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ABSTRACT 

Hematological data graphs is a widely used tool to capture pathophysiological aspects of 
red blood cells for patient clinical studies.  Those graphs model quantitative and 
qualitative characteristics of several hematological markers.  A critical challenge is to be 
able to provide effective graph processing methods to assist data exploration and retrieval 
for those graphs, at various levels of granularity (raw data vs aggregate data).  This study 
will adopt graph database technologies to develop a system to store, retrieve and explore 
hematological markers data.  The thesis will carry out the following tasks: (a) graph data 
collection and preparation, (b) surveying state-of-the-art graph databases, (c) designing 
and developing a graph database for hematological markers graph data (e.g., based on 
Neo4j), (d) develop method for data exploration and retrieval based on real user 
examples. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SUBJECT AREA:  Graph analytics 
KEYWORDS:  hematological markers networks, graph database, data exploration, 
              centrality analysis, community detection
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ΠΕΡΙΛΗΨΗ 

Οι γράφοι αιματολογικών δεδομένων είναι ένα ευρέως χρησιμοποιούμενο εργαλείο για 
την καταγραφή παθοφυσιολογικών πτυχών των ερυθρών αιμοσφαιρίων σε κλινικές 
μελέτες ασθενών. Τέτοιου είδους δίκτυα μοντελοποιούν ποσοτικά και ποιοτικά 
χαρακτηριστικά αρκετών αιματολογικών δεικτών.  Μια σημαντική πρόκληση είναι η 
δημιουργία αποτελεσματικών μεθόδων επεξεργασίας τέτοιου είδους γράφων με σκοπό 
την εξερεύνηση και την ανάκτηση δεδομένων. Η παρούσα διπλωματική εργασία έχει 
σκοπό να αξιοποιήσει τεχνολογίες βάσεων δεδομένων γράφων με σκοπό την ανάπτυξη 
ενός συστήματος αποθήκευσης, ανάκτησης και διερεύνησης δεδομένων αιματολογικών 
δεικτών. Η διατριβή θα εκτελέσει τις ακόλουθες εργασίες: (α) τη συλλογή και την 
προετοιμασία δεδομένων γράφων, (β) την εξερεύνηση πρότυπων βάσεων δεδομένων 
γράφων, (γ) τον σχεδιασμό και την ανάπτυξη βάσης δεδομένων γράφων για δεδομένα 
γράφων σχετικά με αιματολογικούς δείκτες (π.χ. στο Neo4j) και (δ) την ανάπτυξη μεθόδου 
για την εξερεύνηση και την ανάκτηση δεδομένων σχετιζόμενων με πραγματικά δεδομένα. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ:  Graph analytics 
ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ:  δίκτυα αιματολογικών δεικτών, βάσεις δεδομένων γράφων, 

εξερεύνηση δεδομένων, ανάλυση κεντρικότητας, εντοπισμός 
κοινωνιών
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1. INTRODUCTION 

Red blood cells (RBCs) or erythrocytes are the most common type of blood cell.  They 
have a flattened biconcave disk shape depressed in the center and no nucleus or 
organelles (e.g. mitochondria) [1].  The most important feature of RBCs is their three-
layered membrane, to which they owe their increased flexibility and endurance [2].  The 
main function of RBCs is related to the process of gas exchange, which is carried by  
hemoglobin (Hb), a protein of RBCs.  Besides that, they use glycolysis to generate energy 
carriers and they are closely related to Pentose Phosphate Pathway (PPP) [1].  A relative 
example is the case of Glucose 6-Phosphate Dehydrogenase (G6PD) deficiency, an 
inborn error of metabolism that results to reduced antioxidant capacity and increased 
susceptibility of RBC breakdown [3].  Since PPP is the only pathway that preserves their 
antioxidant capacity, any abnormality in that path is associated with increased levels of 
oxidative stress and eventually hemolysis [4]. 

Moreover, RBCs from G6PD deficient donors are more susceptible to the events that 
occur during the time they are stored in blood banks.  That said, normally, erythrocytes 
can be converged in mannitol-containing storage solutions up to 42 days in 1o-6o C [5], 
while donor-related parameters such as the age, sex and ethnicity seem to play an 
important role as well [3].  During the time they remain in storage several metabolic and 
morphological alterations might occur, and while metabolic alterations are usually 
reversable, this does not apply for morphological changes [6].  Therefore, extensive stay 
in storage systems result to a proportion of deformed RBCs that are incompatible for 
transfusion, since they are prone to removal from the circulation [3].  That said, in the past 
years, several techniques have been developed to measure physiological parameters of 
RBCs, such as their mechanical fragility and the levels of radical products, that could give 
insight about their consistency during storage. 

Additionally to that, the quantitative analysis of biological parameters (e.g. metabolites, 
proteins etc.) of RBCs during storage is another efficient approach towards the 
understanding of storage effect.  A quite recent and very informative method for assessing 
the significance of the findings from such approaches is the construction of hematological 
networks that underline potential associations between biological components.  The 
fundamentals of analyzing hematological data using correlation networks lay on the basic 
aspects of graph theory.  Α key issue for the hematology research community is to be 
able to illustrate and analyze hematological data using hematological graphs since, if 
designed carefully, can be a great asset for the community, providing answers to complex 
biological issues and potentially cut down the time spent in the lab.  Major challenges to 
cope with, in order to efficiently manipulate such data, are related to:  

• the modelling and construction of a conclusive graph that highlights homologous 
and heterologous associations between different biomedical parameters in a 
hematological network,  

• the ability to organize and store graph entities so that they can be accessed and 
manipulated efficiently,  
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• the transferability of the graph through different graph databases and applications, 
and  

• the analysis of hematological graphs utilizing complex techniques that could give 
insight about their structural characteristics, reveal their most crucial components, 
and help to better understand the complexity of the problem. 

This Thesis presents a framework to support data exploration and retrieval for 
hematological marker networks. It adopts graph database technologies to develop a 
system to store, retrieve and explore hematological markers data, carry out the following 
tasks: (a) graph data collection and preparation, (b) surveying state-of-the-art graph 
databases, (c) designing and developing a graph database for hematological markers 
graph data (e.g., based on Neo4j) and (d) development of method for data exploration 
and retrieval based on real user examples. Next, we overview the key concepts of this 
work and results produced. 
 
The main aspects of this work concern the analysis of biochemical and hematological 
data of G6PD deficient (G6PD-) donors using graph analytics.  To construct of a 
conclusive hematological marker network an efficient amount of data was collected.  The 
final dataset consisted of real user data of G6PD- donors and computationally verified 
data regarding the case-study biological problem that were retrieved from available 
sources.  The next step towards the construction of the graph was the preprocessing and 
refinement of the dataset, in the sense of removing duplicate and missing values.  
Following that, a set of biological queries to which the final graph model had to be able to 
answer was collected.  Some important biological scenarios were related to the 
identification of biologically converged parameters and significant intra-and inter- 
parameter associations, as well as the characterization of the most popular components 
of the case-study system. 

Once a considerable number of queries was defined, the outline of the graph model was 
designed.  Throughout this purpose all node and relationship types were defined based 
the biological group they represented (e.g. amino acids, proteins, physiological 
parameters etc.) or the association type (e.g. compound-physiological correlations), 
accordingly.  The construction of the hematological markers network took place in the 
open-source browser-based version of Neo4j, a graph database that stores and presents, 
efficiently, accurately and with high speed, relational data in the form of nodes, edges, 
and properties.  The implementation was conducted in Cypher query language.  Using a 
set of predefined functions and algorithms we were able to perform several types of 
analyzes, identify homologous and heterologous correlations between components of 
same and different node types and compare in vivo (fresh RBCs) and in vitro systems 
(packed, stored RBCs).  The most popular ones amongst them were Pearson’s and 
Cosine similarity algorithms.  Following that, in each type of correlation a different 
threshold was set, so that the most insignificant associations would be excluded from the 
final graph model.  Moreover, the quality of intra- and inter- parameters correlations was 
further evaluated in terms of repeatability, in the sense of consistent is a relationship 
throughout the duration of storage. 
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Despite the fact the Neo4j was suitable for the development of the hematological markers 
network, it has limited visualization capabilities, especially for users without an IT 
background.  Therefore, a different browser-based open-source tool was used as 
interface for the visualization and analysis of our graph model.  The proposed tool was 
GraphXR, a web application that allows the user the ability to explore any graph data in 
2D and 3D space and interact with ease, since it provides a set of predefined tools and 
algorithms that are necessary for any kind of graph analysis.  Another great asset of 
GraphXR is the fact that interacts with Neo4j, in the sense that the user can easily load a 
copy of any working project from Neo4j to GraphXR.  That said, we used GraphXR to 
perform centrality analysis by applying betweenness, degree and closeness centrality 
algorithms to identify the most popular nodes the graph, connectivity analysis to 
investigate the complexity and density of intra- and inter- parameter associations and 
community detection analysis to find cluster of nodes and gain insight about hub nodes 
and their neighbors. 

 
Figure 1.  Workflow 

Contributions. 

The contributions of this Thesis are: 

• the proposal and construction of a graph model that is related to hematological data 
from G6PD- donors 

• surveying available graph DBs and addressing the one that is more suitable for the 
current work 

• understanding the biological aspects of the problem and defining a set of query 
requirements for hematological markers networks 

• designing a graph DB for hematological data that could give insight about the inter- 
and intra- parameter correlations between graph entities 

• addressing suitable graph analytics-related methods and demonstrating effective 
query solutions from hematological graphs 

• providing detailed description of the programming that resulted to the creation of the 
final network by addressing the implementation in Cypher query language 

• projecting the final graph model in an open-source browser-based user-friendly graph 
analytics-related visualization tool. 
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Outline. 

The following Chapter refers to the biological and technical background of this work, while 
previous research and related work are also mentioned.  Chapter 3 describes the process 
of data collection and pre-processing that leads to the final dataset, that was used for the 
construction of the graph.  In Chapter 4, the query requirements, the setup of an 
appropriate graph model and the statistical analysis that led to the creation of the 
hematological markers network in Neo4j are described in detail.  Chapter 5 addresses 
the appropriate tools for the visualization and analysis of relative graph models, the graph-
related algorithms that are used throughout the analysis of our model and concludes with 
the demonstration of several biological scenarios that can be answered using the 
application GraphXR.  Finally, in Chapter 6 the conclusions and some future ideas 
regarding the current work are mentioned.
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2.  BACKGROUND AND RELATED WORK 

2.1  Background 

2.1.1  Main features of Red Blood Cells (RBCs) 

Red blood cells (RBCs) or erythrocytes are produced from pluripotent haemopoietic cells 
which are originated from the bone marrow.  These stems cells after a series of events 
differentiate to RBCs.  In humans, RBCs have a flattened biconcave disk shape 
depressed in the center [1].  A physiological erythrocyte usually has a diameter of 6.2 – 
8.2 μm and a thickness of approximately 2 – 2.5 μm at its thickest part and 0.8 – 1 μm at 
its more flattened point (the center) [7].  Additionally, mature red cells have neither a 
nucleus or organelles (e.g. mitochondria), thus they do not contain any nucleic acid (DNA 
or RNA) and cannot divide or carry out protein synthesis and they have limited repair 
mechanisms [8].  A very interesting structural feature of RBCs is their membrane, to which 
they owe their increased flexibility and endurance.  That said, RBC’s membrane consists 
of three layers: the exterior one which is rich in carbohydrates, the lipid layer which 
besides the lipidic components (mainly phospholipids and cholesterol) contains many 
transmembrane, integral proteins and the membrane skeleton in the inner side of the lipid 
bilayer.  Additionally, it is noteworthy the fact that in a typical human red cell half of the 
membrane mass consists of proteins [2]. 

The most important function of RBCs is related to the process of gas exchange [1].  In 
vertebrates, gas exchange is conducted with the transfer of O2 and CO2 between the 
blood system and the lungs.  This process is carried by hemoglobin (Hb), a protein of 
RBCs.  Typically, Hb consists of four – per two identical – globular subunits and a heme 
molecule which contains an iron ion and is the binding place of the O2.  The iron comes 
in two states, the ferrous (Fe+2) and the ferric (Fe+3) states.  That said, when the iron ion 
is in its ferrous state, the Hb is capable of binding O2, while in ferric state Hb is not able 
to transfer O2 (methemoglobin).  In such cases, an enzyme called methemoglobin 
reductase catalyzes the reduction of Fe+3 to Fe+2 [9].  While there are several types of Hb 
in humans, depending on the age, in adults the most common is formed by two alpha 
chains and two beta chains (α2β2) [10]. 

Besides gas exchange, RBCs participate in the immune response of the body by, 
indirectly, killing pathogens, that have infected them, with free radicals that are released 
from the Hb of lysed red cells [11].  Moreover, as it was mentioned, erythrocytes lack of 
mitochondria, so they make up for the energy they lose through the glycolysis of glucose 
and the subsequent lactic acid fermentation of the produced pyruvate [12].  They are, 
also, closely associated with the Pentose Phosphate Pathway (PPP).  A relative example 
is the case of Glucose 6-Phosphate Dehydrogenase (G6PD) deficiency.  G6PD 
deficiency is a recessive X-linked inborn error of metabolism that results in reduced 
antioxidant capacity and increased susceptibility of RBC breakdown [3].  Typically, G6PD 
is an enzyme of the PPP and conducts the conversion of glucose 6-phosphate to 6-
phosphoglucono-δ-lactone and maintains the levels of antioxidant equivalents, such as 
NADPH.  In RBCs is the only pathway that preserves their antioxidant capacity.  
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Therefore, in the case of G6PD deficiency, erythrocytes are exposed to free radicals that 
in the event of extensive oxidative stress result to hemolysis [13]. 

2.1.2.  RBCs’ parameters measured during storage in blood bank conditions 

Erythrocytes are the most commonly transfusable and highly demanded cells worldwide, 
a fact that can be verified by the hundreds of millions of red cell units that are being stored 
in blood banks and transfused every year.  Donors’ biological profile along with the effect 
of the extensive storage are parameters that affect the homeostasis of RBCs, making a 
proportion of them insufficient for transfusion [5].  Parameters such as the age, the sex 
and the ethnicity of the donor seem to play an important role in the consistency of red 
cells during storage [3].  On top of that studies regarding the storability of RBCs have 
shown that erythrocytes can be conserved in mannitol-containing storage solutions up to 
42 days at 1-6 degrees [5].  Several alterations regarding metabolic and morphological 
features of RBCs are likely to occur during the period that they remain in blood banks, 
and while the effects in metabolic parameters are most of the times reversable, this is not 
the case for their morphology [3].  It is known that the membrane of erythrocytes can 
shapeshift in cases of applied stress (e.g. mechanical stress) [14] and while this feature 
is quite important during the microcirculatory blood flow, it has been related to several 
pathological conditions, one of which is the outcome of extensive stay of RBCs in storage 
[15]. 

Deformed packed red blood cells (pRBCs) are likely to cause harmful effects and result 
to an ineffective blood transfusion.  That said, there are several techniques that have 
been developed in the past years with which we can measure significant physiological 
parameters of RBCs in the circulation that could give insight about the vitality of 
erythrocytes during storage.  Some of the most important ones will be described below in 
more detail: 

• Erythrocyte osmotic fragility (Mean Corpuscular Fragility, MCF) is the degree of 
hemolysis that comes from subjecting RBCs to osmotic stress by putting them in 
hypotonic solution.  As a metric MCF has been used for the diagnosis of diseases 
related to genetic abnormalities to the membrane of erythrocytes [16], such as 
hereditary spherocytosis. 

• Erythrocyte mechanical fragility (MFI) is related to the part of hemolysis that results by 
applying mechanical stress to RBCs, such as the kind of stress that occurs during the 
microcirculatory blood flow.  While there are several approaches regarding the 
measurement of MFI, there is not a commonly acceptable practice.  However, it is an 
important parameter to gain insight about the health of RBC membrane and 
submembrane skeleton and, additionally, can be very handy in cases of evaluating 
the quality of pRBCs via in vitro testing [17]. 

• Cell free Hb is another hematological parameter that is measurement in several 
diagnostic experiments regarding the consistency of RBC.  As it was mentioned 
before, typically, Hb is a protein inside the RBCs and plays an important role during 
gas exchange.  However, in cases of hemolysis Hb is released from erythrocytes and 
flows freely in the vascular system causing outspread oxidative damage.  That said, 
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by quantifying the concentration of free Hb in the supernatant of pRBCs one might 
gain insight about the health of erythrocytes or indication about storage lesion [18]. 

