8 by

running a for loop we are able to insert the hourly consumptions to each of the empty slots.

Table 7 – SOM Data Preprocessing

'''
Created on 26 Μαρ 2018

@author: d.mele
'''

import numpy as np
import pandas as pd
from minisom import MiniSom
from sqlalchemy import create_engine
from sklearn.preprocessing import MinMaxScaler
from Database.Truncate import truncate_som_ap, truncate_som_day_ap

def som_active_power_day_clusters():

 # Truncate the data that exist in SOM from previous runs
 truncate_som_ap()
 truncate_som_day_ap()

 # Importing the dataset
 engine =
create_engine('postgresql://postgres:123456q!@localhost:5432/postgres')
 dataset = pd.read_sql_query("SELECT date_time, active_power_kwh FROM
active_power WHERE active_power_kwh IS NOT NULL", con=engine)
 #dataset["date_time"] = dataset["date_time"].astype(np.int64)

 print("--
----------------------")
 print ("Getting Data ready for training and clustering...")

 # We first need to create a dataset that has a unique date and 24 empty
slots for each date in order to enter the consumptions of that date
 date_clusters = pd.DataFrame(columns=['date', 'Hour 0', 'Hour 1', 'Hour
2', 'Hour 3', 'Hour 4', 'Hour 5', 'Hour 6', 'Hour 7',
 'Hour 8', 'Hour 9', 'Hour 10',
'Hour 11', 'Hour 12', 'Hour 13', 'Hour 14', 'Hour 15',
 'Hour 16','Hour 17','Hour
18','Hour 19','Hour 20','Hour 21','Hour 22','Hour 23'])
 date_clusters['date'] = dataset['date_time'].dt.date.unique()

 data_check = pd.DataFrame(dataset['date_time'].dt.date)
 for i in range(len(date_clusters)):
 get_index = data_check.index[data_check['date_time'] ==
date_clusters['date'][i]].tolist()

 for j in get_index:

46

 hour = int(dataset['date_time'].loc[j].hour)
 if hour == int(0):
 date_clusters['Hour 0'][i] =
dataset['active_power_kwh'][j]
 elif hour == int(1):
 date_clusters['Hour 1'][i] =
dataset['active_power_kwh'][j]
 elif hour == int(2):
 date_clusters['Hour 2'][i] =
dataset['active_power_kwh'][j]
 elif hour == int(3):
 date_clusters['Hour 3'][i] =
dataset['active_power_kwh'][j]
 elif hour == int(4):
 date_clusters['Hour 4'][i] =
dataset['active_power_kwh'][j]
 elif hour == int(5):
 date_clusters['Hour 5'][i] =
dataset['active_power_kwh'][j]
 elif hour == int(6):
 date_clusters['Hour 6'][i] =
dataset['active_power_kwh'][j]
 elif hour == int(7):
 date_clusters['Hour 7'][i] =
dataset['active_power_kwh'][j]
 elif hour == int(8):
 date_clusters['Hour 8'][i] =
dataset['active_power_kwh'][j]
 elif hour == int(9):
 date_clusters['Hour 9'][i] =
dataset['active_power_kwh'][j]
 elif hour == int(10):
 date_clusters['Hour 10'][i] =
dataset['active_power_kwh'][j]
 elif hour == int(11):
 date_clusters['Hour 11'][i] =
dataset['active_power_kwh'][j]
 elif hour == int(12):
 date_clusters['Hour 12'][i] =
dataset['active_power_kwh'][j]
 elif hour == int(13):
 date_clusters['Hour 13'][i] =
dataset['active_power_kwh'][j]
 elif hour == int(14):
 date_clusters['Hour 14'][i] =
dataset['active_power_kwh'][j]
 elif hour == int(15):
 date_clusters['Hour 15'][i] =
dataset['active_power_kwh'][j]
 elif hour == int(16):
 date_clusters['Hour 16'][i] =
dataset['active_power_kwh'][j]
 elif hour == int(17):
 date_clusters['Hour 17'][i] =
dataset['active_power_kwh'][j]
 elif hour == int(18):
 date_clusters['Hour 18'][i] =
dataset['active_power_kwh'][j]

47

 elif hour == int(19):
 date_clusters['Hour 19'][i] =
dataset['active_power_kwh'][j]
 elif hour == int(20):
 date_clusters['Hour 20'][i] =
dataset['active_power_kwh'][j]
 elif hour == int(21):
 date_clusters['Hour 21'][i] =
dataset['active_power_kwh'][j]
 elif hour == int(22):
 date_clusters['Hour 22'][i] =
dataset['active_power_kwh'][j]
 elif hour == int(23):
 date_clusters['Hour 23'][i] =
dataset['active_power_kwh'][j]

As soon as all data are reorganized we will be able to see in the console that the pandas dataset

is filled with hourly consumptions in the corresponding days. Table 9 shows the format of the

pandas dataset after the pre-processing is completed.

Table 8 - Pandas Dataset after the preprocessing is complete. It can now be used to cluster the dates

with SOM based on their daily consumptions

 date Hour 0 Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 Hour
6 \
0 1262304000000000000 73.6 75 74 75 75.2 75
76.2
1 1262390400000000000 74.8 78.4 76.8 76.6 74.8 76
73.4
2 1262476800000000000 74.4 75.6 74.4 70.8 71.4 70
69.4
3 1262563200000000000 81.2 79.2 78.4 76.2 77.2 75.2
74.6
4 1262649600000000000 84.6 85 84.6 85 85.4 83.2
83.2
5 1262736000000000000 112.6 114.2 107.2 112.8 108.8 108
99.2
6 1262822400000000000 104.6 105.2 99 100.2 95.8 98.2
95
7 1262908800000000000 111 110 108 107.8 106.4 106
104.8
8 1262995200000000000 102.8 103 96.4 100.8 99.6 102.6
98.8
9 1263081600000000000 94.2 95.8 94.8 95.2 95 94.6
93.4
10 1263168000000000000 157.8 160.2 155.6 170.4 154.8 147.4
162.8
11 1263254400000000000 207.6 195 196.4 195 184.2 186.2
193.4
12 1263340800000000000 184.2 180.4 172 189 190.2 178.2
177.8
13 1263427200000000000 192.6 185.8 192.4 180 168 172.6
176.4
14 1263513600000000000 167.2 164.2 168 159 165 169
168.4
15 1263600000000000000 128 122.6 118.8 113.4 115.2 109.2
112.2

48

16 1263686400000000000 111.6 113.6 111.2 113.6 106.8 110.2
107.6
17 1263772800000000000 152 146.8 157 145.4 136 145
156.2
18 1263859200000000000 209.4 203.4 194.8 196.2 197 197
194.8
19 1263945600000000000 195 194.8 197.8 200.8 191.2 211.8
212
20 1264032000000000000 211.4 214.6 219 222.8 200.4 205.4
206.8
21 1264118400000000000 174.8 170.6 167 160.2 173 172.4
168.6
22 1264204800000000000 147.4 143.2 129.4 125.2 121.6 120.4
117.8
23 1264291200000000000 143.4 139.8 143.4 136 132.4 133
128.6
24 1264377600000000000 174.6 172.4 185.6 174.4 179.8 187.4
187
25 1264464000000000000 231.2 230 222.4 205.6 225.2 221.4
219.4
26 1264550400000000000 222.6 205.2 198.8 205.4 208 203.6
201
27 1264636800000000000 195.2 186.8 187.4 184.4 182.4 195.6
184.4
28 1264723200000000000 162.8 160.2 157.2 157.2 170.2 171.2
155.8
29 1264809600000000000 138.2 143 140.2 132.6 128.2 126.6
123.6
...
...
2951 1517270400000000000 120.4 117.2 117.2 113.4 109.4 103.2
101.4
2952 1517356800000000000 135.6 146.2 134.4 133 125.4 137
133.2
2953 1517443200000000000 132.23 122.8 120.2 117.6 116.8 124.8
119.8
2954 1517529600000000000 112.6 109.6 110.2 106 107.2 112.8
115.2
2955 1517616000000000000 95.6 93.4 88.6 87.4 88.2 87.2
86
2956 1517702400000000000 90.2 77.4 80.2 82.2 80.4 78.2
76.2
2957 1517788800000000000 121.2 122.6 111 103.8 96.8 112.2
107.2
2958 1517875200000000000 120.6 118.6 114.4 112.2 112.8 125
119
2959 1517961600000000000 120.8 119.6 101.8 103.4 102 120
120.2
2960 1518048000000000000 99 99.8 98.4 91.6 90.4 104.8
112.6
2961 1518134400000000000 86.6 94.2 95.2 96.8 98 104.6
110.2
2962 1518220800000000000 89.6 89.2 84.4 79.8 80.8 78.4
78
2963 1518307200000000000 85.6 88.8 86.4 80.6 80.6 77
81
2964 1518393600000000000 88.6 91 89.4 92 88.8 103.8
100.4

49

2965 1518480000000000000 112.8 116.2 116.6 113.8 120 125
129.6
2966 1518566400000000000 104.6 101.8 109.2 108.8 103.2 107.8
115.2
2967 1518652800000000000 114.4 110.4 115.8 110.4 112 117
123.2
2968 1518739200000000000 97.4 100.2 98.4 88.6 85.4 97.6
105
2969 1518825600000000000 89.4 85.2 87.4 81.2 77.8 76.8
75
2970 1518912000000000000 93 91.6 92.2 88.2 90 92
88
2971 1518998400000000000 88.2 83.4 88 83.6 75.6 78.4
76.8
2972 1519084800000000000 101.2 95.6 102.4 96.4 92.6 105.6
112.4
2973 1519171200000000000 111.4 107.4 108 101 99.8 103.8
113
2974 1519257600000000000 114.8 111.8 111 105.2 99.6 98.8
105
2975 1519344000000000000 114 106.6 102.6 95.8 86 89.6
94.6
2976 1519430400000000000 82.6 78.4 78 78.6 77.6 75.4
73.4
2977 1519516800000000000 78.2 78.2 82.6 78.2 76.8 76.6
76.6
2978 1519603200000000000 93.8 88.8 88.4 82.2 82.2 95.4
100.4
2979 1519689600000000000 104.2 107.4 103.2 99.4 99 108
103
2980 1519776000000000000 107 104 97.4 98.6 90.8 103.4
111.8

