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ABSTRACT

Generative Adversarial Networks (GANs) are deeplearningbased generativemodels that
learn to map noise latent vectors to highfidelity images. Recent work has shown that the
input latent space can be decomposed to semantically meaningful directions. Moving
towards these directions corresponds to human interpretable image transformations. For
example, from high level aspects such as face shape and general hair style, to smaller
scale facial features to color schemes and microstructures, everything can be controlled
by moving in the corresponding GAN latent space direction.

In order to achieve image editing by identifying latent space directions, previous stateof
theart methods either based on supervised approaches or leverage the Principal Com
ponents Analysis (PCA) algorithm. The former have a tremendous disadvantage for the
range of directions that can be explored, as they rely on a humanannotated set of scores
for each attribute. The latter tend to use the same method with minor modifications, res
ulting in similar experimental observations.

In this work, we approach the problem of discovering semantic directions in an unsuper
vised way, using semidefinite programming to perform nonlinear dimensionality reduction
of the internal representation of GANs. In particular, we examine the generation mech
anism of GANs and further utilize the famous algorithm of Maximum Variance Unfolding,
also known as Semidefinite Embedding, to identify semantically meaningful directions by
decomposing the pretrained weights. Furthermore, extensive experiments are conduc
ted on the stateoftheart GAN architectures, StyleGAN and StyleGANv2, for 7 different
datasets.

To our knowledge, this is the first work to approach this problem from the perspective of
semidefinite programming. While the computational cost can be high, the results clearly
demonstrate its superiority in various experiments, while in others they can be compared
with the results of the most recent supervised and unsupervised methods. Code is avail
able at https://github.com/PanPapag/MVUGAN.

SUBJECT AREA: Computer Vision

KEYWORDS: GAN, Image Editing, Semantic Directions, Latent Space, Semidefinite
Programming

https://github.com/PanPapag/MVU-GAN


ΠΕΡΙΛΗΨΗ

Τα Παραγωγικά Αντιπαλικά Δίκτυα (ΠΑΔ) είναι παραγωγικά μοντέλα που βασίζονται στην
βαθιά μάθηση και μαθαίνουν να απεικονίζουν ένα θόρυβο λανθάνοντος διανύσματος σε
εικόνες υψηλής αξιοπιστίας. Πρόσφατα έργα έχουν δείξει ότι ο λανθάνων χώρος εισόδου
μπορεί να αποσυντεθεί σε κατευθύνσεις σημασιολογικά ουσιαστικές. Η μετακίνηση προς
αυτές τις κατευθύνσεις αντιστοιχεί σε ερμηνεύσιμες, από τον άνθρωπο, μετατροπές εικό
νας. Για παράδειγμα, από πτυχές υψηλού επιπέδου, όπως το σχήμα του προσώπου και
το γενικό στυλ των μαλλιών, μέχρι τα μικρότερα χαρακτηριστικά του προσώπου έως τα
χρώματα και τις μικροδομές, όλα μπορούν να ελεγχθούν μετακινώντας στην αντίστοιχη
κατεύθυνση του λανθάνοντος χώρου ΠΑΔ.

Προκειμένου να επιτευχθεί η επεξεργασία εικόνας με τον εντοπισμό κατευθύνσεων του
λανθάνοντος χώρου, οι σύγχρονες μέθοδοι είτε βασίζονται σε εποπτευόμενες προσεγγί
σεις είτε αξιοποιούν τον αλγόριθμο PCA. Οι πρώτες έχουν ένα τεράστιο μειονέκτημα σχε
τικά με το εύρος των κατευθύνσεων που μπορούν να διερευνηθούν, καθώς βασίζονται σε
ένα σύνολο ανθρωπίνων σχολιασμένων βαθμολογιών για κάθε χαρακτηριστικό. Οι τελευ
ταίες τείνουν να χρησιμοποιούν την ίδια μέθοδο με μικρές τροποποιήσεις, με αποτέλεσμα
παρόμοιες πειραματικές παρατηρήσεις.

Σε αυτήν την εργασία, προσεγγίζουμε το πρόβλημα της ανακάλυψης σημασιολογικών κα
τευθύνσεων χωρίς εποπτεία, χρησιμοποιώντας ημιπεριορισμένο προγραμματισμό για την
εκτέλεση μη γραμμικής μείωσης διαστάσεων της εσωτερικής αναπαράστασης των ΠΑΔ.
Συγκεκριμένα, εξετάζουμε τον μηχανισμό παραγωγής των ΠΑΔ και χρησιμοποιούμε πε
ραιτέρω τον περίφημο αλγόριθμο Αναδίπλωσης Μέγιστης Διακύμανσης, επίσης γνωστό
ως Ημιπεριορισμένη Ενσωμάτωση, για να εντοπίσουμε σημασιολογικά σημαντικές κατευ
θύνσεις αποσυνθέτοντας τα προεκπαιδευμένα βάρη. Επιπλέον, διεξάγονται εκτεταμένα
πειράματα με τις πιο σύγχρονες αρχιτεκτονικές ΠΑΔ, StyleGAN και StyleGANv2, για 7
διαφορετικά σύνολα δεδομένων.