• Reactive Oxygen Species (ROS) are highly reactive molecules that under extensive 
amounts can induce oxidative stress causing serious damage to cells and their 
components, while they play an important role in cell ageing [19].  Accumulation of 
ROS in RBCs during storage is a common cause.  However, since erythrocytes of 
G6PD deficient donors lack of antioxidant equivalents, their intracellular environment 
tends to produce more ROS, making them more susceptible to hemolysis [20].  
Closely related to the quantification of ROS is the measurement of the antioxidant 
capacity of the plasma or supernatant for the same reasons that were mentioned 
before. 

• Another physiological parameter that could give insight about the vitality of 
erythrocytes is the characterization of the levels of their deformability since 
irreversible change in their morphology may cause to ineffective transfusions. 

• Mean corpuscular volume (MCV) is the ratio of hematocrit and the total number of 
RBCs in the blood and it is used as aid for characterization of microcytic anemia (MCV 
lower than normal) and macrocytic anemia (MCV greater than normal) [21]. 

• Another parameter that is particularly important for this work, since we study the 
hematological profile of G6PD deficient donors, is the activity of G6PD during 
storage.  Previous studies have shown that the activity of G6PD in pRBCs tends to 
decrease during storage compared to fresh blood [3]. 

2.1.3  Data Analysis using Knowledge Graphs 

The concept of a graph 

According to graph theory, a graph is a set of entities, some of which form pairs of 
connections.  The entities of a graph are called nodes or based on discrete mathematics 
vertices, and the pairs of connections are known as relationships or edges [22].  
Additionally, if the nodes and edges of a graph demonstrate real data, such as the 
connections of a person in social media or the metabolic pathways of cancer cells, then 
that graph is called a knowledge graph [23].  Based on the type of relationships that are 
formed between the nodes, we can distinguish four different types of knowledge graphs.  
If the edges of a graph have orientation, then it is called a directed graph.  In the case 
that the links between the nodes have not a direction, the graph is called undirected, while 
if some edges have orientation and some not, the graph is called a mixed graph.  The last 
type is called weighted graph and refers to the fact that to each edge a number (weight) 
is assigned [24].  Depending on the data type this weight can either demonstrate the cost, 
the length (e.g. world map network) or the strength of the connection (e.g. protein-protein 
interaction networks). 

In Figure 2, the different categories of networks according to their relationship types are 
presented.  On the top left of the figure we can observe a toy example of a directed graph 
(1), while next to it the representation of an undirected graph is shown (caption 2).  An 
example of a mixed graph is available on caption 3 and the example concerning the 
weighted graph is presented on bottom right (caption 4). 
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Figure 2.  Network styles according to edge types.   

Some other major characteristics that are significant for each network, besides the type 
of edges, are degree of nodes and the diameter of the graph.  The degree of a node is 
the number of edges that forms with the rest of the nodes [22].  More specifically, in a 
directed graph one can distinguish the indegree, which is the total number of incoming 
relationships, and the outdegree, which, as its name denotes, is the total number of 
outgoing edges [25].  By computing of edges of each node, one can identify those with 
high-degree and, therefore, are more central in the graph.  These nodes are characterized 
as hub nodes and they usually have a significant impact in the consistency and 
robustness of a graph, since if we remove them the network will collapse [26].  On the 
other hand, the diameter of a graph is the maximum distance between a pair of nodes.  
The denser the connections in a graph the smaller its diameter is.  Its value is bound in 
[1,infinite) with infinite to be when the graph is totally disconnected or else it has no edges 
[22]. 

 
Figure 3.  Explaining the terms of degree, hub, and diameter. 

A toy example that describes the terms of degree, hub and diameters is shown in Figure 
3.  Since the degree of a node is its number of relationships it has, one can easily notice 
that the degree of A, B, C and D is 2, while for node F is one.  At last, node E has 5 
relationships, meaning that is the node with the higher degree.  Moreover we can observe 
that by removing node E from the network, it immediately falls apart.  Therefore, we can 
assume that node E is a hub node.  On what matters the diameter of this toy example we 
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can see that the longest path is the one from node C to node B (C→D→E→A→B).  That 
said, the diameter of this network is 4, as the number of steps it takes to go from C to B. 
So far, we have described the concept of a knowledge graph and its entities along with 
some of the most significant characteristics of a network.  Following that, it is important 
to discuss the aspects of graph analytics and the impact each one has.  Graph analytics 
or else network analysis is the analysis of associations between different elements of a 
graph.  There are several approaches when it comes to explore graph data, such as 
identifying the most important nodes of the network or else the ones that have more 
influence to it (Centrality analysis), investigating the density of connections between the 
entities of the graph (Connectivity analysis) or their classification into strongly connected 
groups or modules with similar characteristics (Community detection) or inspecting the 
reachability from one to node to another (Path analytics) [27].  For instance, estimating 
the influence of a person in a social network could be a good example of the Centrality 
analysis, while finding the best path in a weighted graph (also known as shortest path in 
graph theory) that connects two cities in a world map network could be a good application 
of Path analytics. 
In general, graph analytics can be applied in a wide range of operations, such social 
networks (e.g. identifying people with great influence in social media), national security 
(e.g. detecting fraud in e-commerce businesses) or healthcare (e.g. spreadability of a 
COVID-19 virus) For each approach there are several graph analytics-related algorithms 
that help us get insight about the associations between nodes or relationships, and most 
of them will be discussed later in more detail. 

Neo4j: working with graph databases 
Given the fact that the volume of data is constantly increasing, it is quite important to work 
with or develop tools that can manipulate extensive amounts of information with a 
considerably high performance.  In the case of graph analytics there are several web-
based data storages that can implement such tasks with high speed and accuracy, and 
they are called graph databases.  A graph database is a NoSQL database that stores 
and represent data in the form of nodes, edges/relationships, and properties [28]. 

A great asset of any graph database is the fact that edges are collected in such way, so 
that they can be retrieved or represented, usually, with a few high-speed operations [29].  
Another major characteristic of the graph databases, closely related to their high 
performance, is the fact they consider relationships as their top priority in terms of storing 
and manipulating data.  Thus relationships can be stored, separately, under specific 
labels and take additional information (properties), similarly to nodes, which gives the 
ability to the user to display efficiently any relationship type along with the connected 
nodes [30].  Up to now there have been reported several graph databases.  A list with 
some of the most noteworthy ones is available on Table 1. 

Table 1. A list with the most remarkable graph databases. 

Name Latest version Details 

Amazon Neptune 7.0.0 (April 2020) A graph database established by Amazon and 
part of Amazon Web Services.  Supports 
Apache, TinkerPop, Gremilin and SPARQL 
query languages 
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ArangoDB 3.7.2 (August 21, 2020) A NoSQL database.  Supports three different 
data structures (key/value, graphs and 
documents) and AQL (Arango Query 
Language)  

Cayley 0.7.7 (October 15, 2019) An open-source graph database inspired by 
Google’s Knowledge Graph database.  
Supports three query languages, namely, 
Gizmo, GraphQL and MQL [31] 

DataStax 6.0.1 (June 2018) An enterprise graph database supporting 
TinkerPop and unifying with Cassandra 

FlockDB 1.8.5 (February 23, 2012) An open-source graph database that works with 
wide yet shallow networks.  Performs well with 
rapid set operations [32] 

Neo4j 4.3.3 (August 2021) A graph database with open source and 
enterprise editions.  Provides both server and 
desktop versions.  It is accessible from most of 
programming languages through its REST API 
interface [33] 

OrientDB 3.0.28 (Feb 2020) Similarly to Neo4j, it provides both a community 
and enterprise edition.  Supports a query 
language like SQL and it can be accessible 
through its REST or JSON API [34] 

It is important to mention that for this work the browser-based open-source version of 
Neo4j was selected as the environment for the development of the hematological markers 
network.  As it mentioned in Table 1 Neo4j is graph database which comes in a free and 
a commercial edition.  For any implementation the Cypher query language is  used.  
However, it can be accessible by many programming languages through the API interface 
[33].  Any graph data is stored in Neo4j under the form of a node, relationship, or property.  
Nodes and relationships can have multiple properties and, additionally, they can be 
categorized in groups under specific labels, so that they can be easily accessible.  
Relationships can either be have one orientation or be bidirectional (also known as 
undirected) or start and end to the same node (self-loops) [33].  Properties can be stored 
in several formats such as string, integer, float or boolean. 

In Figure 4, a infographic example that describes the representation of graph entities in 
Neo4j is presented.  In this toy-example one can notice that there is one node type under 
the label “User” and one relationship type under the label “KNOWS”.  Moreover, the nodes 
have two properties, one string-type attribute which gives insight about the name of the 
user and one number-type which provides information about the year of birth.  Regarding 
the relationships, one can observe that all edges have one orientation and one property, 
which represents the relationship the connected users have. 
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Figure 4.  An infographic representation of graph entities in Neo4j. 

Prerequisites to use the browser-based open-source edition of Neo4j is to have a 
compatible of JAVA and download and install several libraries with a set of predefined 
graph-related functions available by Neo4j that are necessary for most of the graph 
development issues.  The first library is called the APOC library (Awesome Procedures 
On Cypher library) and consists a set of operations that are useful for manipulating graph 
data, such as importing/exporting data in CSV format, simplified vector-related functions, 
or reforming graph entities.  Another mandatory library is the GDS library (Graph Data 
Science library) which contains a list of algorithms related to graph analytics.  More 
specifically, all operations regarding centrality analysis, community detection, path 
analytics or comparing different networks are provided by this library.  All information 
about the installation of these libraries and the use of each algorithm are fully described 
in the documentation of Neo4j platform.  However, to use any function of the above one 
needs to be familiarized with Cypher query language. 

Cypher as a query language was designed to be used within Neo4j system and, even 
though presents some similarities with SQL, serves the needs of graph database system.  
That said, Cypher is built according to the concepts of graph theory [35] and is mainly 
based on patterns of nodes and relationships, which are further filtered by their properties.  
Therefore, nodes are presented with parentheses surrounding their label and properties, 
while relationship types are depicted with square brackets.  Undirected relationships are 
shown with dashes, while arrows are used to present the directed ones [33].  Like most 
of the query languages, Cypher includes a set of keywords to specify patterns of nodes 
and edges, filter graph entities and return results in the form of tables or graphs.  Some 
of the most used keywords will be described below: 

• the LOAD CSV (optional: WITH HEADERS) FROM [path] query is used to import data 
from csv files.  The path of the file needs to be declared 

• the MATCH keyword specifies the pattern of nodes and relationships to look at in the 
graph database 

• the MERGE keyword is used to create new nodes and relationships without 
generating duplicates 

• the WHERE clause filters entities of the pattern that specified with MATCH query 

• the WITH statement gives the ability to concatenate query parts, using the result of 
one part as the starting point to the next one  

• the RETURN query states what will be presented in the result panel [33]. 
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Following that, an example using Cypher queries will be described in detail: 

LOAD CSV WITH HEADERS FROM  
"file:///C:/Users/mbats/OneDrive/Desktop/Ensembl_interactions.csv" AS data 
WITH data 
MERGE (n:Ensembl_data{UniProtID:data.UniprotID})-[r:phenotype]-
(m:Disease{Name:data.disease,source:data.source}) 
WITH n, r, m 
MATCH (p) 
WHERE (p:Proteomics or p:G6PD) AND p.UniProtID = n.UniProtID 
DELETE n, r 
MERGE (p)-[:phenotype]->(m) 

This example starts by importing data from “Ensembl_interactions.csv” using the LOAD 
CSV clause.  After the that, with the use of the MERGE keyword a path regarding 
diseases and proteins is passed to the graph and by using the WITH statement resulting 
graph data are passed to the next part of the query.  Following that, the MATCH keyword 
is applied to look at all nodes of the graph and by using the WHERE statement a filtering 
process starts which concludes with deleting duplicate entities using the DELETE 
keyword and connect existing non Ensembl disease-related proteins with 
diseases/phenotypes. 

This section concludes with a presentation view of the server edition of Neo4j (Figure 5).  
The Neo4j platform consists of three parts.  The first one is the Tools panel on the of the 
display screen which contains a set of shortcuts such as displaying labels and property 
names in lists (1), saving favorite queries (2), help about Neo4j-related keywords and 
functions (3), connecting to cloud (4), browser settings (5) and general information about 
Neo4j (6).  The most common of those options is the first one since it gives the ability to 
the user to navigate through different node and relationship types and display desired 
ones with ease.  In this Figure part of node labels, relationship types and property names 
are displayed on the left.  The second part of the Neo4j browser is the Query panel which 
is the space to write any Cypher query you want to be executed by Neo4j, the results of 
which will be displayed in the Result panel in the form of a graph or a table.  The result 
panel is quite informative since it shows the type of nodes and relationships that are 
currently displayed and it gives the ability to export the output in CSV, JSON, PNG or 
SVG format (the last two options are available only in the case the result is graph).  
Moreover, nodes and relationships are presented in different colors according to the type 
they belong to and the user can select manually the size and color of graph entities, as 
well as the desired node property name to be displayed. 
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Figure 5.  The interface of browser-based edition of Neo4j. 

2.2.  Related Work 

Antonelou et al. 2018 [3] 

The authors of this work studied the metabolic and physiological correlations in 
erythrocytes from G6PD deficient donors in both fresh blood and packed, stored cells.  
For this work RBCs from the venous blood of six male G6PD deficient donors(G6PD-) 
and three male control donors (G6PD+) of same age were subjected to analysis.  The 
samples were stored up to 42 days and in the meanwhile weekly samplings took place, 
starting from the day RBCs were collected.  That said, blood samples could be divided in 
two systems regarding the sampling stage.  Thus, erythrocytes that were retrieved the 
first day of the experiment (day 0) are characterized as the in vivo system, while packed 
RBCs will be referred as the in vitro system concerning the samplings of days 7, 14, 21, 
28, 35 and 42.  During each sampling the measure of several physiological (e.g. MFI, 
MCV, G6PD activity), metabolic (e.g. amino acids, nucleotides) and proteomic 
parameters were estimated. 

Once all data were collected, they used them for the construction of hematological 
networks with which correlations between parameters of the  in vivo and in vitro system 
were estimated.  Moreover, to increase the significance of their findings, the authors 
compared the data retrieved from fresh blood cells with data from every sampling of the 
in vitro system (e.g. D0 vs D7, D0 vs D14 etc.) and they considered as converged 
correlations those that were observed repeatedly at multiple sampling stages.  Pearson’s 
correlation analysis was performed for the estimation of any potential correlations.  The 
creation of each network was conducted in Cytoscape and inverse Pearson’s coefficient 
was used as a metric for defining the length of an edge, in a sense that the greater the 
Pearson’s r value, the stronger the connection between two components was. 

Findings regarding the analysis of the metabolic profile of G6PD- donors highlighted 
bioactive lipids, free fatty acids, bile acids, glycolytic metabolites, purines, and amino 
acids as top discriminative metabolic parameters for G6PD- donors.  On top of that, from 
the comparative analysis of G6PD- and control donors, parameters related to one carbon 
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or sulfur metabolism (e.g. methionine), antioxidant capacity (e.g. NADPH) or glutathione 
homeostasis were characterized with significantly decreased levels compared to control 
donors.  Equally notable were the results regarding changes in the concentration of 
compounds related to lipid metabolism.  Another interesting finding of this study was the 
storage effect on both G6PD- and control samples.  It seems that, despite differences in 
the genetic and metabolic background, in both cases extensive stay of erythrocytes in 
storage leads reduced antioxidant capacity, decreased levels of G6PD activity, followed 
by increased levels of glycated Hb and osmotic hemolysis (intra-parameter relationships). 

Regarding the network analysis of inter-parameter associations several clusters were 
identified and those with higher density of connections and greater impact to the 
consistency of the hematological network included parameters related to a) in-bag 
hemolysis, susceptibility to hemolysis, 2,3-biphosphoglycerate (2,3-BPG) and 
dehydroascorbate, b) G6PD activity, c) fatty/bile acids, d) redox (e.g. ROS, antioxidant 
capacity etc.) and e) hematological/physiological features (e.g. MCV, MFI etc.).  A 
subsequent analysis on the G6PD activity subnetwork highlighted amino acids and 2-OH-
glutarate as compounds positively correlated to G6PD, while parameters related to PPP, 
bile acids, oxidized lipids and monosaturated fatty acids were negatively associated with 
G6PD.  At last, of great interest was ta subnetwork that emphasized in the complexity of 
the hemolysis phenotype, which as described in their work it is a multivariate 
phenomenon that is possibly affected by the donor’s profile, besides the effect of storage 
itself. 