 Hour 7 Hour 8 ... Hour 14 Hour 15 Hour 16 Hour 17 Hour 18 Hour
19 \
0 71.8 70 ... 56.8 56.2 55.2 66.8 77.6
84.4
1 70.4 66.4 ... 59.2 59.8 59.8 66.2 76.8
82.8
2 66.4 63.8 ... 59.4 58.6 59.8 72 85.4
91.2
3 74.4 80.8 ... 112.4 83.4 88 92.2 100.8
105.8
4 83.8 92.6 ... 114 100.8 104.8 108.4 120.6
123.8
5 96.4 90 ... 80.4 79.4 81 96.6 108.6
113
6 97.8 111.2 ... 109 107.4 104.4 113.4 128.2
126.4
7 108.6 121 ... 175.2 157.4 147.2 142.2 143.8
134.6
8 97.6 92.2 ... 87.4 90.4 89.8 101.4 111.2
113.6
9 92.2 87.4 ... 88.6 88.6 91.2 102.6 115.4
123.8
10 168.8 211.6 ... 399 396.8 399 399.6 344
297
11 200 249 ... 450.6 425.2 409.8 366.4 366.4
362

50

12 185.2 223.4 ... 421.2 407 366.2 384.4 382
362.8
13 183 232.2 ... 415.2 381.8 350.6 338.2 324.8
296.6
14 185 226.2 ... 345 303 273 279.8 290.2
263.2
15 106.8 108 ... 121.8 100.4 112.6 129 154.8
140.8
16 107.4 105.2 ... 115.2 98.6 98.6 120.2 136.6
154
17 151.8 221.4 ... 456 427 423 399.8 392.6
361
18 201 258.4 ... 452.8 421.2 398.8 411.6 394
361.4
19 224.6 256.4 ... 449.8 416.4 405.6 397.2 396.4
405.6
20 219.4 258.6 ... 371.6 320 300.2 338.6 331.8
304.6
21 181.2 216.6 ... 402.6 356 347 314.2 323
303.2
22 109 115.4 ... 148.2 124.8 127.6 148.4 172.2
170.6
23 124 121.8 ... 153.4 149 148.2 163.8 193.6
185
24 194.4 267.2 ... 495 434.2 413.6 398.2 392.4
363.8
25 225.8 276.8 ... 496.6 464.8 440.8 426 425.6
386.4
26 207 256.4 ... 453.8 423.8 407 382.6 357.4
343.8
27 199.6 248 ... 392.2 317.4 289 287.8 319.2
309.8
28 169.6 201.4 ... 236.8 229.2 236.4 230.4 256.4
239.6
29 119 119.2 ... 132.8 113.2 107.6 134.4 160.4
168.2
...
...
2951 115 130.8 ... 151 120.2 119.4 123.4 150.8
168.4
2952 162 224.6 ... 319.2 261.8 242.2 229.4 225.6
230.8
2953 148.4 179.4 ... 306.8 245 206.4 187.6 194.4
197.6
2954 135.2 179 ... 343.8 282.4 225.8 170 182.6
181.4
2955 83.8 79.8 ... 139.6 105.4 88.2 91.4 109.4
116
2956 75.8 73.6 ... 112.8 92.6 94.8 102.4 128.8
127.8
2957 140 183.2 ... 269.6 249.6 209.8 184 199.2
195.2
2958 152.2 193.6 ... 240.2 213.6 187 167.4 191.8
196.8
2959 165.4 192.6 ... 251.8 222 183.4 142.2 141
161.4
2960 143.4 179.4 ... 240 200.8 186.2 163.2 187
201.2

51

2961 130.4 170 ... 234.6 162 148.4 132.8 120.6
129.2
2962 78.4 76.4 ... 141.6 115 105.2 114.2 120.4
129.2
2963 81.8 80.2 ... 122.4 96.6 95 91.4 112.2
115.2
2964 136 169.6 ... 241.2 185.2 170.6 155 165.6
168.4
2965 165 194.6 ... 306.2 226.8 193.2 164 166.8
181.4
2966 158.8 177.2 ... 286 224.4 196 164 181.8
198
2967 145.2 195 ... 310.6 226.6 187 169.8 165.6
155
2968 140.8 162.4 ... 271.6 222.8 181.8 159.6 148.8
137.8
2969 73.2 77.4 ... 123.4 93.6 89.2 90.4 107.4
112.8
2970 84.6 86.4 ... 101.6 76.2 71.6 85.4 93.6
92
2971 91.6 105.2 ... 124 96.2 102.2 100.6 103.2
115.4
2972 142.4 179.2 ... 292.8 232.8 193.2 165.2 151.8
166.8
2973 148.8 175.2 ... 272.4 201.6 182.6 159.4 159.8
174.2
2974 137.6 161.6 ... 216.2 184 170.4 138.8 143.4
167.4
2975 124.4 156.8 ... 237.2 184.4 149.8 131.2 133.6
143
2976 75.4 76.8 ... 130.2 94 90.4 93.6 96.6
103.4
2977 71.8 73.8 ... 115.4 92.8 89.6 108.2 116
117.8
2978 138 165.8 ... 256 183.8 177.8 181 168
191.4
2979 147.2 189 ... 299 245.2 218.2 192 171
184.6
2980 143.8 173.6 ... 260 212 177.6 153.6 140.4
159.2

 Hour 20 Hour 21 Hour 22 Hour 23
0 76.8 74.6 76.6 73
1 74.8 75.2 75.6 78.4
2 80.2 79 79.6 78.2
3 90.2 88.2 83.8 84.8
4 117.2 114.6 116.8 114.2
5 104.2 103.8 101.8 103.8
6 112.4 110 114.4 111.2
7 106 99.4 97 98.8
8 98.4 100.8 93.6 93.8
9 121.4 124.2 133.2 145.4
10 222.6 209.2 205 209
11 268.8 204.6 188.6 191.6
12 276.4 223.6 202.2 199.4
13 211.4 185.8 178.8 176.8
14 174.2 136.2 135.8 130.8
15 124.2 123.6 121.2 119
16 129.2 137 137.2 147.2

52

17 270.8 236.4 235.4 225.4
18 278.4 239.8 220.6 205.6
19 278.6 233.6 221.4 214
20 232 201 178 165.8
21 208.2 164.2 152.8 147.8
22 157.2 157.4 153.2 151
23 172 177.2 173.8 178.8
24 282.4 250.8 238 229.6
25 285.4 231.6 227.8 230.4
26 257.4 221.8 213.4 198.4
27 257.2 200 189 181.6
28 184.4 148.2 144.2 142.4
29 152.4 143 146.8 135.6
...
2951 146.4 140.2 139 131.6
2952 200.4 148.2 139 145.4
2953 184.2 137.4 118.2 113.6
2954 154.6 97 106 97.4
2955 89.2 94.6 93 92
2956 105 112.2 115 117.2
2957 154.4 120.4 125 122.8
2958 161.6 121.2 132.8 125.8
2959 138 103.6 96.2 100
2960 168.4 118 98.2 89.6
2961 117 96.4 94.8 95.2
2962 92.8 92.2 89 89.2
2963 91.2 89.4 93 88.2
2964 158.6 120 121 114.4
2965 167 125 123 121
2966 172.8 143 121.4 121.2
2967 131.2 110.8 96 99.4
2968 129.8 88.4 91 92.2
2969 95.4 93.4 91 92.6
2970 80.2 75.6 82.6 85
2971 98.6 93.8 95.4 95
2972 154.6 128.4 124.8 119.2
2973 147.2 118.2 114.2 118.8
2974 158.4 126.2 118.2 117
2975 132 88.6 80.8 89.2
2976 85.2 84.6 82 75.8
2977 97.4 99.8 98.2 102
2978 164.8 119.6 117 109.4
2979 163 123.4 118 114.8
2980 158.2 120.6 112 108.8

Furthermore, besides the data reshape, in Table 9 we are able to see that the date column

does not show dates but epochs. This happens not because of a mistake but rather of

the need to convert dates into integers so that they can be read by the SOM algorithm.

This change is accomplished with the use of the code in Table 10:

Table 9 - Code that converts date to epoch in order to be used in SOM algorithm

 date_clusters['date'] = pd.to_datetime(date_clusters['date'])
 date_clusters['date'] = date_clusters['date'].astype(np.int64)
 print(date_clusters)

3.2. Implementation of Self Organizing Map

53

Having successfully reshaped that data in a logical format we are able to progress to the SOM

implementation. The SOM implementation is based on the minisom python library which is a

minimalistic and Numpy based implementation of the Self Organizing Maps [49]. The first

thing that needs to be done is to split the data into the data that will be clustered and the data on

which the clusters are to be created.

Table 10 - Creation of two numpy data arrays X and y. The X numpy array holds the data that will be

clustered while the y numpy array holds the data based on which the clustering of X will take place

 X = date_clusters.iloc[:, 0:25].values

 #Feature Scaling
 sc = MinMaxScaler(feature_range= (0,1))
 X = sc.fit_transform(X)
 print(X)

As soon as this task is complete we have to specify the size of the SOM which in turn determines

the accuracy of the clusters. By reducing or increasing the size we can define a larger or a

smaller number of clusters. The actual question is not how many clusters can the SOM

algorithm produce but rather how many clusters are really needed. The answer to this questions

can be given relatively easy if we know the functionality of the building. For instance, the use

profile of a home is quite different from the use profile of a factory of a university. Therefore,

crucial information such as the aforementioned should be taken under consideration. In our

case, having data from several past years, we are able to observe repeated patterns of

consumption and therefore comprehend the functionality of the building we want to create its

use profile. After carrying out a small research based on past loads and having tested a variety

of clusters we came to the conclusion that for the Technological Education Institute facilities

in Psachna Euboeas the required number of clusters sums up to 4.