Από όσο γνωρίζουμε, αυτή είναι η πρώτη εργασία που προσεγγίζει αυτό το πρόβλημα από
την οπτική του ημιπεριορισμένου προγραμματισμού. Ενώ το υπολογιστικό κόστος μπο
ρεί να είναι υψηλό, τα αποτελέσματα αποδεικνύουν σαφώς την υπεροχή του σε διάφορα
πειράματα, ενώ σε άλλα μπορούν να συγκριθούν με τα αποτελέσματα των πιο πρόσφα
των εποπτευόμενων και μη εποπτευόμενων μεθόδων. Ο κώδικας είναι διαθέσιμος στο
https://github.com/PanPapag/MVUGAN.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Μηχανική Όραση

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: ΠΑΔ, Επεξεργασία Εικόνας, Σημασιολογικές Κατευθύνσεις,
Λανθάνων Χώρος, Ημεπεριορισμένος Προγραμματισμός

https://github.com/PanPapag/MVU-GAN
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MVUGAN: Unfolding the Latent Space of GANs

1. INTRODUCTION

The quality of images synthesized by deep generative models has improved dramatically
over the past few years. Nowadays, Generative Adversarial Networks (GANs) [10] have
achieved incomparable success in image synthesis and are getting widely adopted by
digital artists. The stateoftheart GANs, such as BigGAN [5] and StyleGAN [20, 21, 19],
are able to produce highfidelity synthetic images that can be indistinguishable from real
ones. The rationale behind GANs is to utilize the adversarial method of training in order
to learn a nonlinear mapping from the input noise latent vectors to the distribution of the
training data. After learning that mapping, GANs can be fed with randomly sampled noise
vectors and produce images of high quality.

However, in realworld applications, GAN models are typically treated as blackboxes
without a deeper understanding of the generative process taking place inside them. Sev
eral works have shown that the latent space of GANs present a useful vector arithmetic
property, e.g. adding the latent codes of two images [20] or adding a learned vector to
the input latent noise [25], results in a semantically modified image. Although, it is still
not clear how the latent space is organized in terms of interpretability, these prior works
motivate the researchers to understand the latent space of GANs.

A continuous active research on GANs interpretability aim to discover the underlying se
mantics of their latent spaces. A recent work [3] has shown that the intermediate neurons
of a welltrained GAN are responsible for several parts of the visual world in a synthes
ized image, such as trees and doors for outdoor scenes generation. At the moment, the
most recent works try discover interpretable directions in the latent space of GANs mainly
following one of the two approaches: supervised or unsupervised methods.

The existing supervised approaches tend to first randomly sample a great amount of lat
ent codes, then synthesize the corresponding set of images and humanannotate them
with some predetermined labels, and finally train a linear classifier to learn a hyperplane
on the latent space. In order to label the images for training, they either utilize pretrained
attribute predictors [31, 9, 27] or exploit statistical information of the images, such as ob
jects position and color hue. Although the supervised approaches may offer a high degree
of control over the discovered directions, they also present severe limitations in terms of
applicability. Specifically, a well annotated set of attributes is expensive to collect and can
lead to nondeterministic results, e.g. sampling a different collection of latent codes may
cause the classifier to learn different separating boundaries.

On the other hand, recently works [29, 14, 28] were published that follow the unsuper
vised approach to discover interpretable directions in the latent space of GANs. However,
they either require model training [29] or data sampling [14]. The most recent one, SeFa
[28] does not require neither of them, but it leverages the PCA algorithm, same as the
GANSpace [14], in order to discover the desired latent semantics. Therefore, the afore
mentioned approaches tend to present similar results.

In this thesis, we propose a novel unsupervised algorithm that performs nonlinear di
mensionality reduction of the pretrained weights of a generator, aiming at interpreting the
latent semantics of GANs beyond traditional methods. We call it MVUGAN, as the short
of Maximum Variance Unfolding GAN. Similar to SeFa [28], our framework is independent
of data sampling and model training. Instead of focusing on PCA to decompose the pre
trained weights of a GAN model, MVUGAN takes a step further into the relation of the
modes of variability in the internal representation of GANs. In practice, GANs project an

P. Papageorgiou 12
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input latent noise to a high quality image step by a step, and to be more precise layer by
layer. As it is known from [20, 21] the mapping from one space to another is nonlinear.
While PCA may work poorly if the most important modes of variability is nonlinear, Max
imum Variance Unfolding (MVU) [30] tries to improve it using semidefinite programming
(SDP). Our approach discovered some interesting and unexpected results that can clearly
challenge the stateoftheart unsupervised methods, as well as demonstrate superiority
compared to the range of the latent semantics learned by supervised algorithms. Some
results of our method are shown in 1.1

Smile on CelebAHQ (StyleGAN) Smile+Hair+FaceWidth on FFHQ (StyleGANv2)

Fur on LSUN Cat (StyleGANv2) Expression on AnimeFaces (StyleGAN)

Orientation on LSUN Bedroom (StyleGANv2) Body Shape on LSUN Car (StyleGAN)

Figure 1.1: A sample of semantically meaningful directions unsupervisedly discovered by our
method MVUGAN. For each set of images, the middle image is the original one while the left and
the right are the synthesized images produced by moving the latent code backwards or towards

the explored boundary.

Our contributions are summarized as follows:

• We propose a novel unsupervised method that leverages semidefinite programming
to explore semantically meaningful directions in the latent space of a pretrained
GAN.

• We show that our algorithm is able to discover different variations of a certain inter
pretable direction, leading to results that appear for the first time in the literature.

• We show that the learned directions are welldisentangled, comparing our approach
with the stateoftheart supervised and unsupervised method.

• We conduct extensive experiments on the stateoftheart stylebased generator
models trained on diverse datasets, proving the effectiveness of our algorithm.

P. Papageorgiou 13
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2. RELATED WORK

In this section, we describe the relevant research areas and explain the scientific context
of our study.

