TEXNOAOI'TKO EKITAIAEYTIKO IAPYMA XTEPEAY. EAAAAAX
2XXOAH TEXNOAOI'IKQN EPAPMOI'QN
TMHMA HAEKTPOAOI'QN MHXANIKQN TE

Electricity use profiling and forecasting at
microgrid level

MSc Thesis

by

Enea Mele

Supervisors:
Charalambos Elias, Assistant Professor, TEI of Sterea Ellada
Aphrodite Ktena, Professor, TEI of Sterea Ellada

2018

This page is intentionally left blank

TEXNOAOT'TKO EKITAIAEYTIKO IAPYMA XTEPEAY EAAAAAY A 7S
YXOAH TEXNOAOT'IKQN E®PAPMOIQN &
TMHMA HAEKTPOAOTQN MHXANIKOQN TE M/ 2

Electricity use profiling and forecasting at microgrid level

Authopatikn Epyacio

TO0L

Evéa Méle

Empiémovres: Xaparaproc HAlog, Enikovpog KaOnyntg, TEI Xtepedc EALGOG
Aopodim Kreva, Kadnynrpia, TEI Ztepedg EAAGSOG

Metantoyioxn Aotpifn Tov vroPAAAETOL Y10 TNV LEPIKT) EKTANPOGCT] TV VITOYPEMCEWDY OTOKTNONG TOV TITAOV TOV
[poypdappatoc Metamtoyokadv Emovddv «Eveuig Atayeipion Avavedoyov Evepysiokdv Zvotmudtovy tov
Tunuatog Hiextpordywv Mnyavikv TE tov TEI Ztepedc EALGS0g

MSc Thesis submitted in partial fulfillment of the requirements for the degree of Master in “Intelligent Management
of Renewable Energy Systems”

EykpiOnke amd v tpiueln e€etaoctikn enttpony v 31 Maiov 2018

Xapdrapmog HAlog Agpodit Krevd Xpnotog Mavao|g
Enixovpog Kabnyntmg Kodnyntpa Koabnynmg

2018

ENEA MEAE, ITtvytovyoc HiektpoAidyog Mnyavikog T.E., M.Sc.
© 2018 — All rights reserved

Abstract

The aim of this thesis is to create a flexible and easily customized tool applicable in microgrids
to carry out electricity use profiling and forecasting. This modular tool is called Divinus and its
architecture consists of several interconnected well-defined components where each one
interacts directly with the other. The first three structural pillars of the platform are its database
where all the information is stored, the Django framework in which the code exists and finally
the website where all the results are displayed. The next set of components are not as structural
as they are functional. Upon them is based the collection of data that will be saved in the
database, the use profile that will be performed on the collected data and the load forecasting
for which use profiling data will be used.

Through the Self-Organizing Map, that are competing networks that provide topological
mapping to the imported data, we perform the use profiling based on the collected data of
Technological Institute of Sterea Ellada, Psachna campus from 2010 till 2017. As soon as the
use profiling is complete and these data are placed in clusters based on their characteristics the
forecasting process is able to begin. The forecasting is performed based on the machine learning
methodology and more specifically with the k-neighbours algorithm.

From the tests that have been carried out so far, we observed that Divinus has a high accuracy
and low mean errors. More specifically based on forecasts made for the next five days, the next
month and the next year the average error does not exceed 5% for the next five days, 12% for
next month and 16% for the next year.

Therefore, at the current stage of the tools is we are able to say that it is quite promising tool
and that is likely to be used for both short-term and medium-term forecasts.

Key Words: Use Profiling, Self-Organizing Maps, Load Forecasting

Iepiinyn

YKOTOG QTG TN OWTAMUATIKNG gpyociag eivar 1 dnuiovpyics EVOC EVEMKTOL KOl EDKOAM
TPOGUPUOGLLOL EpYaAEiov TOL Ba epapproctel 6 Microgrids yio v dnpovpyic EVEPYIOK®OY
TPoPih ¥PNONG NAEKTPIKNG evépyelng Kot yio v mpdPreyrn ¢optiov. To apBpwtd avtod
gpyoeio ovopdletar Divinus kot 1 apyttektovik Tov amoteleital omd ToALG S1cVVOEdEUEVQL
Kot KoAQ kabBopiopéva ototyeia, 0mov to kabéva ahAniemdpd dueca pe to dAro. Ot tpelg
TPMTOL JOUIKOT TLADVEG TNG TAATQOPLLOG Etvarl 1) Pdion dedopévav, otnv ontoia amodnkevovtat
OAec o1 MAnpogopiec, To Django framework 6to omoio vdpyel 0 Tyaiog KOOIKAS Kot TELOG O
16tdTOTOC 61OV gpavilovtatl OAa Ta amoteAécpata. To enduevo chivoro ototyeimv dev apopd
1060 TNV dOUKN 0G0 TNV AELTOLPYIKT TAELPpA Tov Divinus. Eta otoygio avtd spmepiéyovon
dradtkacisc 0nmg ivarl 1 LAY dedouévev Tov Ba amodnkevtovy ot Bdon, 1 onovpyia
EVEPYELONKMV TPOQik yprion mov Ba extedestel mive ota dedopéva Tov GLAAEYOVTOL KaBMS Kot
N TpoéPAeym poptiov Yo v omoia Ha ypnoiponomBovv dedopéva amd To EVEPYELOKA TPOPIA
XPNonG.

Méom TOV OUTOOPYOVOTIK®OV YOPTMV, TOL €ivol OvVIOYOVIGTIKG JSiKTuo oL TAPEYOVV
TOTOAOYIKY] YOPTOYPAPNON OTO EICAYOUEVO OEOOUEVA, TPOYUNTOTOODUE TN Onuovpyio
EVEPYLOKADV TPOPIA YpNOMG NAEKTPIKNG EVEPYELNG ME PAcT To. GVALEYOEVTO dedopEva 0o TO
2010 éwg to 2017 tng mepoyng tov Yayvov Evpoiog tov Teyvoroywkov Exmaidevtikov
Ivotitovtov Xtepedg EALGOaG. MOAG 1 xopTOYpAeNoT TOV SESOUEVOV OVTOV Eival TANPNG
tonofetnBovv og opddeg PACEL TOV YAPUKTNPICTIKAOV TOVG, 1| dtodikacio TpoPAeyng sival og
Béon va Eexwvnoetl. H mpofreyn mpaypotonoteiton pe faon) pebodoroyior machine learning
KOl 7T0 GVYKEKPIUEVO HEG® Tov olydpduo k-neighbours.

A 11¢ doKég oL €xovv mpaypatonombel péypt todpa, mapatnpovpat 6t To Divinus £xet
vynAn axpifela kol ukpd cediuarta. ITo ocvykekpéva, pe Paon Tic mPoPAEYEIC TOL
TPOYUATOTOMONKAY Y10, TIC EXOUEVEC TEVTE NUEPES, TOV EMOLUEVO UNVO KL TOV ETOUEVO YPOVO,
T0 HEGO oPAaipa dev vrepPel To 5% yia TG emOpEVES TEVTE MUEPES, TO 12% Yo TOV ENOpUEVO
uva ko 1o 16% yio 1o emdpevo €toc.

Qg ek TOVTOV, 6T0 6TAd0 OV PpickeTat AVTAY TNV oTryun To Divinus propovue va mobpe 6Tt
arotelel éva MOAD eAmdoEOpo epyodeio mov eivor mBavd va ypnowwomombel t6G0 Yio
Bpayvmpobeopieg 660 Kot yio peconpofecpeg TpoPAivers.

AéEeig — Khedd: Evepyelaxd [poeik, Avtoopyavotikol Xapteg, [Ipdyvoon goptiov

Table of Contents

N o1 L = Tod PSSRSO 8
TLEPTATIWI ettt 10
Table OF CONENTS ..ottt bbb 12
INAEX OF TADIES ..o s 14
INAEX OF FIQUIES ...ttt e e ae e nneas 16
INEFOAUCTION ...ttt bbb s 17
1.1. Electrical Load Curves Clustering Methods............cccoeieiininiiininiiieeees 18
111, ClasSICal K-MEANS........ccceiieiiiie e stee et ee e 18
1.1.2. Weighted Fuzzy Average (WFA) K-MEaNS........ccceoverereriniieneniseeeeiees 20
1.1.3. Modified Follow the Leader (MFTL)ccooviiiiiiiiiieie e 21
1.1.4. Hierarchical algorithm...........c.cooiiiiiii e 21
115, Self-Organized Mapcccooveiiiiieiieie et 23
1.2. Benefits of Self Organised Map (SOM) among other Clustering Methods......25
1.3. Relational Database Management SYStEMScccevverieiieeiesiieseese e 27
1.3.1. Oracle Database 12C........cccouieieieieieie st 28
1.3.2. IBM DB2Z....ecee e s 28
IR T T |V [Tod (0110 i 1 | ISR 29
IR I S =1 Vo - L - USSR 30
135, IMYSQL . oot 30
1.3.6. IMANADB.......coiiiiicicecee e 31
1.3.7. POSIGrESQL ..ottt 31
1.4. Benefits of PostgreSQL among other Relational Database Management
] (=] 1 P SURROTR 32
1.5. Programming Languages for the Developement Unsupervised Clustering and
Forecasting Tools through Machine Learning..........ccccevvveiveeiieiieevie e 34
150, ClCHF it ens 34
15,2, JAV A s 34
IO T T SRS 34
15,4, JAVASCIIPE ..ottt bbb 35
155, PYLNON. i s 35
1.6. Benefits of Python among other Programming Languages regarding Clustering
MBENOAS. ... ettt neennes 35

2. Electrical Load Dataccooooeeeeeeeeeeeee e 38

2.1. Data Retrieval from the Administrator of the Greek Electricity Distribution

INEEWOTK ..ttt b et e s et e e e s e st e et e ereeebe et e aneenbeeneenres 38
2.2. Data Insertion in Divinus PostgreSQL Database..........ccccoeiiiiiiiininiiciennenn 41
3. Clustering Electricity User Profiles Data through Self Organised Map (SOM)..44
3.1, Data Pre-PrOCESSING ...ccuveiveiieiieeiie et st esie et e e e et e e sreeae s e e eneanaesreas 44
3.2. Implementation of Self Organizing Mapcccooeiieeiieie i 52
3.3. Recreation of the Initial data to the created CIUSEErS.........ccocceviriiiiiiniicienn 59
4. Forecasting Future Electricity User Profiles........c.cccoovviiveviiiiiiiieieceece e 61
4.1. First Stage of the fOrecasting ProCESSccceoeieriririiieierie e 61
4.2. Second Stage of the fOrecasting ProCess.........cccvvrirerieierenese e 64
4.3. Final Stage of the fOreCcasting ProCESScccooereririerieiienieniesie e 67
5. DIVINUS WEDSITE.....c.eiiiieieeiesie ettt sreesre e aneenreas 68
5.1. Object-relational MAPPENc.coveiiiieeie e 68
5.2 TEMPIALE ..eveeieie e e 73
T o] o [od 1] o] o [P T R URS R 78

7. BIDHOGraphycovoiecce e 79

Index of Tables

Table 1 - Pseudocode for the k-means clustering algorithm [15].........ccccccevvevviinnnns 19
Table 2 - Pseudocode for the SOM clustering algorithm [32].......c.ccccoovveiviiiiniien, 24
Table 3 - PostgreSQL Limits and Values [37]......cccccvvveriiiiiieie e 32
Table 4 - DEDDIE Power Loads COUe........cccoueiirieiiiiiiiisisesieie e 41
Table 5 - SQL Insertion Command for the Active Power Loads Implemented through
PYLNON . e e e et e e re e e e re e 42
Table 6 - XLSX ReMOVAl COUE........cciiiiiiiiicieiee e 43
Table 7 — SOM Data PreproCeSSINGcoeririiieieniesiesie st 45
Table 8 - Pandas Dataset after the preprocessing is complete. It can now be used to
cluster the dates with SOM based on their daily consumptionsc.ccocvvvvverienenn 47
Table 9 - Code that converts date to epoch in order to be used in SOM algorithm.....52

Table 10 - Creation of two numpy data arrays X and y. The X numpy array holds the
data that will be clustered while the y numpy array holds the data based on which the

Clustering of X Will take Placeccooiiiiiiiie s 53
Table 11 — Initialization of the SOM algorithm with a 2x2 matrixcc.ccecvvvevennee. 53
Table 12 — Pandas Dataset that belongs to the cluster [0,0]cccoooviiiiiiiiiiiiiee, 54
Table 13 - SQLAIchemy Insertion Command for reshaped datacc.ccoovvvrneneen. 59
Table 14 - Process performed in order to link the intial data with the created clusters
.. 59
Table 15 - SQLAIchemy Insertion Command for intial data and the clusters that they
001V 1V N 1= (o] oo OSSOSO TOP 60
Table 16 - SOM algorithm trigged to run by the Forecasting Code.............ccccveuvennee. 61
Table 17 - Checking the required dataset to make sure that all the required data exist
.. 61
Table 18 — Checking data such as year, month, day, hour and retrieving past data
DASEA ON thESE CHIEIIA. ..evviveveiee et 62
Table 19 - Retrieving the data required for train and test and for the real forecast and
performing the modifications reqUIredccccoeieeii e, 64
Table 20 - Splitting the dataset in X and Y.......coceoeiiiiniiiiiecee e, 65
Table 21 - Training through sklearn and testing its prediCtionsc.ccocevvvvvenenen. 66
Table 22 - Calculation of the test data overall mean prediction errorcc.cevnee. 66
Table 23 - The timer contained in Divinus FOrecasting ProcCessccoccucevvreeeenenn. 67
Table 24 - Divinus Model.py file showing all the database information..................... 68

Table 25 - Divinus VIEWS.PY TIleooiiiiic e 73

Index of Figures

Figure 1 - K-means Clustering Visualization [17].......cccocveviviiiiiieniiieseeie e 20
Figure 2 - A mean, median, and WFA of five points [19].......cccccoovvieviiiviic e 21
Figure 3 - Dendrogram of the hierarchical clustering with average distance criterion.

.. 22
Figure 4 - Dendrogram of the hierarchical clustering with Ward linkage criterion. ...23
Figure 5 - Different topologies [31].....ccoeiveiiiieiieie e 25
Figure 6 - Neighborhood of a given winner unit [31].......cccccoveiieiiiieieeie e 25
Figure 7 - Oracle Database 12C LOGO [35].....ccvereriririiiinierieieereese e 28
Figure 8 - IBM DB2 [35]ueoiiieiieiieiiesiesiisiee ettt 28
Figure 9 - Microsoft SQL Server LOgo [35]......ccoureriririnininieieneesie e 29
Figure 10 - Teradata LOgO [B5]....cuerertireiirieieieie sttt 30
Figure 11 - MYSQL LOQO [B5]..uveveieiiiiiiieieieieie s 30
Figure 12 - MariaDB LOgO0 [35]......coeiueriitiriieieieie ettt 31
Figure 13 - POStgreSQL LOgO [35] . .eivereiirieieieie et 31
Figure 14 - Popularity of Machine Learning Languages [48]ccccccvevvrininnininennn, 36
Figure 15 - DEDDIE LOQIN Page........cciiiiiiiiieieieniestesie st 38
Figure 16 - DEDDIE Site where we choose the data we want to retrieve and the time

unit to which the data will be retrieVed...........ccoovvieiiiie i 39
Figure 17 - Active Load Graph Displaying the Selected Time Period........................ 39
Figure 18 - Reactive Load Graph Displaying the Selected Time Period..................... 40
Figure 19 - DEDDIE EXCel FOrMALtc.ccoveiuiiieieee et 40
Figure 20 - DEDDIE CSV FOIMAL......c.ccoiiiiiiiie et 41
Figure 21 - pgAdmin Active Loads VIEW.........cccccveiiiiiiecie e 44
Figure 22 - DIVINUS FIONE PagE.......ccoiuiiieiieeie et 75
Figure 23 - Divinus Menu SEIECHIONcccvciviiieiiece e 75
Figure 24 - Divinus FOrecasting Page...........cocvoveiieiiiie st 76
Figure 25 - DIVINUS CIUSEEIS PAJEccvecvveiiieieiie sttt 76

Figure 26 - Divinus Comparison Page between Real & Forecasted Load 77

Introduction

Until recently, the electricity production and distribution systems were located far away from
end-use points. This caused a lot of losses during the energy transport. Moreover, it also
hindered the decentralization of power generation that made the dependence on large generation
plants even higher. However, the efforts made in order to cope with the increased energy
demands as well as transport costs lead to the creation of various techniques such as the energy
forecasting. The knowledge of future load behaviour in electrical distribution systems was of
fundamental importance in many electrical systems, being one of the main subjects discussed
in the operational areas of electricity utilities. Moreover, load forecasting was also used for
possible energy interchange with other utilities as well as to make the system more stable and
secure [1].

However, a conceptual change has been proposed so as to make the current supply system more
sustainable in economic and environmental terms, as reflected for instance in the Lisbon Treaty
[2]. As a result, in order to increase sustainability and optimize resource consumption, electric
utilities should constantly try to adjust their power supply to the energy demands. Moreover,
taking into account that it is extremely difficult to store energy at a large scale, power generation
has to be adjusted with the real time demand [1]. Therefore, it is of crucial importance that the
electric load forecasting to be as accurate as possible.

In order to succeed a high accuracy in load forecasting access is required to a wild variety of
electric power demand factors such as the day of the week, the month of the year as well as the
corresponding data at the respective days and months of past years along with past and future
environmental data such as humidity, temperature etc. However, as the data gathered in the
smart grid increases, the importance of clustering techniques that will classify those data
increases because huge amounts of data will need to be reduced in a reasonable way.

Decades ago, the clustering that was performed in electricity customers was performed only
based on pre-assigned contract types such as household, manufacturer, and school. The
clustering of customers is, however, now possible based on real-time energy consumption
patterns because of the richness of data in smart grids. Therefore, clustering is considered to be
a pre-processing stage in many data analysis scenarios [3].

Nowadays, the need for renewable energy resources led to the emergence of microgrids that
are environments of small electric power generation and demand. However, traditional
clustering and forecasting methods cannot have direct application to microgrids for two main
reasons. In microgrids the aggregated consumption figure is not only several times smaller than
in region-wide areas, but also the load curve presents a much higher variability [1].

