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Abstract 

 
The aim of this thesis is to create a flexible and easily customized tool applicable in microgrids 

to carry out electricity use profiling and forecasting. This modular tool is called Divinus and its 

architecture consists of several interconnected well-defined components where each one 

interacts directly with the other. Τhe first three structural pillars of the platform are its database 

where all the information is stored, the Django framework in which the code exists and finally 

the website where all the results are displayed. Τhe next set of components are not as structural 

as they are functional. Upon them is based the collection of data that will be saved in the 

database, the use profile that will be performed on the collected data and the load forecasting 

for which use profiling data will be used.  

Through the Self-Organizing Map, that are competing networks that provide topological 

mapping to the imported data, we perform the use profiling based on the collected data of 

Technological Institute of Sterea Ellada, Psachna campus from 2010 till 2017. As soon as the 

use profiling is complete and these data are placed in clusters based on their characteristics the 

forecasting process is able to begin. The forecasting is performed based on the machine learning 

methodology and more specifically with the k-neighbours algorithm.  

From the tests that have been carried out so far, we observed that Divinus has a high accuracy 

and low mean errors. More specifically based on forecasts made for the next five days, the next 

month and the next year the average error does not exceed 5% for the next five days, 12% for 

next month and 16% for the next year.  

Therefore, at the current stage of the tools is we are able to say that it is quite promising tool 

and that is likely to be used for both short-term and medium-term forecasts. 
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Περίληψη 

  
Σκοπός αυτής της διπλωματικής εργασίας είναι η δημιουργία ενός ευέλικτου και εύκολα 

προσαρμόσιμου εργαλείου που θα εφαρμοστεί σε microgrids για την δημιουργία ενεργιακών 

προφίλ χρήσης ηλεκτρικής ενέργειας και για την πρόβλεψη φορτίου. Το αρθρωτό αυτό 

εργαλείο ονομάζεται Divinus και η αρχιτεκτονική του αποτελείται από πολλά διασυνδεδεμένα 

και καλά καθορισμένα στοιχεία, όπου το καθένα αλληλεπιδρά άμεσα με το άλλο. Οι τρεις 

πρώτοι δομικοί πυλώνες της πλατφόρμας είναι η βάση δεδομένων, στην οποία αποθηκεύονται 

όλες οι πληροφορίες, το Django framework στο οποίο υπάρχει ο πηγαίος κώδικας και τέλος ο 

ιστότοπος όπου εμφανίζονται όλα τα αποτελέσματα. Το επόμενο σύνολο στοιχείων δεν αφορά 

τόσο την δομική όσο την λειτουργική πλευρά του Divinus. Στα στοιχεία αυτά εμπεριέχονται 

διαδικασίες όπως είναι η συλλογή δεδομένων που θα αποθηκευτούν στη βάση, η δημιουργία 

ενεργειακών προφίλ χρήση που θα εκτελεστεί πάνω στα δεδομένα που συλλέγονται καθώς και 

η πρόβλεψη φορτίου για την οποία θα χρησιμοποιηθούν δεδομένα από τα ενεργειακά προφίλ 

χρήσης. 

Μέσω τον αυτοοργανωτικών χαρτών, που είναι ανταγωνιστικά δίκτυα που παρέχουν 

τοπολογική χαρτογράφηση στα εισαγόμενα δεδομένα, πραγματοποιούμε τη δημιουργία 

ενεργιακών προφίλ χρήσης ηλεκτρικής ενέργειας με βάση τα συλλεχθέντα δεδομένα από το 

2010 έως το 2017 της περιοχής των Ψαχνών Ευβοίας του Τεχνολογικού Εκπαιδευτικού 

Ινστιτούτου Στερεάς Ελλάδας. Μόλις η χαρτογράφηση των δεδομένων αυτών είναι πλήρης 

τοποθετηθούν σε ομάδες βάσει των χαρακτηριστικών τους, η διαδικασία πρόβλεψης είναι σε 

θέση να ξεκινήσει. Η πρόβλεψη πραγματοποιείται με βάση τη μεθοδολογία machine learning 

και πιο συγκεκριμένα μέσω του αλγόριθμο k-neighbours. 

Από τις δοκιμές που έχουν πραγματοποιηθεί μέχρι τώρα, παρατηρούμαι ότι το Divinus έχει 

υψηλή ακρίβεια και μικρά σφάλματα. Πιο συγκεκριμένα, με βάση τις προβλέψεις που 

πραγματοποιήθηκαν για τις επόμενες πέντε ημέρες, τον επόμενο μήνα και τον επόμενο χρόνο, 

το μέσο σφάλμα δεν υπερβεί το 5% για τις επόμενες πέντε ημέρες, το 12% για τον επόμενο 

μήνα και το 16% για το επόμενο έτος.  

Ως εκ τούτου, στο στάδιο που βρίσκεται αυτήν την στιγμή το Divinus μπορούμε να πούμε ότι 

αποτελεί ένα πολύ ελπιδοφόρο εργαλείο που είναι πιθανό να χρησιμοποιηθεί τόσο για 

βραχυπρόθεσμες όσο και για μεσοπρόθεσμες προβλέψεις. 

 
Λέξεις – Κλειδιά: Ενεργειακό Προφίλ, Aυτοοργανωτικοί Χάρτες,  Πρόγνωση φορτίου 
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Introduction 

 

Until recently, the electricity production and distribution systems were located far away from 

end-use points. This caused a lot of losses during the energy transport. Moreover, it also 

hindered the decentralization of power generation that made the dependence on large generation 

plants even higher. However, the efforts made in order to cope with the increased energy 

demands as well as transport costs lead to the creation of various techniques such as the energy 

forecasting. The knowledge of future load behaviour in electrical distribution systems was of 

fundamental importance in many electrical systems, being one of the main subjects discussed 

in the operational areas of electricity utilities. Moreover, load forecasting was also used for 

possible energy interchange with other utilities as well as to make the system more stable and 

secure [1]. 

However, a conceptual change has been proposed so as to make the current supply system more 

sustainable in economic and environmental terms, as reflected for instance in the Lisbon Treaty 

[2]. As a result, in order to increase sustainability and optimize resource consumption, electric 

utilities should constantly try to adjust their power supply to the energy demands. Moreover, 

taking into account that it is extremely difficult to store energy at a large scale, power generation 

has to be adjusted with the real time demand [1]. Therefore, it is of crucial importance that the 

electric load forecasting to be as accurate as possible. 

In order to succeed a high accuracy in load forecasting access is required to a wild variety of 

electric power demand factors such as the day of the week, the month of the year as well as the 

corresponding data at the respective days and months of past years along with past and future 

environmental data such as humidity, temperature etc. However, as the data gathered in the 

smart grid increases, the importance of clustering techniques that will classify those data 

increases because huge amounts of data will need to be reduced in a reasonable way. 

Decades ago, the clustering that was performed in electricity customers was performed only 

based on pre-assigned contract types such as household, manufacturer, and school. The 

clustering of customers is, however, now possible based on real-time energy consumption 

patterns because of the richness of data in smart grids. Therefore, clustering is considered to be 

a pre-processing stage in many data analysis scenarios [3]. 

Nowadays, the need for renewable energy resources led to the emergence of microgrids that 

are environments of small electric power generation and demand. However, traditional 

clustering and forecasting methods cannot have direct application to microgrids for two main 

reasons. In microgrids the aggregated consumption figure is not only several times smaller than 

in region-wide areas, but also the load curve presents a much higher variability [1]. 

Based on the aforementioned the purpose of this master thesis is the creation of a Short-Term 

Load Forecasting two stage prediction methodology, called Divinus, which is based on the Self 

Organised Map (SOM) clustering technique and on a custom made forecasting technique using 

machine learning which can be applied in microgrids enviroments. 

Due to the fact that there is a wide variety of clustering techniques, databases used for storing 

data and programming languages used in machine learning techniques, in the Introduction 

Section we analyse the reasons that led us to use these systems. Section 2 presents how and 

from where the required data for the clustering phase were acquired. It is a crucial chapter due 

to the fact those data consist the backbone of our methodology and therefore have to be as 

accurate as possible. Section 3 describes how those data were implemented into the PostgreSQL 

database. Section 4 describes how the data stored in the database were used by the Self 

Organized Map for the clustering process. Section 5 presents the machine-learning forecasting 

technique based on the data that were clustered previously and last but not least Section 6 
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analyses the results obtained, summarizes the conclusions of this study and proposes future 

improvements on the proposed tool. 

 

1.1. Electrical Load Curves Clustering Methods  

 

Nowadays, the collection of scientific data is performed much easier and faster due to the 

advances in modern mining techniques. Scientists are able to unearth implicit information from 

huge databases and use them much easier and faster than it was done in the past. However, 

these data mining techniques besides the benefits that they brought, they also resulted in a large 

scale accumulation of data pertaining to diverse fields. It is practically impossible to extract 

useful information from a huge load of data whose attributes might be totally different. 

Therefore, an essential and effective method had to be found in order to deal with these issues. 

Cluster analysis is such a method that was introduced to deal with these issues. The main aim 

of cluster analysis is to find and associate patterns by forming groups of patterns that contain 

similar attributes. In this way the pattern groups that will be formed will include objects that 

have similar attributes compared to different clusters that differ considerably, with respect to 

their attributes [4]. 

Many clustering approaches and algorithms have been proposed from time to time in literature 

to suit various requirements [4], [5]. Many of them are based on conventional approaches are 

such as the numerical clustering approach which assumes that patterns are points in a 

dimensional space and perform clustering by defining a (dis)similarity measure. Another 

conventional approach is the symbolic clustering approach which is suitable for clustering 

patterns or objects that are often represented by qualitative or symbolic features. On the other 

hand, knowledge-based clustering approaches use high-level knowledge pertaining to a set of 

problems to perform the clustering task. In these approaches, knowledge is embedded into the 

approach for solving a class of problems [5]. 

Recently, clustering analysis methods and techniques have been used in the field of electrical 

engineering in order to cluster load curves [4]- [13]. These techniques are suitable in defining 

typical load profile (TLP) of customers. Different applications are available for classification 

of the load curve of customers. Accurate knowledge of the customers' consumption patterns 

represents a worthwhile asset for electricity providers in the competitive electricity markets [6]. 

Classification of loads in terms of their time-varying power consuming behavior is an important 

task for load forecasting, load data processing, locational customer services, power system 

analysis and pricing [7]. With the electricity market liberalization, the electricity distribution 

business looks for better market strategies based on adequate information about the 

consumption patterns of the electricity customers. A fair insight into the customer's 

consumption behavior allows the distribution utilities to better address the operation of the 

distribution infrastructure and its future enhancement, not to mention the ability to design 

specific tariff options for the various classes of customers in tune with real operation costs [8]. 

In order to cope with the ever-increasing demands of the market that arise, different methods 

are used in clustering load curves. Some of the most popular methods used are the K Means, 

the Modified Follow the Leader, the Self-Organizing Maps, etc. 

 

1.1.1. Classical K-means 

K-means algorithm was first introduced by J.B. MacQueen in 1967 [12], [14]. K-means is a 

type of unsupervised learning clustering algorithm, which means that it uses data without 

having previously defined the categories or the groups that these data will be inserted. Data are 

clustered based on feature similarities and the process consist of two separate phases. The first 

phase is to define k centroids, one for each cluster. During this phase each data point based on 

the Euclidean distance, which is considered to determine the distance between data points and 
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the centroids, is assigned to its nearest centroid. More specifically, if ci is the collection of 

centroids in set C, then each data point x is assigned to a cluster based on the following formula: 

 

𝑎𝑟𝑔 𝑚𝑖𝑛
𝐶𝑖 𝐸𝐶

𝑑𝑖𝑠𝑡(𝑐𝑖, 𝑥)2    (1.1) 

 

Where dist( - ) is the standard (L2) Euclidean distance. Let the set of data point assignments for 

each ith cluster centroid be Si [16]. The first step is completed when all the points are included 

in one of the cluster groups and an early grouping is performed.  

In the second phase the centroids need to be recalculated as the inclusion of new points may 

lead to a change in the cluster centroids. This is done by taking the mean of all data points 

assigned to that centroid's cluster. 

𝑐𝑖 =
1

|𝑆𝑖|
𝛴𝑥𝑖𝐸𝑆𝑖

𝑥𝑖      (1.2) 

 

In this step, the centroids are recomputed. This is done by taking the mean of all data points 

assigned to that centroid's cluster. The algorithm iterates between steps one and two until a 

situation will be reached when the centroids do not move anymore [16]. This signifies the 

convergence criterion for clustering. In Table 1 is presented a pseudocode for the k-means 

clustering algorithm [15]. 

 
Table 1 - Pseudocode for the k-means clustering algorithm [15] 

 

Input:  

 

D = {d1, d2,......,dn} //set of n data items.  

k // Number of desired clusters  

 

Output:  

 

A set of k clusters.  

 

Steps: 

1. Arbitrarily choose k data-items from D as initial centroids; 

2. Repeat  

 

Assign each item di to the cluster which has the closest centroid;  

Calculate new mean for each cluster;  

 

Until convergence criteria is met. 
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Figure 1 - K-means Clustering Visualization [17] 

 

The k-means algorithm is the most extensively studied clustering algorithm. The major 

drawback of this algorithm is that it produces different clusters for different sets of values of 

the initial centroids. Quality of the final clusters heavily depends on the selection of the initial 

centroids. The k-means algorithm is computationally expensive and requires time proportional 

to the product of the number of data items, number of clusters and the number of iterations [15]. 

 

1.1.2. Weighted Fuzzy Average (WFA) K-means 

Fuzzy logic is based in an intuitive theory based on human reason of approximation. It differs 

from traditional logic methods due to the fact that each data point has a probability of belonging 

to each cluster, while in traditional methods exact and solid results are expected. Zadelh was 

the first that put forth the concept of fuzzy logic [18] and since 1975 it is used in problems 

where the solution tends to be more approximate rather than exact. Therefore, due to its 

principles fuzzy logic quickly became an integral part of solving clustering problems in which 

their results were determined by some degree of closeness to true or to false.  

Weighted Fuzzy Average k-means was proposed as a new method which could be used to 

overcome the drawback of the k-means algorithm in the computation of the distance between 

each vector and cluster center. The benefit of this new method over the previous one was that 

it introduced a fuzzy averaging that puts the center prototype among more situated points [13], 

[14]. The weighted fuzzy average (WFA) of the vectors in a cluster is done component-wise. 

Let {X1,…, XP} be a set of P real numbers. To find its weighted fuzzy average, this algorithm 

initially takes the sample mean μ(0) and variance σ2 to start the process. A Gaussian is centred 

over the current approximate WFA µ(r) and iterates as follows [19]: 

 

𝑤𝑝
(𝑟)

=
exp[−

(𝑥𝑝−𝜇(𝑟))

2𝜎2 ]

∑ exp [−
𝑥𝑚−𝜇(𝑟)

2𝜎2 ](𝑚=1,𝑃)

     (1.2) 

 

𝜇(𝑟+1) = ∑ 𝑤𝑝
(𝑟)

(𝜌=1,𝑃) 𝑥𝑝, 𝑟 = 0,1,2, …    (1.3) 

 
The denominator in Equation (1.2) standardizes the weights so they all sum to unity. We 

compute σ2 on each of three or four iterations and then leave it fixed. After about five iterations 

the approximate WFA is sufficiently close to the true WFA. Schneider and Craig [1992] used 
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a weighted fuzzy expected value for histogram adjustment, but it was based on a decaying 

exponential. Figure 2 below shows an example of five points (circles) that compares the mean, 

median, and the WFA [19]. 

 

 
Figure 2 - A mean, median, and WFA of five points [19]. 

 

Even though this method was an improvement on the simple K-means, it still lacked the ability 

of finding better centers, since mean does not always represent the center of a given data. 

 
1.1.3. Modified Follow the Leader (MFTL) 

In many communities such as social networks datasets there are usually some members who 

play a key role. The reason why some members have a higher role within social network 

analysis is their centrality. Members that have a high centrality have a greater structural 

importance in the network and as a result can be named also as leaders.  In the follow-the-leader 

procedure a group is formed starting from the leader and new members are added based on the 

relationship they have with the group. To put it in simple words, this algorithm process requires 

to choose the vertex (Leader) with the highest centrality score that is not included in any 

existing groups. Then after the new group containing a leader member has been created, a 

repetitive process is required so as to add new vertexes. The new vertexes will be added only if 

the new density of the newly extended group is above a given threshold [20]. 

As we understand from the aforementioned description, the Follow-the-leader algorithm does 

not require cluster numbers initialization and uses an iterative process to compute the cluster 

centroids. The first cycle of the algorithm, using a follow-the-leader approach that depends on 

a distance threshold ρ, sets the K numbers of clusters and the number 𝑛(𝑘) of patterns belonging 

to each cluster 𝑘 = 1, … , 𝐾. The subsequent cycles refine the clusters, by possibly reassigning 

the patterns to closest clusters. The procedure stops when the number of patterns changing 

clusters in a single cycle is zero. The process is essentially controlled by the distance threshold 

ρ, which has to be chosen by a trial-and-error approach. This procedure has been modified to 

fit the needs of the proposed classification, by taking into account the data dispersion in the 

input vector [6], [22]. For this purpose, the Euclidean metric used in the original algorithm has 

been modified by introducing for each index a weighting factor, where is the variance of the 

ℎth feature computed from all the load patterns in the initial population, and 𝜎̅2 is the average 

value of the variance 𝜎ℎ
2 for ℎ = 1, … , 𝐻. As such, the impact of the indexes having a high 

variance is amplified in the computation of the weighted Euclidean distance [21]. 

