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Abstract

In this thesis we present a classic result in the theory of mean curvature
flow, due to Ecker-Huisken. In particular, we discuss the behaviour of entire
graphs under the mean curvature flow. In their work, Ecker-Huisken proved
that, in the case of entire graphs, the flow exists for all time. Furthermore, if
the initial graph is asymptotically conical then, after suitable rescaling, the
flow converges to a self-similar expanding solution of mean curvature flow
with the same asymptotically conical behaviour.

1



to my uncle
who drew geometry on the sand

and took the forest with him
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0 Introduction

A geometric flow is the gradient flow associated to a functional on a manifold
which has a geometric interpretation, usually associated with some extrinsic
or intrinsic curvature. They can be interpreted as flows on a moduli space
(for intrinsic flows) or a parameter space (for extrinsic flows).

These are of fundamental interest in the calculus of variations, and in-
clude several famous problems and theories. Particularly interesting are their
critical points.

Extrinsic geometric flows are flows on embedded submanifolds, or
more generally immersed submanifolds. In general they change both the
Riemannian metric and the immersion.

The mean curvature flow
(
MCF

)
is an extrinsic geometric flow of

hypersurfaces in a Riemannian manifold (for example, smooth surfaces in 3-
dimensional Euclidean space). Intuitively, a hypersurface evolves under mean
curvature flow if the normal component of the velocity of which a point
on the surface moves, is given by the mean curvature of the surface.

For example, a round sphere evolves under mean curvature flow by
shrinking inward uniformly (since the mean curvature vector of a sphere
points inward). Except in special cases, the mean curvature flow devel-
ops singularities.

The most familiar example of mean curvature flow is in the evolution of
soap films. A similar 2-dimensional phenomenon is oil drops on the surface
of water, which evolve into disks (circular boundary).

Mean curvature flow is the generalization of curve-shortening flow to
n-dimensions. In the case of a compact hypersurface and under the restric-
tion that the enclosed volume remains constant (under scaling) we have the
surface tension flow. MCF extremalizes surface area, and minimal
surfaces are the critical points for the mean curvature flow

One important result (due to G. Huisken) is that compact, convex hyper-
surfaces converge to round points.
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In this thesis we are mainly interested in the behaviour, under MCF , of
entire graphs. The main result is that:

Hypersurfaces that are initially Lipschitz and asymptotically conical converge
to expanding solitons.

In the first chapter we discuss the general theory of MCF and derive
MCF as the gradient flow of the area functional.

The second chapter is devoted to the computation of the evolution equa-
tions for the basic geometric quantities under MCF .

In the third chapter we begin engaging particularly with entire graphs.
We prove the monotonicity formula which is the main tool for estimating
quantities such as the height, the gradient and the norm of the second funda-
mental form.

In the fourth chapter we prove that, starting with an embedding which
is an entire graph, the solution of MCF exists for all time and the hypersur-
faces converge, as t→∞ to a limit M∞

In the fifth and final chapter we talk about rescaling. We discuss how
the various quantities and operators scale and give the proof of our main
theorem.
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1 Preliminaries

1.1 Hypersurfaces in the Euclidean space

We examine n-dimensional manifolds M immersed (but mostly embed-
ded) isometrically in Rn+1. These are called hypersurfaces.

We will be interchanging between M and ϕ to denote the n-dimensional
manifold M immersed in Rn+1 by the immersion ϕ:

M
ϕ−→
iso

Rn+1

Subsequently we will view M both as a subset of Rn+1 with the identifica-
tionM ↔ ϕ(M) ⊂ Rn+1 and as a n-dimensional Riemannian manifold
on its own with the metric g induced by the immersion ϕ.

More accurately

(M, g) ↔
isom

(ϕ(M), ḡ|ϕ(M)) ⊂ (Rn+1, ḡ)

g := ϕ∗ḡ

⇔ dϕ(g) = ḡ|M
that is

〈X, Y 〉M := 〈X, Y 〉g
ϕ:
=
isom
〈dϕ(X), dϕ(Y )〉dϕ(g) = 〈dϕ(X), dϕ(Y )〉Rn+1

for every X, Y ∈ TM . Sometimes we will write 〈·|·〉 instead of 〈·, ·〉 for the
inner product

Identifying TM with its (isometric) image under dϕ, we observe that for
every point q = ϕ(p) ∈ ϕ(M) the tangent space of Rn+1 at q splits:

TqRn+1 = TpM ⊕M⊥|q

where M⊥|q is the one-dimensional subspace spanned by ν|q (line through q
with direction given by −→ν |q, the unit normal at q).

For a p ∈M we cant think of the point ϕ(p, t) = q ∈ Rn+1 as a
(n+1)-tuple

−→ϕ (p, t) = (y1(p, t), ..., yn+1(p, t))

where the scalars yi are the coordinates of the vector −→ϕ (t) ∈ Rn+1. Here
we view Rn+1 as a vector space , and O its origin, rather than the ambient
Euclidean space
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We have

Dϕ(p, t) := (Dy1(p, t), ..., Dyn+1(p, t)) ∈ Rn×(n+1) ∀t

and, after a choice of coordinates for a chart of M

Dϕ(x1, ..., xn, t) = (Dy1(x1, ..., xn, t), ..., Dyn+1(x1, ..., xn, t))

that is

Dϕ(x1, ..., xn; t) =



∂y1

∂x1

∂y1

∂x2

...
∂y1

∂xn
. . .
. .
. . .

∂yn+1

∂x1

∂yn+1

∂x2

...
∂yn+1

∂xn


: TpM 7→ TqRn+1

Since our objects of study will be families of n-dimensional hypersur-
faces
parametrized by t, we require at each t that

dim[ϕt(M)] := rank[Dϕ]( · , t) = n

Stated differently: the row vectors

−→
∂ϕ

∂xi
, i = 1, ..., n form a basis for the

domain of Dϕ which is TpM and the identification TpM = dϕ(TpM) suggests
that

TpM = span

{−−→
∂ϕ

∂x1

∣∣∣∣
p

, ...,

−−→
∂ϕ

∂xn

∣∣∣∣
p

}
Adding the vector ν|ϕ(p) we can complete this set to a basis for Tϕ(p)Rn+1.
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1.2 The extrinsic geometry of a hypersurface in Rn+1

Choose a local chart (x1, ..., xn) for M. In this chart we have

dϕ

(
∂

∂xi

)
=
∂ϕ

∂xi

which are vector fields of Rn+1 tangent to ϕ(M), so
(considering ϕ to be an embedding)

gij =

〈−→
∂ϕ

∂xi

∣∣∣∣
−−→
∂ϕ

∂xj

〉
Rn+1

This will be widely used in the computations later.

We also define the Second fundamental form of M

A(·, ·) = hijdx
idxj

where hij is defined by

hij :=

〈
ν

∣∣∣∣ ∂2ϕ

∂xi∂xj

〉
Rn+1

So the second fundamental form is clearly a symmetric (2, 0)−tensor field
on M

We express the Riemann curvature tensor of Mt by means of its second
fundamental form using the Gauss equation:

Rijkl =

〈
∇2
ji

∂

∂xk
−∇2

ij

∂

∂xk

∣∣∣∣ ∂∂xl
〉

= hikhjl − hilhjk = A ∗ A

And the Codazzi equations give the symmetries of ∇A

∇ihjk = ∇jhik = ∇khij

These imply the important Simons’ identity

∆hij = ∇i∇jH +Hhilg
lshsj − |A|2hij

See [4] for detailed discussion and proofs
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We also want the Gauss - Weingarten relations:

∂2ϕ

∂xi∂xj
= Γkij

∂ϕ

∂xk
+ hijν,

∂

∂xj
ν = −hjlgls

∂ϕ

∂xs
(1)

which essentially express the extrinsic geometry of M in terms of the intrinsic
geometry of M and the geometry of the ambient space Rn+1. In other words
the fact that: ∇M = ∇Rn+1 − Aν.

We denote
X(M) : the set of all vector fields tangent to M ,
X(M) : the set of all vector fields of Rn+1 attached to M

We call the next one ”our favourite identity” because we will be using it
in great extent:

∆fg = f∆g + g∆f + 2 〈∇f,∇g〉 (2)

for scalar functions on M and

∆ 〈S, T 〉 = 〈S,∆T 〉+ 〈S,∆T 〉+ 2 〈∇S,∇T 〉 (3)

for arbitrary tensors.