Overall, this work pointed out that even though there are some significant differences 
between the biological profiles of G6PD- and control donors, the effect of storage was 
quite similar in both cases.  Additionally, the authors highlighted the multivariate character 
of hemolysis, while they addressed some crucial parameters that contribute to that.  
Moreover, it is important to mention that this work was a starting point for our work, as 
data regarding the biochemical and physiological profile of all donors were used as part 
of our final dataset. 

Kowsar et al. 2020 [36] 

The authors of this review studied the hematological and biochemical characteristics of 
COVID-19 non-survivor subjects.  For this project data related to COVID-19 cases were 
extracted from the literature, excluding under 19 years old cases.  The final dataset 
consisted of 14,359 cases that survived from the infection and 4,655 non-survivors.  All 
extracted data converted in such way, so that they have the same format and units.  From 
each data source information regarding the country, sex, age, blood parameters and pre-
existing health issues were collected.  The final dataset was subjected to normality check 
analysis using Anderson-Darling test.  Network analysis and any further meta-analysis 
were conducted in PAST and META-MAR applications, respectively.  On top of that, 
several statistical methods were applied to check the heterogenicity of the dataset (e.g. 
Cochran’s Q test).  Regarding network analysis Pearson similarity algorithm was used as 
a method for defining relationships between different entities. 
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The outcome from gathering blood test results showed an increased number of 
neutrophils and white blood cells on patients that did not survive from the infection, which 
was not the case for the number of lymphocytes and platelets.  They, also, mentioned 
several complications from which non-survivors suffered due to COVID-19 infection, such 
as acute kidney injury, heart failure or septic shock.  Results from the meta-analysis of 
collected data pointed out that mortality rates increase as the age of the diseased 
increases.  Prior health complications, such as diabetes or cerebrovascular disease, have 
a similar effect.  These findings were further supported by the correlation networks 
regarding hematological parameters.  More specifically, platelets and lymphocytes had a 
correlation of 0.72 with COVID-19, while neutrophils were associated with evidence of 
infection by the virus with a rate of 0.93.  At last, correlation networks regarding patients’ 
profile and evidence of infection, also, confirmed results of the meta-analysis since age 
and prior health issues had a Pearson’s coefficient of 0.79. 

Goodman et al. 2013 [37] 

In this review the authors describe the proteomics and interactomics of human 
erythrocytes.  At first, they state the total number of proteins that have been characterized 
in RBCs.  Following that, they extensively reported the methods and findings of previous 
studies that led to the current data about the RBC proteomics.  Moreover, they comment 
about the changes that occur in transmembrane proteins of erythrocytes during several 
health issues, such as malaria, Alzheimer’s disease, or chronic kidney disease.  On top 
of that, they describe the current and previous findings regarding the proteomic analysis 
of individuals that suffered from sickle cell disease (SCD).  SCD is a recessive autosomal 
disease that occurs due to a point mutation in the beta chain of Hb.  Because of this 
mutation Hb polymerize in such way, so that erythrocytes eventually take a characteristic 
sickled shape.  In its severe form SCD leads to vasoocclusive crises that, if not handled 
properly, could have serious effects on the survival of the patient.  After that, they state 
several findings regarding measurements of hematological parameters and proteomics 
of SCD patients.  More specifically, they mention that proteins related to repair 
mechanism, lipid raft components, membrane skeletal proteins and radical oxygen 
scavengers play an important role in the development of the disease. 

In the attempt of finding potential evidence about the existence of biomarkers related to 
SCD, the authors of this work proceed with the construction of (Protein-protein interaction) 
PPI network.  Data regarding the nodes of the graph collected experimentally, while 
information about the edges was retrieved from related databases.  The significance of 
the relationship between two components was defined by Spearman’s coefficient.  
According to the study, edges with Spearman’s coefficient less than 0.3 were subtracted 
from any further analysis to minimize the chance of introducing false positive interactions 
to the network.  Following the construction of the PPI network, the application of several 
graph-analytics methods took place.  Three centrality metrics were estimated for the 
entities of the graph, namely, betweenness, degree and closeness centrality.  The authors 
stated the significance, performance, and drawbacks of each metric.  On top of that, they 
report the most significant findings, as they derived from centrality analysis, regarding 
proteins correlated with SCD. 
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At last, they refer to other approaches of previous works that attempted to perform 
community detection using Voronoi diagrams in graphs.  According to the authors, 
Voronoi diagrams are used to cluster nodes according to the distance of the member of 
a predefined subset from the center of the cluster, which in this case they are called 
Voronoi sites.  To further expand the findings of this study they applied the method for the 
case of the PPI network of patients with SCD.  That said, for the purpose of this analysis, 
proteins directly affected by the SCD were used as Voronoi sites, while components of 
the graph that belong to a cluster are considerably more likely to be affected by the SCD-
affected protein.  In total, 22 proteins were characterized as Voronoi sites, meaning they 
altered by SCD, and 16 clusters were marked through this analysis. 

De León et al. 2014 [38] 

In this work the authors developed a vascular network model to illustrate molecular paths 
related to atherogenesis-oriented processes.  They applied their method in human and 
murine datasets.  At first, they address some crucial risk factors that contribute to the 
development of atherogenesis (e.g. such as cigarette smoking).  Following that, to 
construct the Vascular Inflammatory Processes Network (V-IPN), they used available 
data from literature and data concerning computationally predicted associations 
regarding health issues, such as inflammation or vascular disease.  On top of that they 
developed a computational reasoning method, called Reverse Causal Reasoning (RCR), 
to preprocess the concatenated dataset, in a sense of finding statistically significant 
hypotheses regarding the graph entities.  Once they retrieved and preprocessed all 
retrieved data, they proceed with manually reviewing and refining the graph model, so 
that only edges related to vascular inflammation processes would remain.  On top of that, 
they tried to further evaluate the integrity of the graph model by utilizing information from 
Gene Expression Omnibus (GEO). 

Using this RCR method the authors were able to explore the graph entities and reveal 
potential associations that were not stated in the sources from which they retrieved the 
original data.  The V-IPN could be divided into six communities, according to the key 
pathological aspects of vascular disease.  Five of those clusters were related to primary 
atherogenic vascular-oriented mechanisms, while the sixth cluster was concerning events 
occurring during atherosclerotic lesions.  Moreover, despite the discrimination of these 
subnetworks, there were, still, some inter-community connections between components 
of different clusters.  On top of that, by utilizing once more the RCR method the authors 
could evaluate the significance of the connections between the genes of each community 
and find those with more significantly changed expression levels (increased or 
decreased).  Through this process they identified common and discriminative factors in 
human and murine cases through in different stages (early or progressed) of 
inflammation, vascular disease and atherogenesis. 

Amanatidou et al. 2020 [39] 

In this project the authors developed a method for investigating the PPI network of 
proteins related to Blood-cell Autoimmune Diseases (BLADs).  The proposed graph 
model that will be described below includes information regarding PPI and terminologies 
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concerning autoimmune diseases.  At first, some of the most known BLADs are reported, 
while it is briefly explained that most autoimmune diseases are multifactorial.  The aim of 
this study was to state that reporting proteins directly related to disease-associated 
proteins could give insight about the nature of the disease. 

To construct the PPI network and BLADs, they, initially, collected data regarding 
autoimmune diseases from ICD-10, Orphanet, Mesh and NIH-NHLBI databases.  This 
dataset was further evaluated to avoid listing duplicates with alternative names.  Data 
concerning proteins associated with the recorded BLADs were retrieved from OMIM and 
DisGENET databases.  Following that, the authors used IntAct to find proteins 
experimentally correlated with the collected BLADs-associated proteins.  The 
construction of the network was conducted in Cytoscape.  Topological and functional 
enrichment analysis were the first steps for exploring the graph entities.  On top of that, 
they performed centrality analysis, by computing betweenness, degree and closeness 
centrality.  Moreover, proteins with high scores in functional enrichment analysis and/or 
the centrality analysis were further investigated by adding more GO terms.  The final list 
of candidate proteins related to BLADs derived from the intersection of proteins with top 
score in centrality analysis, proteins related to BLADs and proteins with significant GO 
terms about autoimmune disease. 

Detecting communities was the next step of this analysis and clusters with more than two 
components were subjected to further evaluation.  Throughout this process, they 
identified for each cluster proteins directly correlated to BLADs, proteins with at least on 
common 1st neighbor, proteins whose 1st neighbors are connected and proteins with at 
least one common 2nd neighbor.  In total 32 out of the 42 clusters were investigated (the 
other 10 had only two components).  Hub proteins, as well as .the rest of candidate 
BLADs-related proteins of each cluster were also subjected gene expression analysis 
using the GEO2R function of GEO.  The threshold of p-value or excluding insignificant 
results was set at 0.05.  By combining the results of this analysis the authors managed to 
discriminate 14 proteins that are most likely related to one or more BLADs, 7 of which 
they were confirmed in the literature.  In addition, with the cluster analysis they were able 
to distinguish 17 more proteins that play a connecting role between clusters of different 
BLADs, indicating possible interconnections between them. 

Marzec et al. 2021 [40] 

The authors of this work focused on a sex-dependent aspect of the storage effect in the 
membrane of stored RBCs.  Their dataset consisted of venous blood from 24 men and 
24 women of varied ages.  To collect enough data they performed weekly samplings up 
to the 42nd day, starting from the day they retrieved the blood samples (fresh RBCs).  
Throughout the analysis, they observed significant differences between male and female 
blood samples regarding RBC’s lipidomics.  More specifically, levels of cholesterol and 
triglycerides were more elevated in erythrocytes from female donors.  That applies to the 
values of free iron, as well, indicating a higher level of hemolysis.  Results regarding 
several hematological parameters (e.g. MCV, hematocrit etc.) confirmed that values of 
membrane’s deformability were greater in males, though in both sexes there was a 
decreasing tendency.  Alterations in RBC’s metabolism due to storage effect were found 
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to be sex independent.  To check the significance of their results, the authors applied 
one-way ANOVA followed by post-hoc tests depending on the parameters they examined 
(e.g. for estimating the significance from the analysis of biochemical parameters Tukey’s 
post hoc was performed after the one-way ANOVA). 

Table 2.  Similarities and differences of related work with our work 

Work Similarities Differences 

Antonelou et al. 
2018 

1.  Both projects handle the same 
biological problem. 

2.. Moreover, the dataset that was 
used in the work Antonelou et al. 

was part of the final dataset of our 
project. 

3.  Network analysis was 
conducted in both cases.  

Pearson’s coefficient was used as 
a metric to define the significance 
of relationships in intra- and inter-

parameters association of 
connected components. 

1.  Centrality analysis was not applied in 
the Antonelou et al work 

2.  Their approach of the network analysis 
was quite static, and it was conducted in 

Cytoscape 

3.Besides the experimental data, external 
sources were used, in our work, for the 

enrichment of the hematological markers 
network 

3.  No use of any graph database system 
was made in their project. 

Kowsar et al. 2020 

1.  Both works are related with the 
analysis of health-related issues 

using network analysis 

2.  For defining the significance of 
the relationships Pearson’s 

similarity algorithm was used in 
both cases 

1.  The main biological aspect is different 
in the two projects 

2.  No graph analytics methods are utilized 
in the work of Kowsar et al 

3.  Also, they did not use any graph 
database system for the construction of the 

network 

4.  A more statistical approach took place 
for the meta-analysis of the resulting 

graphs. 

Goodman et al. 
2013 

Both projects are related to the 
analysis of proteomics and 

interactomics of erythrocytes 
through graph analytics 

1.  Goodman et al. focus mostly on the 
analysis of PPI networks and reviews 

previous works in that matter 

2.  To construct the PPI network they use 
Spearman’s similarity algorithm (Pearson’s 

similarity algorithm was used in our 
project) 

3.  For detecting communities the Voronoi 
diagrams were utilized, while in our case 

was made use of several algorithms 
(Louvain method, Strongly Connected 

Components etc.) 
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4.  Since their project is a review of the 
current methods and knowledge there is 

not a novelty in their results 

5.  They do not make use of any graph 
database system or interface to manipulate 

the constructed graph. 

De León et al. 2014 

1.  Both projects focus on blood-
related health issues 

2.  In both cases community 
detections algorithms/methods 

are utilized 

1.  In De León et al. the final dataset 
consists only of predicted and literature-

related data 

2.  They mostly focus on  the development 
of the RCR method for predicting and 
refining relationships between graph 

entities and so much on applying graph 
analytics 

3.  Their approach does not utilize any 
graph database system and is quite static. 

Amanatidou et al. 
2020 

1.  Both projects focus on graph 
analytics of health issues 

2.  Both projects use 
experimentally and 

computationally verified data 

1.  In Amanatidou et al the biological 
aspect is not related to RBCs 

2.  A different statistical approach is 
applied in their case.  The relationships of 

the connected components is based on the 
functional enrichment analysis, while in our 
case similarity algorithms provided by the 

graph database are utilized 

3.  Though the graph-related analysis they 
performed was extensive, it is quite static, 

and they do not make use of any graph 
database system.  The construction of their 

graph was made in Cytoscape. 

Marzec et al. 2021 
The main biological aspect of 
both projects is the effect of 

storage in RBCs 

1.  Marzec et al. use simpler statistical 
approaches (e.g. ANOVA) and no graph 

analytics 

2.  Though they used more donors, the 
parameters they analyzed were fewer.  
Also, it consisted only of experimental 

data. 
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3.  DATA COLLECTION 

3.1.  Experimental Data 

Metabolic and Physiological Data 

For this Thesis real user data as well as data from external sources were used.  More 
specifically, experimental data – concerning the metabolic, physiological, proteomic and 
vesicular profile – retrieved from six different (G1, G3, G4, G5, G6, G7) G6PD deficient 
individuals (G6PD-) and one control (C/G2) individual (G6PD+).  Regarding the metabolic 
and physiological data, each donor participated in 7 weekly samplings based on the 
storage stage of his/her RBCs (D0, D7, D14, D21, D28, D35 and D42).  For each donor 
the concentration of 295 distinct metabolites in RBCs from several metabolic pathways 
(e.g. glycolysis, pentose phosphate pathway etc.) was estimated, while for the case of 
physiological data 83 parameters related to the physiology of RBCs, such as cell’s fragility 
and reactive oxygen species (ROS), were measured. 

 

Figure 6. Sample of metabolic data.  In this figure the abundances of all amino acids in RBCs of 
G6PD+ donor, as well as the first sampling (D0) of all G6PD- donors are shown. 

In Figure 6 a sample of the metabolic data is presented.  For each metabolite/compound 
information about the name, the ID in KEGG database, the pathway in which is a part of 
and the abundances in RBCs of G6PD- and G6PD+ donors were collected. 

 

Figure 7. Sample of physiological data.  In this figure a sample of physiological data is displayed.  
The first part concerns G6PD- donors, while the second part shows information about the 

physiological profile of the control donor. 
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In Figure 7 a sample of the physiological data is shown.  More specifically, each row 
represents the physiological profile of RBCs of each donor, while columns state the 
abundances of each physiological parameter in RBCs and the sampling stage.  It is 
important to mention that in this case a different reference code – compared to metabolic 
data – for the description of sampling stages was used.  For instance, instead of referring 
to the first sampling as D0, the term NS (no storage) or D2 was used.  Therefore, as 
described in the section “Data pre-processing and curation” some modification had been 
made to adapt a common reference code. 

Proteomic Data 

For the case of proteomic data three pooled − storage based − samplings took place for 
both G6PD- and G6PD+ donors (D0, D21 and D42), while for the collection of vesicular 
data, donors participated only in one sampling at the 42nd day of the experiment.  The 
initial proteomic dataset consisted of 934 unique proteins. For each protein information 
about the official protein name, the gene it is expressed from, the molecular weight, the 
accession number (AC) in UniProtKB/SwissProt, as well as the abundances in RBCs and 
vesicles of G6PD- and G6PD+ donors were collected.  Measurements of G6PD- donors 
are denoted with the extension “Gpool” or “_G_” in their name, while the control donor is 
marked as “C_” (Figure 8). 

 

Figure 8. Sample of proteomic data. 

3.2.  External Data Sources 

To enrich the size of the final dataset several open access databases with information 
relative to G6PD were used.  More specifically, data about protein interactions between 
G6PD and other proteins were retrieved from the API (Application Programming 
Interface) of String database.  String is a database of experimentally proven and predicted 
interactions − physical and functional − between proteins [41].  For this analysis only 
functional – direct and indirect – relationships of G6PD with other proteins were collected.  
In Figure 9 a sample of the dataset that retrieved from String is shown.  Each row presents 
information about protein interactions.  For each interaction, the protein interactors (node1 
and node2) and several types of metrics, such as the prediction score applied by the 
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database, the text mining score of the interaction, the co-expression and neighborhood 
score of the two interactors and the combined score are recorded. 