 

1.1.4. Hierarchical algorithm 

In hierarchical clustering, there are initially 𝑀 singleton clusters, as much as the number of 

representative load patterns (RLTs) [21], [23]. At first, a 𝑀𝑥𝑀 similarity matrix is built using 

the Euclidean norm distance criterion. Then the value expressing the similarity between the 

clusters 𝑋(𝑞) and 𝑋(𝑠), which is the 𝛾(𝑞,𝑠), needs to be called. Afterwards, with the use of a 

linkage criterion which is based on the similarity matrix, the 𝛭 RLPs are grouped into binary 
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clusters. The process is iteratively repeated by merging the clusters of each level into bigger 

ones at the upper level, until all RLPs are grouped in a single cluster. The history of the process 

is kept in order to form a binary tree structure, whose root is the cluster that contains the whole 

data set [21].  

The similarities between clusters at each level are measured by the linkage criterion which is 

also responsible for determining the cluster formation at the upper level. The extreme cases for 

these criteria include the single linkage, for which the similarity between two clusters depends 

on the closest pair of members in the two clusters, and the complete linkage, for which the 

similarity between two clusters depends on the farthest pair of members in the two clusters [24]. 

As a result, the single linkage criterion may lead to the formation of few large clusters, whereas 

the complete linkage criterion may form too many clusters. In order to prevent these effects, 

other linkage criteria, such as average distance and Ward [25], have been defined [21]. 

With the average distance criterion, grouping two clusters 𝑋(𝑠)and 𝑋(𝑡) depends on the average 

distance as it shown in the following equation: 

 

𝛾𝐴
(𝑠,𝑡)

= 𝑑(𝑋(𝑠), 𝑋(𝑡))     (1.3) 

 

Once two clusters 𝑋(𝑠)and 𝑋(𝑡) have been merged to form 𝑋(𝑤), the similarity between the 

new cluster and another cluster 𝑋(𝑔) becomes as it shown in the following equation: 

 

𝛾𝐴
(𝑤,𝑔)

=
1

2
(𝛾𝐴

(𝑠,𝑔)
, 𝛾𝐴

(𝑡,𝑔)
)    (1.4) 

 

The hierarchical tree (or dendrogram) of Figure 3 is obtained by grouping the RLPs of the data 

set by this method. The horizontal axis contains the RLP identifiers, whereas the height of each 

vertical branch represents the similarity between each pair of merged clusters. The final clusters 

are then constructed by choosing in the binary tree the maximum distance admissible or by 

directly selecting the distance corresponding to the desired number of clusters [21].  

 

 
Figure 3 - Dendrogram of the hierarchical clustering with average distance criterion.  

Horizontal axis: RLP identifier. Vertical axis: similarity measure (5) between clusters [21]. 
 

In the Ward linkage criterion, the clusters are formed in order to minimize the increase of the 

within-cluster sums of squares. The similarity between the two clusters 𝑋(𝑠) and 𝑋(𝑡) is 

measured as the increase of these squares sums if the two clusters were merged as it shown in 

the following equation: 
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𝛾𝑊
(𝑠,𝑡)

=
𝑛(𝑠)𝑛(𝑡)

𝑛(𝑠)+𝑛(𝑡) 𝑑2(𝑐(𝑠), 𝑐(𝑡))    (1.5) 

 

Where 𝑐(𝑠) and 𝑐(𝑡) are the centroids of the two clusters. Once two clusters 𝑋(𝑠) and 𝑋(𝑡) have 

been merged to form 𝑋(𝑤), the similarity between the new cluster 𝑋(𝑤) and another cluster 𝑋(𝑔) 

becomes as it shown in the following equation: 

 

𝛾𝑊
(𝑤,𝑔)

=
(𝑛(𝑠)+𝑛(𝑔))𝛾𝑊

(𝑠,𝑔)
+(𝑛(𝑡)+𝑛(𝑔))𝛾𝑊

(𝑡,𝑔)
−𝑛(𝑔)𝛾𝑊

(𝑠,𝑡)

𝑛(𝑠)+𝑛(𝑡)+𝑛(𝑔)   (1.6) 

 

Figure 4 shows the dendrogram obtained by using the Ward linkage criterion. The comparison 

between the two hierarchical trees shows that the average distance criterion forms large clusters 

of similar RLPs and rejects the very dissimilar ones in small or singleton clusters, whereas the 

Ward criterion prevents the formation of large clusters [21]. 

 

 
Figure 4 - Dendrogram of the hierarchical clustering with Ward linkage criterion.  

Horizontal axis: RLP identifier. Vertical axis: similarity measure (7) between clusters [21]. 

 

1.1.5. Self-Organized Map  

The Self-Organizing has been developed by professor Kohonen [26], is one of the most popular 

artificial neural networks and has been proven useful in many applications [27].  

To get a better understanding on what a SOM is we need to mention a few things regarding 

Artificial Neural Networks (ANNs.)  ANNs are based on the functions of the human brain and, 

therefore, they consist powerful tools for modelling, especially when the underlying data 

relationship is unknown. Moreover, they can identify and learn correlated patterns between 

input data sets and corresponding target values [28], [29], [30]. They have been successfully 

applied in a variety of scientific fields such as mathematics, engineering, medicine, economics, 

meteorology, psychology, neurology and many other [28], [29]. The reason that they have been 

successfully applied in so many scientific fields lies in the fact that they operate in accordance 

with the four operating principles that are displayed below: 

1. The fairly large database that is required, i.e. known inputs should be compared with 

their corresponding outputs in order to "educate" the network.  

2. The comparison of the output value that is produced with the real one and the 

amendment of the weights in accordance with the "education rule".  

3. The produced error that works as a guide, which decreases as the repetition is increased. 

It is considered that the network has been educated when the error becomes smaller 

than the threshold. 

4. The certification that the system is adequately trained when it responds correctly to 
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new samples. The broad spectrum of the learning set is considered a criterion [30]. 

 

Due to the aforementioned, it is obvious that ANNs are educated through previous load patterns 

also taking into account other influencing factors such as weather conditions and the day of the 

week, as a result predicting new load patterns using recent load data [28]- [30].  

The Self-Organizing Map as we mentioned is a type of ANN, however, it differs a lot from 

them as it applies competitive learning as opposed to the methods used for training the classical 

ANNs such as error-correction learning and in the sense that they use a neighbourhood function 

to preserve the topological properties of the input space.  

The Self-Organizing Map is based on unsupervised learning, which means that no human 

intervention is needed during the learning and that little needs to be known about the 

characteristics of the input data. It provides a topology preserving mapping from the high 

dimensional space to map units. Map units, or neurons, usually form a two-dimensional lattice 

and thus the mapping is a mapping from high dimensional space onto a plane. The property of 

topology preserving means that the mapping preserves the relative distance between the points. 

Points that are near each other in the input space are mapped to nearby map units in the SOM. 

The SOM can thus serve as a cluster analyzing tool of high-dimensional data. Also, the SOM 

has the capability to generalize. Generalization capability means that the network can recognize 

or characterize inputs it has never encountered before. A new input is assimilated with the map 

unit it is mapped to [31]. A description of the basic SOM training algorithm is presented below: 

 

Table 2 - Pseudocode for the SOM clustering algorithm [32]. 

 

Let  

X  be the set of n training patterns 𝑥1, 𝑥2, . . 𝑥𝑛 

W  be a 𝑝 × 𝑞 grid of units 𝑤𝑖𝑗 where i and j are their coordinates on that grid 

α  be the learning rate, assuming values in ]0,1[, initialized to a given initial 

learning rate 

r  be the radius of the neighborhood function ℎ(𝑤𝑖𝑗 , 𝑤𝑚𝑛, 𝑟), initialized to a 

given initial radius 

 

1. Repeat 

2.     For k = 1 to n 

3.  For all 𝑤𝑖𝑗 ∈ W, calculate d ij =  ‖xk − wij‖ 

4.  Select the unit that minimizes d ij as the winner wwinner 

5.  Update each unit 𝑤𝑖𝑗 ∈ W: 𝑤𝑖𝑗 = 𝑤𝑖𝑗 + 𝑎 ℎ (wwinner, 𝑤𝑖𝑗 , 𝑟)‖xk − wij‖                :  

6.     Decrease the value of α and r 

7. Until α reaches 0 
 

 

The neighborhood function h is responsible for the interactions between different SOM units 

and usually is a function that decreases with the distance (in the output space) to the winning 

unit. During training, each unit will become more isolated from the effects of its neighbors and 

as a result the radius of this function usually decreases. However, it should be noted that some 

SOM implementations decrease this radius to one, while others decrease it to zero. This means 

that the implementations with a reduction level of one will have even in the final stages of 

training their units affected by their nearest neighbors, while the rest that have a reduction level 

of  zero will not have no affection at all from their neighbors [32]. 

The Self-Organizing Map as it is displayed in Figure 5 is a two-dimensional array of neurons. 

One neuron is a vector called the codebook vector. 

 

𝑀 = {𝑚𝑖1, … , 𝑚𝑖𝑛} 
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Figure 5 - Different topologies [31] 

 

Moreover, the distance between the map units and the topology relations can be defined. One 

can also define a distance between the map units according to their topology relations. By using 

the concept of immediate neighbors we refer to the neurons that are adjacent. As a result the 

immediate neighbors belong to the neighborhood 𝑁𝑐 of the neuron 𝑚𝑐. The neighborhood 

function should be a decreasing function of time: 𝑁𝑐 = 𝑁𝑐(𝑡). Neighborhoods of different sizes 

in a hexagonal lattice are illustrated in Figure 6.  

 

 
Figure 6 - Neighborhood of a given winner unit [31] 

 

In the smallest hexagon, there are all the neighbors belonging to the smallest neighborhood of 

the neuron in the middle belonging to a hexagonal lattice. The topological relations between 

the neurons are left out for clarity. 

In the basic SOM algorithm, the topological relations and the number of neurons are fixed from 

the beginning. This number of neurons determines the scale or the granularity of the resulting 

model. Scale selection affects the accuracy and the generalization capability of the model. It 

must be taken into account that the generalization and accuracy are contradictory goals. By 

improving the first, we lose on the second, and vice versa. 

 

1.2. Benefits of Self Organised Map (SOM) among other Clustering Methods  

 

The clustering process is the first process that will be always run in Divinus and the forecast 

that will run next will be based on the clusters that were created. As a result, the clusters must 

be as accurate as possible so that the forecast that will run to have as little mean error as possible. 

For this reason Self Organizing Maps where chosen as they can be applied in many areas 

including the area that we are interested which is data clustering with great precision and 

success.  

The advantage of using this type of artificial neural network to cluster power loads is that they 

group the loads in terms of the uniformity of the characteristics that define them, reducing the 
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size of the problem to a two-dimensional map while maintaining all the information about the 

n features valued. In this way reducing the dimensionality and the grid clustering the data are 

easier to observe. 

Moreover, SOM is not sensitive to initialization, as k-means, which provides a more robust 

learning. It preserves the topology of input data by assigning each datum to a neuron having 

the highest similarity, and maps into adjacent neurons the data that contains similar attributes. 

However, despite the positive or the negative aspects that a clustering algorithm may have, 

there is no rule for the best matching clustering algorithm. In our tool based on the survey that 

we conducted we chose to use SOM as our clustering algorithm on whose clusters the forecast 

will be based. 
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1.3. Relational Database Management Systems 

 

Relational Database Management System (RDMS) is responsible for defining a set of relation 

schema that will allow information to be stored and retrieved without unnecessary redundancy. 

RDMS consists a subset of Database Management System (DBMS) which in turn is a database 

program. From a technical point of view, a database program is a software system that through 

a standard method catalogs, retrieves and runs queries on data. Furthermore, a DBMS also 

manages, organizes and provides ways for the incoming data to be modified and/or to be 

extracted by other programs or users. However, databases in the early days were relatively 

"flat," which means they were limited to simple rows and columns, like a spreadsheet. With 

the passing of the time, the majority of the databases used in application to store or retrieve data 

were made relational. In addition, relational databases allow users to access, update, and search 

information based on the relationship of data stored in different tables but also allow them to 

run queries that involve multiple databases. As a result, because nowadays almost all the 

databases used are relational, the terms "database" and "relational database" are used most of 

the times synonymously [33]. 

Nowadays however, users are given more options regarding the databases they use. Depending 

solely on how the data will be used, they can store them in SQL or NoSQL databases. To start 

with, SQL database was created back in 1975 by IBM, the initial letters stand for "Structured 

Query Language" and it is a query language used for accessing and modifying information in a 

database. The most common commands that can be found in SQL include "Insert", "Update" 

and “Delete" and it is mostly used for Web database development and management. Moreover, 

by using scripting languages such as PHP we are given the opportunity to execute SQL 

commands from a web page. Therefore, because of the possibilities SQL has given it is possible 

to display different information on each webpage [33]. 

On the other hand, NoSQL which originally meant "non SQL" or "non relational" has existed 

since the late 1960s, but gained popularity and necessity in the early twenty-first century 

triggered by the needs of Web companies such as Google, Amazon and Facebook [34].  NoSQL 

is a non-relational database that stores and accesses data using key-values. This means that 

NoSQL databases store data without using the classical means such as rows and columns to 

which the data are stored but rather identify each data individually with the use of a unique key. 

Furthermore, NoSQL is a more flexible database compared to relational databases as it 

does not require a structured schema that defines each table separately [33]. 

Moreover, while relational databases (like SQL) are ideal for storing structured data, their rigid 

structure makes it difficult to add new fields and quickly scale the database. NoSQL provides 

an unstructured or "semi-structured" approach that is ideal for capturing and storing user 

generated content (UGC). This may include text, images, audio files, videos, click 

streams, tweets, or other data. While relational databases often become slower and more 

inefficient as they grow, NoSQL databases are highly scalable. In fact, you can add thousands 

or hundreds of thousands of new records to a NoSQL database with a minimal decrease in 

performance [33]. Therefore, NoSQL flexibity and scalability has led many large businesses 

and organizations to start using NoSQL databases for the storage of their data. NoSQL 

databases are especially common in applications such as cloud computing and are becoming 

even more popular as storing solutions for big data applications.  

Due to the aforementioned, we understand that there are many database management systems 

available and it is very important for them to be able to communicate with each other. The 

solution to this problem comes with the name of Open Database Connectivity (ODBC) which 

is a driver that allows databases to integrate to others.  In order to give a description of how the 

ODBC we should have a look at the common SQL statements such as "Insert", "Select", 

"Update" and “Delete". These statements through ODBC are translated from a program's 

proprietary syntax into a syntax that other databases can understand.  
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In the tool that we developed the use of a Relational Database Management System was 

necessary. For this reason, we present through a brief description the most widespread and 

known databases such as Oracle Database 12c, Microsoft SQL, MySQL, IBM DB2, SQLite, 

MariaDB, Teradata as well as PostgreSQL which is the one that we chose to use. 

 

1.3.1. Oracle Database 12c 

 
Figure 7 - Oracle Database 12c Logo [35] 

 

Oracle began its journey in 1979 as the first commercially available relational database 

management system (RDBMS) and today it supports a wide range of operating systems 

multiple versions of Windows and multiple Unix and Linux variations. Oracle's name is 

synonymous with enterprise database systems, unbreakable data delivery and fierce corporate 

competition from CEO Larry Ellison. Powerful but complex database solutions are the 

mainstay of this Fortune 500 Company [35]. 

The current release of Oracle's RDBMS is Oracle 12c. The "c" stands for cloud and is reflective 

of Oracle's work in extending its enterprise RDBMS to enable firms to consolidate and manage 

databases as cloud services when needed via Oracle's multitenant architecture and in-memory 

data processing capabilities. Furthermore, there is an abundance of tools for Oracle database 

administration, application development and data movement/management. In terms of 

functionality, Oracle keeps pace with many new and advanced features such as JavaScript 

Object Notation (JSON) support, temporal capabilities, multi-tenancy and new database options 

such as Oracle Database that uses in-memory columnar technology to enable enterprises to 

easily and transparently accelerate the performance of their business analytics [36]. 

Oracle heavily promotes its database appliance, Exadata, which combines software and 

hardware engineered in order to provide a high-performance and high-availability platform for 

running Oracle Database. Its architecture features a scale-out design with industry-standard 

servers and intelligent storage, including flash technology and a high-speed InfiniBand internal 

fabric. Elastic configurations enable systems to be tailored to specific database workloads, 

including online transaction processing (OLTP), data warehousing, in-memory analytics and 

mixed workloads. The key selling point of a database appliance is that it's easy to deploy and 

includes all of the needed components to run the DBMS [36]. 

Oracle 12c Release 1 will be fully supported by Oracle through the end of July 2018, and a 

newer update, Oracle Database 12c Release 2 (12.2), became available in early March 2017. 

From a cost perspective, Oracle has a reputation as being expensive to license and support. 

Additionally, according to surveys conducted at Gartner's annual IT Financial Procurement & 

Asset Management summits in North America and Europe, Oracle ranked lowest in terms of 

ease of doing business [36]. 

 

1.3.2. IBM DB2 

 
Figure 8 - IBM DB2 [35] 

 

http://www-01.ibm.com/software/data/db2/
http://www-01.ibm.com/software/data/db2/
http://www.oracle.com/
http://www-01.ibm.com/software/data/db2/
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DB2 is Oracle's biggest competitor on Unix and Linux operating systems. DB2 11.1 The latest 

release of DB2, runs on Linux, UNIX, Windows, the IBM iSeries and mainframes. IBM has 

pitted its DB2 system squarely in competition with Oracle's, via the International Technology 

Group, and the results showed significant cost savings for those that migrate to DB2 from 

Oracle which is translated into 34 percent to 39 percent for comparative installations over a 

three-year period. In addition to these two platforms, DB2 is available on Windows, z/OS 

mainframe and iSeries midrange servers. The latest versions of DB2 are DB2 Version 11 for 

Linux, Unix, Windows (LUW), DB2 11 for z/OS and DB2 for i v7.2. DB2 SQL is almost 

identical between the z/OS and LUW platforms, but administratively there are significant 

differences. Likewise, many development, data movement and DBA tools are available for 

DB2, both from IBM and other independent software vendors (ISVs) [36]. 

