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ABSTRACT

Hematological data graphs is a widely used tool to capture pathophysiological aspects of
red blood cells for patient clinical studies. Those graphs model gquantitative and
gualitative characteristics of several hematological markers. A critical challenge is to be
able to provide effective graph processing methods to assist data exploration and retrieval
for those graphs, at various levels of granularity (raw data vs aggregate data). This study
will adopt graph database technologies to develop a system to store, retrieve and explore
hematological markers data. The thesis will carry out the following tasks: (a) graph data
collection and preparation, (b) surveying state-of-the-art graph databases, (c) designing
and developing a graph database for hematological markers graph data (e.g., based on
Neo4j), (d) develop method for data exploration and retrieval based on real user
examples.

SUBJECT AREA: Graph analytics
KEYWORDS: hematological markers networks, graph database, data exploration,
centrality analysis, community detection



NEPIAHWYH

O1 ypd&@o! aIgaTOAOYIKWY OEDOUEVWV EiVal EVA EUPEWG XPNOIUOTTOIOUPEVO EPYOAEIO YIa
TNV KaTaypa®r TTaBo@uUOIOAOYIKWY TITUXWY TWV EPUBPWY QINOC@AIPiWY O KAIVIKEG
MEAETEG aoBevwyv. TETOlOU €idoug dikTUA POVTEAOTTOIOUV TTOOOTIKA KAl  TTOIOTIKA
XOAPOKTNPIOTIKA APKETWYV algaToAoyIKwy OeIkTwy. Mia onuavtiky TTpoKAnon €ival n
OnuIoupyia ATTOTEAEOHATIKWY PEBOOWYV £TTECEPYATIAg TETOIOU €i0OUG YPAPWY PE OKOTTO
TNV €€gpelivnon Kal TNV avaktnon oedopévwy. H tmapouoa SITTAWPATIKY gpyacia €xEl
OKOTTO VA agloTToINOEl TEXVOAOYIEG BACEWY OEQOUEVWYV YPAPWY PE OKOTTO TNV avATITUEN
€vOG OUOTAMATOG ATTOBRKEUONG, AVAKTNONG Kal OlEPEUVNONG DEBOUEVWV AIUATOAOYIKWYV
oeIkTwv. H diatpifr] Ba ekteAéoel TIG akOAouBeg epyacieg: (a) Tn OUAAoyh Kal Tnv
TTpoETOINaCia dedouEVWY YpAaPwy, (B) TNV eEepelivnon TTPOTUTTWY PACEWY OEBOUEVWV
YPAPWV, (Y) TOV OXeDIAONO Kal TNV avATITUEN BACNS dedOUEVWY YPAPWY Yia dedopEva
YPAPWYV OXETIKA JE alpaTtoAoyikoUug OeikTeS (T1.X. 0To Neodj) kai (8) Tnv avaTtTuén nebddou
Yl TNV €6EPEUVNON KAl TRV AVAKTNON OEDOUEVWV OXETICOPEVWYV PE TTPAYUATIKA dedopéva.

OEMATIKH NMEPIOXH: Graph analytics

AEZEIZ KAEIAIA: diktua aigatoAoyikwy deIkTwyv, Baoeig dedouévwy ypdepwy,
etepeuvnon  Oedopévwy, avdaAuon  KevipiKOTNTAG, EVTOTTIONOG
KOIVWVIWV
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Data Exploration and Retrieval for Hematological Markers Networks

1. INTRODUCTION

Red blood cells (RBCs) or erythrocytes are the most common type of blood cell. They
have a flattened biconcave disk shape depressed in the center and no nucleus or
organelles (e.g. mitochondria) [1]. The most important feature of RBCs is their three-
layered membrane, to which they owe their increased flexibility and endurance [2]. The
main function of RBCs is related to the process of gas exchange, which is carried by
hemoglobin (Hb), a protein of RBCs. Besides that, they use glycolysis to generate energy
carriers and they are closely related to Pentose Phosphate Pathway (PPP) [1]. A relative
example is the case of Glucose 6-Phosphate Dehydrogenase (G6PD) deficiency, an
inborn error of metabolism that results to reduced antioxidant capacity and increased
susceptibility of RBC breakdown [3]. Since PPP is the only pathway that preserves their
antioxidant capacity, any abnormality in that path is associated with increased levels of
oxidative stress and eventually hemolysis [4].

Moreover, RBCs from G6PD deficient donors are more susceptible to the events that
occur during the time they are stored in blood banks. That said, normally, erythrocytes
can be converged in mannitol-containing storage solutions up to 42 days in 1°-6° C [5],
while donor-related parameters such as the age, sex and ethnicity seem to play an
important role as well [3]. During the time they remain in storage several metabolic and
morphological alterations might occur, and while metabolic alterations are usually
reversable, this does not apply for morphological changes [6]. Therefore, extensive stay
in storage systems result to a proportion of deformed RBCs that are incompatible for
transfusion, since they are prone to removal from the circulation [3]. That said, in the past
years, several techniques have been developed to measure physiological parameters of
RBCs, such as their mechanical fragility and the levels of radical products, that could give
insight about their consistency during storage.

Additionally to that, the quantitative analysis of biological parameters (e.g. metabolites,
proteins etc.) of RBCs during storage is another efficient approach towards the
understanding of storage effect. A quite recent and very informative method for assessing
the significance of the findings from such approaches is the construction of hematological
networks that underline potential associations between biological components. The
fundamentals of analyzing hematological data using correlation networks lay on the basic
aspects of graph theory. A key issue for the hematology research community is to be
able to illustrate and analyze hematological data using hematological graphs since, if
designed carefully, can be a great asset for the community, providing answers to complex
biological issues and potentially cut down the time spent in the lab. Major challenges to
cope with, in order to efficiently manipulate such data, are related to:

e the modelling and construction of a conclusive graph that highlights homologous
and heterologous associations between different biomedical parameters in a
hematological network,

¢ the ability to organize and store graph entities so that they can be accessed and
manipulated efficiently,

M. Batskinis 1
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e the transferability of the graph through different graph databases and applications,
and

e the analysis of hematological graphs utilizing complex techniques that could give
insight about their structural characteristics, reveal their most crucial components,
and help to better understand the complexity of the problem.

This Thesis presents a framework to support data exploration and retrieval for
hematological marker networks. It adopts graph database technologies to develop a
system to store, retrieve and explore hematological markers data, carry out the following
tasks: (a) graph data collection and preparation, (b) surveying state-of-the-art graph
databases, (c) designing and developing a graph database for hematological markers
graph data (e.g., based on Neo4j) and (d) development of method for data exploration
and retrieval based on real user examples. Next, we overview the key concepts of this
work and results produced.

The main aspects of this work concern the analysis of biochemical and hematological
data of G6PD deficient (G6PD-) donors using graph analytics. To construct of a
conclusive hematological marker network an efficient amount of data was collected. The
final dataset consisted of real user data of G6PD- donors and computationally verified
data regarding the case-study biological problem that were retrieved from available
sources. The next step towards the construction of the graph was the preprocessing and
refinement of the dataset, in the sense of removing duplicate and missing values.
Following that, a set of biological queries to which the final graph model had to be able to
answer was collected. Some important biological scenarios were related to the
identification of biologically converged parameters and significant intra-and inter-
parameter associations, as well as the characterization of the most popular components
of the case-study system.

Once a considerable number of queries was defined, the outline of the graph model was
designed. Throughout this purpose all node and relationship types were defined based
the biological group they represented (e.g. amino acids, proteins, physiological
parameters etc.) or the association type (e.g. compound-physiological correlations),
accordingly. The construction of the hematological markers network took place in the
open-source browser-based version of Neo4j, a graph database that stores and presents,
efficiently, accurately and with high speed, relational data in the form of nodes, edges,
and properties. The implementation was conducted in Cypher query language. Using a
set of predefined functions and algorithms we were able to perform several types of
analyzes, identify homologous and heterologous correlations between components of
same and different node types and compare in vivo (fresh RBCs) and in vitro systems
(packed, stored RBCs). The most popular ones amongst them were Pearson’s and
Cosine similarity algorithms. Following that, in each type of correlation a different
threshold was set, so that the most insignificant associations would be excluded from the
final graph model. Moreover, the quality of intra- and inter- parameters correlations was
further evaluated in terms of repeatability, in the sense of consistent is a relationship
throughout the duration of storage.

M. Batskinis 2
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Despite the fact the Neo4j was suitable for the development of the hematological markers
network, it has limited visualization capabilities, especially for users without an IT
background. Therefore, a different browser-based open-source tool was used as
interface for the visualization and analysis of our graph model. The proposed tool was
GraphXR, a web application that allows the user the ability to explore any graph data in
2D and 3D space and interact with ease, since it provides a set of predefined tools and
algorithms that are necessary for any kind of graph analysis. Another great asset of
GraphXR is the fact that interacts with Neo4j, in the sense that the user can easily load a
copy of any working project from Neo4j to GraphXR. That said, we used GraphXR to
perform centrality analysis by applying betweenness, degree and closeness centrality
algorithms to identify the most popular nodes the graph, connectivity analysis to
investigate the complexity and density of intra- and inter- parameter associations and
community detection analysis to find cluster of nodes and gain insight about hub nodes
and their neighbors.

Data Collection - Deﬁ“i_“g Query - Graph -
Requirements Creation : |
. .
@ )
&9 NeoL] @ NeoL) émknx\vv
R STITCH i ==

| 1. Connectivity analysis
Real user External sources , ‘ . h
< STRING | 2. Centrality analysis |

data €lensembl | 3. Community detection |

HUMAN PROTEIN ATLAS®

Figure 1. Workflow

Contributions.

The contributions of this Thesis are:

e the proposal and construction of a graph model that is related to hematological data
from G6PD" donors

e surveying available graph DBs and addressing the one that is more suitable for the
current work

e understanding the biological aspects of the problem and defining a set of query
requirements for hematological markers networks

e designing a graph DB for hematological data that could give insight about the inter-
and intra- parameter correlations between graph entities

e addressing suitable graph analytics-related methods and demonstrating effective
query solutions from hematological graphs

e providing detailed description of the programming that resulted to the creation of the
final network by addressing the implementation in Cypher query language

e projecting the final graph model in an open-source browser-based user-friendly graph
analytics-related visualization tool.
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Outline.

The following Chapter refers to the biological and technical background of this work, while
previous research and related work are also mentioned. Chapter 3 describes the process
of data collection and pre-processing that leads to the final dataset, that was used for the
construction of the graph. In Chapter 4, the query requirements, the setup of an
appropriate graph model and the statistical analysis that led to the creation of the
hematological markers network in Neo4j are described in detail. Chapter 5 addresses
the appropriate tools for the visualization and analysis of relative graph models, the graph-
related algorithms that are used throughout the analysis of our model and concludes with
the demonstration of several biological scenarios that can be answered using the
application GraphXR. Finally, in Chapter 6 the conclusions and some future ideas
regarding the current work are mentioned.
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2. BACKGROUND AND RELATED WORK

2.1 Background
2.1.1 Main features of Red Blood Cells (RBCs)

Red blood cells (RBCs) or erythrocytes are produced from pluripotent haemopoietic cells
which are originated from the bone marrow. These stems cells after a series of events
differentiate to RBCs. In humans, RBCs have a flattened biconcave disk shape
depressed in the center [1]. A physiological erythrocyte usually has a diameter of 6.2 —
8.2 um and a thickness of approximately 2 — 2.5 ym at its thickest part and 0.8 — 1 ym at
its more flattened point (the center) [7]. Additionally, mature red cells have neither a
nucleus or organelles (e.g. mitochondria), thus they do not contain any nucleic acid (DNA
or RNA) and cannot divide or carry out protein synthesis and they have limited repair
mechanisms [8]. A very interesting structural feature of RBCs is their membrane, to which
they owe their increased flexibility and endurance. That said, RBC’s membrane consists
of three layers: the exterior one which is rich in carbohydrates, the lipid layer which
besides the lipidic components (mainly phospholipids and cholesterol) contains many
transmembrane, integral proteins and the membrane skeleton in the inner side of the lipid
bilayer. Additionally, it is noteworthy the fact that in a typical human red cell half of the
membrane mass consists of proteins [2].

The most important function of RBCs is related to the process of gas exchange [1]. In
vertebrates, gas exchange is conducted with the transfer of O2 and CO: between the
blood system and the lungs. This process is carried by hemoglobin (Hb), a protein of
RBCs. Typically, Hb consists of four — per two identical — globular subunits and a heme
molecule which contains an iron ion and is the binding place of the O2. The iron comes
in two states, the ferrous (Fe*?) and the ferric (Fe*3) states. That said, when the iron ion
is in its ferrous state, the Hb is capable of binding O2, while in ferric state Hb is not able
to transfer O2 (methemoglobin). In such cases, an enzyme called methemoglobin
reductase catalyzes the reduction of Fe*3 to Fe*?[9]. While there are several types of Hb
in humans, depending on the age, in adults the most common is formed by two alpha
chains and two beta chains (az2) [10].

Besides gas exchange, RBCs participate in the immune response of the body by,
indirectly, killing pathogens, that have infected them, with free radicals that are released
from the Hb of lysed red cells [11]. Moreover, as it was mentioned, erythrocytes lack of
mitochondria, so they make up for the energy they lose through the glycolysis of glucose
and the subsequent lactic acid fermentation of the produced pyruvate [12]. They are,
also, closely associated with the Pentose Phosphate Pathway (PPP). A relative example
is the case of Glucose 6-Phosphate Dehydrogenase (G6PD) deficiency. G6PD
deficiency is a recessive X-linked inborn error of metabolism that results in reduced
antioxidant capacity and increased susceptibility of RBC breakdown [3]. Typically, G6PD
is an enzyme of the PPP and conducts the conversion of glucose 6-phosphate to 6-
phosphoglucono-6-lactone and maintains the levels of antioxidant equivalents, such as
NADPH. In RBCs is the only pathway that preserves their antioxidant capacity.

M. Batskinis 5
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Therefore, in the case of G6PD deficiency, erythrocytes are exposed to free radicals that
in the event of extensive oxidative stress result to hemolysis [13].

2.1.2. RBCs’ parameters measured during storage in blood bank conditions

Erythrocytes are the most commonly transfusable and highly demanded cells worldwide,
a fact that can be verified by the hundreds of millions of red cell units that are being stored
in blood banks and transfused every year. Donors’ biological profile along with the effect
of the extensive storage are parameters that affect the homeostasis of RBCs, making a
proportion of them insufficient for transfusion [5]. Parameters such as the age, the sex
and the ethnicity of the donor seem to play an important role in the consistency of red
cells during storage [3]. On top of that studies regarding the storability of RBCs have
shown that erythrocytes can be conserved in mannitol-containing storage solutions up to
42 days at 1-6 degrees [5]. Several alterations regarding metabolic and morphological
features of RBCs are likely to occur during the period that they remain in blood banks,
and while the effects in metabolic parameters are most of the times reversable, this is not
the case for their morphology [3]. It is known that the membrane of erythrocytes can
shapeshift in cases of applied stress (e.g. mechanical stress) [14] and while this feature
is quite important during the microcirculatory blood flow, it has been related to several
pathological conditions, one of which is the outcome of extensive stay of RBCs in storage
[15].

Deformed packed red blood cells (pRBCs) are likely to cause harmful effects and result
to an ineffective blood transfusion. That said, there are several techniques that have
been developed in the past years with which we can measure significant physiological
parameters of RBCs in the circulation that could give insight about the vitality of
erythrocytes during storage. Some of the most important ones will be described below in
more detail:

e Erythrocyte osmotic fragility (Mean Corpuscular Fragility, MCF) is the degree of
hemolysis that comes from subjecting RBCs to osmotic stress by putting them in
hypotonic solution. As a metric MCF has been used for the diagnosis of diseases
related to genetic abnormalities to the membrane of erythrocytes [16], such as
hereditary spherocytosis.

e Erythrocyte mechanical fragility (MFI) is related to the part of hemolysis that results by
applying mechanical stress to RBCs, such as the kind of stress that occurs during the
microcirculatory blood flow. While there are several approaches regarding the
measurement of MFI, there is not a commonly acceptable practice. However, it is an
important parameter to gain insight about the health of RBC membrane and
submembrane skeleton and, additionally, can be very handy in cases of evaluating
the quality of pRBCs via in vitro testing [17].

e Cell free Hb is another hematological parameter that is measurement in several
diagnostic experiments regarding the consistency of RBC. As it was mentioned
before, typically, Hb is a protein inside the RBCs and plays an important role during
gas exchange. However, in cases of hemolysis Hb is released from erythrocytes and
flows freely in the vascular system causing outspread oxidative damage. That said,

M. Batskinis 6
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by quantifying the concentration of free Hb in the supernatant of pRBCs one might
gain insight about the health of erythrocytes or indication about storage lesion [18].

e Reactive Oxygen Species (ROS) are highly reactive molecules that under extensive
amounts can induce oxidative stress causing serious damage to cells and their
components, while they play an important role in cell ageing [19]. Accumulation of
ROS in RBCs during storage is a common cause. However, since erythrocytes of
G6PD deficient donors lack of antioxidant equivalents, their intracellular environment
tends to produce more ROS, making them more susceptible to hemolysis [20].
Closely related to the quantification of ROS is the measurement of the antioxidant
capacity of the plasma or supernatant for the same reasons that were mentioned
before.

e Another physiological parameter that could give insight about the vitality of
erythrocytes is the characterization of the levels of their deformability since
irreversible change in their morphology may cause to ineffective transfusions.

e Mean corpuscular volume (MCV) is the ratio of hematocrit and the total number of
RBCs in the blood and it is used as aid for characterization of microcytic anemia (MCV
lower than normal) and macrocytic anemia (MCV greater than normal) [21].

e Another parameter that is particularly important for this work, since we study the
hematological profile of G6PD deficient donors, is the activity of G6PD during
storage. Previous studies have shown that the activity of G6PD in pRBCs tends to
decrease during storage compared to fresh blood [3].