 

Figure 9. Sample of data retrieved from String database. 

Additionally, data regarding protein-chemical or chemical-chemical interactions retrieved 
from STITCH database.  To understand the type of interaction between two interactors, 
one needs to record the identity of each interactor.  Therefore, all chemicals/compounds 
have a unique reference code that has the initials “CID”, while all proteins are identified 
by their protein id, which has the initials “ENSP”.  The confidence of each relationship 
derives from the combination of several metrics, such as the co-expression levels of the 
two interactors, the text mining score or the prediction score that was applied by the 
database itself.  A sample of the data that were retrieved from STITCH database is 
available in Figure 10 [42].  In total, 241 interactions were collected from String database 
and 453 additional interaction retrieved from STITCH database. 

 

Figure 10.  Sample of data retrieved from STITCH database. 
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Data, regarding diseases related to G6PD or proteins closely associated with it, retrieved 
from Human Protein Atlas (HPA) and Ensembl.  HPA contains information about most 
human proteins and gives insight about the tissue their expressed (e.g. brain, blood etc.), 
the method they were extracted (e.g. spectrometry, antibody-based method etc.) and 
potential pathogenicity status [43].  For this analysis, data related to the pathogenicity 
status of G6PD, and the most statistically significant proteins of the hematological 
markers network were retrieved from the API server of HPA (Figure 11).  Ensembl is an 
open genome browser with genomic information about vertebrates.  Specifically, each 
human gene is fully annotated, and data related to chromosome position, variations, 
phenotypes, diseases, and external sources are available [44].  In this case, too, data 
about G6PD and the most statistically significant proteins of the network were collected.  
In more detail for each protein information, about its phenotype or implication in disease, 
as well as the external source from which the information about the disease was provided, 
were retrieved (Figure 11).  In total, 39 records about diseases were collected from 
Ensembl database and 27 additional diseases were retrieved from HPA. 

 

Figure 11.  Sample of data retrieved from HPA (left) and Ensembl (right).  For each record in the 
HPA dataset (left) there are information about genes and their relation with diseases, while for the 

case of the Ensembl dataset (right) the name of each disease, the UniProtKB/SwissProt of the 
related protein and the original source of the information are reported. 

3.3.  Data pre-processing and curation 

For the cases of metabolic and physiological data parameters with missing values, to at 
least one subject, were subtracted from any further analysis. Moreover, due to some 
ambiguities in some terminologies of physiological data and to increase the accuracy of 
the method, a common reference code for time/storage characterization was used.  Thus, 
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all labels in physiological data with the extension “NS” or “D2” will be replaced with “D0”.  
Furthermore, proteins with sampling measurements less than 10 units at all sampling 
stages were excluded from the analysis, while values of those who passed the filtering 
process were normalized for statistical purposes.  After finishing with the pre-processing, 
the final experimental dataset consisted of 295 metabolites/compounds, 58 physiological 
parameters and 465 proteins. 

 

Figure 12. Schematic presentation of the pre-processing of physiological and proteomic data. 

In addition, throughout the introduction of data from external sources to the hematological 
markers network, a cross evaluation was made to avoid data duplication. Therefore, data 
represented in both experimental dataset and dataset from external sources were 
introduced only once to the network keeping as properties information or parameters that 
were unique in each of the two datasets, while common information were imported only 
once (Figure 13). 

 

Figure 13.  Schematic representation of the composition of the final dataset.  Data in common 
between the experimental dataset and the dataset from external sources were parsed only once 
keeping all unique properties from each component, but only once the properties in common.
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4.  GRAPH DATABASE FOR HEMATOLOGICAL MARKERS 
NETWORKS 

4.1.  Query Requirements 

The next step towards the construction of the hematological markers networks was to 
determine user requirements in terms of a set of biological queries (to be posed on such 
networks) that could be useful for the better understanding of biological aspects of the 
problem. Those requirements will drive the construction of a knowledge graph that could 
explain interactions or, better yet, reveal potential associations between different 
parameters.  Next, we present these queries arranged in three groups based on the 
general concept of each query.  Each group will be presented in more detail below. 

The first group of queries is related to “Biologically Converged Parameters”.  The following 
biological questions are part of this group: 

1. Inter- and intra- parameter associations in all possible combinations:  This query 
intends to give insight about interactions between one or more different data types.  A 
good example of that could be the gathering of all biologically converged relationships 
between a group of metabolites (e.g. amino acids) or between metabolites and 
physiological parameters or even the correlations of statistically significant proteins of the 
hematological network with diseases.  Another aspect of this query could be the 
association of the metabolic profile of the first sampling (D0 or in vivo) with the rest of the 
samplings (D7 – D42 or in vitro). 

 
Figure 14.  Correlation network of converged relations between physiological parameters and 
metabolites.  This network depicts biologically converged correlations between physiological 

parameters and metabolites and presents an aspect of the inter-parameter associations.  Dashed 
in pink color the physiological parameters are shown, while metabolites are marked with different 

colors depending the metabolic pathway they belong. 
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2. Determination of crucial parameters:  In substance this biological question refers 
to the characterization of the most popular nodes of the – case study – system (hub 
nodes).  To answer this question, one could use several centrality algorithms (e.g. 
betweenness centrality algorithm or PageRank) and detect the ones with the highest 
score.  In graph analytics of biological networks, the most used centrality algorithms are 
a) betweenness centrality algorithm, b) degree centrality algorithm and c) closeness 
centrality algorithm [45].  For instance, to find out the most crucial physiological 
parameters of RBCs one could compute the betweenness and degree centrality of all 
nodes in the correlation network of biologically converged parameters and later filter out 
those with high scores in at least one of the two centralities. 

3. Identification of converged metabolites based on the storage timeline of RBCs:  To 
answer this query one needs to divide the seven samplings into three – storage based – 
groups (early, mid, and late storage).  Early storage refers to the first two samplings (D0 
and D7), mid storage to the next three samplings (D14, D21 and D28) and last storage 
concerns the last two sampling stages (D35 and D42).  For each group, one could perform 
correlation analysis (e.g. Pearson’s correlation analysis) to identity interactions that are 
formed between different metabolites across different storages.  Later, to enrich the 
outcome of this approach the percentage of identity between different – storage -based 
– networks could be estimated, to get insight about the homogeneity of the system across 
time. 

 

Figure 15.  Late storage metabolic correlation network.  The presented network depicts the 
associations of metabolites regarding the last two samplings (D35, D42) or else the late storage 

after performing Pearson’s correlation analysis.  Similar network could be derived from the 
analysis of the other two timelines (early and late storage).  Nodes are dashed in different colors 

according to the metabolic pathway they belong. 
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The second group of queries is related to “Data Visualization and Subnetworks 
Representation”.  More specifically, with this set of queries, a method to 
represent/manipulate specific graph data, once the graph has been created, is suggested.  
The following biological questions are part of this group: 

1. Graph representation based on specific properties of the case study system:  As it 
is pointed out by the name of this query, one can focus on specific subgroups of the 
network based on specific properties of nodes or relationships.  For instance, nodes could 
be filtered out based on their degree centrality score or the pathway to which they belong, 
and relationships could be processed based on the correlation value of the connected 
nodes or the sampling stage of that. 

2. Data representation in descending/ascending order:  In this case, too, once the 
hematological marker network is fully created, one can extract data of interest in tables 
and later present them in diagrams, such as heatmaps or bar graphs.  For instance, in 
Figure 16 the heatmap of betweenness centrality (BC) scores of all converged 
metabolites across all sampling stages is shown.  One can distinguish metabolites with 
high BC scores based on color differences. 

 
Figure 16.  Betweenness centrality (BC) score of converged metabolites across different 

samplings.  Blocks dashed in light color indicate a small BC score, while those dashed in dark 
colors are supposed to present a higher BC score. 

3. Detection of clusters:  This query refers to the detection of communities on different 
relationship types, such as converged metabolites, converged physiological parameters, 
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statistically significant proteins, or combinations of those, using relative algorithms.  One 
of the most used algorithms for detection of clusters is the Louvain algorithm.  Louvain 
algorithm is a hierarchical clustering algorithm, that recurrently identifies communities of 
nodes, by comparing the number of edges within the cluster with the expected number of 
edges that could be found in it, on highly connected graphs [46].  In Figure 17 an example 
of the detection of such clusters using the Louvain algorithm is shown.  The algorithm 
was applied on storage-based graphs (early, mid, and late storage) that were described 
above. 

 
Figure 17.  Detection of communities with highly connected components on storage-based 

graphs.  These figures show the clusters that were detected using Louvain algorithm on storage-
based graphs (early, mid, and late storage).  In caption 1 (left) clusters of the early-storage 

metabolic correlation network are presented.  In caption 2 (right) clusters of metabolites from the 
mid-storage metabolic correlation network are shown, and clusters of late-storage metabolic 

correlation network are marked in caption 3 (center). 

4. Focusing on clusters/subnetworks:  This query leads to a subsequent analysis 
after the detection of communities/clusters.  Therefore, by focusing on specific clusters 
one could extract useful theoretical information that, potentially, could be further 
investigated through experimental procedures.  For instance, it could be of major 
importance to explore the association of metabolites or other compounds that are highly 
correlated with the fragility of RBCs or regeneration of ROS, since both are physiological 
parameters with high impact on the vitality of RBCs.  Another interesting approach, that 
could, potentially, highlight converged relationships between metabolites across time, 
could be estimating the percentage of identity between clusters of different networks, 
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such as the early-storage metabolic correlation network and late-storage metabolite 
correlation network. 

The final group of queries is related to “Comparative Analysis of Donors’ Metabolic 
Profile”. This group consists of the following biological questions: 

1. Comparing donors’ metabolic profile in pairs:  Answering to this question could 
highlight either the homogeneity or heterogeneity of the system, since all donors were 
tested under the same conditions.  Pairwise comparison of metabolic profiles of G6PD- 
donors could shed light on this matter.  In Table 3 Cosine Similarity of all possible 
combinations of donors are presented.  The closer the similarity score to one the more 
similar the metabolic profiles of the compared donors are. 
Table 3.  Pairwise comparison of G6PD- donors’ metabolic profile.  Cosine Similarity was used as 
metric for the comparison of donors.  The closer the similarity score to one the more similar the 

metabolic profile of donors are. 

 

2. Investigate the impact of storage to RBCs’ metabolic profile:  The purpose of this 
query is to gain insight about the effect of storage to RBCs’ vitality and functionality.  
Comparing the in vivo system of each donor (D0) with the in vitro system (D7 – D42) 
could reveal the critical storage period at which the functionality of RBCs starts to disrupt.  
The higher the similarity score between the two systems the lower the disturbance of 
RBCs’ function is.  In Table 4 Cosine Similarity of in vivo system of metabolic profile of 
each donor with the rest of storage stages (in vitro system) is shown. .  Each row 
represents the metabolic profile of G6PD- donor and columns indicate the compared 
systems.  For instance, the column with header “D0vsD7” presents the Cosine Similarity 



Data Exploration and Retrieval for Hematological Markers Networks 

M. Batskinis  30 

of in vivo system with the 7th day of storage.  One can easily notice a decreasing affinity 
between the two systems as time passes by. 
 

Table 4.  Impact of storage on RBCs’ functionality at G6PD- donors. 

 
 

4.2.  Data Model 

After defining all necessary queries that would help to better set up the final knowledge 
graph, we developed the graph data model.  Throughout this process node and 
relationship types of the final graph were specified.  For this reason, all data were grouped 
into categories.  In total, the hematological markers network consists of 950 nodes, 
divided in 41 groups and 87,799 relationships, arranged in 17 distinct types.  Following 
up, all node and relationship types will be presented in tables, alongside with their 
properties and any additional information that would help to better understand the outline 
of the knowledge graph. 

Starting with, in Table 5 node types of hematological markers network with their properties 
are presented. 

Table 5.  Node types of hematological markers network along with their properties. 

Node Type Properties Additional Information 

Compounds (295) 

1. early mean [avg (D0, D7)] 
2. mid mean [avg (D14, D21, D28)]  

3. late mean [avg (D35, D42)] 
4. Name 

5. molecule type 

295 compounds categorized in 33 groups 
based on the metabolic profile they belong 
to 

Physiological 
Parameters (58) 

1. Name (acronym) 
2. Full_name (official name) 

Physiological parameters with missing 
values were excluded from the analysis 
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Proteomics (465) 

1. Name 
2. Gene 

3. UniProtID 
4. Molecular Weight 

5. early control 
6. mid control 
7. late control 
8. early G6PD 
9. mid G6PD 
10. late G6PD  

11. abs_early logFC 
12. abs_mid logFC 
13. abs_late logFC 
14. molecule type 

The following properties refer to the control 
samplings: early, mid & late control, while 
early, mid & late G6PD refer to G6PD- 
samplings 
 
Properties abs_early, abs_mid & abs_late 
logFC refer to the absolute value of logFC 
(logarithmic Fold Change) value between 
diseased and control samples of the 
corresponding sampling stage 

Donors (7) 1. Name 

1 control & 6 G6PD- donors 
Hematological data regarding control 
donor are not included in any further 
analysis, due to lack of data 

Stitch Data (40) 
1. Name 

2. molecule type 
Additional data related to G6PD that were 
retrieved from STITCH database 

String Data (15) 
1. Gene 

2. molecule type 
Additional proteomic data related to G6PD 
retrieved from String database 

Ensembl Data (4) 1. UniProtID 
External proteomic data related to G6PD 
that were collected from Ensembl rest API 

Disease (49) 
1. Name 
2. source 

Data related to diseases or generic 
pathogenic phenotypes.  Information about 
such data were retrieved from Ensembl 
and HPA 

G6PD (1) 

1. Name 
2. Gene 

3. UniProtID 
4. molecule type 

— 
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Following up, in Table 6 relationship types of the knowledge graph alongside with their 
properties and additional explanatory information are presented. 

Table 6.  Relationship types of hematological markers network along with their properties 

Relationship Type Properties Additional Information 

RELATED TO 
(12,390 w/o control donor 
14,455 with control donor) 

1. CON 
2. timestamp 

Connects donors with compounds. Each 
relationship presents the concentration (CON) of 
each compound at a specific sampling stage 
(timestamp) 

Physiology 
(1,025 w/o control donor 
1,435 with control donor) 

1. value 
2. timestamp 

Connects donors with physiological parameters.  
Measurement (value) of each physiological 
parameter along with the sampling stage 
(timestamp) of it are recorded 

Associated with (32) — 
Filters G6PD-related compounds at most of 
sampling stages 

Compound Similarity (12,360) 
1. similarity 

2. timestamp 
3. correlation type 

Connects highly correlated compounds. 

Threshold: abs(Pearson’s R) ≥ 0.85 

Bio converged Correlations (134) 
1. correlation values 
2. correlation type 

Filters pairs of compounds with significant 
correlation in at least 4 sampling stages 

Early storage (357) 
Mid storage (158) 
Late storage (236) 

1. similarity 
2. correlation type 

Each relationship type represents significant 
correlations between compounds after grouping 
them based on storage stage. 

That said, early storage refers to the first two 
samplings (D0, D7), the next three samplings 
(D14, D21 and D28) are characterized as mid 
storage and late storage refers to the last two 
samplings (D35 and D42) 

Phys - compounds correlations 
(42,351) 

1. time pair 
2. similarity 

3. correlation type 

Correlations between physiological parameters 
and compounds at all possible time-based 
correlations (homologous or heterologous). 

Threshold: abs(Pearson’s R) ≥ 0.80 
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Converged phys - compounds 
correlations (312) 

1. times of occurrence 

Filters pairs of physiological parameters and 
compounds that are correlated in at least 25% of 
theoretically possible combinations*. 
 
*Theoretically possible combinations:  Since 
there are 7 sampling stages for both metabolic 
and physiological data, there are 49 (7*7) 
possible correlations between physiological 
parameters and compounds. 