In terms of functionality, DB2 is regularly revised and updated with market-leading features, 

including JSON support, temporal capabilities, shadow tables and advanced compression being 

among the recent advances. With the DB2 SQL compatibility feature, IBM delivers the ability 

to run Oracle applications in DB2 for LUW with no changes to business logic in the client code, 

triggers or stored procedures. Feature-wise, it would be remiss not to mention IBM's next-

generation database technology for DB2 called BLU Acceleration. It provides a combination 

of in-memory performance techniques, compression capabilities and column store capabilities. 

As is the case with Oracle, IBM regularly publishes benchmark results for DB2. As with any 

benchmark, it's always advisable to perform your own performance benchmarks on your own 

systems and workload if possible. IBM offers a database appliance called the PureData System, 

which provides single part procurement including pre-installed and configured DB2. The 

system is ready to load data in hours and provides open integration with third-party software. 

PureData comes with an integrated management console for the entire system, a single line of 

support, integrated system upgrades and maintenance. The PureData System is available in 

different models that have been designed, integrated and optimized for analytics, operational 

analytics and transaction processing [36]. 

 

1.3.3. Microsoft SQL 

 
Figure 9 - Microsoft SQL Server Logo [35] 

 

Microsoft is the most profitable technology company and the SQL server helped a lot to put it 

there. It is almost certain that, Microsoft's desktop operating system is everywhere, but if you're 

running a Microsoft Windows-based server, you're likely running SQL Server on it. 

SQL Server's ease of use, availability and tight Windows operating system integration makes 

it an easy choice for firms that choose Microsoft products for their enterprises. Microsoft 

promotes the latest release, SQL Server 2016, as the platform for both on-premises and cloud 

databases and business intelligence solutions. 

Microsoft promotes SQL Server 2016 in helping enterprises build mission-critical applications 

with high-performance, in-memory security technology across OLTP (online transaction 

processing), data warehousing, business intelligence and analytics. 

The most recent release of Microsoft SQL Server is Microsoft SQL Server 2016 SP1 

(v13.0.4001.0), which debuted on November 15th, 2016. Microsoft is currently developing 

SQL Server 2017, codenamed SQL Server vNext, but no release date has been announced for 

the upcoming version at this time. 

From a technology and functionality standpoint, Microsoft keeps abreast with the 

market. Features added to the latest version include stretch database capabilities for integrating 

on-premises with cloud, strong encryption capabilities, integration of Hadoop with relational 

data using the Polybase feature and improved in-database analytics capabilities. With Azure, 

Microsoft's cloud-integration vision for SQL Server is the strongest of the big three DBMS 

vendors, including simplified backup to Azure and the ability to set up an Azure virtual machine 

as an always-on secondary. Microsoft boasts strong performance benchmark results for SQL 

http://searchsqlserver.techtarget.com/tip/Eight-key-SQL-Server-2014-features
http://searchsqlserver.techtarget.com/tip/Some-new-Windows-Azure-integration-features-in-SQL-Server-2014
http://www.microsoft.com/en-us/server-cloud/products/sql-server-benchmarks/industry.aspx
http://www.microsoft.com/
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Server 2016, including TPC-E, which measures modern OLTP workloads and TPC-H, which 

measures data warehousing workloads. 

However, Microsoft lacks a database appliance like Oracle's Exadata and IBM's PureData 

System. Therefore, if a user is looking for a pure plug-and-play database appliance, Microsoft 

isn't a realistic option. However, there are third-party appliances that embed SQL Server, and 

Microsoft also offers the Microsoft Analytics Platform System, an analytics appliance that 

integrates SQL Server with data from Hadoop. 

 

1.3.4. Teradata 

 
Figure 10 - Teradata Logo [35] 

 

Teradata was founded as early as the late 1970s, and it laid the groundwork for the first data 

warehouse before the term even existed. Teradata is known mostly for its analytics and data 

warehousing capabilities. For organizations looking to run analytical processes, the Teradata 

Database and the company's Active Enterprise Data Warehouse offers a gateway to 

organizational knowledge based on advanced in-database analytics, intelligent in-memory 

processing, parallel in-database execution of scripting languages, native JSON support and 

transparent single query, multi-system processing. Teradata created the first terabyte database 

for Wal-Mart in 1992. Since that time, data warehousing experts almost always say Teradata in 

the same sentence as enterprise data warehouse. The version 15.10 of its RDBMS was released 

by Teradata in early 2015 [35] ,[36]. 

 

1.3.5. MySQL 

 
Figure 11 - MySQL Logo [35] 

 

MySQL began as a niche database system for developers but grew into a major contender in 

the enterprise database market and was sold to Sun Microsystems in 2008. Since then MySQL 

has since become part of the Oracle empire and being more than just a niche database now, 

MySQL powers commercial websites by the hundreds of thousands, and it also serves as the 

backend for a huge number of internal enterprise applications. Today MySQL remains a very 

popular option for use in Web applications and continues to serve as a central component of the 

LAMP open-source Web application software stack, along with Linux, Apache and PHP (or 

Python or Perl). At the same time, MySQL has seen support from users and developers erode 

over the last few years following the acquisition by Oracle [35].  

MySQL's decline has helped fuel the adoption of other open-source database options and forks 

of MySQL like the fully-open source MariaDB, which doesn't feature closed-source modules 

like some of those found in newer versions of MySQL Enterprise Edition, as well as Percona 

and the cloud-optimized Drizzle database system. MySQL Community Server 5.7.x is the most 

current release of the MySQL database system, with v5.7.19 having made its debut in July 2017 

[35]. 

http://searchsqlserver.techtarget.com/feature/Vendors-introduce-three-new-SQL-Server-appliances
http://www.teradata.com/
http://www.mysql.com/
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1.3.6. MariaDB 

 
Figure 12 - MariaDB Logo [35] 

 

MariaDB was created in 2009 by the original developers of MySQL, who created the fork 

following concerns over MySQL's acquisition by Oracle. It is used by tech giants like 

Wikipedia, Facebook, and even Google. MariaDB is a database server that offers drop-in 

replacement functionality for MySQL. MariaDB has seen its popularity explode recently at the 

expense of MySQL, particularly in its support by popular Linux distributions. In 2013 alone, 

Red Hat Enterprise Linux (RHEL) ditched MySQL for MariaDB, Fedora opted for MariaDB 

over MySQL in its Fedora 19 release, and both openSUSE and Slackware Linux made similar 

switches to MariaDB over MySQL. Wikipedia also adopted MariaDB over MySQL as its 

backend database in 2013. 

Another key factor in moving MariaDB ahead of MySQL is its enhanced query optimizer and 

other performance-related improvements, which give the database system a noticeable edge in 

overall performance compared to MySQL. Last but not least, security is a top concern and 

priority for MariaDB. Therefore, in each solution release, the developers also merge in all of 

MySQL’s security patches and enhance them if need be. 

The most recent "stable" release of MariaDB Enterprise Server is version 10.2 (v10.2.6 debuted 

May 23, 2017), also known as the MariaDB Server 2017 release. The 10.x releases add better 

protection for data against application and network-level attacks and also enables fast delivery 

of new, high-performance applications. 

 

1.3.7. PostgreSQL 

 
Figure 13 - PostgreSQL Logo [35] 

 

POSTGRES, now known as PostgreSQL, is considered to be the most advanced open-source 

database available today. PostgreSQL, is an open-source object-relational database 

management system (ORDBMS) that hides in such interesting places as online gaming 

applications, data center automation suites and domain registries. PostgreSQL also enjoys some 

high-profile duties at Skype and Yahoo! PostgreSQL is in so many strange and obscure places 

that it might deserve the moniker, "Best Kept Enterprise Database Secret."  PostgreSQL's 

current stable release is PostgreSQL 9.6.3, which was released in late May 2017, and 

PostgreSQL 10 is expected to debut in the second half of 2017, with PostgreSQL 10 Beta 2 

available now. PostgreSQL runs on a wide variety of operating systems, including Linux, 

Windows, FreeBSD and Solaris. And as of OS X 10.7 Lion, Mac OS X features PostgreSQL 

as its standard default database in the server edition. PostgreSQL benefits from more than 25 

years of development as a free, open-source database system, and it includes enterprise-grade 

features comparable to Oracle and DB2 such as full ACID compliance for transaction reliability 

and Multi-Version Concurrency Control for supporting high concurrent loads. 

  

http://mariadb.com/
http://www.postgresql.org/
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1.4. Benefits of PostgreSQL among other Relational Database Management 

Systems 

 

To choose the ideal database was to choose the one that would best fit for the needs of our tool. 

Therefore, we relied on criteria that would help us delimit the options we had in order to make 

the most accurate database choice for our tool.  

The criteria that we relied on our decision were two. The first criterion, based on the type of 

data we had, stated that the database should be a relational one. That meant that only Structured 

Query Language (SQL) databases were accepted and as a result the NoSQL databases 

automatically withdraw from competition. The second criterion stated that the relational 

database that would be used should be low cost. This criterion restricted our choices even 

further as now we had only the option of open-source relational databases. Therefore, we had 

to find the most appropriate open-source relational database solution for our tool and that why 

PostgreSQL was chosen. 

After 15 years of active development and having a reliable architecture that ensures data 

integrity and correctness, PostgreSQL is not just a relational database but rather a powerful 

object-relational database. To start with, there is an extensive list of data types that PostgreSQL 

supports such as Integer, Numeric, Boolean, Char, Varchar, Date, Interval and Timestamp [37]. 

Besides those date types, PostgreSQL boasts uuid, monetary, enumerated, geometric, binary, 

network address, bit string, text search, xml, json, array, composite and range types, as well as 

some internal types for object identification and log location. To be fair, open databases such 

as MySQL and MariaDB each have some of these to varying degrees, but only PostgreSQL 

supports them all [38]. 

Furthermore, PostgreSQL is highly scalable both in the sheer quantity of data it can manage as 

well as in the number of concurrent users it can accommodate. There are active PostgreSQL 

instances in production environments that are able to manage many terabytes of data, as well 

as clusters managing petabytes [37]. However, open databases such as MySQL and MariaDB 

are notorious for their 65,535 byte row size limit. Typically the data size is limited by the 

operating system file size limit. Because PostgreSQL can store table data in multiple smaller 

files, it can get around this limitation - though, it is important to note that too many files may 

negatively impact performance. MySQL and MariaDB do, however, support more columns per 

table (up to 4,096 depending on the data type) and larger individual table sizes than 

PostgreSQL, but it is in rare conditions that the existing PostgreSQL limits would need to be 

exceeded [38]. The PostgreSQL limits are displayed in the Table 3 below. 

 
Table 3 - PostgreSQL Limits and Values [37] 

Limit Value 

Maximum Database Size Unlimited 

Maximum Table Size 32 TB 

Maximum Row Size 1.6 TB 

Maximum Field Size 1 GB 

Maximum Rows per Table Unlimited 

Maximum Columns per Table 250 - 1600 depending on column types 

Maximum Indexes per Table Unlimited 

 

Due to the aforementioned and to the tolerable limitations it contains PostgreSQL has 

won praise from its users and industry recognition, including the "Linux New Media Award for 

Best Database System" and five time winner of the "The Linux Journal Editors' Choice Award" 

for best DBMS [37]. 
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PostgreSQL is both a standard compliant and a highly customizable database that offers a wide 

range of features.  It prides itself in standards compliance as its SQL implementation strongly 

conforms to the ANSI-SQL:2008 standard. Moreover, it has full support for subqueries 

(including subselects in the FROM clause), read-committed and serializable transaction 

isolation levels. And while PostgreSQL has a fully relational system catalog which itself 

supports multiple schemas per database, its catalog is also accessible through the Information 

Schema as defined in the SQL standard. Another standard compliance feature is its data 

integrity features that include (compound) primary keys, foreign keys with restricting and 

cascading updates/deletes, check constraints, unique constraints, and not null constraints [37]. 

Other open-source databases such as MySQL and MariaDB are doing a lot to be SQL standard 

compliant with the InnoDB/XtraDB storage engines. They now offer a STRICT option using 

SQL modes, which determines the data validation checks that get used; however, depending on 

the mode we use, invalid and sometimes silently-truncated data can be inserted or created on 

update. Neither of these databases currently supports check constraints and there are also a host 

of caveats for foreign key constraints. Additionally, data integrity may suffer significantly 

depending on the storage engine selected. MySQL (and the MariaDB fork) has made no secret 

that they have long made tradeoffs for speed and efficiency over integrity and compliance [38]. 

Last but not least, PostgreSQL has customizable features through which it is able to run stored 

procedures in more than a dozen programming languages, including Java, Perl, Python, Ruby, 

Tcl, C/C++, and its own PL/pgSQL, which is similar to Oracle's PL/SQL. Moreover, besides 

the standard function library that is included, there are the hundreds of built-in functions that 

range from basic math and string operations to cryptography and Oracle compatibility. 

PostgreSQL also includes a framework that allows developers to define and create their own 

custom data types along with supporting functions and operators that define their behavior [37].  

Best of all PostgreSQL features though is that its source code is available under a liberal open 

source license: the PostgreSQL License. This license provides the users with the freedom to 

use, modify and distribute PostgreSQL in any form they like, open or closed source. As such, 

PostgreSQL is not only a powerful database system capable of running the enterprise, it is a 

development platform upon which to develop in-house, web, or commercial software products 

that require a capable RDBMS [37]. 

In the tool that we built it is more likely that most of the aforementioned advanced features will 

not be used, but since data needs can evolve quickly, there is an undoubtedly clear benefit to 

having them as our database capabilities. Therefore, due to the wide variety of capabilities, the 

extensive data capacity, the data integrity and its exceptional documentation that can guide 

experienced or fresh users in its use, PostgreSQL was chosen to be the relational database of 

our tool. 
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1.5. Programming Languages for the Developement Unsupervised Clustering and 

Forecasting Tools through Machine Learning 

 

As the integration of internet in our lives rises, whether this is a good or a bad outcome, the 

integration of information technology in mores areas of our lives also rises. Along with the rise 

of internet and information technologies there is also an increase in the amounts of data 

retrieved and as a result an increase in the importance of processing those data in large scales.  

Based on recent estimates, 2.5 quintillion (1018) bytes of data are generated on a daily basis. In 

order to get an understanding of the amount of data available nowadays we only need to realize 

that 90 percent of the information that we store nowadays was generated in the past decade 

alone. It is made obvious that this amount of data is beyond the means of standard analytical 

methods or it is simply too vast for humans limited minds to even comprehend. In order to cope 

with this infinite amount of data machine learning was developed. Through Machine Learning, 

we enable computers to process, learn from, and draw actionable insights out of the otherwise 

impenetrable walls of big data [39]. The goal of this section is to deliver a comparison of five 

programming languages, which are C/C++, Java, R, JavaScript and Python in order to 

determine the most appropriate of them in order to be used for electricity clustering and 

forecasting in a microgrid level using machine learning technology. 

 

1.5.1. C/C++ 

C is a general-purpose, imperative computer language and was originally developed by Dennis 

Ritchie between 1969 and 1973 at Bell Labs and used to re-implement the Unix operating 

system. Since then it has become one of the most widely used programming languages of all 

time, with C compilers from various vendors available for the majority of existing computer 

architectures and operating systems [40]. C++ on the other hand, is a middle-level programming 

language that was also developed at Bell Labs by Bjarne Stroustrup in 1979. The purpose of its 

creation was to bypass the difficulties of analyzing UNIX kernel for distributed systems that 

arose using other available programming languages that were either too slow or low level. The 

development of C++ was based on C because it was a general purpose language, very efficient 

as well as fast in its operations. Nowadays, C++ is ranked 4th in popularity according to 2017 

IEEE spectrum Top Programming Language ranking [41]. 

C/C++ is ideal for low-level software such as operating system components and 

networking protocols where computational speed and memory efficiency are extremely 

critical. For these same reasons, it is also a popular choice for implementing the guts of 

Machine Learning procedures. However, its lack of idiomatic abstractions for data processing 

and added overhead for memory-management can make it unsuitable for beginners, and 

burdensome for developing complete end-to-end systems. In either case, there is no dearth of 

Machine Learning libraries available in C/C++, e.g. LibSVM, Shark and mlpack [42]. 

 

1.5.2. JAVA 

Java was developed by James Gosling at Sun Microsystems as a general-purpose computer-

programming language that was concurrent, class-based and object-oriented. It was released in 

1995 as a core component of Sun Microsystems' Java platform and derived much of its syntax 

from C and C++, but it had fewer low-level facilities than either of them [43]. Java became the 

software engineer’s language of choice because of its clean and consistent implementation of 

object-oriented programming, and platform-independence using JVMs. It sacrifices brevity 

and flexibility for clarity and reliability, which makes it popular for implementing critical 

enterprise software systems. In order to maintain that same level of reliability and to avoid 

writing messy interfaces, companies that have been using Java may prefer to stick to it for their 

Machine Learning needs [42]. 

 

1.5.3. R 

R was created by Ross Ihaka and Robert Gentleman at the University of Auckland, New 

Zealand. It was named partly after the first names of the first two R authors and partly as a play 



 

 
35 

on the name of S as it started as an implementation of the S programming language combined 

with lexical scoping semantics inspired by Scheme. S was created by John Chambers in 1976, 

while at Bell Labs. The R project was conceived in 1992, with an initial version released in 

1995 and a stable beta version in 2000 [44].  