Having found the required number of clusters, we are able to start the implementation of the

SOM algorithm.

Table 11 – Initialization of the SOM algorithm with a 2x2 matrix

 x = 2
 y = 2
 # Training the SOM
 som = MiniSom(x = x, y = y, input_len = 25, sigma=1.0,
learning_rate=0.5) # initialization of a 2x2 SOM
 som.random_weights_init(X)
 print("--
----------------------")
 print ("Training active power loads...")
 som.train_random(data = X, num_iteration = 100) # trains the SOM with
100 iterations
 print ("...ready!")
 #Showing the Clusters
 clusters = som.win_map(X)

 xx = x + 1
 yy = y + 1
 for z in range(xx):
 for w in range(yy):
 cluster = clusters[(z,w)]
 if cluster != []:
 cluster_norm = sc.inverse_transform(cluster)

54

 som_predataset = pd.DataFrame(cluster_norm)
 som_predataset['som_column'] = w
 cols = som_predataset.columns.tolist()
 som_predataset = som_predataset[[cols[-1]] + cols[:-1]]
 som_predataset['som_row'] = z
 cols = som_predataset.columns.tolist()
 som_predataset = som_predataset[[cols[-1]] + cols[:-1]]

 som_predataset.rename(columns={0:'date_active_power',
1:'hour_0', 2:'hour_1', 3:'hour_2',
 4:'hour_3', 5:'hour_4',
6:'hour_5', 7:'hour_6',
 8:'hour_7', 9:'hour_8',
10:'hour_9', 11:'hour_10',
 12:'hour_11', 13:'hour_12',
14:'hour_13', 15:'hour_14',
 16:'hour_15', 17:'hour_16',
18:'hour_17', 19:'hour_18',
 20:'hour_19', 21:'hour_20',
22:'hour_21', 23:'hour_22',
 24:'hour_23'}, inplace=True)

 som_predataset['date_active_power'] =
pd.to_datetime(som_predataset['date_active_power'])
 som_predataset['date_active_power'] =
som_predataset['date_active_power'].dt.round('1s')
 som_predataset['date_active_power'] =
pd.DataFrame(som_predataset['date_active_power'].dt.date)
 print(som_predataset)

SOM training starts as soon as we have specified the clusters and have run the SOM algorithm.

A few seconds later we are given print outs of pandas datasets as it shown in Table 13 in which

the reshaped data contain two more columns which are the som_row and the

som_column that act as the identifies of the cluster in which the dataset belongs.

Table 12 – Pandas Dataset that belongs to the cluster [0,0]

Training active power loads...
...ready!
 som_row som_column date_active_power hour_0 hour_1 hour_2
hour_3 \
0 0 0 2010-01-11 157.8 160.2 155.6
170.4
1 0 0 2010-01-12 207.6 195.0 196.4
195.0
2 0 0 2010-01-13 184.2 180.4 172.0
189.0
3 0 0 2010-01-14 192.6 185.8 192.4
180.0
4 0 0 2010-01-15 167.2 164.2 168.0
159.0
5 0 0 2010-01-18 152.0 146.8 157.0
145.4
6 0 0 2010-01-19 209.4 203.4 194.8
196.2

55

7 0 0 2010-01-20 195.0 194.8 197.8
200.8
8 0 0 2010-01-21 211.4 214.6 219.0
222.8
9 0 0 2010-01-22 174.8 170.6 167.0
160.2
10 0 0 2010-01-25 174.6 172.4 185.6
174.4
11 0 0 2010-01-26 231.2 230.0 222.4
205.6
12 0 0 2010-01-27 222.6 205.2 198.8
205.4
13 0 0 2010-01-28 195.2 186.8 187.4
184.4
14 0 0 2010-02-01 155.4 162.4 154.0
158.6
15 0 0 2010-02-02 176.0 170.2 169.0
164.0
16 0 0 2010-02-03 213.8 210.6 217.6
199.4
17 0 0 2010-02-05 164.4 164.0 167.6
165.6
18 0 0 2010-02-08 166.4 163.2 166.4
165.4
19 0 0 2010-02-09 195.0 187.0 183.4
175.6
20 0 0 2010-02-11 154.0 147.4 146.4
145.8
21 0 0 2010-02-12 160.6 154.8 150.6
154.8
22 0 0 2010-02-17 142.4 140.6 143.2
135.2
23 0 0 2010-02-23 150.2 145.0 140.4
144.0
24 0 0 2010-03-01 138.6 136.6 136.4
142.2
25 0 0 2010-03-08 157.2 153.2 160.0
152.0
26 0 0 2010-03-09 179.6 175.0 179.0
174.0
27 0 0 2010-03-10 173.0 163.6 153.6
149.2
28 0 0 2010-03-15 161.8 158.2 150.2
162.6
29 0 0 2010-03-16 200.0 196.2 185.6
192.0
..
...
570 0 0 2014-03-21 110.4 107.4 108.2
100.4
571 0 0 2014-03-26 106.6 111.4 106.0
100.8
572 0 0 2014-03-31 111.6 115.6 116.4
124.2
573 0 0 2014-04-08 98.8 95.8 98.4
100.6
574 0 0 2014-12-16 120.2 119.6 112.4
127.0

56

575 0 0 2014-12-17 124.4 126.8 116.2
108.8
576 0 0 2014-12-18 117.0 106.8 112.4
116.0
577 0 0 2015-01-07 138.0 136.6 138.4
138.8
578 0 0 2015-01-08 158.0 162.6 150.0
140.0
579 0 0 2015-01-13 152.0 151.6 151.2
162.0
580 0 0 2015-01-14 134.8 129.0 128.8
138.6
581 0 0 2015-01-15 134.8 132.8 125.6
143.2
582 0 0 2015-01-16 124.2 124.6 119.0
123.0
583 0 0 2015-01-19 119.0 112.4 105.8
120.8
584 0 0 2015-01-21 129.6 116.8 118.6
122.6
585 0 0 2015-01-27 132.4 132.4 129.0
134.0
586 0 0 2015-01-28 136.8 132.0 132.0
136.6
587 0 0 2015-01-29 134.2 126.0 127.4
130.2
588 0 0 2015-02-03 118.2 108.4 113.8
122.2
589 0 0 2015-02-04 144.8 127.4 119.0
117.2
590 0 0 2015-02-18 157.0 142.4 131.4
124.2
591 0 0 2015-02-19 125.0 126.2 125.4
123.6
592 0 0 2015-02-25 115.0 115.2 110.4
130.0
593 0 0 2015-12-15 156.0 152.8 143.8
135.2
594 0 0 2015-12-16 131.8 134.6 124.6
120.2
595 0 0 2016-01-19 126.6 129.8 126.4
128.2
596 0 0 2016-01-22 139.6 140.2 139.2
132.8
597 0 0 2016-01-25 135.2 137.8 137.0
132.8
598 0 0 2016-01-26 145.6 149.6 139.2
130.8
599 0 0 2016-01-27 150.2 133.0 129.8
133.0

 hour_4 hour_5 hour_6 ... hour_14 hour_15 hour_16 hour_17
\
0 154.8 147.4 162.8 ... 399.0 396.8 399.0 399.6
1 184.2 186.2 193.4 ... 450.6 425.2 409.8 366.4
2 190.2 178.2 177.8 ... 421.2 407.0 366.2 384.4
3 168.0 172.6 176.4 ... 415.2 381.8 350.6 338.2
4 165.0 169.0 168.4 ... 345.0 303.0 273.0 279.8
5 136.0 145.0 156.2 ... 456.0 427.0 423.0 399.8