Last but not least we will be dealing with quantities that are functions of
space and time f(x1, ..., xn; t). So we are interested in their spatial as well as
their temporal derivatives. We define the box operator

�f :=

(
d

dt
−∆

)
f
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1.3 First Variation of the Area

Given now an immersion ϕ : M → Rn+1 of a hypersurface in Rn+1, we
consider the Area functional

Area(ϕ) :=

∫
M

dµ =

∫
ϕ(M)⊂Rn+1

dLn

where µ is the measure on M and L is the n-dimensional Lebesgue measure
for hypersurfaces of Rn+1.

We will analyze the first variation of the Area functional, in other words
the first linear approximation of it.

We consider a variation of M as a one-parameter family of immersions

ϕt : M → Rn+1

with t ∈ (−ε, ε) and ϕ0 = ϕ, such that, outside of a compact set K ⊂M ,
we have ϕt(p) = ϕ(p) for every t ∈ (−ε, ε).

Defining the vector field X :=

−−→
∂ϕt

∂t

∣∣∣∣
t=0

along M namely

∂ϕ

∂t
: M → Rn+1

We see that X is zero outside K. We call such a field the infinitesimal gen-
erator of the variation ϕt.

Choose now normal coordinates around an arbitrary point p of M and
compute

∂

∂t
gij

∣∣∣∣
t=0

=
∂

∂t

〈
∂ϕt
∂xi

∣∣∣∣∂ϕt∂xj

〉 ∣∣∣∣
t=0

=

〈
∂X

∂xi

∣∣∣∣ ∂ϕ∂xj
〉

+

〈
∂ϕ

∂xi

∣∣∣∣∂X∂xj
〉

=
∂

∂xi

〈
X

∣∣∣∣ ∂ϕ∂xj
〉

+
∂

∂xj

〈
∂ϕ

∂xi

∣∣∣∣X〉− 2

〈
X

∣∣∣∣ ∂2ϕ

∂xi∂xj

〉

∗
=

∂

∂xi

〈
X>
∣∣∣∣ ∂ϕ∂xj

〉
+

∂

∂xj

〈
∂ϕ

∂xi

∣∣∣∣X>〉− 2Γkij

〈
X>
∣∣∣∣ ∂ϕ∂xk

〉
− 2hij 〈X|ν〉 ,

where X> is the tangent component of the field X, regarded as a vector field
of Rn+1. In (∗) we used the Gauss-Weingarten relations (1).
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Letting ω be the 1-form ωX :=
〈
X>| ·

〉
,which acts on a vector field Y like

this:
ωX(Y ) := ḡ(Dϕ(X>), Y ) =

〈
X>|Y

〉
Rn+1

this formula can be rewritten as

∂

∂t
gij

∣∣∣∣
t=0

=
∂ωj
∂xi

+
∂ωi
∂xj
− 2Γkijωk − 2hij 〈X|ν〉 = ∇iωj +∇jωi − 2hij 〈X|ν〉 .

Hence, using the formula: ∂tdetA(t) = detA(t) · Trace[A−1(t)∂tA(t)], we get

∂

∂t

√
det(gij)

∣∣∣∣
t=0

=

√
det(gij)g

ij ∂
∂t
gij|t=0

2

=

√
det(gij)g

ij(∇iω +∇jω − 2hij 〈X|ν〉)
2

=
√

det(gij)(divX> −H 〈X|ν〉 .

If the Area of the immersion ϕ is finite, the same holds for all the ϕt, as
they are compact deformations of ϕ. Assuming that the compact K is
contained in a single coordinate chart, we have

∂

∂t
Area(ϕt)

∣∣∣∣
t=0

=
∂

∂t

∫
K

dµt

∣∣∣∣
t=0

=
∂

∂t

∫
K

√
det(gij(t))dLn

∣∣∣∣
t=0

=

∫
K

∂

∂t

√
det(gij(t))

∣∣∣∣
t=0

dLn

=

∫
K

(divX> −H 〈X|ν〉)
√

det(gij(t))dLn

=

∫
K

(divX> −H 〈X|ν〉)dµ = −
∫
K

H 〈X|ν〉 dµ

where we used the fact that X is zero outside K and in the last step
we applied the divergence theorem for X>(or we could just ignore it as tan-
gential perturbations of ϕ as they don’t change the geometric picture of the
immersion).

Notice that all the integrals are well defined because we are actually
integrating on the compact set K.

If K is contained in several charts, the same conclusion follows from a
standard argument using a partition of unity.
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Proposition 1.1. The first variation of the Area functional depends only on
the normal component of the infinitesimal generator X = ∂ϕt

∂t

∣∣
t=0

of the
variation ϕt, precisely:

∂

∂t
Area(ϕt) = −

∫
M

H 〈X|ν〉 dµ.

Clearly the dependence is linear:

If ψt is a family of embeddings such that

∂ψt
∂t

= X + λY

and ϕXt and ϕYt are families of embeddings with infinitesimal generators X
and Y respectively, then

∂

∂t
Area(ψt) = −

∫
M

H 〈X + λY |ν〉 dµ =
∂

∂t
Area(ϕXt ) + λ

∂

∂t
Area(ϕYt )

This can be: ψt(p) = ψ(p) + t(X|p +λY |p) considering ψ0(p) a point in Rn+1

and X|p+λY |p a vector starting at ψ(p). For M0 smooth and t small enough
we can be sure that ψt remains a smooth immersion.

Summarizing:

Area(·) : {ϕt|1-parameter families of M ↪→
iso

Rn+1} → R

∂

∂t
Area(·) : {X : vector fields along M} → R

Thus the linearization of the nonlinear Area functional is given by Propo-
sition 1.1 and in view of

∂

∂t
Area(·) = −

∫
M

H

〈
∂

∂t

(
·
)∣∣∣∣ν〉 dµ

we can interpret the linear functional

F : X 7→ −
∫
M

H 〈ν|X〉 dµ = −〈Hν|X〉L2(M)

as the ”gradient” of Area:

∇Area(·) := F(·) = −〈Hν| · 〉L2(M)
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The last equation describes this linear functional as the inner product
with the vector field −Hν which (as a vector field along M) is an element of
the same domain. Regarding F as a covector field we see that F and −Hν
are dual and they act on vector fields in the same way. Now, as F is the
gradient of the Area functional, it must indicate the direction of steepest
decay. So, when looking for the perturbation that decreases the area the
most, we should consider the ones with infinitesimal generator given by the
field

−(∇Area)∗ = −F∗ = 〈Hν| · 〉∗ = Hν

This particular vector filed is determined exclusively by geometric prop-
erties of our the hypersurface and specifically on the extrinsic ones: the
mean curvature H and the unit normal ν. So the flow it generates should
not depend on the parametrization of the surface at any time.

Remark 1. Two hypersurfaces that are reparametrizations of one an-
other have the same area (globally and locally). That means they give rise
to the same Area functional and hence to the same first variation
of it.

We can consider the motion of a hypersurface by minus this gradient, that
is, the mean curvature flow (next section). So, one looks at hypersur-
faces moving with velocity

(
∂
∂t
ϕt
)

equal to Hν at every point. This means
choosing, among all the velocity functions with fixed L2(µ)-norm equal to(∫

M
H2dµ

)1/2
, the one such that the Area decreases most rapidly.

The above analysis gives an immediate characterization of the critical
points of the Area functional:

∇Area(·) = 0⇔
∫
M

H 〈X|ν〉 dµ = 0

for every field X with compact support ⇔ H = 0 everywhere on M .

This is the well known definition of the so called minimal surfaces.

A second variation formula should indicate the direction in which∇Area(·)
decreases and therefore Area approaches a critical point.
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The Mean Curvature Flow

Definition 1. Let Mn be a hypersurface in Rn+1. The mean curvature
flow of M is a family of immersions

ϕt : M → Rn+1, t ∈ [0, T )

satisfying the equation:

d

dt
ϕ(p; t) = H(p; t)ν|(p;t) (4)

Recall that H = trace(hij) and hij =

〈
ν

∣∣∣∣ ∂2ϕ

∂xi∂xj

〉
so, even if ν is defined

up to a sign, the field
−→
H := H(p, t)−→ν (p, t) is independent of such choice.

(The declaration of a direction for the unit normal decides the sign of the
mean curvature scalar)

The equation (4) can be regarded either as a geometric equation in
the (n+1)-dimensional Euclidean space or a system of n+1 scalar
equations

1.4 Mean curvature flow as the gradient flow of the
Area functional

The kernel of F is precisely the subspace of vector fields that are everywhere
perpendicular to ν. These are the fields everywhere tangent to M

kerF = {X ∈ X(M) : X⊥ν} := X
>

(M)

The orthogonal complement of the kernel [in X(M)] forms the set

X
⊥

(M) := {X ∈ X(M) : X ‖ ν} = {X ∈ X(M) : X = f · ν}

which can be identified with the set of all scalar functions on M

{f · −→ν | f : M → R} ↔
〈 · | ν〉
{f : M → R}
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So starting with an initial hypersurface and a 1-parameter family of deforma-
tions ϕt with infinitesimal generator Xt we can compute the corresponding
infinitesimal variation of the Area

F(Xt) = −〈Hν|X〉L2(M) = −
〈
Hν|X>

〉
L2(M)

= −〈Hν| fν〉L2(M)

= −
∫
M

Hfdµt

where f(t; p) = 〈Xt|ν〉
(

=
〈
Xt|ϕ(p), ν|ϕ(p)

〉
TpRn+1

)
is the normal component

of Xt and the only one that interests us because the others lie in kerF .