R is a GNU package. The source code for the R software environment is written primarily 

in C, Fortran, and R. R is freely available under the GNU General Public License, and pre-

compiled binary versions are provided for various operating systems. While R has a command 

line interface, there are several graphical front-ends available [44].  

R is used for statistical computing and is a clear winner for large-scale data-mining, 

visualization and reporting. It provides an easy access to a huge collection of packages that 

enable the users to apply almost all kinds of Machine Learning algorithms, statistical tests and 

analysis procedures. The language itself has an elegant—albeit esoteric—syntax for expressing 

relationships, transforming data and performing parallelized operations [42]. 

 

1.5.4. JavaScript 

JavaScript was deployed for the first time in 1995 in the Netscape Navigator 2.0 beta. Until it 

came to the name we know it today it had changed quite a bit. It started during its development 

as Mocha, then it was officially named as Livescript when it first shipped in beta releases of 

Netscape Navigator 2.0 and then changed again to the one that we know today [45]. 

JavaScript often abbreviated as JS, is a high-level, interpreted programming language which is 

also characterized as dynamic, weakly typed, prototype-based and multi-paradigm. 

Alongside HTML and CSS, JavaScript is one of the three core technologies of World Wide 

Web content engineering. It is used to make webpages interactive and provide online programs, 

including video games. The majority of websites employ it, and all modern web 

browsers support it without the need for plug-ins by means of a built-in JavaScript engine. 

Nowadays JavaScript is evolving with a rapid speed as it can be found on mobile 

devices, desktop applications, embedded systems and backend applications. Therefore, 

due to the wild range of its usage it can be used even in machine learning applications. 

Perhaps it’s not the best idea to train machine learning models in the browser but using 

pre-trained models in the browser might be a promising field in the future and it can be 

used as the bridge for the web developers to enter the field of machine learning [45]. 

 

1.5.5. Python 

Python got a definite seat among the modern high-languages as a general purpose programming 

language. It was invented in the early 90s in CWI Netherlands by Guido Van Rossum in an effort 

to find an alternative for the ABC language [46]. Python is one of the most popular programming 

languages for machine learning and data science and therefore enjoys a large number of useful add-

on libraries developed by its great community. Although the performance of interpreted languages, 

such as Python, for computation-intensive tasks is inferior to lower-level programming languages, 

extension libraries such as NumPy and SciPy have been developed that build upon lower layer 

Fortran and C implementations for fast and vectorized operations on multidimensional arrays. For 

machine learning programming tasks, we will mostly refer to the scikit-learn library, which is one 

of the most popular and accessible open source machine learning libraries as of today [39]. 

 

1.6. Benefits of Python among other Programming Languages regarding Clustering 

Methods 

 

The most decisive factor when selecting a language for machine learning is the type of project 

that it will be used. In a survey, the results of which are displayed in Figure 14, developers 

where asked would their choice be for machine learning languages in 17 different application 
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areas. Python was the programming language with the highest popularity, for machine learning 

developers and data scientists, among the other languages regarding machine learning [47]. 

 

 

Figure 14 - Popularity of Machine Learning Languages [48] 

 

Python leads the pack, with 57% of data scientists and machine learning developers using it 

and 33% prioritizing it for development. This fact should not surprise us based on the fact that 

there is a huge evolution in deep learning Python frameworks over the past 2 years, including 

the release of TensorFlow and a wide selection of other libraries. Python ratio of usage is 57% 

which is the highest ratio making it a primary choice for machine learning language among the 

other five languages [47]. 

In addition, given all the evolution, Python is often compared to R, but they are nowhere near 

comparable in terms of popularity: R comes fourth in overall usage (31%) and fifth in 

prioritization (5%). R is in fact the language with the lowest prioritization-to-usage ratio among 

the five, with only 17% of developers who use it prioritizing it. This means that in most cases 

R is a complementary language, not a first choice in opposition to Python. Furthermore, Python 

is ahead of many highly preferred languages such as C/C++ which is found second, both in 

usage (44%) and prioritization (19%). Java follows C/C++ very closely, while JavaScript 

comes fifth in usage, although with a slightly better prioritization performance than R (7%) 

[47]. Moreover, those who responded to the survey about other programming languages used 

in machine learning application also suggested the usual suspects of Julia, Scala, Ruby, Octave, 

MATLAB and SAS, but they all fall below the 5% mark of prioritization and below 26% of 

usage [47].  

Machine learning scientists working on sentiment analysis prioritise Python (44%) and R (11%) 

more and JavaScript (2%) and Java (15%) less than developers working on other areas. In 

contrast, Java is prioritised more by those working on network security / cyber-attacks and fraud 

detection, the two areas where Python is the least prioritised. Network security and fraud 
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detection algorithms are built or consumed mostly in large organisations — and especially in 

financial institutions — where Java is a favourite of most internal development teams. In areas 

that are less enterprise-focused, such as natural language processing (NLP) and sentiment 

analysis, developers opt for Python which offers an easier and faster way to build highly 

performing algorithms, due to the extensive collection of specialised libraries that come with it 

[47]. C/C++ is mostly favoured for Artificial Intelligence (AI) in games (29%) and robot 

locomotion (27%) which are two areas where the level of control, high performance and 

efficiency are required. Therefore, a lower level programming language such as C/C++ that 

comes with highly sophisticated AI libraries is a natural choice, while R, designed for statistical 

analysis and visualizations, is deemed mostly irrelevant and is therefore prioritized in the lower 

position in AI followed by speech recognition where the case is similar [47]. 

Although surveys can indicate a programming language being more appropriate for an 

application than another, there is no rule for the best machine learning language. In our 

application based on the survey and on the fact that our effort of creating a predictive tool is 

our maiden journey in machine learning, Python will be used as the best option, given its 

wealth of libraries and ease of use. 

  



 

 
38 

2. Electrical Load Data  

 

Nowadays, data are the most important source in each program and they are the basis of its 

success. This means that if the data we import are good then the system we are making is likely 

to work properly and to have a high precision. On the other hand if the data we put into the 

system are incomplete, or lack the precision required than the most likely scenario is that the 

system that is implemented will have limited precision and will not function properly. 

 

2.1. Data Retrieval from the Administrator of the Greek Electricity Distribution 

Network 

 

Taking the aforementioned under consideration and after searching the best possible ways to 

retrieve the data we came to the decision to get our data from the Administrator of the Greek 

Electricity Distribution Network (Greek: Διαχειριστής Ελληνικού Δικτύου Διανομής 

Ηλεκτρικής Ενέργειας, or ΔΕΔΔΗΕ) which was formed by the separation of the Distribution 

Department of Greece's Public Power Corporation in order to comply with the 2009/72/EC EU 

Directive relative to the electricity market organization. Its mission is to assume the 

responsibilities of the Distributor for the Network Operation of Greece. It is a 100% subsidiary 

of the public power corporation (Greek: ΔΕΗ), however, it is independent, maintaining all the 

independence requirements embodied in the above legislative framework. Therefore, through 

the smart metering system that it contains we were able to obtain past data of both active and 

reactive loads of the Technological Institute of Sterea Ellada for the Chalkis location only by 

entering in the following site:  

 

 

https://meteringnet.deddie.gr/login.aspx?ReturnUrl=%2fbilling.aspx 

 

 

 

Figure 15 - DEDDIE Login Page 

 

https://meteringnet.deddie.gr/login.aspx?ReturnUrl=%2fbilling.aspx
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After we have successfully logged in the website we were able to choose the time periods of 

the loads on which we would rely our solution. In order to have a sufficient amount of data we 

draw data from January 1, 2010 to January 31, 2018. From the data retrieved 95% will be used 

for training and the rest of them for testing as it will be explained in chapter 5. 

We are given the ability to retrieve the data per hour or per quarter. Based on the Divinus 

requirements we decide to retrieve the data per hour. 

 

 
Figure 16 - DEDDIE Site where we choose the data we want to retrieve and the time unit to which the 

data will be retrieved 

 

As soon as the data are ready to be downloaded we are able to view two graphs one for the 

active and one for the reactive load as it is shown in Figure 16. 

 

 
Figure 17 - Active Load Graph Displaying the Selected Time Period 
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Figure 18 - Reactive Load Graph Displaying the Selected Time Period 

 

These data can be exported from the site in three possible formats: a) excel b) csv and c) pdf. 

The pdf format was automatically excluded due to the fact that it is a non-manageable format 

type. Therefore, the excel and the csv formats are the only that we could handle. We will 

proceed with the excel format. 

 

 
Figure 19 - DEDDIE Excel Format 
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Figure 20 - DEDDIE CSV Format 

 

As soon as we have downloaded the data required for Divinus we are able to proceed to the 

next step which is the insertion of these data to our program’s database. 

 

2.2. Data Insertion in Divinus PostgreSQL Database 

 

The next thing that needs to be done after the data have been successfully downloaded is the 

insertion to the database and as a result to Divinus itself. This action is performed with the use 

of a python library called pandas.  

Pandas is an open source, software library written for Python and is used for data manipulation 

and analysis. Its name derives from the term "panel data" and as it is expected it offers solutions 

regarding data structures and operations for manipulating numerical tables and time series. It is 

easy to use and a very useful tool when it comes to the management of a wide variety of data. 

The first use of pandas is to enter the data in Divinus in order to check whether they are properly 

structured. In case they are not, corrective actions are performed on the data and then they are 

store in the database. Table 4 contains the code that performs the aforementioned actions. 

 

Table 4 - DEDDIE Power Loads Code 

''' 
Created on Mar 4, 2018 
 
@author: dimitris mele 
''' 
 
import os 
import threading 
import pandas as pd 
from glob import glob 
from Database.Insert import insert_to_ap, insert_to_rp 
from Core.XLS_Removal import XLS_Removal_Energeia, XLS_Removal_Aerga 
 
def Deddie_active_power_data(): 
 
    for file in glob(r'C:\Users\dimit\Downloads\Loads\Energeia___*.*'): 
        directory = (os.path.abspath(file))  
        print("----------------------------------------------------------
--------------------------") 
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        print ('A file found: {}'.format(directory)) 
        print ("") 
             
        get_ap, = pd.read_html(directory, thousands='.', decimal=',', 
header=0) 
 
        get_ap.rename(columns={'Î—Î¼ÎµÏ•Î¿Î¼Î·Î½Î¯Î±':'date_time', 
'Î•Î½Î­Ï•Î³ÎµÎ¹Î±':'active_power_kwh'}, inplace=True) 
        get_ap['date_time'] = get_ap['date_time'].apply(pd.Timestamp) 
         
        for i in range(len(get_ap)): 
            insert_to_ap(get_ap['date_time'][i], 
get_ap['active_power_kwh'][i]) 
        print("Data were successfully inserted in the database") 
        print("----------------------------------------------------------
--------------------------") 
         
        XLS_Removal_Energeia() 
         
    seconds=1.0 
    minutes=seconds*60 
    hour=minutes*60 
       
    threading.Timer(hour, Deddie_active_power_data).start() 
     
Deddie_active_power_data() 

 

 

The aforementioned code runs every hour. This means that every hour it will search at 

(C:\Users\dimit\Downloads\Loads\) which is the location where the DEDDIE files are saved. 

Once it identifies files whose names start with "Energeia" or "Aerga" it will try to integrate 

them through pandas in Divinus, perform corrections wherever they are needed and store them 

in the database. The integration into the database is performed through the SQL insert functions.  

 

Table 5 - SQL Insertion Command for the Active Power Loads Implemented through Python 

def insert_to_ap(date_time, active_power_kwh): 
    conn=psycopg2.connect ("host='localhost' dbname='postgres' 
user='postgres' password='123456q!'") 
    cur=conn.cursor() 
    cur.execute ("INSERT INTO active_power VALUES (%s,%s) ON CONFLICT 
(date_time) DO NOTHING",(date_time, active_power_kwh)) 
    conn.commit() 
    conn.close() 

 

The insertion functions are implemented by inserting and executing the SQL commands 

through python. In order for the SQL commands to work in python the first thing that needs to 

be done is to set the information regarding the database in which they will be saved. The 

information required are the host, the database name, the user and the password. By giving 

these information we are able to log into the database and define the command we want to 

execute. In our case the command we want to execute is the insertion command and it will be 

executed as follows: 

 

 

INSERT INTO TABLE VALUES (%s,%s) ON CONFLICT (VALUE) DO NOTHING 
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The bold words in the SQL command should be replaced by the corresponding table and the 

corresponding table column. 

 

INSERT INTO active_power VALUES (%s,%s) ON CONFLICT (date_time) DO 

NOTHING 

 

 

The last step in the data retrieval process is the deletion of the files after the data have been 

successfully inserted in the database. Therefore, as soon as the files are successfully inserted 

into the database the functions XLS_Removal_Energeia() starts running. Its purpose is to delete 

the downloaded xlsx files from the directory that they are stored in order to release computing 

resources. 

 

Table 6 - XLSX Removal Code 

''' 
Created on 8 Μαρ 2018 
 
@author: d.mele 
''' 
 
import os 
from glob import glob 
 
def XLSX_Removal_Energeia(): 
     
    for file in glob(r'C:\Users\dimit\Downloads\Loads\Energeia___*.*'): 
        os.remove(file) 

 

 

After all the functions and the processes have been successfully completed we are able to enter 

the database and check that the data required for Divinus to start working are inserted in the 

corresponding tables. To do that pgadmin package is required to be downloaded. pgAdmin is a 

free and open source graphical user interface administration tool for PostgreSQL, which is 

supported on many computer platforms. 

Here end the data insertion process. The same process is also followed for the reactive power 

loads.  
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3. Clustering Electricity User Profiles Data through Self Organised 

Map (SOM) 

 

Having all the data ready allow us to move to the next step which is to implement the first of 

the two algorithms through which the use profiling goal is achieved. The algorithm chosen for 

this goal as it is already mentioned in Chapter 1 is the Self Organizing Map which is an 

unsupervised learning algorithm. SOM is a type of Artificial Neural Networks able to convert 

complex, nonlinear statistical relationships between high-dimensional data items into simple 

geometric relationships on a low-dimensional display [49]. 

 

3.1. Data Pre-Processing 

 

In order to implement the SOM algorithm, data pre-processing is required. The data that are 

loaded in our system are hourly values which means that they contain a timestamp and the 

hourly consumption. A depiction of how these data are stored in the database can viewed in 

Figure 21. This format however is not the desired one because although it can be clustered by 

SOM the clusters will not make any sense. The data need to be reorganized in a format that will 

be more logical and the clusters created afterwards could be easily used. 

 

 
Figure 21 - pgAdmin Active Loads View 

 

As a result, the first pre-processing step in SOM’s implementation is to reorganize the data in 

the appropriate format. In order to do that we make use of some real helpful data structures and 

analysis libraries such as pandas, minisom [49], sklearn preprocessing, and sqlalchemy. The 

first step as it shown in Table 8 is to retrieve the data from the database with the use of 
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sqlalchemy. Through the sqlalchemy we are given the ability to choose the data we want and 

set specific rules. For instance, as it shown in Table 8 we choose to retrieve the active power 

data where the consumption field is not null. In this way we get all the required data avoiding 

to have information that are incomplete (e.g. date without consumption). The next thing that 

should be done as soon as we retrieve the data required is to put them in pandas dataset with 

the required format. In order to do that we need to create a unique day that will contain 24 

empty slots, one for each of the hourly consumptions of that day. As it is shown in Table 8 by 

running a for loop we are able to insert the hourly consumptions to each of the empty slots. 

 

Table 7 – SOM Data Preprocessing 

''' 
Created on 26 Μαρ 2018 
 
@author: d.mele 
''' 
 
import numpy as np 
import pandas as pd 
from minisom import MiniSom 
from sqlalchemy import create_engine 
from sklearn.preprocessing import MinMaxScaler 
from Database.Truncate import truncate_som_ap, truncate_som_day_ap 
 
 
def som_active_power_day_clusters(): 
      
    # Truncate the data that exist in SOM from previous runs 
    truncate_som_ap() 
    truncate_som_day_ap() 
     
    # Importing the dataset 
    engine = 
create_engine('postgresql://postgres:123456q!@localhost:5432/postgres') 
    dataset = pd.read_sql_query("SELECT date_time, active_power_kwh FROM 
active_power WHERE active_power_kwh IS NOT NULL", con=engine) 
    #dataset["date_time"] = dataset["date_time"].astype(np.int64) 
     
    print("--------------------------------------------------------------
----------------------") 
    print ("Getting Data ready for training and clustering...") 
     
