
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

BSc THESIS

Machine Learning Methods for Markowitz Portfolio
Optimization

Nikitas N. Sakkas

SUPERVISOR: Yannis Panagakis, Associate Professor

ATHENS

NOVEMBER 2021

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Μέθοδοι Μηχανικής Μάθησης για την Βελτιστοποίηση
Χαρτοφυλακίου Markowitz

Νικήτας Ν. Σακκάς

ΕΠΙΒΛΕΠΩΝ: Γιάννης Παναγάκης, Αναπληρωτής Καθηγητής

ΑΘΗΝΑ

ΝΟΕΜΒΡΙΟΣ 2021

BSc THESIS

Machine Learning Methods for Markowitz Portfolio Optimization

Nikitas N. Sakkas
S.N.: 1115201400176

SUPERVISOR: Yannis Panagakis, Associate Professor

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Μέθοδοι Μηχανικής Μάθησης για την Βελτιστοποίηση Χαρτοφυλακίου Markowitz

Νικήτας Ν. Σακκάς
Α.Μ.: 1115201400176

ΕΠΙΒΛΕΠΩΝ: Γιάννης Παναγάκης, Αναπληρωτής Καθηγητής

ABSTRACT

In this thesis, we consider the problem of Markowitz Portfolio Optimization. It is defined
as attempting to minimize the variance of a diversified investment’s returns. We use sev-
eral conventional Machine Learning techniques to solve it, namely CVXpy, CVXpy-layers,
Proximal and Projected Gradient Descent. We also propose a Deep Learning approach,
which uses an LSTM unit. As investment units to train our models, we use the historic
returns of 48 industry sector portfolios from 2019 to 2021(FF48 daily returns [6]). Four of
our models including our Deep Learning approach manage to surpass the performance
of the equally weighted portfolio which is considered a tough benchmark in this problem.
Finally, we propose modifications for further improvements.

SUBJECT AREA: Machine Learning

KEYWORDS: markowitz portfolio, optimization, cvxpy, projected gradient descent,
lstm

ΠΕΡΙΛΗΨΗ

Στην παρακάτω πτυχιακή εργασία, εξετάζουμε το πρόβλημα της βελτιστοποίησης
Χαρτοφυλακίου Markowitz, το οποίο ορίζεται ως η απόπειρα ελαχιστοποιήσης της
διακύμανσης των επιστροφών μιας διαφοροποιημένης επένδυσης. Για να το επιλύσουμε,
χρησιμοποιούμε πολλές συμβατικές τεχνικές Μηχανικής Μάθησης, συγκεκριμένα CVXpy,
CVXpy-layers, Proximal και Projected Gradient Descent. Επίσης, προτείνουμε και
μια προσέγγιση Βαθιάς Μάθησης (Deep Learning), η οποία βασίζεται σε Δικτύο
Μακράς Βραχύχρονης Μνήμης (LSTM). Ως επενδυτικές μονάδες για την εκπαίδευση των
μοντέλων μας, χρησιμοποιούμε τις ιστορικές επενδυτικές αποδόσεις 48 χαρτοφυλακίων
διαφορετικών βιομηχανικών κλάδων για τα έτη 2019-2021(FF48 daily returns [6]).
Τέσσερα από τα μοντέλα μας, συμπεριλαμβανομένης και της υλοποίησης Deep Learn-
ing, καταφέρνουν να ξεπεράσουν την απόδοση του εξίσου σταθμισμένου χαρτοφυλακίου,
κάτι που θεωρείται ιδιαίτερα δύσκολο σε αυτό το πρόβλημα. Τέλος, προτείνουμε
τροποποιήσεις για περαιτέρω βελτιώσεις.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: ΜΗΧΑΝΙΚΗ ΜΑΘΗΣΗ

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: χαρτοφυλάκιο markowitz, βελτιστοποίηση, cvxpy, projected gradi-
ent descent, lstm

To my family.

ACKNOWLEDGMENTS

I would like to thank my supervisor Dr Yannis Panagakis for his valuable guidance and
assistance during this thesis.

CONTENTS
PREFACE . 13

1. INTRODUCTION . 14

1.1 Historical Background . 14

1.2 Risk and Diversification . 14

1.3 Background . 15

1.4 Motivation . 15

1.5 Related Work . 15
1.5.1 Conventional Machine Learning . 16
1.5.2 Deep Learning . 16

1.6 Objective . 17

1.7 Outline . 17

2. MARKOWITZ PORTFOLIO: PROBLEM DEFINITION 19

2.1 Notation . 19
2.1.1 Investment Portfolio Basics . 19
2.1.2 Calculating the Variance . 19

2.2 Focusing on the Markowitz Portfolio . 20

2.3 Forming the Objective Function . 20

3. DATA AND MODELS . 22

3.1 Data . 22

3.2 Series of Optimizations . 22

3.3 Conventional Optimization Models . 23
3.3.1 CVXpy . 23
3.3.2 LASSO regression using Proximal Gradient Descent 24
3.3.3 Sparse Equally-Weighted portfolio replication . 26
3.3.4 CVXpy-layers . 27

3.4 Creating a Markowitz Portfolio using LSTM’s Predicted Returns 28
3.4.1 Neural Network . 28
3.4.2 Recurrent Neural Network . 28

3.4.3 Long Short-Term Memory Unit . 29
3.4.4 Our Deep Learning Model’s implementation steps 30
3.4.5 Data Preprocessing . 30
3.4.6 Network Setup . 30

4. EXPERIMENTAL EVALUATION . 32

4.1 LSTM Predictions . 32
4.1.1 Results . 32
4.1.2 Prediction depth and accuracy . 32

4.2 Comparing our models . 34

5. CONCLUSIONS . 36

5.1 Analysis . 36

5.2 Further Modifications . 36

REFERENCES . 37

LIST OF FIGURES
Figure 1: Diversifying an investment minimizes unsystematic risk 14

Figure 2: Different Portfolios based on the same Assets. From left to right,
more attention is paid to returns, rather than systematic risk. [36] . 15