Protein correlations (6,704) 
1. correlation type 

2. similarity 

Correlations between proteins of G6PD- donors  
Threshold: abs(Pearson’s R) ≥ 0.99 
The threshold in this case was stricter due to lack 
of proteomic data (only 3 samplings took place) 

Protein compounds correlations 
(8,515) 

1. correlation type 
1. similarity 

Correlations between proteins and biologically 
converged compounds.  
Threshold: abs(Pearson’s R) ≥ 0.85 

Donor similarity (15) 2. similarity 
Pairwise comparison of G6PD- donors’ 
metabolic profile. Cosine similarity was used as 
metric 

PPI (445) 

1. source 
2. textmining score 

3. neighborhood score 
4. database score 
5. coexpression 

3. combined score 

Protein-protein interactions of proteins related – 
directly or indirectly – to G6PD.  STITCH 
database and String database are the sources of 
these interactions 

Protein Chemical Interaction (137) 

1. source 
2. textmining score 

3. neighborhood score 
4. database score 
5. coexpression 

6. combined score 

Protein-chemical interactions of proteins related 
– directly or indirectly – to G6PD.  STITCH 
database is the source of these interactions 

Chemical Chemical Interaction (89) 

1. source 
2. textmining score 

3. neighborhood score 
4. database score 
5. coexpression 

6. combined score 

Introduces chemical-chemical interactions to 
knowledge graph.  Data regarding to such 
relationships were retrieved from STITCH 
database 

Phenotype (70) — 
Connects proteins to diseases or pathological 
phenotypes that are related to.  Ensembl and 
HPA are the sources of such interactions 
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4.3.  Neo4j Design and Setup 

4.3.1.  Importing Data to Neo4j 

There are several ways to import data into Neo4j depending on the data source.  For API 
data the most common way is through prefixed algorithms (e.g.  APOC standard 
extension library) that are available in Neo4j, while for remote or local files Cypher queries 
are preferred [33].  In this section, we are going to focus on importing local data using 
Cypher queries. 

Before importing local data sources to Neo4j is mandatory to check the format of the file, 
since only CSV (comma-separated values) files can be processed with Neo4j.  Following 
that, the LOAD CSV command should be used to read CSV files.  To use this clause 
properly, one needs to specify the exact path of the location of the file including the prefix 
“file:///” to the query.  An example of this command is shown below. 

LOAD CSV WITH HEADERS FROM 
"file:///C:/Users/mbats/OneDrive/Desktop/metabolomic_data.csv" AS row 

In this example each row of the file “metabolomic_data.csv” is passed to the Neo4j 
platform.  Since the extension “WITH HEADERS” was used, all values of the first line of 
the file will be considered as column names. 
In addition, it is important to mention that each value is passed to the platform in the 
format of a string, while null or empty values are not stored in Neo4j.  Therefore, several 
transformations, such replacing missing values or transforming string data to integers or 
floats, might be necessary while processing.  Besides that, the most practical part of 
dealing with CSV files in Neo4j platform is the fact that the user can convert any data into 
graph-related data types, such as nodes or relationships.  Thus, the performance during 
data loading is increasing and the handling of large amounts of data is more manageable.  
Prerequisites for such procedures are the understanding of graph database systems and 
basic Cypher commands.  An example of transforming text data into graph data is shown 
below. 

LOAD CSV WITH HEADERS from  
"file:///C:/Users/mbats/OneDrive/Desktop/proteomics_data.csv" AS data 
WITH data 
WHERE NOT ALL(x IN  
[data.Gpool_D2,data.Gpool_D42,data.Gpool_D21,data.C_D2, data.C_D42, 
data.C_D21,data.Ves_C_D42,data.Ves_G_D42] WHERE toFloat(x) <= 10.0) 
MERGE (n:Proteomics{Name:data.`Identified Proteins 
(934)`,UniProtID:data.`AccessionNumber`,MolecularWeight:data.`Molecular 
Weight`,early_control:toFloat(data.C_D2),early_G6PD:toFloat(data.Gpool_D2),mid_control:toFloat(data.C
_D21),mid_G6PD:toFloat(data.Gpool_D21),late_control:toFloat(data.C_D42),late_G6PD:toFloat(data.Gp
ool_D42),Ves_C_D42:toFloat(data.Ves_C_D42),Ves_G_D42:toFloat(data.Ves_G_D42)}) 

In this example each row of the file “proteomics_data.csv” is passed to the Neo4j platform.  
Once again, the first row of the file is used as column names.  Following that, a filtering 
process takes place using the WHERE clause.  The query concludes by transforming 
initial data into graph data and more specifically into nodes under the label “Proteomics”.  
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One can easily notice that several columns of proteomics data are passed as node 
properties and some of them are transformed to float values. 

This section concludes with presenting the whole process that was followed to pass all 
available data regarding biomedical/hematological markers related to the issue that was 
studied.  The process of importing the data was divided in four parts depending on the 
data type/source: 

A. Donor Names & Metabolic Data 

LOAD CSV WITH HEADERS FROM 
"file:///C:/Users/mbats/OneDrive/Desktop/metabolomic_data.csv" AS row 
UNWIND keys(row) AS head 
WITH DISTINCT(head) AS heads ORDER BY toUpper(head) ASC 
WHERE heads =~ 'G.*' OR heads =~ 'C_.*' 
WITH apoc.text.replace(heads,'_D[0-9]*','') as names 
WITH DISTINCT names 
MERGE (n:Donors{Name:names}); 

The above clause extracts information regarding G6PD donors from the 
“metabolomic_data.csv” file.  Each donor (including control) was passed as a distinct 
node under the label “Donors”.  Following that, information about each 
metabolite/compound from the aforementioned file was introduced as a distinct node to 
the knowledge graph.  All compounds were grouped based on the metabolic path they 
belong to.  Additionally, several columns were used as properties for each node.  The 
query that was used to pass metabolites to the network is shown below. 
LOAD CSV WITH HEADERS FROM 
"file:///C:/Users/mbats/OneDrive/Desktop/metabolomic_data.txt" AS record 
CALL apoc.create.node([record.Pathway],{Name: record.compound, pvalue:toFloat(record.pvalue)}) 
YIELD node 
WITH record,node 
MATCH (n:Donors) 
WITH record,node,n, ["D0","D7","D14","D21","D28","D35","D42"] AS timestamps 
UNWIND range(0,size(timestamps)-1) AS id 
MERGE(n)-
[:RELATED_TO{CON:toFloat(record[n.Name+"_"+timestamps[id]]),timestamp:timestamps[id]}]->(node); 

B.  Physiological Data 

The following queries describe the process of importing physiological data to the 
hematological markers network.  At first, physiological data of G6PD- donors were 
introduced to the network.  Each column name was passed as distinct node under the 
label “Physiological_Parameters” and the value of each parameters alongside with the 
sampling stage were passed as properties for each node.  This procedure was repeated 
for control data since they were stored in a different file.  This process concludes by 
passing the biomedical explanation of each physiological parameter as a property. 
LOAD CSV WITH HEADERS FROM 
"file:///C:/Users/mbats/OneDrive/Desktop/physiological_data_refined.txt" AS lines 
UNWIND keys(lines) AS parms 
WITH apoc.text.replace(parms,'_D[0-9]*','') AS names, lines 
WITH distinct(names), lines 
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MERGE (p:Physiological_Parameters{Name:names}) 
WITH distinct(names), lines, p, 
["D0","D7","D14","D21","D28","D35","D42"] AS timestamps ORDER BY names ASC 
UNWIND range(0,size(timestamps)-1) AS id 
WITH p, timestamps[id] AS time, 
collect(lines[names+"_"+timestamps[id]]) AS values 
WHERE size(values) > 0 
MATCH (n:Donors) 
WITH collect(distinct n.Name) AS source, time, p, values 
UNWIND range(0,size(values)-1) as vector 
MATCH (m:Donors) 
WHERE m.Name =~ source[vector] 
MERGE (m)-[:Physiology{timestamp:time,value:toFloat(values[vector])}]->(p); 

 
LOAD CSV WITH HEADERS FROM  
"file:///C:/Users/mbats/OneDrive/Desktop/physiological_data_control.txt" AS data 
WITH data, ["D0","D7","D14","D21","D28","D35","D42"] AS 
timestamps 
MATCH (n:Physiological_Parameters), (m:Donors{Name:'C'}) 
UNWIND range(0,size(timestamps)-1) AS id 
WITH m, n, timestamps[id] AS time, data[n.Name+"_"+timestamps[id]] AS value 
WHERE value IS NOT NULL 
MERGE (m)-[r:Physiology{timestamp:time,value:value}]->(n); 

 
LOAD CSV FROM 
"file:///C:/Users/mbats/OneDrive/Desktop/physiological_abbreviations.txt" AS data 
WITH data 
MATCH (n:Physiological_Parameters) 
WHERE n.Name = data[0] 
SET n.Full_Name =  data[1]; 

C.  Proteomic Data 

Before introducing proteomic data to the knowledge graph a filtering process took place.  
Therefore, all proteins with concentration less than 10 units at all samplings were 
excluding from the analysis for normality issues.  Following that, each of the rest proteins 
was passed as a distinct node under the label “Proteomics”.  Moreover, several columns 
were added as properties for each protein. 
LOAD CSV WITH HEADERS FROM  
"file:///C:/Users/mbats/OneDrive/Desktop/proteomics_data.txt" AS data 
WITH data 
WHERE NOT ALL(x IN [data.Gpool_D2, data.Gpool_D42, data.Gpool_D21, data.C_D2, data.C_D42, 
data.C_D21, data.Ves_C_D42, data.Ves_G_D42] WHERE toFloat(x) <= 10.0) 
MERGE (n:Proteomics{Name:data.`Identified Proteins (934)`, UniProtID:data.`Accession Number`, 
MolecularWeight:data.`Molecular Weight`, early_control:toFloat(data.C_D2), 
early_G6PD:toFloat(data.Gpool_D2), mid_control:toFloat(data.C_D21), 
mid_G6PD:toFloat(data.Gpool_D21), late_control:toFloat(data.C_D42), 
late_G6PD:toFloat(data.Gpool_D42),Ves_C_D42:toFloat(data.Ves_C_D42),Ves_G_D42:toFloat(data.Ve
s_G_D42)}) 
WITH n,apoc.text.regexGroups(n.Name, 'GN=[A-Z]*')[0][0] AS name 
SET n.Gene = apoc.text.replace(name, 'GN=',''); 
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D.  External Sources 

At last, introducing data from external sources to the network was the final part of the 
process.  Besides some differences in the context of their data, the main idea of 
introducing each data source to the network was somewhat the same.  To begin with, a 
comparison with the existing graph data took place, to identify which data were common 
and which one were not present in the network.  Common data were updated, in the 
sense of introducing some extra properties to existing nodes, while new data were passed 
as nodes under the label of the data source from which they retrieved from.  Moreover, 
information about relationships between nodes were introduced to the network as well.  
Following that, the query that was used for each external source is presented below. 

STITCH database 

LOAD CSV WITH HEADERS FROM  
"file:///C:/Users/mbats/OneDrive/Desktop/stitch_interactions.csv" AS data 
WITH apoc.coll.union(collect([data.node1,data.node1_id]),collect([data.node2,data.node2_id])) AS 
list_of_names 
UNWIND range(0,size(list_of_names)-1) AS i 
match (m) 
WHERE (labels(m) IN [["Proteomics"],["Physiology"],["G6PD"]] AND m.Name contains 
apoc.text.capitalize(list_of_names[i][0])) OR (NOT labels(m) IN [["Proteomics"],["Physiology"],["G6PD"]] 
AND m.Name = list_of_names[i][0]) 
SET m.molecule_type =  
CASE  
WHEN 
list_of_names[i][1] CONTAINS 'ENSP' THEN 'Protein'  
WHEN 
list_of_names[i][1] CONTAINS 'CID' THEN 'Chemical' 
END 
WITH list_of_names, COLLECT(list_of_names[i]) AS names 
WITH apoc.coll.subtract(list_of_names, names) AS external_sources 
UNWIND range(0,size(external_sources)-1) AS j 
MERGE(k:Stitch_data{Name:external_sources[j][0], molecule_type:  
CASE WHEN external_sources[j][1] CONTAINS 'ENSP' THEN 'Protein'  
ELSE 'Chemical' END}); 
LOAD CSV WITH HEADERS FROM  
"file:///C:/Users/mbats/OneDrive/Desktop/stitch_interactions.csv" AS data 
WITH data 
MATCH (n) 
MATCH (m) 
WHERE (NOT labels(n) IN [['Donors'],['Physiological_Parameters']] AND NOT labels(m) IN 
[['Donors'],['Physiological_Parameters']]) AND (apoc.text.capitalize(n.Name) CONTAINS 
apoc.text.capitalize(data.node1) AND apoc.text.capitalize(m.Name) CONTAINS 
apoc.text.capitalize(data.node2)) AND (n) <> (m) 
MERGE (n)-[r:interaction{source: "STITCH", textmining_score:toFloat(data.textmining_score), 
coexpression:toFloat(data.coexpression_score),neighbourhood_score:toFloat(data.neighbourhood_score
),database_score:toFloat(data.database_score),combined_score:toFloat(data.combined_score)}]->(m) 
WITH n, r, m 
CALL apoc.refactor.setType(r, CASE  
WHEN n.molecule_type = 'Protein' and m.molecule_type = 'Protein' then 'PPI'  
WHEN n.molecule_type = 'Chemical' AND m.molecule_type = 'Chemical' THEN 
'Chemical_Chemical_Interaction'  
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WHEN (n.molecule_type = 'Chemical' AND m.molecule_type = 'Protein') OR (m.molecule_type = 'Chemical' 
and n.molecule_type = 'Protein') THEN 
'Protein_Chemical_Interaction' 
END)  
YIELD INPUT, OUTPUT 
WHERE type(r) = 'interaction' 
DELETE r 

String database 

LOAD CSV WITH HEADERS FROM  
"file:///C:/Users/mbats/OneDrive/Desktop/string_interactions.csv" AS data 
WITH data 
MATCH (n) 
WHERE labels(n) IN [["Proteomics"],["Stitch_data"],["G6PD"]] AND n.Gene = data.node1 or n.Gene = 
data.node2 
WITH apoc.coll.union(COLLECT(DISTINCT data.node1), COLLECT(DISTINCT data.node2)) AS 
listOFnames, COLLECT(DISTINCT n.Gene) AS common_names 
WITH apoc.coll.subtract(listOFnames, common_names) AS string_data 
UNWIND range(0,size(string_data)-1) as j 
MERGE (m:String_data{Gene:string_data[j],molecule_type:"Protein"}) 
WITH m 
LOAD CSV WITH HEADERS FROM  
"file:///C:/Users/mbats/OneDrive/Desktop/string_interactions.csv" as data 
MATCH (n:String_data) 
WHERE m.Gene = data.node1 AND n.Gene = data.node2 
MERGE (m)-[:PPI{source:"String", database_score:data.database_score, 

textmining_score:data.textmining_score, coexpression_score:data.coexpression_score, 
neighbourhood_score:data.neighbourhood_score, 
combined_score:data.combined_score}]->(n); 

Ensembl database 

LOAD CSV WITH HEADERS FROM  
"file:///C:/Users/mbats/OneDrive/Desktop/Ensembl_interactions.csv" AS data 
WITH data 
MERGE (n:Ensembl_data{UniProtID:data.UniprotID})-[r:phenotype]-
(m:Disease{Name:data.disease,source:data.source}) 
WITH n, r, m 
MATCH (p) 
WHERE (p:Proteomics or p:G6PD) AND p.UniProtID = n.UniProtID 
DELETE n, r 
MERGE (p)-[:phenotype]->(m); 

Human Protein Atlas database 

LOAD CSV WITH HEADERS FROM  
"file:///C:/Users/mbats/OneDrive/Desktop/HPA_interactions.csv" AS data 
WITH data 
MERGE (m:Disease{Name:data.diseases,source:"HPA"}) 
with data,m 
MATCH (p) 
WHERE p.UniProtID = data.UniProtID and m.Name = data.diseases 
MERGE (p)-[:phenotype]->(m) 
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4.3.2.  Hematological Data Analysis 

The next step, after importing all necessary data to the network, included statistical 
analysis using graph-related algorithms, to filter the most statistically significant 
parameters of the network.  The process that was followed starts with finding a suitable 
approach to explore the data that were available, continues with setting a proper 
threshold, so that the outcome would be accurate enough and concludes with filter out 
biologically converged intra- and inter- parameter relationships. 

Approach 

Starting with, two algorithms were applied during the statistical analysis: Pearson 
Similarity algorithm and Cosine Similarity algorithm.  The first one was used for the 
characterization of significant intra- and inter- parameters associations between different 
data types (Compound Similarities, Physiological Parameter – Compound Similarities, 
Protein Similarities, Protein – Compounds Similarities) and the second one was used for 
the identification of percent of identity between metabolic profiles of different users 
(Donor similarities) or different storage stages (early, mid, and late storage). 