2.1 Generative Adversarial Networks

GAN [10] has become the stateoftheart deep generative model paradigm in producing
photorealistic images [26, 1, 4, 18, 20, 21, 19, 5, 34]. GAN consists of two networks. The
first one is the generator, which maps the input latent noise to the complex data distribution
of the training dataset. The second one is the discriminator, which aims at distinguishing
the synthetic data from the real one. In fact, GAN is a competing game between two
players (neural networks) played in adversary in order to reach Nash Equilibrium. In recent
years the progress of GANs has grown dramatically from different perspectives, e.g. by
improving the training process [26], or the discriminator [8], or by carefully modifying the
generator’s architecture [18, 33], or by choosing a more descriptive loss function [1, 17].
The stateoftheart models, such as StyleGAN [20], StyleGANv2 [21], StyleGANv3 [19]
and BigGAN [5] are able to produce synthetic images of highquality and highfidelity,
usually identical to those of the real world.

Among them, the StyleGAN architectures, in which we focus on this work, introduced a
new way to feed the latent code into the generator. All previous models composed of
a deep convolutional neural network generator where the input latent noise was fed into
the first convolution layer through an affine transformation [25, 18, 1]. This approach was
recently improved by the stylebased generator [20, 21, 19]. As shown in Figure 2.1, the
input latent code z ∈ Z is first mapped to an intermediate latent spaceW, and then fed into
each convolution block through Adaptive Instance Normalization (AdaIN) [13] operation.
It has been proved that this mapping can “unwrap” W, so that the factors of variation
become more linear. Consequently, in addition to synthesizing photorealistic images, the
generator is also able to organize a less entangled latent space, resulting in easier and
more accurate semantic editing in the latent space.

Figure 2.1: Stylebased generator of StyleGAN [20]

P. Papageorgiou 14
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2.2 Semantic Directions in the Latent Space

Ever since the first GAN models appeared, it has been shown that the latent space of
GANs presents interesting vector arithmetic properties, allowing for straightforwardmanip
ulation of semantic qualities of the generated samples [25]. Since moving towards these
interpretable directions in the latent space would enable an effortless way to perform ef
fective image editing, the discovery of such directions currently motivates the researchers
to go beyond the limits of the stateoftheart methods in the field.

Prior work, such as InfoGAN [7], proposed the addition of regularizers into the training
process in order to learn explicitly interpretable factorized vectors. It has recently been
found that the GANs encode semantically meaningful representations in the intermediate
feature space [3], as well as in the input latent space [15, 29, 27, 14, 28, 24]. Shen et
al. [27] propose a supervised framework which requires selecting a collection of images
and annotate them with humandefined labels to train a classifier. The major drawback of
supervised approaches is their need of human annotators or pretrained models, which
can be timeconsuming and expensive. More importantly, a supervised method can only
lead to the discovery of directions which researchers ultimately expect to identify, e.g.
age, pose, glasses etc. for semantic face editing. Jahanian et al. [15] and Plumerault
et al. [24] developed selfsupervised approaches, but they are limited to discovering af
fine transformations that correspond to simple image augmentations such as rotation and
zooming.

On the other hand, exploring the latent space of GANs in an unsupervised manner has
been proven to be as effective as supervised approaches, if not more so, while not suf
fering from the aforementioned weaknesses they present. Voynovand and Babenko [29]
jointly optimize a matrix A and a reconstructor R, so that the columns of A will correspond
to the discovered directions, while the reconstructor’s purpose is to reproduce the shift
in the latent space that causes a given image transformation. Härkönen et al. randomly
sample a set of latent vectors z1:N , compute the corresponding wi = M(zi), and then per
form PCA, to find semantic directions in the latent space. However, both of these methods
either require model training or data sampling. The most recent work proposed by Shen
and Zhou [28] shows that the pretrained weights of a GAN model, denoted by A, can
be factorized using PCA so that the eigenvectors of ATA will correspond to the explored
directions. Although, this algorithm requires neither training models nor data sampling, it
is still approaches the problem of identifying interpretable directions in the latent space of
GANs on a linear fashion. Specifically, it tries to perform linear dimensionality reduction on
highdimensional vectorial input data, while the latent space of GANs is generally treated
as Riemannian manifold [2, 6, 22].

Differently, we study the generation process of GANs and propose a method, independent
of model training and data sampling, that leverages the MVU algorithm to perform non
linear dimensionality reduction of the internal representation of GANs. This approach
leads to accurately decomposing the most important modes of variability and exploring
semantically meaningful directions in a completely unsupervised way.

P. Papageorgiou 15
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3. FRAMEWORK OF MVUGAN

In this section, we introduce the framework of MVUGAN. Firstly, we are going to dive
into the generation mechanism of GANs and examine how to perform image editing by
manipulating the latent space of a well trained GAN. Finally, a thorough analysis of MVU
algorithm will be presented, as well as its use to decompose the model weights. As this
work focuses on StyleGAN architectures, detailed references will be made in each sub
section.

3.1 Background

3.1.1 Generation Process of GANs

The generator G(·) learns a nonlinear mapping from the ddimensional input latent space
z ∈ Z, where Z ⊆ Rd, to the output higher dimensional image space I ⊆ RH×W×C .
The aforementioned description can be mathematically formulated as G(z) = I, where I
constitutes the output image. In order to model the generator as a nonlinear function, the
stateoftheart GANs [25, 18, 5, 20, 21, 19] have adopted convolutional neural networks
(CNNs) as its architecture. A GAN generator consists of multiple convolutional layers,
each of which learns a nonlinear transformation from one space to another. In particular,
the generator can be decomposed into L intermediate layers G1, G2, . . . GL. The first layer
is fed with the input latent noise z and produces a feature map y1 = G1(z). The remaining
layers take as input the output of the previous one, producing a new feature map yi =
ˆG1(z) ≡ Gi(yi−1). The last layer generates the final image I = GL(yL−1). In a StyleGAN

model [20, 21], the authors modify the generator’s input so that it no longer takes a point
from the latent space. Instead, the model has a learned constant tensor T ⊆ R4×4×512

to start the image synthesis process. Moreover, given a latent code z ∈ Z, a nonlinear
mapping network M : Z → W, where M(·) is an 8layer multilayer (MLP), first produces
w ∈ W. The socalled style vector w is then transformed and incorporated into each block
of the generator after the convolutional layer via AdaIN [13] operation:

yi = Gi(yi−1,w), with w = M(z) (3.1)

The Eq. (3.1) can be further formulated as an affine transformation:

Gi(yi−1,w) = yi ≡ Aiw+ bi, (3.2)

where yi ∈ Rm, the mdimensional output of the ith layer. Ai ∈ Rm×d and bi ∈ Rm denote
the weight and bias used in the transformation of the ith step Gi(·) of the generator.