2.1.3 Data Analysis using Knowledge Graphs

The concept of a graph

According to graph theory, a graph is a set of entities, some of which form pairs of
connections. The entities of a graph are called nodes or based on discrete mathematics
vertices, and the pairs of connections are known as relationships or edges [22].
Additionally, if the nodes and edges of a graph demonstrate real data, such as the
connections of a person in social media or the metabolic pathways of cancer cells, then
that graph is called a knowledge graph [23]. Based on the type of relationships that are
formed between the nodes, we can distinguish four different types of knowledge graphs.
If the edges of a graph have orientation, then it is called a directed graph. In the case
that the links between the nodes have not a direction, the graph is called undirected, while
if some edges have orientation and some not, the graph is called a mixed graph. The last
type is called weighted graph and refers to the fact that to each edge a number (weight)
is assigned [24]. Depending on the data type this weight can either demonstrate the cost,
the length (e.g. world map network) or the strength of the connection (e.g. protein-protein
interaction networks).

In Figure 2, the different categories of networks according to their relationship types are
presented. On the top left of the figure we can observe a toy example of a directed graph
(1), while next to it the representation of an undirected graph is shown (caption 2). An
example of a mixed graph is available on caption 3 and the example concerning the
weighted graph is presented on bottom right (caption 4).
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Figure 2. Network styles according to edge types.
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Some other major characteristics that are significant for each network, besides the type
of edges, are degree of nodes and the diameter of the graph. The degree of a node is
the number of edges that forms with the rest of the nodes [22]. More specifically, in a
directed graph one can distinguish the indegree, which is the total number of incoming
relationships, and the outdegree, which, as its name denotes, is the total number of
outgoing edges [25]. By computing of edges of each node, one can identify those with
high-degree and, therefore, are more central in the graph. These nodes are characterized
as hub nodes and they usually have a significant impact in the consistency and
robustness of a graph, since if we remove them the network will collapse [26]. On the
other hand, the diameter of a graph is the maximum distance between a pair of nodes.
The denser the connections in a graph the smaller its diameter is. Its value is bound in
[1,infinite) with infinite to be when the graph is totally disconnected or else it has no edges
[22].

Figure 3. Explaining the terms of degree, hub, and diameter.

A toy example that describes the terms of degree, hub and diameters is shown in Figure
3. Since the degree of a node is its number of relationships it has, one can easily notice
that the degree of A, B, C and D is 2, while for node F is one. At last, node E has 5
relationships, meaning that is the node with the higher degree. Moreover we can observe
that by removing node E from the network, it immediately falls apart. Therefore, we can
assume that node E is a hub node. On what matters the diameter of this toy example we
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can see that the longest path is the one from node C to node B (C>D—>E—->A->B). That
said, the diameter of this network is 4, as the number of steps it takes to go from C to B.
So far, we have described the concept of a knowledge graph and its entities along with
some of the most significant characteristics of a network. Following that, it is important
to discuss the aspects of graph analytics and the impact each one has. Graph analytics
or else network analysis is the analysis of associations between different elements of a
graph. There are several approaches when it comes to explore graph data, such as
identifying the most important nodes of the network or else the ones that have more
influence to it (Centrality analysis), investigating the density of connections between the
entities of the graph (Connectivity analysis) or their classification into strongly connected
groups or modules with similar characteristics (Community detection) or inspecting the
reachability from one to node to another (Path analytics) [27]. For instance, estimating
the influence of a person in a social network could be a good example of the Centrality
analysis, while finding the best path in a weighted graph (also known as shortest path in
graph theory) that connects two cities in a world map network could be a good application
of Path analytics.

In general, graph analytics can be applied in a wide range of operations, such social
networks (e.g. identifying people with great influence in social media), national security
(e.g. detecting fraud in e-commerce businesses) or healthcare (e.g. spreadability of a
COVID-19 virus) For each approach there are several graph analytics-related algorithms
that help us get insight about the associations between nodes or relationships, and most
of them will be discussed later in more detail.

Neo4j: working with graph databases

Given the fact that the volume of data is constantly increasing, it is quite important to work
with or develop tools that can manipulate extensive amounts of information with a
considerably high performance. In the case of graph analytics there are several web-
based data storages that can implement such tasks with high speed and accuracy, and
they are called graph databases. A graph database is a NoSQL database that stores
and represent data in the form of nodes, edges/relationships, and properties [28].

A great asset of any graph database is the fact that edges are collected in such way, so
that they can be retrieved or represented, usually, with a few high-speed operations [29].
Another major characteristic of the graph databases, closely related to their high
performance, is the fact they consider relationships as their top priority in terms of storing
and manipulating data. Thus relationships can be stored, separately, under specific
labels and take additional information (properties), similarly to nodes, which gives the
ability to the user to display efficiently any relationship type along with the connected
nodes [30]. Up to now there have been reported several graph databases. A list with

some of the most noteworthy ones is available on Table 1.
Table 1. A list with the most remarkable graph databases.

Name Latest version Details

Amazon Neptune 7.0.0 (April 2020) A graph database established by Amazon and
part of Amazon Web Services. Supports
Apache, TinkerPop, Gremilin and SPARQL
guery languages
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ArangoDB 3.7.2 (August 21, 2020) A NoSQL database. Supports three different
data structures (key/value, graphs and
documents) and AQL (Arango Query
Language)

Cayley 0.7.7 (October 15, 2019) An open-source graph database inspired by
Google’s  Knowledge Graph  database.
Supports three query languages, namely,
Gizmo, GraphQL and MQL [31]

DataStax 6.0.1 (June 2018) An enterprise graph database supporting
TinkerPop and unifying with Cassandra
FlockDB 1.8.5 (February 23, 2012) An open-source graph database that works with

wide yet shallow networks. Performs well with
rapid set operations [32]

Neo4j 4.3.3 (August 2021) A graph database with open source and
enterprise editions. Provides both server and
desktop versions. It is accessible from most of
programming languages through its REST API
interface [33]

OrientDB 3.0.28 (Feb 2020) Similarly to Neod4j, it provides both a community
and enterprise edition.  Supports a query
language like SQL and it can be accessible
through its REST or JSON API [34]

It is important to mention that for this work the browser-based open-source version of
Neo4j was selected as the environment for the development of the hematological markers
network. As it mentioned in Table 1 Neo4j is graph database which comes in a free and
a commercial edition. For any implementation the Cypher query language is used.
However, it can be accessible by many programming languages through the API interface
[33]. Any graph data is stored in Neo4j under the form of a node, relationship, or property.
Nodes and relationships can have multiple properties and, additionally, they can be
categorized in groups under specific labels, so that they can be easily accessible.
Relationships can either be have one orientation or be bidirectional (also known as
undirected) or start and end to the same node (self-loops) [33]. Properties can be stored
in several formats such as string, integer, float or boolean.

In Figure 4, a infographic example that describes the representation of graph entities in
Neo4j is presented. In this toy-example one can notice that there is one node type under
the label “User” and one relationship type under the label “KNOWS”. Moreover, the nodes
have two properties, one string-type attribute which gives insight about the name of the
user and one number-type which provides information about the year of birth. Regarding
the relationships, one can observe that all edges have one orientation and one property,
which represents the relationship the connected users have.
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KNOWS
Relation: “siblings”
f User D ( User w
Name: ‘George’ Name: ‘Mary’
Born: 1990 D, \_Born: 1993
KNOWS KNOWS
Relation: “colleagues” Relation: “friends”
User 1
Name: ‘Nick’ J
\_Born: 1991

Figure 4. An infographic representation of graph entities in Neo4;j.

Prerequisites to use the browser-based open-source edition of Neo4j is to have a
compatible of JAVA and download and install several libraries with a set of predefined
graph-related functions available by Neo4j that are necessary for most of the graph
development issues. The first library is called the APOC library (Awesome Procedures
On Cypher library) and consists a set of operations that are useful for manipulating graph
data, such as importing/exporting data in CSV format, simplified vector-related functions,
or reforming graph entities. Another mandatory library is the GDS library (Graph Data
Science library) which contains a list of algorithms related to graph analytics. More
specifically, all operations regarding centrality analysis, community detection, path
analytics or comparing different networks are provided by this library. All information
about the installation of these libraries and the use of each algorithm are fully described
in the documentation of Neo4j platform. However, to use any function of the above one
needs to be familiarized with Cypher query language.

Cypher as a query language was designed to be used within Neo4j system and, even
though presents some similarities with SQL, serves the needs of graph database system.
That said, Cypher is built according to the concepts of graph theory [35] and is mainly
based on patterns of nodes and relationships, which are further filtered by their properties.
Therefore, nodes are presented with parentheses surrounding their label and properties,
while relationship types are depicted with square brackets. Undirected relationships are
shown with dashes, while arrows are used to present the directed ones [33]. Like most
of the query languages, Cypher includes a set of keywords to specify patterns of nodes
and edges, filter graph entities and return results in the form of tables or graphs. Some
of the most used keywords will be described below:

e the LOAD CSV (optional: WITH HEADERS) FROM [path] query is used to import data
from csv files. The path of the file needs to be declared

¢ the MATCH keyword specifies the pattern of nodes and relationships to look at in the
graph database

e the MERGE keyword is used to create new nodes and relationships without
generating duplicates

o the WHERE clause filters entities of the pattern that specified with MATCH query

e the WITH statement gives the ability to concatenate query parts, using the result of
one part as the starting point to the next one

¢ the RETURN query states what will be presented in the result panel [33].
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Following that, an example using Cypher queries will be described in detail:

LOAD CSV WITH HEADERS FROM

"file:///C:/Users/mbats/OneDrive/Desktop/Ensembl_interactions.csv" AS data

WITH data

MERGE (n:Ensembl_data{UniProtID:data.UniprotID})-[r:phenotype]-
(m:Disease{Name:data.disease,source:data.source})

WITH n, r, m

MATCH (p)

WHERE (p:Proteomics or p:G6PD) AND p.UniProtID = n.UniProtID

DELETEn, r

MERGE (p)-[:phenotype]->(m)

This example starts by importing data from “Ensembl_interactions.csv” using the LOAD
CSV clause. After the that, with the use of the MERGE keyword a path regarding
diseases and proteins is passed to the graph and by using the WITH statement resulting
graph data are passed to the next part of the query. Following that, the MATCH keyword
is applied to look at all nodes of the graph and by using the WHERE statement a filtering
process starts which concludes with deleting duplicate entities using the DELETE
keyword and connect existing non Ensembl disease-related proteins with
diseases/phenotypes.

This section concludes with a presentation view of the server edition of Neo4j (Figure 5).
The Neo4j platform consists of three parts. The first one is the Tools panel on the of the
display screen which contains a set of shortcuts such as displaying labels and property
names in lists (1), saving favorite queries (2), help about Neo4j-related keywords and
functions (3), connecting to cloud (4), browser settings (5) and general information about
Neo4j (6). The most common of those options is the first one since it gives the ability to
the user to navigate through different node and relationship types and display desired
ones with ease. In this Figure part of node labels, relationship types and property names
are displayed on the left. The second part of the Neo4j browser is the Query panel which
is the space to write any Cypher query you want to be executed by Neo4j, the results of
which will be displayed in the Result panel in the form of a graph or a table. The result
panel is quite informative since it shows the type of nodes and relationships that are
currently displayed and it gives the ability to export the output in CSV, JSON, PNG or
SVG format (the last two options are available only in the case the result is graph).
Moreover, nodes and relationships are presented in different colors according to the type
they belong to and the user can select manually the size and color of graph entities, as
well as the desired node property name to be displayed.
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Relationship Types 2 lode Labels p=(n)-[r:phenotype m
( 2
2 P

eo4j$ MATCH p=(n)-[r:phenotype]—(m) RETURN p

>

Getting started with Try Neo4j with live Cypher basics

Figure 5. The interface of browser-based edition of Neo4j.

2.2. Related Work

Antonelou et al. 2018 [3]

The authors of this work studied the metabolic and physiological correlations in
erythrocytes from G6PD deficient donors in both fresh blood and packed, stored cells.
For this work RBCs from the venous blood of six male G6PD deficient donors(G6PD")
and three male control donors (G6PD*) of same age were subjected to analysis. The
samples were stored up to 42 days and in the meanwhile weekly samplings took place,
starting from the day RBCs were collected. That said, blood samples could be divided in
two systems regarding the sampling stage. Thus, erythrocytes that were retrieved the
first day of the experiment (day 0) are characterized as the in vivo system, while packed
RBCs will be referred as the in vitro system concerning the samplings of days 7, 14, 21,
28, 35 and 42. During each sampling the measure of several physiological (e.g. MFI,
MCV, G6PD activity), metabolic (e.g. amino acids, nucleotides) and proteomic
parameters were estimated.

Once all data were collected, they used them for the construction of hematological
networks with which correlations between parameters of the in vivo and in vitro system
were estimated. Moreover, to increase the significance of their findings, the authors
compared the data retrieved from fresh blood cells with data from every sampling of the
in vitro system (e.g. DO vs D7, DO vs D14 etc.) and they considered as converged
correlations those that were observed repeatedly at multiple sampling stages. Pearson’s
correlation analysis was performed for the estimation of any potential correlations. The
creation of each network was conducted in Cytoscape and inverse Pearson’s coefficient
was used as a metric for defining the length of an edge, in a sense that the greater the
Pearson’s r value, the stronger the connection between two components was.

Findings regarding the analysis of the metabolic profile of G6PD- donors highlighted
bioactive lipids, free fatty acids, bile acids, glycolytic metabolites, purines, and amino
acids as top discriminative metabolic parameters for G6PD- donors. On top of that, from
the comparative analysis of G6PD- and control donors, parameters related to one carbon
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or sulfur metabolism (e.g. methionine), antioxidant capacity (e.g. NADPH) or glutathione
homeostasis were characterized with significantly decreased levels compared to control
donors. Equally notable were the results regarding changes in the concentration of
compounds related to lipid metabolism. Another interesting finding of this study was the
storage effect on both G6PD" and control samples. It seems that, despite differences in
the genetic and metabolic background, in both cases extensive stay of erythrocytes in
storage leads reduced antioxidant capacity, decreased levels of G6PD activity, followed
by increased levels of glycated Hb and osmotic hemolysis (intra-parameter relationships).

Regarding the network analysis of inter-parameter associations several clusters were
identified and those with higher density of connections and greater impact to the
consistency of the hematological network included parameters related to a) in-bag
hemolysis, susceptibility to hemolysis, 2,3-biphosphoglycerate (2,3-BPG) and
dehydroascorbate, b) G6PD activity, c) fatty/bile acids, d) redox (e.g. ROS, antioxidant
capacity etc.) and e) hematological/physiological features (e.g. MCV, MFI etc.). A
subsequent analysis on the G6PD activity subnetwork highlighted amino acids and 2-OH-
glutarate as compounds positively correlated to G6PD, while parameters related to PPP,
bile acids, oxidized lipids and monosaturated fatty acids were negatively associated with
G6PD. At last, of great interest was ta subnetwork that emphasized in the complexity of
the hemolysis phenotype, which as described in their work it is a multivariate
phenomenon that is possibly affected by the donor’s profile, besides the effect of storage
itself.

Overall, this work pointed out that even though there are some significant differences
between the biological profiles of G6PD- and control donors, the effect of storage was
quite similar in both cases. Additionally, the authors highlighted the multivariate character
of hemolysis, while they addressed some crucial parameters that contribute to that.
Moreover, it is important to mention that this work was a starting point for our work, as
data regarding the biochemical and physiological profile of all donors were used as part
of our final dataset.

Kowsar et al. 2020 [36]

The authors of this review studied the hematological and biochemical characteristics of
COVID-19 non-survivor subjects. For this project data related to COVID-19 cases were
extracted from the literature, excluding under 19 years old cases. The final dataset
consisted of 14,359 cases that survived from the infection and 4,655 non-survivors. All
extracted data converted in such way, so that they have the same format and units. From
each data source information regarding the country, sex, age, blood parameters and pre-
existing health issues were collected. The final dataset was subjected to normality check
analysis using Anderson-Darling test. Network analysis and any further meta-analysis
were conducted in PAST and META-MAR applications, respectively. On top of that,
several statistical methods were applied to check the heterogenicity of the dataset (e.g.
Cochran’s Q test). Regarding network analysis Pearson similarity algorithm was used as
a method for defining relationships between different entities.
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The outcome from gathering blood test results showed an increased number of
neutrophils and white blood cells on patients that did not survive from the infection, which
was not the case for the number of lymphocytes and platelets. They, also, mentioned
several complications from which non-survivors suffered due to COVID-19 infection, such
as acute kidney injury, heart failure or septic shock. Results from the meta-analysis of
collected data pointed out that mortality rates increase as the age of the diseased
increases. Prior health complications, such as diabetes or cerebrovascular disease, have
a similar effect. These findings were further supported by the correlation networks
regarding hematological parameters. More specifically, platelets and lymphocytes had a
correlation of 0.72 with COVID-19, while neutrophils were associated with evidence of
infection by the virus with a rate of 0.93. At last, correlation networks regarding patients’
profile and evidence of infection, also, confirmed results of the meta-analysis since age
and prior health issues had a Pearson’s coefficient of 0.79.

Goodman et al. 2013 [37]

In this review the authors describe the proteomics and interactomics of human
erythrocytes. At first, they state the total number of proteins that have been characterized
in RBCs. Following that, they extensively reported the methods and findings of previous
studies that led to the current data about the RBC proteomics. Moreover, they comment
about the changes that occur in transmembrane proteins of erythrocytes during several
health issues, such as malaria, Alzheimer’s disease, or chronic kidney disease. On top
of that, they describe the current and previous findings regarding the proteomic analysis
of individuals that suffered from sickle cell disease (SCD). SCD is a recessive autosomal
disease that occurs due to a point mutation in the beta chain of Hb. Because of this
mutation Hb polymerize in such way, so that erythrocytes eventually take a characteristic
sickled shape. In its severe form SCD leads to vasoocclusive crises that, if not handled
properly, could have serious effects on the survival of the patient. After that, they state
several findings regarding measurements of hematological parameters and proteomics
of SCD patients. More specifically, they mention that proteins related to repair
mechanism, lipid raft components, membrane skeletal proteins and radical oxygen
scavengers play an important role in the development of the disease.