57

6 197.0 197.0 194.8 ... 452.8 421.2 398.8 411.6
7 191.2 211.8 212.0 ... 449.8 416.4 405.6 397.2
8 200.4 205.4 206.8 ... 371.6 320.0 300.2 338.6
9 173.0 172.4 168.6 ... 402.6 356.0 347.0 314.2
10 179.8 187.4 187.0 ... 495.0 434.2 413.6 398.2
11 225.2 221.4 219.4 ... 496.6 464.8 440.8 426.0
12 208.0 203.6 201.0 ... 453.8 423.8 407.0 382.6
13 182.4 195.6 184.4 ... 392.2 317.4 289.0 287.8
14 145.6 158.0 160.4 ... 318.6 289.8 297.2 299.6
15 151.2 162.8 160.8 ... 429.8 370.2 334.2 318.2
16 184.2 192.6 186.8 ... 367.6 317.8 313.0 309.6
17 173.4 183.4 174.4 ... 294.2 259.8 251.8 253.8
18 153.4 163.8 165.0 ... 364.4 293.6 284.4 292.4
19 173.0 187.6 175.6 ... 322.4 277.8 278.0 283.6
20 136.2 144.0 150.0 ... 291.0 238.4 233.0 242.2
21 142.8 148.4 147.4 ... 279.2 243.8 214.8 210.6
22 123.6 123.0 126.2 ... 238.6 233.4 193.0 204.2
23 143.6 157.4 155.4 ... 283.8 244.0 242.2 242.4
24 135.6 139.2 147.0 ... 260.2 228.6 197.4 197.0
25 146.4 141.2 134.0 ... 335.6 309.4 296.4 281.2
26 191.0 176.2 167.8 ... 310.6 263.6 236.6 225.6
27 168.2 175.2 170.4 ... 351.4 309.6 288.4 276.2
28 154.2 159.2 155.8 ... 382.2 337.8 313.8 295.0
29 180.2 184.6 179.8 ... 436.2 354.6 335.8 309.8
..
570 105.2 119.6 113.2 ... 251.0 197.0 177.4 142.4
571 99.2 103.0 99.0 ... 267.0 229.2 212.0 170.4
572 109.8 119.0 134.2 ... 315.8 280.8 247.4 211.6
573 99.4 102.0 106.4 ... 247.6 212.8 185.8 137.0
574 125.4 121.4 109.8 ... 330.8 304.6 287.0 249.0
575 130.8 130.0 112.4 ... 272.8 252.6 241.2 215.2
576 123.4 120.6 109.2 ... 256.8 231.4 204.0 174.4
577 138.6 142.0 152.4 ... 330.4 301.0 284.2 259.0
578 133.2 159.6 166.6 ... 426.2 357.4 324.4 300.0
579 157.0 158.8 167.2 ... 495.4 457.2 398.2 332.6
580 137.6 146.2 137.4 ... 404.4 329.2 283.0 243.4
581 143.4 152.2 138.8 ... 341.4 285.2 240.4 213.8
582 136.4 132.0 118.8 ... 317.4 255.0 201.4 191.2
583 117.4 123.4 111.2 ... 342.6 298.8 275.0 276.6
584 109.6 115.2 107.4 ... 298.0 246.6 215.8 187.8
585 126.8 129.8 130.4 ... 369.2 324.6 276.2 259.8
586 131.6 134.6 123.8 ... 341.6 292.0 272.2 228.0
587 128.0 130.6 119.8 ... 296.0 231.0 207.6 190.6
588 115.0 118.8 119.4 ... 283.0 236.0 211.6 197.8
589 116.4 116.4 115.4 ... 321.6 271.8 225.6 201.0
590 122.4 137.6 149.6 ... 364.2 288.4 241.4 217.6
591 129.6 159.0 150.6 ... 330.8 264.4 219.4 183.0
592 118.2 135.6 123.2 ... 305.2 255.0 204.8 187.2
593 126.4 151.0 142.4 ... 293.6 275.4 259.2 236.4
594 122.0 156.4 152.8 ... 323.0 296.2 285.2 251.8
595 132.2 150.4 151.0 ... 328.0 281.4 258.2 226.0
596 130.6 153.2 146.2 ... 321.0 277.4 253.4 245.2
597 129.2 159.8 150.4 ... 403.4 349.2 308.8 268.2
598 131.6 171.4 159.0 ... 392.8 336.0 289.0 261.4
599 140.6 163.8 151.2 ... 343.2 300.0 248.2 215.4

 hour_18 hour_19 hour_20 hour_21 hour_22 hour_23
0 344.0 297.0 222.6 209.2 205.0 209.0
1 366.4 362.0 268.8 204.6 188.6 191.6

58

2 382.0 362.8 276.4 223.6 202.2 199.4
3 324.8 296.6 211.4 185.8 178.8 176.8
4 290.2 263.2 174.2 136.2 135.8 130.8
5 392.6 361.0 270.8 236.4 235.4 225.4
6 394.0 361.4 278.4 239.8 220.6 205.6
7 396.4 405.6 278.6 233.6 221.4 214.0
8 331.8 304.6 232.0 201.0 178.0 165.8
9 323.0 303.2 208.2 164.2 152.8 147.8
10 392.4 363.8 282.4 250.8 238.0 229.6
11 425.6 386.4 285.4 231.6 227.8 230.4
12 357.4 343.8 257.4 221.8 213.4 198.4
13 319.2 309.8 257.2 200.0 189.0 181.6
14 321.4 322.2 270.8 190.4 178.4 179.4
15 353.0 363.8 313.8 225.8 215.2 207.6
16 346.2 362.8 289.0 228.0 216.0 226.0
17 275.6 281.8 222.8 176.8 147.2 140.8
18 321.2 325.2 263.2 200.2 204.8 205.8
19 310.6 297.8 258.4 193.4 174.0 174.2
20 272.0 277.8 246.0 180.6 157.4 155.4
21 238.0 222.2 185.6 138.0 126.8 114.6
22 207.8 219.2 179.8 144.6 127.2 123.2
23 257.0 262.6 189.8 152.6 142.6 148.0
24 210.8 217.2 183.6 151.2 149.0 152.4
25 292.4 295.8 226.8 180.4 187.2 188.0
26 244.8 260.2 193.8 175.0 181.4 181.4
27 264.8 261.4 209.6 181.0 173.0 162.4
28 300.0 301.6 237.4 201.6 200.2 204.2
29 322.4 329.6 245.4 194.8 187.0 188.4
..
570 146.6 159.4 116.2 82.2 86.2 81.4
571 173.0 195.0 162.0 136.4 128.0 124.8
572 203.0 192.6 158.0 141.2 139.8 147.0
573 135.4 149.0 118.2 99.6 101.2 104.0
574 233.6 221.6 179.0 147.4 141.0 134.2
575 212.4 210.6 167.4 156.6 146.4 136.0
576 188.8 197.4 162.0 145.0 125.2 112.6
577 236.0 239.8 196.2 188.0 186.2 166.6
578 297.2 298.0 237.4 203.8 193.4 175.4
579 309.0 277.6 205.0 168.4 160.2 151.6
580 248.2 261.2 215.0 178.2 153.0 145.2
581 233.6 245.8 206.2 181.4 155.0 142.2
582 197.4 208.4 164.2 138.2 132.0 122.6
583 273.6 283.6 226.2 187.2 173.8 168.2
584 224.0 262.8 209.0 162.6 153.6 138.4
585 271.8 282.2 228.2 183.8 168.8 155.0
586 239.0 250.4 199.4 177.4 161.2 150.4
587 190.0 200.2 161.4 137.6 131.0 125.4
588 201.6 196.2 163.4 144.8 147.4 149.8
589 209.0 243.4 200.8 148.4 139.4 136.0
590 209.0 218.8 165.4 132.2 119.6 116.8
591 193.4 215.2 153.6 135.0 125.0 112.0
592 183.6 197.6 140.6 112.0 109.6 95.8
593 238.0 218.2 176.0 153.2 135.0 133.2
594 244.8 233.2 182.2 159.6 142.2 133.6
595 233.0 237.2 198.8 169.2 168.8 149.8
596 209.8 218.2 173.8 145.2 121.0 115.4
597 254.8 265.2 204.8 190.2 162.4 159.2
598 235.4 256.8 206.0 168.6 159.6 158.4
599 216.4 228.2 183.2 148.0 132.6 120.2

59

[600 rows x 27 columns]

As soon as a pandas dataset is displayed in the console it is also automatically inserted in the

database. The insertion is completed with the use of the sqlalchemy library through which the

database insertion is performed instantly. The command with which this action is performed

is displayed in Table 14.

Table 13 - SQLAlchemy Insertion Command for reshaped data

 som_predataset.to_sql(name =
'som_active_power_day_clusters', con = engine, if_exists = 'append',
index =False)

3.3. Recreation of the Initial data to the created clusters

After the insertion of the modified data in the database we should also import the data in their

initial state in order to be ready to be used by the next algorithm which predicts future loads.

To make that possible we created a for loop which based on the previous matrix where we have

all the reshaped data it performs an index search to both the initial values and the reshaped one

and starts to create a new pandas dataset where it will contain all the initial values with two

additional columns. The additional columns are again the som_row and the som_column that

act as the clusters identifies.

Table 14 - Process performed in order to link the intial data with the created clusters

 # Inserting SOM Clusters to database
 print("--
----------------------------------")
 print ("Inserting SOM Clusters to database...")
 print(" ")
 som_dataset = pd.DataFrame(columns=['som_row',
'som_column', 'date_time', 'som_active_power_kwh'])

 for n in range(len(som_predataset)):
 get_index = data_check.index[data_check['date_time']
== som_predataset['date_active_power'][n]].tolist()
 k = 0
 for m in get_index:
 som_dataset.at[k, 'som_row'] =
int(som_predataset.at[n, 'som_row'])
 som_dataset.at[k, 'som_column'] =
int(som_predataset.at[n, 'som_column'])
 som_dataset.at[k, 'date_time'] = dataset.at[m,
'date_time']
 som_dataset.at[k, 'som_active_power_kwh'] =
int(dataset.at[m, 'active_power_kwh'])
 k= k + 1
 print(som_dataset)

60

For each loop that will be completed a pandas dataset will be printed and will be automatically

inserted into the database again using the sqlalchemy library for instant import. The command

used to insert the new pandas set into the database is depicted in Table

Table 15 - SQLAlchemy Insertion Command for intial data and the clusters that they now belong

 som_dataset.to_sql(name = 'som_active_power', con =
engine, if_exists = 'append', index =False)

 print("")
 print("All active loads data were successfully inserted into the
database")
 print("--
----------------------")
 print("")

This is where the SOM execution ends. Τhe time required for the SOM implementation to

reshape approximately 71544 data, cluster them and then insert into the created clusters the

initial data is approximately 4 minutes. The data of the SOM clusters are presented in Divinus

website which will be shown in Chapter 5. The same process is followed to cluster the reactive

power data.

61

4. Forecasting Future Electricity User Profiles

Short Term Load Forecasting (STLF) is a very important aspect in the formulation of economic,

reliable, and secure operating strategies for the power system. To perform STLF it is usually

required to have a lot of past data based on which our forecast mechanism will be trained and

tested. In the forecast that is performed by Divinus program we used a different approach. We

are not interested in using as much past data as possible rather than using past data that are

qualitatively close to each other in the sense that they present relative common consumption.

We achieve to retrieve the required qualitatively closeness by retrieving the clusters that were

implemented with the use of SOM algorithm.

Furthermore, Divinus forecasting is a three step process. The first stage of this process is to

retrieve all the required past data needed. The second stage is to use these data for training and

testing of the prediction algorithm and the final stage is to perform the forecasting of the days

that we want to predict.

4.1. First Stage of the forecasting process

The first thing that is set to run in the prediction code is the SOM algorithm. We have set the

SOM algorithm to always be triggered by the forecast prediction as is it depicted in Table 16.

This happens because the implementation of the forecasting process heavily relies on SOM

clusters and cannot happen without them.