We are interested in the geometric properties of the evolving hyper-
surfaces, i.e. the properties that remain invariant under reparametrizations.
Here we prove that the flow is indeed a geometric flow (immersions that
differ by a reparametrization give the same flow).

Invariance under Tangential Perturbations

Proposition 1.2. If a family of immersions ϕ : M × [0, T )→ Rn+1 satisfies
the system of PDEs

∂

∂t
ϕ(p, t) = H(p, t)ν|(p,t) +X(p, t)

with initial conditions
ϕ(p, 0) = ϕ0(p)

where X is a time-dependent vector field of Rn+1 tangent on M,
more formally:

X(p, t) ∈ Dϕt(TpM) ⊂ Tϕt(p)Rn+1 ∀t ∈ [0, T ), ∀p ∈M

Then, there exists a family ψt of reparametrizations (infinitesimally generated
by the tangent field X) of the immersions ϕt which is satisfies the equation
of mean curvature flow.

A proof can be found in [3]. We only want to mention that the above
flow differs to the usual mean curvature flow only by a Xt ∈ TMt = kerF
therefore induce the same variation to the Area functional and, hence, the
same geometric picture.
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2 Evolution of geometric quantities

2.1 Evolution equations

Here we derive the equations describing how the basic geometric quantities
evolve. We assume that ϕ is an embedding of the smooth hypersurface M
into Rn+1 and that M moves by the mean curvature flow.

Lemma 2.1. The evolution equations for g, ν, Γkij, A = hij, and H are

•
∂

∂t
gij = −2Hhij

•
∂

∂t
gij = 2Hhij

•
∂

∂t
ν = −∇H

•
∂

∂t
Γkij = ∇H ∗ A+H ∗ ∇A = ∇A ∗ A

Proof. The first one has been computed in Section 1.2, just substitute X
with Hν For the second, take

0 =
∂

∂t
δji =

∂

∂t
gisg

sj

= gis
∂

∂t
gsj + gsj

∂

∂t
gis

= gis
∂

∂t
gsj − 2Hhisg

sj

= gis
∂

∂t
gsj − 2Hhji

⇒
∂

∂t
gsj = 2gisHhji = 2Hhjs.
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Evolution of the unit normal comes from:〈
∂ν

∂t

∣∣∣∣ ∂ϕ∂xi
〉

=
∂

∂t
�
�
�
�
��

〈
ν

∣∣∣∣ ∂ϕ∂xi
〉
−

〈
ν

∣∣∣∣ ∂∂t ∂ϕ∂xi
〉

= −

〈
ν

∣∣∣∣ ∂∂xi∂ϕ∂t
〉

= −

〈
ν

∣∣∣∣ ∂∂xi(Hν)

〉

= −
∂H

∂xi
−H

�
�
�
�
��

〈
ν
∣∣ ∂ν
∂xi

〉

as 〈ν|ν〉 = 1 and 〈
ν
∣∣ ∂ν
∂xi

〉
=
�
�
�
�
��

∂

∂xi

〈
ν
∣∣ν〉 −〈 ∂ν

∂xi

∣∣ν〉

⇒ 2

〈
ν
∣∣ ∂ν
∂xi

〉
= 0

and because 〈
ν
∣∣∂ν
∂t

〉
=
�
�
�
��∂

∂t

〈
ν
∣∣ν〉 −〈∂ν

∂t

∣∣ν〉

⇒ 2

〈
ν
∣∣∂ν
∂t

〉
= 0

we conclude that
∂ν

∂t
∈M>. So

∂ν

∂t
= −∇H

16



Now hang on for the terrible computation of the evolution of Christoffel
symbols:

∂

∂t
Γijk =

1

2
gil
{

∂

∂xj

∂

∂t
gkl +

∂

∂xk

∂

∂t
gjl −

∂

∂xl

∂

∂t
gjk

}
+

1

2
gil
{

∂

∂xj
gkl +

∂

∂xk
gjl −

∂

∂xl
gjk

}
=

1

2
gil
{
∇j

∂

∂t
gkl +∇k

∂

∂t
gjl −∇l

∂

∂t
gjk

}
+

1

2
gil
{
∂

∂t
gkzΓ

z
jl +

∂

∂t
glzΓ

z
jk −

∂

∂t
gjzΓ

z
kl

+
∂

∂t
glzΓ

z
jk −

∂

∂t
gjzΓ

z
kl −

∂

∂t
gjzΓ

z
jl

}
− 1

2
gis

∂

∂t
gszg

lz

{
∂

∂xj
gkl +

∂

∂xk
gjl +

∂

∂xl
gjk

}
=

1

2
gil
{
∇j

∂

∂t
gkl +∇k

∂

∂t
gjl −∇l

∂

∂t
gjk

}
+ gil

∂

∂t
glzΓ

z
jk − gis

∂

∂t
gszΓ

z
jk

=
1

2
gil
{
∇j

∂

∂t
gkl +∇k

∂

∂t
gjl −∇l

∂

∂t
gjk

}
= gil{∇j(Hhkl) +∇k(Hhjl)−∇l(Hhjk)}
= −hik∇jH − hij∇kH + hjk∇iH −H(∇jh

i
k +∇kh

i
j −∇ihjk

= A ∗ ∇H +H ∗ ∇A
= A ∗ ∇A
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Lemma 2.2. The second fundamental form satisfies the evolution equation

∂

∂t
hij = ∆hij − 2Hhilg

lshsj + |A|2hij.

It follows that
∂

∂t
hji = ∆hji + |A|2hji ,

∂

∂t
|A|2 = ∆|A|2 − 2|∇A|2 + 2|A|4

and
∂

∂t
H = ∆H +H|A|2

Proof.

∂

∂t
hij =

∂

∂t

〈
ν

∣∣∣∣ ∂2ϕ

∂xi∂xj

〉
=

〈
ν

∣∣∣∣ ∂∂t
(

∂2ϕ

∂xi∂xj

)〉
+

〈
∂

∂t
ν

∣∣∣∣ ∂2ϕ

∂xi∂xj

〉
(1)
=

〈
ν

∣∣∣∣ ∂2

∂xixj
(Hν)

〉
−
〈
∇H

∣∣∣∣ ∂2ϕ

∂xi∂xj

〉
(2)
=

∂2H

∂xixj
〈ν|ν〉+H

〈
ν

∣∣∣∣ ∂2

∂xixj
ν

〉
−
〈
∇H

∣∣∣∣ ∂2ϕ

∂xi∂xj

〉
(3)
=

∂2H

∂xixj
−H

〈
ν

∣∣∣∣ ∂∂xi
(
hjlg

ls ∂ϕ

∂xs

)〉
−

〈
∂H

∂xl

∂ϕ

∂xs︸︷︷︸
∈M>

gls
∣∣∣∣Γkij ∂ϕ∂xk +��

�*⊥hijν

〉

(4)
=

∂2H

∂xixj
−Hhilgls

〈
ν

∣∣∣∣ ∂2ϕ

∂xi∂xs

〉
− Γkij

∂H

∂xk

= ∇i∇jH −Hhilglshsj.

(1):Exchange of derivatives, ∂tν = −∇H, MCF

(2):
〈

∂
∂xi
ν|ν
〉

= ���
��∂

∂xi
〈ν|ν〉 −

〈
ν| ∂
∂xi
ν
〉
⇒ 2

〈
∂
∂xi
ν|ν
〉

= 0

(3):Gauss - Weingarten again, for ∇H lower the index of ∂xs
(4):

〈
ν, (...) ∂ϕ

∂xs

〉
= 0 and definition of hij

There is Simmons’ identity for the Laplacian of A in coordinates:

∆hij = ∇i∇jH +Hhilg
lshsj − |A|2hij
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Using this we easily get

∂

∂t
hij = ∆hij − 2Hhilg

lshsj + |A|2hij.