Based on the aforementioned the purpose of this master thesis is the creation of a Short-Term
Load Forecasting two stage prediction methodology, called Divinus, which is based on the Self
Organised Map (SOM) clustering technique and on a custom made forecasting technique using
machine learning which can be applied in microgrids enviroments.

Due to the fact that there is a wide variety of clustering techniques, databases used for storing
data and programming languages used in machine learning techniques, in the Introduction
Section we analyse the reasons that led us to use these systems. Section 2 presents how and
from where the required data for the clustering phase were acquired. It is a crucial chapter due
to the fact those data consist the backbone of our methodology and therefore have to be as
accurate as possible. Section 3 describes how those data were implemented into the PostgreSQL
database. Section 4 describes how the data stored in the database were used by the Self
Organized Map for the clustering process. Section 5 presents the machine-learning forecasting
technique based on the data that were clustered previously and last but not least Section 6

17

analyses the results obtained, summarizes the conclusions of this study and proposes future
improvements on the proposed tool.

1.1. Electrical Load Curves Clustering Methods

Nowadays, the collection of scientific data is performed much easier and faster due to the
advances in modern mining techniques. Scientists are able to unearth implicit information from
huge databases and use them much easier and faster than it was done in the past. However,
these data mining techniques besides the benefits that they brought, they also resulted in a large
scale accumulation of data pertaining to diverse fields. It is practically impossible to extract
useful information from a huge load of data whose attributes might be totally different.
Therefore, an essential and effective method had to be found in order to deal with these issues.
Cluster analysis is such a method that was introduced to deal with these issues. The main aim
of cluster analysis is to find and associate patterns by forming groups of patterns that contain
similar attributes. In this way the pattern groups that will be formed will include objects that
have similar attributes compared to different clusters that differ considerably, with respect to
their attributes [4].

Many clustering approaches and algorithms have been proposed from time to time in literature
to suit various requirements [4], [5]. Many of them are based on conventional approaches are
such as the numerical clustering approach which assumes that patterns are points in a
dimensional space and perform clustering by defining a (dis)similarity measure. Another
conventional approach is the symbolic clustering approach which is suitable for clustering
patterns or objects that are often represented by qualitative or symbolic features. On the other
hand, knowledge-based clustering approaches use high-level knowledge pertaining to a set of
problems to perform the clustering task. In these approaches, knowledge is embedded into the
approach for solving a class of problems [5].

Recently, clustering analysis methods and techniques have been used in the field of electrical
engineering in order to cluster load curves [4]- [13]. These techniques are suitable in defining
typical load profile (TLP) of customers. Different applications are available for classification
of the load curve of customers. Accurate knowledge of the customers' consumption patterns
represents a worthwhile asset for electricity providers in the competitive electricity markets [6].
Classification of loads in terms of their time-varying power consuming behavior is an important
task for load forecasting, load data processing, locational customer services, power system
analysis and pricing [7]. With the electricity market liberalization, the electricity distribution
business looks for better market strategies based on adequate information about the
consumption patterns of the electricity customers. A fair insight into the customer's
consumption behavior allows the distribution utilities to better address the operation of the
distribution infrastructure and its future enhancement, not to mention the ability to design
specific tariff options for the various classes of customers in tune with real operation costs [8].
In order to cope with the ever-increasing demands of the market that arise, different methods
are used in clustering load curves. Some of the most popular methods used are the K Means,
the Modified Follow the Leader, the Self-Organizing Maps, etc.

1.1.1.Classical K-means
K-means algorithm was first introduced by J.B. MacQueen in 1967 [12], [14]. K-means is a
type of unsupervised learning clustering algorithm, which means that it uses data without
having previously defined the categories or the groups that these data will be inserted. Data are
clustered based on feature similarities and the process consist of two separate phases. The first
phase is to define k centroids, one for each cluster. During this phase each data point based on
the Euclidean distance, which is considered to determine the distance between data points and

18

the centroids, is assigned to its nearest centroid. More specifically, if ci is the collection of
centroids in set C, then each data point x is assigned to a cluster based on the following formula:

arg mindist(c;, x)? (1.1)
C;EC

Where dist(-) is the standard (L) Euclidean distance. Let the set of data point assignments for
each i cluster centroid be Si [16]. The first step is completed when all the points are included
in one of the cluster groups and an early grouping is performed.

In the second phase the centroids need to be recalculated as the inclusion of new points may
lead to a change in the cluster centroids. This is done by taking the mean of all data points

assigned to that centroid's cluster.
1
Ci = _|5i| inESixl' (12)

In this step, the centroids are recomputed. This is done by taking the mean of all data points
assigned to that centroid's cluster. The algorithm iterates between steps one and two until a
situation will be reached when the centroids do not move anymore [16]. This signifies the
convergence criterion for clustering. In Table 1 is presented a pseudocode for the k-means
clustering algorithm [15].

Table 1 - Pseudocode for the k-means clustering algorithm [15]

Input:

D = {d1, d2,......,dn} //set of n data items.
k // Number of desired clusters

Output:

A set of k clusters.

Steps:
1. Arbitrarily choose k data-items from D as initial centroids;
2. Repeat

Assign each item di to the cluster which has the closest centroid:;
Calculate new mean for each cluster;

Until convergence criteria is met.

19

4.5 T T T T

4.0

T
1

3.5

T

3.0

T

2.5

T

T

2.0

T

1:5
1.0

T

0.5

T

0.0 1 1 L 1

Figure 1 - K-means Clustering Visualization [17]

The k-means algorithm is the most extensively studied clustering algorithm. The major
drawback of this algorithm is that it produces different clusters for different sets of values of
the initial centroids. Quality of the final clusters heavily depends on the selection of the initial
centroids. The k-means algorithm is computationally expensive and requires time proportional
to the product of the number of data items, number of clusters and the number of iterations [15].

1.1.2.Weighted Fuzzy Average (WFA) K-means

Fuzzy logic is based in an intuitive theory based on human reason of approximation. It differs
from traditional logic methods due to the fact that each data point has a probability of belonging
to each cluster, while in traditional methods exact and solid results are expected. Zadelh was
the first that put forth the concept of fuzzy logic [18] and since 1975 it is used in problems
where the solution tends to be more approximate rather than exact. Therefore, due to its
principles fuzzy logic quickly became an integral part of solving clustering problems in which
their results were determined by some degree of closeness to true or to false.

Weighted Fuzzy Average k-means was proposed as a new method which could be used to
overcome the drawback of the k-means algorithm in the computation of the distance between
each vector and cluster center. The benefit of this new method over the previous one was that
it introduced a fuzzy averaging that puts the center prototype among more situated points [13],
[14]. The weighted fuzzy average (WFA) of the vectors in a cluster is done component-wise.
Let {xu,..., xr} be a set of P real numbers. To find its weighted fuzzy average, this algorithm
initially takes the sample mean u© and variance o to start the process. A Gaussian is centred
over the current approximate WFA u(r) and iterates as follows [19]:

—um
exp[—_(xpzauz)]
w"? = — 5 (1.2)
Y(m=1,p) exp[——"—5—]
u+ = Y (p=1p) ngr) X, 7 =0,1,2,... (1.3)

The denominator in Equation (1.2) standardizes the weights so they all sum to unity. We
compute o2 on each of three or four iterations and then leave it fixed. After about five iterations
the approximate WFA is sufficiently close to the true WFA. Schneider and Craig [1992] used

20

a weighted fuzzy expected value for histogram adjustment, but it was based on a decaying
exponential. Figure 2 below shows an example of five points (circles) that compares the mean,
median, and the WFA [19].

Xo 4
5
WFA
4 ,
/ Mean

o o
3 <« ;u
2 H—0 +
1 \ &
0 Median N

X4
0 1 2 3 4 5

Figure 2 - A mean, median, and WFA of five points [19].

Even though this method was an improvement on the simple K-means, it still lacked the ability
of finding better centers, since mean does not always represent the center of a given data.

1.1.3.Modified Follow the Leader (MFTL)

In many communities such as social networks datasets there are usually some members who
play a key role. The reason why some members have a higher role within social network
analysis is their centrality. Members that have a high centrality have a greater structural
importance in the network and as a result can be named also as leaders. In the follow-the-leader
procedure a group is formed starting from the leader and new members are added based on the
relationship they have with the group. To put it in simple words, this algorithm process requires
to choose the vertex (Leader) with the highest centrality score that is not included in any
existing groups. Then after the new group containing a leader member has been created, a
repetitive process is required so as to add new vertexes. The new vertexes will be added only if
the new density of the newly extended group is above a given threshold [20].

As we understand from the aforementioned description, the Follow-the-leader algorithm does
not require cluster numbers initialization and uses an iterative process to compute the cluster
centroids. The first cycle of the algorithm, using a follow-the-leader approach that depends on
a distance threshold p, sets the K numbers of clusters and the number n(®) of patterns belonging
to each cluster k = 1, ..., K. The subsequent cycles refine the clusters, by possibly reassigning
the patterns to closest clusters. The procedure stops when the number of patterns changing
clusters in a single cycle is zero. The process is essentially controlled by the distance threshold
p, which has to be chosen by a trial-and-error approach. This procedure has been modified to
fit the needs of the proposed classification, by taking into account the data dispersion in the
input vector [6], [22]. For this purpose, the Euclidean metric used in the original algorithm has
been modified by introducing for each index a weighting factor, where is the variance of the
hth feature computed from all the load patterns in the initial population, and &2 is the average
value of the variance cr,% for h =1, ..., H. As such, the impact of the indexes having a high
variance is amplified in the computation of the weighted Euclidean distance [21].

1.1.4.Hierarchical algorithm
In hierarchical clustering, there are initially M singleton clusters, as much as the number of
representative load patterns (RLTs) [21], [23]. At first, a MxM similarity matrix is built using
the Euclidean norm distance criterion. Then the value expressing the similarity between the
clusters X(@ and X, which is the y(@), needs to be called. Afterwards, with the use of a
linkage criterion which is based on the similarity matrix, the M RLPs are grouped into binary

21

clusters. The process is iteratively repeated by merging the clusters of each level into bigger
ones at the upper level, until all RLPs are grouped in a single cluster. The history of the process
is kept in order to form a binary tree structure, whose root is the cluster that contains the whole
data set [21].

The similarities between clusters at each level are measured by the linkage criterion which is
also responsible for determining the cluster formation at the upper level. The extreme cases for
these criteria include the single linkage, for which the similarity between two clusters depends
on the closest pair of members in the two clusters, and the complete linkage, for which the
similarity between two clusters depends on the farthest pair of members in the two clusters [24].
As aresult, the single linkage criterion may lead to the formation of few large clusters, whereas
the complete linkage criterion may form too many clusters. In order to prevent these effects,
other linkage criteria, such as average distance and Ward [25], have been defined [21].

With the average distance criterion, grouping two clusters X ®Yand X () depends on the average
distance as it shown in the following equation:

y = d(x®, x®©) (1.3)

Once two clusters X ®and X © have been merged to form X ™), the similarity between the
new cluster and another cluster X (9) becomes as it shown in the following equation:

2, 1), ’
" =00 (1.4)

The hierarchical tree (or dendrogram) of Figure 3 is obtained by grouping the RLPs of the data
set by this method. The horizontal axis contains the RLP identifiers, whereas the height of each
vertical branch represents the similarity between each pair of merged clusters. The final clusters
are then constructed by choosing in the binary tree the maximum distance admissible or by
directly selecting the distance corresponding to the desired number of clusters [21].

TF

similarity
B

i izl

Figure 3 - Dendrogram of the hierarchical clustering with average distance criterion.
Horizontal axis: RLP identifier. VVertical axis: similarity measure (5) between clusters [21].

In the Ward linkage criterion, the clusters are formed in order to minimize the increase of the
within-cluster sums of squares. The similarity between the two clusters X and X® is
measured as the increase of these squares sums if the two clusters were merged as it shown in
the following equation:

22

(S,t) n(s)n(t)
Y'w = 0m0

d?(c®, c®) (1.5)

Where ¢ and c(® are the centroids of the two clusters. Once two clusters X) and X© have
been merged to form X W), the similarity between the new cluster X) and another cluster X (9)
becomes as it shown in the following equation:

T 6
Yw = OO @) (1.6)

Figure 4 shows the dendrogram obtained by using the Ward linkage criterion. The comparison
between the two hierarchical trees shows that the average distance criterion forms large clusters
of similar RLPs and rejects the very dissimilar ones in small or singleton clusters, whereas the
Ward criterion prevents the formation of large clusters [21].

25r

20F

=
ol
T

similarity

Y
[=}
T

5k

g

Figure 4 - Dendrogram of the hierarchical clustering with Ward linkage criterion.
Horizontal axis: RLP identifier. Vertical axis: similarity measure (7) between clusters [21].

RLP

1.1.5.Self-Organized Map

The Self-Organizing has been developed by professor Kohonen [26], is one of the most popular
artificial neural networks and has been proven useful in many applications [27].
To get a better understanding on what a SOM is we need to mention a few things regarding
Artificial Neural Networks (ANNs.) ANNSs are based on the functions of the human brain and,
therefore, they consist powerful tools for modelling, especially when the underlying data
relationship is unknown. Moreover, they can identify and learn correlated patterns between
input data sets and corresponding target values [28], [29], [30]. They have been successfully
applied in a variety of scientific fields such as mathematics, engineering, medicine, economics,
meteorology, psychology, neurology and many other [28], [29]. The reason that they have been
successfully applied in so many scientific fields lies in the fact that they operate in accordance
with the four operating principles that are displayed below:
1. The fairly large database that is required, i.e. known inputs should be compared with
their corresponding outputs in order to "educate™ the network.
2. The comparison of the output value that is produced with the real one and the
amendment of the weights in accordance with the "education rule".
3. The produced error that works as a guide, which decreases as the repetition is increased.
It is considered that the network has been educated when the error becomes smaller
than the threshold.
4. The certification that the system is adequately trained when it responds correctly to

23

new samples. The broad spectrum of the learning set is considered a criterion [30].

Due to the aforementioned, it is obvious that ANNSs are educated through previous load patterns
also taking into account other influencing factors such as weather conditions and the day of the
week, as a result predicting new load patterns using recent load data [28]- [30].

The Self-Organizing Map as we mentioned is a type of ANN, however, it differs a lot from
them as it applies competitive learning as opposed to the methods used for training the classical
ANNSs such as error-correction learning and in the sense that they use a neighbourhood function
to preserve the topological properties of the input space.

The Self-Organizing Map is based on unsupervised learning, which means that no human
intervention is needed during the learning and that little needs to be known about the
characteristics of the input data. It provides a topology preserving mapping from the high
dimensional space to map units. Map units, or neurons, usually form a two-dimensional lattice
and thus the mapping is a mapping from high dimensional space onto a plane. The property of
topology preserving means that the mapping preserves the relative distance between the points.
Points that are near each other in the input space are mapped to nearby map units in the SOM.
The SOM can thus serve as a cluster analyzing tool of high-dimensional data. Also, the SOM
has the capability to generalize. Generalization capability means that the network can recognize
or characterize inputs it has never encountered before. A new input is assimilated with the map
unit it is mapped to [31]. A description of the basic SOM training algorithm is presented below:

Table 2 - Pseudocode for the SOM clustering algorithm [32].

Let
X be the set of n training patterns x1, x2,..xn
w be ap X g grid of units w;; where i and j are their coordinates on that grid
a be the learning rate, assuming values in]0,1[, initialized to a given initial
learning rate
r be the radius of the neighborhood function h(w;;, Wy,), initialized to a
given initial radius

1. Repeat

2 Fork=1ton

3 For all w;; € W, calculate d ;; = ||xc — w|

4, Select the unit that minimizes d j; as the winner wyinner

5 Update each unit Wij eWw: Wij = Wij +ah (Wwinner' Wij,T')”Xk - Wl]”

6 Decrease the value of oo and r

7. Until o reaches 0

The neighborhood function h is responsible for the interactions between different SOM units
and usually is a function that decreases with the distance (in the output space) to the winning
unit. During training, each unit will become more isolated from the effects of its neighbors and
as a result the radius of this function usually decreases. However, it should be noted that some
SOM implementations decrease this radius to one, while others decrease it to zero. This means
that the implementations with a reduction level of one will have even in the final stages of
training their units affected by their nearest neighbors, while the rest that have a reduction level
of zero will not have no affection at all from their neighbors [32].

The Self-Organizing Map as it is displayed in Figure 5 is a two-dimensional array of neurons.
One neuron is a vector called the codebook vector.

M = {mil, ...,min}

24

Rectangular Hexagonal
Figure 5 - Different topologies [31]

Moreover, the distance between the map units and the topology relations can be defined. One
can also define a distance between the map units according to their topology relations. By using
the concept of immediate neighbors we refer to the neurons that are adjacent. As a result the
immediate neighbors belong to the neighborhood N, of the neuron m.. The neighborhood
function should be a decreasing function of time: N, = N.(t). Neighborhoods of different sizes
in a hexagonal lattice are illustrated in Figure 6.

OO0 00 N0 OO
O/0/0 O ONONO O O

OO/ /0 ONCNDNS O
OO O OO O
ONONOND O/ O/ O/0 O

ONONO O G/O/0 O O
OO OO O/0O00

Figure 6 - Neighborhood of a given winner unit [31]

In the smallest hexagon, there are all the neighbors belonging to the smallest neighborhood of
the neuron in the middle belonging to a hexagonal lattice. The topological relations between
the neurons are left out for clarity.

In the basic SOM algorithm, the topological relations and the number of neurons are fixed from
the beginning. This number of neurons determines the scale or the granularity of the resulting
model. Scale selection affects the accuracy and the generalization capability of the model. It
must be taken into account that the generalization and accuracy are contradictory goals. By
improving the first, we lose on the second, and vice versa.

1.2. Benefits of Self Organised Map (SOM) among other Clustering Methods

The clustering process is the first process that will be always run in Divinus and the forecast
that will run next will be based on the clusters that were created. As a result, the clusters must
be as accurate as possible so that the forecast that will run to have as little mean error as possible.
For this reason Self Organizing Maps where chosen as they can be applied in many areas
including the area that we are interested which is data clustering with great precision and
success.