Figure 3: Covariance Matrix [37] . 20

Figure 4: Fama-French 48 data set sample 22

Figure 5: The green data form the RRR we defined in (2.3). This optimization is
implemented 45 times in total creating 45 portfolios for each model.
Each time, the portfolio created is used to calculate the model re-
turns of the next 12 days (red data). 23

Figure 6: Soft-Thresholding operator. (Sources: [35] [38]) 25

Figure 7: Recurrent Neural Networks use prior outputs as inputs, making
them superior for time series predictions. (Source: [21]) 28

Figure 8: LSTM Cell. (Source: [10]) . 29

Figure 9: Keras Optimizers Validation Accuracy (Source: [34]) 29

Figure 10: Model Training Overview . 31

Figure 11: Making Return Predictions regarding one Industry’s returns. To
achieve prediction depth, earlier predictions are used for the fol-
lowing ones. Reset every 12 days (e.g.: predicted returns on days
61, 73 and 85 should be the most accurate, while days 72, 84 and
96 should be the hardest to make predictions on). 31

Figure 12: Real Agricultural Industry Investment value (red) vs predicted
through our model (blue). 32

Figure 13: Model predictions with different prediction depth. The first graph
has a depth of 12, while the second only has a depth of 4. For
more clarity, the plots are referring to predictions of the first 100 days. 33

Figure 14: Correlation Coefficient in relation to Prediction Depth (number of
predicted days in each step) . 34

Figure 15: Sum of Cumulative Returns of each model over 540 days 35

Figure 16: Final Returns of each model. For example, the value of investment
regarding the model which uses CVXpy to solve the Least Squares
Objective Function will be: ≈ 1.2 + 1 = 2.2 at the end of the opti-
mization series. 35

PREFACE
This document was completed in Athens, 2021. It has been written to fulfill the graduation
requirements of the Department of Informatics and Telecommunications undergraduate
program. I was engaged in researching and writing it from December 2019 to November
2021. It is mainly addressed to Machine Learning and Stock Investing enthusiasts. I hope
you will find its contents interesting and useful.

Nikitas Sakkas

Machine Learning Methods for Markowitz Portfolio Optimization

1. INTRODUCTION
1.1 Historical Background
Markowitz’s portfolio theory is one of the most important theoretical developments in
finance. In 1952, Henry Markowitz applied mathematics to the analysis of the stock
market. During his thesis, he realized that the current methods only took into account the
expected return and not the risk of an investment. This insight led to the development of
his seminal theory of portfolio allocation under uncertainty, later published by the Journal
of Finance.

” The investor does (or should) consider expected return a desirable thing and variance
(risk) of return an undesirable thing.”

1.2 Risk and Diversification
In economics, risk implies future uncertainty about deviation from expected earnings. Risk
measures the uncertainty that an investor is willing to take to realize a gain from an invest-
ment [3]. There are two types of risk, systematic and unsystematic [4].

Figure 1: Diversifying an investment minimizes unsystematic risk

1. Systematic Risk does not have a specific definition but is an inherent risk existing in
the stock market. These risks are applicable to all the sectors but can be controlled.

2. Unsystematic Risk is an industry or firm-specific threat in each kind of investment.

The unsystematic risk can be minimized using diversification. The more the uncorrelated
assets in an investment portfolio, the more the unsystematic risk shrinks. However, mini-
mizing the systematic risk is a significantly tougher obstacle.

N. Sakkas 14

Machine Learning Methods for Markowitz Portfolio Optimization

1.3 Background
Hence, over the last decades multiple investment models have been created [1] [16] [15]
[28] [5] . Their goal is to pay attention on the systematic risk of various portfolios and not
just focus solely on their returns. However, to our knowledge, when it comes to Markowitz
Portfolio Optimization, most of them use conventional Machine Learning and optimization
techniques even though Deep Learning has surprisingly improved accuracy in various
other domains [30]. Specifically, Recurrent Neural Networks [21] are becoming more and
more popular when it comes to time series data such as speech recognition, music com-
position, or in our case predictions in the stock market.

Figure 2: Different Portfolios based on the same Assets. From left to right, more attention is paid
to returns, rather than systematic risk. [36]

1.4 Motivation
For this reason, we attempted to build an LSTM model to predict the returns of various
industries, and then use an optimizer to create optimal Markowitz Portfolios. We also
modified multiple conventional models to solve this problem for better understanding and
comparisons.

1.5 Related Work
Over the last decades, multiple Machine Learning models have been developed in finance
and banking, including units used for stock prediction and portfolio construction. In the
following subsections we review implementations related to our problem. We split them
into two categories, those who use conventional Machine Learning and those who apply

N. Sakkas 15

Machine Learning Methods for Markowitz Portfolio Optimization

Deep Learning.

1.5.1 Conventional Machine Learning
Conventional Machine Learning techniques have been applied on this problem for
decades. We selected the following work as guidelines of our conventional methodolo-
gies:

• In 2007, Victor DeMiguel, Lorenzo Garlappi, Francisco J. Nogales and Raman Uppal
provided a general framework for creating norm-constrained portfolios that perform
well out-of-sample even in the presence of estimation error [15]. They achieved this
by solving the traditional minimum-variance problem (see Chapter 2), but subject
to the additional constraint that the p-norm of the portfolio-weight vector be smaller
than a given threshold.

• In 2008, Brodie, Daubechies, De Mol, Giannone and Loris followed up on this work
[12]. However, their goal wasn’t only regularization through an added norm, but sta-
bility and sparsity of identified portfolios, which was achieved by l1 penalization. This
was consistent with the observation made by Jagannathan and Ma (2003) that a re-
striction to non-negative-weights-only can have a regularizing effect on Markowitz’s
portfolio construction [16]. They then used the Least Angle Regression algorithm
(LARS) to calculate the portfolios, which yielded great results in terms of stability,
sparsity and returns. In one of our approaches, we used the same objective function
but solved it using a different algorithm, namely Proximal Gradient Descent (see
3.3.2).