The other equations follow from straightforward computations, since

∂

∂t
gij = 2Hhij

2.2 Relations between ∂t and ∇
We compute the commutator of spatial and temporal derivatives

Lemma 2.3. Temporal and spatial derivatives of a tensor T do not com-
mute. Instead we have the formula

∂

∂t
∇T = ∇ ∂

∂t
T + T ∗ A ∗ ∇A (5)

Proof. We prove the lemma for a covariant tensor T = Ti1...ik . The general
case is analogous, as it will be clear by the following computation:

∂

∂t
∇jTi1...ik =

∂

∂t

(
∂Ti1...ik
∂xj

−
k∑
s=1

ΓljisTi1...is−1,l,is+1...ik

)

=
∂

∂xj

∂Ti1...ik
∂t

−
k∑
s=1

Γljis
∂Ti1...is−1, l ,is+1...ik

∂t
−

k∑
s=1

∂
(
Γljis
)

∂t
Ti1...is−1,l,is+1...ik

= ∇j
∂

∂t
Ti1...ik −

k∑
s=1

(A ∗ ∇A)ljis Ti1...is−1, l ,is+1...ik

which is the formula we wanted.

In the last equation we just used the formula for the time derivative of
the Christoffel symbols.

For the k’th covariant derivative of the (particularly interesting tensor)
second fundamental form we have the following formula

Proposition 2.4. [A formula for
(
∂
∂t
−∆

)
∇kA]

∂

∂t
∇kA = ∆∇kA+

∑
p+q+r=k

∇pA ∗ ∇qA ∗ ∇rA
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Proof. We will do induction on k. We already saw the case k = 0 in the
elementary evolution equations. Now for the induction step suppose our
formula is true for k − 1. We have, by the previous lemma:

∂

∂t
∇kA = ∇ ∂

∂t
∇k−1A+∇k−1A ∗ ∇A ∗ A

= ∇

(
∆∇k−1A+

∑
p+q+r=k−1

∇pA ∗ ∇qA ∗ ∇rA

)
+∇k−1A ∗ ∇A ∗ A

= ∇∆∇k−1A+
∑

p+q+r=k

∇pA ∗ ∇qA ∗ ∇rA.

It would be nice if [∇,∆] was zero but in general this is not the case since
for any tensor T

[∇,∆]T = Rm ∗ ∇T + ∇(Rm ∗ T ) = Rm ∗ ∇T + ∇Rm ∗ T

Explicitly

∇k∆T −∆∇kT = gij(∇k∇i∇jT −∇i∇j∇kT )

= gij([∇k,∇i]∇jT +∇i∇k∇jT −∇i∇j∇kT )

= gij([∇k,∇i]∇jT +∇i([∇k,∇j]T )).

Recalling though that Rm = A ∗ A, which is a form of the Gauss - Codazzi
equations, we can see that

[∇,∆]∇k−1A = A ∗ A ∗ ∇∇k−1A+∇(A ∗ A) ∗ ∇k−1A

So all extra terms are of the form A ∗A ∗∇kA and A ∗∇A ∗∇k−1A and fall
in the summation.

Proposition 2.5. [Evolution of |∇kA|] The following formula holds

∂

∂t
|∇kA|2 = ∆|∇kA|2 − 2|∇k+1A|2 +

∑
p+q+r=k

∇pA ∗ ∇qA ∗ ∇rA ∗ ∇kA (6)
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Proof. We compute

∂
∂t
g(∇kA,∇kA) = 2g(∇kA, ∂

∂t
∇kA) +

∂g

∂t
∗ ∇kA ∗ ∇kA

= 2g

(
∇kA, ∆∇kA+

∑
p+q+r=k

∇pA ∗ ∇qA ∗ ∇rA

)
+ (A ∗ A) ∗ ∇kA ∗ ∇kA

= 2g

(
∇kA,∆∇kA

)
+

∑
p+q+r=k

2g

(
∇kA,∇pA ∗ ∇qA ∗ ∇rA

)
+ A ∗ A ∗ ∇kA ∗ ∇kA

= ∆|∇kA|2 − 2|∇k+1A|2 +
∑

p+q+r=k

∇kA ∗ ∇pA ∗ ∇qA ∗ ∇rA

In the last equation we used that

∆ 〈S, S〉 = 2 〈S,∆S〉+ 2|∇S|2

which we discuss in the appendix, and the fact that both∑
p+q+r=k

g

(
∇kA,∇pA ∗ ∇qA ∗ ∇rA

)
and A ∗ A ∗ ∇kA ∗ ∇kA

fall in the sum ∑
p+q+r=k

∇kA ∗ ∇pA ∗ ∇qA ∗ ∇rA

If in this formula we substitute k = 0 we get

∂

∂t
|A|2 = ∆|A|2 − 2|∇A|2 + 2|A|4 ≤ ∆|A|2 + 2|A|4 (7)

Note the term of order four in the right side. We will soon find out that this
is annoying and we will come up with a way to neutralize it.

Proposition 2.6. If the second fundamental form of a closed, compact
hypersurface is bounded up to time T < ∞, then all its covariant deriva-
tives are also bounded up to time T .
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Proof. From the previous proposition (2.5) we have

∂

∂t
|∇kA|2 = ∆|∇kA|2 − |∇k+1A|2 +

∑
p+q+r=k

∇pA ∗ ∇qA ∗ ∇rA ∗ ∇kA

≤ ∆|∇kA|2 + |∇kA|2 · P(|A|, |∇A|, ..., |∇k−1A|)
+Q(|A|, |∇A|, ..., |∇k−1A|),

where P ,Q are polynomials on |A|, |∇A|, ... up to order (k − 1).

This is because in the terms ∇kA ∗ ∇pA ∗ ∇qA ∗ ∇rA there can only be
up to two occurrences of ∇kA. We examine the two cases.

• If there are two, let’s say p = k, then it has to be q = r = 0 and we
estimate

|A ∗ A ∗ ∇kA ∗ ∇kA| ≤ |A|2 · |∇kA|2.

• If there is only one we use the inequality

|S ∗ T | ≤ |S| · |T | ≤
|S|2 + |T |2

2

to get

|∇kA ∗ ∇pA ∗ ∇qA ∗ ∇rA| ≤ |∇kA| · |∇pA ∗ ∇qA ∗ ∇rA|

≤ |∇
kA|2

2
+
|∇pA ∗ ∇qA ∗ ∇rA|2

2

We will, proceed, once more, with induction on k, with equation (7) being
the case k = 0.

For the induction, we assume that all the covariant derivatives of A up to
order k − 1 are bounded up to time T , so the polynomials P and Q are also
bounded, say by the (nonnegative numbers) C and D respectively. Thus

∂

∂t
|∇kA|2 ≤ ∆|∇kA|2 + C|∇kA|2 +D

By the maximum principle, this implies

d

dt
|∇kA|2max ≤ C|∇kA|2max +D (8)
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For any time t, the quantity

|∇kA|max := max
p∈Mt

|∇kA(p; ·)|

is a time-dependent function. We can call

u(t) := |∇kA|max : [0, T )→ R

Then (8) becomes the ordinary differential inequality u′ ≤ Cu+D imposing
an exponential bound on u. Integrating now over the (finite) interval [0, T )
implies that u is bounded up to time T .

A proof for the maximum principle can be found in [3].
Later in Section 3 we prove an alternative for entire graphs which will
be our basic tool as the ordinary maximum principle is only applicable
in the compact case.
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3 Estimates for entire graphs

Our main object of study will be entire graph hypersurfaces. Because
these are non-compact, the standard maximum principle doesn’t work and
we need to develop another method, the Monotonicity formula. We then
proceed with some estimates that will be important in the next chapters. We
estimate the height, ”gradient” and all the derivatives of the curvature
(|∇mA|) and obtain bounds for all time.

3.1 Entire graphs

We come now to our main object of study, which is entire graphs. These
are hypersurfaces that are graphs of functions f : Rn → Rn+1 defined in the
entire Rn.

Fix a unit vector ω ∈ Rn+1 and a hyperplane Π orthogonal to ω. We de-
clare an origin O on Π. We define the height of Mt with respect to the
hyperplane Π by

u = 〈y, ω〉

Remark 2. We want to clarify that u and yn+1 differ by a choice of coordi-
nates of Rn+1

u = u(x) = 〈−→ϕ (p), ω〉 = 〈(y1, ..., yn+1)|(ω1, ..., ωn+1)〉

which in general is different from yn+1. So, working in coordinates we will
have

M 3 p = x
ϕ7→ y = ϕ(x) ∈ Rn+1

where x and y are interpreted as coordinates.
We will be using u instead of the last coordinate of ϕ in the yi− base of Rn+1

because it is geometrically defined and hence coordinate invariant.