The advantage of using this type of artificial neural network to cluster power loads is that they
group the loads in terms of the uniformity of the characteristics that define them, reducing the

25

size of the problem to a two-dimensional map while maintaining all the information about the
n features valued. In this way reducing the dimensionality and the grid clustering the data are
easier to observe.

Moreover, SOM is not sensitive to initialization, as k-means, which provides a more robust
learning. It preserves the topology of input data by assigning each datum to a neuron having
the highest similarity, and maps into adjacent neurons the data that contains similar attributes.
However, despite the positive or the negative aspects that a clustering algorithm may have,
there is no rule for the best matching clustering algorithm. In our tool based on the survey that
we conducted we chose to use SOM as our clustering algorithm on whose clusters the forecast
will be based.

26

1.3. Relational Database Management Systems

Relational Database Management System (RDMS) is responsible for defining a set of relation
schema that will allow information to be stored and retrieved without unnecessary redundancy.
RDMS consists a subset of Database Management System (DBMS) which in turn is a database
program. From a technical point of view, a database program is a software system that through
a standard method catalogs, retrieves and runs queries on data. Furthermore, a DBMS also
manages, organizes and provides ways for the incoming data to be modified and/or to be
extracted by other programs or users. However, databases in the early days were relatively
"flat," which means they were limited to simple rows and columns, like a spreadsheet. With
the passing of the time, the majority of the databases used in application to store or retrieve data
were made relational. In addition, relational databases allow users to access, update, and search
information based on the relationship of data stored in different tables but also allow them to
run queries that involve multiple databases. As a result, because nowadays almost all the
databases used are relational, the terms "database™ and "relational database" are used most of
the times synonymously [33].

Nowadays however, users are given more options regarding the databases they use. Depending
solely on how the data will be used, they can store them in SQL or NoSQL databases. To start
with, SQL database was created back in 1975 by IBM, the initial letters stand for "Structured
Query Language" and it is a query language used for accessing and modifying information in a
database. The most common commands that can be found in SQL include "Insert", "Update"
and “Delete" and it is mostly used for Web database development and management. Moreover,
by using scripting languages such as PHP we are given the opportunity to execute SQL
commands from a web page. Therefore, because of the possibilities SQL has given it is possible
to display different information on each webpage [33].

On the other hand, NoSQL which originally meant "non SQL" or "non relational” has existed
since the late 1960s, but gained popularity and necessity in the early twenty-first century
triggered by the needs of Web companies such as Google, Amazon and Facebook [34]. NoSQL
is a non-relational database that stores and accesses data using key-values. This means that
NoSQL databases store data without using the classical means such as rows and columns to
which the data are stored but rather identify each data individually with the use of a unique key.
Furthermore, NoSQL is a more flexible database compared to relational databases as it
does not require a structured schema that defines each table separately [33].

Moreover, while relational databases (like SQL) are ideal for storing structured data, their rigid
structure makes it difficult to add new fields and quickly scale the database. NoSQL provides
an unstructured or "semi-structured" approach that is ideal for capturing and storing user
generated content (UGC). This may include text, images, audio files, videos, click
streams, tweets, or other data. While relational databases often become slower and more
inefficient as they grow, NoSQL databases are highly scalable. In fact, you can add thousands
or hundreds of thousands of new records to a NoSQL database with a minimal decrease in
performance [33]. Therefore, NoSQL flexibity and scalability has led many large businesses
and organizations to start using NoSQL databases for the storage of their data. NoSQL
databases are especially common in applications such as cloud computing and are becoming
even more popular as storing solutions for big data applications.

Due to the aforementioned, we understand that there are many database management systems
available and it is very important for them to be able to communicate with each other. The
solution to this problem comes with the name of Open Database Connectivity (ODBC) which
is a driver that allows databases to integrate to others. In order to give a description of how the
ODBC we should have a look at the common SQL statements such as "Insert", "Select",
"Update" and “Delete". These statements through ODBC are translated from a program's
proprietary syntax into a syntax that other databases can understand.

27

In the tool that we developed the use of a Relational Database Management System was
necessary. For this reason, we present through a brief description the most widespread and
known databases such as Oracle Database 12c¢, Microsoft SQL, MySQL, IBM DB2, SQL.ite,
MariaDB, Teradata as well as PostgreSQL which is the one that we chose to use.

12°

ORACLE
DATABASE
Figure 7 - Oracle Database 12¢ Logo [35]

1.3.1.0racle Database 12c¢

Oracle began its journey in 1979 as the first commercially available relational database
management system (RDBMS) and today it supports a wide range of operating systems
multiple versions of Windows and multiple Unix and Linux variations. Oracle's name is
synonymous with enterprise database systems, unbreakable data delivery and fierce corporate
competition from CEO Larry Ellison. Powerful but complex database solutions are the
mainstay of this Fortune 500 Company [35].

The current release of Oracle's RDBMS is Oracle 12c. The "c" stands for cloud and is reflective
of Oracle's work in extending its enterprise RDBMS to enable firms to consolidate and manage
databases as cloud services when needed via Oracle's multitenant architecture and in-memory
data processing capabilities. Furthermore, there is an abundance of tools for Oracle database
administration, application development and data movement/management. In terms of
functionality, Oracle keeps pace with many new and advanced features such as JavaScript
Object Notation (JSON) support, temporal capabilities, multi-tenancy and new database options
such as Oracle Database that uses in-memory columnar technology to enable enterprises to
easily and transparently accelerate the performance of their business analytics [36].

Oracle heavily promotes its database appliance, Exadata, which combines software and
hardware engineered in order to provide a high-performance and high-availability platform for
running Oracle Database. Its architecture features a scale-out design with industry-standard
servers and intelligent storage, including flash technology and a high-speed InfiniBand internal
fabric. Elastic configurations enable systems to be tailored to specific database workloads,
including online transaction processing (OLTP), data warehousing, in-memory analytics and
mixed workloads. The key selling point of a database appliance is that it's easy to deploy and
includes all of the needed components to run the DBMS [36].

Oracle 12c Release 1 will be fully supported by Oracle through the end of July 2018, and a
newer update, Oracle Database 12c¢ Release 2 (12.2), became available in early March 2017.
From a cost perspective, Oracle has a reputation as being expensive to license and support.
Additionally, according to surveys conducted at Gartner's annual IT Financial Procurement &
Asset Management summits in North America and Europe, Oracle ranked lowest in terms of
ease of doing business [36].

1.3.2.1BM DB2

Figure 8 - IBM DB2 [35]

28

http://www-01.ibm.com/software/data/db2/
http://www-01.ibm.com/software/data/db2/
http://www.oracle.com/
http://www-01.ibm.com/software/data/db2/

DB?2 is Oracle's biggest competitor on Unix and Linux operating systems. DB2 11.1 The latest
release of DB2, runs on Linux, UNIX, Windows, the IBM iSeries and mainframes. IBM has
pitted its DB2 system squarely in competition with Oracle's, via the International Technology
Group, and the results showed significant cost savings for those that migrate to DB2 from
Oracle which is translated into 34 percent to 39 percent for comparative installations over a
three-year period. In addition to these two platforms, DB2 is available on Windows, z/OS
mainframe and iSeries midrange servers. The latest versions of DB2 are DB2 Version 11 for
Linux, Unix, Windows (LUW), DB2 11 for z/OS and DB2 for i v7.2. DB2 SQL is almost
identical between the z/OS and LUW platforms, but administratively there are significant
differences. Likewise, many development, data movement and DBA tools are available for
DB2, both from IBM and other independent software vendors (ISVs) [36].

In terms of functionality, DB2 is regularly revised and updated with market-leading features,
including JSON support, temporal capabilities, shadow tables and advanced compression being
among the recent advances. With the DB2 SQL compatibility feature, IBM delivers the ability
to run Oracle applications in DB2 for LUW with no changes to business logic in the client code,
triggers or stored procedures. Feature-wise, it would be remiss not to mention IBM's next-
generation database technology for DB2 called BLU Acceleration. It provides a combination
of in-memory performance technigues, compression capabilities and column store capabilities.
As is the case with Oracle, IBM regularly publishes benchmark results for DB2. As with any
benchmark, it's always advisable to perform your own performance benchmarks on your own
systems and workload if possible. IBM offers a database appliance called the PureData System,
which provides single part procurement including pre-installed and configured DB2. The
system is ready to load data in hours and provides open integration with third-party software.
PureData comes with an integrated management console for the entire system, a single line of
support, integrated system upgrades and maintenance. The PureData System is available in
different models that have been designed, integrated and optimized for analytics, operational
analytics and transaction processing [36].

1.3.3.Microsoft SQL

F §6I“_'Server

Figure 9 - Microsoft SQL Server Logo [35]

Microsoft is the most profitable technology company and the SQL server helped a lot to put it
there. It is almost certain that, Microsoft's desktop operating system is everywhere, but if you're
running a Microsoft Windows-based server, you're likely running SQL Server on it.
SQL Server's ease of use, availability and tight Windows operating system integration makes
it an easy choice for firms that choose Microsoft products for their enterprises. Microsoft
promotes the latest release, SQL Server 2016, as the platform for both on-premises and cloud
databases and business intelligence solutions.

Microsoft promotes SQL Server 2016 in helping enterprises build mission-critical applications
with high-performance, in-memory security technology across OLTP (online transaction
processing), data warehousing, business intelligence and analytics.
The most recent release of Microsoft SQL Server is Microsoft SQL Server 2016 SP1
(v13.0.4001.0), which debuted on November 15th, 2016. Microsoft is currently developing
SQL Server 2017, codenamed SQL Server vNext, but no release date has been announced for
the upcoming version at this time.

From a technology and functionality standpoint, Microsoft keeps abreast with the
market. Features added to the latest version include stretch database capabilities for integrating
on-premises with cloud, strong encryption capabilities, integration of Hadoop with relational
data using the Polybase feature and improved in-database analytics capabilities. With Azure,
Microsoft's cloud-integration vision for SQL Server is the strongest of the big three DBMS
vendors, including simplified backup to Azure and the ability to set up an Azure virtual machine
as an always-on secondary. Microsoft boasts strong performance benchmark results for SQL

29

http://searchsqlserver.techtarget.com/tip/Eight-key-SQL-Server-2014-features
http://searchsqlserver.techtarget.com/tip/Some-new-Windows-Azure-integration-features-in-SQL-Server-2014
http://www.microsoft.com/en-us/server-cloud/products/sql-server-benchmarks/industry.aspx
http://www.microsoft.com/

Server 2016, including TPC-E, which measures modern OLTP workloads and TPC-H, which
measures data warehousing workloads.

However, Microsoft lacks a database appliance like Oracle's Exadata and I1BM's PureData
System. Therefore, if a user is looking for a pure plug-and-play database appliance, Microsoft
isn't a realistic option. However, there are third-party appliances that embed SQL Server, and
Microsoft also offers the Microsoft Analytics Platform System, an analytics appliance that
integrates SQL Server with data from Hadoop.

1.3.4.Teradata

TERADATA

Figure 10 - Teradata Logo [35]

Teradata was founded as early as the late 1970s, and it laid the groundwork for the first data
warehouse before the term even existed. Teradata is known mostly for its analytics and data
warehousing capabilities. For organizations looking to run analytical processes, the Teradata
Database and the company's Active Enterprise Data Warehouse offers a gateway to
organizational knowledge based on advanced in-database analytics, intelligent in-memory
processing, parallel in-database execution of scripting languages, native JSON support and
transparent single query, multi-system processing. Teradata created the first terabyte database
for Wal-Mart in 1992. Since that time, data warehousing experts almost always say Teradata in
the same sentence as enterprise data warehouse. The version 15.10 of its RDBMS was released

by Teradata in early 2015 [35] ,[36].

MH::\:_\;--_

Figure 11 - MySQL Logo [35]

1.3.5.MySQL

MySQL began as a niche database system for developers but grew into a major contender in
the enterprise database market and was sold to Sun Microsystems in 2008. Since then MySQL
has since become part of the Oracle empire and being more than just a niche database now,
MySQL powers commercial websites by the hundreds of thousands, and it also serves as the
backend for a huge number of internal enterprise applications. Today MySQL remains a very
popular option for use in Web applications and continues to serve as a central component of the
LAMP open-source Web application software stack, along with Linux, Apache and PHP (or
Python or Perl). At the same time, MySQL has seen support from users and developers erode
over the last few years following the acquisition by Oracle [35].

MySQL's decline has helped fuel the adoption of other open-source database options and forks
of MySQL like the fully-open source MariaDB, which doesn't feature closed-source modules
like some of those found in newer versions of MySQL Enterprise Edition, as well as Percona
and the cloud-optimized Drizzle database system. MySQL Community Server 5.7.x is the most
current release of the MySQL database system, with v5.7.19 having made its debut in July 2017
[35].

30

http://searchsqlserver.techtarget.com/feature/Vendors-introduce-three-new-SQL-Server-appliances
http://www.teradata.com/
http://www.mysql.com/

1.3.6.MariaDB

Figure 12 - MariaDB Logo [35]

MariaDB was created in 2009 by the original developers of MySQL, who created the fork
following concerns over MySQL's acquisition by Oracle. It is used by tech giants like
Wikipedia, Facebook, and even Google. MariaDB is a database server that offers drop-in
replacement functionality for MySQL. MariaDB has seen its popularity explode recently at the
expense of MySQL, particularly in its support by popular Linux distributions. In 2013 alone,
Red Hat Enterprise Linux (RHEL) ditched MySQL for MariaDB, Fedora opted for MariaDB
over MySQL in its Fedora 19 release, and both openSUSE and Slackware Linux made similar
switches to MariaDB over MySQL. Wikipedia also adopted MariaDB over MySQL as its
backend database in 2013.

Another key factor in moving MariaDB ahead of MySQL is its enhanced query optimizer and
other performance-related improvements, which give the database system a noticeable edge in
overall performance compared to MySQL. Last but not least, security is a top concern and
priority for MariaDB. Therefore, in each solution release, the developers also merge in all of
MySQL’s security patches and enhance them if need be.

The most recent "stable" release of MariaDB Enterprise Server is version 10.2 (v10.2.6 debuted
May 23, 2017), also known as the MariaDB Server 2017 release. The 10.x releases add better
protection for data against application and network-level attacks and also enables fast delivery
of new, high-performance applications.

1.3.7.PostgreSQL

Figure 13 - PostgreSQL Logo [35]

POSTGRES, now known as PostgreSQL, is considered to be the most advanced open-source
database available today. PostgreSQL, is an open-source object-relational database
management system (ORDBMS) that hides in such interesting places as online gaming
applications, data center automation suites and domain registries. PostgreSQL also enjoys some
high-profile duties at Skype and Yahoo! PostgreSQL is in so many strange and obscure places
that it might deserve the moniker, "Best Kept Enterprise Database Secret." PostgreSQL's
current stable release is PostgreSQL 9.6.3, which was released in late May 2017, and
PostgreSQL 10 is expected to debut in the second half of 2017, with PostgreSQL 10 Beta 2
available now. PostgreSQL runs on a wide variety of operating systems, including Linux,
Windows, FreeBSD and Solaris. And as of OS X 10.7 Lion, Mac OS X features PostgreSQL
as its standard default database in the server edition. PostgreSQL benefits from more than 25
years of development as a free, open-source database system, and it includes enterprise-grade
features comparable to Oracle and DB2 such as full ACID compliance for transaction reliability
and Multi-Version Concurrency Control for supporting high concurrent loads.

31

http://mariadb.com/
http://www.postgresql.org/

1.4. Benefits of PostgreSQL among other Relational Database Management
Systems

To choose the ideal database was to choose the one that would best fit for the needs of our tool.
Therefore, we relied on criteria that would help us delimit the options we had in order to make
the most accurate database choice for our tool.

The criteria that we relied on our decision were two. The first criterion, based on the type of
data we had, stated that the database should be a relational one. That meant that only Structured
Query Language (SQL) databases were accepted and as a result the NoSQL databases
automatically withdraw from competition. The second criterion stated that the relational
database that would be used should be low cost. This criterion restricted our choices even
further as now we had only the option of open-source relational databases. Therefore, we had
to find the most appropriate open-source relational database solution for our tool and that why
PostgreSQL was chosen.

After 15 years of active development and having a reliable architecture that ensures data
integrity and correctness, PostgreSQL is not just a relational database but rather a powerful
object-relational database. To start with, there is an extensive list of data types that PostgreSQL
supports such as Integer, Numeric, Boolean, Char, Varchar, Date, Interval and Timestamp [37].
Besides those date types, PostgreSQL boasts uuid, monetary, enumerated, geometric, binary,
network address, bit string, text search, xml, json, array, composite and range types, as well as
some internal types for object identification and log location. To be fair, open databases such
as MySQL and MariaDB each have some of these to varying degrees, but only PostgreSQL
supports them all [38].

Furthermore, PostgreSQL is highly scalable both in the sheer quantity of data it can manage as
well as in the number of concurrent users it can accommodate. There are active PostgreSQL
instances in production environments that are able to manage many terabytes of data, as well
as clusters managing petabytes [37]. However, open databases such as MySQL and MariaDB
are notorious for their 65,535 byte row size limit. Typically the data size is limited by the
operating system file size limit. Because PostgreSQL can store table data in multiple smaller
files, it can get around this limitation - though, it is important to note that too many files may
negatively impact performance. MySQL and MariaDB do, however, support more columns per
table (up to 4,096 depending on the data type) and larger individual table sizes than
PostgreSQL, but it is in rare conditions that the existing PostgreSQL limits would need to be
exceeded [38]. The PostgreSQL limits are displayed in the Table 3 below.

Table 3 - PostgreSQL Limits and Values [37]

Limit [Value
IMaximum Database Size |Unlimited
IMaximum Table Size 32 TB
‘Maximum Row Size H1.6 TB

‘Maximum Rows per Table HUnIimited

[Maximum Columns per Table][250 - 1600 depending on column types

|
|
|
|
[Maximum Field Size LGB |
|
|
|

‘Maximum Indexes per Table HUnIimited

Due to the aforementioned and to the tolerable limitations it contains PostgreSQL has
won praise from its users and industry recognition, including the "Linux New Media Award for
Best Database System" and five time winner of the "The Linux Journal Editors' Choice Award"
for best DBMS [37].