• It is important to note that the equally weighted portfolio is considered a high bench-
mark in this problem. It is comprised by the same amount of investment in each
asset, and it achieves low variance due to its high diversification. For this reason,
Daniel Mckenzie (2017) proposed to create a sparse portfolio that replicates the
performance of the equally weighted portfolio [5]. He based his methodology on
Anastasios Kyrillidis, Stephen Becker, Volkan Cevher and Christoph Koch, [28] us-
ing sparse projections onto the simplex [17]. We included this approach in our
models, since the equally weighted portfolio is very effective in this problem, and
this methodology is quite different from the rest (see 3.3.3). We also solved his
minimization problem using CVXpy-layers (see 3.3.4).

1.5.2 Deep Learning
In recent years, Deep Learning has been gaining ground when it comes to pre-
dictions and optimization in finance. For our problem, we examined the following
approaches:

• Zhang Z., Zohren S. and Roberts S. (2005) adopted Deep Learning models to di-
rectly optimize the portfolio Sharpe Ratio [20]. Instead of selecting individual assets,
they traded Exchange-Traded Funds (ETFs) [25] of market indices to form a port-

N. Sakkas 16

Machine Learning Methods for Markowitz Portfolio Optimization

folio. Indices of different asset classes show robust correlations and trading them
substantially reduces the spectrum of available assets to choose from. Our own as-
set selection was based on this approach along with [1], which tackled correlation by
selecting different Industry Portfolios as assets [6]. Regarding their Deep Learning
model, they based their work on [19] and [29].

• Hieu K. Cao, Han K. Cao and Binh T. Nguyen (2020) used Deep Learning, namely
Recurrent andConvolutional Neural Networks to tackle portfolio optimization that
outperformed popular indexes [24]. However, in their approach they attempted to
maximize the Sharpe Ratio of the portfolio (same as [20]), which differs from the
Markowitz portfolio problem. In our Deep Learning approach, we also use a Recur-
rent Neural Network (LSTM), but to create a Markowitz portfolio instead (see 3.4).

• There have also beenmany implementations of Stock Predictions using Deep Learn-
ing [33] [32] [27]. We base the first part of our LSTM models on their methodology,
and then use their predictions to form a Markowitz Portfolio.

1.6 Objective
The objective of this thesis is split in two parts. The first goal is to attempt to modify known
optimization methodologies when it comes to Markowitz Portfolios. We propose several
conventional Machine Learning methods and models to achieve that goal. Secondly, we
consider optimal Markowitz Portfolio creation using Deep Learning, something that (to our
knowledge) hasn’t been attempted yet.

Briefly, to build our conventional models we used CVXpy, LASSO regression, equally
weighted portfolio replication and CVXpy layers. Our Deep Learning Model consists of an
LSTM unit which serves as a predictor, and an optimizer which uses these predictions to
calculate optimal Markowitz Portfolios.

To implement our methods, we used a set of portfolios created by Fama and French [6]
as our assets, namely 48 Industry Portfolios (FF48) daily returns. The data refer to a time
period which is approximately from 07/2019 to 06/2021.

1.7 Outline
The outline of our thesis is as follows:

In the second Chapter, we go over notation, define the Markowitz portfolio problem and
then form the objective function that quantifies it.

In Chapter 3 we firstly go over the data we will use in our implementation. Then, we
describe various conventional Machine Learning algorithms that utilize that data to form
optimal Markowitz Portfolios. Finally, we analyze our Deep Learning unit which predicts
the behavior of our assets and then applies an optimizer on the predictions to create a
Markowitz Portfolio.

In Chapter 4, we firstly evaluate the accuracy of our Deep Learning’s unit predictions and

N. Sakkas 17

Machine Learning Methods for Markowitz Portfolio Optimization

then compare the performance of all our models.

In Chapter 5, our conclusions are drawn and we suggest modifications to further new
research.

N. Sakkas 18

Machine Learning Methods for Markowitz Portfolio Optimization

2. MARKOWITZ PORTFOLIO: PROBLEM DEFINITION
In this Chapter we go over notation regarding investment portfolios, and then define and
quantify the Markowitz Portfolio optimization problem.

2.1 Notation
2.1.1 Investment Portfolio Basics
We’ll begin with basic notation. Consider there are NNN assets available to an investor. The
price of the i-th assets at given time ttt is pi(t)pi(t)pi(t). The return of an investment in a stock is
ri = pi(t)−pi(t−1)

pi(t−1)ri = pi(t)−pi(t−1)
pi(t−1)ri = pi(t)−pi(t−1)
pi(t−1) . The vector of returns at given time t is rt = (r1t, r2t, r3t, ..., rNt)rt = (r1t, r2t, r3t, ..., rNt)rt = (r1t, r2t, r3t, ..., rNt).

We assume that the returns are stationary [1] and define the vector of expected returns
μ = E[rt]μ = E[rt]μ = E[rt]. A portfolio is a vector of NNN weights of investment w = (w0,w2, ...,wN)

⊤w = (w0,w2, ...,wN)
⊤w = (w0,w2, ...,wN)
⊤. For

simplicity, we assume that we have 1 unit of investment that must be fully used and
therefore:

N∑
i=0

wi = 1

The return of a portfolio w at time t is given by:

N∑
i=0

wirit = w⊤rt

The expected return of a portfolio w at time t is defined as:

w⊤μ

2.1.2 Calculating the Variance
If x̄ = E[xt] = w⊤μ, then the variance of a portfolio w at time t is:

E[(xt − x̄)2] = E[(w⊤rt − w⊤μ)2]

= E[(w⊤(rt − μ))2]

= E[(w⊤(rt − μ))(w⊤(rt − μ))]

= E[w⊤(rt − μ)(rt − μ)⊤w]

= w⊤ E[(rt − μ)(rt − μ)⊤]w

= w⊤Sww⊤Sww⊤Sw

(1)

SSS is the Covariance Matrix (S = E[rtr⊤t]− μμ⊤).