In the attempt of finding potential evidence about the existence of biomarkers related to
SCD, the authors of this work proceed with the construction of (Protein-protein interaction)
PPl network. Data regarding the nodes of the graph collected experimentally, while
information about the edges was retrieved from related databases. The significance of
the relationship between two components was defined by Spearman’s coefficient.
According to the study, edges with Spearman’s coefficient less than 0.3 were subtracted
from any further analysis to minimize the chance of introducing false positive interactions
to the network. Following the construction of the PPI network, the application of several
graph-analytics methods took place. Three centrality metrics were estimated for the
entities of the graph, namely, betweenness, degree and closeness centrality. The authors
stated the significance, performance, and drawbacks of each metric. On top of that, they
report the most significant findings, as they derived from centrality analysis, regarding
proteins correlated with SCD.
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At last, they refer to other approaches of previous works that attempted to perform
community detection using Voronoi diagrams in graphs. According to the authors,
Voronoi diagrams are used to cluster nodes according to the distance of the member of
a predefined subset from the center of the cluster, which in this case they are called
Voronoi sites. To further expand the findings of this study they applied the method for the
case of the PPI network of patients with SCD. That said, for the purpose of this analysis,
proteins directly affected by the SCD were used as Voronoi sites, while components of
the graph that belong to a cluster are considerably more likely to be affected by the SCD-
affected protein. In total, 22 proteins were characterized as Voronoi sites, meaning they
altered by SCD, and 16 clusters were marked through this analysis.

De Ledn et al. 2014 [38]

In this work the authors developed a vascular network model to illustrate molecular paths
related to atherogenesis-oriented processes. They applied their method in human and
murine datasets. At first, they address some crucial risk factors that contribute to the
development of atherogenesis (e.g. such as cigarette smoking). Following that, to
construct the Vascular Inflammatory Processes Network (V-IPN), they used available
data from literature and data concerning computationally predicted associations
regarding health issues, such as inflammation or vascular disease. On top of that they
developed a computational reasoning method, called Reverse Causal Reasoning (RCR),
to preprocess the concatenated dataset, in a sense of finding statistically significant
hypotheses regarding the graph entities. Once they retrieved and preprocessed all
retrieved data, they proceed with manually reviewing and refining the graph model, so
that only edges related to vascular inflammation processes would remain. On top of that,
they tried to further evaluate the integrity of the graph model by utilizing information from
Gene Expression Omnibus (GEO).

Using this RCR method the authors were able to explore the graph entities and reveal
potential associations that were not stated in the sources from which they retrieved the
original data. The V-IPN could be divided into six communities, according to the key
pathological aspects of vascular disease. Five of those clusters were related to primary
atherogenic vascular-oriented mechanisms, while the sixth cluster was concerning events
occurring during atherosclerotic lesions. Moreover, despite the discrimination of these
subnetworks, there were, still, some inter-community connections between components
of different clusters. On top of that, by utilizing once more the RCR method the authors
could evaluate the significance of the connections between the genes of each community
and find those with more significantly changed expression levels (increased or
decreased). Through this process they identified common and discriminative factors in
human and murine cases through in different stages (early or progressed) of
inflammation, vascular disease and atherogenesis.

Amanatidou et al. 2020 [39]

In this project the authors developed a method for investigating the PPI network of
proteins related to Blood-cell Autoimmune Diseases (BLADs). The proposed graph
model that will be described below includes information regarding PPI and terminologies
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concerning autoimmune diseases. At first, some of the most known BLADs are reported,
while it is briefly explained that most autoimmune diseases are multifactorial. The aim of
this study was to state that reporting proteins directly related to disease-associated
proteins could give insight about the nature of the disease.

To construct the PPI network and BLADs, they, initially, collected data regarding
autoimmune diseases from ICD-10, Orphanet, Mesh and NIH-NHLBI databases. This
dataset was further evaluated to avoid listing duplicates with alternative names. Data
concerning proteins associated with the recorded BLADs were retrieved from OMIM and
DisGENET databases. Following that, the authors used IntAct to find proteins
experimentally correlated with the collected BLADs-associated proteins. The
construction of the network was conducted in Cytoscape. Topological and functional
enrichment analysis were the first steps for exploring the graph entities. On top of that,
they performed centrality analysis, by computing betweenness, degree and closeness
centrality. Moreover, proteins with high scores in functional enrichment analysis and/or
the centrality analysis were further investigated by adding more GO terms. The final list
of candidate proteins related to BLADs derived from the intersection of proteins with top
score in centrality analysis, proteins related to BLADs and proteins with significant GO
terms about autoimmune disease.

Detecting communities was the next step of this analysis and clusters with more than two
components were subjected to further evaluation. Throughout this process, they
identified for each cluster proteins directly correlated to BLADs, proteins with at least on
common 13t neighbor, proteins whose 15 neighbors are connected and proteins with at
least one common 2" neighbor. In total 32 out of the 42 clusters were investigated (the
other 10 had only two components). Hub proteins, as well as .the rest of candidate
BLADs-related proteins of each cluster were also subjected gene expression analysis
using the GEO2R function of GEO. The threshold of p-value or excluding insignificant
results was set at 0.05. By combining the results of this analysis the authors managed to
discriminate 14 proteins that are most likely related to one or more BLADSs, 7 of which
they were confirmed in the literature. In addition, with the cluster analysis they were able
to distinguish 17 more proteins that play a connecting role between clusters of different
BLADSs, indicating possible interconnections between them.

Marzec et al. 2021 [40]

The authors of this work focused on a sex-dependent aspect of the storage effect in the
membrane of stored RBCs. Their dataset consisted of venous blood from 24 men and
24 women of varied ages. To collect enough data they performed weekly samplings up
to the 42" day, starting from the day they retrieved the blood samples (fresh RBCs).
Throughout the analysis, they observed significant differences between male and female
blood samples regarding RBC'’s lipidomics. More specifically, levels of cholesterol and
triglycerides were more elevated in erythrocytes from female donors. That applies to the
values of free iron, as well, indicating a higher level of hemolysis. Results regarding
several hematological parameters (e.g. MCV, hematocrit etc.) confirmed that values of
membrane’s deformability were greater in males, though in both sexes there was a
decreasing tendency. Alterations in RBC’s metabolism due to storage effect were found
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to be sex independent. To check the significance of their results, the authors applied
one-way ANOVA followed by post-hoc tests depending on the parameters they examined
(e.g. for estimating the significance from the analysis of biochemical parameters Tukey’s
post hoc was performed after the one-way ANOVA).

Table 2. Similarities and differences of related work with our work

Work

Antonelou et al.
2018

Kowsar et al. 2020

Goodman et al.
2013

M. Batskinis

Similarities

1. Both projects handle the same
biological problem.

2.. Moreover, the dataset that was
used in the work Antonelou et al.
was part of the final dataset of our
project.

3. Network analysis was
conducted in both cases.
Pearson’s coefficient was used as
a metric to define the significance
of relationships in intra- and inter-
parameters association of
connected components.

1. Both works are related with the
analysis of health-related issues
using network analysis

2. For defining the significance of
the relationships Pearson’s
similarity algorithm was used in
both cases

Both projects are related to the
analysis of proteomics and
interactomics of erythrocytes
through graph analytics

Differences

1. Centrality analysis was not applied in
the Antonelou et al work

2. Their approach of the network analysis
was quite static, and it was conducted in
Cytoscape

3.Besides the experimental data, external
sources were used, in our work, for the
enrichment of the hematological markers
network

3. No use of any graph database system
was made in their project.

1. The main biological aspect is different
in the two projects

2. No graph analytics methods are utilized
in the work of Kowsar et al

3. Also, they did not use any graph
database system for the construction of the
network

4. A more statistical approach took place
for the meta-analysis of the resulting
graphs.

1. Goodman et al. focus mostly on the
analysis of PPI networks and reviews
previous works in that matter

2. To construct the PPI network they use
Spearman’s similarity algorithm (Pearson’s
similarity algorithm was used in our
project)

3. For detecting communities the Voronoi
diagrams were utilized, while in our case
was made use of several algorithms
(Louvain method, Strongly Connected
Components etc.)
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1. Both projects focus on blood-

related health issues
De Leon et al. 2014 2. In both cases community

detections algorithms/methods

are utilized

1. Both projects focus on graph

analytics of health issues
Amanatidou et al.

2020 2. Both projects use

experimentally and
computationally verified data

The main biological aspect of
both projects is the effect of
storage in RBCs

Marzec et al. 2021

M. Batskinis

4. Since their project is a review of the
current methods and knowledge there is
not a novelty in their results

5. They do not make use of any graph
database system or interface to manipulate
the constructed graph.

1. In De Ledn et al. the final dataset
consists only of predicted and literature-
related data

2. They mostly focus on the development
of the RCR method for predicting and
refining relationships between graph

entities and so much on applying graph
analytics

3. Their approach does not utilize any
graph database system and is quite static.

1. In Amanatidou et al the biological
aspect is not related to RBCs

2. A different statistical approach is
applied in their case. The relationships of
the connected components is based on the
functional enrichment analysis, while in our
case similarity algorithms provided by the
graph database are utilized

3. Though the graph-related analysis they
performed was extensive, it is quite static,
and they do not make use of any graph

database system. The construction of their

graph was made in Cytoscape.

1. Marzec et al. use simpler statistical
approaches (e.g. ANOVA) and no graph
analytics

2. Though they used more donors, the

parameters they analyzed were fewer.

Also, it consisted only of experimental
data.
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3. DATA COLLECTION

3.1. Experimental Data

Metabolic and Physiological Data

For this Thesis real user data as well as data from external sources were used. More
specifically, experimental data — concerning the metabolic, physiological, proteomic and
vesicular profile — retrieved from six different (G1, G3, G4, G5, G6, G7) G6PD deficient
individuals (G6PD") and one control (C/G2) individual (G6PD™). Regarding the metabolic
and physiological data, each donor participated in 7 weekly samplings based on the
storage stage of his/her RBCs (DO, D7, D14, D21, D28, D35 and D42). For each donor
the concentration of 295 distinct metabolites in RBCs from several metabolic pathways
(e.g. glycolysis, pentose phosphate pathway etc.) was estimated, while for the case of
physiological data 83 parameters related to the physiology of RBCs, such as cell’s fragility
and reactive oxygen species (ROS), were measured.

Day 0 (NS)

ﬂ CmpdiD 'l’l_u.‘ G1_D0 G3_DO G4_DO GS_DO G6_DO G7_DO
‘alanine ‘Coo0a1 Aminoacids 4761906] 59681 800775¢| 749337 6. S545736|_5081238| 4894200
arginine C00062 Aminoscids 21630 51 88641.19] 49107. 105470.5| 149838.2] 318100.6| 83759.17 1801139 151958.7] 137075
‘sparagine C00152 Aminoacids 4275017 221 321912.1] 228664.1] 173917.9] 1757323] & 4413938 545207.9| 421782.3| 4159883
‘spartate CO004 Aminoacid: 1764 1728725 153; 4936714 4222378] 4717155 1185847 1500019
ysteine C00037. Aminoacids 17517.21] 26184 103536 2231 416| 2580.126| 1559.324] 198155 6593.892] 2967.63|_1567.09
glotamate C00025 Aminoscid: 1786376| 140499 1275410] 21 1835330 1964 1651888]_1093333| 781170.3| 7632073 1283308 7483361
‘gotamine C00064 “Aminoachds 514709¢| 3929037] 5363156| 3681974] 2807 8262882] 75 5256563|_5212226|_4156516| 4582848
hveine C00037. “Aminoacids 34234 2014178 1 1 2835411] 2335541] 1618393| 2154585
histidine C00135 ‘Aminoacds 184 1 1206492| 1145136 1 129686 1091408] 9224774] 1322233
Tsoleucine. Ci6438 Aminoscids 28741280] 1 20433410/ 30805180] 261072 25001920] 20178000] 18402160] 12699790| 17199510| 18419140| 12968490
leweine Ci6839 Aminoscids 29638810{23731970] 3 29 24409100/ 23756310 22265760] 24 14262310] 174603 15130690
ysine C00047 Aminoacids | 1321092 620710.3| 1023647] 1532772] 13821 1367280] 7314%02| 974 883362.2] 740293.2] 623666.2] 6882729
methionine C00073 Aminoacids | 1296753 919071.7] & 66804.18] 8377.639) 22703.14] 937250.8] 747288.7| 469921.2| 611198.1] 3620536 4555997
- C02057 Aminoacids | 2635 2 3158182] 2567941 2267286] 2 2296288] 1832922| 1884335| 1514222 2137856
‘peoline Ci6a35 Aminoscids 25456130/ 226857103 27207900 2921 12587470 19361550] 29298870 16969610) 13331720
edine C00065 “Aminoacids 692806.8] 46173 824314.3] 622658.9| 686371.7] 616031.5] 681229.8] 598544.2| 556911.4] 566761.3| 392570.5| 591997.4
hreonine Co0188 Aminoacids 15, 1085 1918446] 339379.8] 155924 1560121 1186766 1611977| 283631.1| 969809.6| 984618.8
[tcvptophan C00806 Aminoacids. 241 1681117] 28191 1751557] 1 2 2003472| 1544370| 1226762| 1235856
rosine Co0082 Ainoscid- s 396322 344141 313284 2 19, 3697483] 2189601
valine C00183 Aminoacids 67816120/ 62567840/ 59532000| 76115400| 646999 601 1.07+08] 61888210] 69: 84912660 89370750
opstine CO04S1 Aminoacids 98756.13] _78660.7| 23978, 1012769 1 93489.57) 62054.61] 85067.63| 83199.31| 49813.16| 9426173

co1718 Aminoacids 34132.13| 38530.22] 22276.3] 24851.89] 23814.62] 26086.21] 21205. 57907.7]_30880.62| 16906.71| 18069.92| 2343183

Figure 6. Sample of metabolic data. In this figure the abundances of all amino acids in RBCs of

G6PD* donor, as well as the first sampling (DO) of all GGBPD- donors are shown.

In Figure 6 a sample of the metabolic data is presented. For each metabolite/compound
information about the name, the ID in KEGG database, the pathway in which is a part of
and the abundances in RBCs of G6PD- and G6PD™* donors were collected.
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Figure 7. Sample of physiological data. In this figure a sample of physiological data is displayed.
The first part concerns G6PD- donors, while the second part shows information about the

physiological profile of the control donor.
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In Figure 7 a sample of the physiological data is shown. More specifically, each row
represents the physiological profile of RBCs of each donor, while columns state the
abundances of each physiological parameter in RBCs and the sampling stage. It is
important to mention that in this case a different reference code — compared to metabolic
data — for the description of sampling stages was used. For instance, instead of referring
to the first sampling as DO, the term NS (no storage) or D2 was used. Therefore, as
described in the section “Data pre-processing and curation” some modification had been
made to adapt a common reference code.

Proteomic Data

For the case of proteomic data three pooled - storage based — samplings took place for
both G6PD- and G6PD™* donors (DO, D21 and D42), while for the collection of vesicular
data, donors participated only in one sampling at the 42" day of the experiment. The
initial proteomic dataset consisted of 934 unique proteins. For each protein information
about the official protein name, the gene it is expressed from, the molecular weight, the
accession number (AC) in UniProtKB/SwissProt, as well as the abundances in RBCs and
vesicles of G6PD™ and G6PD* donors were collected. Measurements of G6PD- donors
are denoted with the extension “Gpool” or “ G _” in their name, while the control donor is
marked as “C_" (Figure 8).

RBC membrane sicle:

vesicles
Identified Proteins (934) Accession Molecular Protein Gri Taxonomy C_D2 Gpool_D2 C_D21  Gpool D2:C_D42  Gpool _D4:Ves_C_D4.Ves_G_D42
Spectrin beta chain, erythrocytic 0S=Homo sapiens GN=SPTB PE=1 5V=5 P11277 246 kDa TRUE  unknown 4354 4620 423 4215 4045 3884 319 468
Spectrin alpha ch ytic 1 0S=Homo sapiens GN=SPTA1 PE=1 SV=5 P02549 280 kDa TRUE  unknown 3888 3995 3942 3924 3829 4012 338 510
‘l\nkylin 1 05=Ho SN=ANK1 PE=1 SV=3 P16157 206 kDa TRUE  unknown 3379 3370 3100 3040 2974 2767 805 855
Band 3 anion tr in 0S=Homo s: apiens GN=SLCAAL PE=1 5V=3 PO2730 102 kDa TRUE 2947 2908 2884 2886 2756 2651 1731 1704
apiens GN=HBA1 PE=1 5V=2 P69905 15 kDa TRUE uni 507 531 524 581 646 626 3m 4090

piens GN=HBB PE=1 5V=2 P68871 16 kDa TRUE  unl 518 533 508 606 645 596 3494 3768

P11171  97kDa TRUE 1568 1409 1428 1376 1308 1226 an 432

0S=Homo sapiens GN=GAPDH PE=1 §V=3 PO4406 36 kDa TRUE  unl 1524 1420 1510 1384 1238 1203 145 138

ne protein band 4.2 0S=Homo ens GN=EPBA2 PE=1 SV=3 P16452 77 kDa TRUE 1194 un 1162 1137 1059 1062 410 395

lomo sapiens GN=STOM PE=1 §V=3 P27105 32 kDa 987 960 905 919 835 895 1141 1252

B PE=15V=1 P60709 42 kDa TRUE 812 972 966 893 820 856 53 94

s GN=KRT1 PE=1 5V=6 PO4264 66 kDa TRUE 531 643 616 631 702 604 779 583

er member 1 0S=Homo saj piens GN=SLC2A1 PE=1 5V=2 P11166 54 kDa TRUE  un 641 623 566 625 581 611 306 295

s GN=KRT10 PE=1 SV=6 P13645 59 kDa TRUE 376 428 443 483 478 440 532 435

iens GN=KRT9 PE=1 SV=3 P35527 62 kDa TRUE  un 316 384 378 390 515 399 499 395

ens 075955 47kDa TRUE 459 437 488 385 449 414 143 187

sapiens GN=FLOT2 PE=1 SV=2 Q14254 47 kDa TRUE  un 480 393 438 350 407 339 135 182

'ns GN=DMTN PE=1 SV=3 Q08495 46 kDa TRUE  unknown 448 428 398 381 363 360 0 7

apies P01857 36 kDa TRUE  unknown 420 395 346 344 285 2n 117 207

Q00013 52 kDa TRUE  unknown 376 355 326 350 317 314 169 147

PD4075 39 kDa TRUE  unknown 274 319 395 375 351 318 61 54

P35908 65 kDa TRUE  unknown 284 320 316 363 363 350 487 348

P35612  81kDa TRUE  unknown 343 390 372 398 290 297 0 2

PO1834 12 kDa unknown 314 275 277 214 229 204 144 306

P02768 69 kDa unknown 55 91 74 103 84 88 415 836

Figure 8. Sample of proteomic data.