In the following we shall identify the image ϕ(p, t) of a point p ∈M and
its coordinate vector y = ϕ(p, t).
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3.2 The Monotonicity formula

Our basic tool will be the Monotonicity formula. We are forced to develop
such a technology because the classic Maximum principle doesn’t apply on
non-compact domains.

For a fixed point (y0, t0) ∈ Rn+1 we define the ”backward heat kernel”
ρ = ρ(x, t) by

ρ(x, t) = (4π(t0 − t))−n/2 exp
(
−|y0 − y|2

4(t0 − t)

)
, t > t0,

y = ϕ(x) such that

d

dt
ρ = −∆ρ+ ρ ·

(
〈y0 − y,H〉

(t0 − t)
− 1

4

|(y0 − y)⊥|2

t0 − t)2

)
One can find in [3] how this implies the monotonicity formula

d

dt

∫
Mt

ρ dµt = −
∫
Mt

ρ

∣∣∣∣H +
1

2τ
(y − y0)⊥

∣∣∣∣dµτ . (9)

where dµt is the measure on Mt and τ = t0 − t. Proceeding as in [2] or [3]
we obtain more generally for a function f = f(x, t) on M that

d

dt

∫
Mt

fρ dµt =

∫
Mt

(
d

dt
f −∆f

)
ρ dµt−

∫
Mt

fρ

∣∣∣∣H+
1

2τ
(y−y0)⊥

∣∣∣∣2dµτ . (10)

Remark 3. If d
dt

∫
M
ρ = 0 then the manifold shrinks to y0. In fact, in this

situation we have a shrinking soliton.

All integrals are finite and integration by parts is permitted for the sur-
faces and functions we are going to consider in the sequel.

Corollary 3.1. Suppose the function f = f(x, t) satisfies the inequality(
d

dt
−∆

)
f ≤ −→α ·

−→
∇f (11)

for some vector field α, where ∇ denotes the tangential gradient on M . If
α0 := sup

M×[0,t1]

|α| <∞ for some t1 > 0, then

sup
Mt

f ≤ sup
M0

f

for all t ∈ [0, t1].
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Proof. Let k := supM0
f and define fk(·, t) = max

(
0, f(·, t)− k

)
. We aim to

prove that ∀t ∈ [0, t1] : fk(·, t) = 0, so that

f(·, t) ≤ k = sup
M0

f, ∀t ∈ [0, t1]

which is what we want.

Note that, by definition,

fk(p, 0) = max

(
0, f(p, 0)− k

)
= 0 ∀p ∈M0

since k := supM0
≥ f(p, 0) ∀p ∈M0. So we have the result for t = 0 and we

want to ”push it” through time.

From (11) and our favourite identity (2) for f 2
k , we derive(

d

dt
−∆

)
f 2
k ≤ 2fk

−→α ·
−−→
∇fk − 2|∇fk|2.

Using Young’s inequality (with q =
√

2) we obtain that

2fkα · ∇fk ≤
(

1√
2

)2

f 2
k |α|2 + (

√
2)2|∇fk|2 ≤ 1

2
f 2
kα

2
0 + 2|∇fk|2

(
d

dt
−∆

)
f 2
k ≤

1

2
α2

0f
2
k .

We may now employ (10) with f 2
k instead of f and choose t0 > t, and x0

arbitrary in the definition of ρ to conclude

d

dt

∫
f 2
kρ dµt ≤

1

2
α2

0

∫
f 2
kρ dµt

since f 2
kρ ≥ 0. If we now call

F (t) :=

∫
f 2
kρ dµt

the previous inequality yields the ordinary differential inequality

F ′(t) ≤ 1

2
α2

0F (t)
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which, integrated over [0, t] for any t in the finite interval [0, t1] yields

F (t) ≤ F (0)ect

But

f(·, 0) = 0⇒ F (0) =

∫
M0

fk(·, 0)2ρ dµt = 0

and as F is non-negative it must be zero for all time implying∫
Mt

fk(·, t)2ρ dµt = 0

this completes the proof since, by definition, ρ > 0.
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3.3 Height estimates

We need to ensure that our manifold doesn’t escape to infinity.

Recall that the height of Mt is defined by

u = 〈y, ω〉

and observe
∆ϕ = ∆y = Hν ⇒ ∆ 〈y, ω〉 = 〈Hν, ω〉

Since ω is fixed in both time and space we have(
d

dt
−∆

)
u = 0 (12)

Lemma 3.2. i) The function η1 = η1(x, t) := |y|2 + 2nt satisfies

η1 =

(
d

dt
−∆

)
η1 = 0

ii) The function η2 defined by

η2(x, t) := 1 + |y|2 − u2 + 2nt

satisfies for any p > 0(
d

dt
−∆

)
η2

2 = −p(p− 1)|∇η2|2ηp−2
2 + 2pηp−1

2 |∇u|2

Proof. Because of mean curvature flow we have

d

dt
η1 = 2 〈y,Hν〉+ 2n

and the first identity then follows from

∆η1 = 2−→ϕ ·
−→
∆ϕ+ 2|∇ϕ|2 = 2 〈y,Hν〉+ 2n

because

|∇ϕ|2 = g(∇ϕ,∇ϕ) = g

(
∂ϕ

∂xi
dxi,

∂ϕ

∂xj
dxj

)

= g

(
∂

∂xi
· dxi,

∂

∂xj
· dxj

)
= gijg

ij = tr(g) = n

28



Now by (12) and our favourite identity (2)(
d

dt
−∆

)
u2 = −2|∇u|2

we have using (i) (
d

dt
−∆

)
η2 = 2|∇u|2 (13)

Now we use a more general form of our favourite identity (2) that is

∆fp = Tr(∇2fp) = Tr

(
∇(pfp−1∇f)

)
= Tr

(
p(p− 1)fp−2∇f ⊗∇f + pfp−1∇2f

)
= p(p− 1)fp−2|∇f |2 + pfp−1∆f (14)

we compute(
d

dt
−∆

)
fp =

d

dt
fp −∆fp

= pfp−1
d

dt
f − p(p− 1)fp−2|∇f |2 − pfp−1∆f

= −p(p− 1)|∇f |2fp−2 + pfp−1

(
d

dt
f −∆f

)
where substituting f with η2 and using (13) we have the result.

Our motivation for the above choices for η1 and η2 comes from the obser-
vation that

√
|y|2 − u2 measures the distance dist(O, x) where x ∈ Π above

which y = ϕ(x) ∈M ⊂ Rn+1 is graphed.
From now on we will call by the same symbol both x ∈ M and y = ϕ(x) ∈
ϕ(M). It is totally confusing but it is used in the literature.

Definition 2. We say that some quantity Q ”grows at most polynomially in

space” with degree p if the Q ≤ C
(√
|y|2 − u2

)p
for some C ≥ 0

Now we assume that u(·, 0) grows at most polynomially in space and we
show that u(·, t) satisfies the same polynomial growth estimate.

M0 grows at most polynomially ⇒ the same holds for Mt
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Proposition 3.3. If for some c0 <∞, p ≥ 0, the inequality

u2 ≤ c0(1 + |y|2 − u2)p

is satisfied on M0, i.e. for t = 0 then for all t > 0

u2 ≤ c0

(
1 + |y|2 − u2 + (2n+ 4(p− 1)t)

)p
,

where u = u(x, t).

Proof. Notice that the desired inequality, for t = 0 is the give one. Again, we
will use our basic tool to prove that this initial bound is preserved through
time. For this we introduce the new function

η = η(x, t) := 1 + |y|2 − u2 +

(
2n+ 4(p− 1)

)
t

Observe that
u2 ≤ c0η

p ⇔ u2η−p ≤ c0.

and compute the evolution equation for u2η−p:(
d

dt
−∆

)
u2η−p = −2η−p|∇u|2 − p(p+ 1)η−p−2|∇η|2u2

− 2pη−p−1u2|∇u|2 − 4(p− 1)pη−p−1u2

− 4pη−p−1u∇u · ∇η

Using Young’s inequality we obtain

|4pη−p−1u∇u · ∇η| ≤ 2η−p|∇u|2 + 2p2u2η−p−2|∇η|2.