N. Sakkas 19

Machine Learning Methods for Markowitz Portfolio Optimization

Figure 3: Covariance Matrix [37]

2.2 Focusing on the Markowitz Portfolio
Generally, there are 3 ways to optimize a portfolio [31]:

1. Maximize the expected return:

wopt = argmax w⊤μ

2. Minimize the variance:

wopt = argmin w⊤Sw

3. Trade-off (both of the above) [2]:

wopt = argmin w⊤Sw− λw⊤μ , for λ > 0

In a Markowitz (1952) portfolio optimization by Harry M. Markowitz, the goal is to
minimize the variance of a portfolio, given an expected return ρρρ. This way, we are
effectively minimizing the risk of an investment.

2.3 Forming the Objective Function
Since we are trying to minimize the variance of the portfolio, using (1) the objective
function is given by:

w = argmin
w

w⊤Sw

s.t. w⊤μ = ρ
N∑
i=1

wi = 1

(2)

Given that S = E[rtr⊤t]− μμ⊤, the objective function becomes:

w = argmin
w

E[|w⊤rt − ρ|2]

s.t. w⊤μ = ρ
N∑
i=1

wi = 1

(3)

N. Sakkas 20

Machine Learning Methods for Markowitz Portfolio Optimization

We can use historic data in order to approximate the expected return μ ≈ μ̂ = 1
T
∑T

t=0 rt.
If RRR is the T× NT× NT× N matrix (e.g., R23 refers to stock 3 at time t2), then the objective function
becomes:

ŵ = argmin
w

1
T
E[|Rw− ρ111T|22]

s.t. w⊤μ = ρ
N∑
i=1

wi = 1

(4)

which is a least squares minimization problem.

In Chapter 3, our models attempt to solve this problem or modifications of it.

N. Sakkas 21

Machine Learning Methods for Markowitz Portfolio Optimization

3. DATA AND MODELS
In this Chapter, we firstly present the data we used to train and test our models.
Secondly, we present the series of optimizations that our models will execute in order
to evaluate them. Then, we analyze the Conventional Machine Learning Models we
developed and the optimization problem variations they solve. Finally, we demonstrate
our final model which uses Deep Learning to predict investment returns and then
applies an optimizer to create a Markowitz Portfolio.

3.1 Data
For our data set, we used daily data from the Fama-French 48 set [6]. This data
contains stock price changes of 48 industries between the years 1926-2021. However,
due to the great size of the data, only the latest years of it are used in our models. Also,
the latest years do not have any missing data, so there is no need for replacements or
interpolation.

Figure 4: Fama-French 48 data set sample

3.2 Series of Optimizations
Rather than creating a single portfolio with each optimization model and then comparing
the results, we implemented a series of optimizations than our models will execute. In
total, we used the final 600 days of our dataset. Starting from the oldest day, the models
will use 60 ”past” days to optimize the portfolio which describes the investment for the
following 12 ”future” days. We repeat this process 44 times and then calculate the sum
of the cumulative returns each model had. This process is visualized in Figure 5 and
analyzed in Algorithm 1.

N. Sakkas 22

Machine Learning Methods for Markowitz Portfolio Optimization

Figure 5: The green data form the RRR we defined in (2.3). This optimization is implemented 45 times
in total creating 45 portfolios for each model. Each time, the portfolio created is used to calculate

the model returns of the next 12 days (red data).

Algorithm 1 Multiple Executions of each Optimization Model
Input
(600 × 48) Matrix RRR of FF48 Dataset
Output
(45 Cumulative Returns of the 45 Calculated Portfolios)

i← 60
OverallReturns = []
while i < 600 do

PastData← R[i− 60 : i] ▷ Green Data in Figure 5
FutureData← R[i : i+ 12] ▷ Red Data in Figure 5
Portfolio← CalculatePortfolio(PastData) ▷ Optimization Model execution
Returns[0 : 12]← CalculateReturns(Portfolio,FutureData)
OverallReturns.append(Returns)
i← i+ 12

end while
CumulativeReturns = CalculateCumulativeReturns(OverallReturns)

3.3 Conventional Optimization Models
3.3.1 CVXpy
CVXpy is a Python-embedded modeling language for convex optimization problems
[8][7]. We chose this as a first approach since its use is pretty straightforward and
generally yields good results for convex problems [9].

As the CVXpy solver, we selected the ECOS solver, since it’s optimal for second-order
cone programs (SOCPs) [11]. The objective function wasn’t changed by this model,
CVXpy solved the least squares optimization problem (4).

N. Sakkas 23

Machine Learning Methods for Markowitz Portfolio Optimization

3.3.2 LASSO regression using Proximal Gradient Descent
L1L1L1 regularization
Another frequent approach in convex optimizations is to add a regularizer to the
objective function. In our implementation, we chose the l1l1l1 penalty:

λ||w||1

This penalty is comprised of two parts:

• ||w||1 =
∑N

i=0 |wi|

• λ is a parameter that allows us to adjust the relative importance of the l1
penalization in our optimization

By adding that penalty, the objective function (4) becomes:

ŵ = argmin
w

1
T
E[|Rw− ρ1T|22] + λ||w||1λ||w||1λ||w||1

s.t. w⊤μ = ρ
N∑
i=0

wi = 1

(5)

This modification converts the problem into a LASSO Regression Problem [12].

l1l1l1 Benefits
Adding an l1l1l1 penalty to an optimization problem ”encourages” the model to shrink the
less important feature’s coefficients to zero (in our case it suggests to only invest in a
few of the available industries). This poses several advantages [1]:

1. It yields sparse results, which is something investors generally prefer. This is
because it is simpler and easier to monitor and liquidate fewer securities.

2. It minimizes transaction costs. Generally, transaction costs can be split into two
categories. Fixed costs independent of the size of the investment (fixed salaries,
fixed fees, etc.) and variable costs that are relative to the size of the investment
(commissions, taxes, etc.) [13]. The latter cost is the same regardless of the
number of different stocks in the portfolio (since

∑N
i=0wi = 1). However, the fixed

costs are minimized if our portfolio is sparse.

3. It promotes stability. Adding an l1l1l1 penalty protects the model from possible
collinearities between the securities [14].