3.2. External Data Sources

To enrich the size of the final dataset several open access databases with information
relative to G6PD were used. More specifically, data about protein interactions between
G6PD and other proteins were retrieved from the API (Application Programming
Interface) of String database. String is a database of experimentally proven and predicted
interactions — physical and functional - between proteins [41]. For this analysis only
functional — direct and indirect — relationships of G6PD with other proteins were collected.
In Figure 9 a sample of the dataset that retrieved from String is shown. Each row presents
information about protein interactions. For each interaction, the protein interactors (nodel
and node2) and several types of metrics, such as the prediction score applied by the
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database, the text mining score of the interaction, the co-expression and neighborhood
score of the two interactors and the combined score are recorded.

nodel node2 database score textmining score coexpression score neighbourhood scorcombined score
GSR GAPDH 0 0.678 0.104 0.072 0.709
GSR GAPDH 0 0.678 0.104 0.072 0.709
GSR PGD 0 0.797 0.188 0.111 0.848
GSR PGD 0 0.797 0.188 0.111 0.848
GSR H6PD 0 0.882 0.152 0.211 0.914
GSR H6PD 0 0.882 0.152 0.211 0.914
GSR G6PD 0 0.957 0.179 0.07 0.964
GSR G6PD 0 0.957 0.179 0.07 0.964
GCK PKLR 0 0.659 0.133 0 0.708
GCK PKLR 0 0.659 0.133 0 0.708
GCK HK2 0.8 0.669 0 0 0.809
GCK HK2 0.8 0.669 0 0 0.809
GCK HK1 0.8 0.89 0 0 0.812
GCK HK1 0.8 0.89 0 0 0.812
GCK TKT 0.8 0.566 0.08 0 0.913
GCK TKT 0.8 0.566 0.08 0 0.913
GCK TALDO1 0.8 0.591 0.062 0 0.916
GCK TALDO1 0.8 0.591 0.062 0 0.916
GCK PGM1 0.9 0.319 0.112 0 0.934
GCK PGM1 0.9 0.319 0.112 0 0.934
GCK H6PD 0.8 0.702 0.145 0 0.944

Figure 9. Sample of data retrieved from String database.

Additionally, data regarding protein-chemical or chemical-chemical interactions retrieved
from STITCH database. To understand the type of interaction between two interactors,
one needs to record the identity of each interactor. Therefore, all chemicals/compounds
have a unique reference code that has the initials “CID”, while all proteins are identified
by their protein id, which has the initials “ENSP”. The confidence of each relationship
derives from the combination of several metrics, such as the co-expression levels of the
two interactors, the text mining score or the prediction score that was applied by the
database itself. A sample of the data that were retrieved from STITCH database is
available in Figure 10 [42]. In total, 241 interactions were collected from String database
and 453 additional interaction retrieved from STITCH database.

nodel_id node2_id nodel node2 combined_score neighbourhood_score coexpression_score database_score textmining_score
9606.ENSP00000344818 9606.ENSP00000320171 UBC PKM 0.999 0.998 0.066 0 0
9606.ENSP00000344818 9606.ENSP00000229239 UBC GAPDH 0.999 0.998 0.505 0 0
9606.ENSP00000344818 9606.ENSP00000336927 UBC ALDOA 0.999 0.999 0.186 0 0
9606.ENSP0O0000324105 9606.ENSPO0000320171 ENO3 PKM 0.999 0.284 0.974 0.7 0.9
9606.ENSPO0000405573 9606.ENSP00000344818 GPI UBC 0.998 0.998 0.1 0 0
9606.ENSP0O0000405455 9606.ENSP00000321259 TKT TALDO1 0.998 0.462 0.444 0.697 0.9
9606.ENSP0O0000359991 9606.ENSPO0000344818 PGAM1 UBC 0.998 0.998 0.084 0 0
9606.ENSP0O0000405455 9606.ENSP00000344818 TKT UBC 0.997 0.996 0.125 0 0
9606.ENSP0O0000405573 9606.ENSP00000360124 GPI PGM1 0.996 0.229 0.802 0.9 0.788
9606.ENSP00000366620 9606.ENSP00000270776 HG6PD PGD 0.996 0.608 0.383 0.447 0.9
-1.CID100000753 -1.C1ID100001003 glycerol  phosphate 0.995 0.9 0.952 0 0
9606.ENSP00000222286 -1.CID100001003 GAPDHS  phosphate 0.994 0.921 0.9 0.383 0
9606.ENSPO0000405573 9606.ENSP00000324105 GPI ENO3 0.994 0.09 0.736 0.644 0.8
9606.ENSP0O0000270776 -1.CID100000929 PGD NADPH 0.994 0.936 0.9 0.166 0
-1.CID100000784 -1.C1D100023925 hydrogen | Fe(lll 0.994 0.9 0.942 0 0
9606.ENSP0O0000371393 9606.ENSP00000360124 PGM2 PGM1 0.993 0.064 0.644 0.8 0.912
9606.ENSP0O0000377192 9606.ENSP00000252603 G6PD PGLS 0.992 0.462 0.467 0.9 0.765
9606.ENSP00000344818 9606.ENSP00000229319 UBC LDHB 0.991 0.99 0.114 0 0
9606.ENSP0O0000405573 9606.ENSPO0000320171 GPI PKM 0.991 0.078 0.827 0.8 0.773
9606.ENSPO0000377192 -1.CID100000929 GePD NADPH 0.99 0.8 0.9 0.571 0
9606.ENSP0O0000405455 9606.ENSP00000352401 TKT RPE 0.988 0.284 0.223 0.14 0.253
9606.ENSP0O0000270776 9606.ENSP00000252603 PGD PGLS 0.988 0.284 0.158 0.9 0.836

M. Batskinis

Figure 10. Sample of data retrieved from STITCH database.

22



Data Exploration and Retrieval for Hematological Markers Networks

Data, regarding diseases related to G6PD or proteins closely associated with it, retrieved
from Human Protein Atlas (HPA) and Ensembl. HPA contains information about most
human proteins and gives insight about the tissue their expressed (e.g. brain, blood etc.),
the method they were extracted (e.g. spectrometry, antibody-based method etc.) and
potential pathogenicity status [43]. For this analysis, data related to the pathogenicity
status of G6PD, and the most statistically significant proteins of the hematological
markers network were retrieved from the API server of HPA (Figure 11). Ensembl is an
open genome browser with genomic information about vertebrates. Specifically, each
human gene is fully annotated, and data related to chromosome position, variations,
phenotypes, diseases, and external sources are available [44]. In this case, too, data
about G6PD and the most statistically significant proteins of the network were collected.
In more detail for each protein information, about its phenotype or implication in disease,
as well as the external source from which the information about the disease was provided,
were retrieved (Figure 11). In total, 39 records about diseases were collected from
Ensembl database and 27 additional diseases were retrieved from HPA.

Human Protein Atlas Ensembl

disease UniprotiD source
NON RARE IN EUROPE: Glucose-6-phosphate-dehydrogenase deficiency P11413  Orphanet
MALARIA, SUSCEPTIBILITY TO MALARIA, RESISTANCE TO, INCLUDED P11413 OMIM

genes diseases
G6PD Cancer-related genes
G6PD Disease mutation

l
1
1
1
1
1
1
1
: . R 1
G6PD Hereditary hemolytic anemia 1 Class | glucose-6-phosphate dehydrogenase deficiency P11413  Orphanet
ACLY  Cancer-related genes : Anemia, nonspherocytic hemolytic, due to g6pd deficiency P11413 OMIM
CAT Cancer-related genes I ACATALASEMIA P04040  Orphanet
CAT FDA approved drug targets | ACATALASEMIA P04040  OMIM
CLTC  Cancer-related genes : Acute lymphoblastic leukemia Q00610  Cancer Gene Census
crc Disease mutano.n I MIiT family translocation renal cell carcinoma Q00610  Orphanet
CLTC Mental retard.atxon : Autosomal dominant non-syndromic intellectual disability Q00610  Orphanet
MITEDE Disease mutation ! Epilepsy and intellectual disability Q00610 DDG2P
MSMB  Cancer-related genes ! S F 3
5 : I Undetermined early-onset epileptic encephalopathy Q00610 Orphanet
ADK Disease mutation | = s
Inflammatory myofibroblastic tumor Q00610 Orphanet
1
ADK FDA approved drug targets
| MENTAL RETARDATION, AUTOSOMAL DOMINANT 56 Q00610 OMIM
FOLH1 Cancer-related genes 1 h N ina bifid p h
FOLH1 | FDA approved drug targets : Upper thoracic spina bifida aperFé 11586  Orphanet
GSN Amyloidosis N Neural t.ube (?e.*fects, f'olate-sensmve P11586 OMIM
GSN Cancer-related genes : Total spina bifida cystica P11586  Orphanet
GSN Corneal dystrophy  Cervicothoracic spina bifida aperta P11586  Orphanet
GSN Disease mutation : Cervical spina bifida cystica P11586  Orphanet
PLG Cancer-related genes : Thoracolumbosacral spina bifida cystica P11586  Orphanet
PLG Disease mutation , Total spina bifida aperta P11586  Orphanet
PLG FDA approved drug targets : Lumbosacral spina bifida aperta P11586  Orphanet
PLG Thrombophilia | Lumbosacral spina bifida cystica P11586  Orphanet
PFKM Disease mutation : Cervical spina bifida aperta P11586  Orphanet
PFKM Glycogen storage disease I Thoracolumbosacral spina bifida aperta P11586  Orphanet
NCOA3  Cancer-related genes : Cervicothoracic spina bifida cystica P11586  Orphanet

Figure 11. Sample of data retrieved from HPA (left) and Ensembl (right). For each record in the
HPA dataset (left) there are information about genes and their relation with diseases, while for the
case of the Ensembl dataset (right) the name of each disease, the UniProtKB/SwissProt of the
related protein and the original source of the information are reported.

3.3. Data pre-processing and curation

For the cases of metabolic and physiological data parameters with missing values, to at
least one subject, were subtracted from any further analysis. Moreover, due to some
ambiguities in some terminologies of physiological data and to increase the accuracy of
the method, a common reference code for time/storage characterization was used. Thus,
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all labels in physiological data with the extension “NS” or “D2” will be replaced with “D0”.
Furthermore, proteins with sampling measurements less than 10 units at all sampling
stages were excluded from the analysis, while values of those who passed the filtering
process were normalized for statistical purposes. After finishing with the pre-processing,
the final experimental dataset consisted of 295 metabolites/compounds, 58 physiological
parameters and 465 proteins.

Initial Physiological -
Dataset (83)

Filter out physiological
parameters with missing
values

Initial Proteomic Final Proteomic
Dataset (934) Dataset (465)
Filter out proteins with

abundances < 10 units at all
sampling stages

Figure 12. Schematic presentation of the pre-processing of physiological and proteomic data.

In addition, throughout the introduction of data from external sources to the hematological
markers network, a cross evaluation was made to avoid data duplication. Therefore, data
represented in both experimental dataset and dataset from external sources were
introduced only once to the network keeping as properties information or parameters that
were unique in each of the two datasets, while common information were imported only
once (Figure 13).

Experimental e,, Ensembl

Data

HUMAN PROTEIN ATLAS®
B STITCH

Common Data

Figure 13. Schematic representation of the composition of the final dataset. Datain common
between the experimental dataset and the dataset from external sources were parsed only once
keeping all unique properties from each component, but only once the properties in common.
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4, GRAPH DATABASE FOR HEMATOLOGICAL MARKERS
NETWORKS

4.1. Query Requirements

The next step towards the construction of the hematological markers networks was to
determine user requirements in terms of a set of biological queries (to be posed on such
networks) that could be useful for the better understanding of biological aspects of the
problem. Those requirements will drive the construction of a knowledge graph that could
explain interactions or, better yet, reveal potential associations between different
parameters. Next, we present these queries arranged in three groups based on the
general concept of each query. Each group will be presented in more detail below.

The first group of queries is related to “Biologically Converged Parameters”. The following
biological questions are part of this group:

1. Inter- and intra- parameter associations in all possible combinations: This query
intends to give insight about interactions between one or more different data types. A
good example of that could be the gathering of all biologically converged relationships
between a group of metabolites (e.g. amino acids) or between metabolites and
physiological parameters or even the correlations of statistically significant proteins of the
hematological network with diseases. Another aspect of this query could be the
association of the metabolic profile of the first sampling (DO or in vivo) with the rest of the
samplings (D7 — D42 or in vitro).
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Figure 14. Correlation network of converged relations between physiological parameters and
metabolites. This network depicts biologically converged correlations between physiological
parameters and metabolites and presents an aspect of the inter-parameter associations. Dashed
in pink color the physiological parameters are shown, while metabolites are marked with different
colors depending the metabolic pathway they belong.
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2. Determination of crucial parameters: In substance this biological question refers
to the characterization of the most popular nodes of the — case study — system (hub
nodes). To answer this question, one could use several centrality algorithms (e.g.
betweenness centrality algorithm or PageRank) and detect the ones with the highest
score. In graph analytics of biological networks, the most used centrality algorithms are
a) betweenness centrality algorithm, b) degree centrality algorithm and c) closeness
centrality algorithm [45]. For instance, to find out the most crucial physiological
parameters of RBCs one could compute the betweenness and degree centrality of all
nodes in the correlation network of biologically converged parameters and later filter out
those with high scores in at least one of the two centralities.

3. Identification of converged metabolites based on the storage timeline of RBCs: To
answer this query one needs to divide the seven samplings into three — storage based —
groups (early, mid, and late storage). Early storage refers to the first two samplings (DO
and D7), mid storage to the next three samplings (D14, D21 and D28) and last storage
concerns the last two sampling stages (D35 and D42). For each group, one could perform
correlation analysis (e.g. Pearson’s correlation analysis) to identity interactions that are
formed between different metabolites across different storages. Later, to enrich the
outcome of this approach the percentage of identity between different — storage -based
— networks could be estimated, to get insight about the homogeneity of the system across
time.
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Figure 15. Late storage metabolic correlation network. The presented network depicts the
associations of metabolites regarding the last two samplings (D35, D42) or else the late storage
after performing Pearson’s correlation analysis. Similar network could be derived from the
analysis of the other two timelines (early and late storage). Nodes are dashed in different colors
according to the metabolic pathway they belong.
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The second group of queries is related to “Data Visualization and Subnetworks
Representation”. More specifically, with this set of queries, a method to
represent/manipulate specific graph data, once the graph has been created, is suggested.
The following biological questions are part of this group:

1. Graph representation based on specific properties of the case study system: As it
is pointed out by the name of this query, one can focus on specific subgroups of the
network based on specific properties of nodes or relationships. For instance, nodes could
be filtered out based on their degree centrality score or the pathway to which they belong,
and relationships could be processed based on the correlation value of the connected
nodes or the sampling stage of that.

2. Data representation in descending/ascending order: In this case, too, once the
hematological marker network is fully created, one can extract data of interest in tables
and later present them in diagrams, such as heatmaps or bar graphs. For instance, in
Figure 16 the heatmap of betweenness centrality (BC) scores of all converged
metabolites across all sampling stages is shown. One can distinguish metabolites with
high BC scores based on color differences.

Compounds' Betweeness Score across Time
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Figure 16. Betweenness centrality (BC) score of converged metabolites across different
samplings. Blocks dashed in light color indicate a small BC score, while those dashed in dark
colors are supposed to present a higher BC score.

3. Detection of clusters: This query refers to the detection of communities on different
relationship types, such as converged metabolites, converged physiological parameters,

M. Batskinis 27



Data Exploration and Retrieval for Hematological Markers Networks

statistically significant proteins, or combinations of those, using relative algorithms. One
of the most used algorithms for detection of clusters is the Louvain algorithm. Louvain
algorithm is a hierarchical clustering algorithm, that recurrently identifies communities of
nodes, by comparing the number of edges within the cluster with the expected number of
edges that could be found in it, on highly connected graphs [46]. In Figure 17 an example
of the detection of such clusters using the Louvain algorithm is shown. The algorithm
was applied on storage-based graphs (early, mid, and late storage) that were described
above.

Figure 17. Detection of communities with highly connected components on storage-based
graphs. These figures show the clusters that were detected using Louvain algorithm on storage-
based graphs (early, mid, and late storage). In caption 1 (left) clusters of the early-storage
metabolic correlation network are presented. In caption 2 (right) clusters of metabolites from the
mid-storage metabolic correlation network are shown, and clusters of late-storage metabolic
correlation network are marked in caption 3 (center).

4. Focusing on clusters/subnetworks: This query leads to a subsequent analysis
after the detection of communities/clusters. Therefore, by focusing on specific clusters
one could extract useful theoretical information that, potentially, could be further
investigated through experimental procedures. For instance, it could be of major
importance to explore the association of metabolites or other compounds that are highly
correlated with the fragility of RBCs or regeneration of ROS, since both are physiological
parameters with high impact on the vitality of RBCs. Another interesting approach, that
could, potentially, highlight converged relationships between metabolites across time,
could be estimating the percentage of identity between clusters of different networks,
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such as the early-storage metabolic correlation network and late-storage metabolite
correlation network.