Let us call ei := ∂
∂xi

Now observe that ∇iu = 〈ei, ω〉 implies

∇iη = 2 〈ei, x− 〈x, ω〉ω〉

because (we identify x and y again)

∇iη = 2

〈
y,
∂ϕ

∂xi

〉
− 2 〈y, ω〉 〈ei, ω〉

= 2 〈y, ei〉 − 2 〈ei, 〈y, ω〉ω〉
= 〈ei, y − 〈y, ω〉ω〉
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which yields
|∇η|2 ≤ 4η.

as

|∇η|2 = 2g(∇iη,∇jη)

= 4 〈ei, y − 〈y, ω〉ω〉 〈ej, y − 〈y, ω〉ω〉
≤ 4 (y − 〈y, ω〉ω) · (y − 〈y, ω〉ω)

≤ 4|y|2 − 〈y, ω〉2

= 4(|y|2 − u2)

≤ 4η

(think geometrically)
Thus we derive: (

d

dt
−∆

)
u2η−p ≤ 0

and the result follows from corollary (3.1).
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3.4 Gradient estimates

To ensure that Mt stays a graph for all times we have to estimate υ := 〈ν, ω〉
from below or equivalently

υ := 〈ν, ω〉−1

from above. One can consider υ to indicate whether M is ”graphable”. Let
A = hij be the second fundamental form.

Lemma 3.4. The quantity υ satisfies the evolution equation(
d

dt
−∆

)
υ = −|A|2υ − 2υ−1|∇υ|2.

Proof. Recall that, for any function f and any p ∈ R(
d

dt
−∆

)
fp = −p(p− 1)|∇f |2fp−2 + pfp−1

(
d

dt
−∆

)
f

Substituting p = −1 and f = υ−1 = 〈ν, ω〉 we get(
d

dt
−∆

)
υ =

(
d

dt
−∆

)
f−1 = −2|∇f |2f−3 − f−2

(
d

dt
−∆

)
f

= −2|∇(υ−1)|2υ3 − υ2

(
d

dt
−∆

)
〈ν, ω〉

= −2υ−1|∇υ|2 − υ2

〈(
d

dt
−∆

)
ν, ω

〉
= −2υ−1|∇υ|2 − υ2

〈
|A|2ν, ω

〉
= −2υ−1|∇υ|2 − υ|A|2

Because ∆ν = −∇H − |A|2ν and d
dt
ν = −∇H

Remark 4 (υ > 0).

υ−1 = 〈ν, ω〉 ≤ |ν| · |ω| = 1

⇒ υ = 〈ν, ω〉−1 ≥ 1 > 0

Since all the terms in the right of the above equality are non positive we
can apply corollary (3.1) to conclude with

Corollary 3.5. If υ is bounded at time t = 0, it remains bounded by the
same constant for all time.
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The following proposition proves that polynomial bounds for the gradient
function υ are preserved.

Proposition 3.6. If for some c1 <∞, p ≥ 0, we have

υ ≤ c1(1 + |y|2 − u2)p

at time t = 0, then for all t > 0 the inequality

υ ≤ c1(1 + |y|2 − u2 + 2nt)p

holds for υ = υ(x, t)

Proof.(
d

dt
−∆

)
υη−p2 = υ

(
d

dt
−∆

)
η−p2 + η−p2

(
d

dt
−∆

)
υ + 2∇η−p2 · ∇υ

= −|A|2υη−p2 − 2υ−1|∇υ|2η−p2

− υ
(
p(p+ 1)|∇η2|2η−p−2

2 − 2pη−p−1
2 |∇υ|2

)
− 2p ηp−1

2 ∇υ · ∇η2

and the term −2pηp−1
2 ∇υ · ∇η2 cannot beat the negative terms so the right-

hand side is non-positive. This is because

|2pη−p−1
2 ∇υ · ∇η2| = 2|

√
2υ−1/2η

−p/2
2 ∇υ · 1√

2
pυ1/2η

−p/2
2 η−1

2 ∇η2|
Young

≤ 2υ−1|∇υ|2η−p2 +
1

2
p2υη−p−2

2 |∇η2|2

with p ≥ 0.
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3.5 Curvature estimates

Not all hypersurfaces that are entire graphs behave the same way under the
mean curvature flow. In this section we prove that, under condition (15) the
surfaces ”flatten out” as t → ∞. We cannot conjecture the same for graphs
violating this condition, as there are specific counterexamples. There exist
stable minimal graphs that are non-flat (see [5]). These will be equilib-
rium points of the mean curvature flow.

From now on we shall only consider the case of linear growth (proposition
(3.6) with p = 0), i.e. we assume that for some fixed constant c1 ≥ 1 the
inequality

υ ≤ c1 (15)

holds everywhere on M0. Corollary 3.5 then ensures that (15) remains valid
for all t > 0.

To guarantee longtime existence of a solution for the mean curvature flow,
it is crucial to obtain a priori bounds for the second fundamental form
on Mt. In Theorem 3.10 we derive uniform estimates for the curvature, and
all its derivatives, that allow us to prove the existence of a longtime smooth
solution to the flow for sufficiently good initial data M0.

Lemma 3.7. The curvature satisfies the inequality(
d

dt
−∆

)
|A|2υ2 ≤ −2υ−1∇υ · ∇

(
|A|2υ2

)
.

Proof. From Section 2, Lemma 2.2, 3rd equation for |A| and Kato’s inequality(∣∣∇|A|∣∣ ≥ |∇A|) we have:(
d

dt
−∆

)
|A|2 = −2|∇A|2 + 2|A|4

≤ −2
∣∣∇|A|∣∣2 + 2|A|4

Using our estimates for the derivatives of υ (see gradient estimates, Lemma
3.4) and our favourite identity we have:(

d

dt
−∆

)
υ2 = −2|A|2υ2 − 6|∇υ|2 (16)
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And again by our favourite identity we have:(
d

dt
−∆

)
|A|2υ2 ≤ −2

∣∣∣∇|A|∣∣∣2υ2 − 6|∇υ|2|A|2 − 2∇|A|2 · ∇υ2 (17)

Which we want to be ≤ 0, only the last term is bothering us. To confront it,
Young’s inequality could be a firs idea. Unfortunately, if we simply try the
Young inequality we would end up with

−2∇|A|2 · ∇υ2 ≤
∣∣∣∇|A|2∣∣∣2 + |∇υ2|2

for which nothing can be done.

We examine this annoying term using the wonderful trick which is not only
Young inequality, but also splitting the terms (which will also be used later)

So we split in two:

−2∇|A|2 · ∇υ2 = −∇|A|2 · ∇υ2 − 4|A|υ∇|A| · ∇υ

And treat each term differently.

We want to make ∇(|A|2υ2) appear multiplied by a vector
−→
ξ in order to use

the corollary (3.1)
Thus we compute:

∇(|A|2υ2) = |A|2∇υ2 + υ2∇|A|2

We would also like in (17) to exploit the term

−6|∇υ|2|A|2

So we might consider taking the inner product of ∇(|A|2υ2) with ∇υ2 to get:

∇(|A|2υ2) · ∇υ2 = |A|2∇υ2 · ∇υ2 + υ2∇|A|2 · ∇υ2

= |A|2|∇υ2|2 + υ2∇|A|2 · ∇υ2

= |A|2|2υ∇υ|2 + υ2∇|A|2 · ∇υ2

= 4|A|2υ2|∇υ|2 + υ2∇|A|2 · ∇υ2
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We are now in position to handle the inner product term of unknown
sign, in (17)

Splitting 2∇|A|2 · ∇υ2 in two terms:

• ∇|A|2 · ∇υ2 = υ−2∇(|A|2υ2) · ∇υ2 − 4|A|2|∇υ|2

• ∇|A|2 · ∇υ2 = 2|A|∇|A| · 2υ∇υ = −2 (−
√

2υ)∇|A| · (
√

2|A|)∇υ

Where the strange ±
√

2 is introduced so that Young can help us once more.

We now derive for (17):

−2∇|A|2 · ∇υ2 = −
(
υ−2 ∇

(
|A|2υ2

)
· ∇υ2 − 4|A|2|∇υ|2

)
+ 2
(
−
√

2υ
)
∇|A| ·

(√
2|A|

)
∇υ

Young ≤ −
(
υ−2∇

(
|A|2υ2

)
· ∇υ2 − 4|A|2|∇υ|2

)
+ 2υ2

∣∣∇|A|∣∣2 + 2|A|2|∇υ|2

= −υ−2∇
(
|A|2υ2

)
· ∇υ2 + 2υ2

∣∣∇|A|∣∣2 + 6|A|2|∇υ|2

So (17) becomes:(
d

dt
−∆

)
|A|2υ2 ≤ −2

∣∣∇|A|∣∣2υ2 − 6|∇υ|2|A|2 − 2∇|A|2 · ∇υ2

≤ ����
���−2|∇|A||2υ2 −����

��
6|∇υ|2|A|2 − υ−2∇

(
|A|2υ2

)
· ∇υ2

+���
���2υ2|∇|A||2 +���

���6|A|2|∇υ|2

= −υ−2∇
(
|A|2υ2

)
· ∇υ2

= −2υ−1∇υ · ∇
(
|A|2υ2

)
which gives the result.