3.1.2 Manipulation in the Latent Space

Recent work has shown that the latent space of GANs encodes information semantically
meaningful [9, 15, 27, 14, 29]. By exploiting the vector arithmetic property [25], these
semantic directions can be applied to image editing. To this end, our goal is to identify the
direction θ ∈ Rd that corresponds to an interpretable image transformation in the latent
space of a pretrained GAN, so that the manipulation can be achieved via the following
formula:

I = G(z+ αθ), (3.3)
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where α ∈ U[−b, b] is a scalar that controls the degree of change of the target direction.

In the StyleGAN model, the manipulation of the latent space can be performed as:

w = Gmap(z),
I = Gsyn(w+ αθ)

(3.4)

In this thesis, we focus on the latent spaceW of StyleGAN, so we are going to use Gsyn(·)
and G(·) interchangeably.

3.2 Unfolding the Latent Space

3.2.1 Motivation

Shen and Zhou [28] proved that the manipulation process is instance independent. Spe
cifically, let us take the affine transformation of Eq. (3.2) and semantically edit the latent
space as shown in Eq. (3.3) and (3.4):

yi′ = Gi(w+ αθ)

= Aiw+ bi + αAiθ
= yi + αAiθ

(3.5)

We observe from Eq. (3.5) that the desired image editing can be achieved only by adding
the term αAiθ in a arbitrary given step i of the generatorG(·). Subsequently, as mentioned
in their work [28], the weight parameter Ai should contain the essential knowledge of the
image variation. SeFa [28] is trying to discover the most important directions by solving
the following optimization problem:

θ∗ = argmax
θ∈Rd: θT θ=1

||Aiθ|| (3.6)

The intuition is to explore those directions which will cause large variation after the projec
tion of Ai. Finally, the solutions to the optimization problem of Eq. (3.6) that correspond to
the kmost important directions are the k largest eigenvectors ofAiTAi. In fact, this method
utilizes the PCA algorithm to compute the similarities between the high dimensional data
inputs X using the linear kernel XTX, where X ≡ Ai, and then perform eigenvalue decom
position on that linear kernel matrix.

3.2.2 Maximum Variance Unfolding (MVU)

Maximum Variance Unfolding (MVU) can be viewed as a nonlinear generalization of PCA,
which tries to improve its performance if the most important modes of variability in the input
data are nonlinear. Instead of assuming the existence of a kernel to start, MVU defines
an optimization problem that tries to learn the optimal kernel matrix. An optimal kernel
is considered to be the one that captures the similarity in local patch, while preserving
the geometry of the space. In practice, MVU is structured as a semidefinite programming
problem that aims to find the Gramian matrix K that maximizes the pairwise distance of
every pair of points, while preserving the distances of neighbor points. Intuitively, as the
name implies, it tries to pull the points of the highdimensional input data as far away from
each other as possible and therefore “unfold” the manifold.
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3.2.2.1 Optimization Formula

The aforementioned objective and parameters can be defined by the following convex
optimization problem:

max
K

n∑
i

n∑
j

||Yi − Yj||2 such that:

1. ||Yi − Yj||2 = ||Xi −Xj||2 for all (i, j) with ηij = 1

2. |
n∑
i

Yi|2 = 0

3. K ⪰ 0,

(3.7)

where X is the original highdimensional data and Y is their respective representation in
a lower dimensional space.

However, in order to be able to apply semidefinite programming to learn the optimal kernel
matrix K, MVU redefines the problem in terms of Gramian matrices for the two spaces. It
aims to find the Gramian matrix K that maximizes the distances between all data points
except those that are nearest to each other. In order to discover the points nearest to
one another, the edge matrix E is first constructed using the KNearest Neighbor (KNN)
algorithm. The edge matrix E, otherwise known as neighborhood graph, has the following
form:

E =

η11 . . . η1n
... . . . ...

ηn1 . . . ηnn

 , ηij ∈ {0, 1},
n∑
j

ηij = k

Each entry of the edge matrix E gets the value 1 if the corresponding pair of points are
neighbors, otherwise it gets the value 0. The number of neighbors k determines the degree
of connectivity of the graph. It has been shown that if the data is sampled well enough by
selecting the optimal value for the hyperparameter k, the resulting neighborhood graph E
is a discrete approximation of the underlying manifold. Moreover, it is important to know
if the graph E is connected or not. In case of a disconnected neighborhood graph, the
distance between the disconnected points will go towards infinity, while trying to optimize
the objective function by maximizing the distance between the points. This edge case can
be handled by checking the sign of the eigenvalues of the Laplacian of E, ensuring that
all of them are positive.