Table 16 - SOM algorithm trigged to run by the Forecasting Code

'''
Created on 29 Μαρ 2018

@author: d.mele
'''

Importing the libraries
import calendar
import threading
import pandas as pd
from sqlalchemy import create_engine
from SOM.SOM_Active_Load import som_active_power_day_clusters
from Database.Update import update_som_KNeighbors_forecasted_ap

def SOM_KNeighbors_forecasting_ap():

 som_active_power_day_clusters() #We trigger the function that contains
the SOM implementation

As soon as all the clusters have been created and the data are inserted to all or some of the

clusters we retrieve the data located in Divinus database with the use of the sqlachemy library.

When all the data are retrieve we perform two checks to make sure that both data for forecast

and data on which the forecast will rely on exist. If one of the required datasets does not exist

than the forecasting process will be finalized here.

Table 17 - Checking the required dataset to make sure that all the required data exist

 # Importing the Dataset
 engine =
create_engine('postgresql://postgres:123456q!@localhost:5432/postgres')

62

 dataset = pd.read_sql_query("SELECT som_active_power_kwh, som_row,
som_column, date_time FROM som_active_power WHERE som_active_power_kwh IS
NOT NULL", con=engine)

 som_KNeighbors_ap_dataset = pd.read_sql_query("SELECT
som_KNeighbors_forecasted_active_power_kwh, date_time FROM
som_KNeighbors_forecasted_active_power WHERE
som_KNeighbors_forecasted_active_power_kwh IS NULL", con=engine)
 som_KNeighbors_ap_dataset =
som_KNeighbors_ap_dataset.sort_values(['date_time']).reset_index(drop=Tru
e)

 # Fixing the date to be used for the update command
 date_time =
pd.to_datetime(som_KNeighbors_ap_dataset['date_time']).sort_values().rese
t_index(drop=True)

 if som_KNeighbors_ap_dataset.empty:
 print("--
--------------------------")
 print ("Training active power loads with KNeighbors
Algorithm...")
 print("There are no new data to perform forecasting")
 print("--
--------------------------")

 elif dataset.empty:

 print("--
--------------------------")
 print ("Training active power loads with KNeighbors
Algorithm...")
 print("There are no no data to forecast")
 print("--
--------------------------")

Having checked that all the data exist, Divinus enters the first stage of the forecasting process.

In this stage the action that Divinus is required to do is to find out whether the day that it is

going to predict exists in past data. To put it in simple terms, Divinus tries to match this date of

the year 2018 with the same day if it exists of the past years. This action is performed for a very

specific reason. In case this day is not a fixed holiday or a movable holiday we are going to use

the same past days including all the other days that are stored in the same cluster that they

belong. On the other hand if this day is a holiday fixed or not we are going to make use of the

same day in the past years without including the other values contained in their cluster.

To make that happen and to retrieve the correct days from the past data we use a python library

called calendar. Through this library we are able to retrieve the year, the month, the day and the

hour from a timestamp. As a result, having all this valuable data in or hands we are able to

compare the data of day we want to forecast with past data and retrieve the corresponding dates

and the cluster where they belong as it shown in Table 18.

Table 18 – Checking data such as year, month, day, hour and retrieving past data based on these

criteria.

 else:

63

 dataset_year = dataset['date_time'].dt.year.unique()
 dataset_year_length = len(dataset_year)

 mean_test_error = pd.DataFrame([])
 error_check_dataset = pd.DataFrame([])

 for i in range(len(som_KNeighbors_ap_dataset)):

 som_KNeighbors_ap_dataset['date_time'] =
pd.to_datetime(som_KNeighbors_ap_dataset['date_time'])
 som_KNeighbors_ap_dataset['date_time'] =
som_KNeighbors_ap_dataset['date_time'].dt.round('1s')

 year =
int(som_KNeighbors_ap_dataset['date_time'].loc[i].year)
 month =
int(som_KNeighbors_ap_dataset['date_time'].loc[i].month)
 hour =
int(som_KNeighbors_ap_dataset['date_time'].loc[i].hour)

 print("--
------------------------------")
 print("")
 day_of_the_week_number =
(som_KNeighbors_ap_dataset['date_time'].loc[i].weekday())
 print("Day Number of the week: ", day_of_the_week_number)
 day_of_the_week_name =
(calendar.day_name[som_KNeighbors_ap_dataset['date_time'].loc[i].weekday(
)])
 print("Day of the week: ", day_of_the_week_name)
 number_of_the_week =
(som_KNeighbors_ap_dataset['date_time'].loc[i].week)
 print("Week Number: ", number_of_the_week)

 clusters_finder = []
 datasets_to_train = pd.DataFrame()
 print("--
------------------------------")

 for z in range(dataset_year_length + 1):
 clusters_finder =
dataset.loc[(dataset['date_time'].dt.year == year-z) &
(dataset['date_time'].dt.month == month) & (dataset['date_time'].dt.week
== number_of_the_week) & (dataset['date_time'].dt.weekday ==
day_of_the_week_number) & (dataset['date_time'].dt.hour == hour)]
 if not clusters_finder.empty :
 print(clusters_finder['date_time'])
 previous_year =
int(clusters_finder['date_time'].dt.year)
 print("Year from which we get the corresponding day:
", previous_year)

 yearly_day_of_the_week =
pd.to_datetime(clusters_finder['date_time'])
 yearly_day_number =
int(yearly_day_of_the_week.dt.weekday)
 print("Number of the Day of the week: ",
yearly_day_number)

64

 yearly_day_name =
yearly_day_of_the_week.dt.weekday_name
 print("Day of the week: ", yearly_day_name)
 yearly_week_number =
int(yearly_day_of_the_week.dt.week)
 print("Week Number: ", yearly_week_number)
 print("")
 row = int(clusters_finder['som_row'])
 column = int(clusters_finder['som_column'])

4.2. Second Stage of the forecasting process

Having retrieve the required past dates and the clusters in which they belong we are able to

enter the second stage of the prediction process. In this stage based on the cluster that the past

data belong we are able to retrieve all the data required in order to start training the algorithm

that makes the predictions and then test these prediction on test data.

An easy way to retrieve the clusters is by using a sql in which is specified the row and the

column of the clusters we want to retrieve.

sql = ("SELECT som_active_power_kwh, som_row, som_column, date_time FROM
som_active_power WHERE som_row = '{0}' AND som_column =
'{1}'".format(row, column))

Furthermore, besides the data of the clusters we retrieve we perform a modification on both the

cluster data and the data on which we want to perform the forecast. The modification is nothing

more than breaking the timestamp and creating separate columns containing the date, month,

day and hour time. This modification takes place because the algorithm has a better

performance if the data on which the forecasting is based are separately and not all combined

in a timestamp

Table 19 - Retrieving the data required for train and test and for the real forecast and performing the

modifications required

 sql = ("SELECT som_active_power_kwh, som_row, som_column, date_time
FROM som_active_power WHERE som_row = '{0}' AND som_column =
'{1}'".format(row, column))
 datasets_for_train = pd.read_sql_query(sql,
con=engine)
 datasets_for_train['year'] =
(datasets_for_train['date_time'].dt.year)
 datasets_for_train['month'] =
(datasets_for_train['date_time'].dt.month)
 datasets_for_train['day'] =
(datasets_for_train['date_time'].dt.weekday)
 datasets_for_train['hour'] =
(datasets_for_train['date_time'].dt.hour)
 datasets_to_train =
datasets_to_train.append(datasets_for_train)

 # Making the date an integer to be used for the prediction
 som_KNeighbors_ap_dataset['year'] =
(som_KNeighbors_ap_dataset['date_time'].dt.year)
 som_KNeighbors_ap_dataset['month'] =
(som_KNeighbors_ap_dataset['date_time'].dt.month)
 som_KNeighbors_ap_dataset['day'] =
(som_KNeighbors_ap_dataset['date_time'].dt.weekday)

65

 som_KNeighbors_ap_dataset['hour'] =
(som_KNeighbors_ap_dataset['date_time'].dt.hour)
 som_KNeighbors_ap_dataset =
som_KNeighbors_ap_dataset.sort_values(['date_time']).reset_index(drop=Tru
e)

As soon as this step is complete Divinus splits the data in two groups X and y. X is the

group that contains the data required for the prediction while y is the group that contains

the values that should be predicted.

Table 20 - Splitting the dataset in X and y

Splitting the variables to the desired columns
 X = datasets_to_train.iloc[:, 4:9].values
 y = datasets_to_train.iloc[:, 0].values

 # Splitting the Dataset into Training and Testing set
 from sklearn.model_selection import train_test_split
 preferable_test_size = (240/len(X))
 X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size = preferable_test_size, random_state = 0)

 # Fitting Forest Algorithm to the training set
 from sklearn.neighbors import KNeighborsRegressor
 regressor = KNeighborsRegressor(algorithm='auto',
leaf_size=30, metric='minkowski',
 metric_params=None, n_jobs=1,
n_neighbors=8, p=2, weights='distance')

 print("--
------------------------------")
 print ("Training active power loads with KNeighbors
Algorithm...")
 regressor.fit(X_train, y_train)
 print(regressor)
 print("")
 print("... Data Training Completed with KNeighbors
Algorithm")

As soon as the first split is over another one takes place. This one takes the already spitted

datasets and splits them even more. Now we have four datasets which are the a) X_train, b)

y_train, c) X_test and d) Y_test. Τhis new split is performed in order to create the groups from

which the algorithm will be trained and then tested. We use all the data of the cluster to train

the algorithm and 240 hourly values that practically are translated in 10 days to test its results.

The algorithm that is used is the k neighbors algorithm. The principle behind nearest neighbor

methods is to find a predefined number of training samples closest in distance to the new point,

and predict the label from these. The number of samples can be a user-defined constant (k-

nearest neighbor learning), or vary based on the local density of points (radius-based neighbor

learning). The distance can, in general, be any metric measure however standard Euclidean

distance is the most common choice. Neighbors-based methods are known as non-generalizing

machine learning methods, since they simply “remember” all of its training data (possibly

transformed into a fast indexing structure such as a Ball Tree or KD Tree.) [50].