PostgreSQL is both a standard compliant and a highly customizable database that offers a wide
range of features. It prides itself in standards compliance as its SQL implementation strongly
conforms to the ANSI-SQL:2008 standard. Moreover, it has full support for subqueries
(including subselects in the FROM clause), read-committed and serializable transaction
isolation levels. And while PostgreSQL has a fully relational system catalog which itself
supports multiple schemas per database, its catalog is also accessible through the Information
Schema as defined in the SQL standard. Another standard compliance feature is its data
integrity features that include (compound) primary keys, foreign keys with restricting and
cascading updates/deletes, check constraints, unique constraints, and not null constraints [37].
Other open-source databases such as MySQL and MariaDB are doing a lot to be SQL standard
compliant with the InnoDB/XtraDB storage engines. They now offer a STRICT option using
SQL modes, which determines the data validation checks that get used; however, depending on
the mode we use, invalid and sometimes silently-truncated data can be inserted or created on
update. Neither of these databases currently supports check constraints and there are also a host
of caveats for foreign key constraints. Additionally, data integrity may suffer significantly
depending on the storage engine selected. MySQL (and the MariaDB fork) has made no secret
that they have long made tradeoffs for speed and efficiency over integrity and compliance [38].
Last but not least, PostgreSQL has customizable features through which it is able to run stored
procedures in more than a dozen programming languages, including Java, Perl, Python, Ruby,
Tcl, C/C++, and its own PL/pgSQL, which is similar to Oracle's PL/SQL. Moreover, besides
the standard function library that is included, there are the hundreds of built-in functions that
range from basic math and string operations to cryptography and Oracle compatibility.
PostgreSQL also includes a framework that allows developers to define and create their own
custom data types along with supporting functions and operators that define their behavior [37].
Best of all PostgreSQL features though is that its source code is available under a liberal open
source license: the PostgreSQL License. This license provides the users with the freedom to
use, modify and distribute PostgreSQL in any form they like, open or closed source. As such,
PostgreSQL is not only a powerful database system capable of running the enterprise, it is a
development platform upon which to develop in-house, web, or commercial software products
that require a capable RDBMS [37].

In the tool that we built it is more likely that most of the aforementioned advanced features will
not be used, but since data needs can evolve quickly, there is an undoubtedly clear benefit to
having them as our database capabilities. Therefore, due to the wide variety of capabilities, the
extensive data capacity, the data integrity and its exceptional documentation that can guide
experienced or fresh users in its use, PostgreSQL was chosen to be the relational database of
our tool.

33

1.5. Programming Languages for the Developement Unsupervised Clustering and
Forecasting Tools through Machine Learning

As the integration of internet in our lives rises, whether this is a good or a bad outcome, the
integration of information technology in mores areas of our lives also rises. Along with the rise
of internet and information technologies there is also an increase in the amounts of data
retrieved and as a result an increase in the importance of processing those data in large scales.
Based on recent estimates, 2.5 quintillion (108) bytes of data are generated on a daily basis. In
order to get an understanding of the amount of data available nowadays we only need to realize
that 90 percent of the information that we store nowadays was generated in the past decade
alone. It is made obvious that this amount of data is beyond the means of standard analytical
methods or it is simply too vast for humans limited minds to even comprehend. In order to cope
with this infinite amount of data machine learning was developed. Through Machine Learning,
we enable computers to process, learn from, and draw actionable insights out of the otherwise
impenetrable walls of big data [39]. The goal of this section is to deliver a comparison of five
programming languages, which are C/C++, Java, R, JavaScript and Python in order to
determine the most appropriate of them in order to be used for electricity clustering and
forecasting in a microgrid level using machine learning technology.

15.1.C/C++

C is a general-purpose, imperative computer language and was originally developed by Dennis
Ritchie between 1969 and 1973 at Bell Labs and used to re-implement the Unix operating
system. Since then it has become one of the most widely used programming languages of all
time, with C compilers from various vendors available for the majority of existing computer
architectures and operating systems [40]. C++ on the other hand, is a middle-level programming
language that was also developed at Bell Labs by Bjarne Stroustrup in 1979. The purpose of its
creation was to bypass the difficulties of analyzing UNIX kernel for distributed systems that
arose using other available programming languages that were either too slow or low level. The
development of C++ was based on C because it was a general purpose language, very efficient
as well as fast in its operations. Nowadays, C++ is ranked 4th in popularity according to 2017
IEEE spectrum Top Programming Language ranking [41].

CI/C++ is ideal for low-level software such as operating system components and
networking protocols where computational speed and memory efficiency are extremely
critical. For these same reasons, it is also a popular choice for implementing the guts of
Machine Learning procedures. However, its lack of idiomatic abstractions for data processing
and added overhead for memory-management can make it unsuitable for beginners, and
burdensome for developing complete end-to-end systems. In either case, there is no dearth of
Machine Learning libraries available in C/C++, e.g. LibSVM, Shark and mlpack [42].

1.5.2.JAVA

Java was developed by James Gosling at Sun Microsystems as a general-purpose computer-
programming language that was concurrent, class-based and object-oriented. It was released in
1995 as a core component of Sun Microsystems' Java platform and derived much of its syntax
from C and C++, but it had fewer low-level facilities than either of them [43]. Java became the
software engineer’s language of choice because of its clean and consistent implementation of
object-oriented programming, and platform-independence using JVMs. It sacrifices brevity
and flexibility for clarity and reliability, which makes it popular for implementing critical
enterprise software systems. In order to maintain that same level of reliability and to avoid
writing messy interfaces, companies that have been using Java may prefer to stick to it for their
Machine Learning needs [42].

15.3.R
R was created by Ross Ihaka and Robert Gentleman at the University of Auckland, New
Zealand. It was named partly after the first names of the first two R authors and partly as a play

34

on the name of S as it started as an implementation of the S programming language combined
with lexical scoping semantics inspired by Scheme. S was created by John Chambers in 1976,
while at Bell Labs. The R project was conceived in 1992, with an initial version released in
1995 and a stable beta version in 2000 [44].

R is a GNU package. The source code for the R software environment is written primarily
in C, Fortran, and R. R is freely available under the GNU General Public License, and pre-
compiled binary versions are provided for various operating systems. While R has a command
line interface, there are several graphical front-ends available [44].

R is used for statistical computing and is a clear winner for large-scale data-mining,
visualization and reporting. It provides an easy access to a huge collection of packages that
enable the users to apply almost all kinds of Machine Learning algorithms, statistical tests and
analysis procedures. The language itself has an elegant—albeit esoteric—syntax for expressing
relationships, transforming data and performing parallelized operations [42].

1.5.4.JavaScript

JavaScript was deployed for the first time in 1995 in the Netscape Navigator 2.0 beta. Until it
came to the name we know it today it had changed quite a bit. It started during its development
as Mocha, then it was officially named as Livescript when it first shipped in beta releases of
Netscape Navigator 2.0 and then changed again to the one that we know today [45].

JavaScript often abbreviated as JS, is a high-level, interpreted programming language which is
also characterized as dynamic, weakly typed, prototype-based and multi-paradigm.
Alongside HTML and CSS, JavaScript is one of the three core technologies of World Wide
Web content engineering. It is used to make webpages interactive and provide online programs,
including video games. The majority of websites employ it, and all modern web
browsers support it without the need for plug-ins by means of a built-in JavaScript engine.
Nowadays JavaScript is evolving with a rapid speed as it can be found on mobile
devices, desktop applications, embedded systems and backend applications. Therefore,
due to the wild range of its usage it can be used even in machine learning applications.
Perhaps it’s not the best idea to train machine learning models in the browser but using
pre-trained models in the browser might be a promising field in the future and it can be
used as the bridge for the web developers to enter the field of machine learning [45].

1.5.5.Python

Python got a definite seat among the modern high-languages as a general purpose programming
language. It was invented in the early 90s in CWI Netherlands by Guido Van Rossum in an effort
to find an alternative for the ABC language [46]. Python is one of the most popular programming
languages for machine learning and data science and therefore enjoys a large number of useful add-
on libraries developed by its great community. Although the performance of interpreted languages,
such as Python, for computation-intensive tasks is inferior to lower-level programming languages,
extension libraries such as NumPy and SciPy have been developed that build upon lower layer
Fortran and C implementations for fast and vectorized operations on multidimensional arrays. For
machine learning programming tasks, we will mostly refer to the scikit-learn library, which is one

of the most popular and accessible open source machine learning libraries as of today [39].

1.6. Benefits of Python among other Programming Languages regarding Clustering
Methods

The most decisive factor when selecting a language for machine learning is the type of project
that it will be used. In a survey, the results of which are displayed in Figure 14, developers
where asked would their choice be for machine learning languages in 17 different application

35

areas. Python was the programming language with the highest popularity, for machine learning
developers and data scientists, among the other languages regarding machine learning [47].

% of machine learning developers / data scientists who use or prioritise each language (n = 2,022)

Python C/C++ Java R JavaScript
POPULARITY

I 57 I 43 I I I 25
I 3 I 1o I 6 W 5% . 7%

M Prioritisedby Il Used by
APPLICATION AREA

Al in games Sentim
I s [B2 i
Fraud detection yster Not sure Al ir B
— (B2 1 12
Network secur alys Bioengine Rot Sen
I - I 12
PROFESSIONAL BACKGROUND
None - Data Science is my first profession Embedded compuing hardware Frontend desktop applicatior
fie ¢ stusc ot ngin f r alyst / stat F t
d Eml E ed compui
Mechanical engineer Frontend web developer r tronics engineer elec g electronics e
I 7 B o [} R LE
REASONS TO GET INTO MACHINE LEARNING
id mact: ng t N
apr
Data science » app Curious w Data
university degr mach
I ¢ (¥ s
R RV = ateas - rioritised t " (visiomr
M Area/background/reason where each language is prioritised east rmobile

Figure 14 - Popularity of Machine Learning Languages [48]

Python leads the pack, with 57% of data scientists and machine learning developers using it
and 33% prioritizing it for development. This fact should not surprise us based on the fact that
there is a huge evolution in deep learning Python frameworks over the past 2 years, including
the release of TensorFlow and a wide selection of other libraries. Python ratio of usage is 57%
which is the highest ratio making it a primary choice for machine learning language among the
other five languages [47].

In addition, given all the evolution, Python is often compared to R, but they are nowhere near
comparable in terms of popularity: R comes fourth in overall usage (31%) and fifth in
prioritization (5%). R is in fact the language with the lowest prioritization-to-usage ratio among
the five, with only 17% of developers who use it prioritizing it. This means that in most cases
R is a complementary language, not a first choice in opposition to Python. Furthermore, Python
is ahead of many highly preferred languages such as C/C++ which is found second, both in
usage (44%) and prioritization (19%). Java follows C/C++ very closely, while JavaScript
comes fifth in usage, although with a slightly better prioritization performance than R (7%)
[47]. Moreover, those who responded to the survey about other programming languages used
in machine learning application also suggested the usual suspects of Julia, Scala, Ruby, Octave,
MATLAB and SAS, but they all fall below the 5% mark of prioritization and below 26% of
usage [47].

Machine learning scientists working on sentiment analysis prioritise Python (44%) and R (11%)
more and JavaScript (2%) and Java (15%) less than developers working on other areas. In
contrast, Java is prioritised more by those working on network security / cyber-attacks and fraud
detection, the two areas where Python is the least prioritised. Network security and fraud

36

detection algorithms are built or consumed mostly in large organisations—and especially in
financial institutions—where Java is a favourite of most internal development teams. In areas
that are less enterprise-focused, such as natural language processing (NLP) and sentiment
analysis, developers opt for Python which offers an easier and faster way to build highly
performing algorithms, due to the extensive collection of specialised libraries that come with it
[47]. C/C++ is mostly favoured for Artificial Intelligence (Al) in games (29%) and robot
locomotion (27%) which are two areas where the level of control, high performance and
efficiency are required. Therefore, a lower level programming language such as C/C++ that
comes with highly sophisticated Al libraries is a natural choice, while R, designed for statistical
analysis and visualizations, is deemed mostly irrelevant and is therefore prioritized in the lower
position in Al followed by speech recognition where the case is similar [47].

Although surveys can indicate a programming language being more appropriate for an
application than another, there is no rule for the best machine learning language. In our
application based on the survey and on the fact that our effort of creating a predictive tool is
our maiden journey in machine learning, Python will be used as the best option, given its
wealth of libraries and ease of use.

37

2. Electrical Load Data

Nowadays, data are the most important source in each program and they are the basis of its
success. This means that if the data we import are good then the system we are making is likely
to work properly and to have a high precision. On the other hand if the data we put into the
system are incomplete, or lack the precision required than the most likely scenario is that the
system that is implemented will have limited precision and will not function properly.

2.1. Data Retrieval from the Administrator of the Greek Electricity Distribution
Network

Taking the aforementioned under consideration and after searching the best possible ways to
retrieve the data we came to the decision to get our data from the Administrator of the Greek
Electricity Distribution Network (Greek: Awyeiprotig EAAnvikod Awtoov Awovoung
Hlextpung Evépyewag, or AEAAHE) which was formed by the separation of the Distribution
Department of Greece's Public Power Corporation in order to comply with the 2009/72/EC EU
Directive relative to the electricity market organization. Its mission is to assume the
responsibilities of the Distributor for the Network Operation of Greece. It is a 100% subsidiary
of the public power corporation (Greek: AEH), however, it is independent, maintaining all the
independence requirements embodied in the above legislative framework. Therefore, through
the smart metering system that it contains we were able to obtain past data of both active and
reactive loads of the Technological Institute of Sterea Ellada for the Chalkis location only by
entering in the following site:

https://meteringnet.deddie.gr/login.aspx?ReturnUrl=%2fbilling.aspx

M xivdcon

' 4 AEAAHE

EicoGog atnv utmpeoia peTpnmikwv SeSopévv yia wehdreg M.T.

Eigobog yia syyeypapévoug XpioTeg

Eyypa@ij véou pihoug

ApiBpog NMapoxnc: 54800141 Eyypageite oTnv nAKToovikr uTmnpedia perprmxwy defopivwy yig mopoxie Méang

Taong (M.T)

g AEAAHE. Kal EVAUEDWAEITE Vig TNV KaTavdAwar cag online.

ZuvBnpatikd ei06dou: arassess

AV EEXGOOTE Ta OTOIKEID TROTRATNG, EMAEETE
Yev@upion atoiyeiwy Tpoopaonc

Figure 15 - DEDDIE Login Page

38

https://meteringnet.deddie.gr/login.aspx?ReturnUrl=%2fbilling.aspx

After we have successfully logged in the website we were able to choose the time periods of
the loads on which we would rely our solution. In order to have a sufficient amount of data we
draw data from January 1, 2010 to January 31, 2018. From the data retrieved 95% will be used
for training and the rest of them for testing as it will be explained in chapter 5.

We are given the ability to retrieve the data per hour or per quarter. Based on the Divinus
requirements we decide to retrieve the data per hour.

FY 84800141 | ATrocuvaeon

& 2EANHE

AeSopéva METpnong avd Xpovikr TepioSo

YToompign: telemetering@deddie.gr

|18I05ﬂ2018 ||19f05/2ms |

MAPOXH: 84800141 - TYMOZ:1 - METPHTHE: 33030153

Mpogoyn:

) O apaTdvey TIES (TEAEUTATOU Kan TponyoUpevou UnGeviaued) eugavidovTar kar atrny 08dvn Tou MeronTr] aag

B) O nigéc autéc elvar oe VWA, Tia var UTTOAOYITETE TV KaravaAwar] aac o€ kAVh TOETEN var TOAAQTTAGTICETTOLV UE TOV A0V OUWTEAEDT!) M/Z METONGRC TS TTanaxTic oag
v) Ta GEGOUEVA ¢ TapayOuevne EvEpyeics amrd ANE eiven evBaKTikg. H TeAKr ekkaBdoion Twy AME yid 10 AidguvBedeuévo GikTuo yiverar ammo Tov AAMTHE Kai yia 1o M
Aigouvdebeudvo AikTuo atio Ty AAN (Avan Aiayeipions Niawv) Tou AEAAHE

)0 TIES TTOU Ep@avifovTal OTIC KATTUAES Kal oTa apyela (XIS, PDF) eivai oe KWh (£xouv rjEn TOAGTAQOIGOTE g TV OUVTEAEDTT) M/E METoNang Tr¢ TTapoxTic aag).

KapTtriAsg gopTiou

Tt HeGopéva TwV KaUTTUAWY QopTiou eivan EVBEIKTIKA Kal &)1 oplaTIke, n TIHoASYNaT) ag meavéy va TTEpIAapBAVEl avaTposapuoyés a'autd Ty. Adyuw BAGRNG Tuv M/Z A GiakoT
TAGEWG TE I (ATT) KATT.

Epgdvion avd Tetapto (15 AsTrTd) ' Eppdvion avd Qpa (80 AeTrTd)

MTTOpEITE VO EUQAVITETE KOl VO ammoBnkeUoeTe Ot apyeio XLS i .PDF Ta perpnmkd defopéva oog GTTwG KamaypaQnkay atré Tov PETpNTA oag YEXp! kai T xBeovi] nuépa.

Av BERETE VO TIQPUKOAQUBEITE Trv LETPNOT) OUC OF TIpAYPATIKG Xpovo UTTopeiTe Vo ouvGeBeite oTOV PeTpnTH YIa Vo TdpeTe Ta Sebopéva o TIaApoUs Kol vl Ta GEIoTTOIRCETE Y. PE Eva
PLC.

Figure 16 - DEDDIE Site where we choose the data we want to retrieve and the time unit to which the
data will be retrieved

As soon as the data are ready to be downloaded we are able to view two graphs one for the
active and one for the reactive load as it is shown in Figure 16.

Kapmiin ENEPTOY Evépyeaiag (KWh)

250 [\

200 \
150

100 N

f\/ \'R_ - / ‘\/__

2078-05-1809 2018-05-181% 2018-05-1%05 2018-05-1915

Figure 17 - Active Load Graph Displaying the Selected Time Period

39

KopTiin AEPTOY Evipyeiag (KVARR)

40

. A
) l/“/ \\
1] IV

2018-05-1809 2018-05-181% 2018-05-1905 2018-05-1915

Figure 18 - Reactive Load Graph Displaying the Selected Time Period

These data can be exported from the site in three possible formats: a) excel b) csv and c) pdf.
The pdf format was automatically excluded due to the fact that it is a non-manageable format
type. Therefore, the excel and the csv formats are the only that we could handle. We will
proceed with the excel format.