Corollary 3.8. If Mt is a smooth solution of the mean curvature flow with
bounded gradient and bounded curvature on each Mt, then there is the a pri-
ori estimate

sup
Mt

|A|2υ2 ≤ sup
M0

|A|2υ2.

Proof. We use ∇ν = A along with the Cauchy - Schwartz inequality to
compute

|∇υ| = |υ−2 〈∇ν, ω〉 | ≤ υ−2|∇ν| · |ω| = υ−2|A| ⇒ υ|∇υ| ≤ |A|υ.

Since |A| and υ are bounded, so is υ−1|∇υ|, and we can proceed using corol-
lary (3.1) with α = −2υ−1∇υ
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Here we will discuss the boundedness of the derivatives of any order
of A

Proposition 3.9. If the second fundamental form of an entire graph is
bounded up to time T , then all its covariant derivatives are also bounded up
to time T .

Proof. Exactly as in Section 2, Proposition 2.6. Only, we cannot use the
maximum principle here, we use Corollary 3.1 instead.

Proposition 3.10. Let Mt be a smooth solution satisfying (15). Then for
each m ∈ N there is a constant C(m) depending only on c1, n and m (c1 is
the linear bound of υ) such that

tm+1|∇mA|2 ≤ C(m) (18)

Proof. The proof is based on a form of recursion, like the one we saw in
Proposition (2.6) of Chapter 2

To establish the case m = 0 we compute from Lemma 3.7(
d

dt
−∆

)(
2t|A|2υ2 + υ2

)
≤ −2υ−1∇υ · ∇

(
2t|A|2υ2

)
− 6|∇υ|2

≤ −2υ−1∇υ · ∇
(
2t|A|2υ2 + υ2

)
.

Again Corollary (3.1) yields that the estimate

2t|A|2υ2 ≤ c2
1

holds uniformly on Mt. We now proceed by induction on m in a way similar
to that in Chapter 2, Proposition (2.4).

We have for arbitrary l ≥ 0 the inequality(
d

dt
−∆

)(
tl+1|∇l+1A|2

)
≤ −2tl+1|∇l+1A|2 + (l + 1)tl|∇lA|2

C(l, n)tl+1
∑

i+j+k=l

|∇iA| |∇jA| |∇kA| |∇lA|.

Suppose (18) is established up to (m− 1). Then we estimate

tl+1
∑

i+j+k=l

|∇iA| |∇jA| |∇kA| |∇lA|

≤ Ctl+1
∑

i+j+k=l

t−1−i/2−j/2 |∇kA| |∇lA| ≤ Ctl/2
∑
k≤l

tk/2|∇kA| |∇lA|

≤ C
∑
k≤l

tk|∇kA|2
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with constants C depending only on l, n and c1.

The last inequality has a tricky point, let’s examine this using

(∗) tk/2|∇kA| ≤ tl/2|∇lA| ⇒ tk/2|∇kA|tl/2|∇lA| ≤ tl|∇lA|2

= tk|∇kA|2
{
k = l

}
For k ≤ l we split the sum in two

tl/2
∗∑
k≤l

tk/2|∇kA| |∇lA|+ tl/2
not ∗∑
k≤l

tk/2|∇kA| |∇lA|

≤ l · tl|∇lA|2 +
∑
k≤l

tk|∇kA|2

≤ (l + 1) · tl|∇lA|2

Thus we obtain for all l ≤ m the inequality(
d

dt
−∆

)(
tl+1|∇lA|2

)
≤ −2tl+1|∇l+1A|2 + C

∑
k≤l

tk|∇kA|2.

Which yields a recursive argument as follows:

(
d

dt
−∆

)(
tm+1|∇mA|2

)
≤ −2tm+1|∇m+1A|2 + C

∑
k≤m

tk|∇kA|2(
d

dt
−∆

)(
tm|∇m−1A|2

)
≤ −2tm|∇mA|2 + C ′

∑
k≤m−1

tk|∇kA|2

Adding enough (k1) of the second inequality to the first gives(
d

dt
−∆

)(
tm+1|∇mA|2 + k1t

m|∇m−1A|2
)

≤ −2tm+1|∇m+1A|2 + C ′
∑
k≤m−1

tk|∇kA|2

≤ C ′
∑
k≤m−1

tk|∇kA|2
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and the order of the right hand side has decreased by one. Let’s do recursion!
We can continue this process choosing each time k2, k3, ...km+1 such that
finally(

d

dt
−∆

)(
tm+1|∇mA|2 + k1t

m|∇m−1A|2 + k2t
m−2|∇m−2A|2 + . . .

. . .+ km−1t
2|∇A|2 + kmt|A|2

)
≤ |∇0A|2 = C̃|A|2 (19)

And how do we deal with |A|2 ?

We have from equation (16) of Lemma 3.7(
d

dt
−∆

)
υ2 = −2|A|2υ2 − 6|∇υ|2

≤ −2|A|2υ2

≤ −2|A|2

(remember: υ ≥ 0).
So we can use υ2 to fight |A|2.

Adding enough (km+1) of this inequality to (19) we end up with(
d

dt
−∆

)(
tm+1|∇mA|2 + . . .+ t|A|2 + υ2

)
≤ 0

and using Corollary 3.1 we obtain

tm+1|∇mA|2 + tm|∇m−1A|2 + . . .+ t|A|2 + υ2 ≤ C

uniformly in time as C depends only on the order m and the initial cur-
vature and gradient bounds.

The result follows since tm|∇m−1A|2 + . . .+ t|A|2 + υ2 ≥ 0.
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4 Longtime existence and Convergence

Here we prove that, as long as the second fundamental form tensor is bounded,
the flow cannot develop a singularity.

Theorem 4.1. Suppose ϕt is a smooth solution of the mean curvature flow
in the interval [0, T ) with T < ∞. If |At| is bounded for t ∈ [0, T ) then T
cannot be a singular time.

Proof. Since ∂tϕ = H · −→ν , with −→ν : unit we have:

|ϕ(p, t)− ϕ(p, s)| =
∣∣∣∣∫ t

s

∂tϕ(p, ξ)dξ

∣∣∣∣ =

∣∣∣∣∫ t

s

H(p, ξ)−→ν dξ
∣∣∣∣ ≤ ∫ t

s

|H(p, ξ)|dξ

for every 0 ≤ s ≤ t < T This is because H is the trace of the bounded tensor
A so there exists C <∞ such that |H(p, t)| ≤ C ∀t < T
(The terms in | · | are integrals of vector quantities but this doesn’t affect the
validity of our calculations)

This inequality says that ϕt converges. Let’s see why:

Using our favourite Cauchy sequence {tn} we obtain:

|ϕ(·, tn)− ϕ(·, tm)| ≤ C|tn − tm| < ε

for n0 large enough and m > n > n0

For example:∣∣∣∣ϕ(·, T − 1

n

)
− ϕ

(
·, T − 1

m

)∣∣∣∣ ≤ C

∣∣∣∣ 1n − 1

m

∣∣∣∣ < ε

Therefore the sequence ϕn := ϕ( · , T −1/n) is Cauchy in the (Banach) space
C(M,Rn+1) and thus converges to a ϕT as n → +∞. That is ϕt converges,
as t → T , to a function ϕT of unknown (yet) features. We will prove that
ϕT is a C∞ embedding but, for now, we can only know that it is continuous
as the uniform limit of the continuous functions ϕt(·).

Let’s examine the properties of this limit map (which essentially is the embed-
ding of the limit manifold (MT , gT ) in Rn+1) and justify the writing ϕt → ϕT
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At this point we want to remind the reader that we are looking at Mt’s
as Riemannian submanifolds of Rn+1 with the identifications, for all t > 0 :

Mt := {ϕt(M)} ↪→
isom

Rn+1

To be more precise Mt := {ϕt(·) : (M, gt) ↪→
isom

(Rn+1, ḡ)}

so ϕt(·) evolves according to the evolution of gt on M

and isometric embedding means that ḡ|Mt = gt

We will show that Mt
C∞

c→ MT

We will prove simultaneously that ϕT is C∞ and ∂kϕt → ∂kϕT for each
k ∈ N in the compact sense. We will deduce this applying the Ascoli-Arzela
theorem on the family {∂kϕt(·)}t≥0 for each k. For this we only need every
such set Sk to be equibounded that is:

|∂kϕt| < Ck ∀t < T,

where Ck depends on T , which we will be proving subsequently.
Just a word before we go on: the inequalities are uniform in time as we

saw, but also in space:

|∂kϕt(p)| < Ck ∀t < T, ∀p ∈M

in other words:
||∂kϕt(·)||∞ < Ck ∀t < T

where by || · ||∞ we mean the supremmum over all p ∈M
The tricky point is that our hypersurfaces are not compact so we take

closed balls Br centered at the origin with increasing radii and cover all of
Rn. In each such ball we can use the Ascoli - Arzela theorem.