    # We first need to create a dataset that has a unique date and 24 empty 
slots for each date in order to enter the consumptions of that date 
    date_clusters = pd.DataFrame(columns=['date', 'Hour 0', 'Hour 1', 'Hour 
2', 'Hour 3', 'Hour 4', 'Hour 5', 'Hour 6', 'Hour 7',  
                                          'Hour 8', 'Hour 9', 'Hour 10', 
'Hour 11', 'Hour 12', 'Hour 13', 'Hour 14', 'Hour 15',  
                                          'Hour 16','Hour 17','Hour 
18','Hour 19','Hour 20','Hour 21','Hour 22','Hour 23']) 
    date_clusters['date'] = dataset['date_time'].dt.date.unique() 
     
    data_check = pd.DataFrame(dataset['date_time'].dt.date) 
    for i in range(len(date_clusters)):        
        get_index = data_check.index[data_check['date_time'] == 
date_clusters['date'][i]].tolist() 
         
        for j in get_index: 
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            hour = int(dataset['date_time'].loc[j].hour) 
            if hour == int(0): 
                date_clusters['Hour 0'][i] = 
dataset['active_power_kwh'][j] 
            elif hour == int(1): 
                date_clusters['Hour 1'][i] = 
dataset['active_power_kwh'][j] 
            elif hour == int(2): 
                date_clusters['Hour 2'][i] = 
dataset['active_power_kwh'][j] 
            elif hour == int(3): 
                date_clusters['Hour 3'][i] = 
dataset['active_power_kwh'][j] 
            elif hour == int(4): 
                date_clusters['Hour 4'][i] = 
dataset['active_power_kwh'][j] 
            elif hour == int(5): 
                date_clusters['Hour 5'][i] = 
dataset['active_power_kwh'][j] 
            elif hour == int(6): 
                date_clusters['Hour 6'][i] = 
dataset['active_power_kwh'][j] 
            elif hour == int(7): 
                date_clusters['Hour 7'][i] = 
dataset['active_power_kwh'][j] 
            elif hour == int(8): 
                date_clusters['Hour 8'][i] = 
dataset['active_power_kwh'][j] 
            elif hour == int(9): 
                date_clusters['Hour 9'][i] = 
dataset['active_power_kwh'][j] 
            elif hour == int(10): 
                date_clusters['Hour 10'][i] = 
dataset['active_power_kwh'][j] 
            elif hour == int(11): 
                date_clusters['Hour 11'][i] = 
dataset['active_power_kwh'][j] 
            elif hour == int(12): 
                date_clusters['Hour 12'][i] = 
dataset['active_power_kwh'][j] 
            elif hour == int(13): 
                date_clusters['Hour 13'][i] = 
dataset['active_power_kwh'][j] 
            elif hour == int(14): 
                date_clusters['Hour 14'][i] = 
dataset['active_power_kwh'][j] 
            elif hour == int(15): 
                date_clusters['Hour 15'][i] = 
dataset['active_power_kwh'][j] 
            elif hour == int(16): 
                date_clusters['Hour 16'][i] = 
dataset['active_power_kwh'][j] 
            elif hour == int(17): 
                date_clusters['Hour 17'][i] = 
dataset['active_power_kwh'][j] 
            elif hour == int(18): 
                date_clusters['Hour 18'][i] = 
dataset['active_power_kwh'][j] 
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            elif hour == int(19): 
                date_clusters['Hour 19'][i] = 
dataset['active_power_kwh'][j] 
            elif hour == int(20): 
                date_clusters['Hour 20'][i] = 
dataset['active_power_kwh'][j] 
            elif hour == int(21): 
                date_clusters['Hour 21'][i] = 
dataset['active_power_kwh'][j] 
            elif hour == int(22): 
                date_clusters['Hour 22'][i] = 
dataset['active_power_kwh'][j] 
            elif hour == int(23): 
                date_clusters['Hour 23'][i] = 
dataset['active_power_kwh'][j] 
      

 

As soon as all data are reorganized we will be able to see in the console that the pandas dataset 

is filled with hourly consumptions in the corresponding days. Table 9 shows the format of the 

pandas dataset after the pre-processing is completed. 

 

Table 8 - Pandas Dataset after the preprocessing is complete. It can now be used to cluster the dates 

with SOM based on their daily consumptions 

                     date  Hour 0 Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 Hour 
6  \ 
0     1262304000000000000    73.6     75     74     75   75.2     75   
76.2    
1     1262390400000000000    74.8   78.4   76.8   76.6   74.8     76   
73.4    
2     1262476800000000000    74.4   75.6   74.4   70.8   71.4     70   
69.4    
3     1262563200000000000    81.2   79.2   78.4   76.2   77.2   75.2   
74.6    
4     1262649600000000000    84.6     85   84.6     85   85.4   83.2   
83.2    
5     1262736000000000000   112.6  114.2  107.2  112.8  108.8    108   
99.2    
6     1262822400000000000   104.6  105.2     99  100.2   95.8   98.2     
95    
7     1262908800000000000     111    110    108  107.8  106.4    106  
104.8    
8     1262995200000000000   102.8    103   96.4  100.8   99.6  102.6   
98.8    
9     1263081600000000000    94.2   95.8   94.8   95.2     95   94.6   
93.4    
10    1263168000000000000   157.8  160.2  155.6  170.4  154.8  147.4  
162.8    
11    1263254400000000000   207.6    195  196.4    195  184.2  186.2  
193.4    
12    1263340800000000000   184.2  180.4    172    189  190.2  178.2  
177.8    
13    1263427200000000000   192.6  185.8  192.4    180    168  172.6  
176.4    
14    1263513600000000000   167.2  164.2    168    159    165    169  
168.4    
15    1263600000000000000     128  122.6  118.8  113.4  115.2  109.2  
112.2    
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16    1263686400000000000   111.6  113.6  111.2  113.6  106.8  110.2  
107.6    
17    1263772800000000000     152  146.8    157  145.4    136    145  
156.2    
18    1263859200000000000   209.4  203.4  194.8  196.2    197    197  
194.8    
19    1263945600000000000     195  194.8  197.8  200.8  191.2  211.8    
212    
20    1264032000000000000   211.4  214.6    219  222.8  200.4  205.4  
206.8    
21    1264118400000000000   174.8  170.6    167  160.2    173  172.4  
168.6    
22    1264204800000000000   147.4  143.2  129.4  125.2  121.6  120.4  
117.8    
23    1264291200000000000   143.4  139.8  143.4    136  132.4    133  
128.6    
24    1264377600000000000   174.6  172.4  185.6  174.4  179.8  187.4    
187    
25    1264464000000000000   231.2    230  222.4  205.6  225.2  221.4  
219.4    
26    1264550400000000000   222.6  205.2  198.8  205.4    208  203.6    
201    
27    1264636800000000000   195.2  186.8  187.4  184.4  182.4  195.6  
184.4    
28    1264723200000000000   162.8  160.2  157.2  157.2  170.2  171.2  
155.8    
29    1264809600000000000   138.2    143  140.2  132.6  128.2  126.6  
123.6    
...                   ...     ...    ...    ...    ...    ...    ...    
...    
2951  1517270400000000000   120.4  117.2  117.2  113.4  109.4  103.2  
101.4    
2952  1517356800000000000   135.6  146.2  134.4    133  125.4    137  
133.2    
2953  1517443200000000000  132.23  122.8  120.2  117.6  116.8  124.8  
119.8    
2954  1517529600000000000   112.6  109.6  110.2    106  107.2  112.8  
115.2    
2955  1517616000000000000    95.6   93.4   88.6   87.4   88.2   87.2     
86    
2956  1517702400000000000    90.2   77.4   80.2   82.2   80.4   78.2   
76.2    
2957  1517788800000000000   121.2  122.6    111  103.8   96.8  112.2  
107.2    
2958  1517875200000000000   120.6  118.6  114.4  112.2  112.8    125    
119    
2959  1517961600000000000   120.8  119.6  101.8  103.4    102    120  
120.2    
2960  1518048000000000000      99   99.8   98.4   91.6   90.4  104.8  
112.6    
2961  1518134400000000000    86.6   94.2   95.2   96.8     98  104.6  
110.2    
2962  1518220800000000000    89.6   89.2   84.4   79.8   80.8   78.4     
78    
2963  1518307200000000000    85.6   88.8   86.4   80.6   80.6     77     
81    
2964  1518393600000000000    88.6     91   89.4     92   88.8  103.8  
100.4    
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2965  1518480000000000000   112.8  116.2  116.6  113.8    120    125  
129.6    
2966  1518566400000000000   104.6  101.8  109.2  108.8  103.2  107.8  
115.2    
2967  1518652800000000000   114.4  110.4  115.8  110.4    112    117  
123.2    
2968  1518739200000000000    97.4  100.2   98.4   88.6   85.4   97.6    
105    
2969  1518825600000000000    89.4   85.2   87.4   81.2   77.8   76.8     
75    
2970  1518912000000000000      93   91.6   92.2   88.2     90     92     
88    
2971  1518998400000000000    88.2   83.4     88   83.6   75.6   78.4   
76.8    
2972  1519084800000000000   101.2   95.6  102.4   96.4   92.6  105.6  
112.4    
2973  1519171200000000000   111.4  107.4    108    101   99.8  103.8    
113    
2974  1519257600000000000   114.8  111.8    111  105.2   99.6   98.8    
105    
2975  1519344000000000000     114  106.6  102.6   95.8     86   89.6   
94.6    
2976  1519430400000000000    82.6   78.4     78   78.6   77.6   75.4   
73.4    
2977  1519516800000000000    78.2   78.2   82.6   78.2   76.8   76.6   
76.6    
2978  1519603200000000000    93.8   88.8   88.4   82.2   82.2   95.4  
100.4    
2979  1519689600000000000   104.2  107.4  103.2   99.4     99    108    
103    
2980  1519776000000000000     107    104   97.4   98.6   90.8  103.4  
111.8    
 
     Hour 7 Hour 8   ...   Hour 14 Hour 15 Hour 16 Hour 17 Hour 18 Hour 
19  \ 
0      71.8     70   ...      56.8    56.2    55.2    66.8    77.6    
84.4    
1      70.4   66.4   ...      59.2    59.8    59.8    66.2    76.8    
82.8    
2      66.4   63.8   ...      59.4    58.6    59.8      72    85.4    
91.2    
3      74.4   80.8   ...     112.4    83.4      88    92.2   100.8   
105.8    
4      83.8   92.6   ...       114   100.8   104.8   108.4   120.6   
123.8    
5      96.4     90   ...      80.4    79.4      81    96.6   108.6     
113    
6      97.8  111.2   ...       109   107.4   104.4   113.4   128.2   
126.4    
7     108.6    121   ...     175.2   157.4   147.2   142.2   143.8   
134.6    
8      97.6   92.2   ...      87.4    90.4    89.8   101.4   111.2   
113.6    
9      92.2   87.4   ...      88.6    88.6    91.2   102.6   115.4   
123.8    
10    168.8  211.6   ...       399   396.8     399   399.6     344     
297    
11      200    249   ...     450.6   425.2   409.8   366.4   366.4     
362    
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12    185.2  223.4   ...     421.2     407   366.2   384.4     382   
362.8    
13      183  232.2   ...     415.2   381.8   350.6   338.2   324.8   
296.6    
14      185  226.2   ...       345     303     273   279.8   290.2   
263.2    
15    106.8    108   ...     121.8   100.4   112.6     129   154.8   
140.8    
16    107.4  105.2   ...     115.2    98.6    98.6   120.2   136.6     
154    
17    151.8  221.4   ...       456     427     423   399.8   392.6     
361    
18      201  258.4   ...     452.8   421.2   398.8   411.6     394   
361.4    
19    224.6  256.4   ...     449.8   416.4   405.6   397.2   396.4   
405.6    
20    219.4  258.6   ...     371.6     320   300.2   338.6   331.8   
304.6    
21    181.2  216.6   ...     402.6     356     347   314.2     323   
303.2    
22      109  115.4   ...     148.2   124.8   127.6   148.4   172.2   
170.6    
23      124  121.8   ...     153.4     149   148.2   163.8   193.6     
185    
24    194.4  267.2   ...       495   434.2   413.6   398.2   392.4   
363.8    
25    225.8  276.8   ...     496.6   464.8   440.8     426   425.6   
386.4    
26      207  256.4   ...     453.8   423.8     407   382.6   357.4   
343.8    
27    199.6    248   ...     392.2   317.4     289   287.8   319.2   
309.8    
28    169.6  201.4   ...     236.8   229.2   236.4   230.4   256.4   
239.6    
29      119  119.2   ...     132.8   113.2   107.6   134.4   160.4   
168.2    
...     ...    ...   ...       ...     ...     ...     ...     ...     
...    
2951    115  130.8   ...       151   120.2   119.4   123.4   150.8   
168.4    
2952    162  224.6   ...     319.2   261.8   242.2   229.4   225.6   
230.8    
2953  148.4  179.4   ...     306.8     245   206.4   187.6   194.4   
197.6    
2954  135.2    179   ...     343.8   282.4   225.8     170   182.6   
181.4    
2955   83.8   79.8   ...     139.6   105.4    88.2    91.4   109.4     
116    
2956   75.8   73.6   ...     112.8    92.6    94.8   102.4   128.8   
127.8    
2957    140  183.2   ...     269.6   249.6   209.8     184   199.2   
195.2    
2958  152.2  193.6   ...     240.2   213.6     187   167.4   191.8   
196.8    
2959  165.4  192.6   ...     251.8     222   183.4   142.2     141   
161.4    
2960  143.4  179.4   ...       240   200.8   186.2   163.2     187   
201.2    
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2961  130.4    170   ...     234.6     162   148.4   132.8   120.6   
129.2    
2962   78.4   76.4   ...     141.6     115   105.2   114.2   120.4   
129.2    
2963   81.8   80.2   ...     122.4    96.6      95    91.4   112.2   
115.2    
2964    136  169.6   ...     241.2   185.2   170.6     155   165.6   
168.4    
2965    165  194.6   ...     306.2   226.8   193.2     164   166.8   
181.4    
2966  158.8  177.2   ...       286   224.4     196     164   181.8     
198    
2967  145.2    195   ...     310.6   226.6     187   169.8   165.6     
155    
2968  140.8  162.4   ...     271.6   222.8   181.8   159.6   148.8   
137.8    
2969   73.2   77.4   ...     123.4    93.6    89.2    90.4   107.4   
112.8    
2970   84.6   86.4   ...     101.6    76.2    71.6    85.4    93.6      
92    
2971   91.6  105.2   ...       124    96.2   102.2   100.6   103.2   
115.4    
2972  142.4  179.2   ...     292.8   232.8   193.2   165.2   151.8   
166.8    
2973  148.8  175.2   ...     272.4   201.6   182.6   159.4   159.8   
174.2    
2974  137.6  161.6   ...     216.2     184   170.4   138.8   143.4   
167.4    
2975  124.4  156.8   ...     237.2   184.4   149.8   131.2   133.6     
143    
2976   75.4   76.8   ...     130.2      94    90.4    93.6    96.6   
103.4    
2977   71.8   73.8   ...     115.4    92.8    89.6   108.2     116   
117.8    
2978    138  165.8   ...       256   183.8   177.8     181     168   
191.4    
2979  147.2    189   ...       299   245.2   218.2     192     171   
184.6    
2980  143.8  173.6   ...       260     212   177.6   153.6   140.4   
159.2    
 
     Hour 20 Hour 21 Hour 22 Hour 23   
0       76.8    74.6    76.6      73   
1       74.8    75.2    75.6    78.4   
2       80.2      79    79.6    78.2   
3       90.2    88.2    83.8    84.8   
4      117.2   114.6   116.8   114.2   
5      104.2   103.8   101.8   103.8   
6      112.4     110   114.4   111.2   
7        106    99.4      97    98.8   
8       98.4   100.8    93.6    93.8   
9      121.4   124.2   133.2   145.4   
10     222.6   209.2     205     209   
11     268.8   204.6   188.6   191.6   
12     276.4   223.6   202.2   199.4   
13     211.4   185.8   178.8   176.8   
14     174.2   136.2   135.8   130.8   
15     124.2   123.6   121.2     119   
16     129.2     137   137.2   147.2   
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17     270.8   236.4   235.4   225.4   
18     278.4   239.8   220.6   205.6   
19     278.6   233.6   221.4     214   
20       232     201     178   165.8   
21     208.2   164.2   152.8   147.8   
22     157.2   157.4   153.2     151   
23       172   177.2   173.8   178.8   
24     282.4   250.8     238   229.6   
25     285.4   231.6   227.8   230.4   
26     257.4   221.8   213.4   198.4   
27     257.2     200     189   181.6   
28     184.4   148.2   144.2   142.4   
29     152.4     143   146.8   135.6   
...      ...     ...     ...     ...   
2951   146.4   140.2     139   131.6   
2952   200.4   148.2     139   145.4   
2953   184.2   137.4   118.2   113.6   
2954   154.6      97     106    97.4   
2955    89.2    94.6      93      92   
2956     105   112.2     115   117.2   
2957   154.4   120.4     125   122.8   
2958   161.6   121.2   132.8   125.8   
2959     138   103.6    96.2     100   
2960   168.4     118    98.2    89.6   
2961     117    96.4    94.8    95.2   
2962    92.8    92.2      89    89.2   
2963    91.2    89.4      93    88.2   
2964   158.6     120     121   114.4   
2965     167     125     123     121   
2966   172.8     143   121.4   121.2   
2967   131.2   110.8      96    99.4   
2968   129.8    88.4      91    92.2   
2969    95.4    93.4      91    92.6   
2970    80.2    75.6    82.6      85   
2971    98.6    93.8    95.4      95   
2972   154.6   128.4   124.8   119.2   
2973   147.2   118.2   114.2   118.8   
2974   158.4   126.2   118.2     117   
2975     132    88.6    80.8    89.2   
2976    85.2    84.6      82    75.8   
2977    97.4    99.8    98.2     102   
2978   164.8   119.6     117   109.4   
2979     163   123.4     118   114.8   
2980   158.2   120.6     112   108.8 

 

Furthermore, besides the data reshape, in Table 9 we are able to see that the date column 

does not show dates but epochs. This happens not because of a mistake but rather of 

the need to convert dates into integers so that they can be read by the SOM algorithm. 