66

Table 21 - Training through sklearn and testing its predictions

 # Splitting the Dataset into Training and Testing set
 from sklearn.model_selection import train_test_split
 preferable_test_size = (240/len(X))
 X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size = preferable_test_size, random_state = 0)

 # Fitting Forest Algorithm to the training set
 from sklearn.neighbors import KNeighborsRegressor
 regressor = KNeighborsRegressor(algorithm='auto',
leaf_size=30, metric='minkowski',
 metric_params=None, n_jobs=1,
n_neighbors=8, p=2, weights='distance')

 print("--
------------------------------")
 print ("Training active power loads with KNeighbors
Algorithm...")
 regressor.fit(X_train, y_train)
 print(regressor)
 print("")
 print("... Data Training Completed with KNeighbors
Algorithm")

 for j in range(len(X_test)):

 #Perform prediction on Test Data to check the mean
prediction error
 X_test_data = X_test[j]
 X_test_data = X_test_data.reshape(1,-1)

 y_pred = regressor.predict(X_test_data)

Having performed the algorithm training and having predicted 240 test values the question that

reasonably arises is what will happen if the test values are not close to the real ones.

The answer is that the forecast made on the test values acts as a control for the forecast. As

soon as we retrieve the predictions that are performed on the test data we use them in order to

calculate the mean error that will occur.

Table 22 - Calculation of the test data overall mean prediction error

 error_check = abs(100-((y_pred/y_test[j])*100))
 error_check_dataset =
error_check_dataset.append(pd.DataFrame({'error_check': error_check},
index=[j]), ignore_index=False)
 print(error_check_dataset)

 if len(error_check_dataset)>=240:
 overall_error = error_check_dataset['error_check'].sum()
 mean_prediction_error =
float(overall_error/len(error_check_dataset))
 print("")
 print("The mean prediction error is: ",
mean_prediction_error)

 mean_test_error =
mean_test_error.append(pd.DataFrame({'mean_test_error':
mean_prediction_error}, index=[j]), ignore_index=True)
 print(mean_test_error)

67

if mean_prediction_error < float(20):

 # Predicting the Active Load Results
 som_KNeighbors_ap = som_KNeighbors_ap_dataset.iloc[:,
2:6].values
 som_KNeighbors_ap = som_KNeighbors_ap[i]
 som_KNeighbors_ap = som_KNeighbors_ap.reshape(1,-1)

 som_KNeighbors_ap_pred =
float(regressor.predict(som_KNeighbors_ap))

 # Inserting the data into the database

update_som_KNeighbors_forecasted_ap(som_KNeighbors_ap_pred, date_time[i])
 print("Forecasting process completed and Data being
inserted into the database")
 print("--
----------------------------------")
 else:
 print("The mean prediction error was higher than the
limit. SOM Clusters are going to re-run")
 SOM_KNeighbors_forecasting_ap()

If the mean error is higher than a limit that is specified by the user (in our case the overall max

mean error is set to 20%) than all the process until this step is going to rerun. By saying that it

is going to rerun we mean that all the forecasting process will be reset and it will start over from

the creation of clusters so that the data to be reassigned and the forecast to rerun and retrieve

new clusters that will reduce the mean error. Therefore, it is obvious that the clusters directly

affect the outcome of the forecasting.

4.3. Final Stage of the forecasting process

If the control is successful than the forecasting process reaches in last stage which is the

forecasting of the real dates. For each one of the dates that will be forecasted this process will

start from the beginning. This means that for each one of the days that should be forecasted

Divinus will get their corresponding past days and the cluster that they belong to and rerun all

the aforementioned. Again, if the overall mean error that will occur will be higher than 20% the

clusters will be deleted and recreated. This process will be followed for each day that will be

forecasted. So far the Divinus mean forecast error is 12%.

Last but not least the forecast process has contains a timer. This timer is trigger the first time

that the programs runs and then it automatically activates itself based one the time that we have

set it. The same way is used to perfume the reactive load forecast.

Table 23 - The timer contained in Divinus Forecasting process

 seconds=1.0
 minutes=seconds*60
 hour=minutes*60
 day = (hour*24)*5
 threading.Timer(day, SOM_KNeighbors_forecasting_ap).start()

68

5. Divinus Website

Being able to perform data clustering and to forecast future loads, the only step that is left was

to display all these information somewhere that users would be able to visit and get informed.

For this step we choose to use the Django framework. Django is an open source high-level

Python Web framework that encourages rapid development and clean, pragmatic design. It was

built by experienced developers in order to take care much of the hassle of the Web

development [51]. Django was designed to:

1. Help developers take applications from concept to completion as quickly as possible.

2. Contain dozens of extras that developers can use to handle common Web development

tasks. Django takes care of user authentication, content administration, site maps, RSS

feeds, and many more tasks.

3. Take security seriously and to help developers avoid many common security mistakes,

such as SQL injection, cross-site scripting, cross-site request forgery and clickjacking.

Its user authentication system provides a secure way to manage user accounts and

passwords.

4. Be exceedingly scalable. Some of the busiest sites on the planet use Django’s ability to

quickly and flexibly scale to meet the heaviest traffic demands.

5. Be incredibly versatile. Companies, organizations and governments have used Django

to build all sorts of things — from content management systems to social networks to

scientific computing platforms [51].

Based on the aforementioned it was very easy for us to decide to cope with Django in designing

our tool. Having set the project as Django based we were able to writte all the required code

without worrying about how it will be transferred to the Internet or what modification we should

make. As soon as we had a functional code the thing that was left to do was to set this code in

Django in order to be viewable in the web.

5.1. Object-relational mapper

The first thing that was needed was to define our databases in Django. This was perfomed easily

through Django’s Model. A model is the single, definitive source of information about data. It

contains the essential fields and behaviors of the data that are stored. Generally, each model

maps to a single database table [52]. Our Model is shown in Table

Table 24 - Divinus Model.py file showing all the database information

This is an auto-generated Django model module.
You'll have to do the following manually to clean this up:
* Rearrange models' order
* Make sure each model has one field with primary_key=True
* Make sure each ForeignKey has `on_delete` set to the desired
behavior.
* Remove `managed = False` lines if you wish to allow Django to
create, modify, and delete the table
Feel free to rename the models, but don't rename db_table values or
field names.
from django.db import models

class ActivePower(models.Model):
 date_time = models.DateTimeField(primary_key=True)

69

 active_power_kwh = models.DecimalField(max_digits=10,
decimal_places=2, blank=True, null=True)

 class Meta:
 managed = False
 db_table = 'active_power'

class AuthGroup(models.Model):
 name = models.CharField(unique=True, max_length=80)

 class Meta:
 managed = False
 db_table = 'auth_group'

class AuthGroupPermissions(models.Model):
 group = models.ForeignKey(AuthGroup, models.DO_NOTHING)
 permission = models.ForeignKey('AuthPermission', models.DO_NOTHING)

 class Meta:
 managed = False
 db_table = 'auth_group_permissions'
 unique_together = (('group', 'permission'),)

class AuthPermission(models.Model):
 name = models.CharField(max_length=255)
 content_type = models.ForeignKey('DjangoContentType',
models.DO_NOTHING)
 codename = models.CharField(max_length=100)

 class Meta:
 managed = False
 db_table = 'auth_permission'
 unique_together = (('content_type', 'codename'),)

class AuthUser(models.Model):
 password = models.CharField(max_length=128)
 last_login = models.DateTimeField(blank=True, null=True)
 is_superuser = models.BooleanField()
 username = models.CharField(unique=True, max_length=150)
 first_name = models.CharField(max_length=30)
 last_name = models.CharField(max_length=150)
 email = models.CharField(max_length=254)
 is_staff = models.BooleanField()
 is_active = models.BooleanField()
 date_joined = models.DateTimeField()

 class Meta:
 managed = False
 db_table = 'auth_user'

class AuthUserGroups(models.Model):
 user = models.ForeignKey(AuthUser, models.DO_NOTHING)
 group = models.ForeignKey(AuthGroup, models.DO_NOTHING)

70

 class Meta:
 managed = False
 db_table = 'auth_user_groups'
 unique_together = (('user', 'group'),)

class AuthUserUserPermissions(models.Model):
 user = models.ForeignKey(AuthUser, models.DO_NOTHING)
 permission = models.ForeignKey(AuthPermission, models.DO_NOTHING)

 class Meta:
 managed = False
 db_table = 'auth_user_user_permissions'
 unique_together = (('user', 'permission'),)

class DjangoAdminLog(models.Model):
 action_time = models.DateTimeField()
 object_id = models.TextField(blank=True, null=True)
 object_repr = models.CharField(max_length=200)
 action_flag = models.SmallIntegerField()
 change_message = models.TextField()
 content_type = models.ForeignKey('DjangoContentType',
models.DO_NOTHING, blank=True, null=True)
 user = models.ForeignKey(AuthUser, models.DO_NOTHING)

 class Meta:
 managed = False
 db_table = 'django_admin_log'

class DjangoContentType(models.Model):
 app_label = models.CharField(max_length=100)
 model = models.CharField(max_length=100)

 class Meta:
 managed = False
 db_table = 'django_content_type'
 unique_together = (('app_label', 'model'),)

class DjangoMigrations(models.Model):
 app = models.CharField(max_length=255)
 name = models.CharField(max_length=255)
 applied = models.DateTimeField()

 class Meta:
 managed = False
 db_table = 'django_migrations'

class DjangoSession(models.Model):
 session_key = models.CharField(primary_key=True, max_length=40)
 session_data = models.TextField()
 expire_date = models.DateTimeField()

 class Meta:
 managed = False
 db_table = 'django_session'