Now, let G,K be the Gramian matrices of X and Y , such that Gij = XiXj and Kij = YiYj.
Having defined the local isometry property by the entries of E with value of 1, the first
constraint of (3.7) can be rewritten in terms of the Gramian matrices as follows:

||Xi −Xj||2 = ||Yi − Yj||2

XT
i Xi +XT

j Xj −XT
i Xj −XT

j Xi = Y T
i Yi + Y T

j Yj − Y T
i Yj − Y T

j Yi

Gii +Gjj −Gij −Gji = Kii +Kjj −Kij −Kji

Gii +Gjj − 2Gij = Kii +Kjj − 2Kij

⇒
ηij(Gii +Gjj − 2Gij) = ηij(Kii +Kjj − 2Kij)

(3.8)
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In addition to this, the second constraint of (3.7) demands Y to be centered at the origin:

|
n∑
i

Yi|2 = 0 ⇔ (
n∑
i

Yi)
T (

n∑
i

Yi) = 0

⇔ (
n∑
i

Yi)
T (

n∑
j

Yj) = 0

⇔
n∑
i

n∑
j

Y T
i Yi = 0

⇔
n∑
i

n∑
j

Kij = 0

(3.9)

Thus, centering the data, as shown by (3.9), forces the sum of all the points in the kernel
matrix K to be equal to zero.

The objective function of (3.7) can be rewritten completely in the form of the Gramian
matrix:

n∑
i

n∑
j

||Yi − Yj||2 =
n∑
i

n∑
j

(Kii +Kjj − 2Kij)

=
n∑
i

n∑
j

(Kii +Kjj)

=
n∑
i

n∑
j

Kii +
n∑
i

n∑
j

Kjj

= n
n∑
i

Kii + n
n∑
j

Kjj

= 2nTr(K)

⇒

max(
n∑
i

n∑
j

||Yi − Yj||2) = max(2nTr(K))

= max(Tr(K))

(3.10)

The result from (3.10) shows that maximizing the distance of all points not connected in
the neighborhood graph E is equivalent of maximizing the Trace of the Gramian matrixK.

Finally, the optimization problem of (3.7) can be formulated as the following semidefinite
program:

max
K

Tr(K)

subject to K ⪰ 0,
n∑
i

n∑
j

Kij = 0

and ηij(Gii +Gjj − 2Gij) = ηij(Kii +Kjj − 2Kij)

(3.11)
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3.2.2.2 Algorithm

To sum up, MVU learns an optimal kernel matrix K that provides a mapping from high
dimensional input space to a lowerdimensional output space in the following steps:

1. The neighborhood graph E is constructed using the KNN algorithm. To ensure that
E is not disconnected, the eigenvalues of the Laplacian of E must all be positive.

2. Semidefinite programming is applied to “unfold” the neighborhood graph.

3. After the Gramian matrix K is learned by solving the semidefinite program defined
in (3.11), the output space Y can be obtained via Cholesky decomposition.

3.2.3 Implementation on StyleGAN Models

Our procedure can be simply applied on StyleGANmodels [20, 21]. We have already seen
in Sec. 3.2.1 that the matrix Ai contains the necessary knowledge of the image variation
in order to achieve effective image editing. For the target layers we intend to decompose,
we concatenate their weight matrices (i.e. Ai from Eq. (3.2)) along the first axis. Motivated
by the method of SeFa [28], we improve it by suggesting that instead of using the linear
kernel XTX, where X ≡ Ai, it is more effective to learn the optimal kernel matrix K by
using the MVU algorithm described in Sec. 3.2.2. Finally, having learned the Gramian
matrix K, the topk most important directions can be obtained by choosing the k largest
eigenvectors of K.
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4. EXPERIMENTS

In this section we evaluate the proposed MVUGAN in terms of both qualitative and quant
itative results. Our experiments are performed on stylebased generators and aim to dis
cover a rich set of interpretable directions on a wide range of datasets. We compare
MVUGAN with the existing stateoftheart supervised and unsupervised approaches and
demonstrate its effectiveness through evaluation by a complete set of metrics.

4.1 Results on Diverse Datasets and Generator Models

4.1.1 Datasets and Models

We conduct our experiment on the stateoftheart stylebased generators, StyleGAN [20]
and StyleGANv2 [21], trained on seven common datasets:

1. FlickrFacesHQ (FFHQ) [20], containing 1024×1024 imageswith significant variation
in terms of age, ethnicity and background colors, as well as microstructures such
as eyeglasses, hats, sunglasses etc. Here, we use both StyleGAN and StyleGANv2
available at karras2019styleganffhq1024x1024.pkl and stylegan2ffhqconfigf.pkl
respectively.

2. Largescale CelebFaces Attributes (CelebAHQ) dataset [23], containing 1024×1024
celebrity images, each with 40 attribute annotations. We use StyleGAN available
online at karras2019stylegancelebahq1024x1024.pkl.

3. AnimeFaces dataset [16] at 512×512 resolution. We use StyleGAN available online
at stylegan_animefacee512.pth.

4. StyleGAN and StyleGANv2 trained with LSUN Car [32] dataset at 512 × 384 res
olution. The generator models can be found online at karras2019stylegancars
512x384.pkl and stylegan2carconfigf.pkl.

5. StyleGAN and StyleGANv2 trained with LSUN Cat [32] dataset at 256 × 256 res
olution. The generator models can be found online at karras2019stylegancats
256x256.pkl and stylegan2catconfigf.pkl.

6. LSUN Bedroom [32] dataset, containing 256× 256 images. Here, we use StyleGAN
available at karras2019styleganbedrooms256x256.pkl.

7. LSUN Church [32] dataset, containing 256× 256 images. Here, we use StyleGANv2
available at stylegan2churchconfigf.pkl.