Proximal Gradient Descent
Performing normal Gradient Descent to optimize the objective function (5) is not
possible, since the l1 penalty is non-differentiable. To address this, we solve the LASSO

N. Sakkas 24

Machine Learning Methods for Markowitz Portfolio Optimization

Regression Problem using Proximal Gradient Descent [17]. It is a generalized form of
projection used to solve non-differentiable convex optimization problems.

The proximal mapping for a lasso objective is calculated by:

proxt(β) = argmin
z

1
2t
||y−XXXβ||+ λ||z||1

≡ argmin
z

1
2
||y−XXXβ||+ λt||z||1

= SSSλt(β)

(6)

SSSλt is called the Soft-Thresholding operator.

Figure 6: Soft-Thresholding operator. (Sources: [35] [38])

This means that ultimately, the problem is solved by implementing gradient descent on
the objective function (4) and soft-thresholding the result of every iteration by λτ:

proxL1(β) = Sλτ(β)

β is the result of a gradient descent iteration of the least squares equation (4).

Algorithm 2 describes the steps of this process.

N. Sakkas 25

Machine Learning Methods for Markowitz Portfolio Optimization

Algorithm 2 Proximal Gradient Descent
Input
(60 × 48) Matrix X (Green Data in Figure 5)
Output
Optimal Portfolio w
Our Functions
Objective Function: FFF(X,w)
Objective Function’s Gradient: GGG(X,w)
Function That Determines Learning Rate Multiplier: DLRDLRDLR(start_lr,X,F,G,w)
Soft Threshold Function SSS(τ,w)

max_iter← 100 ▷ max number of gradient descent iterations
ε ← 0.001 ▷ criterion to end gradient descent
iter← 0
τ ← 0.2 ▷ importance of the l1 norm
start_lr← 0.1 ▷ starting learning rate

w← [148 ,
1
48 ,

1
48 , ...,

1
48]

⊤ ▷ begin with equally weighted portfolio

while (norm2(grad) > ε and iter < max_iter) do
f← FFF(X,w)
grad←GGG(X,w)
lr← DLRDLRDLR(start_lr,X, f, grad,w)
w← w− lr ∗ grad
w← SSS(τ,w)
w← NormalizeNormalizeNormalize(w) ▷ normalize result to maintain

∑48
i=0wi = 1 constraint

iter = iter+ 1
end while
return w

3.3.3 Sparse Equally-Weighted portfolio replication
Equally Weighted Portfolio
As mentioned before, the equally weighted portfolio wewwewwew is a tough benchmark
when it comes to Markowitz portfolio formulation. The reason is that this portfolio is
as diversified as possible, and therefore it has relatively low variance.

wew(i) =
1
N

Replication of wewwewwew Problem
For this reason, we attempt to create a k-sparse portfolio that replicates the variance of
the equally weighted portfolio [5]. Hopefully, this will result in performance similar to the
wew, along with the advantages of sparsity (see 3.3.2).

N. Sakkas 26

Machine Learning Methods for Markowitz Portfolio Optimization

This approach amounts to solving:

ŵ = argmin
w

||Rw− Rwew||22

s.t.
N∑
i=0

wi = 1

w ∈ ΣkΣkΣk

(7)

ΣkΣkΣk is the set of k-sparse vectors (NNN sized vectors with kkk non-zero values).

Solving the Problem
This problem is solved using Projected Gradient Descent [17], using the Greedy
Selector and Simplex Projection (GSSP) algorithm from Kyrillidis (et al. 2013)[28]. This
algorithm does the following in every Gradient Descent iteration’s result w+:

1. Greedy Selector: Keeps the k-largest entries of w+ and sets the rest to zero.

2. Simplex Projection: Projects the result into the simplex in order to maintain the∑48
i=0wi = 1 constraint.

The projection applied is the Euclidean Projection PλPλPλ:

(PλPλPλ(w∗
i)) = w∗

i − t, where t = 1
N(
∑N

i=1w∗
i − λ)

Where:

• w∗ is the result of step’s 1 Greedy Selector.

• N is the number of dimensions of w, in our case 48.

• λ =
∑N

i=1wi, in our case 1.

We created 2 models using this algorithm, with k = 5 and k = 10.

3.3.4 CVXpy-layers
CVXpy-layers is a Python library for constructing differentiable convex optimization
layers in PyTorch, JAX, and TensorFlow using CVXpy. A convex optimization layer
solves a parametrized convex optimization problem in the forward pass to produce a
solution. It computes the derivative of the solution with respect to the parameters in the
backward pass.

Effectively, it should yield similar results to CVXpy, so we selected it to check the validity
of the CVXpy implementation. We also used it to attempt another equally weighted
portfolio replication (see 3.3.3), this time with no sparsity constraints.

N. Sakkas 27

Machine Learning Methods for Markowitz Portfolio Optimization

3.4 Creating a Markowitz Portfolio using LSTM’s Predicted Returns
In our last approach, we decided to use a Neural Network to predict the returns of
the days in the future window (red data in Figure 5) and then optimize based on the
predicted returns.

3.4.1 Neural Network
A neural network is a series of algorithms that endeavors to recognize underlying
relationships in a set of data through a process that mimics the way the human brain
operates. In this sense, neural networks refer to systems of neurons, either organic or
artificial in nature. Neural networks, which have their roots in artificial intelligence, are
swiftly gaining popularity in the development of trading systems [18]. In recent years
neural networks have been widely used for forecasting financial information. For our
final model, we used a newly formed class of neural networks, the Recurrent Neural
Network.

3.4.2 Recurrent Neural Network
A Recurrent Neural Network (RNN) is a type of artificial neural network which has
“memory” as it takes information from prior outputs to influence the current input.
RNNs are excellent for training with time series data [21]. However, it can be difficult
to train standard RNNs to solve problems that require learning long-term temporal
dependencies (such as ours). This is because the gradient of the loss function decays
exponentially with time (called the vanishing gradient problem). For this reason, we
selected to use a Long Short-Term Memory unit (LSTM) [24][27].