Hpepopnvia Evépysia
2018-05-18 00 77
2018-05-18 01 81,2
2018-05-18 02 77
2018-05-18 03 73
2018-05-18 04 68,8
2018-05-18 05 70,8
2018-05-18 06 73,8
2018-05-18 07 39,6
2018-05-18 08 101,2
2018-05-18 09 153
2018-05-18 10 175,6
2018-05-18 11 183,8
2018-05-18 12 189,2
2018-05-18 13 2442
2018-05-18 14 242.8
2018-05-18 15 200,6
2018-05-18 16 161,2
2018-05-18 17 133
2018-05-18 18 136,4
2018-05-18 19 1514
2018-05-18 20 130
2018-05-18 21 82,6
2018-05-18 22 82,4
2018-05-18 23 74,6

Figure 19 - DEDDIE Excel Format

Huepounvica; Evépye Lo (kWh)
2018-05-17 23;21,2
2018-05-18 00;78
2018-05-18 01;80,4
2018-05-18 02;77,4
2018-05-18 03;659,4
2018-05-18 04;68,2
2018-05-18 05;74,86
2018-05-18 06;73,2
2018-05-18 07;92,8
2018-05-18 0B;117,4
2018-05-18 0%9;153,4
2018-05-18 10;1B3,8
2018-05-18 11;180,8
2018-05-18 12;1%97,%6
2018-05-18 13;253,2
2018-05-18 14;237,4

Figure 20 - DEDDIE CSV Format

As soon as we have downloaded the data required for Divinus we are able to proceed to the
next step which is the insertion of these data to our program’s database.

2.2. Data Insertion in Divinus PostgreSQL Database

The next thing that needs to be done after the data have been successfully downloaded is the
insertion to the database and as a result to Divinus itself. This action is performed with the use
of a python library called pandas.

Pandas is an open source, software library written for Python and is used for data manipulation
and analysis. Its name derives from the term "panel data" and as it is expected it offers solutions
regarding data structures and operations for manipulating numerical tables and time series. It is
easy to use and a very useful tool when it comes to the management of a wide variety of data.
The first use of pandas is to enter the data in Divinus in order to check whether they are properly
structured. In case they are not, corrective actions are performed on the data and then they are
store in the database. Table 4 contains the code that performs the aforementioned actions.

Table 4 - DEDDIE Power Loads Code
Created on Mar 4, 2018

@author: dimitris mele

os
threading
SENETS pd
glob glob
Database.Insert insert_to_ap, insert_to_rp
Core.XLS_Removal XLS_Removal Energeia, XLS Removal_ Aerga

Deddie_active_power_data():

file glob(r'C:\Users\dimit\Downloads\Loads\Energeia *.*'):
directory = (os.path.abspath(file))
(II

41

('A file found: {}'.format(directory))
")

get _ap, = pd.read_html(directory, thousands=".
header=0)

, decimal="',",

)
get_ap['date_time'] = get_ap['date_time'].apply(pd.Timestamp)

i range(len(get_ap)):
insert_to_ap(get_ap['date_time'][i],
get _ap['active_power_kwh'][i])
("Data were successfully inserted in the database™)

XLS_Removal Energeia()

seconds=1.0
minutes=seconds*60
hour=minutes*60

threading.Timer (hour, Deddie_active power_data).start()

Deddie active power data()

The aforementioned code runs every hour. This means that every hour it will search at
(C:\Users\dimit\Downloads\Loads\) which is the location where the DEDDIE files are saved.
Once it identifies files whose names start with "Energeia™ or "Aerga" it will try to integrate
them through pandas in Divinus, perform corrections wherever they are needed and store them
in the database. The integration into the database is performed through the SQL insert functions.

Table 5 - SQL Insertion Command for the Active Power Loads Implemented through Python
insert_to_ap(date_time, active_power_kwh):
conn=psycopg2.connect ("host='localhost' dbname='postgres’
user="'postgres' password='123456q!"'")
cur=conn.cursor()

cur.execute ("INSERT INTO active_power VALUES (%s,%s) ON CONFLICT
(date_time) DO NOTHING", (date_time, active_power_kwh))

conn.commit ()

conn.close()

The insertion functions are implemented by inserting and executing the SQL commands
through python. In order for the SQL commands to work in python the first thing that needs to
be done is to set the information regarding the database in which they will be saved. The
information required are the host, the database name, the user and the password. By giving
these information we are able to log into the database and define the command we want to
execute. In our case the command we want to execute is the insertion command and it will be
executed as follows:

INSERT INTO TABLE VALUES (%s,%s) ON CONFLICT (VALUE) DO NOTHING

42

The bold words in the SQL command should be replaced by the corresponding table and the
corresponding table column.

INSERT INTO active_power VALUES (%s,%s) ON CONFLICT (date_time) DO
NOTHING

The last step in the data retrieval process is the deletion of the files after the data have been
successfully inserted in the database. Therefore, as soon as the files are successfully inserted
into the database the functions XLS_Removal_Energeia() starts running. Its purpose is to delete
the downloaded xIsx files from the directory that they are stored in order to release computing
resources.

Table 6 - XLSX Removal Code

Created on 8 Map 2018

@author: d.mele

os
glob glob

XLSX_Removal Energeia():

file glob(r'C:\Users\dimit\Downloads\Loads\Energeia *.*'):
os.remove(file)

After all the functions and the processes have been successfully completed we are able to enter
the database and check that the data required for Divinus to start working are inserted in the
corresponding tables. To do that pgadmin package is required to be downloaded. pgAdmin is a
free and open source graphical user interface administration tool for PostgreSQL, which is
supported on many computer platforms.

Here end the data insertion process. The same process is also followed for the reactive power
loads.

43

3. Clustering Electricity User Profiles Data through Self Organised
Map (SOM)

Having all the data ready allow us to move to the next step which is to implement the first of
the two algorithms through which the use profiling goal is achieved. The algorithm chosen for
this goal as it is already mentioned in Chapter 1 is the Self Organizing Map which is an
unsupervised learning algorithm. SOM is a type of Artificial Neural Networks able to convert
complex, nonlinear statistical relationships between high-dimensional data items into simple
geometric relationships on a low-dimensional display [49].

3.1. Data Pre-Processing

In order to implement the SOM algorithm, data pre-processing is required. The data that are
loaded in our system are hourly values which means that they contain a timestamp and the
hourly consumption. A depiction of how these data are stored in the database can viewed in
Figure 21. This format however is not the desired one because although it can be clustered by
SOM the clusters will not make any sense. The data need to be reorganized in a format that will
be more logical and the clusters created afterwards could be easily used.

W pgadmin 4 - X
Restore Dowr
File « Object ~ Tools + Help «

A Browser @ Dashboard ©f Properties [BSQL |+~ Statistics <y Dependencies {3 Dependents ¥ Edit Data - PostgreSQL 10 - postgres - publicactive_power
S e ngE s R
B %) Extensions =3 - Q|- & B @ . Y -|Nolmt - ¥ . H . &
= Foreign Data Wrappers —
H PostgreSQL 10 - postgres - publicactive_power
Languages
B &> Schemas (1) s
date ime
- 49 public -
Collations
% Domains
[[3) FTS Configurations
[I% FTS Dictionaries
Aa FTS Parsers
FTS Templates R
(7 Foreign Tables Data Output Explain Messages Query History
(3} Functions date_time active_power_kwh
- 4 [PK] timestamp without time zone numeric (10,2)
Materialized Views
1 2010-01-01 00:00:00 73.60
1.3Sequences
[Tables (18) 2 2010-01-01 01:00:00 75.00
- 9 active_power, 3 2010-01-01 02:00:00 74.00
] auth_group 4 | 20100101 03:00:00 75.00
5 auth_group_permi 5 2010-01-01 04:00:00 75.20
B auth_permission 6 2010-01-01 05:00:00 75.00
" S auh_user 7 | 2010-01-01 06:00:00 76.20
~ 9 auth_user_groups
o 3 2010-01-01 07:00:00 71.80
~ 9 auth_user_user_pe
9 django_adrmin_log s 2010-01-01 08:00:00 70.00
Eldjangn_mmn_“y 10 | 2010-01-01 09:00:00 68.80
£ django_migrations 11 | 2010-01-01 10:00:00 63.20
- £ django_session 12 | 2010-01-01 11:00:00 54,80
- Ereactive_power 13 | 2010-01-01 12:00:00 57.60
B som_active_pawer, 14 | 2010-01-01 13:00:00 56.00
[som_active_power
15 | 2010-01-01 14:00:00 56.80
9 som_kneighbors_f
- 5 som kneighbors £ 16 | 2010-01-01 15:00:00 56.20
- 5 s0m_reactive_pow 17 | 2010-01-01 16:00:00 55.20
5 som_reactive_pow) 18 | 2010-01-01 17:00:00 66.80
() Trigger Functions 19 | 2010-01-01 18:00:00 77.60
Types 20 | 2010-01-01 19:00:00 24.40
Views 21 2010-01-01 20:00:00 76.30
5 Login/Group Rol
B Login/Graup foles 22 | 2010-01-01 21:00:00 74,60
Tablespaces v
P N 23 | 2010-01-01 22:00:00 76.60

Figure 21 - pgAdmin Active Loads View

As a result, the first pre-processing step in SOM’s implementation is to reorganize the data in
the appropriate format. In order to do that we make use of some real helpful data structures and
analysis libraries such as pandas, minisom [49], sklearn preprocessing, and sglalchemy. The
first step as it shown in Table 8 is to retrieve the data from the database with the use of

44

sglalchemy. Through the sqglalchemy we are given the ability to choose the data we want and
set specific rules. For instance, as it shown in Table 8 we choose to retrieve the active power
data where the consumption field is not null. In this way we get all the required data avoiding
to have information that are incomplete (e.g. date without consumption). The next thing that
should be done as soon as we retrieve the data required is to put them in pandas dataset with
the required format. In order to do that we need to create a unique day that will contain 24
empty slots, one for each of the hourly consumptions of that day. As it is shown in Table 8 by
running a for loop we are able to insert the hourly consumptions to each of the empty slots.

Table 7 — SOM Data Preprocessing

Created on 26 Map 2018

@author: d.mele

numpy np
pandas pd
minisom MiniSom
sqlalchemy create_engine
sklearn.preprocessing MinMaxScaler
Database.Truncate truncate_som_ap, truncate_som_day_ap

som_active power_day clusters():

Truncate the data that exist in SOM from previous runs
truncate_som_ap()
truncate_som_day_ap()

Importing the dataset

engine =
create_engine('postgresqgl://postgres:123456q!@localhost:5432/postgres"’)

dataset = pd.read_sql_query("SELECT date_time, active_power_kwh FROM
active_power WHERE active_power_kwh IS NOT NULL", con=engine)

#dataset["date_time"] = dataset["date_time"].astype(np.int64)

("Getting Data ready for training and clustering...")

We first need to create a dataset that has a unique date and 24 empty
slots for each date in order to enter the consumptions of that date
date_clusters = pd.DataFrame(columns=["'date', 'Hour @', 'Hour 1', 'Hour
2', 'Hour 3', 'Hour 4', 'Hour 5', 'Hour 6', 'Hour 7',
"Hour 8', 'Hour 9', 'Hour 10',
'"Hour 11', 'Hour 12', 'Hour 13', 'Hour 14', 'Hour 15°',
"Hour 16", 'Hour 17', 'Hour
18', 'Hour 19', 'Hour 20', 'Hour 21','Hour 22','Hour 23'])
date_clusters['date'] = dataset['date_time'].dt.date.unique()

data_check = pd.DataFrame(dataset['date time'].dt.date)
i range(len(date_clusters)):
get_index = data_check.index[data_check['date_time’]
date clusters['date'][i]].tolist()

Jj get_index:

45

hour = int(dataset['date_time'].loc[j].hour)

hour == int(©):
date_clusters["Hour
dataset['active_power_kwh'][j]
hour == int(1):
date_clusters['Hour
dataset['active_power_kwh'][j]
hour == int(2):
date_clusters["Hour
dataset['active_power_kwh'][j]
hour == int(3):
date_clusters['Hour
dataset['active_power_kwh'][j]
hour == int(4):
date_clusters['Hour
dataset['active_power_kwh'][j]
hour == int(5):
date_clusters['Hour
dataset['active_power_kwh'][j]
hour == int(6):
date_clusters['Hour
dataset['active_power_kwh'][j]
hour == int(7):
date_clusters['Hour
dataset['active_power_kwh'][j]
hour == int(8):
date_clusters['Hour
dataset['active_power_kwh'][]]
hour == int(9):
date_clusters['Hour
dataset['active_power_kwh'][]j]
hour == int(10):
date_clusters['Hour
dataset['active_power_kwh'][j]
hour == int(11):
date_clusters['Hour
dataset['active_power_kwh'][]]
hour == int(12):
date_clusters['Hour
dataset['active_power_kwh'][]]
hour == int(13):
date_clusters['Hour
dataset['active_power_kwh'][j]
hour == int(14):
date_clusters['Hour
dataset['active_power_kwh'][7j]
hour == int(15):
date_clusters|['Hour
dataset['active_power_kwh'][j]
hour == int(16):
date_clusters['Hour
dataset['active_power_kwh'][j]
hour == int(17):
date_clusters|['Hour
dataset['active_power_kwh'][7j]
hour == int(18):
date_clusters["Hour
dataset['active_power_kwh'][j]

0"][1i]

1'][1]

2" J[4]

3'1[1]

4"][1]

5'1[1]

6'][1]

7"][1]

8" J[1]

9"][1]

10'J[1]

11°][4]

12'][1]

13'][1]

14'1[1]

15"][1]

16"][1]

17'1[1]

18"][1]

hour == int(19):
date_clusters['Hour 19" J[1]
dataset['active power kwh'][j]
hour == int(20):
date_clusters['Hour 20"][1]
dataset['active power kwh'][j]
hour == int(21):
date_clusters['Hour 21"][1i]

dataset['active power_kwh'][j]
hour == int(22):
date_clusters['Hour 22"][1]
dataset['active power kwh'][j]
hour == int(23):
date_clusters['Hour 23"][1]
dataset['active power_kwh'][j]

As soon as all data are reorganized we will be able to see in the console that the pandas dataset
is filled with hourly consumptions in the corresponding days. Table 9 shows the format of the
pandas dataset after the pre-processing is completed.

Table 8 - Pandas Dataset after the preprocessing is complete. It can now be used to cluster the dates
with SOM based on their daily consumptions
date Hour @ Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 Hour

1262304000000000000 73.6 75 74 75 75. 75

1262390400000000000 74.8 : .8 .6 74. 76

1262476800000000000 : . : : 71. 70

1262563200000000000 0 5 5 0 77. 75.2

1262649600000000000 o : 85.

1262736000000000000

1262822400000000000

1262908800000000000

1262995200000000000

1263081600000000000

1263168000000000000

1263254400000000000

1263340800000000000

1263427200000000000

1263513600000000000

1263600000000000000

1263686400000000000

1263772800000000000

1263859200000000000

1263945600000000000

1264032000000000000

1264118400000000000

1264204800000000000

1264291200000000000

1264377600000000000

1264464000000000000

1264550400000000000

1264636800000000000

1264723200000000000

1264809600000000000

1517270400000000000

1517356800000000000

1517443200000000000

1517529600000000000

1517616000000000000

1517702400000000000

1517788800000000000

1517875200000000000

1517961600000000000

1518048000000000000

1518134400000000000

1518220800000000000

1518307200000000000

1518393600000000000

2965 1518480000000000000
129.6

2966 1518566400000000000
115.2

2967 1518652800000000000
123.2

2968 1518739200000000000
105

2969 1518825600000000000
75

2970 1518912000000000000
88

2971 1518998400000000000
76.8

2972 1519084800000000000
112.4

2973 1519171200000000000
113

2974 1519257600000000000
105

2975 1519344000000000000
94.6

2976 1519430400000000000
73.4

2977 1519516800000000000
76.6

2978 1519603200000000000
100.4

2979 1519689600000000000
1e3

2980 1519776000000000000
111.8

Hour 7 Hour 8 ee Hour 14 Hour 15 Hour 16 Hour 17 Hour 18 Hour

71. 70 000 56.8 56.2 55.2 66.8 77 .6

70. : 500 59.2 59. .8 66.2 76.

66. : 500 59.4 58. .8 72 85.

74. : 500 112.4 83. 88

83. 5 000 114

96. 500 80.4

97 600 109

175.2

87.4

88.6

399

450.6

2961 130.4 500 148.4 132.8

129.2

2962 78.4 5 600 105.2 114.2

129.2

2963 81.8 : 500 : 95 91.4

115.2

2964 600 0 155

168.4

2965 500 : 164

181.4

2966 600 5 164

198

2967 o 500 : 169.8

155

2968 o o0 : : 159.6

137.8

2969 0 5 000 5 5 90.

112.8

2970 o : o0 : : 85.

92

2971

115.4

2972

166.8

PAVE

174.2

2974

167.4

2975

143

2976 0 : 000 0 5 93.6 96.
103.4

2977 o : 500 o : : 108.2 116
117.8

2978 000 5 181 168
191.4

2979 500 : 192 171
184.6

2980 0o - 153.6 140.4
159.2

Hour 21 Hour 22 Hour 23
74.6 76.6 VE]
75.2 75.6 78.
79 79.6 78.
88.2 83.8 84.
114.6 116.8 114.
8

4

7

N

103.8 lo1. 103.
110 114. 111.

99. 9 98.

100. 93.6 93.

124. 133.2

209. 205 209

204. 188.

223. 202.

185. 178.

136. 135.

123. 121.

137.