The final group of queries is related to “Comparative Analysis of Donors’ Metabolic
Profile”. This group consists of the following biological questions:

1. Comparing donors’ metabolic profile in pairs: Answering to this question could
highlight either the homogeneity or heterogeneity of the system, since all donors were
tested under the same conditions. Pairwise comparison of metabolic profiles of G6PD"
donors could shed light on this matter. In Table 3 Cosine Similarity of all possible
combinations of donors are presented. The closer the similarity score to one the more

similar the metabolic profiles of the compared donors are.
Table 3. Pairwise comparison of G6PD" donors’ metabolic profile. Cosine Similarity was used as
metric for the comparison of donors. The closer the similarity score to one the more similar the
metabolic profile of donors are.

Donorl Donor2 Similarity Donorl Donor2 Similarity
G6 G1 0.963 G3 G6 0.964
G4 G1 0.983 G5 G6 0.972
G5 G1 0.984 G4 G6 0.970
G7 G1 0.975 G5 G7 0.992
G3 G1 0.981 G4 G7 0.986
G4 G3 0.980 G6 G7 0.974
G3 G5 0.981 G3 G7 0.969
G4 G5 0.988
2. Investigate the impact of storage to RBCs’ metabolic profile: The purpose of this

query is to gain insight about the effect of storage to RBCs’ vitality and functionality.
Comparing the in vivo system of each donor (DO) with the in vitro system (D7 — D42)
could reveal the critical storage period at which the functionality of RBCs starts to disrupt.
The higher the similarity score between the two systems the lower the disturbance of
RBCs’ function is. In Table 4 Cosine Similarity of in vivo system of metabolic profile of
each donor with the rest of storage stages (in vitro system) is shown. . Each row
represents the metabolic profile of G6PD- donor and columns indicate the compared
systems. For instance, the column with header “DOvsD7” presents the Cosine Similarity
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of in vivo system with the 7th day of storage. One can easily notice a decreasing affinity
between the two systems as time passes by.

Table 4. Impact of storage on RBCs’ functionality at G6PD" donors.

G1 0.862 0.679 0.640 0.609 0.598 0.555
G3 0.847 0.737 0.668 0.637 0.582 0.581
G4 0.911 0.797 0.747 0.723 0.701 0.679
G5 0.920 0.743 0.706 0.677 0.671 0.655
Gé 0.819 0.709 0.812 0.744 0.711 0.679
G7 0.925 0.795 0.761 0.760 0.740 0.715

4.2. Data Model

After defining all necessary queries that would help to better set up the final knowledge
graph, we developed the graph data model. Throughout this process node and
relationship types of the final graph were specified. For this reason, all data were grouped
into categories. In total, the hematological markers network consists of 950 nodes,
divided in 41 groups and 87,799 relationships, arranged in 17 distinct types. Following
up, all node and relationship types will be presented in tables, alongside with their
properties and any additional information that would help to better understand the outline
of the knowledge graph.

Starting with, in Table 5 node types of hematological markers network with their properties
are presented.

Table 5. Node types of hematological markers network along with their properties.

Node Type Properties Additional Information

1. early mean [avg (DO, D7)]

Compounds (295)

2. mid mean [avg (D14, D21, D28)]
3. late mean [avg (D35, D42)]
4. Name
5. molecule type

295 compounds categorized in 33 groups
based on the metabolic profile they belong
to

Physiological
Parameters (58)

1. Name (acronym)
2. Full_name (official name)

Physiological parameters with missing
values were excluded from the analysis
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Proteomics (465)

1. Name
2. Gene
3. UniProtID

4. Molecular Weight
5. early control
6. mid control
7. late control

8. early G6PD
9. mid G6PD
10. late G6PD

11. abs_early logFC
12. abs_mid logFC
13. abs_late logFC
14. molecule type

The following properties refer to the control
samplings: early, mid & late control, while
early, mid & late G6PD refer to G6PD-
samplings

Properties abs_early, abs_mid & abs_late
logFC refer to the absolute value of logFC
(logarithmic Fold Change) value between
diseased and control samples of the
corresponding sampling stage

1 control & 6 G6PD- donors
Hematological data regarding control

Donors (7) 1. Name donor are not included in any further
analysis, due to lack of data
. 1. Name Additional data related to G6PD that were
Stitch Data (40) 2. molecule type retrieved from STITCH database
String Data (15) 1. Gene Additional proteomic data related to G6PD
9 2. molecule type retrieved from String database
. External proteomic data related to G6PD
Ensembl Data (4) L. UniprotiD that were collected from Ensembl rest API
Data related to diseases or generic
. 1. Name pathogenic phenotypes. Information about
Disease (49) 2. source such data were retrieved from Ensembl
and HPA
1. Name
2. Gene
G6PD (1) 3. UniProtID o
4. molecule type
M. Batskinis 31




Data Exploration and Retrieval for Hematological Markers Networks

Following up, in Table 6 relationship types of the knowledge graph alongside with their
properties and additional explanatory information are presented.

Table 6. Relationship types of hematological markers network along with their properties

Relationship Type Properties Additional Information
Connects donors with compounds. Each
RELATED TO 1. CON relationship presents the concentration (CON) of

(12,390 w/o control donor
14,455 with control donor)

2. timestamp

each compound at a specific sampling stage
(timestamp)

Physiology
(1,025 w/o control donor
1,435 with control donor)

1. value
2. timestamp

Connects donors with physiological parameters.
Measurement (value) of each physiological
parameter along with the sampling stage
(timestamp) of it are recorded

Associated with (32)

Filters G6PD-related compounds at most of
sampling stages

Compound Similarity (12,360)

1. similarity
2. timestamp
3. correlation type

Connects highly correlated compounds.

Threshold: abs(Pearson’s R) = 0.85

Bio converged Correlations (134)

1. correlation values
2. correlation type

Filters pairs of compounds with significant
correlation in at least 4 sampling stages

Early storage (357)
Mid storage (158)
Late storage (236)

1. similarity
2. correlation type

Each relationship type represents significant
correlations between compounds after grouping
them based on storage stage.

That said, early storage refers to the first two
samplings (DO, D7), the next three samplings
(D14, D21 and D28) are characterized as mid
storage and late storage refers to the last two
samplings (D35 and D42)

Phys - compounds correlations
(42,351)

1. time pair
2. similarity
3. correlation type

Correlations between physiological parameters
and compounds at all possible time-based
correlations (homologous or heterologous).

Threshold: abs(Pearson’s R) = 0.80
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Converged phys - compounds
correlations (312)

1. times of occurrence

Filters pairs of physiological parameters and
compounds that are correlated in at least 25% of
theoretically possible combinations*.

*Theoretically possible combinations:  Since
there are 7 sampling stages for both metabolic
and physiological data, there are 49 (7*7)
possible correlations between physiological
parameters and compounds.

Protein correlations (6,704)

1. correlation type
2. similarity

Correlations between proteins of GEPD" donors
Threshold: abs(Pearson’s R) =2 0.99

The threshold in this case was stricter due to lack
of proteomic data (only 3 samplings took place)

Protein compounds correlations

1. correlation type

Correlations between proteins and biologically
converged compounds.

8,515 1. similarit
( ) y Threshold: abs(Pearson’s R) = 0.85
Pairwise comparison of G6PD- donors’
Donor similarity (15) 2. similarity metabolic profile. Cosine similarity was used as
metric
1. source

PPI (445)

2. textmining score
3. neighborhood score
4. database score
5. coexpression
3. combined score

Protein-protein interactions of proteins related —
directly or indirecty — to G6PD. STITCH
database and String database are the sources of
these interactions

Protein Chemical Interaction (137)

1. source
2. textmining score
3. neighborhood score
4. database score
5. coexpression
6. combined score

Protein-chemical interactions of proteins related
— directly or indirectly — to G6PD. STITCH
database is the source of these interactions

Chemical Chemical Interaction (89)

1. source
2. textmining score
3. neighborhood score
4. database score
5. coexpression
6. combined score

Introduces chemical-chemical interactions to
knowledge graph. Data regarding to such
relationships were retrieved from STITCH
database

Phenotype (70)

Connects proteins to diseases or pathological
phenotypes that are related to. Ensembl and
HPA are the sources of such interactions
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4.3. Neo4j Design and Setup
4.3.1. Importing Data to Neo4j

There are several ways to import data into Neo4j depending on the data source. For API
data the most common way is through prefixed algorithms (e.g. APOC standard
extension library) that are available in Neo4j, while for remote or local files Cypher queries
are preferred [33]. In this section, we are going to focus on importing local data using
Cypher queries.

Before importing local data sources to Neo4j is mandatory to check the format of the file,
since only CSV (comma-separated values) files can be processed with Neo4j. Following
that, the LOAD CSV command should be used to read CSV files. To use this clause
properly, one needs to specify the exact path of the location of the file including the prefix
“file:/II” to the query. An example of this command is shown below.

LOAD CSV WITH HEADERS FROM
"file://IC:/Users/mbats/OneDrive/Desktop/metabolomic_data.csv" AS row

In this example each row of the file “metabolomic_data.csv”’ is passed to the Neo4j
platform. Since the extension “WITH HEADERS” was used, all values of the first line of
the file will be considered as column names.

In addition, it is important to mention that each value is passed to the platform in the
format of a string, while null or empty values are not stored in Neo4j. Therefore, several
transformations, such replacing missing values or transforming string data to integers or
floats, might be necessary while processing. Besides that, the most practical part of
dealing with CSV files in Neo4j platform is the fact that the user can convert any data into
graph-related data types, such as nodes or relationships. Thus, the performance during
data loading is increasing and the handling of large amounts of data is more manageable.
Prerequisites for such procedures are the understanding of graph database systems and
basic Cypher commands. An example of transforming text data into graph data is shown
below.

LOAD CSV WITH HEADERS from

"file:///C:/Users/mbats/OneDrive/Desktop/proteomics_data.csv" AS data

WITH data

WHERE NOT ALL(x IN

[data.Gpool_D2,data.Gpool_D42,data.Gpool_D21,data.C_D2, data.C_D42,
data.C_D21,data.Ves_C_D42,data.Ves_G_D42] WHERE toFloat(x) <= 10.0)

MERGE (n:Proteomics{Name:data. Identified Proteins
(934)",UniProtID:data.” AccessionNumber’,MolecularWeight:data. Molecular
Weight',early_control:toFloat(data.C_D2),early G6PD:toFloat(data.Gpool_D2),mid_control:toFloat(data.C
_D21),mid_G6PD:toFloat(data.Gpool_D21),late_control:toFloat(data.C_D42),late_ G6PD:toFloat(data.Gp
ool_D42),Ves C_D42:toFloat(data.Ves_C_D42),Ves G _D42:toFloat(data.Ves_G_D42)})

In this example each row of the file “proteomics_data.csv” is passed to the Neo4j platform.
Once again, the first row of the file is used as column names. Following that, a filtering
process takes place using the WHERE clause. The query concludes by transforming
initial data into graph data and more specifically into nodes under the label “Proteomics”.
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One can easily notice that several columns of proteomics data are passed as node
properties and some of them are transformed to float values.

This section concludes with presenting the whole process that was followed to pass all
available data regarding biomedical/hematological markers related to the issue that was
studied. The process of importing the data was divided in four parts depending on the
data type/source:

A. Donor Names & Metabolic Data

LOAD CSV WITH HEADERS FROM
"file:///C:/Users/mbats/OneDrive/Desktop/metabolomic_data.csv" AS row
UNWIND keys(row) AS head

WITH DISTINCT(head) AS heads ORDER BY toUpper(head) ASC
WHERE heads =~ 'G.* OR heads =~ 'C_.*

WITH apoc.text.replace(heads,' D[0-9]*,") as names

WITH DISTINCT names

MERGE (n:Donors{Name:names});

The above clause extracts information regarding G6PD donors from the
“‘metabolomic_data.csv” file. Each donor (including control) was passed as a distinct
node under the label “Donors”. Following that, information about each
metabolite/compound from the aforementioned file was introduced as a distinct node to
the knowledge graph. All compounds were grouped based on the metabolic path they
belong to. Additionally, several columns were used as properties for each node. The
guery that was used to pass metabolites to the network is shown below.

LOAD CSV WITH HEADERS FROM

"file:///C:/Users/mbats/OneDrive/Desktop/metabolomic_data.txt" AS record

CALL apoc.create.node([record.Pathway],{Name: record.compound, pvalue:toFloat(record.pvalue)})
YIELD node

WITH record,node

MATCH (n:Donors)

WITH record,node,n, ['D0","D7","D14","D21","D28","D35","D42"] AS timestamps

UNWIND range(0,size(timestamps)-1) AS id

MERGE(n)-
[(RELATED_TO{CON:toFloat(record[n.Name+"_"+timestamps][id]]),timestamp:timestamps][id]}]->(node);

B. Physiological Data

The following queries describe the process of importing physiological data to the
hematological markers network. At first, physiological data of G6PD- donors were
introduced to the network. Each column name was passed as distinct node under the
label “Physiological_Parameters” and the value of each parameters alongside with the
sampling stage were passed as properties for each node. This procedure was repeated
for control data since they were stored in a different file. This process concludes by

passing the biomedical explanation of each physiological parameter as a property.
LOAD CSV WITH HEADERS FROM
"file:///C:/Users/mbats/OneDrive/Desktop/physiological data refined.txt" AS lines

UNWIND keys(lines) AS parms

WITH apoc.text.replace(parms,'_D[0-9]*',") AS names, lines

WITH distinct(hames), lines
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MERGE (p:Physiological_Parameters{Name:names})

WITH distinct(names), lines, p,

['D0","D7","D14","D21","D28","D35","D42"] AS timestamps ORDER BY names ASC
UNWIND range(0,size(timestamps)-1) AS id

WITH p, timestamps[id] AS time,

collect(lines[names+"_"+timestamps][id]]) AS values

WHERE size(values) > 0

MATCH (n:Donors)

WITH collect(distinct n.Name) AS source, time, p, values

UNWIND range(0,size(values)-1) as vector

MATCH (m:Donors)

WHERE m.Name =~ source[vector]

MERGE (m)-[:Physiology{timestamp:time,value:toFloat(values[vector])}]->(p);

LOAD CSV WITH HEADERS FROM
"file:///C:/Users/mbats/OneDrive/Desktop/physiological_data_control.txt" AS data
WITH data, ['D0","D7","D14","D21","D28","D35","D42"] AS

timestamps

MATCH (n:Physiological_Parameters), (m:Donors{Name:'C'})

UNWIND range(0,size(timestamps)-1) AS id
WITH m, n, timestampsJid] AS time, data[n.Name+
WHERE value IS NOT NULL

MERGE (m)-[r:Physiology{timestamp:time,value:value}]->(n);

+timestamps[id]] AS value

LOAD CSV FROM
"file:///C:/Users/mbats/OneDrive/Desktop/physiological_abbreviations.txt" AS data
WITH data

MATCH (n:Physiological _Parameters)

WHERE n.Name = data[0]

SET n.Full_Name = data[1];

C. Proteomic Data

Before introducing proteomic data to the knowledge graph a filtering process took place.
Therefore, all proteins with concentration less than 10 units at all samplings were
excluding from the analysis for normality issues. Following that, each of the rest proteins
was passed as a distinct node under the label “Proteomics”. Moreover, several columns
were added as properties for each protein.

LOAD CSV WITH HEADERS FROM

"file://IC:/Users/mbats/OneDrive/Desktop/proteomics_data.txt" AS data

WITH data

WHERE NOT ALL(x IN [data.Gpool_D2, data.Gpool D42, data.Gpool D21, data.C_D2, data.C_D42,
data.C_D21, data.Ves_C D42, data.Ves_G_D42] WHERE toFloat(x) <= 10.0)

MERGE (n:Proteomics{Name:data. Identified Proteins (934)", UniProtID:data."Accession Number,

MolecularWeight:data."Molecular Weight', early_control:toFloat(data.C_D?2),
early_G6PD:toFloat(data.Gpool_D2), mid_control:toFloat(data.C_D21),
mid_G6PD:toFloat(data.Gpool_D21), late _control:toFloat(data.C_D42),
late_G6PD:toFloat(data.Gpool_D42),Ves_C_D42:toFloat(data.Ves_C_D42),Ves_G_DA42:toFloat(data.Ve
s_G_D42)})

WITH n,apoc.text.regexGroups(n.Name, 'GN=[A-Z]*)[0][0] AS name
SET n.Gene = apoc.text.replace(name, 'GN=",");
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D. External Sources

At last, introducing data from external sources to the network was the final part of the
process. Besides some differences in the context of their data, the main idea of
introducing each data source to the network was somewhat the same. To begin with, a
comparison with the existing graph data took place, to identify which data were common
and which one were not present in the network. Common data were updated, in the
sense of introducing some extra properties to existing nodes, while new data were passed
as nodes under the label of the data source from which they retrieved from. Moreover,
information about relationships between nodes were introduced to the network as well.
Following that, the query that was used for each external source is presented below.