71

class ReactivePower(models.Model):
 date_time = models.DateTimeField(primary_key=True)
 reactive_power_kvar = models.DecimalField(max_digits=10,
decimal_places=2, blank=True, null=True)

 class Meta:
 managed = False
 db_table = 'reactive_power'

class SomActivePower(models.Model):
 som_row = models.IntegerField()
 som_column = models.IntegerField()
 date_time = models.DateTimeField(primary_key=True)
 som_active_power_kwh = models.DecimalField(max_digits=10,
decimal_places=2, blank=True, null=True)

 class Meta:
 managed = False
 db_table = 'som_active_power'

class SomActivePowerDayClusters(models.Model):
 som_row = models.IntegerField()
 som_column = models.IntegerField()
 date_active_power = models.DateField(primary_key=True)
 hour_0 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_1 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_2 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_3 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_4 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_5 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_6 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_7 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_8 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_9 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_10 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_11 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_12 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_13 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_14 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_15 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_16 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_17 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_18 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_19 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_20 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_21 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_22 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_23 = models.DecimalField(max_digits=10, decimal_places=2)

 class Meta:
 managed = False
 db_table = 'som_active_power_day_clusters'

class SomKneighborsForecastedActivePower(models.Model):

72

 date_time = models.DateTimeField(primary_key=True)
 som_kneighbors_forecasted_active_power_kwh =
models.DecimalField(max_digits=10, decimal_places=2, blank=True,
null=True)

 class Meta:
 managed = False
 db_table = 'som_kneighbors_forecasted_active_power'

class SomKneighborsForecastedReactivePower(models.Model):
 date_time = models.DateTimeField(primary_key=True)
 som_kneighbors_forecasted_reactive_power_kvar =
models.DecimalField(max_digits=10, decimal_places=2, blank=True,
null=True)

 class Meta:
 managed = False
 db_table = 'som_kneighbors_forecasted_reactive_power'

class SomReactivePower(models.Model):
 som_row = models.IntegerField()
 som_column = models.IntegerField()
 date_time = models.DateTimeField(primary_key=True)
 som_reactive_power_kvar = models.DecimalField(max_digits=10,
decimal_places=2, blank=True, null=True)

 class Meta:
 managed = False
 db_table = 'som_reactive_power'

class SomReactivePowerDayClusters(models.Model):
 som_row = models.IntegerField()
 som_column = models.IntegerField()
 date_reactive_power = models.DateField(primary_key=True)
 hour_0 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_1 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_2 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_3 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_4 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_5 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_6 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_7 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_8 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_9 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_10 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_11 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_12 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_13 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_14 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_15 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_16 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_17 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_18 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_19 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_20 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_21 = models.DecimalField(max_digits=10, decimal_places=2)

73

 hour_22 = models.DecimalField(max_digits=10, decimal_places=2)
 hour_23 = models.DecimalField(max_digits=10, decimal_places=2)

 class Meta:
 managed = False
 db_table = 'som_reactive_power_day_clusters'

5.2. Template

Being a web framework, Django needs a convenient way to generate HTML dynamically. The

most common approach relies on templates. A template contains the static parts of the desired

HTML output as well as some special syntax describing how dynamic content will be inserted.

A Django project can be configured with one or several template engines (or even zero if no

templates are required). Django defines a standard API for loading and rendering templates

regardless of the backend. Loading consists of finding the template for a given identifier and

preprocessing it, usually compiling it to an in-memory representation. Rendering means

interpolating the template with context data and returning the resulting string. The Django

template language is Django’s own template system. Until Django 1.8 it was the only built-in

option available. It’s a good template library even though it’s fairly opinionated and sports a

few idiosyncrasies [53].

Our template [54] is built on HTML, CSS and Javascript. Through our model we pass the

required data to the python Views page which is the file that links the data that we want infuse

with the template.

Table 25 - Divinus Views.py file

'''
Created on 7 Μαρ 2018

@author: d.mele
'''

#import json
from django.shortcuts import render
from django.core import serializers
#from django.http import JsonResponse
#from django.shortcuts import loader
#from django.http import HttpResponse

from Core.models import ActivePower, ReactivePower
from Core.models import SomActivePower, SomReactivePower
from Core.models import SomKneighborsForecastedActivePower,
SomKneighborsForecastedReactivePower

Create your views here.

def index(request):
 Active_Power_queryset =
ActivePower.objects.exclude(active_power_kwh__isnull=True).order_by('date
_time')
 Active_Power_json = serializers.serialize('json',
Active_Power_queryset, fields=('active_power_kwh'))

 Limited_Active_Power_queryset =
ActivePower.objects.exclude(active_power_kwh__isnull=True).order_by('-
date_time')[:1000][::-1]

74

 Limited_Active_Power_json = serializers.serialize('json',
Limited_Active_Power_queryset, fields=('active_power_kwh'))

 Reactive_Power_queryset =
ReactivePower.objects.exclude(reactive_power_kvar__isnull=True)
 Reactive_Power_json = serializers.serialize('json',
Reactive_Power_queryset, fields=('reactive_power_kvar'))

 Limited_Reactive_Power_queryset =
ReactivePower.objects.exclude(reactive_power_kvar__isnull=True).order_by(
'-date_time')[:1000][::-1]
 Limited_Reactive_Power_json = serializers.serialize('json',
Limited_Reactive_Power_queryset, fields=('reactive_power_kvar'))

 SOM_KNeighbors_Forecasted_AP_queryset =
SomKneighborsForecastedActivePower.objects.all().order_by('date_time')
 SOM_KNeighbors_Forecasted_AP_json = serializers.serialize('json',
SOM_KNeighbors_Forecasted_AP_queryset,
fields=('som_kneighbors_forecasted_active_power_kwh'))

 SOM_KNeighbors_Forecasted_RP_queryset =
SomKneighborsForecastedReactivePower.objects.all().order_by('date_time')
 SOM_KNeighbors_Forecasted_RP_json = serializers.serialize('json',
SOM_KNeighbors_Forecasted_RP_queryset,
fields=('som_kneighbors_forecasted_reactive_power_kvar'))

 SOM_AP_clusters_queryset = SomActivePower.objects.all()
 SOM_AP_clusters_json = serializers.serialize('json',
SOM_AP_clusters_queryset)

 SOM_RP_clusters_queryset = SomReactivePower.objects.all()
 SOM_RP_clusters_json = serializers.serialize('json',
SOM_RP_clusters_queryset)

 return render(request,'Core/test5.html',
{'Active_Power_json':Active_Power_json,

'Limited_Active_Power_json':Limited_Active_Power_json,
 'Reactive_Power_json':
Reactive_Power_json,

'Limited_Reactive_Power_json': Limited_Reactive_Power_json,

'SOM_KNeighbors_Forecasted_AP_json': SOM_KNeighbors_Forecasted_AP_json,

'SOM_KNeighbors_Forecasted_RP_json': SOM_KNeighbors_Forecasted_RP_json,
 'SOM_AP_clusters_json':
SOM_AP_clusters_json,
 'SOM_RP_clusters_json':
SOM_RP_clusters_json})

As soon as we have set the views.py we are ready to modify our template [54] in the best

possible way in order to display the required information. Figures 22, 23, 24, 25, 26 show some

pages of the Divinus website.

75

Figure 22 - Divinus Front Page

Figure 23 - Divinus Menu Selection

76

Figure 24 - Divinus Forecasting Page

Figure 25 - Divinus SOM Clusters Page

77

Figure 26 - Divinus Comparison Page between Real & Forecasted Load

78

6. Conclusion

This master thesis had two goals. The first one was to create a tool that could be perform both

use profiling and load forecasting. Regarding the use profiling, after having done a lot of

research we arrived to the decision that for the tool that we wanted to build the most suitable

algorithm to be used was the Self Organizing Map. As for the forecasting algorithm is was

decided in a second phase due to the fact that we had to have the results of the SOM algorithm

first in order to proceed with the forecast. As soon as we had the SOM results in our hands we

started experimenting with machine learning libraries containing several forecasting

algorithms, but none of them was as good as the k-neighbors algorithm through which we

managed to perform predictions with a forecast error of only 12%.

The second goal basically was interrelated with the first one, as we wanted to see if forecasts

could occur based on the data of the clustering algorithm. If that could happen then we would

be able to create a methodology based on which we could forecast the consumptions of various

consumers within a microgrid based on their user profiles.

At the end of this thesis we are able to say that we successfully fulfilled the first goal and made

the first basic and promising steps towards the completion of the second. Many steps still need

to be taken in terms of creating a methodology through which we can handle the consumption

of different consumers within a microgrid.

79

7. Bibliography

[1] Hernández L, Baladrón C, Aguiar JM, Carro B, Sánchez-Esguevillas A, Lloret J, “Short-

Term Load Forecasting for Microgrids Based on Artificial Neural Networks.,” Energies,

vol. 6, no. 3, pp. 1385-1408, 2013.

[2] Treaty Establishing A Constitution For Europe, “EU treaties,” [Online]. Available:

https://europa.eu/european-

union/sites/europaeu/files/docs/body/treaty_establishing_a_constitution_for_europe_e

n.pdf. [Accessed 4 February 2018].

[3] Jimyung, K., Jee-Hyong, L., “Electricity Customer Clustering Following Experts’

Principle for Demand Response Applications,” Energies 2015, vol. 8, no. 10, pp. 12242-

12265, 2015.

[4] S. M. Bidoki, N. Mahmoudi-Kohan, S. Gerami, “Comparison of several clustering

methods in the case of electrical load curves classification,” in 16th Conference on

Electrical Power Distribution Networks (EPDC), IEEE (2011).

[5] G. Phanendra Babu, M. Narasimha Murty and S. Sathiya Keerthi, “A Stochastic

Connectionist Approach for Global Optimization with Application to Pattern

Clustering,” IEEE Trans. Systems, Man, And Cybernetics-Part B: Cybernetics, vol. 30,

no. 1, pp. 10-24, Feb 2000.

[6] G. Chicco, R. Napoli, F. Piglione, P. Postolache,M. Scutariu and C. Toader, “Load

Pattern-Based Classification of Electricity Customers,” IEEE Trans. Power Systems,

vol. 19, no. 2, pp. 1232-1239, May 2004.