4.1.2 Results on StyleGAN Models

As described in Sec.3.2.3 our method can decompose either a single layer or multiple
layers concatenated along the first axis. Our experiments justify the observation by [20]
that stylebased generators tend to learn image construction in a hierarchical manner. In
particular, Fig. 4.1 shows that bottom layers (42− 82 resolution) control highlevel aspects
of the image such as pose, camera viewpoint, general hairstyle etc. Moreover, the middle
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Source Bottom Layers Middle Layers Top Layers

FFHQ Hair Length Beard Luminance

AnimeFaces Face Pose Mouth Closed/Opened Painting Style

Cat Camera View Expression Fur

Car Orientation Body Shape Background

Bedroom Orientation Wall Art Bed Sheets Colors

Church View point Building Shape Shading / Sunning

Figure 4.1: Hierarchical semantically meaningful directions discovered by MVUGAN in the
stylebased generator of StyleGAN [20] and StyleGANv2 [21].

layers (162 − 322 resolution) are responsible for structural features, while the top layers
(642 − 10242 resolution) handle the color schemes and microstructures. Taking cats as an
example, bottom layers control the camera’s viewpoint, middle layers determines the cat’s
expression, while the top layers handle the color of the fur.

4.1.3 Multiple Variants

As we have discussed in Sec.3.2.2.1, the MVU algorithm is sensitive to hyperparameter
k. An optimal choice of hyperparameter k can lead to the neighborhood graph being a
discrete approximation of the underlying manifold. We performed experiments with dif
ferent values for k and observed that MVUGAN is able to discover multiple variants of a
particular attribute when it decomposes a given set of layers. In Fig.4.2 we show that for
StyleGAN model trained on (a) LSUNCat and (b) LSUNCar datasets, MVUGAN is able
to interpret two different variants of expression and shape respectively.
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(a) Source Expression A (k = 3) Expression B (k = 4)

(b) Source Shape A (k = 10) Shape B (k = 7)

Figure 4.2: Multiple variants of discovered directions found by MVUGAN for different values of
hyperparameter k.

4.2 Comparison with Supervised Approach

We compare the proposed framework of MVUGAN with the stateoftheart supervised
method, InterFaceGAN [27]. In their work, Shen et al. [27] mention that the effectiveness
of InterFaceGAN is based on the assumption that for any binary attribute, there exists
a hyperplane in the latent space of a well trained generator that can separate the latent
space data points into two groups. The samples of one group will have the given attrib
ute, while the others will not. For this reason, we choose to conduct experiments on face
generation models due to well definition of facial attributes. In particular, we make com
parison between MVUGAN and InterFaceGAN on CelebAHQ and FFHQ datasets using
StyleGAN’s stylebased generator.

4.2.1 Qualitative Results

(a)

(b)
Pose Smile Gender

Figure 4.3: Qualitative comparison of the latent semantics found by (a) the supervised method,
InterFaceGAN [27] and (b) our proposed framework MVUGAN from the StyleGAN model [20]

trained on CelebAHQ [23] dataset.

In Fig.4.3 and 4.4, we visualize some manipulation results by moving towards certain
discovered directions. Our approach, although completely unsupervised, seems to be
superior to InterFaceGAN in a wide range of experiments. For instance, we can tell that
the gender manipulation of InterFaceGAN on CelebAHQ dataset (Fig.4.3) clearly does
not highlight the expected results (a blond white girl is transformed into a black man),
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(a)

(b)
Pose Eyeglasses Gender

Figure 4.4: Qualitative comparison of the latent semantics found by (a) the supervised method,
InterFaceGAN [27] and (b) our proposed framework MVUGAN from the StyleGAN model [20]

trained on FFHQ [20] dataset.

while our approach seems to be way more invariant in the other aspects of the image, e.g.
race, pose, image color, etc. Moreover, our experiments from the StyleGANmodel trained
on FFHQ dataset (Fig.4.4) demonstrate similar findings. We observe that InterFaceGAN
has clearly explored entangled directions, as changing a particular identified semantic
also changes other distinctive features. In contrast, our framework MVUGAN discovers
disentangled semantics, leading to accurate attribute manipulation.

4.2.2 Quantitative Results

4.2.2.1 Rescoring Analysis

Rescoring analysis, proposed by [28], aims to quantify the degree of change of a partic
ular attribute, caused by the manipulation of the corresponding identified direction. We
follow the process described in [28] and train an attribute predictor on CelebAHQ [23]
dataset with ResNet50 [11] structure, as in [27]. First, we randomly sample 2K images
and manipulate them along a given discovered direction. Then, using the pretrained at
tribute predictor we qualitatively evaluate the semantic score of each feature in such a
manipulation process.

Table 4.1: Quantitative comparison using rescoring analysis between the stateoftheart
supervised approach InterFaceGAN [27] and our proposed method MVUGAN for the StyleGAN
model [20] trained on CelebAHQ dataset. Each row quantifies the change of the semantic score

after moving into a certain direction in the latent space.

Pose Gender Age Eyeglasses Smile
Pose 0.51 0.05 0.09 0.00 0.10
Gender 0.01 0.55 0.26 0.20 0.04
Age 0.02 0.39 0.50 0.20 0.12

Eyeglasses 0.03 0.41 0.24 0.27 0.01
Smile 0.01 0.10 0.01 0.04 0.58

(a) InterFaceGAN

Pose Gender Age Eyeglasses Smile
Pose 0.55 0.06 0.12 0.09 0.16
Gender 0.01 0.65 0.02 0.03 0.01
Age 0.02 0.03 0.45 0.15 0.01

Eyeglasses 0.05 0.19 0.09 0.49 0.03
Smile 0.03 0.01 0.04 0.00 0.75

(b) MVUGAN

Tab.4.1 shows the results where we have the following key observations. MVUGAN
seems to not be able to discover a welldisentangled direction corresponding to pose at
tribute in contrast to InterFaceGAN. However, our proposed method is clearly more robust
in every other feature manipulation, e.g. gender, age, eyeglasses and smile. The reason
is that MVUGAN can optimally “unfold” the pretrained weights of the generator when a
good value of hyperparameter k is selected.
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4.2.2.2 Fréchet Inception Distance