STITCH database

LOAD CSV WITH HEADERS FROM

"file://IC:/Users/mbats/OneDrive/Desktop/stitch_interactions.csv" AS data

WITH apoc.coll.union(collect([data.nodel,data.nodel _id]),collect([data.node2,data.node2_id])) AS
list_of names

UNWIND range(0,size(list_of_names)-1) AS i

match (m)

WHERE  (labels(m) IN [["Proteomics"],['Physiology"],['G6PD"]] AND m.Name  contains
apoc.text.capitalize(list_of _namesJi][0])) OR (NOT labels(m) IN [["Proteomics"],["Physiology"],['G6PD"]]
AND m.Name = list_of _namesJi][0])

SET m.molecule_type =

CASE

WHEN

list_of names[i][1] CONTAINS 'ENSP' THEN 'Protein'

WHEN

list_of namesJi][1] CONTAINS 'CID' THEN 'Chemical’

END

WITH list_of _names, COLLECT(list_of namesJi]) AS names

WITH apoc.coll.subtract(list_of names, names) AS external_sources

UNWIND range(0,size(external_sources)-1) AS j

MERGE(k:Stitch_data{Name:external_sources[j][0], molecule_type:

CASE WHEN external_sources[j][1] CONTAINS 'ENSP' THEN 'Protein’

ELSE 'Chemical' END});

LOAD CSV WITH HEADERS FROM

"file://IC:/Users/mbats/OneDrive/Desktop/stitch_interactions.csv" AS data

WITH data

MATCH (n)

MATCH (m)

WHERE (NOT labels(n) IN [['Donors,[Physiological_Parameters]] AND NOT labels(m) IN
[['Donors',['Physiological _Parameters']) AND (apoc.text.capitalize(n.Name) CONTAINS
apoc.text.capitalize(data.nodel) AND apoc.text.capitalize(m.Name) CONTAINS
apoc.text.capitalize(data.node2)) AND (n) <> (m)

MERGE (n)-[r:interaction{source: "STITCH", textmining_score:toFloat(data.textmining_score),

coexpression:toFloat(data.coexpression_score),neighbourhood_score:toFloat(data.neighbourhood_score
),database_score:toFloat(data.database_score),combined_score:toFloat(data.combined_score)}]->(m)
WITH N, r,m

CALL apoc.refactor.setType(r, CASE

WHEN n.molecule_type = 'Protein' and m.molecule_type = 'Protein' then 'PPI'

WHEN  n.molecule_type =  'Chemicall AND  m.molecule_type =  'Chemical THEN
'‘Chemical_Chemical_Interaction'
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WHEN (n.molecule_type ='Chemical' AND m.molecule_type ='Protein’) OR (m.molecule_type ='Chemical'
and n.molecule_type = 'Protein’) THEN

'Protein_Chemical_Interaction'

END)

YIELD INPUT, OUTPUT

WHERE type(r) = 'interaction’

DELETE r

String database

LOAD CSV WITH HEADERS FROM

"file:///C:/Users/mbats/OneDrive/Desktop/string_interactions.csv" AS data

WITH data

MATCH (n)

WHERE labels(n) IN [["Proteomics"],["Stitch_data"],['G6PD"]] AND n.Gene = data.nodel or n.Gene =
data.node2

WITH apoc.coll.union(COLLECT(DISTINCT data.nodel), COLLECT(DISTINCT data.node2)) AS
listOFnames, COLLECT(DISTINCT n.Gene) AS common_names

WITH apoc.coll.subtract(listOFnames, common_names) AS string_data

UNWIND range(0,size(string_data)-1) as j

MERGE (m:String_data{Gene:string_data[j],molecule_type:"Protein"})

WITH m

LOAD CSV WITH HEADERS FROM

"file://IC:/Users/mbats/OneDrive/Desktop/string_interactions.csv" as data

MATCH (n:String_data)

WHERE m.Gene = data.nodel AND n.Gene = data.node2

MERGE (m)-[:PPKsource:"String", database_score:data.database_score,

textmining_score:data.textmining_score, coexpression_score:data.coexpression_score,
neighbourhood_score:data.neighbourhood_score,
combined_score:data.combined_score}]->(n);

Ensembl database

LOAD CSV WITH HEADERS FROM

"file:///C:/Users/mbats/OneDrive/Desktop/Ensembl_interactions.csv" AS data

WITH data

MERGE (n:Ensembl_data{UniProtID:data.UniprotID})-[r:phenotype]-
(m:Disease{Name:data.disease,source:data.source})

WITH n, r, m

MATCH (p)

WHERE (p:Proteomics or p:G6PD) AND p.UniProtID = n.UniProtID

DELETE n, r

MERGE (p)-[:phenotype]->(m);

Human Protein Atlas database

LOAD CSV WITH HEADERS FROM
"file:///C:/Users/mbats/OneDrive/Desktop/HPA interactions.csv" AS data
WITH data

MERGE (m:Disease{Name:data.diseases,source:"HPA"})

with data,m

MATCH (p)

WHERE p.UniProtID = data.UniProtID and m.Name = data.diseases
MERGE (p)-[:phenotype]->(m)
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4.3.2. Hematological Data Analysis

The next step, after importing all necessary data to the network, included statistical
analysis using graph-related algorithms, to filter the most statistically significant
parameters of the network. The process that was followed starts with finding a suitable
approach to explore the data that were available, continues with setting a proper
threshold, so that the outcome would be accurate enough and concludes with filter out
biologically converged intra- and inter- parameter relationships.

Approach

Starting with, two algorithms were applied during the statistical analysis: Pearson
Similarity algorithm and Cosine Similarity algorithm. The first one was used for the
characterization of significant intra- and inter- parameters associations between different
data types (Compound Similarities, Physiological Parameter — Compound Similarities,
Protein Similarities, Protein — Compounds Similarities) and the second one was used for
the identification of percent of identity between metabolic profiles of different users
(Donor similarities) or different storage stages (early, mid, and late storage).

Pearson Similarity algorithm estimates the similarity between two lists of numbers. It
can be characterized as a symmetrical, since calculating the similarity of item A with item
B would be the same as the computation of similarity between item B and item A. In
practice, Pearson Similarity is the covariance matrix of two variables divided by the
product of their standard deviation [47]. The outcome is bounded in [-1,1]. The closer to
-1 or 1 the similarity of two items, the more negative or positive, respectively, associated
they are. Two variables are negative correlated as the one variable increases the other
decreases, and vice versa, while positive correlation indicates that both variables move
in tandem [48]. The mathematical equation that describes Pearson Similarity algorithm
is presented below:

cov(AB) _ TIL,(A-A)(Bi-B)

similarity(A,B)=
A8 JZ{L1(Ai-A)2(Bi-§)2

MATCH (n)-~[r1:RELATED_TO{timestamp:"D7"}]1—(m1),
(n)-[r2:RELATED_TO{timestamp:"D7"}]—(m2)
WHERE id(m1)<id(m2) and n.Name < 'C'

4 WITH m1,m2,gds.alpha.similarity.pearson(collect(r1.CoN),collect(r2.CON)) AS Similarity
RETURN ml.Name, m2.Name, Similarity ORDER BY Similarity DES(

mi.Neme m 2.Name Similarity

Figure 18. An example of the use of Pearson Similarity algorithm in NEO4J.
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In Figure 18 an example of the use of Pearson Similarity algorithm along with part of the
output is shown. More specifically the Cypher query that is presented calls all metabolites
and their concentration at the 7" day of the experiment and returns the Pearson
coefficient of all possible pairs of metabolites. Each metabolite is considered as vector
whose elements are the concentration of the metabolite from each of the donors.

Cosine Similarity algorithm estimates the similarity between two non-zero vectors, by
computing the cosine of their angle. The outcome is bounded in [0,1]. When the outcome
is zero the two vectors are diametrically opposed, thus there is not association between
them. On the other hand, the closer to one the cosine similarity of two variables, the more
identical they are [49]. The mathematical expression that describes Cosine Similarity is
available below:

AB _ YL AB

IAI-IBI / 2 | 2
in=1Ai ’ Zin=1 Bi

(m:Donors)-[r:RELATED_TO]—(n)
STINCT r.timestamp) AS time

similarity(A, B)=

s (time)-1) As i

s)-[r1:RELATED_TO{timestamp:time[i]}]—=(n)&« [r2:RELATED_TO{timestamp:time[i])}]-(p2:Donors)
id(p2) AND pl.Name < '( AND p2.Name < 'C'

* r2.CON) AS DotProduct,

JUCE(riDot = 0.0, a IN collect(ri.CON) | riDot + a”2)) AS riLength,
JUCE(r2Dot = 0.0, b IN COLLECT(r2.CON) | r2Dot + b"2)) AS r2Length,

me AS Donorl, p2.Name AS Donor2, DotProduct / (rilLength » r2Length) as "Cosine Similarity’ ORDER BY

B Donort Donor2 Cosin

Figure 19. Applying Cosine Similarity algorithm in NEO4J to identify the identity of donors’
metabolic profile.

In Figure 19 one can observe the clause that was used to calculate the cosine similarity
of all pairs of donors, along with part of the output.

Setting the threshold

After properly estimating Pearson Similarity scores, the filtering of the most significant
intra- and inter- parameter correlations took place. The first step, to achieve that, was to
set a threshold, so that statistically significant associations will be distinguished. The
value of the threshold varied in each case, depending on the size of the case study
dataset or the number of samplings. For instance, in the case of proteomic data, a stricter
threshold was applied since fewer samplings took place (three samplings in total: DO,
D21 and D42) compared to the rest of the experimental data (seven weekly samplings in
total). It's important to mention that this step was applied only in cases where Pearson
Similarity algorithm were used, since Cosine Similarity was used only for purposes of
identity characterization between compared groups. In Table 7 thresholds of all intra-
and -inter- parameter associations are available.
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Table 7. Thresholds applied on intra- and inter- parameter correlations for filtering purposes.

. Threshold
Correlation Type (absolute Pearson Similarity)
Compound Similarities 0.85
Physiological Parameter — Compound Similarities 0.80
Protein Similarities 0.99
Protein — Compound Similarities 0.85

Filtering biologically converged correlations

By applying the threshold that was mentioned above the most insignificant associations
between different node types were excluded from any further analysis. However a stricter
approach was necessary, to proceed with the filtering of biologically converged
correlations. For this reason, the repeatability score was applied. As its name suggests,
repeatability score explores the times an event occurs. In our case, the event, that was
tested, was the correlation between two variables. Therefore, if a case study pair of
variables passed the repeatability score, the relationship that is formed between them
would be considered biologically converged.

From this process metabolites related to G6PD, biologically converged correlations
between metabolites and biologically converged relationships between metabolites and
physiological parameters were identified. For the first two cases the repeatability score
was described as the occurrence of the relationship between each pair in at least 4 out
of the 7 samplings, while for the case of converged correlations between physiological
parameters and metabolites the repeatability score was expressed as the occurrence of
the relationship between two variables in at least 25% of the theoretically possible
combinations (see section 4.2).

Address queries

In this section the cypher queries that were used throughout the statistical analysis will
be addressed.

Compound Similarities

MATCH (n)-[r1:RELATED_TO]->(m)

WITH COLLECT(DISTINCT rl.timestamp) as timepoints

UNWIND range(0,size(timepoints)-1) as time

MATCH (n:Donors)-[r:RELATED_TO({timestamp:timepoints[time]}]->(m1),
(n)-[r2:RELATED_TO{timestamp:timepoints[time]}]->(m2)

WHERE m1 <> m2 AND n.Name <>'C'

WITH m1,m2,r2.timestamp AS timepoint,

gds.alpha.similarity.pearson(collect(r. CON),collect(r2.CON)) as Similarity

WHERE abs(Similarity) >=0.85

MERGE (m1)-[r3:compound_similarity{similarity:Similarity, timestamp:timepoint}]-(m2)
SET r3.correlation_type = CASE WHEN r3.similarity > 0 THEN "positive" else "negative" END;
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Biologically Converged Correlations between Metabolites

MATCH (m1)-[r:compound_similarity]-(m2)

WITH DISTINCT m1,m2,[R IN COLLECT(r.similarity) WHERE abs(R)>=0.85] AS true_values
WHERE size(true_values)>=4 AND id(m1)<id(m2)

MERGE (m1)-[r:bio_converged_correlations{correlation_values:true_values}]->(m2)

SET r.correlation_type = CASE WHEN ALL(x IN r.correlation_values WHERE x < 0) THEN "negative" END
SET r.correlation_type = CASE WHEN ALL(x IN r.correlation_values WHERE x > 0) THEN "positive" END;

Metabolites associated with G6PD

CREATE (n:G6PD{Name:"G6PD",Gene:'G6PD,UniProtID:'P11413");

MATCH (n:Donors)

WHERE n.Name <> 'C' //Does not include control donor

WITH COLLECT(n.Name) AS samples,

['D7","D14","D21","D28","D35","D42"] AS timestamps

UNWIND range(0,size(samples)) AS id

UNWIND range(0,size(timestamps)) as time

MATCH (n:Donors{Name:samples[id]})-[r:RELATED_TO{timestamp:"D0"}]->(m),
(n2:Donors{Name:samples][id]})-[r2:RELATED_TO{timestamp:timestamps[time]}]->(m)
WHERE n.Name <> 'C' AND n2.Name <> "'C'

WITH m, r2.timestamp AS pair,

gds.alpha.similarity.pearson(COLLECT(r.CON), COLLECT(r2.CON)) AS similarity
WITH m, COLLECT((similarity) AS allPearsons

WITH m,[R IN allPearsons WHERE abs(R)>=0.80] AS true_values

MATCH (n:G6PD)

WHERE size(true_values)>=4

MERGE (m)-[r:associated_with]->(n)

Storage-based Metabolic Correlation Networks (early, mid and late storage)

WITH ['D0","D7"] AS time

UNWIND range(0,size(time)-1) AS id

MATCH (p)<-[r2:RELATED_TO{timestamp:time[id]}]-(n)-[r1:RELATED_TO{timestamp:time[id]}]->(m)
WHERE id(p)<id(m) AND NOT n.Name ='C'

WITH p,m,gds.alpha.similarity.pearson(COLLECT(r1.CON),COLLECT(r2.CON)) AS Similarity
WHERE abs(Similarity)>=0.85

MERGE (m)-[r:early_storage{similarity:Similarity}]-(p)

SET r.correlation_type = CASE WHEN r.Similarity > 0 THEN "positive" ELSE "negative" END
UNION

WITH ['D14","D21","D28"] AS time

UNWIND range(0,size(time)-1) AS id

MATCH (p)<-[r2:RELATED_TO({timestamp:time[id]}]-(n)-[r1:RELATED_TO{timestamp:time[id]}]->(m)
WHERE id(p)<id(m) AND NOT n.Name ='C'

WITH p,m,gds.alpha.similarity.pearson(COLLECT(r1.CON),COLLECT(r2.CON)) AS Similarity
WHERE abs(Similarity)>=0.85

MERGE (m)-[r:mid_storage{similarity:Similarity}]-(p)

SET r.correlation_type = CASE WHEN r.Similarity > 0 THEN "positive" ELSE "negative" END
UNION

WITH ['D35","D42"] AS time

UNWIND range(0,size(time)-1) AS id

MATCH (p)<-[r2:RELATED_TO({timestamp:time[id]}]-(n)-[r1:RELATED_TO{timestamp:time[id]}]->(m)
WHERE id(p)<id(m) AND NOT n.Name ="'C'

WITH p,m,gds.alpha.similarity.pearson(COLLECT(r1.CON),COLLECT(r2.CON)) AS Similarity
WHERE abs(Similarity)>=0.85

MERGE (m)-[r:late_storage{similarity:Similarity}]-(p)
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SET r.correlation_type = CASE WHEN r.Similarity > 0 THEN "positive" ELSE "negative" END;
Protein Correlations

MATCH (n:Proteomics)

WITH n

MATCH (m:Proteomics)

WHERE n.Name <> m.Name AND id(n)<id(m)

WITH n, m,
gds.alpha.similarity.pearson([n.early_G6PD,n.mid_G6PD,n.late_G6PD],[m.early_G6PD,m.mid_G6PD,m.|
ate_G6PD]) AS similarity

WHERE abs(similarity)>=0.99

MERGE (n)-[r:protein_correlations{similarity:similarity}]->(m)

SET r.correlation_type = CASE WHEN abs(similarity) > 0 THEN "positive" ELSE "negative" END;

Physiological Parameters — Compounds Correlations

MATCH (p)<-[r1:Physiology]-(n)-[r2:RELATED_TO]->(m)

WHERE NOT n.Name ="'C'

WITH p, m, rl.timestamp AS timel, r2.timestamp AS time2,
gds.alpha.similarity.pearson(COLLECT(r1.value), COLLECT(r2.CON)) AS similarity

WHERE abs(similarity)>=0.80

MERGE (p)-[r:phys_compounds_correlations{time_pair:timel+"-"+time2,similarity:toFloat(similarity)}]-(m)
SET r.correlation_type = CASE WHEN r.similarity > 0 THEN "positive" ELSE "negative" END;

Converged Correlations between Physiological Parameters and Compounds

MATCH (n)-[r:phys_compounds_correlations]->(m)

WITH n, m, COLLECT(r.similarity) AS values, count(r) AS rel_counts

WHERE rel_counts > 12 //25% of theoretically possible combinations

MERGE (n)-[r:converged_phys_compounds_correlations{times_of_occurance:rel_counts}]-(m)
SET m.correlation_type = CASE WHEN ALL(x IN values WHERE x>0) THEN "positive" END
SET m.correlation_type =CASE WHEN ALL(x IN values WHERE x<0) THEN "negative" END;

Donor Similarity

MATCH (m:Donors)-[r:RELATED_TO]->(n)

WITH n, collect(DISTINCT r.timestamp) AS time

UNWIND range(0,size(time)-1) AS i

MATCH (pl:Donors)-[r1:RELATED_TO({timestamp:time[i]}]->(n)<-[r2:RELATED_TO{timestamp:time][i]}]-
(p2:Donors)

WHERE id(p1)<id(p2) AND pl.Name <>'C' AND p2.Name <> 'C’

WITH sum(r1.CON * r2.CON) AS DotProduct,

sqrt(REDUCE(r1Dot = 0.0, a IN collect(r1.CON) | r1Dot + a*2)) AS rlLength,
sqrt(REDUCE(r2Dot = 0.0, b IN COLLECT(r2.CON) | r2Dot + b"2)) AS r2Length,
pl, p2

MERGE (p1)-[s:donor_similarity]-(p2)

SET s.similarity = DotProduct / (rlLength * r2Length)

The outcome of the whole process leads to the introduction of some relationship types to
the knowledge graph, that were described in section 4.2. More specifically, the following
relationship types were generated through this process: “compound_similarity”,
“bio_converged_correlations”, “associated_with”, “early_storage”, “mid_storage”,
“‘late_storage”, “protein_correlations”, “protein_compounds_correlations,
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‘phys_compounds_correlations”,  “converged_phys _compounds_correlations”  and
“‘donor_similarity”.