Pearson Similarity algorithm estimates the similarity between two lists of numbers.  It 
can be characterized as a symmetrical, since calculating the similarity of item A with item 
B would be the same as the computation of similarity between item B and item A.  In 
practice, Pearson Similarity is the covariance matrix of two variables divided by the 
product of their standard deviation [47].  The outcome is bounded in [-1,1].  The closer to 
-1 or 1 the similarity of two items, the more negative or positive, respectively, associated 
they are.  Two variables are negative correlated as the one variable increases the other 
decreases, and vice versa, while positive correlation indicates that both variables move 
in tandem [48].  The mathematical equation that describes Pearson Similarity algorithm 
is presented below: 

similarity(A,B)=
cov(A,B)

σΑ∙σΒ
=

∑ (Ai-A)(Bi-B)n
i=1

√∑ (Ai-A)
2

(Bi-B)
2n

i=1

  

 

Figure 18.  An example of the use of Pearson Similarity algorithm in NEO4J. 
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In Figure 18 an example of the use of Pearson Similarity algorithm along with part of the 
output is shown.  More specifically the Cypher query that is presented calls all metabolites 
and their concentration at the 7th day of the experiment and returns the Pearson 
coefficient of all possible pairs of metabolites.  Each metabolite is considered as vector 
whose elements are the concentration of the metabolite from each of the donors. 

Cosine Similarity algorithm estimates the similarity between two non-zero vectors, by 
computing the cosine of their angle.  The outcome is bounded in [0,1].  When the outcome 
is zero the two vectors are diametrically opposed, thus there is not association between 
them.  On the other hand, the closer to one the cosine similarity of two variables, the more 
identical they are [49].  The mathematical expression that describes Cosine Similarity is 
available below: 

similarity(A, B)=
A∙B

‖A‖∙‖B‖
=

∑ Ai∙Bi
n
i=1

√∑ Ai
2n

i=1 ∙√∑ Bi
2n

i=1

  

 
Figure 19. Applying Cosine Similarity algorithm in NEO4J to identify the identity of donors’ 

metabolic profile. 

In Figure 19 one can observe the clause that was used to calculate the cosine similarity 
of all pairs of donors, along with part of the output. 

Setting the threshold 

After properly estimating Pearson Similarity scores, the filtering of the most significant 
intra- and inter- parameter correlations took place.  The first step, to achieve that, was to 
set a threshold, so that statistically significant associations will be distinguished.  The 
value of the threshold varied in each case, depending on the size of the case study 
dataset or the number of samplings.  For instance, in the case of proteomic data, a stricter 
threshold was applied since fewer samplings took place (three samplings in total: D0, 
D21 and D42) compared to the rest of the experimental data (seven weekly samplings in 
total).  It’s important to mention that this step was applied only in cases where Pearson 
Similarity algorithm were used, since Cosine Similarity was used only for purposes of 
identity characterization between compared groups.  In Table 7 thresholds of all intra- 
and -inter- parameter associations are available.  
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Table 7. Thresholds applied on intra- and inter- parameter correlations for filtering purposes. 

Correlation Type 
Threshold  

(absolute Pearson Similarity) 

Compound Similarities 0.85 

Physiological Parameter – Compound Similarities 0.80 

Protein Similarities 0.99 

Protein – Compound Similarities 0.85 

 
Filtering biologically converged correlations 

By applying the threshold that was mentioned above the most insignificant associations 
between different node types were excluded from any further analysis.  However a stricter 
approach was necessary, to proceed with the filtering of biologically converged 
correlations.  For this reason, the repeatability score was applied.  As its name suggests, 
repeatability score explores the times an event occurs.  In our case, the event, that was 
tested, was the correlation between two variables.  Therefore, if a case study pair of 
variables passed the repeatability score, the relationship that is formed between them 
would be considered biologically converged. 

From this process metabolites related to G6PD, biologically converged correlations 
between metabolites and biologically converged relationships between metabolites and 
physiological parameters were identified.  For the first two cases the repeatability score 
was described as the occurrence of the relationship between each pair in at least 4 out 
of the 7 samplings, while for the case of converged correlations between physiological 
parameters and metabolites the repeatability score was expressed as the occurrence of 
the relationship between two variables in at least 25% of the theoretically possible 
combinations (see section 4.2). 

Address queries 

In this section the cypher queries that were used throughout the statistical analysis will 
be addressed. 

Compound Similarities 

MATCH (n)-[r1:RELATED_TO]->(m) 
WITH COLLECT(DISTINCT r1.timestamp) as timepoints 
UNWIND range(0,size(timepoints)-1) as time 
MATCH (n:Donors)-[r:RELATED_TO{timestamp:timepoints[time]}]->(m1), 
(n)-[r2:RELATED_TO{timestamp:timepoints[time]}]->(m2) 
WHERE m1 <> m2 AND n.Name <> 'C' 
WITH m1,m2,r2.timestamp AS timepoint,  
gds.alpha.similarity.pearson(collect(r.CON),collect(r2.CON)) as Similarity 
WHERE abs(Similarity) >=0.85 
MERGE (m1)-[r3:compound_similarity{similarity:Similarity, timestamp:timepoint}]-(m2) 
SET r3.correlation_type = CASE WHEN r3.similarity > 0 THEN "positive" else "negative" END; 
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Biologically Converged Correlations between Metabolites 

MATCH (m1)-[r:compound_similarity]-(m2) 
WITH DISTINCT m1,m2,[R IN COLLECT(r.similarity) WHERE abs(R)>=0.85] AS true_values  
WHERE size(true_values)>=4 AND id(m1)<id(m2) 
MERGE (m1)-[r:bio_converged_correlations{correlation_values:true_values}]->(m2) 
SET r.correlation_type = CASE WHEN ALL(x IN r.correlation_values WHERE x < 0) THEN "negative" END 
SET r.correlation_type = CASE WHEN ALL(x IN r.correlation_values WHERE x > 0) THEN "positive" END; 

Metabolites associated with G6PD 

CREATE (n:G6PD{Name:"G6PD",Gene:'G6PD,UniProtID:'P11413'}); 
MATCH (n:Donors) 
WHERE n.Name <> 'C' //Does not include control donor 
WITH COLLECT(n.Name) AS samples,  
["D7","D14","D21","D28","D35","D42"] AS timestamps 
UNWIND range(0,size(samples)) AS id 
UNWIND range(0,size(timestamps)) as time 
MATCH (n:Donors{Name:samples[id]})-[r:RELATED_TO{timestamp:"D0"}]->(m), 
(n2:Donors{Name:samples[id]})-[r2:RELATED_TO{timestamp:timestamps[time]}]->(m) 
WHERE n.Name <> 'C' AND n2.Name <> 'C' 
WITH m, r2.timestamp AS pair,  
gds.alpha.similarity.pearson(COLLECT(r.CON), COLLECT(r2.CON)) AS similarity 
WITH m, COLLECT(similarity) AS allPearsons 
WITH m,[R IN allPearsons WHERE abs(R)>=0.80] AS true_values 
MATCH (n:G6PD) 
WHERE size(true_values)>=4 
MERGE (m)-[r:associated_with]->(n) 

Storage-based Metabolic Correlation Networks (early, mid and late storage) 

WITH ["D0","D7"] AS time 
UNWIND range(0,size(time)-1) AS id 
MATCH (p)<-[r2:RELATED_TO{timestamp:time[id]}]-(n)-[r1:RELATED_TO{timestamp:time[id]}]->(m) 
WHERE id(p)<id(m) AND NOT n.Name = 'C' 
WITH p,m,gds.alpha.similarity.pearson(COLLECT(r1.CON),COLLECT(r2.CON)) AS Similarity 
WHERE abs(Similarity)>=0.85 
MERGE (m)-[r:early_storage{similarity:Similarity}]-(p) 
SET r.correlation_type = CASE WHEN r.Similarity > 0 THEN "positive" ELSE "negative" END 
UNION 
WITH ["D14","D21","D28"] AS time 
UNWIND range(0,size(time)-1) AS id 
MATCH (p)<-[r2:RELATED_TO{timestamp:time[id]}]-(n)-[r1:RELATED_TO{timestamp:time[id]}]->(m) 
WHERE id(p)<id(m) AND NOT n.Name = 'C' 
WITH p,m,gds.alpha.similarity.pearson(COLLECT(r1.CON),COLLECT(r2.CON)) AS Similarity 
WHERE abs(Similarity)>=0.85 
MERGE (m)-[r:mid_storage{similarity:Similarity}]-(p) 
SET r.correlation_type = CASE WHEN r.Similarity > 0 THEN "positive" ELSE "negative" END 
UNION 
WITH ["D35","D42"] AS time 
UNWIND range(0,size(time)-1) AS id 
MATCH (p)<-[r2:RELATED_TO{timestamp:time[id]}]-(n)-[r1:RELATED_TO{timestamp:time[id]}]->(m) 
WHERE id(p)<id(m) AND NOT n.Name = 'C' 
WITH p,m,gds.alpha.similarity.pearson(COLLECT(r1.CON),COLLECT(r2.CON)) AS Similarity 
WHERE abs(Similarity)>=0.85 
MERGE (m)-[r:late_storage{similarity:Similarity}]-(p) 
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SET r.correlation_type = CASE WHEN r.Similarity > 0 THEN "positive" ELSE "negative" END; 

Protein Correlations 

MATCH (n:Proteomics) 
WITH n 
MATCH (m:Proteomics) 
WHERE n.Name <> m.Name AND id(n)<id(m) 
WITH n, m,  
gds.alpha.similarity.pearson([n.early_G6PD,n.mid_G6PD,n.late_G6PD],[m.early_G6PD,m.mid_G6PD,m.l
ate_G6PD]) AS similarity 
WHERE abs(similarity)>=0.99 
MERGE (n)-[r:protein_correlations{similarity:similarity}]->(m) 
SET r.correlation_type = CASE WHEN abs(similarity) > 0 THEN "positive" ELSE "negative" END; 

Physiological Parameters – Compounds Correlations 

MATCH (p)<-[r1:Physiology]-(n)-[r2:RELATED_TO]->(m) 
WHERE NOT n.Name = 'C' 
WITH p, m, r1.timestamp AS time1, r2.timestamp AS time2, 
gds.alpha.similarity.pearson(COLLECT(r1.value),COLLECT(r2.CON)) AS similarity 
WHERE abs(similarity)>=0.80 
MERGE (p)-[r:phys_compounds_correlations{time_pair:time1+"-"+time2,similarity:toFloat(similarity)}]-(m)  
SET r.correlation_type = CASE WHEN r.similarity > 0 THEN "positive" ELSE "negative" END; 

Converged Correlations between Physiological Parameters and Compounds 

MATCH (n)-[r:phys_compounds_correlations]->(m) 
WITH n, m, COLLECT(r.similarity) AS values, count(r) AS rel_counts 
WHERE rel_counts > 12 //25% of theoretically possible combinations 
MERGE (n)-[r:converged_phys_compounds_correlations{times_of_occurance:rel_counts}]-(m) 
SET m.correlation_type = CASE WHEN ALL(x IN values WHERE x>0) THEN "positive" END 
SET m.correlation_type =CASE WHEN ALL(x IN values WHERE x<0) THEN "negative" END; 

Donor Similarity 

MATCH (m:Donors)-[r:RELATED_TO]->(n) 
WITH n, collect(DISTINCT r.timestamp) AS time 
UNWIND range(0,size(time)-1) AS i 
MATCH (p1:Donors)-[r1:RELATED_TO{timestamp:time[i]}]->(n)<-[r2:RELATED_TO{timestamp:time[i]}]-
(p2:Donors) 
WHERE id(p1)<id(p2) AND p1.Name <> 'C' AND p2.Name <> 'C' 
WITH sum(r1.CON * r2.CON) AS DotProduct, 
sqrt(REDUCE(r1Dot = 0.0, a IN collect(r1.CON) | r1Dot + a^2)) AS r1Length, 
sqrt(REDUCE(r2Dot = 0.0, b IN COLLECT(r2.CON) | r2Dot + b^2)) AS r2Length, 
p1, p2 
MERGE (p1)-[s:donor_similarity]-(p2) 
SET   s.similarity = DotProduct / (r1Length * r2Length) 

The outcome of the whole process leads to the introduction of some relationship types to 
the knowledge graph, that were described in section 4.2.  More specifically, the following 
relationship types were generated through this process: “compound_similarity”, 
“bio_converged_correlations”, “associated_with”, “early_storage”, “mid_storage”, 
“late_storage”, “protein_correlations”, “protein_compounds_correlations, 
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“phys_compounds_correlations”, “converged_phys_compounds_correlations” and 
“donor_similarity”. 
 

4.3.3.  Constructing the Knowledge Graph 

 
Figure 20. Schematic representation of the creation of the hematological markers network 

By assembling the outcome of what was described in sections 4.2, 4.3.1 and 4.3.2 the 
final knowledge graph can be generated.  We could describe the hematological markers 
network as a network of two layers.  The first layer consists of the preprocessed 
experimental data along with all correlations that were mentioned in section 4.3.2, while 
the second layer includes external data sources (nodes, relationships, and properties) 
that enrich the length and depth of the knowledge graph by adding more detailed 
information regarding proteins and metabolites related – directly or indirectly – to G6PD. 

 
Figure 21. Schematic representation of hematological markers network’s two layers.  The first 
layer includes all relationship types related to the experimental dataset and the second layer 

concerns all graph data the introduced to the knowledge graph from the external sources that was 
mentioned in Chapter 3. 
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5.  DATA EXPLORATION AND RETRIEVAL 

5.1.  Data Analysis and Visualization 

Though Neo4j is a suitable tool for the development and exploration of graph data even 
in large scale, it has limited visualization capabilities, especially for users without an IT 
background.  Therefore, it was necessary to find another browser-based tool to use as 
the interface for our graph with which any mainstream user could interact with ease.  
GraphXR was proposed as a suitable tool for this purpose. 

GraphXR is a web application specialized in the analysis and visualization of graph data 
in 2D and 3D space.  As a browser-based tool, GraphXR gives the user the ability to 
navigate and explore any set of graph data through its environment and provides a set of 
tools and predefined algorithms , that are necessary for the analysis of graph data, and 
will be described in more detail in the next sections.  One of the many assets of GraphXR, 
besides being user friendly, is the connection it has with Neo4j.  That said, the user can 
link a copy of any working project in Neo4j to GraphXR, without disrupting the original 
project.  Moreover, any new elements passed to the existing network can be saved back 
to the original project inNeo4j [50]. 

 
Figure 22.  Display screen of GraphXR 

Moving on, the display screen along with all possible options that are available to the user 
will be described in detail. Starting with, in Figure 22 a screenshot of the display screen 
of GraphXR is shown.  On the left of the display screen the Main menu is presented with 
a set of options that include opening panels, importing, transforming, and displaying data.  
On the right of the display screen Legend menu (top right), Context menu (bottom right) 
and Navigation panel (bottom right) are available.  Through the Legend menu one can 
select nodes based on their category, tags or properties and relationships by relationship 
type, while on the Context menu there are several tools to use for data selection and 
manipulation in graph space.  Finally, through the Navigation panel one can navigate 
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within the graph space in 3D mode, rotate and zoom in/out the graph and with the search 
panel one can search for nodes or relationships of the graph using specific keywords (e.g. 
property names or node labels). 

Main Menu 

The main menu panel is the part of GraphXR that includes most of the tools that are 
necessary for any kind of data manipulation or visualization in graph scape.  It consists 
the following tabs: 

● Project panel, which includes Category and Relationship tabs to give the ability to 
the user to select any node or relationship type, respectively, to be displayed in the graph 
space.  Moreover, it includes the Settings tab with which the user can control the display 
size of nodes and the width of edges and the final tab of Project Panel comes under the 
name “Data” and allows the user to import/export data in standard formats (e.g. CSV and 
GXRF) or save data to Neo4j 
● Query panel, which enables the use of Cypher and SQL queries or manipulating 
and saving mappings of CSV files.  It is noteworthy that favorite queries can be saved for 
later use, providing an alternative method for filtering specific nodes or relationships.  In 
Figure 23 an example of the Query panel is available 

 
Figure 23.  An example of the Query Panel.  Within the red rectangular shape some 

saved/favourite Cypher queries are shown. 