[7] W. Li, J. Zhou, X. Xiong and J. Lu, “A Statistic-Fuzzy Technique for Clustering Load

Curves,” IEEE Trans. Power Systems, vol. 22, no. 2, pp. 890-891, May 2007.

[8] G. Chicco, R. Napoli, P. Postolache, M. Scutariu, and C. Toader, “Electric energy

customer characterisation for developing dedicated market strategies,” Power Tech

Proceedings, vol. 1, 2001.

[9] V. Figueiredo, F. Rodrigues, Z. Vale and J. B. Gouveia, “An Electric Energy Consumer

Characterization Framework Based on Data Mining Techniques,” IEEE Trans. Power

Syst., vol. 20, no. 2, pp. 596-602, May 2005.

[10] G. J. Tsekouras, N. D. Hatziargyriou and E. N. Dialynas, “Two-Stage Pattern

Recognition of Load Curves for Classification of Electricity Customers,” IEEE Trans.

Power Syst., vol. 22, no. 3, pp. 1120-1128, Aug 2007.

[11] G. Chicco, R. Napoli and F. Piglione, “Application of Clustering Algorithms and Self

Organizing Maps to Classify Electricity Customers,” Proc. 2003, vol. 1.

80

[12] S. Chunhua, B. Feng, Z. Jianying. T. Tsuyoshi and S. Kouichi, “Privacy-Preserving

Two-Party K-Means Clustering via Secure Approximation,” in Proc. 2007 Advanced

Information Networking and Applications Workshops 21st International Conf., vol. 1,

pp. 385 - 391, 2007.

[13] N. Mahmoudi-Kohan, M. P. Moghaddam, M. K. Sheikh-EI-Eslami and S. M. Bidaki,

“Improving WFA K-means Technique for Demand Response Programs Applications,”

in accepted for presentation, IEEE, General Meeting 2009.

[14] S. Nasser, R. Alkhaldi and G. Vert, “A Modified Fuzzy K-means Clustering using

Expectation Maximization,” in Proc. 2006 IEEE International Conf, pp. 231-235, 2006.

[15] K. A. Abdul Nazeer, M. P. Sebastian, “Improving the Accuracy and Efficiency of the k-

means Clustering Algorithm,” in Proceedings of the World Congress on Engineering

2009, London, U.K., 2009.

[16] Andrea Trevino, “DataScience.com,” [Online]. Available:

https://www.datascience.com/blog/k-means-clustering. [Accessed 05 02 2018].

[17] Maciej Pacula, “Maciej Pacula,” [Online]. Available:

http://blog.mpacula.com/2011/04/27/k-means-clustering-example-python/. [Accessed

08 02 2018].

[18] L. A. Zadeh, “Fuzzy logic and approximate reasoning,” Synthese, vol. 30, pp. 407-428,

1975.

[19] Carl G. Looney, “Pattern Recognition,” [Online]. Available:

www.cse.unr.edu/~looney/cs773b/1162_C09.pdf. [Accessed 07 02 2018].

[20] Wu Q, Qi X, Fuller E, Zhang C., “'Follow the Leader': a centrality guided clustering and

its application to social network analysis,” The Scientific World Journal, vol. 2019,

2013.

[21] G. Chicco, R. Napoli, F. Piglione, “Comparisons among clustering techniques for

electricity customer classification,” IEEE Transactions on Power Systems, vol. 21, no.

2, pp. 933 - 940, May 2006.

[22] G. Chicco, R. Napoli, P. Postolache, M. Scutariu, C. Toader, “Customer characterization

options for improving the tariff offer,” IEEE Transactions on Power Systems, vol. 18,

no. 1, pp. 381-387, Feb. 2003.

[23] M. R. Anderberg, Cluster Analysis for Applications, New York: Academic Press, 1973.

[24] B. S. Everitt, Cluster Analysis 3rd edition, London, U.K: Arnold and Halsted, 1993.

[25] J. H. Ward, “Hierarchical grouping to optimize an objective function,” J. Amer. Stat.

Assoc., vol. 58, pp. 236-244, 1963.

81

[26] Teuvo Kohonen, Self-Organizing Maps, Berlin, Heidelberg: Springer, 1995.

[27] Teuvo Kohonen, Erkki Oja, Olli Simula, Ari Visa, Jari Kangas, “Engineering

applications of the self-organizing map. Manuscript submitted to a journal.,”

Proceedings of the IEEE, vol. 84, no. 10, pp. 1358-1384 , 1996 .

[28] D.C. Park, M.A. El-Sharkawi, R.J. Marks II, L.E. Atlas and M.J. Damborg, “Electric

Load Forecasting Using An Artificial Neural Networks,” IEEE Transactions on Power

Engineering, vol. 6, pp. 442-449, May. 1991.

[29] K. Y. Lee and J. H. Park, “Short-Term Load Forecasting Using an Artificial Neural

Network,” IEEE Transactions on Power Systems, vol. 7, pp. 127-132, Feb. 1992.

[30] Alireza Khotanzad, Rey-Chue Hwang, Alireza Abaye and Dominic Maratukulam, “An

Adaptive Modular Artificial Neural Network Hourly Load Forecaster and its

Implementation at Electric Utilities,” IEEE Transactions on Power Systems, vol. 10, pp.

1716-1721, Aug. 1995.

[31] Jaakko Hollmen , “Self-Organizing Map (SOM),” [Online]. Available:

http://users.ics.aalto.fi/jhollmen/dippa/node9.html. [Accessed 08 07 2018].

[32] Fernando Bação, Victor Lobo, Marco Painho, “Self-organizing Maps as Substitutes for

K-Means Clustering,” Fifth International Conference on Computational Science (ICCS

2005), vol. 3, pp. 476 - 483, 22-25 May 2005.

[33] “TechTerms,” Sharpened Productions, [Online]. Available: https://techterms.com/.

[Accessed 12 02 2018].

[34] C. Mohan, “History Repeats Itself: Sensible and NonsenSQL Aspects of the NoSQL

Hoopla,” Proc. 16th ACM Int’l Conference Extending Database Technology (EDBT 13),

p. 11–16, 2013.

[35] Forrest Stroud, “ServerWatch,” IT Business Edge Network, [Online]. Available:

https://www.serverwatch.com/server-trends/slideshows/top-10-enterprise-database-

systems-to-consider-2015.html. [Accessed 12 02 2018].

[36] Craig S. Mullins, “TechTarget,” SearchDataManagement.com, [Online]. Available:

http://searchdatamanagement.techtarget.com/feature/Which-relational-DBMS-is-best-

for-your-company. [Accessed 12 02 2018].

[37] The PostgreSQL Global Development Group, “PostgreSQL,” [Online]. Available:

https://www.postgresql.org/about/. [Accessed 20 02 2018].

[38] Lisa Smith, “What PostgreSQL has over other open source SQL databases: Part I,”

Compose, [Online]. Available: https://www.compose.com/articles/what-postgresql-has-

over-other-open-source-sql-databases/. [Accessed 21 02 2018].

82

[39] Sebastian Raschka, Python Machine Learning, Birmingham, UK: Packt Publishing,

2015.

[40] Kernighan, Brian W.; Ritchie, Dennis M. (). , The C Programming Language (1st ed.),

Englewood Cliffs, NJ: Prentice Hall, Feb. 1978.

[41] “Learn C++,” Programiz, [Online]. Available: https://www.programiz.com/cpp-

programming. [Accessed 14 02 2018].

[42] Arpan Chakraborty, “Languages and Libraries for Machine Learning,” Udacity,

[Online]. Available: https://blog.udacity.com/2016/04/languages-and-libraries-for-

machine-learning.html. [Accessed 20 02 2018].

[43] Ken Arnold, James Gosling, David Holmes, The Java Programming Language (The Java

Series), Boston, MA, USA: Addison-Wesley Longman Publishing Co., 1996.

[44] Ross Ihaka and Robert Gentleman, “R: A Language for Data Analysis and Graphics,”

Journal of Computational and Graphical Statistics, vol. 5, no. 3, pp. 299-314, Sep. 1996.

[45] Nicholas C. Zakas, Professional JavaScript for Web Developers, Crosspoint Boulevard,

Indianapolis: Wiley E-Text, Jan 2012.

[46] Masoud Nosrati, “Python: An appropriate language for real world programming,” World

Applied Programming, vol. 1, no. 2, pp. 110-117, June 2011.

[47] Christina Voskoglou, “What is the best programming language for Machine Learning?,”

[Online]. Available: https://towardsdatascience.com/what-is-the-best-programming-

language-for-machine-learning-a745c156d6b7. [Accessed 20 02 2018].

[48] Vsion Mobile, “State of the Developer Nation Q1 2017,” [Online]. Available:

http://www.mwc.gr/presentations/2017/konstantinou.pdf. [Accessed 20 02 2018].

[49] Giuseppe Vettigli, “MiniSom: minimalistic and NumPy-based implementation of the

Self Organizing Map,” 15 September 2013. [Online]. Available:

https://github.com/JustGlowing/minisom. [Accessed 24 May 2018].

[50] “scikit-learn,” scikit-learn developers, [Online]. Available: http://scikit-

learn.org/stable/modules/neighbors.html. [Accessed 2018 May 26].

[51] Django Software Foundation, “django,” Django Software Foundation, [Online].

Available: https://www.djangoproject.com/start/overview/. [Accessed 26 May 2018].

83

[52] Django Software Foundation, “django,” Django Software Foundation, [Online].

Available: https://docs.djangoproject.com/en/2.0/topics/db/models/. [Accessed 26 May

2018].

[53] Django Software Foundation, “django,” Django Software Foundation, [Online].

Available: https://docs.djangoproject.com/en/2.0/topics/templates/. [Accessed 26 May

2018].

[54] Bucky Maler, “Global,” [Online]. Available: http://buckymaler.com/global/#0.

[Accessed 26 May 2018].