4.3.3. Constructing the Knowledge Graph

Introducing
External Data
Sources

Importing Hematological Data

Experimental Data Analysis

Figure 20. Schematic representation of the creation of the hematological markers network

By assembling the outcome of what was described in sections 4.2, 4.3.1 and 4.3.2 the
final knowledge graph can be generated. We could describe the hematological markers
network as a network of two layers. The first layer consists of the preprocessed
experimental data along with all correlations that were mentioned in section 4.3.2, while
the second layer includes external data sources (nodes, relationships, and properties)
that enrich the length and depth of the knowledge graph by adding more detailed
information regarding proteins and metabolites related — directly or indirectly — to G6PD.

« Related to
» Physiology
= Proteomics
» Associated with
» Compound Similarity
F i r St laye r « Bio converged correlations
» Phys - compounds correlations
» Converged phys - compounds correlations
= Protein - compounds correlations
« Early, mid, late
= Donor Similarity

e PPI

e Protein - Chemical Interaction

* Chemical - Chemical Interaction
* Phenotype

Second layer

NI0MIAN SIJIey [ed1So[orewWay

Figure 21. Schematic representation of hematological markers network’s two layers. The first
layer includes all relationship types related to the experimental dataset and the second layer
concerns all graph data the introduced to the knowledge graph from the external sources that was
mentioned in Chapter 3.
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5. DATA EXPLORATION AND RETRIEVAL

5.1. Data Analysis and Visualization

Though Neo4j is a suitable tool for the development and exploration of graph data even
in large scale, it has limited visualization capabilities, especially for users without an IT
background. Therefore, it was necessary to find another browser-based tool to use as
the interface for our graph with which any mainstream user could interact with ease.
GraphXR was proposed as a suitable tool for this purpose.

GraphXR is a web application specialized in the analysis and visualization of graph data
in 2D and 3D space. As a browser-based tool, GraphXR gives the user the ability to
navigate and explore any set of graph data through its environment and provides a set of
tools and predefined algorithms , that are necessary for the analysis of graph data, and
will be described in more detail in the next sections. One of the many assets of GraphXR,
besides being user friendly, is the connection it has with Neo4j. That said, the user can
link a copy of any working project in Neo4j to GraphXR, without disrupting the original
project. Moreover, any new elements passed to the existing network can be saved back
to the original project inNeo4j [50].

Home

Shortcut Key

Figure 22. Display screen of GraphXR

Moving on, the display screen along with all possible options that are available to the user
will be described in detail. Starting with, in Figure 22 a screenshot of the display screen
of GraphXR is shown. On the left of the display screen the Main menu is presented with
a set of options that include opening panels, importing, transforming, and displaying data.
On the right of the display screen Legend menu (top right), Context menu (bottom right)
and Navigation panel (bottom right) are available. Through the Legend menu one can
select nodes based on their category, tags or properties and relationships by relationship
type, while on the Context menu there are several tools to use for data selection and
manipulation in graph space. Finally, through the Navigation panel one can navigate
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within the graph space in 3D mode, rotate and zoom in/out the graph and with the search
panel one can search for nodes or relationships of the graph using specific keywords (e.g.
property names or node labels).

Main Menu

The main menu panel is the part of GraphXR that includes most of the tools that are
necessary for any kind of data manipulation or visualization in graph scape. It consists
the following tabs:

° Project panel, which includes Category and Relationship tabs to give the ability to
the user to select any node or relationship type, respectively, to be displayed in the graph
space. Moreover, it includes the Settings tab with which the user can control the display
size of nodes and the width of edges and the final tab of Project Panel comes under the
name “Data” and allows the user to import/export data in standard formats (e.g. CSV and
GXRF) or save data to Neo4j

° Query panel, which enables the use of Cypher and SQL queries or manipulating
and saving mappings of CSV files. It is noteworthy that favorite queries can be saved for
later use, providing an alternative method for filtering specific nodes or relationships. In
Figure 23 an example of the Query panel is available

= Main menu

Project

Cypher
Query

+ Transform Cypher Query

Table match pathl = ()-[ 1-(m)-

[ | converged_phys_compounds_correlations]-

Layout ®)
where gds.util.infinity()> p.abs_earlyVSlate logFC >=1 or labels(p) =
Filter v

Algorithm

Map

Figure 23. An example of the Query Panel. Within the red rectangular shape some
saved/favourite Cypher queries are shown.

° Transform panel, which consists of a set of formulas and data operators that are
useful for data transformation. Some of them are responsible for merging nodes with
same properties under one node or connecting nodes with same properties values or
even providing access to external applications for data gathering and transformation.

° Table panel, which presents data that are displayed in graph space, in tables.
There are two separate tabs, one for presenting node graph data and another one for
displaying relationship data along with their properties. Moreover, the user can
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manipulate these tables by selecting, reformatting, or even removing property values and
can export the edited tables in CSV format

° Layout panel, which provides a set of options in terms of data visualization. That
said, graph data can be displayed in “Force”, “Parametric”, “Geometric” or “Tree” layout.
Force layout applies a non-canonical shape to the graph and lets the user manipulate the
length, the strength and possibly the 3D representation of relationships. Parametric
layout shifts the shape of the graph by determining the 3D space using specific node
properties. Geometric layout forces the network to shapeshift by applying geometric
shapes, such as circular or cubic shape and at last, tree layout applies a hierarchical

shape to the graph, making it easier to distinguish root and leaf nodes.

° Filter panel, which hides graph data by setting thresholds to one or more node or
relationship properties.
) Algorithm panel, which contains a set of the most popular graph-related

algorithms, such as Degree, Closeness, Betweenness or Community Detection. Each
one of them will be discussed in more detail in section 5.2.
) Map panel, which is useful for cases of analysing geospatial data on a world map.

Legend Menu

As it is already mentioned the legend menu, which is displayed in the top right of the
display screen, allows the user to select specific graph data based on node label
(category) or property values of choice and relationship by relationship type. Doing that,
one can easily subtract selected data or hide the rest of them to focus on specific regions
of the graph.

i

&

Figure 24. An example of the tools that are available in the Legend menu.

In Figure 24 an example of the options that are available in the Legend menu is presented.
At first, by selecting the Category tab, a list with all node labels is expanded and each
node type is dashed with a different color. Moreover, the population of each node type is
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recorded as well. The Relationship tab shows the relationship types that are presented
in the displayed graph. Edges of each relationship type are dashed with different colors.
At last, the Property tab allows to group nodes by the property of choice (in this case
betweenness score). That said, nodes with the same property values will be marked with
the same color. Additionally, in each of the cases presented in this example the user can
select one or more groups to hide or display just by clicking on them and subsequently
use some of the filters in the Context menu, that will be described later in detail.

Context Menu

The context menu, as it was mentioned above, is located on the bottom right of the display
screen and contains a set of tools for manipulating data displayed on the graph space.
In Figure 25 the tag name of each tool of the Context menu is presented. The use of
each tool is described below:

° By clicking on the Info tag information about selected nodes will pop up

° Trace Neighbor allocates up to the n-th neighbor of a selected node

) With option Tag the user may add new properties to selected nodes

° Delete erases selected nodes from the graph space

° By clicking Expand more existing — but not currently visible — relationships related
to selected nodes are introduced to the graph space

) With Inverse, nodes, currently unselected, are selected. The number on the top
of the icon shows how many nodes are currently selected.

° Hide selection hides selected nodes along with their edges

° Select Visible Nodes can be applied while no nodes are selected. On that
occasion, all displayed nodes will be selected

° Enable/Disable Force Layout applies or removes the force layout

° Fly Out/Center To zooms in or out on the center if no nodes are selected.
Otherwise zooms in or out in respect to the selected nodes

° With Leaf Trimming nodes with zero or one relationship are deleted from the
graph space

) By clicking Add Node/Edge one can introduce new nodes/edges to the displayed
graph

° Clear removes all graph data from the display screen

) With Pin selected nodes freeze to their current 3D location and the graph can be

rotated around them. Release clears pinned nodes. The number on the top of the icon
displays how many nodes are pinned.
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Trace Neighbor
Delete

Expand

Inverse

Hide Selection
Select Visible Nodes
Enable/Disable Force Layout
Center To

Leaf Trimming

Add Node
Pin/Release

Info
Pl Add Edge

[S'98 Clear

Figure 25. The Context menu of GraphXR.

Taking under consideration all available tools that described above one can proceed with
the visualization and further analysis of any graph data. In GraphXR nodes are presented
as circles and relationships as edges that connect two nodes. Detailed information about
properties of any node is accessible through the Legend menu, as described above, or
by double-clicking the node of interest. That said, there are two possible ways to display
a network on the graph space. The first one is through the Query panel of the Main menu
by executing a query that returns the desired network. The second option includes the
use of the Project panel of the Main menu.

In Figure 26 an example of how to display a network in graph space is shown. On the
top of the figure one can observe the network of biologically converged parameters
(metabolites, physiological parameters, and proteins), as it was generated using the
Query tab of the Main menu. Part of the query that results in the displayed graph is also
shown on the Cypher Query panel. Nodes are dashed in different colors according to the
node type they belong to. The same goes for relationships too. On the bottom of the
figure one can observe the way to display this network using the Project panel of the
Main menu. At first by clicking on the Category tab the user can specify the node types
that want to be displayed on the graph space. That said, the user needs to click any node
type and be sure to check the box with the description “Visible”. By doing that a small
green circle will be displayed on the left of the selected node type, which means that it
can be presented on the graph space. Next, by clicking the Pull or Pull All button the
selected node types will be displayed on the graph space (bottom left). To show any
relationship regarding the selected nodes one needs to work accordingly (bottom right).
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Figure 26. An example of the way to visualize a network in the graph space of GraphXR.

5.2. Networks’ Centralities and Communities

One of the most common — yet of major importance — procedures in graph analytics, once
a network is fully established, concerns the calculation of several centrality metrics, as
well as the estimation of community formations (also known as clusters). At first, using
centrality algorithms to any kind of graph could highlight the most important nodes and
give insight about the dynamics of the network, such as its spreadability, consistence and
credibility. On the other hand, community detection algorithms could help us identify
strongly connected nodes, discriminate those that are more isolated and subsequently
focus on specific clusters based on our interest and design a more detailed analysis about
them [51].
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Calculating Centralities

Former analyzes regarding RBC interaction networks suggest that the following centrality
algorithm are particularly important to identify the most popular nodes of the graph:
Betweenness Centrality, Degree Centrality and Closeness Centrality algorithm [37].
Taking that into account we proceeded with the calculation of centrality metrics for the
hematological markers network.

To begin with, by estimating the Betweenness Centrality (BC) of a network one can get
insight about the influence of a node over the spreadability of the information in a network.
In practice, the power of a node is estimated as the number of shortest paths, between
all possible groups of nodes, in which a node is part of. With the term “shortest path” we
refer to the best path that connects two nodes in a graph by minimizing the cost [51]. In
Figure 27 a toy example explaining the term of shortest path is presented. In this figure
one can easily notice that there are two alternative paths from node A to node D. The 1%t
path includes nodes A, B and D and the 2" path consists of nodes A, C and D. However,
to identify the optimal path, or else the shortest path, one needs to take under
consideration the weight of the edges. That said, on the 15 path the total weight is 15,
while on the 2" path the total weight is 12. Therefore, the 2" path can be characterized
as the shortest path from node A to node D.

B
y \11.
A D
\ /
C
Figure 27. Explaining the term of shortest path.

Taking that into account, the mathematical equation that best describes the Betweenness
Centrality algorithm is the following:

BC(U)=Zs¢v¢tGSOt_EtU)’ where ost is the total number of shortest paths from node s to node t

and ost(u) is the number of shortest paths from node s to node t to which node u is part
of. The greater the BC measure of a node the more influence the network has.

Figure 28 shows an infographic example for better understanding the BC algorithm. More
specifically, the figure describes the calculation of BC of node E in respect to the shortest
paths from node A to node F. To calculate the BC of node E we need to take under
consideration all shortest paths that start from node A pass-through node E and reach
node F and divide them by the total amount of shortest paths from node A to node F. The
total amount of shortest paths from node A to node F is 4, and those that pass-through

are 3. Therefore, the BC score of node E is % or else 0.60.
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Figure 28. Toy example: BC of node E in respect to the shortest paths from node A to node F.

Degree Centrality (DC) of a node is just the number of relationships concerning that
node. Therefore, if a node has five relationships, its DC score will be five. Sometimes
for normality reasons we tend to divide the DC score with the largest DC score that occurs
in a network, which belongs to the node with the most relationships [51]. Though, DC is
probably the simplest and fastest centrality algorithm, the importance of the results is not
always significant. For instance, a node can still be disconnected from an important part
of the network, besides the fact that it might have a high DC score [37].

Figure 29. Toy example: DC of node F. By taking a close look to the figure on the left one can
notice that node F has three incoming and no outgoing relationships. The total number of

relationships in this network is nine. Therefore, the DC score of node F is DC(F)=3.

At last, the Closeness Centrality (CC) algorithm detects those nodes that are related
with increasing the spreadability of information to the network, or else they have the
shortest distances to all other nodes. In practice, a node with a high CC score is more
central to the graph and “closer” to other nodes. As a measure, Closeness Centrality far
more accurate than Degree Centrality since CC compares the relationships of node with
the entire network [37]. The mathematical equation that best describes CC algorithm is
shown below:

CC(u)=m, where n stands for the number of nodes of a network and Zd(u,y) is the
i=1 i

sum of distances of node u to the rest of the nodes (yi) and u # yi. The outcome is bounded
in [0,1]. In many cases it is quite common to use the normalized version of the algorithm,
which represents the average length of shortest paths rather than the sum. This
modification also allows the comparison of CC scores of nodes of graphs of different
sizes. That said, the updated mathematical formula regarding CC algorithm is the
following:
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normCC(U)=l1+(1u,y-)

Figure 30. Toy example: normalized CC of node A. In the figure on the left one can easily observe
that the distance of node A to the rest of nodes is one with the only exception being the distance

from node A to node F, which is two since they are connected through an intermediate component

(node E). That said the normalized CC of node A is: normCC (A) = :4_:2 =5/6 ~ 0.83

Detecting Communities

The concept of community is quite regular in data analysis and it is related to the
classification of data in groups for characterization purposes or retrieving additional
information. In graph analytics a community is defined as a subset of nodes inside a
network with more dense connections between them than those formed with the rest of
the graph [52]. In biological networks the identification of metabolite communities could
correspond to metabolic pathways, while clusters of proteins could highlight potential
biological interactions or effect on the same biological process [53].

One of the most popular algorithms for detecting communities is the Louvain method.
The concept of the method is an optimization of the modularity metric. Modularity as a
measure is related with the capability of a network to form clusters. Therefore, networks
with high modularity form highly connected communities with sparse connections
between nodes of other modules [54]. Modularity measure is bounded in [-0.5, 1]. Since
the application of modularity measure is quite expensive in large networks, a more
heuristic approach is used in the Louvain method to optimize the modularity score of each
cluster. That said, the algorithm starts by computing the modularity measure of small
communities. Next each small cluster is grouped into one node and the process is
repeated until the modularity of each module is maximized [55]. Overall, the Louvain
method for detecting communities is one of the fastest modularity-based algorithms with
high performance even in large networks.
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Figure 31. Explaining the Louvain method for detecting communities. [56]

Another well-known algorithm that is widely used for detecting communities in graphs is
the Connected Components (CC) algorithm. In practice, this algorithm is used for the
identification of clusters in undirected graphs and considers as a set of connected
components a subgraph in which there is a path to every pair of nodes inside the subset
[51]. In Figure 32, an infographic example that explains the idea of CC algorithm is
presented. To begin with, nodes dashed in bordeaux indicate that they are not visited by
the algorithm, while those marked with purple have been visited by the algorithm. The
process starts randomly from any node of the graph and the component counter is set to
zero (1). In this case and for simplicity reasons we will start from node A and continue in
ascending order. At first, the algorithm visits node A and all adjacent nodes are also
considered as visited. After checking all adjacent nodes, the component counter is set to
one (2). Next the algorithm checks if node D is already visited or not. Since it was not
visited the algorithm repeats the process of step 2 and checks all adjacent nodes of node
D and sets the component counter to two (3). Moving on, the next node that is checked
by the algorithm node F. By repeating the process, the component counter is set to 3 (4).
The last node that is visited by the algorithm is node H. Node H has no adjacent nodes,
thus it will be considered as a separate component. The component counter concludes
to 4 (5). Once all nodes have been visited the algorithm a component id is applied to
each node based on the community they belong to, and they are dashed accordingly (6).
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Figure 32. Explaining Connected Components algorithm.

An alternative method that is mostly applied to directed graphs is the Strongly
Connected Components (SCC) algorithm. Similarly to the Connected Components
algorithm a group of nodes is considered strongly connected if there is a path between
each pair of the group. However, in this case the path needs to be directed.

The last algorithm that is going to be discussed in this section is the Label Propagation
algorithm (LPA). Label Propagation is a fast algorithm for detecting communities in
graphs. In this case communities are identified based on the structure of the graph and
without having any prior knowledge about them. However, it can be used also in a semi-
supervised manner by assigning initial labels to some nodes to reduce the proposed
solutions. Though LPA performs very well on densely connected graphs, it seems that
detecting communities in sparsely connected graphs is quite troublesome for this
algorithm, since some nodes will tend to be trapped inside a densely connected group,
resulting to mislabeling them [51].
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Case study using GraphXR:

In this section a complete walkthrough regarding the calculation of centralities, the
detection of communities, and the representation of results related to this analysis will be
presented. Starting with, we need to define the graph with which we will work on. For
this case the network of biologically converged components will be used as the case
study. The part of displaying the graph has been described in detail in section 5.1. That
said, we can move with computing some centrality metrics for this graph. Thus, we need
to choose the Algorithm tag from the Main menu and then choose the desired centrality
algorithm. The computation is automated, and the result will be presented as a new
property for each node displayed on the graph space.