● Transform panel, which consists of a set of formulas and data operators that are 

useful for data transformation.  Some of them are responsible for merging nodes with 

same properties under one node or connecting nodes with same properties values or 

even providing access to external applications for data gathering and transformation. 

● Table panel, which presents data that are displayed in graph space, in tables.  

There are two separate tabs, one for presenting node graph data and another one for 

displaying relationship data along with their properties.  Moreover, the user can 
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manipulate these tables by selecting, reformatting, or even removing property values and 

can export the edited tables in CSV format 

● Layout panel, which provides a set of options in terms of data visualization.  That 

said, graph data can be displayed in “Force”, “Parametric”, “Geometric” or “Tree” layout.  

Force layout applies a non-canonical shape to the graph and lets the user manipulate the 

length, the strength and possibly the 3D representation of relationships.  Parametric 

layout shifts the shape of the graph by determining the 3D space using specific node 

properties.  Geometric layout forces the network to shapeshift by applying geometric 

shapes, such as circular or cubic shape and at last, tree layout applies a hierarchical 

shape to the graph, making it easier to distinguish root and leaf nodes. 

● Filter panel, which hides graph data by setting thresholds to one or more node or 

relationship properties. 

● Algorithm panel, which contains a set of the most popular graph-related 

algorithms, such as Degree, Closeness, Betweenness or Community Detection.  Each 

one of them will be discussed in more detail in section 5.2. 

● Map panel, which is useful for cases of analysing geospatial data on a world map. 

Legend Menu 

As it is already mentioned the legend menu, which is displayed in the top right of the 
display screen, allows the user to select specific graph data based on node label 
(category) or property values of choice and relationship by relationship type.  Doing that, 
one can easily subtract selected data or hide the rest of them to focus on specific regions 
of the graph. 

 
Figure 24.  An example of the tools that are available in the Legend menu. 

In Figure 24 an example of the options that are available in the Legend menu is presented. 
At first, by selecting the Category tab, a list with all node labels is expanded and each 
node type is dashed with a different color.  Moreover, the population of each node type is 
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recorded as well.  The Relationship tab shows the relationship types that are presented 
in the displayed graph.  Edges of each relationship type are dashed with different colors.  
At last, the Property tab allows to group nodes by the property of choice (in this case 
betweenness score).  That said, nodes with the same property values will be marked with 
the same color.  Additionally, in each of the cases presented in this example the user can 
select one or more groups to hide or display just by clicking on them and subsequently 
use some of the filters in the Context menu, that will be described later in detail. 

Context Menu 

The context menu, as it was mentioned above, is located on the bottom right of the display 
screen and contains a set of tools for manipulating data displayed on the graph space.  
In Figure 25 the tag name of each tool of the Context menu is presented.  The use of 
each tool is described below: 

● By clicking on the Info tag information about selected nodes will pop up 
● Trace Neighbor allocates up to the n-th neighbor of a selected node 
● With option Tag the user may add new properties to selected nodes 
● Delete erases selected nodes from the graph space 
● By clicking Expand more existing – but not currently visible – relationships related 
to selected nodes are introduced to the graph space 
● With Inverse, nodes, currently unselected, are selected.  The number on the top 
of the icon shows how many nodes are currently selected. 
● Hide selection hides selected nodes along with their edges 
● Select Visible Nodes can be applied while no nodes are selected.  On that 
occasion, all displayed nodes will be selected 
● Enable/Disable Force Layout applies or removes the force layout 
● Fly Out/Center To zooms in or out on the center if no nodes are selected.  
Otherwise zooms in or out in respect to the selected nodes 
● With Leaf Trimming nodes with zero or one relationship are deleted from the 
graph space 
● By clicking Add Node/Edge one can introduce new nodes/edges to the displayed 
graph 
● Clear removes all graph data from the display screen 
● With Pin selected nodes freeze to their current 3D location and the graph can be 
rotated around them.  Release clears pinned nodes.  The number on the top of the icon 
displays how many nodes are pinned. 
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Figure 25.  The Context menu of GraphXR. 

Taking under consideration all available tools that described above one can proceed with 
the visualization and further analysis of any graph data.  In GraphXR nodes are presented 
as circles and relationships as edges that connect two nodes.  Detailed information about 
properties of any node is accessible through the Legend menu, as described above, or 
by double-clicking the node of interest.  That said, there are two possible ways to display 
a network on the graph space.  The first one is through the Query panel of the Main menu 
by executing a query that returns the desired network.  The second option includes the 
use of the Project panel of the Main menu. 

In Figure 26 an example of how to display a network in graph space is shown.  On the 
top of the figure one can observe the network of biologically converged parameters 
(metabolites, physiological parameters, and proteins), as it was generated using the 
Query tab of the Main menu.  Part of the query that results in the displayed graph is also 
shown on the Cypher Query panel.  Nodes are dashed in different colors according to the 
node type they belong to.  The same goes for relationships too.  On the bottom of the 
figure one can  observe the way to display this network using the Project panel of the 
Main menu.  At first by clicking on the Category tab the user can specify the node types 
that want to be displayed on the graph space.  That said, the user needs to click any node 
type and be sure to check the box with the description “Visible”.  By doing that a small 
green circle will be displayed on the left of the selected node type, which means that it 
can be presented on the graph space.  Next, by clicking the Pull or Pull All button the 
selected node types will be displayed on the graph space (bottom left).  To show any 
relationship regarding the selected nodes one needs to work accordingly (bottom right). 
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Figure 26.  An example of the way to visualize a network in the graph space of GraphXR. 

5.2.  Networks’ Centralities and Communities 

One of the most common – yet of major importance – procedures in graph analytics, once 
a network is fully established, concerns the calculation of several centrality metrics, as 
well as the estimation of community formations (also known as clusters).  At first, using 
centrality algorithms to any kind of graph could highlight the most important nodes and 
give insight about the dynamics of the network, such as its spreadability, consistence and 
credibility.  On the other hand, community detection algorithms could help us identify 
strongly connected nodes, discriminate those that are more isolated and subsequently 
focus on specific clusters based on our interest and design a more detailed analysis about 
them [51]. 
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Calculating Centralities 

Former analyzes regarding RBC interaction networks suggest that the following centrality 
algorithm are particularly important to identify the most popular nodes of the graph: 
Betweenness Centrality, Degree Centrality and Closeness Centrality algorithm [37].  
Taking that into account we proceeded with the calculation of centrality metrics for the 
hematological markers network. 

To begin with, by estimating the Betweenness Centrality (BC) of a network one can get 
insight about the influence of a node over the spreadability of the information in a network.  
In practice, the power of a node is estimated as the number of shortest paths, between 
all possible groups of nodes, in which a node is part of.  With the term “shortest path” we 
refer to the best path that connects two nodes in a graph by minimizing the cost [51].  In 
Figure 27 a toy example explaining the term of shortest path is presented.  In this figure 
one can easily notice that there are two alternative paths from node A to node D.  The 1st 
path includes nodes A, B and D and the 2nd path consists of nodes A, C and D.  However, 
to identify the optimal path, or else the shortest path, one needs to take under 
consideration the weight of the edges.  That said, on the 1st path the total weight is 15, 
while on the 2nd path the total weight is 12.  Therefore, the 2nd path can be characterized 
as the shortest path from node A to node D. 

 

Figure 27.  Explaining the term of shortest path. 

Taking that into account, the mathematical equation that best describes the Betweenness 
Centrality algorithm is the following: 

BC(u)= ∑
σst(u)

σst
s≠v≠t , where σst is the total number of shortest paths from node s to node t 

and σst(u) is the number of shortest paths from node s to node t to which node u is part 
of.  The greater the BC measure of a node the more influence the network has. 

Figure 28 shows an infographic example for better understanding the BC algorithm. More 
specifically, the figure describes the calculation of BC of node E in respect to the shortest 
paths from node A to node F.  To calculate the BC of node E we need to take under 
consideration all shortest paths that start from node A pass-through node E and reach 
node F and divide them by the total amount of shortest paths from node A to node F.  The 
total amount of shortest paths from node A to node F is 4, and those that pass-through 

are 3.  Therefore, the BC score of node E is 
3

5
, or else 0.60. 
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Figure 28.  Toy example: BC of node E in respect to the shortest paths from node A to node F. 

Degree Centrality (DC) of a node is just the number of relationships concerning that 
node.  Therefore, if a node has five relationships, its DC score will be five.  Sometimes 
for normality reasons we tend to divide the DC score with the largest DC score that occurs 
in a network, which belongs to the node with the most relationships [51].  Though, DC is 
probably the simplest and fastest centrality algorithm, the importance of the results is not 
always significant.  For instance, a node can still be disconnected from an important part 
of the network, besides the fact that it might have a high DC score [37]. 

 

 

Figure 29. Toy example: DC of node F.  By taking a close look to the figure on the left one can 
notice that node F has three incoming and no outgoing relationships.  The total number of 

relationships in this network is nine.  Therefore, the DC score of node F is DC(F)=3. 

At last, the Closeness Centrality (CC) algorithm detects those nodes that are related 
with increasing the spreadability of information to the network, or else they have the 
shortest distances to all other nodes.  In practice, a node with a high CC score is more 
central to the graph and “closer” to other nodes.  As a measure, Closeness Centrality far 
more accurate than Degree Centrality since CC compares the relationships of node with 
the entire network [37].  The mathematical equation that best describes CC algorithm is 
shown below: 

CC(u)=
1

∑ d(u,yi)
n
i=1

, where n stands for the number of nodes of a network and Σd(u,yi) is the 

sum of distances of node u to the rest of the nodes (yi) and u ≠ yi.  The outcome is bounded 
in [0,1].  In many cases it is quite common to use the normalized version of the algorithm, 
which represents the average length of shortest paths rather than the sum.  This 
modification also allows the comparison of CC scores of nodes of graphs of different 
sizes.  That said, the updated mathematical formula regarding CC algorithm is the 
following: 
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normCC(u)=
n-1

∑ d(u,yi)
n
i=1

  

 

Figure 30.  Toy example: normalized CC of node A.  In the figure on the left one can easily observe 
that the distance of node A to the rest of nodes is one with the only exception being the distance 

from node A to node F, which is two since they are connected through an intermediate component 

(node E).  That said the normalized CC of node A is: 𝒏𝒐𝒓𝒎𝑪𝑪 (𝑨) =
𝟔−𝟏

𝟏∙𝟒+𝟐
= 𝟓/𝟔 ≈ 𝟎. 𝟖𝟑 

Detecting Communities 

The concept of community is quite regular in data analysis and it is related to the 
classification of data in groups for characterization purposes or retrieving additional 
information.  In graph analytics a community is defined as a subset of nodes inside a 
network with more dense connections between them than those formed with the rest of 
the graph [52].  In biological networks the identification of metabolite communities could 
correspond to metabolic pathways, while clusters of proteins could highlight potential 
biological interactions or effect on the same biological process [53]. 

One of the most popular algorithms for detecting communities is the Louvain method.  
The concept of the method is an optimization of the modularity metric.  Modularity as a 
measure is related with the capability of a network to form clusters.  Therefore, networks 
with high modularity form highly connected communities with sparse connections 
between nodes of other modules [54].  Modularity measure is bounded in [-0.5, 1].  Since 
the application of modularity measure is quite expensive in large networks, a more 
heuristic approach is used in the Louvain method to optimize the modularity score of each 
cluster.  That said, the algorithm starts by computing the modularity measure of small 
communities.  Next each small cluster is grouped into one node and the process is 
repeated until the modularity of each module is maximized [55].  Overall, the Louvain 
method for detecting communities is one of the fastest modularity-based algorithms with 
high performance even in large networks. 
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Figure 31.  Explaining the Louvain method for detecting communities. [56] 

Another well-known algorithm that is widely used for detecting communities in graphs is 
the Connected Components (CC) algorithm.  In practice, this algorithm is used for the 
identification of clusters in undirected graphs and considers as a set of connected 
components a subgraph in which there is a path to every pair of nodes inside the subset 
[51].  In Figure 32, an infographic example that explains the idea of CC algorithm is 
presented.  To begin with, nodes dashed in bordeaux indicate that they are not visited by 
the algorithm, while those marked with purple have been visited by the algorithm.  The 
process starts randomly from any node of the graph and the component counter is set to 
zero (1).  In this case and for simplicity reasons we will start from node A and continue in 
ascending order.  At first, the algorithm visits node A and all adjacent nodes are also 
considered as visited.  After checking all adjacent nodes, the component counter is set to 
one (2).  Next the algorithm checks if node D is already visited or not.  Since it was not 
visited the algorithm repeats the process of step 2 and checks all adjacent nodes of node 
D and sets the component counter to two (3).  Moving on, the next node that is checked 
by the algorithm node F.  By repeating the process, the component counter is set to 3 (4).  
The last node that is visited by the algorithm is node H. Node H has no adjacent nodes, 
thus it will be considered as a separate component.  The component counter concludes 
to 4 (5).  Once all nodes have been visited the algorithm a component id is applied to 
each node based on the community they belong to, and they are dashed accordingly (6). 
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Figure 32.  Explaining Connected Components algorithm. 

An alternative method that is mostly applied to directed graphs is the Strongly 
Connected Components (SCC) algorithm.  Similarly to the Connected Components 
algorithm a group of nodes is considered strongly connected if there is a path between 
each pair of the group.  However, in this case the path needs to be directed. 

The last algorithm that is going to be discussed in this section is the Label Propagation 
algorithm (LPA).  Label Propagation is a fast algorithm for detecting communities in 
graphs.  In this case communities are identified based on the structure of the graph and 
without having any prior knowledge about them.  However, it can be used also in a semi-
supervised manner by assigning initial labels to some nodes to reduce the proposed 
solutions.  Though LPA performs very well on densely connected graphs, it seems that 
detecting communities in sparsely connected graphs is quite troublesome for this 
algorithm, since some nodes will tend to be trapped inside a densely connected group, 
resulting to mislabeling them [51]. 

 
Figure 33.  Explaining Label Propagation algorithm [57]. 
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Case study using GraphXR: 

In this section a complete walkthrough regarding the calculation of centralities, the 
detection of communities, and the representation of results related to this analysis will be 
presented.  Starting with, we need to define the graph with which we will work on.  For 
this case the network of biologically converged components will be used as the case 
study.  The part of displaying the graph has been described in detail in section 5.1.  That 
said, we can move with computing some centrality metrics for this graph.  Thus, we need 
to choose the Algorithm tag from the Main menu and then choose the desired centrality 
algorithm.  The computation is automated, and the result will be presented as a new 
property for each node displayed on the graph space. 

In Figure 34 a case study of computing BC scores in GraphXR is presented. This example 
focuses on estimating the BC of biologically converged components.  To calculate the BC 
for each node one needs to start by clicking the button under the name Betweenness, 
which is available on the Centrality tab of the Algorithm panel of the Main menu.  Once 
this is done, the computation of BC scores starts.  The appearance of a green box with 
the message “Calculation finished” will be shown in the center of the display once the 
computation is done.  The BC measure of each node has been passed as a new property 
under the name of the algorithm (in this case “betweenness”) and it is easily accessible 
through the Legend Menu by clicking the Property tab and then selecting the property 
related to betweenness scores.  As we can see on the right of the figure above, nodes 
have been grouped and marked under different colors according to their BC value.  This 
is a quite important feature of GraphXR since it gives the user the option to display nodes 
with specific BC scores and thus distinguish t the ones that may seem more significant. 

 
Figure 34.  Computing BC scores for biologically converged components. 

Once the computation is finished one can choose to display only nodes with a specific 
range of BC score and exclude the rest of them.  This process can be easily executed in 
GraphXR with two different ways, either using the Filter panel of the Main menu or by 
combining the Property tab of the Legend menu and the Context menu. 
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In Figure 35 an example of the first approach is explained in detail.  Starting with, Through 
the Filter panel one can choose to display only the nodes or relationships with a specific 
range of values of a chosen property.  For this case the property of interest is the one 
concerning the BC scores.  By specifying the property name a scale bounded with the 
minimum and maximum values of the selected property appears.  The user can 
manipulate the limits of this scale.  The outcome of this process is to display only nodes 
with the specified range of BC values.  In this case the limits have been set from 68.18 to 
418.52. 

 

Figure 35.  Displaying selected nodes according BC values using the Filter panel of the Main menu. 