Fréchet Inception Distance (FID) was proposed by Heusel et al. [12] as an improvement
of the existing Inception Score (IS). In practice, FID is a metric for evaluating the quality
of synthetic images and has proven to be effective in measuring GANs’ performance. In
our work, we are going to use FID score to evaluate our results in the following simple
way. First, we randomly sample 50K synthetic images and manipulate them towards
the discovered directions (pose, gender, age, eyeglasses, smile). As we have defined in
Sec.3.1.2, the degree of change of a target direction is controlled by the parameter α. For
each image manipulation we randomly select with a probability of 0.5 the parameter α to
be equal either −β or β. We thus end up creating a new dataset consisting of images that
have been manipulated at the maximum degree of change towards the given directions.
Then, we use 50K images drawn randomly from the training set to finally compute the
FID score between the two datasets. Tab. 4.2 summarizes our results. We can tell that
our proposed framework MVUGAN outperforms the existing stateoftheart supervised
method InterFaceGAN in terms of image quality evaluated accordingly the FID score.

Table 4.2: Quantitative comparison using FID score between the stateoftheart supervised
approach InterFaceGAN [27] and our proposed method MVUGAN for the StyleGAN model [20]

trained on (a) CelebAHQ dataset and (b) on FFHQ dataset.

Method FID
InterFaceGAN 6.25
MVUGAN 6.10

(a)

Method FID
InterFaceGAN 5.81
MVUGAN 5.52

(b)

4.2.3 Correlation between Attributes

Karras et al. [20] proposed two metrics, Perceptual Path Length (PPL) and Linear Separ
ability, in order to measure the disentanglement of the latent space. In this thesis, we
focus more on studying the relationship between explored semantically meaningful dir
ections and how they interact with each other. To do so, we propose a simple metric,
firstly described in [27]. Given two identified directions θ1 and θ2, where θ1, θ2 stand for
unit vectors, we compute the cosine similarity as cos(θ1, θ2) = θT1 θ2.

Table 4.3: Correlation matrices of attribute directions discovered using supervised method
InterFaceGAN.

Pose Gender Age Eyeglasses Smile
Pose 1.00 0.02 0.05 0.08 0.13
Gender  1.00 0.26 0.64 0.16
Age   1.00 0.31 0.12

Eyeglasses    1.00 0.13
Smile     1.00

(a) Correlation matrix of attribute boundaries
from the StyleGAN model trained on

CelebAHQ dataset.

Pose Gender Age Eyeglasses Smile
Pose 1.00 0.00 0.03 0.08 0.03
Gender  1.00 0.44 0.33 0.42
Age   1.00 0.72 0.28

Eyeglasses    1.00 0.19
Smile     1.00

(b) Correlation matrix of attribute boundaries
from the StyleGAN model trained on FFHQ

dataset.

Tab.4.3 and Tab.4.4 report the results from InterFaceGAN and our proposedmethodMVU
GAN, respectively. We can clearly observe that our approach is able to identify semantics
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Table 4.4: Correlation matrices of attribute directions discovered using our unsupervised method
MVUGAN.

Pose Gender Age Eyeglasses Smile
Pose 1.00 0.07 0.16 0.10 0.10
Gender  1.00 0.00 0.02 0.05
Age   1.00 0.12 0.19

Eyeglasses    1.00 0.20
Smile     1.00

(a) Correlation matrix of attribute boundaries
from the StyleGAN model trained on

CelebAHQ dataset.

Pose Gender Age Eyeglasses Smile
Pose 1.00 0.09 0.05 0.03 0.09
Gender  1.00 0.02 0.01 0.04
Age   1.00 0.09 0.10

Eyeglasses    1.00 0.12
Smile     1.00

(b) Correlation matrix of attribute boundaries
from the StyleGAN model trained on FFHQ

dataset.

that present small degree of correlation. Specifically, the gender boundary is almost or
thogonal to those of age, eyeglasses and smile for both CelebAHQ and FFHQ dataset.
In contrast, InterFaceGAN cannot discover well separated boundaries, resulting in high
correlation between gender and the other, aforementioned attributes. Also, age and eye
glasses seem to be highly correlated with each other. This is to be expected as it has been
already reported from [20] that older men are more prone to wearing glasses. However,
our approach presents much less entanglement between these two features. InterFace
GAN is superior to MVUGAN only in the pose attribute, as our method shows a slightly
larger correlation between pose and other feature boundaries compared to InterFaceGAN.

4.2.4 Diversity Study

(a) Source −←− Sharpness +−→ −←− Luminance +−→ Yellow←−−−− Color Blue−−−→

(b) Source −←− Eyebrows Thickness +−→ −←− Hair Style +−→ −←− Face Weight +−→

Figure 4.5: (a) Diverse semantics related to color schemes and microstructures, that can not be
identified by InterFaceGAN [27] due to the lack of semantic predictors. StyleGAN model trained on
CelebAHQ is used. (b) Diverse semantics related to smaller scale facial features, that can not be
identified by InterFaceGAN [27] due to the lack of semantic predictors. StyleGAN model trained on

FFHQ is used.

As we have already mentioned, the main drawback of supervised approaches is that they
rely heavily on the available attribute predictors. Thus, the number of interpretable dir
ections that can be learned is significantly reduced. Fig.4.5 (a) justifies this statement by
showing how are approach is capable of discovering semantics corresponding to color
schemes and microstructures. The difficulty of obtaining predictors for such attributes
forces InterFaceGAN to be deprived of the possibility of discovering such semantic direc
tions. Similarly, InterFaceGAN has been designed to explore more distinctive semantics
of larger variation. In comparison, as shown in Fig 4.5 (b), we successfully identify direc
tions corresponding to features of smaller variation, such as eyebrows thickness, hairstyle
and face weight.
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4.3 Comparison with Unsupervised Approach

As mentioned earlier, our work is primarily motivated by SeFa [28]. In their work, an ex
tensive comparison was made between samplingbased and learningbased baselines
and it has been shown that it surpasses both of them. Thus, we choose to compare our
framework MVUGAN with the stateoftheart unsupervised, independent of any kind of
data sampling or model training, method of SeFa. Specifically, we will follow an experi
mental approach similar to that of Sec.4.2 and will conduct experiments on face synthesis
models, evaluating them on the same metrics mentioned above.