VoOoNOTUPE,WNEO
NNMNNPERPROOODPR,POOPRNMNNNNOOO
S 00 00 NN 0N

NONOOWOOONNOOPD

(IR}
w

.8
.4
.4
.6
.8
.4
.2
.2
.6
.6
.8
.6
.4
.6

Furthermore, besides the data reshape, in Table 9 we are able to see that the date column
does not show dates but epochs. This happens not because of a mistake but rather of
the need to convert dates into integers so that they can be read by the SOM algorithm.
This change is accomplished with the use of the code in Table 10:

Table 9 - Code that converts date to epoch in order to be used in SOM algorithm

date _clusters['date'] = pd.to_datetime(date_clusters['date'])
date _clusters['date'] = date_clusters['date’].astype(np.int64)

(date_clusters)

3.2. Implementation of Self Organizing Map

52

Having successfully reshaped that data in a logical format we are able to progress to the SOM
implementation. The SOM implementation is based on the minisom python library which is a
minimalistic and Numpy based implementation of the Self Organizing Maps [49]. The first
thing that needs to be done is to split the data into the data that will be clustered and the data on
which the clusters are to be created.

Table 10 - Creation of two numpy data arrays X and y. The X numpy array holds the data that will be
clustered while the y numpy array holds the data based on which the clustering of X will take place

X = date_clusters.iloc[:, ©:25].values

#Feature Scaling

sc = MinMaxScaler(feature_range= (0,1))
X = sc.fit_transform(X)

(X)

As soon as this task is complete we have to specify the size of the SOM which in turn determines
the accuracy of the clusters. By reducing or increasing the size we can define a larger or a
smaller number of clusters. The actual question is not how many clusters can the SOM
algorithm produce but rather how many clusters are really needed. The answer to this questions
can be given relatively easy if we know the functionality of the building. For instance, the use
profile of a home is quite different from the use profile of a factory of a university. Therefore,
crucial information such as the aforementioned should be taken under consideration. In our
case, having data from several past years, we are able to observe repeated patterns of
consumption and therefore comprehend the functionality of the building we want to create its
use profile. After carrying out a small research based on past loads and having tested a variety
of clusters we came to the conclusion that for the Technological Education Institute facilities
in Psachna Euboeas the required number of clusters sums up to 4.

Having found the required number of clusters, we are able to start the implementation of the
SOM algorithm.

Table 11 — Initialization of the SOM algorithm with a 2x2 matrix

pi
p
Training the SOM
som = MiniSom(x = x, y =y, input_len = 25, sigma=1.0,
learning _rate=0.5) # initialization of a 2x2 SOM
som.random_weights_init (X)

("Training active power loads...")
som.train_random(data = X, num_iteration = 100) # trains the SOM with
iterations

("...ready!")
#Showing the Clusters
clusters = som.win_map(X)

XX = X + 1
yy =y +1
z range(xx):
w range(yy):
cluster = clusters[(z,w)]
cluster != []:
cluster_norm = sc.inverse transform(cluster)

53

som_predataset = pd.DataFrame(cluster_norm)
som_predataset['som_column'] = w

cols = som_predataset.columns.tolist()

som_predataset = som_predataset[[cols[-1]] + cols[:-1]]
som_predataset['som row'] = z

cols = som_predataset.columns.tolist()

som_predataset = som_predataset[[cols[-1]] + cols[:-1]]

som_predataset.rename(columns={0: 'date_active_power’,
1:'hour_0', 2:'hour_1', 3:'hour_2"',
4:'hour_3"', 5:'hour_4',
6:'hour_5', 7:'hour_6",
8:'hour_7', 9:'hour_8',

10:"hour_9', 11:'hour_10"',

12:'hour_11', 13:'hour_12"',
14:'hour_13', 15:'hour_14',

16:"hour_15"', 17:'hour_16",
18:'hour_17', 19:'hour_18",

20:"hour_19', 21:'hour_20°',
22:'hour_21', 23:'hour_22',

24:"hour_23'}, inplace=

som_predataset['date_active power']
pd.to_datetime(som _predataset['date_active_power'])
som_predataset['date_active power']
som_predataset['date_active_power'].dt.round('1s")
som_predataset['date_active power']
pd.DataFrame(som_predataset['date_active power'].dt.
(som_predataset)

SOM training starts as soon as we have specified the clusters and have run the SOM algorithm.
A few seconds later we are given print outs of pandas datasets as it shown in Table 13 in which
the reshaped data contain two more columns which are the som_row and the
som_column that act as the identifies of the cluster in which the dataset belongs.

Table 12 — Pandas Dataset that belongs to the cluster [0,0]

Training active power loads...
...ready!

som_row som_column date_active_power hour_© hour_1 hour_2
hour_3 \
0 0 0 2010-01-11 157.8 160.2 155.6
17e.
1 0 0 2010-01-12 207.6 195.0 196.
195.

p 2010-01-13 184.2 180.4 172.
189.
3 2010-01-14 192. 185. 192.
180.

2010-01-15 167. 164. 168.
159.
2010-01-18 152. 146. 157.

2010-01-19 209. 203. 194.

2010-01-20

2010-01-21

2010-01-22

2010-01-25

2010-01-26

2010-01-27

2010-01-28

2010-02-01

2010-02-02

2010-02-03

2010-02-05

2010-02-08

2010-02-09

2010-02-11

2010-02-12

2010-02-17

2010-02-23

2010-03-01

2010-03-08

2010-03-09

2010-03-10

2010-03-15

2010-03-16

2014-03-21

2014-03-26

2014-03-31

2014-04-08

2014-12-16

2014-12-17

2014-12-18

2015-01-07

2015-01-08

2015-01-13

2015-01-14

2015-01-15

2015-01-16

2015-01-19

2015-01-21

2015-01-27

2015-01-28

2015-01-29

2015-02-03

2015-02-04

2015-02-18

2015-02-19

2015-02-25

2015-12-15

2015-12-16

2016-01-19

2016-01-22

2016-01-25

2016-01-26

2016-01-27

hour_4 hour_5 hour_6 hour_14 hour_15 hour_17

Y/ 147. 162. 000 399. 396. . 399.
184. 186. 193. 000 450. 425, : 366.
190. 178. 177. 600 421. 407. : 384.
168. 172. 176. 600 415. 381. 5 338.
165. 169. 168. 000 345. 303. . 279.
136. 145. 156. 000 456. 427. . 399.

197.
191.
200.
173.
179.
225.
208.
182.
145.
151.
184.
173.
153.
173.
136.
142.
123.
143.
135.
146.
191.
168.
154.
180.

MNNNOPPOTOOTOOONOPRARPRNMNMNMNMNOOPARONOOOPRANO

105.

99.
109.

99.
125.
130.
123.
138.
133.
157.
137.
143.
136.
117.
109.
126.
131.
128.
115.
116.
122.
129.
118.
126.
122.
132.
130.
129.
131.
140.

2
2
8
4
4
8
4
6
2
(%}
6
4
4
4
6
8
6
0
0
4
4
6
2
4
0
2
6
2
6
6

hour_18
344.0
366.4

197.
211.
205.
172.
187.
221.
203.
195.
158.
162.
192.
183.
163.
187.
144.
148.
123.
157.
139.
141.
176.
175.
159.
184.

AONNNNMNMNPPOPPROCOTOPPOTOXKOOTODRPAPRAPOO

119.
103.
119.
102.
121.
130.
120.
142.
159.
158.
146.
152.
132.
123.
115.
129.
134.
130.
118.
116.
137.
159.
135.
151.
156.
150.
153.
159.
171.
163.

ODPONDPDONONDNNNONDNOINNDNNONODLD®®® O -

194.
212.
206.
168.
187.
219.
201.
184.
160.
160.
186.
174.
165.
175.
150.
147.
126.
155.
147.
134.
167.
170.
155.
179.

113.

99.
134.
106.
109.
112.
109.
152.
166.
167.
137.
138.
118.
111.
107.
130.
123.
119.
119.
115.
149.
150.
123.
142.
152.
151.
146.
150.
159.
151.

000 P,OWOCOPALANPOIOTOPL,VMOPL,POPL,OOONWO® ®

N®J>N®OOJ>NO\O\J>J>00004>4>N00004>N0\4>N4>(X)4>N®N:

452.
449.
371.
402.
495.
496.
453.
392.
318.
429.
367.
294.
364.
322.
291.
279.
238.
283.
260.
335.
310.
351.
382.
436.

251.
267.
315.
247.
330.
272.
256.
330.
426.
495,
404 .
341.
317.
342.
298.
369.
341.
296.
283.
321.
364.
330.
305.
293.
323.
328.
321.
403.
392.
343.

NNPOOTAOANMOAOAANOBRARBANONOOANOGDO®O O O

NODROOOANONNO OO NONDNDMDRDNNVNDNONNONNN® ® -

421.
416.
320.
356.
434.
464.
423.
317.
289.
370.
317.
259.
293.
277.
238.
243.
233.
244.
228.
309.
263.
309.
337.
354.

197.
229.
280.
212.
304.
252.
231.
301.
357.
457.
329.
285.
255.
298.
246.
324.
292.
231.
236.
271.
288.
264.
255.
275.
296.
281.
277.
349.
336.
300.

A0 POOO P OOPNDORNNWOONOGODPRDOOOONOD® AN

OONPAPAPRARNPOPPONOOCCITTINOONNNPAPOPRITANOKONOD -

hour_19 hour_20 hour_21 hour_22 hour_23

297.0
362.0

222.6
268.8

209.2
204.6

205.0
188.6

209.0
191.6

POBROARBRNONOORNONNOD®NANON O ®

NOCOBRNNNOAMBROONONNOROAMBRONANONO® OB ® -

OVONAOANOPLANIOINAOAPLPOANONTOANANONNINNO

PANNOCONANCOONCNNCONRNNANNDRNOOANO® O b A

VW oONOUVTEh WN

P OO PO OTOOTAATNIOOTNOPANPIOTPLAPOOPLPODOONOO

.6
.0
.0
4
.6
.4
.8
.0
.2
.0
.2
.6
4
.6
.0
.8
.0
.0
.6
.0
.0
4
.6
.0
.8
.0
.8
.8
.4
.4

AP NONONNDNODODNOGDOGDODMNOGDODOPOONOTOOOPSL,ONO ®

NONNMNNMNNNOIOANOOPRANNPAPEANOOOOPONOIOTOOPROOTIOTOONN® -

PP ONNONNONORNNOVONDMBERNOO D ®OND R

NOCRNONONONPNERANONNNOOANORAON OO N -

PROOORNONNOARNNOOADNNWON OO DN 0N

CSONNNONOONDONOARONOANNANRANOOADROANDN .

OCNORNOOINNAORNNONDAODNOND®OD D D 0N

NOPRONNONOONRAONNNNOOONANNDEON OO N -

AVRPPROPONOBRNNRONOONRONDRDONON® N ® K0S

NPRNPOAOANOOOOOPPPOPLPNAOANNMNOOPPIOATOONOO® 0 N

[600 rows x 27 columns]

As soon as a pandas dataset is displayed in the console it is also automatically inserted in the
database. The insertion is completed with the use of the sglalchemy library through which the
database insertion is performed instantly. The command with which this action is performed
is displayed in Table 14.

Table 13 - SQLAIchemy Insertion Command for reshaped data
som_predataset.to _sql(name =
‘som_active power_day_ clusters', con = engine, if exists = 'append’,

index =)

3.3. Recreation of the Initial data to the created clusters

After the insertion of the modified data in the database we should also import the data in their
initial state in order to be ready to be used by the next algorithm which predicts future loads.
To make that possible we created a for loop which based on the previous matrix where we have
all the reshaped data it performs an index search to both the initial values and the reshaped one
and starts to create a new pandas dataset where it will contain all the initial values with two
additional columns. The additional columns are again the som_row and the som_column that
act as the clusters identifies.

Table 14 - Process performed in order to link the intial data with the created clusters

Inserting SOM Clusters to database
(ll

("Inserting SOM Clusters to database...™)
(II II)
som_dataset = pd.DataFrame(columns=['som_row',
"som_column', 'date_time', 'som_active_ power_kwh'])

n range(len(som_predataset)):
get_index = data_check.index[data_check['date_time"]
== som_predataset['date_active power'][n]].tolist()
k =0
m get_index:
som_dataset.at[k, 'som_row'] =
int(som_predataset.at[n, 'som_row'])
som_dataset.at[k, ‘som_column'] =
int(som_predataset.at[n, 'som_column'])
som_dataset.at[k, 'date_time'] = dataset.at[m,

"date_time']

som_dataset.at[k, 'som_active_power_kwh'] =
int(dataset.at[m, 'active power kwh'])
k= k + 1
(som_dataset)

59

For each loop that will be completed a pandas dataset will be printed and will be automatically
inserted into the database again using the sglalchemy library for instant import. The command
used to insert the new pandas set into the database is depicted in Table

Table 15 - SQLAIchemy Insertion Command for intial data and the clusters that they now belong
som_dataset.to_sql(name = 'som_active_power', con =
engine, if _exists = 'append', index =)

"")

("All active loads data were successfully inserted into the

database")

(__

This is where the SOM execution ends. The time required for the SOM implementation to
reshape approximately 71544 data, cluster them and then insert into the created clusters the
initial data is approximately 4 minutes. The data of the SOM clusters are presented in Divinus
website which will be shown in Chapter 5. The same process is followed to cluster the reactive
power data.

60

4. Forecasting Future Electricity User Profiles

Short Term Load Forecasting (STLF) is a very important aspect in the formulation of economic,
reliable, and secure operating strategies for the power system. To perform STLF it is usually
required to have a lot of past data based on which our forecast mechanism will be trained and
tested. In the forecast that is performed by Divinus program we used a different approach. We
are not interested in using as much past data as possible rather than using past data that are
qualitatively close to each other in the sense that they present relative common consumption.
We achieve to retrieve the required qualitatively closeness by retrieving the clusters that were
implemented with the use of SOM algorithm.

Furthermore, Divinus forecasting is a three step process. The first stage of this process is to
retrieve all the required past data needed. The second stage is to use these data for training and
testing of the prediction algorithm and the final stage is to perform the forecasting of the days
that we want to predict.

4.1. First Stage of the forecasting process

The first thing that is set to run in the prediction code is the SOM algorithm. We have set the
SOM algorithm to always be triggered by the forecast prediction as is it depicted in Table 16.
This happens because the implementation of the forecasting process heavily relies on SOM
clusters and cannot happen without them.

Table 16 - SOM algorithm trigged to run by the Forecasting Code

Created on 29 Map 2018

@author: d.mele

Importing the libraries
calendar
threading
pandas pd
sqlalchemy create_engine
SOM.SOM_Active_Load som_active_power_day_clusters
Database.Update update_som_KNeighbors_forecasted_ap

SOM_KNeighbors_ forecasting ap():

som_active_power_day clusters() #We trigger the function that contains
the SOM implementation

As soon as all the clusters have been created and the data are inserted to all or some of the
clusters we retrieve the data located in Divinus database with the use of the sglachemy library.
When all the data are retrieve we perform two checks to make sure that both data for forecast
and data on which the forecast will rely on exist. If one of the required datasets does not exist
than the forecasting process will be finalized here.

Table 17 - Checking the required dataset to make sure that all the required data exist
Importing the Dataset

engine =
create_engine('postgresqgl://postgres:123456q!@localhost:5432/postgres”)

61

dataset = pd.read_sql query("SELECT som_active power_kwh, som_row,
som_column, date_time FROM som_active power WHERE som_active power_ kwh
NOT NULL", con=engine)

som_KNeighbors_ap dataset = pd.read_sql _query("SELECT
som_KNeighbors_ forecasted_active power_ kwh, date_time FROM
som_KNeighbors_ forecasted_active power WHERE
som_KNeighbors_ forecasted_active power_kwh IS NULL", con=engine)
som_KNeighbors_ap_dataset =
som_KNeighbors_ap_dataset.sort_values(['date_time']).reset_index(drop=

)

Fixing the date to be used for the update command

date_time =
pd.to_datetime(som_KNeighbors_ap_ dataset['date_time']).sort_values().rese
t_index(drop=)

som_KNeighbors ap_dataset.empty:

(

("Training active power loads with KNeighbors
Algorithm...")
("There are no new data to perform forecasting")

("Training active power loads with KNeighbors
Algorithm...")
("There are no no data to forecast")

Having checked that all the data exist, Divinus enters the first stage of the forecasting process.
In this stage the action that Divinus is required to do is to find out whether the day that it is
going to predict exists in past data. To put it in simple terms, Divinus tries to match this date of
the year 2018 with the same day if it exists of the past years. This action is performed for a very
specific reason. In case this day is not a fixed holiday or a movable holiday we are going to use
the same past days including all the other days that are stored in the same cluster that they
belong. On the other hand if this day is a holiday fixed or not we are going to make use of the
same day in the past years without including the other values contained in their cluster.

To make that happen and to retrieve the correct days from the past data we use a python library
called calendar. Through this library we are able to retrieve the year, the month, the day and the
hour from a timestamp. As a result, having all this valuable data in or hands we are able to
compare the data of day we want to forecast with past data and retrieve the corresponding dates
and the cluster where they belong as it shown in Table 18.

Table 18 — Checking data such as year, month, day, hour and retrieving past data based on these
criteria.

62

dataset year = dataset['date_time'].dt.year.unique()
dataset_year_ length = len(dataset_year)

mean_test_error = pd.DataFrame([])
error_check dataset = pd.DataFrame([])

i range(len(som_KNeighbors_ap dataset)):

som_KNeighbors ap dataset['date_time'] =
pd.to_datetime(som_KNeighbors_ap_dataset['date_time'])

som_KNeighbors ap dataset[‘'date_time'] =
som_KNeighbors_ap_dataset['date time'].dt.round('1s")

year =
int(som_KNeighbors_ap dataset['date_time'].loc[i].year)
month =
int(som_KNeighbors_ ap dataset['date time'].loc[i].month)
hour =
int(som_KNeighbors ap dataset['date time'].loc[i].hour)

")

day_of_the_week_number =
(som_KNeighbors_ap_dataset['date_time'].loc[i].weekday())
, day_of_the_week_number)

1

("Day Number of the week:
day_of_the_week_name =
(calendar.day_name[som_KNeighbors_ ap dataset['date_time'].loc[i].weekday(
)1)
("Day of the week: ", day_of_ the week_name)
number_of_the_week =
(som_KNeighbors_ap_dataset['date_time'].loc[i].week)
("Week Number: ", number_of the week)

clusters_finder =
datasets_to_train

z range(dataset_year_length + 1):
clusters_finder =
dataset.loc[(dataset['date_time'].dt.year == year-z) &
(dataset['date_time'].dt.month == month) & (dataset['date_time'].dt.week
== number_of_the_week) & (dataset['date_time'].dt.weekday ==
day_of the week number) & (dataset['date time'].dt.hour == hour)]
clusters_finder.empty :
(clusters_finder['date_time'])
previous_year =
int(clusters_finder['date_time'].dt.year)
("Year from which we get the corresponding day:

, previous_year)

yearly day_of_the_week =
pd.to_datetime(clusters_finder['date_time'])
yearly day_number =
int(yearly_day of the week.dt.weekday)
("Number of the Day of the week: ",
yearly day number)

yearly day name =
yearly day of the week.dt.weekday name
("Day of the week: ", yearly day name)
yearly week_number =

int(yearly day of the week.dt.week)
("Week Number: ", yearly week number)
(Illl)
row = int(clusters_finder['som_row'])
column = int(clusters_finder['som_column'])

4.2. Second Stage of the forecasting process

Having retrieve the required past dates and the clusters in which they belong we are able to
enter the second stage of the prediction process. In this stage based on the cluster that the past
data belong we are able to retrieve all the data required in order to start training the algorithm
that makes the predictions and then test these prediction on test data.