Figure 7: Recurrent Neural Networks use prior outputs as inputs, making them superior for time
series predictions. (Source: [21])

N. Sakkas 28

Machine Learning Methods for Markowitz Portfolio Optimization

3.4.3 Long Short-Term Memory Unit
Long Short-Term Memory units (LSTMs) are designed to detect long-term
dependencies. They achieve this by adding these gates to the hidden layer:

1. Input gate

2. Output gate

3. Forget gate

Figure 8: LSTM Cell. (Source: [10])

These three gates have independent weights and biases that and are used decide how
much of the current input to keep, how much information is no longer required and how
much of the internal hidden state to send to the output [23].
As a network optimizer we chose the Adam optimizer. That algorithm uses a decaying
learning rate, which means that the steps become smaller as the optimizer reaches the
objective, which is not only good for execution time but also for accuracy [22]. Figure 9
displays the Adam optimizer’s performance compared to other optimizers.

Figure 9: Keras Optimizers Validation Accuracy (Source: [34])

N. Sakkas 29

Machine Learning Methods for Markowitz Portfolio Optimization

3.4.4 Our Deep Learning Model’s implementation steps
1. Train an LSTM unit to receive 60 time series data (red data size in Figure 5) of

an industry’s returns and predict the return of the following day. Repeat for each
industry (48 times, training 48 models).

2. Use each model to predict on a data set of 600 time-series data (same data the
other models use), with a 12-day prediction depth. To achieve that depth, we use
earlier predictions as input for the following ones.

3. Concatenate the results of the 48 units, creating an array RRR* of size 540× 48540× 48540× 48.

4. Run an optimization model on the RRR* array. The only difference with the previous
optimizations is that in each iteration the optimization model wills use an array
of size 12× 4812× 4812× 48 (predicted red data) instead of 60× 4860× 4860× 48 (green data). Simply put,
this time we will run our optimizers on ”predicted future windows” instead of ”past
windows”.

3.4.5 Data Preprocessing
Data
To train our model, we used a training set containing daily returns for every industry over
2100 days.

Scaling
Feature scaling is essential for machine learning algorithms that calculate distances
between data. To scale our data, we used sclearn’s MinMaxScaler. This scaler
translates each feature individually such that it is in the given range on the training set,
in our case between zero and one. The new training set values (xscaled) are calculated
by:

xscaled =
x− xmin

xmax − xmin

3.4.6 Network Setup
There are many ways of setting up a neural network. However, due to the nature
of the data, it is sometimes hard to decide which direction to take. In our case, we
tried different tuning until we achieved a very high Correlation Coefficient between
predicted and expected prices.

Our model is comprised of 3 LSTM layers with 50 neurons and 1 Dense layer. Between
each LSTM layer we also added a 20% Dropout Rate to prevent overfitting [26]. The
network was trained for 50 epochs with a batch size of 3. We implemented it using the
Keras library [27]. To train it, we used 2040 vectors containing 60 ”past” days returns (X)
and each following day as the output (Y).

N. Sakkas 30

Machine Learning Methods for Markowitz Portfolio Optimization

Figure 10: Model Training Overview

Making Predictions
Our Predictions are made using the same data set the conventional optimizers used.
Since we wanted to predict 12 days ahead, we decided to use our own predictions as
input for the predictions further in. Figure 11 describes this process.

Figure 11: Making Return Predictions regarding one Industry’s returns. To achieve prediction
depth, earlier predictions are used for the following ones. Reset every 12 days (e.g.: predicted

returns on days 61, 73 and 85 should be the most accurate, while days 72, 84 and 96 should be the
hardest to make predictions on).

Optimizing based on Predicted Returns
Finally, using the predicted returns we calculated, we needed to run an optimizer to
create our proposed portfolios. We chose the CVXpy optimizer, since it showed the
most promising returns in our previous optimizations, as our experimental evaluation will
indicate.

N. Sakkas 31

Machine Learning Methods for Markowitz Portfolio Optimization

4. EXPERIMENTAL EVALUATION
In this Chapter we evaluate the effectiveness of our models. Firstly, we go over the
accuracy of our LSTM unit regarding it’s predictions on an asset’s prices over a
forecasting window of 12 days. Secondly, we examine and compare our optimization
models, when it comes to creating Markowitz portfolios.

4.1 LSTM Predictions
4.1.1 Results
As an example and for visualization purposes, Figure 12 displays our predictions for the
value of an investment in the agricultural industry, compared with the actual value during
this period of 540 days.

Figure 12: Real Agricultural Industry Investment value (red) vs predicted through our model (blue).

4.1.2 Prediction depth and accuracy
As stated in the previous Chapter, to make 12 predictions in each step, we decided to
use our earlier predictions as input for the latter ones. This approach would of course
mean that the bigger our prediction depth got, the harder it would be to make more
accurate predictions (Figure 13)). In spite of this problem though, our model performed
relatively well. We quantified its accuracy by calculating the Correlation Coefficient
between the predicted value of an investment and the real one.

cc =

∑T
i=0((pi − p̄)(ri − r̄))√

(
∑T

i=0(pi − p̄))(
∑T

i=0(ri − r̄))

Where:

1. cc is the Correlation Coefficient.

2. pi, ri are the predicted and real value of the investment in an Industry Portfolio (one
of our 48 assets) respectively.

3. p̄, r̄ are the mean of the predicted and real values of the investment in an Industry
Portfolio respectively.

N. Sakkas 32

Machine Learning Methods for Markowitz Portfolio Optimization

4. T is the size of the data, in our case 540 days.

The relation between the prediction depth and Correlation Coefficient is shown in Figure
(14).

Figure 13: Model predictions with different prediction depth. The first graph has a depth of 12,
while the second only has a depth of 4. For more clarity, the plots are referring to predictions of

the first 100 days.

N. Sakkas 33

Machine Learning Methods for Markowitz Portfolio Optimization

Figure 14: Correlation Coefficient in relation to Prediction Depth (number of predicted days in
each step)

Note that the graphs show the value of an investment in the agricultural industry and not
its daily returns. Therefore, we expect the Correlation Coefficient to be high, since the
value of an investment in a FF48 industry is unlikely to be volatile over 100 days (the
daily returns however can most definitely vary from day to day).