This change is accomplished with the use of the code in Table 10: 

Table 9 - Code that converts date to epoch in order to be used in SOM algorithm 

    date_clusters['date'] = pd.to_datetime(date_clusters['date'])   
    date_clusters['date'] = date_clusters['date'].astype(np.int64) 
    print(date_clusters)               

 

3.2. Implementation of Self Organizing Map 
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Having successfully reshaped that data in a logical format we are able to progress to the SOM 

implementation. The SOM implementation is based on the minisom python library which is a 

minimalistic and Numpy based implementation of the Self Organizing Maps [49]. The first 

thing that needs to be done is to split the data into the data that will be clustered and the data on 

which the clusters are to be created. 

 

Table 10 - Creation of two numpy data arrays X and y. The X numpy array holds the data that will be 

clustered while the y numpy array holds the data based on which the clustering of X will take place 

    X = date_clusters.iloc[:, 0:25].values 
     
    #Feature Scaling 
    sc = MinMaxScaler(feature_range= (0,1)) 
    X = sc.fit_transform(X) 
    print(X) 

 

As soon as this task is complete we have to specify the size of the SOM which in turn determines 

the accuracy of the clusters. By reducing or increasing the size we can define a larger or a 

smaller number of clusters. The actual question is not how many clusters can the SOM 

algorithm produce but rather how many clusters are really needed. The answer to this questions 

can be given relatively easy if we know the functionality of the building. For instance, the use 

profile of a home is quite different from the use profile of a factory of a university. Therefore, 

crucial information such as the aforementioned should be taken under consideration. In our 

case, having data from several past years, we are able to observe repeated patterns of 

consumption and therefore comprehend the functionality of the building we want to create its 

use profile. After carrying out a small research based on past loads and having tested a variety 

of clusters we came to the conclusion that for the Technological Education Institute facilities 

in Psachna Euboeas the required number of clusters sums up to 4.  

Having found the required number of clusters, we are able to start the implementation of the 

SOM algorithm. 

 

Table 11 – Initialization of the SOM algorithm with a 2x2 matrix 

     
    x = 2 
    y = 2 
    # Training the SOM 
    som = MiniSom(x = x, y = y, input_len = 25, sigma=1.0, 
learning_rate=0.5) # initialization of a 2x2 SOM 
    som.random_weights_init(X) 
    print("--------------------------------------------------------------
----------------------") 
    print ("Training active power loads...") 
    som.train_random(data = X, num_iteration = 100) # trains the SOM with 
100 iterations 
    print ("...ready!")  
    #Showing the Clusters 
    clusters = som.win_map(X) 
 
    xx = x + 1 
    yy = y + 1 
    for z in range(xx): 
        for w in range(yy): 
            cluster = clusters[(z,w)] 
            if cluster != []: 
                cluster_norm = sc.inverse_transform(cluster) 
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                som_predataset = pd.DataFrame(cluster_norm) 
                som_predataset['som_column'] = w 
                cols = som_predataset.columns.tolist() 
                som_predataset = som_predataset[[cols[-1]] + cols[:-1]]  
                som_predataset['som_row'] = z 
                cols = som_predataset.columns.tolist() 
                som_predataset = som_predataset[[cols[-1]] + cols[:-1]] 
                 
                som_predataset.rename(columns={0:'date_active_power', 
1:'hour_0', 2:'hour_1', 3:'hour_2', 
                                            4:'hour_3', 5:'hour_4', 
6:'hour_5', 7:'hour_6', 
                                            8:'hour_7', 9:'hour_8', 
10:'hour_9', 11:'hour_10', 
                                            12:'hour_11', 13:'hour_12', 
14:'hour_13', 15:'hour_14', 
                                            16:'hour_15', 17:'hour_16', 
18:'hour_17', 19:'hour_18', 
                                            20:'hour_19', 21:'hour_20', 
22:'hour_21', 23:'hour_22', 
                                            24:'hour_23'}, inplace=True) 
                 
                som_predataset['date_active_power'] = 
pd.to_datetime(som_predataset['date_active_power']) 
                som_predataset['date_active_power'] = 
som_predataset['date_active_power'].dt.round('1s') 
                som_predataset['date_active_power'] = 
pd.DataFrame(som_predataset['date_active_power'].dt.date)  
                print(som_predataset) 

 

SOM training starts as soon as we have specified the clusters and have run the SOM algorithm. 

A few seconds later we are given print outs of pandas datasets as it shown in Table 13 in which 

the reshaped data contain two more columns which are the som_row and the 

som_column that act as the identifies of the cluster in which the dataset belongs.  

 

Table 12 – Pandas Dataset that belongs to the cluster [0,0] 

-------------------------------------------------------------------------
----------- 
Training active power loads... 
...ready! 
     som_row  som_column date_active_power  hour_0  hour_1  hour_2  
hour_3  \ 
0          0           0        2010-01-11   157.8   160.2   155.6   
170.4    
1          0           0        2010-01-12   207.6   195.0   196.4   
195.0    
2          0           0        2010-01-13   184.2   180.4   172.0   
189.0    
3          0           0        2010-01-14   192.6   185.8   192.4   
180.0    
4          0           0        2010-01-15   167.2   164.2   168.0   
159.0    
5          0           0        2010-01-18   152.0   146.8   157.0   
145.4    
6          0           0        2010-01-19   209.4   203.4   194.8   
196.2    
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7          0           0        2010-01-20   195.0   194.8   197.8   
200.8    
8          0           0        2010-01-21   211.4   214.6   219.0   
222.8    
9          0           0        2010-01-22   174.8   170.6   167.0   
160.2    
10         0           0        2010-01-25   174.6   172.4   185.6   
174.4    
11         0           0        2010-01-26   231.2   230.0   222.4   
205.6    
12         0           0        2010-01-27   222.6   205.2   198.8   
205.4    
13         0           0        2010-01-28   195.2   186.8   187.4   
184.4    
14         0           0        2010-02-01   155.4   162.4   154.0   
158.6    
15         0           0        2010-02-02   176.0   170.2   169.0   
164.0    
16         0           0        2010-02-03   213.8   210.6   217.6   
199.4    
17         0           0        2010-02-05   164.4   164.0   167.6   
165.6    
18         0           0        2010-02-08   166.4   163.2   166.4   
165.4    
19         0           0        2010-02-09   195.0   187.0   183.4   
175.6    
20         0           0        2010-02-11   154.0   147.4   146.4   
145.8    
21         0           0        2010-02-12   160.6   154.8   150.6   
154.8    
22         0           0        2010-02-17   142.4   140.6   143.2   
135.2    
23         0           0        2010-02-23   150.2   145.0   140.4   
144.0    
24         0           0        2010-03-01   138.6   136.6   136.4   
142.2    
25         0           0        2010-03-08   157.2   153.2   160.0   
152.0    
26         0           0        2010-03-09   179.6   175.0   179.0   
174.0    
27         0           0        2010-03-10   173.0   163.6   153.6   
149.2    
28         0           0        2010-03-15   161.8   158.2   150.2   
162.6    
29         0           0        2010-03-16   200.0   196.2   185.6   
192.0    
..       ...         ...               ...     ...     ...     ...     
...    
570        0           0        2014-03-21   110.4   107.4   108.2   
100.4    
571        0           0        2014-03-26   106.6   111.4   106.0   
100.8    
572        0           0        2014-03-31   111.6   115.6   116.4   
124.2    
573        0           0        2014-04-08    98.8    95.8    98.4   
100.6    
574        0           0        2014-12-16   120.2   119.6   112.4   
127.0    
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575        0           0        2014-12-17   124.4   126.8   116.2   
108.8    
576        0           0        2014-12-18   117.0   106.8   112.4   
116.0    
577        0           0        2015-01-07   138.0   136.6   138.4   
138.8    
578        0           0        2015-01-08   158.0   162.6   150.0   
140.0    
579        0           0        2015-01-13   152.0   151.6   151.2   
162.0    
580        0           0        2015-01-14   134.8   129.0   128.8   
138.6    
581        0           0        2015-01-15   134.8   132.8   125.6   
143.2    
582        0           0        2015-01-16   124.2   124.6   119.0   
123.0    
583        0           0        2015-01-19   119.0   112.4   105.8   
120.8    
584        0           0        2015-01-21   129.6   116.8   118.6   
122.6    
585        0           0        2015-01-27   132.4   132.4   129.0   
134.0    
586        0           0        2015-01-28   136.8   132.0   132.0   
136.6    
587        0           0        2015-01-29   134.2   126.0   127.4   
130.2    
588        0           0        2015-02-03   118.2   108.4   113.8   
122.2    
589        0           0        2015-02-04   144.8   127.4   119.0   
117.2    
590        0           0        2015-02-18   157.0   142.4   131.4   
124.2    
591        0           0        2015-02-19   125.0   126.2   125.4   
123.6    
592        0           0        2015-02-25   115.0   115.2   110.4   
130.0    
593        0           0        2015-12-15   156.0   152.8   143.8   
135.2    
594        0           0        2015-12-16   131.8   134.6   124.6   
120.2    
595        0           0        2016-01-19   126.6   129.8   126.4   
128.2    
596        0           0        2016-01-22   139.6   140.2   139.2   
132.8    
597        0           0        2016-01-25   135.2   137.8   137.0   
132.8    
598        0           0        2016-01-26   145.6   149.6   139.2   
130.8    
599        0           0        2016-01-27   150.2   133.0   129.8   
133.0    
 
     hour_4  hour_5  hour_6   ...     hour_14  hour_15  hour_16  hour_17  
\ 
0     154.8   147.4   162.8   ...       399.0    396.8    399.0    399.6    
1     184.2   186.2   193.4   ...       450.6    425.2    409.8    366.4    
2     190.2   178.2   177.8   ...       421.2    407.0    366.2    384.4    
3     168.0   172.6   176.4   ...       415.2    381.8    350.6    338.2    
4     165.0   169.0   168.4   ...       345.0    303.0    273.0    279.8    
5     136.0   145.0   156.2   ...       456.0    427.0    423.0    399.8    
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6     197.0   197.0   194.8   ...       452.8    421.2    398.8    411.6    
7     191.2   211.8   212.0   ...       449.8    416.4    405.6    397.2    
8     200.4   205.4   206.8   ...       371.6    320.0    300.2    338.6    
9     173.0   172.4   168.6   ...       402.6    356.0    347.0    314.2    
10    179.8   187.4   187.0   ...       495.0    434.2    413.6    398.2    
11    225.2   221.4   219.4   ...       496.6    464.8    440.8    426.0    
12    208.0   203.6   201.0   ...       453.8    423.8    407.0    382.6    
13    182.4   195.6   184.4   ...       392.2    317.4    289.0    287.8    
14    145.6   158.0   160.4   ...       318.6    289.8    297.2    299.6    
15    151.2   162.8   160.8   ...       429.8    370.2    334.2    318.2    
16    184.2   192.6   186.8   ...       367.6    317.8    313.0    309.6    
17    173.4   183.4   174.4   ...       294.2    259.8    251.8    253.8    
18    153.4   163.8   165.0   ...       364.4    293.6    284.4    292.4    
19    173.0   187.6   175.6   ...       322.4    277.8    278.0    283.6    
20    136.2   144.0   150.0   ...       291.0    238.4    233.0    242.2    
21    142.8   148.4   147.4   ...       279.2    243.8    214.8    210.6    
22    123.6   123.0   126.2   ...       238.6    233.4    193.0    204.2    
23    143.6   157.4   155.4   ...       283.8    244.0    242.2    242.4    
24    135.6   139.2   147.0   ...       260.2    228.6    197.4    197.0    
25    146.4   141.2   134.0   ...       335.6    309.4    296.4    281.2    
26    191.0   176.2   167.8   ...       310.6    263.6    236.6    225.6    
27    168.2   175.2   170.4   ...       351.4    309.6    288.4    276.2    
28    154.2   159.2   155.8   ...       382.2    337.8    313.8    295.0    
29    180.2   184.6   179.8   ...       436.2    354.6    335.8    309.8    
..      ...     ...     ...   ...         ...      ...      ...      ...    
570   105.2   119.6   113.2   ...       251.0    197.0    177.4    142.4    
571    99.2   103.0    99.0   ...       267.0    229.2    212.0    170.4    
572   109.8   119.0   134.2   ...       315.8    280.8    247.4    211.6    
573    99.4   102.0   106.4   ...       247.6    212.8    185.8    137.0    
574   125.4   121.4   109.8   ...       330.8    304.6    287.0    249.0    
575   130.8   130.0   112.4   ...       272.8    252.6    241.2    215.2    
576   123.4   120.6   109.2   ...       256.8    231.4    204.0    174.4    
577   138.6   142.0   152.4   ...       330.4    301.0    284.2    259.0    
578   133.2   159.6   166.6   ...       426.2    357.4    324.4    300.0    
579   157.0   158.8   167.2   ...       495.4    457.2    398.2    332.6    
580   137.6   146.2   137.4   ...       404.4    329.2    283.0    243.4    
581   143.4   152.2   138.8   ...       341.4    285.2    240.4    213.8    
582   136.4   132.0   118.8   ...       317.4    255.0    201.4    191.2    
583   117.4   123.4   111.2   ...       342.6    298.8    275.0    276.6    
584   109.6   115.2   107.4   ...       298.0    246.6    215.8    187.8    
585   126.8   129.8   130.4   ...       369.2    324.6    276.2    259.8    
586   131.6   134.6   123.8   ...       341.6    292.0    272.2    228.0    
587   128.0   130.6   119.8   ...       296.0    231.0    207.6    190.6    
588   115.0   118.8   119.4   ...       283.0    236.0    211.6    197.8    
589   116.4   116.4   115.4   ...       321.6    271.8    225.6    201.0    
590   122.4   137.6   149.6   ...       364.2    288.4    241.4    217.6    
591   129.6   159.0   150.6   ...       330.8    264.4    219.4    183.0    
592   118.2   135.6   123.2   ...       305.2    255.0    204.8    187.2    
593   126.4   151.0   142.4   ...       293.6    275.4    259.2    236.4    
594   122.0   156.4   152.8   ...       323.0    296.2    285.2    251.8    
595   132.2   150.4   151.0   ...       328.0    281.4    258.2    226.0    
596   130.6   153.2   146.2   ...       321.0    277.4    253.4    245.2    
597   129.2   159.8   150.4   ...       403.4    349.2    308.8    268.2    
598   131.6   171.4   159.0   ...       392.8    336.0    289.0    261.4    
599   140.6   163.8   151.2   ...       343.2    300.0    248.2    215.4    
 
     hour_18  hour_19  hour_20  hour_21  hour_22  hour_23   
0      344.0    297.0    222.6    209.2    205.0    209.0   
1      366.4    362.0    268.8    204.6    188.6    191.6   
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2      382.0    362.8    276.4    223.6    202.2    199.4   
3      324.8    296.6    211.4    185.8    178.8    176.8   
4      290.2    263.2    174.2    136.2    135.8    130.8   
5      392.6    361.0    270.8    236.4    235.4    225.4   
6      394.0    361.4    278.4    239.8    220.6    205.6   
7      396.4    405.6    278.6    233.6    221.4    214.0   
8      331.8    304.6    232.0    201.0    178.0    165.8   
9      323.0    303.2    208.2    164.2    152.8    147.8   
10     392.4    363.8    282.4    250.8    238.0    229.6   
11     425.6    386.4    285.4    231.6    227.8    230.4   
12     357.4    343.8    257.4    221.8    213.4    198.4   
13     319.2    309.8    257.2    200.0    189.0    181.6   
14     321.4    322.2    270.8    190.4    178.4    179.4   
15     353.0    363.8    313.8    225.8    215.2    207.6   
16     346.2    362.8    289.0    228.0    216.0    226.0   
17     275.6    281.8    222.8    176.8    147.2    140.8   
18     321.2    325.2    263.2    200.2    204.8    205.8   
19     310.6    297.8    258.4    193.4    174.0    174.2   
20     272.0    277.8    246.0    180.6    157.4    155.4   
21     238.0    222.2    185.6    138.0    126.8    114.6   
22     207.8    219.2    179.8    144.6    127.2    123.2   
23     257.0    262.6    189.8    152.6    142.6    148.0   
24     210.8    217.2    183.6    151.2    149.0    152.4   
25     292.4    295.8    226.8    180.4    187.2    188.0   
26     244.8    260.2    193.8    175.0    181.4    181.4   
27     264.8    261.4    209.6    181.0    173.0    162.4   
28     300.0    301.6    237.4    201.6    200.2    204.2   
29     322.4    329.6    245.4    194.8    187.0    188.4   
..       ...      ...      ...      ...      ...      ...   
570    146.6    159.4    116.2     82.2     86.2     81.4   
571    173.0    195.0    162.0    136.4    128.0    124.8   
572    203.0    192.6    158.0    141.2    139.8    147.0   
573    135.4    149.0    118.2     99.6    101.2    104.0   
574    233.6    221.6    179.0    147.4    141.0    134.2   
575    212.4    210.6    167.4    156.6    146.4    136.0   
576    188.8    197.4    162.0    145.0    125.2    112.6   
577    236.0    239.8    196.2    188.0    186.2    166.6   
578    297.2    298.0    237.4    203.8    193.4    175.4   
579    309.0    277.6    205.0    168.4    160.2    151.6   
580    248.2    261.2    215.0    178.2    153.0    145.2   
581    233.6    245.8    206.2    181.4    155.0    142.2   
582    197.4    208.4    164.2    138.2    132.0    122.6   
583    273.6    283.6    226.2    187.2    173.8    168.2   
584    224.0    262.8    209.0    162.6    153.6    138.4   
585    271.8    282.2    228.2    183.8    168.8    155.0   
586    239.0    250.4    199.4    177.4    161.2    150.4   
587    190.0    200.2    161.4    137.6    131.0    125.4   
588    201.6    196.2    163.4    144.8    147.4    149.8   
589    209.0    243.4    200.8    148.4    139.4    136.0   
590    209.0    218.8    165.4    132.2    119.6    116.8   
591    193.4    215.2    153.6    135.0    125.0    112.0   
592    183.6    197.6    140.6    112.0    109.6     95.8   
593    238.0    218.2    176.0    153.2    135.0    133.2   
594    244.8    233.2    182.2    159.6    142.2    133.6   
595    233.0    237.2    198.8    169.2    168.8    149.8   
596    209.8    218.2    173.8    145.2    121.0    115.4   
597    254.8    265.2    204.8    190.2    162.4    159.2   
598    235.4    256.8    206.0    168.6    159.6    158.4   
599    216.4    228.2    183.2    148.0    132.6    120.2   
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[600 rows x 27 columns] 
-------------------------------------------------------------------------
----------- 

 

As soon as a pandas dataset is displayed in the console it is also automatically inserted in the 

database. The insertion is completed with the use of the sqlalchemy library through which the 

database insertion is performed instantly. The command with which this action is performed 

is displayed in Table 14. 