An easy way to retrieve the clusters is by using a sql in which is specified the row and the
column of the clusters we want to retrieve.

sql = ("SELECT som_active power_kwh, som_row, som_column, date_time FROM
som_active_power WHERE som _row = '{@}' AND som_column =
‘“{1}'".format(row, column))

Furthermore, besides the data of the clusters we retrieve we perform a modification on both the
cluster data and the data on which we want to perform the forecast. The modification is nothing
more than breaking the timestamp and creating separate columns containing the date, month,
day and hour time. This modification takes place because the algorithm has a better
performance if the data on which the forecasting is based are separately and not all combined
in a timestamp

Table 19 - Retrieving the data required for train and test and for the real forecast and performing the
modifications required
sql = ("SELECT som_active_power_kwh, som_row, som_column, date_time

FROM som_active_power WHERE som_row = '{@}' AND som_column =
"{1}'".format(row, column))

datasets for_train = pd.read_sql query(sql,
con=engine)

datasets_for_train['year'] =
(datasets_for_train['date_time'].dt.year)

datasets_for_train['month'] =
(datasets_for_train['date_time'].dt.month)

datasets_for_train['day'] =
(datasets_for_train['date_time'].dt.weekday)

datasets_for_train['hour'] =
(datasets_for_train['date_time'].dt.hour)

datasets_to_train =
datasets_to_train.append(datasets_for_train)

Making the date an integer to be used for the prediction
som_KNeighbors_ap_dataset['year'] =
(som_KNeighbors_ap_dataset['date_time'].dt.year)
som_KNeighbors ap _dataset['month'] =
(som_KNeighbors_ap_dataset['date_time'].dt.month)
som_KNeighbors ap dataset['day'] =
(som_KNeighbors ap dataset['date time'].dt.weekday)

64

som_KNeighbors ap dataset[‘hour'] =
(som_KNeighbors_ap_dataset['date_time'].dt.hour)
som_KNeighbors_ap_dataset =

som_KNeighbors_ap_dataset.sort_values(['date_time']).reset_index(drop=

)

As soon as this step is complete Divinus splits the data in two groups X and y. X is the
group that contains the data required for the prediction while y is the group that contains
the values that should be predicted.

Table 20 - Splitting the dataset in X and y
Splitting the variables to the desired columns
X = datasets_to_train.iloc[:, 4:9].values
y = datasets_to_train.iloc[:, ©].values

Splitting the Dataset into Training and Testing set
sklearn.model _selection train_test_split
preferable test size = (240/len(X))
X_train, X test, y train, y test = train_test split(X, vy,
test size = preferable test size, random_state = 0)

Fitting Forest Algorithm to the training set
sklearn.neighbors KNeighborsRegressor
regressor = KNeighborsRegressor(algorithm="auto"',
leaf size=30, metric="minkowski',
metric_params=
n_neighbors=8, p=2, weights="distance")

("Training active power loads with KNeighbors

Algorithm...")
regressor.fit(X_ train, y train)
(regressor)

(Illl)
("... Data Training Completed with KNeighbors

Algorithm™)

As soon as the first split is over another one takes place. This one takes the already spitted
datasets and splits them even more. Now we have four datasets which are the a) X_train, b)
y_train, ¢) X _test and d) Y_test. This new split is performed in order to create the groups from
which the algorithm will be trained and then tested. We use all the data of the cluster to train
the algorithm and 240 hourly values that practically are translated in 10 days to test its results.
The algorithm that is used is the k neighbors algorithm. The principle behind nearest neighbor
methods is to find a predefined number of training samples closest in distance to the new point,
and predict the label from these. The number of samples can be a user-defined constant (k-
nearest neighbor learning), or vary based on the local density of points (radius-based neighbor
learning). The distance can, in general, be any metric measure however standard Euclidean
distance is the most common choice. Neighbors-based methods are known as non-generalizing
machine learning methods, since they simply “remember” all of its training data (possibly
transformed into a fast indexing structure such as a Ball Tree or KD Tree.) [50].

65

Table 21 - Training through sklearn and testing its predictions
Splitting the Dataset into Training and Testing set
sklearn.model selection train_test split
preferable test size = (240/len(X))
X_train, X test, y train, y test = train_test split(X, vy,
test size = preferable test size, random_state = 0)

Fitting Forest Algorithm to the training set
sklearn.neighbors KNeighborsRegressor
regressor = KNeighborsRegressor(algorithm="auto"',
leaf size=30, metric="minkowski',
metric_params=
n_neighbors=8, p=2, weights="distance")

("Training active power loads with KNeighbors
Algorithm...")
regressor.fit(X_ train, y_ train)
(regressor)
")
("... Data Training Completed with KNeighbors
Algorithm™)

Jj range(len(X_test)):

#Perform prediction on Test Data to check the mean
prediction error

X_test_data = X_test[j]

X_test_data = X_test_data.reshape(1,-1)

y_pred = regressor.predict(X_test_data)

Having performed the algorithm training and having predicted 240 test values the question that
reasonably arises is what will happen if the test values are not close to the real ones.

The answer is that the forecast made on the test values acts as a control for the forecast. As
soon as we retrieve the predictions that are performed on the test data we use them in order to
calculate the mean error that will occur.

Table 22 - Calculation of the test data overall mean prediction error
error_check = abs(160-((y_pred/y_test[j])*100))
error_check _dataset =
error_check_dataset.append(pd.DataFrame({'error_check': error_check},
index=[j]), ignore_index=)
(error_check_dataset)

len(error_check dataset)>=240:
overall_error = error_check_dataset['error_check'].sum()
mean_prediction_error =

float(overall error/len(error_check dataset))

")

("The mean prediction error is: ",
mean_prediction_error)

mean_test_error =
mean_test _error.append(pd.DataFrame({ 'mean_test error':
mean_prediction_error}, index=[j]), ignore_index=)
(mean_test_error)

66

mean_prediction_error < float(20):

Predicting the Active Load Results
som_KNeighbors_ap = som_KNeighbors ap_dataset.iloc[:,
2:6].values

som_KNeighbors ap som_KNeighbors_ap[i]
som_KNeighbors ap som_KNeighbors_ap.reshape(1,-1)

som_KNeighbors_ap_pred =
float(regressor.predict(som_KNeighbors_ap))

Inserting the data into the database

update_som_KNeighbors_ forecasted_ap(som_KNeighbors_ap pred, date_time[i])
("Forecasting process completed and Data being
inserted into the database")

("The mean prediction error was higher than the
limit. SOM Clusters are going to re-run")
SOM_KNeighbors_ forecasting ap()

If the mean error is higher than a limit that is specified by the user (in our case the overall max
mean error is set to 20%) than all the process until this step is going to rerun. By saying that it
is going to rerun we mean that all the forecasting process will be reset and it will start over from
the creation of clusters so that the data to be reassigned and the forecast to rerun and retrieve
new clusters that will reduce the mean error. Therefore, it is obvious that the clusters directly
affect the outcome of the forecasting.

4.3. Final Stage of the forecasting process

If the control is successful than the forecasting process reaches in last stage which is the
forecasting of the real dates. For each one of the dates that will be forecasted this process will
start from the beginning. This means that for each one of the days that should be forecasted
Divinus will get their corresponding past days and the cluster that they belong to and rerun all
the aforementioned. Again, if the overall mean error that will occur will be higher than 20% the
clusters will be deleted and recreated. This process will be followed for each day that will be
forecasted. So far the Divinus mean forecast error is 12%.

Last but not least the forecast process has contains a timer. This timer is trigger the first time
that the programs runs and then it automatically activates itself based one the time that we have
set it. The same way is used to perfume the reactive load forecast.

Table 23 - The timer contained in Divinus Forecasting process
seconds=1.0

minutes=seconds*60

hour=minutes*60

day = (hour*24)*5
threading.Timer(day, SOM KNeighbors forecasting ap).start()

67

5. Divinus Website

Being able to perform data clustering and to forecast future loads, the only step that is left was
to display all these information somewhere that users would be able to visit and get informed.
For this step we choose to use the Django framework. Django is an open source high-level
Python Web framework that encourages rapid development and clean, pragmatic design. It was
built by experienced developers in order to take care much of the hassle of the Web
development [51]. Django was designed to:

1. Help developers take applications from concept to completion as quickly as possible.

2. Contain dozens of extras that developers can use to handle common Web development
tasks. Django takes care of user authentication, content administration, site maps, RSS
feeds, and many more tasks.

3. Take security seriously and to help developers avoid many common security mistakes,
such as SQL injection, cross-site scripting, cross-site request forgery and clickjacking.
Its user authentication system provides a secure way to manage user accounts and
passwords.

4. Be exceedingly scalable. Some of the busiest sites on the planet use Django’s ability to
quickly and flexibly scale to meet the heaviest traffic demands.

5. Be incredibly versatile. Companies, organizations and governments have used Django
to build all sorts of things — from content management systems to social networks to
scientific computing platforms [51].

Based on the aforementioned it was very easy for us to decide to cope with Django in designing
our tool. Having set the project as Django based we were able to writte all the required code
without worrying about how it will be transferred to the Internet or what modification we should
make. As soon as we had a functional code the thing that was left to do was to set this code in
Django in order to be viewable in the web.

5.1. Object-relational mapper

The first thing that was needed was to define our databases in Django. This was perfomed easily
through Django’s Model. A model is the single, definitive source of information about data. It
contains the essential fields and behaviors of the data that are stored. Generally, each model
maps to a single database table [52]. Our Model is shown in Table

Table 24 - Divinus Model.py file showing all the database information
This is an auto-generated Django model module.
You'll have to do the following manually to clean this up:
* Rearrange models' order
* Make sure each model has one field with primary_key=True
* Make sure each ForeignKey has “on_delete’ set to the desired
behavior.
* Remove “managed = False lines if you wish to allow Django to
create, modify, and delete the table

Feel free to rename the models, but don't rename db_table values or
field names.
django.db models

ActivePower (models.Model):
date_time = models.DateTimeField(primary_ key=

68

active power_kwh = models.DecimalField(max_digits=10,
decimal places=2, blank= , hull=)

Meta:
managed =
db_table = 'active power'

AuthGroup (models.Model):
name = models.CharField(unique= , max_length=80)

Meta:
managed =
db_table = 'auth_group'

AuthGroupPermissions(models.Model):
group = models.ForeignKey (AuthGroup, models.DO_NOTHING)
permission = models.ForeignKey('AuthPermission', models.DO_NOTHING)

Meta:
managed =
db_table = 'auth_group_permissions'
unique_together = (('group', 'permission'),)

AuthPermission(models.Model):
name = models.CharField(max_length=255)
content_type = models.ForeignKey('DjangoContentType’,
models.DO_NOTHING)
codename = models.CharField(max_length=160)

Meta:
managed =
db_table = 'auth_permission'
unique_together = (('content_type', 'codename'),)

AuthUser (models.Model):
password = models.CharField(max_length=128)
last_login = models.DateTimeField(blank= , hull=)
is_superuser = models.BooleanField()
username = models.CharField(unique= , max_length=150)
first_name = models.CharField(max_length=30)
last_name = models.CharField(max_length=150)
email = models.CharField(max_length=254)
is_staff = models.BooleanField()
is_active = models.BooleanField()
date_joined = models.DateTimeField()

Meta:
managed =
db_table = 'auth_user'

AuthUserGroups (models.Model):
user = models.ForeignKey (AuthUser, models.DO_NOTHING)
group = models.ForeignKey (AuthGroup, models.DO_NOTHING)

Meta:
managed =
db_table = 'auth_user_groups'
unique_together = (('user', 'group'),)

AuthUserUserPermissions(models.Model):
user = models.ForeignKey (AuthUser, models.DO_NOTHING)
permission = models.ForeignKey(AuthPermission, models.DO_NOTHING)

Meta:
managed =
db_table = 'auth_user_user_permissions'
unique_together = (('user', 'permission'),)

DjangoAdminLog(models.Model):

action_time = models.DateTimeField()

object_id = models.TextField(blank= , hull=

object_repr = models.CharField(max_length=260)

action_flag = models.SmallIntegerField()

change_message = models.TextField()

content_type = models.ForeignKey('DjangoContentType"’,
models.DO_NOTHING, blank= , hull=)

user = models.ForeignKey (AuthUser, models.DO_NOTHING)

Meta:
managed =
db_table = 'django_admin_log'

DjangoContentType(models.Model):
app_label = models.CharField(max_length=100)
model = models.CharField(max_length=160)

Meta:
managed =
db_table = 'django_content_type'
unique_together = (('app_label', 'model'),)

DjangoMigrations(models.Model):
app = models.CharField(max_length=255)
name = models.CharField(max_length=255)
applied = models.DateTimeField()

Meta:
managed =
db_table = 'django_migrations'

DjangoSession(models.Model):
session_key = models.CharField(primary_key= , max_length=40)
session_data = models.TextField()
expire_date = models.DateTimeField()

Meta:
managed =
db_table = 'django_session'

ReactivePower (models.Model):
date_time = models.DateTimeField(primary_key=)
reactive_power_kvar = models.DecimalField(max_digits=10,
decimal places=2, blank= , hull=)

Meta:
managed =
db_table = 'reactive_power'

SomActivePower (models.Model):
som_row = models.IntegerField()
som_column = models.IntegerField()
date_time = models.DateTimeField(primary_key=)
som_active power_kwh = models.DecimalField(max_digits=10,
decimal places=2, blank= , hull=)

Meta:
managed =
db_table = 'som_active_power'

SomActivePowerDayClusters (models.Model):
som_row = models.IntegerField()
som_column = models.IntegerField()
date_active_power = models.DateField(primary_key=)
hour_0© = models.DecimalField(max_digits=10, decimal_places=2)
hour_1 = models.DecimalField(max_digits=10, decimal_places=2)
hour_2 = models.DecimalField(max_digits=10, decimal places=2)
hour_3 = models.DecimalField(max_digits=10, decimal places=2)
hour_4 = models.DecimalField(max_digits=10, decimal places=2)
hour_5 = models.DecimalField(max_digits=10, decimal_places=2)
hour_6 = models.DecimalField(max_digits=10, decimal_places=2)
hour_7 = models.DecimalField(max_digits=10, decimal places=2)
hour_8 = models.DecimalField(max_digits=10, decimal places=2)
hour_9 = models.DecimalField(max_digits=10, decimal_places=2)
hour_10 = models.DecimalField(max_digits=10, decimal_places=2)
hour_11 = models.DecimalField(max_digits=10, decimal_places=2)
hour_12 = models.DecimalField(max_digits=10, decimal places=2)
hour_13 = models.DecimalField(max_digits=10, decimal places=2)
hour_14 = models.DecimalField(max_digits=10, decimal_places=2)
hour_15 = models.DecimalField(max_digits=10, decimal_places=2)
hour_16 = models.DecimalField(max_digits=10, decimal places=2)
hour_17 = models.DecimalField(max_digits=10, decimal places=2)
hour_18 = models.DecimalField(max_digits=10, decimal places=2)
hour_19 = models.DecimalField(max_digits=10, decimal_places=2)
hour_20 = models.DecimalField(max_digits=10, decimal_places=2)
hour_21 = models.DecimalField(max_digits=10, decimal places=2)
hour_22 = models.DecimalField(max_digits=10, decimal places=2)
hour_23 = models.DecimalField(max_digits=10, decimal_places=2)

Meta:

managed =
db_table = 'som_active_power_day_clusters'

SomKneighborsForecastedActivePower (models.Model):

date_time = models.DateTimeField(primary key=)

som_kneighbors_forecasted active_power_kwh =
models.DecimalField(max_digits=10, decimal_places=2, blank=
null=)

Meta:
managed =
db_table = 'som_kneighbors forecasted_active_power'

SomKneighborsForecastedReactivePower (models.Model):
date_time = models.DateTimeField(primary_key=)
som_kneighbors_forecasted_reactive_power_kvar =

models.DecimalField(max_digits=10, decimal_places=2, blank=
null=)

Meta:
managed =
db_table = 'som_kneighbors_ forecasted_reactive_power'

SomReactivePower (models.Model):
som_row = models.IntegerField()
som_column = models.IntegerField()
date_time = models.DateTimeField(primary_key=)
som_reactive_power_kvar = models.DecimalField(max_digits=10,
decimal places=2, blank= , hull=)

Meta:
managed =
db_table = 'som_reactive_power'

SomReactivePowerDayClusters(models.Model):
som_row = models.IntegerField()
som_column = models.IntegerField()
date_reactive_power = models.DateField(primary_key=)
hour_© = models.DecimalField(max_digits=10, decimal_places=2)
hour_1 = models.DecimalField(max_digits=10, decimal_places=2)
hour_2 = models.DecimalField(max_digits=10, decimal_places=2)
hour_3 = models.DecimalField(max_digits=10, decimal places=2)
hour_4 = models.DecimalField(max_digits=10, decimal places=2)
hour_5 = models.DecimalField(max_digits=10, decimal_places=2)
hour_6 = models.DecimalField(max_digits=10, decimal_places=2)
hour_7 = models.DecimalField(max_digits=10, decimal places=2)
hour_8 = models.DecimalField(max_digits=10, decimal places=2)
hour_9 = models.DecimalField(max_digits=10, decimal places=2)
hour_10 = models.DecimalField(max_digits=10, decimal_places=2)
hour_11 = models.DecimalField(max_digits=10, decimal_places=2)
hour_12 = models.DecimalField(max_digits=10, decimal places=2)
hour_13 = models.DecimalField(max_digits=10, decimal places=2)
hour_14 = models.DecimalField(max_digits=10, decimal_places=2)
hour_15 = models.DecimalField(max_digits=10, decimal_places=2)
hour_16 = models.DecimalField(max_digits=10, decimal_places=2)
hour_17 = models.DecimalField(max_digits=10, decimal places=2)
hour_18 = models.DecimalField(max_digits=10, decimal places=2)
hour_19 = models.DecimalField(max_digits=10, decimal_places=2)
hour_20 = models.DecimalField(max_digits=10, decimal_places=2)
hour_21 = models.DecimalField(max_digits=10, decimal_places=2)

hour_22 = models.DecimalField(max_digits=10, decimal places=2)
hour_23 = models.DecimalField(max_digits=10, decimal places=2)

Meta:
managed
db_table = 'som_reactive_power _day clusters'

5.2. Template

Being a web framework, Django needs a convenient way to generate HTML dynamically. The
most common approach relies on templates. A template contains the static parts of the desired
HTML output as well as some special syntax describing how dynamic content will be inserted.
A Django project can be configured with one or several template engines (or even zero if no
templates are required). Django defines a standard API for loading and rendering templates
regardless of the backend. Loading consists of finding the template for a given identifier and
preprocessing it, usually compiling it to an in-memory representation. Rendering means
interpolating the template with context data and returning the resulting string. The Django
template language is Django’s own template system. Until Django 1.8 it was the only built-in
option available. It’s a good template library even though it’s fairly opinionated and sports a
few idiosyncrasies [53].