4.3.1 Qualitative Comparison

(a)

(b)
Pose Smile Gender

Figure 4.6: Qualitative comparison of the latent semantics found by (a) the unsupervised method,
SeFa [28] and (b) our proposed framework MVUGAN from the StyleGAN model [20] trained on

CelebAHQ [23] dataset.

Fig. 4.6 shows the qualitative comparisons results between SeFa (a) and our method
MVUGAN (b). At first glance, MVUGAN seems to produce less noisy, more precisely
controlled images over a given discovered direction. For instance, the manipulation of
gender attribute by SeFa leads to a somewhat distorted image between the person’s hair
and the background. Moreover, moving towards the negative side of smile direction, SeFa
method cannot synthesize a woman who does not smile, as we would normally expect.
On the other side, our method MVUGAN does not suffer from such issues.

4.3.2 Quantitative Comparison

We quantitatively compare our approach with SeFa with FID [12] and rescoring analysis.

Table 4.5: Quantitative comparison using rescoring analysis between the unsupervised approach
SeFa [28] and our proposed method MVUGAN for the StyleGAN model [20] trained on CelebAHQ
dataset. Each row quantifies the change of the semantic score after moving into a certain direction

in the latent space.

Pose Gender Age Eyeglasses Smile
Pose 0.51 0.14 0.11 0.01 0.03
Gender 0.02 0.57 0.49 0.08 0.10
Age 0.05 0.22 0.39 0.22 0.09

Eyeglasses 0.01 0.55 0.45 0.11 0.09
Smile 0.02 0.03 0.12 0.19 0.30

(a) SeFa

Pose Gender Age Eyeglasses Smile
Pose 0.55 0.06 0.12 0.09 0.16
Gender 0.01 0.65 0.02 0.03 0.01
Age 0.02 0.03 0.45 0.15 0.01

Eyeglasses 0.05 0.19 0.09 0.49 0.03
Smile 0.03 0.01 0.04 0.00 0.75

(b) MVUGAN
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Table 4.6: Quantitative comparison using FID score between the unsupervised approach SeFa [28]
and our proposed method MVUGAN for the StyleGAN model [20] trained on CelebAHQ dataset.

Method FID
SeFa 7.13
MVUGAN 6.10

Tab.4.5 and Tab.4.6 show that MVUGAN clearly outperforms SeFa both in terms of con
trollability over the explored directions in latent space and image quality.

4.3.3 Robustness Study

Hair+Smile+FaceWidth ()←−−−−−−−−−−−−−−−− (a) Source Hair+Smile+FaceWidth (+)−−−−−−−−−−−−−−−−→

Zoom+EyesOpen+Fur ()←−−−−−−−−−−−−−−− (b) Source Zoom+EyesOpen+Fur (+)−−−−−−−−−−−−−−−−→

Figure 4.7: Decomposing multiple successive layers from (a) StyleGANv2 model trained on FFHQ
dataset and (b) from StyleGAN model trained on LSUNCat dataset, leading to hierarchical

multiattribute manipulation.

Both SeFa and our proposed framework MVUGAN are unsupervisedmethods, independ
ent of data sampling and model training. However, we have noticed that when we try
to decompose multiple successive layers, SeFa fails to interpret the corresponding pre
trained weights, leading to a completely distorted image. Instead, our method is able to
decompose them by discovering interpretable directions corresponding to multiple attrib
utes. Specifically, it has been observed that these directions are in practice a combination
of the corresponding interpretable directions of the component layers. Fig.4.7 shows our
findings for the StyleGANv2 model trained on FFHQ dataset and for the StyleGAN model
trained on LSUNCat dataset. In particular, for (a) we decompose the layers 2 − 7 while
for (b) we decompose the layers 0 − 10. We can tell that for FFHQ dataset only main
structural changes occur (hair, smile, face width). That is because we omit bottom layers
(0 − 2) from this specific decomposition, which correspond to high level aspects of the
image, such as pose etc. On the other hand, for LSUNCat dataset where bottom layers
are decomposed along with the middle and the top ones, we observe changes in every
hierarchical set of layers, e.g. zoom corresponds to the bottom layers, the opening of the
eyes in the middle layers and the fur change in the top ones.
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5. CONCLUSIONS

In this thesis, we propose an innovative unsupervised method, MVUGAN, to interpret the
latent space of pretrained GANs. Extensive experiments demonstrate that our approach
outperforms the existing stateoftheart ones. Specifically, we show that our algorithm is
capable of discovering a wide variety of interpretable directions, as well as different vari
ations of a certain attribute. The proposed method has also been shown to be robust in
decomposing multiple successive layers, leading to highquality multiattribute manipula
tion.
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ABBREVIATIONS  ACRONYMS

GAN Generative Adversarial Network

MVU Maximum Variance Unfolding

SDP Semidefinite Programming

CNN Convolutional Neural Network

MLP Multilayer Perceptron

PCA Principal Components Analysis

KNN KNearest Neighbor

FlickrFacesHQ FFHQ

Largescale CelebFaces Attributes CelebAHQ

Perceptual Path Length PPL

Fréchet Inception Distance FID

Inception Score IS
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