 

Table 13 - SQLAlchemy Insertion Command for reshaped data 

                som_predataset.to_sql(name = 
'som_active_power_day_clusters', con = engine, if_exists = 'append', 
index =False) 

 

3.3. Recreation of the Initial data to the created clusters 

 

After the insertion of the modified data in the database we should also import the data in their 

initial state in order to be ready to be used by the next algorithm which predicts future loads. 

To make that possible we created a for loop which based on the previous matrix where we have 

all the reshaped data it performs an index search to both the initial values and the reshaped one 

and starts to create a new pandas dataset where it will contain all the initial values with two 

additional columns. The additional columns are again the som_row and the som_column that 

act as the clusters identifies.  

 

Table 14 - Process performed in order to link the intial data with the created clusters 

 
                # Inserting SOM Clusters to database 
                print("--------------------------------------------------
----------------------------------") 
                print ("Inserting SOM Clusters to database...") 
                print(" ")                                
                som_dataset = pd.DataFrame(columns=['som_row', 
'som_column', 'date_time', 'som_active_power_kwh']) 
                                         
                for n in range(len(som_predataset)): 
                    get_index = data_check.index[data_check['date_time'] 
== som_predataset['date_active_power'][n]].tolist() 
                    k = 0 
                    for m in get_index: 
                        som_dataset.at[k, 'som_row'] = 
int(som_predataset.at[n, 'som_row']) 
                        som_dataset.at[k, 'som_column'] = 
int(som_predataset.at[n, 'som_column']) 
                        som_dataset.at[k, 'date_time'] = dataset.at[m, 
'date_time'] 
                        som_dataset.at[k, 'som_active_power_kwh'] = 
int(dataset.at[m, 'active_power_kwh']) 
                        k= k + 1 
                    print(som_dataset) 
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For each loop that will be completed a pandas dataset will be printed and will be automatically 

inserted into the database again using the sqlalchemy library for instant import. The command 

used to insert the new pandas set into the database is depicted in Table 

 

Table 15 - SQLAlchemy Insertion Command for intial data and the clusters that they now belong 

                    som_dataset.to_sql(name = 'som_active_power', con = 
engine, if_exists = 'append', index =False) 
 
    print("")             
    print("All active loads data were successfully inserted into the 
database") 
    print("--------------------------------------------------------------
----------------------") 
    print("") 

 

This is where the SOM execution ends. Τhe time required for the SOM implementation to 

reshape approximately 71544 data, cluster them and then insert into the created clusters the 

initial data is approximately 4 minutes. The data of the SOM clusters are presented in Divinus 

website which will be shown in Chapter 5. The same process is followed to cluster the reactive 

power data.  
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4. Forecasting Future Electricity User Profiles 

 

Short Term Load Forecasting (STLF) is a very important aspect in the formulation of economic, 

reliable, and secure operating strategies for the power system. To perform STLF it is usually 

required to have a lot of past data based on which our forecast mechanism will be trained and 

tested. In the forecast that is performed by Divinus program we used a different approach. We 

are not interested in using as much past data as possible rather than using past data that are 

qualitatively close to each other in the sense that they present relative common consumption. 

We achieve to retrieve the required qualitatively closeness by retrieving the clusters that were 

implemented with the use of SOM algorithm.  

Furthermore, Divinus forecasting is a three step process. The first stage of this process is to 

retrieve all the required past data needed. The second stage is to use these data for training and 

testing of the prediction algorithm and the final stage is to perform the forecasting of the days 

that we want to predict. 

 

4.1. First Stage of the forecasting process 
 

The first thing that is set to run in the prediction code is the SOM algorithm. We have set the 

SOM algorithm to always be triggered by the forecast prediction as is it depicted in Table 16.  

This happens because the implementation of the forecasting process heavily relies on SOM 

clusters and cannot happen without them. 

 

Table 16 - SOM algorithm trigged to run by the Forecasting Code 

''' 
Created on 29 Μαρ 2018 
 
@author: d.mele 
''' 
 
# Importing the libraries 
import calendar 
import threading 
import pandas as pd 
from sqlalchemy import create_engine 
from SOM.SOM_Active_Load import som_active_power_day_clusters 
from Database.Update import update_som_KNeighbors_forecasted_ap 
 
def SOM_KNeighbors_forecasting_ap(): 
 
    som_active_power_day_clusters() #We trigger the function that contains 
the SOM implementation 

 

As soon as all the clusters have been created and the data are inserted to all or some of the 

clusters we retrieve the data located in Divinus database with the use of the sqlachemy library. 

When all the data are retrieve we perform two checks to make sure that both data for forecast 

and data on which the forecast will rely on exist. If one of the required datasets does not exist 

than the forecasting process will be finalized here. 

Table 17 - Checking the required dataset to make sure that all the required data exist 

    # Importing the Dataset 
    engine = 
create_engine('postgresql://postgres:123456q!@localhost:5432/postgres') 
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    dataset = pd.read_sql_query("SELECT som_active_power_kwh, som_row, 
som_column, date_time FROM som_active_power WHERE som_active_power_kwh IS 
NOT NULL", con=engine) 
     
    som_KNeighbors_ap_dataset = pd.read_sql_query("SELECT 
som_KNeighbors_forecasted_active_power_kwh, date_time FROM 
som_KNeighbors_forecasted_active_power WHERE 
som_KNeighbors_forecasted_active_power_kwh IS NULL", con=engine)                    
    som_KNeighbors_ap_dataset = 
som_KNeighbors_ap_dataset.sort_values(['date_time']).reset_index(drop=Tru
e) 
     
    # Fixing the date to be used for the update command 
    date_time = 
pd.to_datetime(som_KNeighbors_ap_dataset['date_time']).sort_values().rese
t_index(drop=True) 
     
    if som_KNeighbors_ap_dataset.empty: 
        print("----------------------------------------------------------
--------------------------") 
        print ("Training active power loads with KNeighbors 
Algorithm...") 
        print("There are no new data to perform forecasting") 
        print("----------------------------------------------------------
--------------------------") 
     
    elif dataset.empty: 
         
        print("----------------------------------------------------------
--------------------------") 
        print ("Training active power loads with KNeighbors 
Algorithm...") 
        print("There are no no data to forecast") 
        print("----------------------------------------------------------
--------------------------") 

     

 

Having checked that all the data exist, Divinus enters the first stage of the forecasting process. 

In this stage the action that Divinus is required to do is to find out whether the day that it is 

going to predict exists in past data. To put it in simple terms, Divinus tries to match this date of 

the year 2018 with the same day if it exists of the past years. This action is performed for a very 

specific reason. In case this day is not a fixed holiday or a movable holiday we are going to use 

the same past days including all the other days that are stored in the same cluster that they 

belong. On the other hand if this day is a holiday fixed or not we are going to make use of the 

same day in the past years without including the other values contained in their cluster. 

To make that happen and to retrieve the correct days from the past data we use a python library 

called calendar. Through this library we are able to retrieve the year, the month, the day and the 

hour from a timestamp. As a result, having all this valuable data in or hands we are able to 

compare the data of day we want to forecast with past data and retrieve the corresponding dates 

and the cluster where they belong as it shown in Table 18. 

 

Table 18 – Checking data such as year, month, day, hour and retrieving  past data based on these 

criteria. 

 
    else: 
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        dataset_year = dataset['date_time'].dt.year.unique() 
        dataset_year_length = len(dataset_year) 
 
        mean_test_error = pd.DataFrame([]) 
        error_check_dataset = pd.DataFrame([]) 
        
        for i in range(len(som_KNeighbors_ap_dataset)): 
             
            som_KNeighbors_ap_dataset['date_time'] = 
pd.to_datetime(som_KNeighbors_ap_dataset['date_time']) 
            som_KNeighbors_ap_dataset['date_time'] = 
som_KNeighbors_ap_dataset['date_time'].dt.round('1s') 
             
            year = 
int(som_KNeighbors_ap_dataset['date_time'].loc[i].year) 
            month = 
int(som_KNeighbors_ap_dataset['date_time'].loc[i].month) 
            hour = 
int(som_KNeighbors_ap_dataset['date_time'].loc[i].hour) 
             
            print("------------------------------------------------------
------------------------------") 
            print("") 
            day_of_the_week_number = 
(som_KNeighbors_ap_dataset['date_time'].loc[i].weekday()) 
            print("Day Number of the week: ", day_of_the_week_number) 
            day_of_the_week_name = 
(calendar.day_name[som_KNeighbors_ap_dataset['date_time'].loc[i].weekday(
)]) 
            print("Day of the week: ", day_of_the_week_name) 
            number_of_the_week = 
(som_KNeighbors_ap_dataset['date_time'].loc[i].week) 
            print("Week Number: ", number_of_the_week) 
             
            clusters_finder = [] 
            datasets_to_train = pd.DataFrame() 
            print("------------------------------------------------------
------------------------------") 
             
            for z in range(dataset_year_length + 1):    
                clusters_finder = 
dataset.loc[(dataset['date_time'].dt.year == year-z) & 
(dataset['date_time'].dt.month == month) & (dataset['date_time'].dt.week 
== number_of_the_week) & (dataset['date_time'].dt.weekday == 
day_of_the_week_number) & (dataset['date_time'].dt.hour == hour)]   
                if not clusters_finder.empty : 
                    print(clusters_finder['date_time']) 
                    previous_year = 
int(clusters_finder['date_time'].dt.year) 
                    print("Year from which we get the corresponding day: 
", previous_year) 
     
                    yearly_day_of_the_week = 
pd.to_datetime(clusters_finder['date_time']) 
                    yearly_day_number = 
int(yearly_day_of_the_week.dt.weekday) 
                    print("Number of the Day of the week: ", 
yearly_day_number) 
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                    yearly_day_name = 
yearly_day_of_the_week.dt.weekday_name 
                    print("Day of the week: ", yearly_day_name) 
                    yearly_week_number = 
int(yearly_day_of_the_week.dt.week) 
                    print("Week Number: ", yearly_week_number) 
                    print("") 
                    row = int(clusters_finder['som_row']) 
                    column = int(clusters_finder['som_column']) 

 

4.2. Second Stage of the forecasting process 

 

Having retrieve the required past dates and the clusters in which they belong we are able to 

enter the second stage of the prediction process. In this stage based on the cluster that the past 

data belong we are able to retrieve all the data required in order to start training the algorithm 

that makes the predictions and then test these prediction on test data.  

An easy way to retrieve the clusters is by using a sql in which is specified the row and the 

column of the clusters we want to retrieve. 

 

sql = ("SELECT som_active_power_kwh, som_row, som_column, date_time FROM 
som_active_power WHERE som_row = '{0}' AND som_column = 
'{1}'".format(row, column)) 

 

Furthermore, besides the data of the clusters we retrieve we perform a modification on both the 

cluster data and the data on which we want to perform the forecast. The modification is nothing 

more than breaking the timestamp and creating separate columns containing the date, month, 

day and hour time. This modification takes place because the algorithm has a better 

performance if the data on which the forecasting is based are separately and not all combined 

in a timestamp 

 

Table 19 - Retrieving the data required for train and test and for the real forecast and performing the 

modifications required 

  sql = ("SELECT som_active_power_kwh, som_row, som_column, date_time 
FROM som_active_power WHERE som_row = '{0}' AND som_column = 
'{1}'".format(row, column)) 
                    datasets_for_train = pd.read_sql_query(sql, 
con=engine) 
                    datasets_for_train['year'] = 
(datasets_for_train['date_time'].dt.year)                     
                    datasets_for_train['month'] = 
(datasets_for_train['date_time'].dt.month) 
                    datasets_for_train['day'] = 
(datasets_for_train['date_time'].dt.weekday) 
                    datasets_for_train['hour'] = 
(datasets_for_train['date_time'].dt.hour) 
                    datasets_to_train = 
datasets_to_train.append(datasets_for_train) 
 
            # Making the date an integer to be used for the prediction 
            som_KNeighbors_ap_dataset['year'] = 
(som_KNeighbors_ap_dataset['date_time'].dt.year)                     
            som_KNeighbors_ap_dataset['month'] = 
(som_KNeighbors_ap_dataset['date_time'].dt.month) 
            som_KNeighbors_ap_dataset['day'] = 
(som_KNeighbors_ap_dataset['date_time'].dt.weekday) 
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            som_KNeighbors_ap_dataset['hour'] = 
(som_KNeighbors_ap_dataset['date_time'].dt.hour) 
            som_KNeighbors_ap_dataset = 
som_KNeighbors_ap_dataset.sort_values(['date_time']).reset_index(drop=Tru
e) 

 

  

As soon as this step is complete Divinus splits the data in two groups X and y. X is the 

group that contains the data required for the prediction while y is the group that contains 

the values that should be predicted.   

 
Table 20 - Splitting the dataset in X and y 

# Splitting the variables to the desired columns 
            X = datasets_to_train.iloc[:, 4:9].values 
            y = datasets_to_train.iloc[:, 0].values       
 
            # Splitting the Dataset into Training and Testing set 
            from sklearn.model_selection import train_test_split 
            preferable_test_size = (240/len(X)) 
            X_train, X_test, y_train, y_test = train_test_split(X, y, 
test_size = preferable_test_size, random_state = 0) 
 
            # Fitting Forest Algorithm to the training set 
            from sklearn.neighbors import KNeighborsRegressor 
            regressor = KNeighborsRegressor(algorithm='auto', 
leaf_size=30, metric='minkowski', 
                                            metric_params=None, n_jobs=1, 
n_neighbors=8, p=2, weights='distance')                 
 
            print("------------------------------------------------------
------------------------------") 
            print ("Training active power loads with KNeighbors 
Algorithm...") 
            regressor.fit(X_train, y_train) 
            print(regressor) 
            print("") 
            print("... Data Training Completed with KNeighbors 
Algorithm") 

 

 

As soon as the first split is over another one takes place. This one takes the already spitted 

datasets and splits them even more. Now we have four datasets which are the a) X_train, b) 

y_train, c) X_test and d) Y_test. Τhis new split is performed in order to create the groups from 

which the algorithm will be trained and then tested. We use all the data of the cluster to train 

the algorithm and 240 hourly values that practically are translated in 10 days to test its results. 

The algorithm that is used is the k neighbors algorithm. The principle behind nearest neighbor 

methods is to find a predefined number of training samples closest in distance to the new point, 

and predict the label from these. The number of samples can be a user-defined constant (k-

nearest neighbor learning), or vary based on the local density of points (radius-based neighbor 

learning). The distance can, in general, be any metric measure however standard Euclidean 

distance is the most common choice. Neighbors-based methods are known as non-generalizing 

machine learning methods, since they simply “remember” all of its training data (possibly 

transformed into a fast indexing structure such as a Ball Tree or KD Tree.) [50]. 
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Table 21 - Training through sklearn and testing its predictions 

            # Splitting the Dataset into Training and Testing set 
            from sklearn.model_selection import train_test_split 
            preferable_test_size = (240/len(X)) 
            X_train, X_test, y_train, y_test = train_test_split(X, y, 
test_size = preferable_test_size, random_state = 0) 
 
            # Fitting Forest Algorithm to the training set 
            from sklearn.neighbors import KNeighborsRegressor 
            regressor = KNeighborsRegressor(algorithm='auto', 
leaf_size=30, metric='minkowski', 
                                            metric_params=None, n_jobs=1, 
n_neighbors=8, p=2, weights='distance')                 
 
            print("------------------------------------------------------
------------------------------") 
            print ("Training active power loads with KNeighbors 
Algorithm...") 
            regressor.fit(X_train, y_train) 
            print(regressor) 
            print("") 
            print("... Data Training Completed with KNeighbors 
Algorithm") 
 
            for j in range(len(X_test)): 
                 
                #Perform prediction on Test Data to check the mean 
prediction error       
                X_test_data = X_test[j] 
                X_test_data = X_test_data.reshape(1,-1) 
                 
                y_pred = regressor.predict(X_test_data) 

 

Having performed the algorithm training and having predicted 240 test values the question that 

reasonably arises is what will happen if the test values are not close to the real ones.  

The answer is that the forecast made on the test values acts as a control  for the forecast. As 

soon as we retrieve the predictions that are performed on the test data we use them in order to 

calculate the mean error that will occur.  