4.2 Comparing our models
To compare all our models, we calculated the sum of cumulative returns of all the
portfolios each model created. These are given by:

Creturn(i) =
Value(i) − Value(i−1)

Value(i−1)

Csum =
45∑
i=1

Creturn(i)

(8)

Figure 15 displays the cumulative returns sum of each model over the time period of
540 days. Figure 16 displays the final cumulative returns each model yielded.

N. Sakkas 34

Machine Learning Methods for Markowitz Portfolio Optimization

Figure 15: Sum of Cumulative Returns of each model over 540 days

Figure 16: Final Returns of each model. For example, the value of investment regarding the model
which uses CVXpy to solve the Least Squares Objective Function will be: ≈ 1.2+ 1 = 2.2 at the end

of the optimization series.

N. Sakkas 35

Machine Learning Methods for Markowitz Portfolio Optimization

5. CONCLUSIONS
In this Chapter, we draw our conclusions based on the evaluations. We also propose
additional modifications that could further improve our models.

5.1 Analysis
The results indicate that CVXpy produces the most successful portfolios. However, it
appears our Deep Learning approach had relatively good results too, since it surpassed
most of the conventional methods. It also proved itself slightly superior to the naive
(equally weighted) portfolio approach, which is a hard benchmark for most models
to significantly or consistently outperform. It should also be noted that our portfolios
derived from Proximal and Projected Gradient descent could also be of value since what
they lose in performance they somewhat gain from the benefits of sparsity (see 3.3.2).

5.2 Further Modifications
Modifications and variants that could improve our models:

1. The LSTM model would most likely yield better results if the training set length and
the timestamp used to make predictions were larger (they were 2000 days and 60
days respectively). However, this would fall beyond the scope of our paper, since
our goal was to propose this new approach of optimizing Markowitz portfolios, and
increasing these sizes would significantly increase the training time of our unit.

2. Another modification is to train an LSTM model to predict the returns of all 48
industries instead of training 48 models for each industry. This would of course add
a lot of complexity to our problem, but this way the model would possibly also find
patterns between correlated industries, and thus yield better results.

3. Another optimizer besides CVXpy could be used to created portfolios based
on LSTM’s predictions. Even if they performed worse, they could have other
advantages like sparsity or low volatility.

Finally, these models could be used to solve not only other portfolio optimization
problems besides the Markowitz portfolio (such as the trade-off problem), but also other
optimization problems in general.

N. Sakkas 36

Machine Learning Methods for Markowitz Portfolio Optimization

REFERENCES
[1] Brodie, J., Daubechies, I., De Mol, C., Giannone, D. & Loris, I. Sparse and Stable Markowitz

Portfolios. PNAS. (2008)
[2] Li, Q. & Yanqin Bai Optimal trade-off portfolio selection between total risk and maximum relative

marginal risk. Taylor & Francis. (2015)
[3] Times, E. Definition of Risk. https://economictimes.indiatimes.com/definition/risk
[4] Vaidya, D. Systematic Risk vs Unsystematic Risk. https://www.wallstreetmojo.com/

systematic-risk-vs-unsystematic-risk
[5] McKenzie, D. Optimal Sparse Markowitz Portfolios. (2017)
[6] R. French, K. U.S. Research Returns Data. https://mba.tuck.dartmouth.edu/pages/faculty/ken.

french/data_library.html#BookEquity
[7] Diamond, S. & Boyd, S. CVXPY: A Python-embedded modeling language for convex optimization.

Journal Of Machine Learning Research. 17, 1-5 (2016)
[8] Agrawal, A., Verschueren, R., Diamond, S. & Boyd, S. A rewriting system for convex optimization

problems. Journal Of Control And Decision. 5, 42-60 (2018)
[9] Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S. & Kolter, J. Differentiable Convex

Optimization Layers. Advances In Neural Information Processing Systems. pp. 9558-9570 (2019)
[10] Zhang, A., Lipton, Z., Li, M. & Smola, A. Dive into Deep Learning. (2021), Online Version:

https://d2l.djl.ai/chapter_recurrent-modern/lstm.html
[11] Anon. CVXPY Advanced Features. https://www.cvxpy.org/tutorial/advanced/index.html
[12] Nagpal, A. L1 and L2 Regularization Methods. (2017), https://towardsdatascience.com/

l1-and-l2-regularization-methods-ce25e7fc831c
[13] Kociński, M. Transaction costs and market impact in investment management. E-Finanse: Financial

Internet Quarterly. 10 pp. 28-35 (2014)
[14] Daubechies, I., Defrise, M. & De Mol, C. An iterative thresholding algorithm for linear inverse

problems with a sparsity constraint. (2004)
[15] Victor DeMiguel, Lorenzo Garlappi, Francisco J. Nogales, Raman Uppal, (2009) A Generalized

Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms.
Management Science 55(5):798-812.

[16] Ravi Jagannathan, Tongshu Ma. Risk Reduction in Large Portfolios: Why Imposing the Wrong
Constraints Helps. The Journal of Finance. (Aug., 2003).

[17] Tibshirani, R. Proximal Gradient Descent (and Acceleration). https://www.stat.cmu.edu/ ryantibs/
convexopt/lectures/prox-grad.pdf

[18] Chen, J. Neural Network. (2020), https://www.investopedia.com/terms/n/neuralnetwork.asp
[19] Yann LeCun, Yoshua Bengio, Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444, (2015).
[20] Zhang, Z., Zohren, S. & Roberts, S. Deep Learning for Portfolio Optimization. The Journal Of

Financial Data Science. 2, 8-20 (2020,8), http://dx.doi.org/10.3905/jfds.2020.1.042
[21] Anon. What are Recurrent Neural Networks. (2020), https://www.ibm.com/cloud/learn/

recurrent-neural-networks
[22] Brownlee, J. Gentle Introduction to the Adam Optimization Algorithm for Deep Learning. (2021),

https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
[23] Olah, C. Understanding LSTM Networks. (2015), https://colah.github.io/posts/

2015-08-Understanding-LSTMs/
[24] K. Cao, H., K. Cao, H. & T. Nguyen, B. DELAFO: An Efficient Portfolio Optimization Using Deep