Our template [54] is built on HTML, CSS and Javascript. Through our model we pass the
required data to the python Views page which is the file that links the data that we want infuse
with the template.

Table 25 - Divinus Views.py file
Created on 7 Map 2018

@author: d.mele

#import json
django.shortcuts render
django.core serializers
#from django.http import JsonResponse
#from django.shortcuts import loader
#from django.http import HttpResponse

Core.models ActivePower, ReactivePower
Core.models SomActivePower, SomReactivePower

Core.models SomKneighborsForecastedActivePower,
SomKneighborsForecastedReactivePower

Create your views here.

index(request):
Active Power_queryset =
ActivePower.objects.exclude(active power_kwh__isnull=).order_by('date
_time")
Active_Power_json = serializers.serialize('json',
Active Power_queryset, fields=('active power_kwh'))

Limited_Active Power_queryset =
ActivePower.objects.exclude(active_power_kwh__isnull=).order_by('-
date_time')[:1000][::-1]

73

Limited_Active_Power_json = serializers.serialize('json',
Limited Active Power queryset, fields=('active power kwh"))

Reactive_Power_queryset =
ReactivePower.objects.exclude(reactive power_kvar__isnull=
Reactive_Power_json = serializers.serialize('json',

Reactive Power_ queryset, fields=('reactive power_kvar'))

Limited_Reactive_ Power_queryset =
ReactivePower.objects.exclude(reactive power_kvar__isnull=).order_by/(
‘-date_time')[:1000][::-1]

Limited Reactive Power_json = serializers.serialize('json',
Limited_Reactive Power_queryset, fields=('reactive_power_kvar'))

SOM_KNeighbors_Forecasted_AP_queryset =
SomKneighborsForecastedActivePower.objects.all().order_by('date_time")

SOM_KNeighbors_Forecasted AP_json = serializers.serialize('json',
SOM_KNeighbors_Forecasted_AP_queryset,

fields=("'som_kneighbors_ forecasted_active power_kwh'))

SOM_KNeighbors_Forecasted_RP_queryset =
SomKneighborsForecastedReactivePower.objects.all().order_by('date_time")
SOM_KNeighbors_Forecasted RP_json = serializers.serialize('json',

SOM_KNeighbors_ Forecasted_RP_queryset,
fields=("'som_kneighbors_ forecasted reactive_power_kvar'))

SOM_AP_clusters_queryset = SomActivePower.objects.all()
SOM_AP_clusters_json = serializers.serialize('json',
SOM_AP_clusters_queryset)

SOM_RP_clusters_queryset = SomReactivePower.objects.all()
SOM_RP_clusters_json = serializers.serialize('json',
SOM_RP_clusters_queryset)

render(request, 'Core/test5.html",
{"'Active_Power_json':Active_Power_json,

‘Limited_Active_ Power_json':Limited_Active_ Power_json,
'Reactive_Power_json':
Reactive_Power_json,

'"Limited_Reactive Power_json': Limited_Reactive_Power_json,

'SOM_KNeighbors_Forecasted_AP_json': SOM_KNeighbors_Forecasted_AP_json,

'SOM_KNeighbors Forecasted RP_json': SOM_KNeighbors Forecasted RP_json,
'SOM_AP_clusters_json':

SOM_AP_clusters_json,

'SOM_RP_clusters_json':
SOM_RP_clusters_json})

As soon as we have set the views.py we are ready to modify our template [54] in the best

possible way in order to display the required information. Figures 22, 23, 24, 25, 26 show some
pages of the Divinus website.

‘ Intelligent Management of Renewable Energy Systems

Figure 22 - Divinus Front Page

f Intelligent Management of Renewable Energy Systems

Load Graphs

02 Load Graphs

>

FORECASTING

Lorem Ipsum dolor sit amet.
consectetur adipisicing elit sed do.

Figure 23 - Divinus Menu Selection

; Intelligent Management of Renewable Energy Systems

Active Load Reactive Load

03 Forecasting

Feb 10

Active Load Reactive Load

Figure 25 - Divinus SOM Clusters Page

76

05

; Intelligent Management of Renewable Energy Systems

Active Load Reactive Load

Comprarison

Feb 13 Feb 16

® - SOM - K-Neighbors Forecast (kwh)

Figure 26 - Divinus Comparison Page between Real & Forecasted Load

7

6. Conclusion

This master thesis had two goals. The first one was to create a tool that could be perform both
use profiling and load forecasting. Regarding the use profiling, after having done a lot of
research we arrived to the decision that for the tool that we wanted to build the most suitable
algorithm to be used was the Self Organizing Map. As for the forecasting algorithm is was
decided in a second phase due to the fact that we had to have the results of the SOM algorithm
first in order to proceed with the forecast. As soon as we had the SOM results in our hands we
started experimenting with machine learning libraries containing several forecasting
algorithms, but none of them was as good as the k-neighbors algorithm through which we
managed to perform predictions with a forecast error of only 12%.

The second goal basically was interrelated with the first one, as we wanted to see if forecasts
could occur based on the data of the clustering algorithm. If that could happen then we would
be able to create a methodology based on which we could forecast the consumptions of various
consumers within a microgrid based on their user profiles.

At the end of this thesis we are able to say that we successfully fulfilled the first goal and made
the first basic and promising steps towards the completion of the second. Many steps still need
to be taken in terms of creating a methodology through which we can handle the consumption
of different consumers within a microgrid.

78

7. Bibliography

[1]

[2]

3]

[4]

5]

(6]

[7]

(8]

(9]

[10]

[11]

Hernandez L, Baladron C, Aguiar JM, Carro B, Sdnchez-Esguevillas A, Lloret J, “Short-
Term Load Forecasting for Microgrids Based on Artificial Neural Networks.,” Energies,
vol. 6, no. 3, pp. 1385-1408, 2013.

Treaty Establishing A Constitution For Europe, “EU treaties,” [Online]. Available:
https://europa.eu/european-

union/sites/europaeu/files/docs/body/treaty _establishing_a_constitution_for_europe_e
n.pdf. [Accessed 4 February 2018].

Jimyung, K., Jee-Hyong, L., “Electricity Customer Clustering Following Experts’
Principle for Demand Response Applications,” Energies 2015, vol. 8, no. 10, pp. 12242-
12265, 2015.

S. M. Bidoki, N. Mahmoudi-Kohan, S. Gerami, “Comparison of several clustering

methods in the case of electrical load curves classification,” in 16th Conference on
Electrical Power Distribution Networks (EPDC), IEEE (2011).

G. Phanendra Babu, M. Narasimha Murty and S. Sathiya Keerthi, “A Stochastic
Connectionist Approach for Global Optimization with Application to Pattern
Clustering,” IEEE Trans. Systems, Man, And Cybernetics-Part B: Cybernetics, vol. 30,
no. 1, pp. 10-24, Feb 2000.

G. Chicco, R. Napoli, F. Piglione, P. Postolache,M. Scutariu and C. Toader, “Load
Pattern-Based Classification of Electricity Customers,” |[EEE Trans. Power Systems,
vol. 19, no. 2, pp. 1232-1239, May 2004.

W. Li, J. Zhou, X. Xiong and J. Lu, “A Statistic-Fuzzy Technique for Clustering Load
Curves,” IEEE Trans. Power Systems, vol. 22, no. 2, pp. 890-891, May 2007.

G. Chicco, R. Napoli, P. Postolache, M. Scutariu, and C. Toader, “Electric energy
customer characterisation for developing dedicated market strategies,” Power Tech
Proceedings, vol. 1, 2001.

V. Figueiredo, F. Rodrigues, Z. Vale and J. B. Gouveia, “An Electric Energy Consumer
Characterization Framework Based on Data Mining Techniques,” IEEE Trans. Power
Syst., vol. 20, no. 2, pp. 596-602, May 2005.

G. J. Tsekouras, N. D. Hatziargyriou and E. N. Dialynas, “Two-Stage Pattern

Recognition of Load Curves for Classification of Electricity Customers,” |IEEE Trans.
Power Syst., vol. 22, no. 3, pp. 1120-1128, Aug 2007.

G. Chicco, R. Napoli and F. Piglione, “Application of Clustering Algorithms and Self
Organizing Maps to Classify Electricity Customers,” Proc. 2003, vol. 1.

79

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

S. Chunhua, B. Feng, Z. Jianying. T. Tsuyoshi and S. Kouichi, “Privacy-Preserving
Two-Party K-Means Clustering via Secure Approximation,” in Proc. 2007 Advanced
Information Networking and Applications Workshops 21st International Conf., vol. 1,
pp. 385 - 391, 2007.

N. Mahmoudi-Kohan, M. P. Moghaddam, M. K. Sheikh-El-Eslami and S. M. Bidaki,
“Improving WFA K-means Technique for Demand Response Programs Applications,”
in accepted for presentation, IEEE, General Meeting 2009.

S. Nasser, R. Alkhaldi and G. Vert, “A Modified Fuzzy K-means Clustering using
Expectation Maximization,” in Proc. 2006 IEEE International Conf, pp. 231-235, 2006.

K. A. Abdul Nazeer, M. P. Sebastian, “Improving the Accuracy and Efficiency of the k-
means Clustering Algorithm,” in Proceedings of the World Congress on Engineering
2009, London, U.K., 2009.

Andrea Trevino, “DataScience.com,” [Online]. Available:
https://www.datascience.com/blog/k-means-clustering. [Accessed 05 02 2018].

Maciej Pacula, “Maciej Pacula,” [Online]. Available:
http://blog.mpacula.com/2011/04/27/k-means-clustering-example-python/. [Accessed
08 02 2018].

L. A. Zadeh, “Fuzzy logic and approximate reasoning,” Synthese, vol. 30, pp. 407-428,
1975.

Carl G. Looney, “Pattern Recognition,” [Online]. Available:
www.cse.unr.edu/~looney/cs773b/1162_C09.pdf. [Accessed 07 02 2018].

Wu Q, Qi X, Fuller E, Zhang C., “'Follow the Leader": a centrality guided clustering and
its application to social network analysis,” The Scientific World Journal, vol. 2019,
2013.

G. Chicco, R. Napoli, F. Piglione, “Comparisons among clustering techniques for
electricity customer classification,” IEEE Transactions on Power Systems, vol. 21, no.
2, pp. 933 - 940, May 2006.

G. Chicco, R. Napoli, P. Postolache, M. Scutariu, C. Toader, “Customer characterization
options for improving the tariff offer,” IEEE Transactions on Power Systems, vol. 18,
no. 1, pp. 381-387, Feb. 2003.

M. R. Anderberg, Cluster Analysis for Applications, New York: Academic Press, 1973.

B. S. Everitt, Cluster Analysis 3rd edition, London, U.K: Arnold and Halsted, 1993.

J. H. Ward, “Hierarchical grouping to optimize an objective function,” J. Amer. Stat.
Assoc., vol. 58, pp. 236-244, 1963.

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Teuvo Kohonen, Self-Organizing Maps, Berlin, Heidelberg: Springer, 1995.

Teuvo Kohonen, Erkki Oja, Olli Simula, Ari Visa, Jari Kangas, “Engineering
applications of the self-organizing map. Manuscript submitted to a journal.,”
Proceedings of the IEEE, vol. 84, no. 10, pp. 1358-1384 , 1996 .

D.C. Park, M.A. El-Sharkawi, R.J. Marks II, L.E. Atlas and M.J. Damborg, “Electric
Load Forecasting Using An Artificial Neural Networks,” IEEE Transactions on Power
Engineering, vol. 6, pp. 442-449, May. 1991.

K. Y. Lee and J. H. Park, “Short-Term Load Forecasting Using an Artificial Neural
Network,” IEEE Transactions on Power Systems, vol. 7, pp. 127-132, Feb. 1992.

Alireza Khotanzad, Rey-Chue Hwang, Alireza Abaye and Dominic Maratukulam, “An
Adaptive Modular Artificial Neural Network Hourly Load Forecaster and its
Implementation at Electric Utilities,” IEEE Transactions on Power Systems, vol. 10, pp.
1716-1721, Aug. 1995.

Jaakko Hollmen , “Self-Organizing Map (SOM),” [Online]. Available:
http://users.ics.aalto.fi/jhollmen/dippa/node9.html. [Accessed 08 07 2018].

Fernando Bagdo, Victor Lobo, Marco Painho, “Self-organizing Maps as Substitutes for
K-Means Clustering,” Fifth International Conference on Computational Science (ICCS
2005), vol. 3, pp. 476 - 483, 22-25 May 2005.

“TechTerms,” Sharpened Productions, [Online]. Available: https://techterms.com/.
[Accessed 12 02 2018].

C. Mohan, “History Repeats Itself: Sensible and NonsenSQL Aspects of the NoSQL
Hoopla,” Proc. 16th ACM Int’l Conference Extending Database Technology (EDBT 13),
p. 11-16, 2013.

Forrest Stroud, “ServerWatch,” IT Business Edge Network, [Online]. Available:
https://www.serverwatch.com/server-trends/slideshows/top-10-enterprise-database-
systems-to-consider-2015.html. [Accessed 12 02 2018].

Craig S. Mullins, “TechTarget,” SearchDataManagement.com, [Online]. Available:
http://searchdatamanagement.techtarget.com/feature/Which-relational-DBMS-is-best-
for-your-company. [Accessed 12 02 2018].

The PostgreSQL Global Development Group, “PostgreSQL,” [Online]. Available:
https://www.postgresql.org/about/. [Accessed 20 02 2018].

Lisa Smith, “What PostgreSQL has over other open source SQL databases: Part 1,”
Compose, [Online]. Available: https://www.compose.com/articles/what-postgresql-has-
over-other-open-source-sql-databases/. [Accessed 21 02 2018].

81

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Sebastian Raschka, Python Machine Learning, Birmingham, UK: Packt Publishing,
2015.

Kernighan, Brian W.; Ritchie, Dennis M. (). , The C Programming Language (1st ed.),
Englewood Cliffs, NJ: Prentice Hall, Feb. 1978.

“Learn C++,” Programiz, [Online]. Available: https://www.programiz.com/cpp-
programming. [Accessed 14 02 2018].

Arpan Chakraborty, “Languages and Libraries for Machine Learning,” Udacity,
[Online]. Awvailable: https://blog.udacity.com/2016/04/languages-and-libraries-for-
machine-learning.html. [Accessed 20 02 2018].

Ken Arnold, James Gosling, David Holmes, The Java Programming Language (The Java
Series), Boston, MA, USA: Addison-Wesley Longman Publishing Co., 1996.

Ross Thaka and Robert Gentleman, “R: A Language for Data Analysis and Graphics,”
Journal of Computational and Graphical Statistics, vol. 5, no. 3, pp. 299-314, Sep. 1996.

Nicholas C. Zakas, Professional JavaScript for Web Developers, Crosspoint Boulevard,
Indianapolis: Wiley E-Text, Jan 2012.

Masoud Nosrati, “Python: An appropriate language for real world programming,” World
Applied Programming, vol. 1, no. 2, pp. 110-117, June 2011.

Christina Voskoglou, “What is the best programming language for Machine Learning?,”
[Online]. Awvailable: https://towardsdatascience.com/what-is-the-best-programming-
language-for-machine-learning-a745c156d6b7. [Accessed 20 02 2018].

Vsion Mobile, “State of the Developer Nation Q1 2017,” [Online]. Available:
http://www.mwec.gr/presentations/2017/konstantinou.pdf. [Accessed 20 02 2018].

Giuseppe Vettigli, “MiniSom: minimalistic and NumPy-based implementation of the
Self Organizing Map,” 15 September 2013. [Online]. Available:
https://github.com/JustGlowing/minisom. [Accessed 24 May 2018].

“scikit-learn,” scikit-learn developers, [Online]. Available: http:/scikit-
learn.org/stable/modules/neighbors.html. [Accessed 2018 May 26].

Django Software Foundation, “django,” Django Software Foundation, [Online].
Available: https:/www.djangoproject.com/start/overview/. [Accessed 26 May 2018].

82

[52]

[53]

[54]

Django Software Foundation, “django,” Django Software Foundation, [Online].
Available: https://docs.djangoproject.com/en/2.0/topics/db/models/. [Accessed 26 May
2018].

Django Software Foundation, “django,” Django Software Foundation, [Online].
Available: https://docs.djangoproject.com/en/2.0/topics/templates/. [Accessed 26 May
2018].

Bucky Maler, “Global,” [Online]. Available: http://buckymaler.com/global/#0.
[Accessed 26 May 2018].

83