 

Table 22 - Calculation of the test data overall mean prediction error 

      error_check = abs(100-((y_pred/y_test[j])*100)) 
                error_check_dataset = 
error_check_dataset.append(pd.DataFrame({'error_check': error_check}, 
index=[j]), ignore_index=False) 
            print(error_check_dataset) 
 
            if len(error_check_dataset)>=240: 
                overall_error = error_check_dataset['error_check'].sum() 
                mean_prediction_error = 
float(overall_error/len(error_check_dataset)) 
                print("") 
                print("The mean prediction error is: ", 
mean_prediction_error) 
             
            mean_test_error = 
mean_test_error.append(pd.DataFrame({'mean_test_error': 
mean_prediction_error}, index=[j]), ignore_index=True) 
            print(mean_test_error) 
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if mean_prediction_error < float(20): 
                  
                # Predicting the Active Load Results 
                som_KNeighbors_ap = som_KNeighbors_ap_dataset.iloc[:, 
2:6].values 
                som_KNeighbors_ap = som_KNeighbors_ap[i] 
                som_KNeighbors_ap = som_KNeighbors_ap.reshape(1,-1) 
     
                som_KNeighbors_ap_pred = 
float(regressor.predict(som_KNeighbors_ap)) 
                 
                # Inserting the data into the database 
                
update_som_KNeighbors_forecasted_ap(som_KNeighbors_ap_pred, date_time[i]) 
                print("Forecasting process completed and Data being 
inserted into the database") 
                print("--------------------------------------------------
----------------------------------") 
            else: 
                print("The mean prediction error was higher than the 
limit. SOM Clusters are going to re-run") 
                SOM_KNeighbors_forecasting_ap() 

 

 

If the mean error is higher than a limit that is specified by the user (in our case the overall max 

mean error is set to 20%) than all the process until this step is going to rerun. By saying that it 

is going to rerun we mean that all the forecasting process will be reset and it will start over from 

the creation of clusters so that the data to be reassigned and the forecast to rerun and retrieve 

new clusters that will reduce the mean error. Therefore, it is obvious that the clusters directly 

affect the outcome of the forecasting. 

 

4.3. Final Stage of the forecasting process  
 

If the control is successful than the forecasting process reaches in last stage which is the 

forecasting of the real dates. For each one of the dates that will be forecasted this process will 

start from the beginning. This means that for each one of the days that should be forecasted 

Divinus will get their corresponding past days and the cluster that they belong to and rerun all 

the aforementioned. Again, if the overall mean error that will occur will be higher than 20% the 

clusters will be deleted and recreated. This process will be followed for each day that will be 

forecasted. So far the Divinus mean forecast error is 12%.  

Last but not least the forecast process has contains a timer. This timer is trigger the first time 

that the programs runs and then it automatically activates itself based one the time that we have 

set it. The same way is used to perfume the reactive load forecast. 

 

Table 23 - The timer contained in Divinus Forecasting process 

    seconds=1.0 
    minutes=seconds*60 
    hour=minutes*60 
    day = (hour*24)*5 
    threading.Timer(day, SOM_KNeighbors_forecasting_ap).start() 
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5. Divinus Website 

 

Being able to perform data clustering and to forecast future loads, the only step that is left was 

to display all these information somewhere that users would be able to visit and get informed. 

For this step we choose to use the Django framework. Django is an open source high-level 

Python Web framework that encourages rapid development and clean, pragmatic design. It was 

built by experienced developers in order to take care much of the hassle of the Web 

development [51]. Django was designed to: 

1. Help developers take applications from concept to completion as quickly as possible. 

2. Contain dozens of extras that developers can use to handle common Web development 

tasks. Django takes care of user authentication, content administration, site maps, RSS 

feeds, and many more tasks. 

3. Take security seriously and to help developers avoid many common security mistakes, 

such as SQL injection, cross-site scripting, cross-site request forgery and clickjacking. 

Its user authentication system provides a secure way to manage user accounts and 

passwords. 

4. Be exceedingly scalable. Some of the busiest sites on the planet use Django’s ability to 

quickly and flexibly scale to meet the heaviest traffic demands. 

5. Be incredibly versatile. Companies, organizations and governments have used Django 

to build all sorts of things — from content management systems to social networks to 

scientific computing platforms [51]. 

Based on the aforementioned it was very easy for us to decide to cope with Django in designing 

our tool. Having set the project as Django based we were able to writte all the required code 

without worrying about how it will be transferred to the Internet or what modification we should 

make. As soon as we had a functional code the thing that was left to do was to set this code in 

Django in order to be viewable in the web. 

5.1. Object-relational mapper 

 

The first thing that was needed was to define our databases in Django. This was perfomed easily 

through Django’s Model. A model is the single, definitive source of information about data. It 

contains the essential fields and behaviors of the data that are stored. Generally, each model 

maps to a single database table [52]. Our Model is shown in Table  

Table 24 - Divinus Model.py file showing all the database information 

# This is an auto-generated Django model module. 
# You'll have to do the following manually to clean this up: 
#   * Rearrange models' order 
#   * Make sure each model has one field with primary_key=True 
#   * Make sure each ForeignKey has `on_delete` set to the desired 
behavior. 
#   * Remove `managed = False` lines if you wish to allow Django to 
create, modify, and delete the table 
# Feel free to rename the models, but don't rename db_table values or 
field names. 
from django.db import models 
 
 
class ActivePower(models.Model): 
    date_time = models.DateTimeField(primary_key=True) 
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    active_power_kwh = models.DecimalField(max_digits=10, 
decimal_places=2, blank=True, null=True) 
 
    class Meta: 
        managed = False 
        db_table = 'active_power' 
 
 
class AuthGroup(models.Model): 
    name = models.CharField(unique=True, max_length=80) 
 
    class Meta: 
        managed = False 
        db_table = 'auth_group' 
 
 
class AuthGroupPermissions(models.Model): 
    group = models.ForeignKey(AuthGroup, models.DO_NOTHING) 
    permission = models.ForeignKey('AuthPermission', models.DO_NOTHING) 
 
    class Meta: 
        managed = False 
        db_table = 'auth_group_permissions' 
        unique_together = (('group', 'permission'),) 
 
 
class AuthPermission(models.Model): 
    name = models.CharField(max_length=255) 
    content_type = models.ForeignKey('DjangoContentType', 
models.DO_NOTHING) 
    codename = models.CharField(max_length=100) 
 
    class Meta: 
        managed = False 
        db_table = 'auth_permission' 
        unique_together = (('content_type', 'codename'),) 
 
 
class AuthUser(models.Model): 
    password = models.CharField(max_length=128) 
    last_login = models.DateTimeField(blank=True, null=True) 
    is_superuser = models.BooleanField() 
    username = models.CharField(unique=True, max_length=150) 
    first_name = models.CharField(max_length=30) 
    last_name = models.CharField(max_length=150) 
    email = models.CharField(max_length=254) 
    is_staff = models.BooleanField() 
    is_active = models.BooleanField() 
    date_joined = models.DateTimeField() 
 
    class Meta: 
        managed = False 
        db_table = 'auth_user' 
 
 
class AuthUserGroups(models.Model): 
    user = models.ForeignKey(AuthUser, models.DO_NOTHING) 
    group = models.ForeignKey(AuthGroup, models.DO_NOTHING) 
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    class Meta: 
        managed = False 
        db_table = 'auth_user_groups' 
        unique_together = (('user', 'group'),) 
 
 
class AuthUserUserPermissions(models.Model): 
    user = models.ForeignKey(AuthUser, models.DO_NOTHING) 
    permission = models.ForeignKey(AuthPermission, models.DO_NOTHING) 
 
    class Meta: 
        managed = False 
        db_table = 'auth_user_user_permissions' 
        unique_together = (('user', 'permission'),) 
 
 
class DjangoAdminLog(models.Model): 
    action_time = models.DateTimeField() 
    object_id = models.TextField(blank=True, null=True) 
    object_repr = models.CharField(max_length=200) 
    action_flag = models.SmallIntegerField() 
    change_message = models.TextField() 
    content_type = models.ForeignKey('DjangoContentType', 
models.DO_NOTHING, blank=True, null=True) 
    user = models.ForeignKey(AuthUser, models.DO_NOTHING) 
 
    class Meta: 
        managed = False 
        db_table = 'django_admin_log' 
 
 
class DjangoContentType(models.Model): 
    app_label = models.CharField(max_length=100) 
    model = models.CharField(max_length=100) 
 
    class Meta: 
        managed = False 
        db_table = 'django_content_type' 
        unique_together = (('app_label', 'model'),) 
 
 
class DjangoMigrations(models.Model): 
    app = models.CharField(max_length=255) 
    name = models.CharField(max_length=255) 
    applied = models.DateTimeField() 
 
    class Meta: 
        managed = False 
        db_table = 'django_migrations' 
 
 
class DjangoSession(models.Model): 
    session_key = models.CharField(primary_key=True, max_length=40) 
    session_data = models.TextField() 
    expire_date = models.DateTimeField() 
 
    class Meta: 
        managed = False 
        db_table = 'django_session' 
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class ReactivePower(models.Model): 
    date_time = models.DateTimeField(primary_key=True) 
    reactive_power_kvar = models.DecimalField(max_digits=10, 
decimal_places=2, blank=True, null=True) 
 
    class Meta: 
        managed = False 
        db_table = 'reactive_power' 
 
 
class SomActivePower(models.Model): 
    som_row = models.IntegerField() 
    som_column = models.IntegerField() 
    date_time = models.DateTimeField(primary_key=True) 
    som_active_power_kwh = models.DecimalField(max_digits=10, 
decimal_places=2, blank=True, null=True) 
 
    class Meta: 
        managed = False 
        db_table = 'som_active_power' 
 
 
class SomActivePowerDayClusters(models.Model): 
    som_row = models.IntegerField() 
    som_column = models.IntegerField() 
    date_active_power = models.DateField(primary_key=True) 
    hour_0 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_1 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_2 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_3 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_4 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_5 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_6 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_7 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_8 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_9 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_10 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_11 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_12 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_13 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_14 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_15 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_16 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_17 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_18 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_19 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_20 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_21 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_22 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_23 = models.DecimalField(max_digits=10, decimal_places=2) 
 
    class Meta: 
        managed = False 
        db_table = 'som_active_power_day_clusters' 
 
 
class SomKneighborsForecastedActivePower(models.Model): 
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    date_time = models.DateTimeField(primary_key=True) 
    som_kneighbors_forecasted_active_power_kwh = 
models.DecimalField(max_digits=10, decimal_places=2, blank=True, 
null=True) 
 
    class Meta: 
        managed = False 
        db_table = 'som_kneighbors_forecasted_active_power' 
 
 
class SomKneighborsForecastedReactivePower(models.Model): 
    date_time = models.DateTimeField(primary_key=True) 
    som_kneighbors_forecasted_reactive_power_kvar = 
models.DecimalField(max_digits=10, decimal_places=2, blank=True, 
null=True) 
 
    class Meta: 
        managed = False 
        db_table = 'som_kneighbors_forecasted_reactive_power' 
 
 
class SomReactivePower(models.Model): 
    som_row = models.IntegerField() 
    som_column = models.IntegerField() 
    date_time = models.DateTimeField(primary_key=True) 
    som_reactive_power_kvar = models.DecimalField(max_digits=10, 
decimal_places=2, blank=True, null=True) 
 
    class Meta: 
        managed = False 
        db_table = 'som_reactive_power' 
 
 
class SomReactivePowerDayClusters(models.Model): 
    som_row = models.IntegerField() 
    som_column = models.IntegerField() 
    date_reactive_power = models.DateField(primary_key=True) 
    hour_0 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_1 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_2 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_3 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_4 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_5 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_6 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_7 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_8 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_9 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_10 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_11 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_12 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_13 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_14 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_15 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_16 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_17 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_18 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_19 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_20 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_21 = models.DecimalField(max_digits=10, decimal_places=2) 
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    hour_22 = models.DecimalField(max_digits=10, decimal_places=2) 
    hour_23 = models.DecimalField(max_digits=10, decimal_places=2) 
 
    class Meta: 
        managed = False 
        db_table = 'som_reactive_power_day_clusters' 

 

 

5.2. Template  

 

Being a web framework, Django needs a convenient way to generate HTML dynamically. The 

most common approach relies on templates. A template contains the static parts of the desired 

HTML output as well as some special syntax describing how dynamic content will be inserted. 

A Django project can be configured with one or several template engines (or even zero if no 

templates are required). Django defines a standard API for loading and rendering templates 

regardless of the backend. Loading consists of finding the template for a given identifier and 

preprocessing it, usually compiling it to an in-memory representation. Rendering means 

interpolating the template with context data and returning the resulting string. The Django 

template language is Django’s own template system. Until Django 1.8 it was the only built-in 

option available. It’s a good template library even though it’s fairly opinionated and sports a 

few idiosyncrasies [53].  

Our template [54] is built on HTML, CSS and Javascript. Through our model we pass the 

required data to the python Views page which is the file that links the data that we want infuse 

with the template. 

Table 25 - Divinus Views.py file 

''' 
Created on 7 Μαρ 2018 
 
@author: d.mele 
''' 
 
#import json 
from django.shortcuts import render 
from django.core import serializers 
#from django.http import JsonResponse 
#from django.shortcuts import loader 
#from django.http import HttpResponse 
 
from Core.models import ActivePower, ReactivePower 
from Core.models import SomActivePower, SomReactivePower 
from Core.models import SomKneighborsForecastedActivePower, 
SomKneighborsForecastedReactivePower 
 
# Create your views here. 
   
def  index(request): 
    Active_Power_queryset = 
ActivePower.objects.exclude(active_power_kwh__isnull=True).order_by('date
_time') 
    Active_Power_json = serializers.serialize('json', 
Active_Power_queryset, fields=('active_power_kwh')) 
     
    Limited_Active_Power_queryset = 
ActivePower.objects.exclude(active_power_kwh__isnull=True).order_by('-
date_time')[:1000][::-1] 
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    Limited_Active_Power_json = serializers.serialize('json', 
Limited_Active_Power_queryset, fields=('active_power_kwh')) 
     
    Reactive_Power_queryset = 
ReactivePower.objects.exclude(reactive_power_kvar__isnull=True) 
    Reactive_Power_json = serializers.serialize('json', 
Reactive_Power_queryset, fields=('reactive_power_kvar')) 
     
    Limited_Reactive_Power_queryset = 
ReactivePower.objects.exclude(reactive_power_kvar__isnull=True).order_by(
'-date_time')[:1000][::-1] 
    Limited_Reactive_Power_json = serializers.serialize('json', 
Limited_Reactive_Power_queryset, fields=('reactive_power_kvar')) 
 
    SOM_KNeighbors_Forecasted_AP_queryset = 
SomKneighborsForecastedActivePower.objects.all().order_by('date_time') 
    SOM_KNeighbors_Forecasted_AP_json = serializers.serialize('json', 
SOM_KNeighbors_Forecasted_AP_queryset, 
fields=('som_kneighbors_forecasted_active_power_kwh')) 
 
    SOM_KNeighbors_Forecasted_RP_queryset = 
SomKneighborsForecastedReactivePower.objects.all().order_by('date_time') 
    SOM_KNeighbors_Forecasted_RP_json = serializers.serialize('json', 
SOM_KNeighbors_Forecasted_RP_queryset, 
fields=('som_kneighbors_forecasted_reactive_power_kvar')) 
     
    SOM_AP_clusters_queryset = SomActivePower.objects.all() 
    SOM_AP_clusters_json = serializers.serialize('json', 
SOM_AP_clusters_queryset) 
     
    SOM_RP_clusters_queryset = SomReactivePower.objects.all() 
    SOM_RP_clusters_json = serializers.serialize('json', 
SOM_RP_clusters_queryset) 
 
    return render(request,'Core/test5.html', 
{'Active_Power_json':Active_Power_json, 
                                              
'Limited_Active_Power_json':Limited_Active_Power_json, 
                                              'Reactive_Power_json': 
Reactive_Power_json, 
                                              
'Limited_Reactive_Power_json': Limited_Reactive_Power_json,                                               
                                              
'SOM_KNeighbors_Forecasted_AP_json': SOM_KNeighbors_Forecasted_AP_json, 
                                              
'SOM_KNeighbors_Forecasted_RP_json': SOM_KNeighbors_Forecasted_RP_json, 
                                              'SOM_AP_clusters_json': 
SOM_AP_clusters_json, 
                                              'SOM_RP_clusters_json': 
SOM_RP_clusters_json}) 

 

 

As soon as we have set the views.py we are ready to modify our template [54] in the best 

possible way in order to display the required information. Figures 22, 23, 24, 25, 26 show some 

pages of the Divinus website. 
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Figure 22 - Divinus Front Page 

 

 
Figure 23 - Divinus Menu Selection 
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Figure 24 - Divinus Forecasting Page 

 

 
Figure 25 - Divinus SOM Clusters Page 
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Figure 26 - Divinus Comparison Page between Real & Forecasted Load 
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6. Conclusion 

 

This master thesis had two goals. The first one was to create a tool that could be perform both 

use profiling and load forecasting. Regarding the use profiling, after having done a lot of 

research we arrived to the decision that for the tool that we wanted to build the most suitable 

algorithm to be used was the Self Organizing Map. As for the forecasting algorithm is was 

decided in a second phase due to the fact that we had to have the results of the SOM algorithm 

first in order to proceed with the forecast. As soon as we had the SOM results in our hands we 

started experimenting with machine learning libraries containing several forecasting 

algorithms, but none of them was as good as the k-neighbors algorithm through which we 

managed to perform predictions with a forecast error of only 12%. 

The second goal basically was interrelated with the first one, as we wanted to see if forecasts 

could occur based on the data of the clustering algorithm. If that could happen then we would 

be able to create a methodology based on which we could forecast the consumptions of various 

consumers within a microgrid based on their user profiles.  

At the end of this thesis we are able to say that we successfully fulfilled the first goal and made 

the first basic and promising steps towards the completion of the second. Many steps still need 

to be taken in terms of creating a methodology through which we can handle the consumption 

of different consumers within a microgrid. 
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