Neural Networks. (2020)
[25] James Chen. Exchange Traded Fund. (2021), https://www.investopedia.com/terms/e/etf.asp
[26] Brownlee, J. Dropout Regularization in Deep Learning Models With Keras. (2020), https:

//machinelearningmastery.com/dropout-regularization-deep-learning-models-keras/
[27] Mwiti, D. Using a Keras Long Short-Term Memory (LSTM) Model to

N. Sakkas 37

https://economictimes.indiatimes.com/definition/risk
https://www.wallstreetmojo.com/systematic-risk-vs-unsystematic-risk
https://www.wallstreetmojo.com/systematic-risk-vs-unsystematic-risk
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html#BookEquity
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html#BookEquity
https://d2l.djl.ai/chapter_recurrent-modern/lstm.html
https://www.cvxpy.org/tutorial/advanced/index.html
https://towardsdatascience.com/l1-and-l2-regularization-methods-ce25e7fc831c
https://towardsdatascience.com/l1-and-l2-regularization-methods-ce25e7fc831c
https://www.stat.cmu.edu/ ryantibs/convexopt/lectures/prox-grad.pdf
https://www.stat.cmu.edu/ ryantibs/convexopt/lectures/prox-grad.pdf
https://www.investopedia.com/terms/n/neuralnetwork.asp
http://dx.doi.org/10.3905/jfds.2020.1.042
https://www.ibm.com/cloud/learn/recurrent-neural-networks
https://www.ibm.com/cloud/learn/recurrent-neural-networks
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.investopedia.com/terms/e/etf.asp
https://machinelearningmastery.com/dropout-regularization-deep-learning-models-keras/
https://machinelearningmastery.com/dropout-regularization-deep-learning-models-keras/

Machine Learning Methods for Markowitz Portfolio Optimization

Predict Stock Prices. (2018), https://www.kdnuggets.com/2018/11/
keras-long-short-term-memory-lstm-model-predict-stock-prices.html

[28] Kyrillidis, A., Becker, S., Cevher, V. & Koch, C. Sparse projections onto the simplex. Proceedings
Of The 30th International Conference On Machine Learning. 28, 235-243 (2013,6,17), https:
//proceedings.mlr.press/v28/kyrillidis13.html

[29] Ian Goodfellow, Yoshua Bengio, Aaron Courville. Deep learning. MIT press, (2016).
[30] Chauhan, N. & Singh, K. A Review on Conventional Machine Learning vs Deep Learning. 2018

International Conference On Computing, Power And Communication Technologies (GUCON). pp.
347-352 (2018)

[31] Yaoyao Clare, D. A Multi-Objective Approach to Portfolio Optimization. Rose-Hulman
Undergraduate Mathematics Journal. 8 (2007)

[32] Ganegedara, T. Stock Market Predictions with LSTM in Python. (2020), https://www.datacamp.com/
community/tutorials/lstm-python-stock-market#average

[33] Singh, R. & Srivastava, S. Stock prediction using deep learning. Multimedia Tools And Applications.
76, 18569-18584 (2017,9), https://doi.org/10.1007/s11042-016-4159-7

[34] David Mack. How to pick the best learning rate for your machine learning project. (2018), https://
medium.com/octavian-ai/which-optimizer-and-learning-rate-should-i-use-for-deep-learning-5acb418f9b2

[35] Hoang, T., Barney Smith, E. & Tabbone, S. Sparsity-based edge noise removal from bilevel
graphical document images. International Journal On Document Analysis And Recognition (IJDAR).
(2014,8)

[36] The guide to diversification. https://www.fidelity.com/viewpoints/investing-ideas/
guide-to-diversification

[37] Covariance Matrix. https://en.wikipedia.org/wiki/Covariance_matrix
[38] A. Al Jumah, M. Gulam Ahamad and S. Amjad Ali, ”Denoising of Medical Images Using Multiwavelet

Transforms and Various Thresholding Techniques,” Journal of Signal and Information Processing,
Vol. 4 No. 1, 2013, pp. 24-32.

N. Sakkas 38

https://www.kdnuggets.com/2018/11/keras-long-short-term-memory-lstm-model-predict-stock-prices.html
https://www.kdnuggets.com/2018/11/keras-long-short-term-memory-lstm-model-predict-stock-prices.html
https://proceedings.mlr.press/v28/kyrillidis13.html
https://proceedings.mlr.press/v28/kyrillidis13.html
https://www.datacamp.com/community/tutorials/lstm-python-stock-market#average
https://www.datacamp.com/community/tutorials/lstm-python-stock-market#average
https://doi.org/10.1007/s11042-016-4159-7
https://medium.com/octavian-ai/which-optimizer-and-learning-rate-should-i-use-for-deep-learning-5acb418f9b2
https://medium.com/octavian-ai/which-optimizer-and-learning-rate-should-i-use-for-deep-learning-5acb418f9b2
https://www.fidelity.com/viewpoints/investing-ideas/guide-to-diversification
https://www.fidelity.com/viewpoints/investing-ideas/guide-to-diversification
https://en.wikipedia.org/wiki/Covariance_matrix

	Preface
	Introduction
	Historical Background
	Risk and Diversification
	Background
	Motivation
	Related Work
	Conventional Machine Learning
	Deep Learning

	Objective
	Outline

	Markowitz Portfolio: Problem Definition
	Notation
	Investment Portfolio Basics
	Calculating the Variance

	Focusing on the Markowitz Portfolio
	Forming the Objective Function

	Data and Models
	Data
	Series of Optimizations
	Conventional Optimization Models
	CVXpy
	LASSO regression using Proximal Gradient Descent
	Sparse Equally-Weighted portfolio replication
	CVXpy-layers

	Creating a Markowitz Portfolio using LSTM's Predicted Returns
	Neural Network
	Recurrent Neural Network
	Long Short-Term Memory Unit
	Our Deep Learning Model's implementation steps
	Data Preprocessing
	Network Setup

	Experimental Evaluation
	LSTM Predictions
	Results
	Prediction depth and accuracy

	Comparing our models

	Conclusions
	Analysis
	Further Modifications

	References