In Figure 34 a case study of computing BC scores in GraphXR is presented. This example
focuses on estimating the BC of biologically converged components. To calculate the BC
for each node one needs to start by clicking the button under the name Betweenness,
which is available on the Centrality tab of the Algorithm panel of the Main menu. Once
this is done, the computation of BC scores starts. The appearance of a green box with
the message “Calculation finished” will be shown in the center of the display once the
computation is done. The BC measure of each node has been passed as a new property
under the name of the algorithm (in this case “betweenness”) and it is easily accessible
through the Legend Menu by clicking the Property tab and then selecting the property
related to betweenness scores. As we can see on the right of the figure above, nodes
have been grouped and marked under different colors according to their BC value. This
is a quite important feature of GraphXR since it gives the user the option to display nodes
with specific BC scores and thus distinguish t the ones that may seem more significant.

Centrality

Degree PageRank Betweenness Closeness

Figure 34. Computing BC scores for biologically converged components.

Once the computation is finished one can choose to display only nodes with a specific
range of BC score and exclude the rest of them. This process can be easily executed in
GraphXR with two different ways, either using the Filter panel of the Main menu or by
combining the Property tab of the Legend menu and the Context menu.
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In Figure 35 an example of the first approach is explained in detail. Starting with, Through
the Filter panel one can choose to display only the nodes or relationships with a specific
range of values of a chosen property. For this case the property of interest is the one
concerning the BC scores. By specifying the property name a scale bounded with the
minimum and maximum values of the selected property appears. The user can
manipulate the limits of this scale. The outcome of this process is to display only nodes
with the specified range of BC values. In this case the limits have been set from 68.18 to
418.52.

Node Properties

+ Edge Properties

awrboxylic acids, Aminoacids, Aminosugars, Arachidonate
ine metabolism, Bile acids,

Figure 35. Displaying selected nodes according BC values using the Filter panel of the Main menu.

In Figure 36, an example of the second approach is presented. In this case to present
the final output on the display screen a three-step process takes place. At first, through
the Legend menu the user, by choosing the property related to BC scores, reveals a list
of groups of nodes categorized by their BC measure. By browsing to this list one can
select groups of nodes with a desired betweenness score (1). The next step includes the
use of Context menu. Through the Context menu the user needs to click on the Inverse
tag to select the rest of the nodes (2). The process concludes by clicking the tag Hide
Selection of the Context menu. By doing that, the nodes that were selected in the
previous step are now hidden from the graph space and only initially selected nodes with
the desired BC measures are displayed on it (3). The advantage of the second way of
filtering nodes according to BC values is the fact that the user can manually select groups
of nodes with desired property values and display only them.
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Figure 36. Displaying selected nodes according BC values using the Legend Context menu.

Both approaches that were described above point out a series of events that need to take
place for the calculation of any centrality measure or the detection of communities. The
only difference is that in the case of detecting communities in a graph, the resulting node
properties correspond to the community to which the node belongs.

5.3. Exploratory Analysis

In this section a step-by-step representation of several data exploration cases will be
provided. The examples that will be presented are directly related to the biological
guestions that were introduced in chapter 4. The main objective of this section is to gain
insight about the applications of what was mentioned in the previous sections of this
chapter, in the biological problem that is studied during this work.

A. Exploring inter- and intra- parameter associations

Since the hematological markers network was set up to investigate homologous and
heterologous correlations between different components and to answer to a set of
biological questions related to this biological problem, a first approach regarding the
exploration analysis could be to spectate specific relationships of the graph at will,
depending on the question we want to answer. That said, a good example to start with
could be the discovery of G6PD-related metabolites along with compounds that are highly
correlated with (also known as first neighbors in graph analytics). An explanatory
walkthrough of that is available on Figure 37. The first step towards the identification of
metabolites associated with G6PD and the compounds they are highly correlated with is
to select to display via Project panel of the Main menu only relationship types regarding:
a) G6PD-related components (relationship type: associated with) and b) biologically
converged metabolites (relationship type: bio converged compounds).
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By doing that only connections of those two types will be presented on graph space (1). Following that, through the
Relationship tab of the Legend menu we select the relationship type of G6PD-related components and then we click on
Select Visible Nodes of the Context menu. This step concludes by setting the value on the Trace Neighbor tag to one (2),
so that we can also pick compounds highly correlated to G6PD-related compounds (3). Once all necessary components
and edges of the network have been selected, we move on with removing the rest of the data from the graph space. To do
that, we need to click on the Inverse tag of the Context menu, so that data disregarding G6PD-related components and their
associates will be chosen (4). The process concludes by using the Hide Selection tag of the Context menu. By doing that
only compounds related to G6PD along with their first neighbors are shown on the graph space. All nodes are dashed with
different colors according to the node type to which they belong. Moreover, the shorter the length of an edge between two
components, the more significant their connection is (5). An alternative option of what was described above could be to
use the Query panel of the Main menu and display the desired graph using Cypher queries.

Figure 37. Discovery of G6PD-related metabolites along with their first neighbors.
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Another interesting approach, that is displayed in Figure 38, could be to display the map of G6PD-related proteins and
diseases or any pathological phenotype with which they are associated, since it might shed some light on their contribution
to the development of a disease or highlight potential functional relationships. To display this network, we need to select
the relationship types phenotype and protein correlations from the Project panel of the Main menu. Since the displayed
graph is relatively small, we can choose a different layout for this case to which we can add some additional information.
That said, the specific network is presented in Circular layout and moreover for all nodes under the label Disease the name
of the disease is presented, while for proteins (nodes types: Ensembl_data, Proteomics, G6PD) the UniProt Accession
Number (UniProtAC) is displayed. Edges marked in orange color indicate association with disease, while blue-colored
edges suggest protein correlations.

( Proteomics 077 \.

and intellectual disability

Figure 38. Associations of G6PD-related proteins with pathological phenotypes.
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B. Determination of crucial parameters

The purpose of this analysis is to highlight the most popular components of any case-
study network displayed on graph space. To achieve that, we need to work with several
centrality measures of the network, so that any finding, that might be derived, would be
more trustworthy. A good example could be to identify the most crucial components
concerning the metabolic profile or their interconnections with the physiological and
proteomic profile of G6PD- donors. That said, a complete walkthrough of the identification
of the most significant parameters would be presented below. For the characterization of
such components the betweenness (BC) and closeness centrality (CC) metrics were used
as a guide. Resulting BC and CC values of the case-study network will be further
investigated by exporting the findings of this analysis and visualizing them using more
responsive techniques, such as heatmaps.

To begin with, a step-by-step representation of retrieving BC and CC measures of
biologically converged metabolites and subsequently identifying the most significant ones
via visualization techniques is available below.

Centrality

— [ Degree | ( PageRank |  Betweenness

Data

Load Save Save CSV
GXRF GXRF & &

Import &,

T ViewName UpdateTime Load

Figure 39. Identifying the most significant metabolites — Part I.
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Data retrieved from the procedure described in Figure 39 are stored in CSV files. It is
important to mention that each node type is stored in a different file. Therefore, before
proceeding with the visualization of results it is necessary to combine all CSV files into
one. After that, some preprocessing took place such as normalizing the scale of BC
values, so that is bound to [0,1], and setting a threshold of 0.05 to centrality measures to
exclude components with insignificant betweenness and closeness values. That said, in
Figure 40 the output of most significant metabolites is presented. Metabolites are
considered crucial for the network since it has relatively high BC and CC scores. Such
components could be characterized as central nodes of the biologically converged
compounds, indicating that they might play some role in the metabolic profile of G6PD-
donors. However, to prove such findings more experiments need to take place.

BC and CC measures of Biologically Converged Metabolites
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Figure 40. Identifying the most significant metabolites — Part Il.

A more informative example of such an exploration analysis is the characterization of
crucial parameters amongst metabolites and physiological parameters. Since the parts
of displaying the graph, computing centralities, retrieving data, pre-processing, and
preparing for visualization via heatmaps are similar to the first case, we will focus and
subsequently discuss the outcome of the analysis.

In Figure 41 the outcome of the exploration analysis, that was conducted for the
characterization of the most significant G6PD-related components, is presented. One
can easily notice that even though most of the displayed parameters have similar
closeness values, some of them can be distinguished as more noteworthy due to their
high betweenness measure. More specifically, mechanical fragility (MFI and MFI_37),
osmotic fragility (MCF and MCF_37) and antioxidant capacity (TAC and TAC_UA) of
RBCs seem to be these parameters that are more central to the network. This finding
depicts some of the primary characteristics of RBCs, which are related to their
sustainability to mechanical and oxidative stress. At any time these markers can give
insight about the RBC'’s integrity since high levels of MFI or MFC are related with RBC
aging and subsequently hemolysis [58].
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BC and CC measures of Biologically Converged Components
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Figure 41. Identifying crucial components related to G6PD.

C. Presenting graph according to specific node or relationship properties

Two aspects will be discussed in this section. The first one is related to displaying only
those nodes or edges that pass a filter set by the user and the second concerns the
representation of nodes in terms of coloring based on properties values. To explain
properly the first case we chose to work on a very dense network, that of protein
correlations, and extract some valuable information from it.

In Figure 42 the filtering of nodes using the Filter panel of GraphXR is presented. At first
through the Filter panel of the Main menu we can select the node or edge properties to
which we will apply a filter (top). Following that, we proceed with setting the desired
threshold to each of the selected properties. The first filter concerns the edge property
regarding the correlation between the connected proteins. Its value is bound in [0,1] after
the filtering process, so that correlations with negative measures will be excluded. The
second filter is about the statistical significance of displayed proteins. To measure that
the absolute value of log2 of Fold Change (logFC) was used as a metric. Fold Change
is the ratio between two different states [59]. In our case the first state (numerator) is the
concentration of a protein in the in vivo system, while the second case (denominator) is
the concentration of the same protein during the last sampling (in vitro system). The
logFC of each protein was computed during the setup of the hematological markers
network. LogFC is significant if greater than 1 (numerator = 2denominator) or smaller
than -1(denominator = 2nominator). In this case we used the absolute value of logFC
measure and for this reason it is bound in [1,infinite) (bottom). Once the filtering process
is over the user can navigate through the Table panel and see in more detail each one of
the proteins that satisfy the criteria.
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Figure 42. Filtering statistically significant proteins and their positive correlations.
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In Figure 43 an example of the second aspect of this section is shown. Once again, the
network of protein correlations is used as a template, but in this case, we will focus on
selecting nodes according to a specific value using the Property tab of the Legend menu.

Moreover, we will refer to the coloring system that is provided to color nodes by their

property values. One the left part of the figure one can observe the protein correlation

network in which all nodes are dashed according to the selected property value (logFC of
in vivo versus late in vitro in this case). Nodes of the same color have the same property

value. On the right part of the figure, we can notice those nodes that were filtered
manually, along with their relationships. Moreover, by using the Table panel we can see
more information regarding those nodes.
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Figure 43. Filtering nodes manually via Legend menu.

D. Working with communities

The process that is followed to identify and subsequently work with specific communities
of a graph is like the case study that was described in section 5.2. Here, a similar case
will be investigated, but this time, we will work with detecting communities of biological
converged components and after we will focus on some of them. A six-step exemplary
case will be described below in detail.

GEYRBoOLd o K & = o i Y @ &

Figure 44. Working with communities — Part I.

The first part of this example starts by using the Query panel and by choosing the favorite
guery that returns all biologically converged relationships the relative network appears on
the graph space . Next, through the Algorithm panel of the Main menu we can browse to
the Community Detection tab and select the Louvain method for detecting communities.
Following that, by searching the Property tab of the Legend menu we can find one or
more communities based on the property value created by the Louvain algorithm. The
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first part of this case concludes by displaying nodes of the selected community based on
the category they belong (Figure 44).

The second part of this process is related to exploration analysis that can take place once
we have selected a cluster to work with. One of the options that are available in GraphXR
includes the Table panel of the Main menu from which the user can display all properties
of any node type that is part of the selected community. Another aspect could be to
choose manually any node of the presented graph we are interested in and display its
neighbors. Figure 45 presents in detail both aspects. On the top left of the figure the
option of working with the Table panel is presented. Here the property table of the
category concerning physiological parameters has been selected (5). The lower part of
the figure focuses on displaying neighbors of manually selected nodes from the cluster.
More specifically, in this case the neighbors of the physiological parameter “Mechanical
Fragility of RBCs after incubation at 370 C” are shown. Each neighbor is dashed
according to the node type it belongs to (6). Following such exploratory approaches one
can gain insight about potential effects between connected components. Of course,
further investigation is required to drive to any accurate result.

& Export | | - Enhanced Table

Other/Tentative assignments 0/2

Figure 45. Working with communities — Part II.
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E. Storage-based analysis of the metabolic profile

The last case study that will be presented concerns the comparative analysis of metabolic
networks through different storage-based time periods. Therefore, for this example three
metabolic correlation networks will be used namely “early storage”, “mid storage” and
“late storage”. More information about each one of them is available in chapter 4. The
process of this exploration analysis starts with detecting pair of nodes that maintain a
strong connection throughout all stages (Figure 46) and concludes with computing the
percentage of identity between those three networks (Table 8). For the execution of both
procedures the Query panel of the Main menu was used.

Shortcut Key

About

Figure 46. Identifying common pairs of nodes between all storage-based metabolic correlation
networks.

Table 8. Percentage of identity between storage-based metabolic correlation networks. Each
percentage was computed via Cypher queries.

Compared Networks Percentage (%) of Identity
early storage VS mid storage 13.924
early storage VS late storage 15.678

mid storage VS late storage 27.848

The Cypher query that was used for the computation of each percentage is available
below:

MATCH (n)-[rl:early_storage]-(m),

(n)-[r:mid_storage]-(m)

WITH COLLECT(DISTINCT [n.Name,m.Name]) AS pair, type(rl) AS type,COUNT(DISTINCT r) AS
‘common pairs’

MATCH (m1)-[r2:mid_storage]-(m2)

RETURN type+" VS "+type(r2) AS ‘compared timelines’,(toFLoat("common pairs’)/COUNT(DISTINCT
r2))*100 AS "% network identity”

UNION

MATCH (n)-[r1:early_storage]-(m),

(n)-[r:late_storage]-(m)
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WITH COLLECT(DISTINCT [n.Name,m.Name]) AS pair, type(rl) AS type,COUNT(DISTINCT r) AS
‘common pairs’

MATCH (m1)-[r2:late_storage]-(m2)

RETURN type+" VS "+type(r2) AS ‘compared timelines’,(toFLoat(’common pairs’)/COUNT(DISTINCT
r2))*100 AS "% network identity”

UNION

MATCH (n)-[rl:late_storage]-(m),

(n)-[r:mid_storage]-(m)

WITH COLLECT(DISTINCT [n.Name,m.Name]) AS pair, type(rl) AS type,COUNT(DISTINCT r) AS
‘common pairs’

MATCH (m1)-[r2:mid_storage]-(m2)

RETURN type+" VS "+type(r2) AS ‘compared timelines’,(toFLoat("common pairs’)/COUNT(DISTINCT
r2))*100 AS "% network identity”

Each of the examples presented above is supposed to give some insight about the
potential anyone has in terms of exploring graph data using GraphXR. Depending on the
guestion one needs to answer a different combination of the above methods might be in

handy.
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6. CONCLUSIONS AND FURTHER WORK

Understanding the complexity of biochemical and physiological events that occur during
the storage of erythrocytes could give insight about the most crucial parameters that are
affected by or related to storage lesion, especially for samples retrieved from donors with
prior blood-related health issues, such as G6PD deficiency. Designing a conclusive
hematological markers network using both experimental and computationally verified
data and subsequently utilizing graph analytics is a very efficient way to look into and
highlight intra- and inter-parameter associations between different biochemical and
hematological components, and potentially reveal new correlations that might not been
extensively investigated before. However, to develop a method that best describes and
illustrates the case-study biological problem is necessary to collect several biological
scenarios to which the graph needs to be able to answer. Moreover, the appropriate tools
and functions need to be exploited, so that the final graph model consists of well-
structured relationships that highlight the significant parameters of the network, that are
related with the biological issue, and their closely associates.

Utilizing graph database systems, such as Neo4j, to develop and evaluate the graph
model, that has been designed, provides the asset of handling large amounts of relational
data efficiently, accurately and with high speed. Neo4j is quite ideal for this purpose since
it provides a wide variety of predefined tools and algorithms that can be of great use
during the construction of the hematological markers network. Moreover, it can be easily
accessed by many programming languages through its REST API, while it gives a more
dynamic approach to the process of graph analytics and visualization by been able to
directly link a copy of any working project to other browser-based graph-related
visualization tools, such as GraphXR, that can be used easily from users without an IT
background. However, prior knowledge of the basic aspects of graph theory and
programming with Cypher query language are prerequisites to use Neo4,.

Amongst the most important findings of this study were the construction of a conclusive
graph that depicts the associations of hematological parameters throughout the duration
of RBCs in storage and highlights the most of popular graph entities. More specifically,
the current graph model can give insight to several biological questions related to the
storage effect on erythrocytes from G6PD deficient donors. Some of the most important
biological scenarios that have been answered with the specific graph model are related
to finding differences between in vivo and in vitro systems, identifying biologically
converged metabolic and physiological parameters of the network, detecting highly
connected communities of converged components, understanding the effect of storage
on RBCs through comparative analyzes of storage- and time- based metabolic correlation
networks (e.g. early storage vs late storage) or collecting phenotypic information
regarding G6PD and G6PD-related proteins. Of course, further investigation through
experimental procedures is required to evaluate the integrity of these results.
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Further Work

Up to now the development of hematological markers network is fully established and
graph analytics of the current graph model have been concluded as well. However, as
more data become available new challenges may rise that could expand the current
version the graph. Another task that could be further investigated, could be the
automation of the construction of the network. So far, all data sources are loaded
manually to Neo4j via Cypher queries and they were manipulated from there. However,
as it was already mentioned Neo4j provides a REST API interface that can be accessible
from most programming languages. That said, an interesting approach could be the
development of an automated method (e.g. in Python) that would start from retrieving all
data that may be loaded to the graph, then deal with any kind of preprocessing and data
cleaning and, finally, conclude with the construction of the final graph model.
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