In Figure 36, an example of the second approach is presented.  In this case to present 
the final output on the display screen a three-step process takes place.  At first, through 
the Legend menu the user, by choosing the property related to BC scores, reveals a list 
of groups of nodes categorized by their BC measure.  By browsing to this list one can 
select groups of nodes with a desired betweenness score (1).  The next step includes the 
use of Context menu.  Through the Context menu the user needs to click on the Inverse 
tag to select the rest of the nodes (2).  The process concludes by clicking the tag Hide 
Selection of the Context menu.  By doing that, the nodes that were selected in the 
previous step are now hidden from the graph space and only initially selected nodes with 
the desired BC measures are displayed on it (3).  The advantage of the second way of 
filtering nodes according to BC values is the fact that the user can manually select groups 
of nodes with desired property values and display only them. 
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Figure 36.  Displaying selected nodes according BC values using the Legend Context menu. 

Both approaches that were described above point out a series of events that need to take 
place for the calculation of any centrality measure or the detection of communities.  The 
only difference is that in the case of detecting communities in a graph, the resulting node 
properties correspond to the community to which the node belongs. 

5.3.  Exploratory Analysis 

In this section a step-by-step representation of several data exploration cases will be 
provided.  The examples that will be presented are directly related to the biological 
questions that were introduced in chapter 4.  The main objective of this section is to gain 
insight about the applications of what was mentioned in the previous sections of this 
chapter, in the biological problem that is studied during this work. 

A.  Exploring inter- and intra- parameter associations  

Since the hematological markers network was set up to investigate homologous and 
heterologous correlations between different components and to answer to a set of 
biological questions related to this biological problem, a first approach regarding the 
exploration analysis could be to spectate specific relationships of the graph at will, 
depending on the question we want to answer.  That said, a good example to start with 
could be the discovery of G6PD-related metabolites along with compounds that are highly 
correlated with (also known as first neighbors in graph analytics). An explanatory 
walkthrough of that is available on Figure 37.  The first step towards the identification of 
metabolites associated with G6PD and the compounds they are highly correlated with is 
to select to display via Project panel of the Main menu only relationship types regarding: 
a) G6PD-related components (relationship type: associated with) and b) biologically 
converged metabolites (relationship type: bio converged compounds).
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By doing that only connections of those two types will be presented on graph space (1).  Following that, through the 
Relationship tab of the Legend menu we select the relationship type of G6PD-related components and then we click on 
Select Visible Nodes of the Context menu.  This step concludes by setting the value on the Trace Neighbor tag to one (2), 
so that we can also pick compounds highly correlated to G6PD-related compounds (3).  Once all necessary components 
and edges of the network have been selected, we move on with removing the rest of the data from the graph space.  To do 
that, we need to click on the Inverse tag of the Context menu, so that data disregarding G6PD-related components and their 
associates will be chosen (4).  The process concludes by using the Hide Selection tag of the Context menu.  By doing that 
only compounds related to G6PD along with their first neighbors are shown on the graph space.  All nodes are dashed with 
different colors according to the node type to which they belong.  Moreover, the shorter the length of an edge between two 
components, the more significant their connection is (5).  An alternative option of what was described above could be to 
use the Query panel of the Main menu and display the desired graph using Cypher queries. 

 
Figure 37.  Discovery of G6PD-related metabolites along with their first neighbors. 
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Another interesting approach, that is displayed in Figure 38, could be to display the map of G6PD-related proteins and 
diseases or any pathological phenotype with which they are associated, since it might shed some light on their contribution 
to the development of a disease or highlight potential functional relationships.  To display this network, we need to select 
the relationship types phenotype and protein correlations from the Project panel of the Main menu.  Since the displayed 
graph is relatively small, we can choose a different layout for this case to which we can add some additional information.  
That said, the specific network is presented in Circular layout and moreover for all nodes under the label Disease the name 
of the disease is presented, while for proteins (nodes types: Ensembl_data, Proteomics, G6PD) the UniProt Accession 
Number (UniProtAC) is displayed.  Edges marked in orange color indicate association with disease, while blue-colored 
edges suggest protein correlations. 

 
Figure 38.  Associations of G6PD-related proteins with pathological phenotypes. 
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B.  Determination of crucial parameters 

The purpose of this analysis is to highlight the most popular components of any case-
study network displayed on graph space.  To achieve that, we need to work with several 
centrality measures of the network, so that any finding, that might be derived, would be 
more trustworthy.  A good example could be to identify the most crucial components 
concerning the metabolic profile or their interconnections with the physiological and 
proteomic profile of G6PD- donors.  That said, a complete walkthrough of the identification 
of the most significant parameters would be presented below.  For the characterization of 
such components the betweenness (BC) and closeness centrality (CC) metrics were used 
as a guide.  Resulting BC and CC values of the case-study network will be further 
investigated by exporting the findings of this analysis and visualizing them using more 
responsive techniques, such as heatmaps. 

To begin with, a step-by-step representation of retrieving BC and CC measures of 
biologically converged metabolites and subsequently identifying the most significant ones 
via visualization techniques is available below. 

 

Figure 39.  Identifying the most significant metabolites – Part I. 
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Data retrieved from the procedure described in Figure 39 are stored in CSV files. It is 
important to mention that each node type is stored in a different file.  Therefore, before 
proceeding with the visualization of results it is necessary to combine all CSV files into 
one.  After that, some preprocessing took place such as normalizing the scale of BC 
values, so that is bound to [0,1], and setting a threshold of 0.05 to centrality measures to 
exclude components with insignificant betweenness and closeness values.  That said, in 
Figure 40 the output of most significant metabolites is presented.  Metabolites are 
considered crucial for the network since it has relatively high BC and CC scores.  Such 
components could be characterized as central nodes of the biologically converged 
compounds, indicating that they might play some role in the metabolic profile of G6PD- 
donors.  However, to prove such findings more experiments need to take place. 

 
Figure 40.  Identifying the most significant metabolites – Part II. 

A more informative example of such an exploration analysis is the characterization of 
crucial parameters amongst metabolites and physiological parameters.  Since the parts 
of displaying the graph, computing centralities, retrieving data, pre-processing, and 
preparing for visualization via heatmaps are similar to the first case, we will focus and 
subsequently discuss the outcome of the analysis. 

In Figure 41 the outcome of the exploration analysis, that was conducted for the 
characterization of the most significant G6PD-related components, is presented.  One 
can easily notice that even though most of the displayed parameters have similar 
closeness values, some of them can be distinguished as more noteworthy due to their 
high betweenness measure.  More specifically, mechanical fragility (MFI and MFI_37), 
osmotic fragility (MCF and MCF_37) and antioxidant capacity (TAC and TAC_UA) of 
RBCs seem to be these parameters that are more central to the network.  This finding 
depicts some of the primary characteristics of RBCs, which are related to their 
sustainability to mechanical and oxidative stress.  At any time these markers can give 
insight about the RBC’s integrity since high levels of MFI or MFC are related with RBC 
aging and subsequently hemolysis [58]. 
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Figure 41.  Identifying crucial components related to G6PD. 

C.  Presenting graph according to specific node or relationship properties 

Two aspects will be discussed in this section.  The first one is related to displaying only 
those nodes or edges that pass a filter set by the user and the second concerns the 
representation of nodes in terms of coloring based on properties values.  To explain 
properly the first case we chose to work on a very dense network, that of protein 
correlations, and extract some valuable information from it. 

In Figure 42 the filtering of nodes using the Filter panel of GraphXR is presented.   At first 
through the Filter panel of the Main menu we can select the node or edge properties to 
which we will apply a filter (top).  Following that, we proceed with setting the desired 
threshold to each of the selected properties.  The first filter concerns the edge property 
regarding the correlation between the connected proteins.  Its value is bound in [0,1] after 
the filtering process, so that correlations with negative measures will be excluded.  The 
second filter is about the statistical significance of displayed proteins.  To measure that 
the absolute value of log2 of Fold Change (logFC) was used as a metric.  Fold Change 
is the ratio between two different states [59].  In our case the first state (numerator) is the 
concentration of a protein in the in vivo system, while the second case (denominator) is 
the concentration of the same protein during the last sampling (in vitro system).  The 
logFC of each protein was computed during the setup of the hematological markers 
network.  LogFC is significant if greater than 1 (numerator = 2denominator) or smaller 
than -1(denominator = 2nominator).  In this case we used the absolute value of logFC 
measure and for this reason it is bound in [1,infinite) (bottom).  Once the filtering process 
is over the user can navigate through the Table panel and see in more detail each one of 
the proteins that satisfy the criteria. 
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Figure 42.  Filtering statistically significant proteins and their positive correlations. 

In Figure 43 an example of the second aspect of this section is shown.  Once again, the 
network of protein correlations is used as a template, but in this case, we will focus on 
selecting nodes according to a specific value using the Property tab of the Legend menu.  
Moreover, we will refer to the coloring system that is provided to color nodes by their 
property values.  One the left part of the figure one can observe the protein correlation 
network in which all nodes are dashed according to the selected property value (logFC of 
in vivo versus late in vitro in this case).  Nodes of the same color have the same property 
value.  On the right part of the figure, we can notice those nodes that were filtered 
manually, along with their relationships.  Moreover, by using the Table panel we can see 
more information regarding those nodes. 
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Figure 43.  Filtering nodes manually via Legend menu. 

D.  Working with communities 

The process that is followed to identify and subsequently work with specific communities 
of a graph is like the case study that was described in section 5.2.  Here, a similar case 
will be investigated, but this time, we will work with detecting communities of biological 
converged components and after we will focus on some of them.  A six-step exemplary 
case will be described below in detail. 

 
Figure 44.  Working with communities – Part I. 

The first part of this example starts by using the Query panel and by choosing the favorite 
query that returns all biologically converged relationships the relative network appears on 
the graph space .  Next, through the Algorithm panel of the Main menu we can browse to 
the Community Detection tab and select the Louvain method for detecting communities.  
Following that, by searching the Property tab of the Legend menu we can find one or 
more communities based on the property value created by the Louvain algorithm.  The 
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first part of this case concludes by displaying nodes of the selected community based on 
the category they belong (Figure 44). 

The second part of this process is related to exploration analysis that can take place once 
we have selected a cluster to work with.  One of the options that are available in GraphXR 
includes the Table panel of the Main menu from which the user can display all properties 
of any node type that is part of the selected community.  Another aspect could be to 
choose manually any node of the presented graph we are interested in and display its 
neighbors.  Figure 45 presents in detail both aspects.  On the top left of the figure the 
option of working with the Table panel is presented.  Here the property table of the 
category concerning physiological parameters has been selected (5).  The lower part of 
the figure focuses on displaying neighbors of manually selected nodes from the cluster.  
More specifically, in this case the neighbors of the physiological parameter “Mechanical 
Fragility of RBCs after incubation at 37o C” are shown.  Each neighbor is dashed 
according to the node type it belongs to (6).  Following such exploratory approaches one 
can gain insight about potential effects between connected components.  Of course, 
further investigation is required to drive to any accurate result. 

 
Figure 45.  Working with communities – Part II. 
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E.  Storage-based analysis of the metabolic profile 

The last case study that will be presented concerns the comparative analysis of metabolic 
networks through different storage-based time periods.  Therefore, for this example three 
metabolic correlation networks will be used namely “early storage”, “mid storage” and 
“late storage”.  More information about each one of them is available in chapter 4.  The 
process of this exploration analysis starts with detecting pair of nodes that maintain a 
strong connection throughout all stages (Figure 46) and concludes with computing the 
percentage of identity between those three networks (Table 8).  For the execution of both 
procedures the Query panel of the Main menu was used. 

 
Figure 46.  Identifying common pairs of nodes between all storage-based metabolic correlation 

networks. 

Table 8.  Percentage of identity between storage-based metabolic correlation networks.  Each 
percentage was computed via Cypher queries. 

Compared Networks Percentage (%) of Identity 
early storage VS mid storage 13.924 

early storage VS late storage 15.678 

mid storage VS late storage 27.848 

The Cypher query that was used for the computation of each percentage is available 
below: 

MATCH (n)-[r1:early_storage]-(m), 
(n)-[r:mid_storage]-(m) 
WITH COLLECT(DISTINCT [n.Name,m.Name]) AS pair, type(r1) AS type,COUNT(DISTINCT r) AS 
`common pairs` 
MATCH (m1)-[r2:mid_storage]-(m2) 
RETURN type+" VS "+type(r2) AS `compared timelines`,(toFLoat(`common pairs`)/COUNT(DISTINCT 
r2))*100 AS `% network identity` 
UNION 
MATCH (n)-[r1:early_storage]-(m), 
(n)-[r:late_storage]-(m) 
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WITH COLLECT(DISTINCT [n.Name,m.Name]) AS pair, type(r1) AS type,COUNT(DISTINCT r) AS 
`common pairs` 
MATCH (m1)-[r2:late_storage]-(m2) 
RETURN type+" VS "+type(r2) AS `compared timelines`,(toFLoat(`common pairs`)/COUNT(DISTINCT 
r2))*100 AS `% network identity` 
UNION 
MATCH (n)-[r1:late_storage]-(m), 
(n)-[r:mid_storage]-(m) 
WITH COLLECT(DISTINCT [n.Name,m.Name]) AS pair, type(r1) AS type,COUNT(DISTINCT r) AS 
`common pairs` 
MATCH (m1)-[r2:mid_storage]-(m2) 
RETURN type+" VS "+type(r2) AS `compared timelines`,(toFLoat(`common pairs`)/COUNT(DISTINCT 
r2))*100 AS `% network identity` 

Each of the examples presented above is supposed to give some insight about the 
potential anyone has in terms of exploring graph data using GraphXR.  Depending on the 
question one needs to answer a different combination of the above methods might be in 
handy. 
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6.  CONCLUSIONS AND FURTHER WORK 

Understanding the complexity of biochemical and physiological events that occur during 
the storage of erythrocytes could give insight about the most crucial parameters that are 
affected by or related to storage lesion, especially for samples retrieved from donors with 
prior blood-related health issues, such as G6PD deficiency.  Designing a conclusive 
hematological markers network using both experimental and computationally verified 
data and subsequently utilizing graph analytics is a very efficient way to look into and 
highlight intra- and inter-parameter associations between different biochemical and 
hematological components, and potentially reveal new correlations that might not been 
extensively investigated before.  However, to develop a method that best describes and 
illustrates the case-study biological problem is necessary to collect several biological 
scenarios to which the graph needs to be able to answer.  Moreover, the appropriate tools 
and functions need to be exploited, so that the final graph model consists of well-
structured relationships that highlight the significant parameters of the network, that are 
related with the biological issue, and their closely associates. 

Utilizing graph database systems, such as Neo4j, to develop and evaluate the graph 
model, that has been designed, provides the asset of handling large amounts of relational 
data efficiently, accurately and with high speed.  Neo4j is quite ideal for this purpose since 
it provides a wide variety of predefined tools and algorithms that can be of great use 
during the construction of the hematological markers network.  Moreover, it can be easily 
accessed by many programming languages through its REST API, while it gives a more 
dynamic approach to the process of graph analytics and visualization by been able to 
directly link a copy of any working project to other browser-based graph-related 
visualization tools, such as GraphXR, that can be used easily from users without an IT 
background.  However, prior knowledge of the basic aspects of graph theory and 
programming with Cypher query language are prerequisites to use Neo4j. 

Amongst the most important findings of this study were the construction of a conclusive 
graph that depicts the associations of hematological parameters throughout the duration 
of RBCs in storage and highlights the most of popular graph entities.  More specifically, 
the current graph model can give insight to several biological questions related to the 
storage effect on erythrocytes from G6PD deficient donors.  Some of the most important 
biological scenarios that have been answered with the specific graph model are related 
to finding differences between in vivo and in vitro systems, identifying biologically 
converged metabolic and physiological parameters of the network, detecting highly 
connected communities of converged components, understanding the effect of storage 
on RBCs through comparative analyzes of storage- and time- based metabolic correlation 
networks (e.g. early storage vs late storage) or collecting phenotypic information 
regarding G6PD and G6PD-related proteins.  Of course, further investigation through 
experimental procedures is required to evaluate the integrity of these results. 
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Further Work 

Up to now the development of hematological markers network is fully established  and 
graph analytics of the current graph model have been concluded as well.  However, as 
more data become available new challenges may rise that could expand the current 
version the graph.  Another task that could be further investigated, could be the 
automation of the construction of the network.  So far, all data sources are loaded 
manually to Neo4j via Cypher queries and they were manipulated from there.  However, 
as it was already mentioned Neo4j provides a REST API interface that can be accessible 
from most programming languages.  That said, an interesting approach could be the 
development of an automated method (e.g. in Python)  that would start from retrieving all 
data that may be loaded to the graph, then deal with any kind of preprocessing and data 
cleaning and, finally, conclude with the construction of the final graph model. 
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