For each 0 < t < T and each p ∈Mt there is a ball Br(p) such that

|∂kϕt(p)| < Ck ∀t < T, ∀p ∈ Br(p)

Proving for each k that |∂kϕt| < Ck ∀t < T (on every compact set)
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To do so we will compare these k’th derivatives of the C∞ maps ϕt :
M ↪→ Rn+1 to the respective k’th covariant derivatives which are bounded
as we know. (In fact they decrease to zero)

This means that we need to bound some tensor quantities so let St be
a tensor on Mt. What does it mean that St is bounded? It means that
|St|g(t) ≤ C. A question arises: if we have such a bound for t = 0 can we
hope to maintain it during the evolution?

To answer this we observe that there are two distinct evolving quantities,
namely: St and gt. So let’s at first consider a simpler case where the tensor
is merely a fixed vector υ ∈ TpM (in the sense of υ := υt = (Dϕt)(υ) ∈
Tϕt(p)ϕt(M)) and look at the evolution of its norm |υ|g(t).

(Note that υ does not vary with time. It appears changing only be-
cause its image under the immersions vary. It is an extrinsic viewpoint:
υt’s differ inside Rn+1 but they are the images of the same vector υ ∈ TpM)

We compute:

d

dt
log|υ|2g(t) =

∂gij
∂t
υiυj

|υ|2g(t)
=
−2Hhijυ

iυj

|υ|2g(t)
≤ C
|A|2|υ|2g(t)
|υ|2g(t)

≤ C

Because H = 〈A, id〉 ≤
Cauchy−Swchartz

|A||idn| = n|A|

−2Hhijυ
iυj ≤ 2H|A||υ|2 ≤ 2n|A|2|υ|2

Integrating we get, for every 0 ≤ s ≤ t < T :∣∣∣∣∣log |υ|
2
g(t)

|υ|2g(s)

∣∣∣∣∣ ≤
∫ t

s

∣∣∣∣ ddξ log|υ|2g(ξ)dξ
∣∣∣∣ ≤ C(t− s) ≤ C · T

which implies: −CT ≤ log
|υ|2

g(t)

|υ|2
g(s)

≤ CT , that is

|υ|2g(s)e−CT ≤ |υ|2g(t) ≤ |υ|2g(s)eCT

and suggests that, up to time T , all the norms are equivalent.
Specially for s = 0

|υ|2g(t) ≤ |υ|2g(0)e
CT
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And letting t→ T we conclude that |υ|g(T ) ≤ |υ|g(0)e
CT/2 for any arbitrarily

chosen υ ∈ TpM .

So the limit norm is equivalent to the finite ones as well.

The most important consequence of such equivalence is that we can use
any of the (finite time) norms to bound a tensor at t = T . So without loss
of generality we will simply write | · | in our estimates.

Now by the evolution equation for the Christoffel symbols (to compare tensor
and coordinate expressions as we are working extrinsically) we see that

|Γkij(t)| ≤ |Γkij(0)|+
∫ t

0

∣∣∣∣ ddξΓkij(ξ)

∣∣∣∣ dξ ≤ C +

∫ T

0

|A ∗ ∇A|dξ ≤ C +DT

for some constants depending only on the initial hypersurface. This passes
to the limit and we have

|Γkij(T )| ≤ C +DT

Thus, after fixing a (any local chart, we see the Christoffel symbols are uni-
formly bounded in time. This implies for every tensor S,∣∣∣∣∣∣∣∣ ∂S∂xi

∣∣∣∣− |∇iS|
∣∣∣∣ ≤ C|S| (20)

where we take the partial derivative of the scalar part of the tensor S for
instance

∇S =
∂S

∂xi
dxi ⊗ (...) + S ⊗∇(...)

That means, the derivatives in coordinates differ by the relative covariant
ones by eqibounded terms. So if a tensor is bounded then its coordi-
nate derivative is bounded iff the respective covariant derivative is
bounded.

In the rest of the proof, for simplicity, we will denote by ∂ the coordinate
derivatives and by ∇ the covariant ones

As the time derivative of the Christoffel symbols is a tensor of the form
A ∗ ∇A, we have

|∂t∂sΓkij| = |∂s∂tΓkij| ≤ |∂s(A ∗ ∇A)|,
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([∂t, ∂i] = 0 as ordinary derivatives)
hence, by induction on the order s and integration as above, one can show
that |∂sΓkij| ≤ C for every s ∈ N

We provide here the induction step, namely:

|∂sΓkij| = |∂s(A ∗ ∇A)| ≤ C ⇒ |∂s+1(A ∗ ∇A)| = |∂s+1Γkij| ≤ C̃

To see this we estimate:

|∂s+1(A ∗ ∇A)| = |∂(∂sA ∗ ∇A)|
= |∂

(
∂s(A ∗ ∇A)

)
−∇

(
∂sA ∗ ∇A

)
+∇

(
∂s(A ∗ ∇A)

)
|

≤
∣∣∂(∂sA ∗ ∇A)−∇

(
∂s(A ∗ ∇A)

)∣∣+ |∇
(
∂s(A ∗ ∇A)

)
|

by(20) ≤ C1|∂s(A ∗ ∇A)|+ C2

by inductive hypothesis ≤ C1C + C2

(the tensor quantities are considered bounded and we want to bound the
partials)

Then, again by induction, the following formula relating the iterated co-
variant and coordinate derivatives of the tensor S holds:

||∇sS| − |∂sS|| ≤ |∇sS − ∂sS|

≤
s∑
i=1

∑
j1+...+ji+k≤s−1

|∂j1Γ...∂jiΓ∂kS| ≤ C

s−1∑
k=1

|∂kS|

This implies that if a tensor has all its covariant derivatives bounded, also
all the coordinate derivatives are bounded. In particular this holds for the
tensor A, that is, |∂kA| ≤ Ck. Moreover, by induction, as ∇kg = 0 all the
coordinate derivatives of the metric tensor g are equibounded.
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Working in compact sets, we ensure that |ϕ| is bounded and |∂ϕ| = |ei| =
1, then by the Gauss - Weingarten relations,

∂2ϕ = Γ∂ϕ+ Aν, ∂ν = A ∗ ∂ϕ

we get

|∂kϕ| =

∣∣∣∣∣∣
k−2∑
i=0

(
k − 2

i

)
∂k−2−iΓ∂i+1ϕ+

k−2∑
i=0

(
k − 2

i

)
∂k−2−iA∂iν

∣∣∣∣∣∣
|∂∗Γ|≤C ≤ C

k−2∑
i=0

|∂i+1ϕ|+ C̃

k−2∑
i=0

|∂k−2−iA∂i−1(A ∗ ∂ϕ)|

|∂∗A|≤C̃ ≤ C

k−2∑
i=0

|∂i+1ϕ|+ C̃

k−2∑
i=1

|∂i−1(A ∗ ∂ϕ)|+ ˜̃C
≤ C

k−2∑
i=0

|∂i+1ϕ|+ C̃

k−2∑
i=1

∣∣∣∣ ∑
p+q+r=i−1

∂pA ∗ ∂qg ∗ ∂r+1ϕ

∣∣∣∣+ ˜̃C
|∂∗g|·|∂∗A|≤C̃ ≤ C

k−2∑
i=0

|∂i+1ϕ|+ C̃

k−2∑
i=1

i−1∑
r=0

∣∣∣∣∂r+1ϕ

∣∣∣∣+ C

≤ C

k−2∑
i=0

|∂i+1ϕ|+ C̃

k−2∑
i=1

|∂iϕ|+ C

≤ C
k−1∑
i=0

|∂iϕ|

(only caring about the boundedness of constants)

This gives the tool for an (obvious) induction argument which yields

|∂kϕ| < Ck time independent

for t ∈ [0, T ), in all compact subsets of M.

By the Ascoli - Arzela theorem we see that for every t ∈ [0, T ) the limit

ϕt(·)→ ϕT (·)

is in C∞c and conclude that ϕT : M → Rn+1 is a C∞ embedding.
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We can do the same computations with ∂tϕ and find out that

|∂st ∂kxϕ| ≤ Cs,k

and smoothly pass to the limit. So the convergence is also C∞ in time. Thus
the domain extends to the temporal boundary of M × [0, T ) and lim

t→T
ϕt(·) =

ϕT (·).

Now by the short time existence theory we can ”restart” the flow past
time T which contradicts to its maximality.
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5 Asymptotic behavior

In this section we study the behavior of solutions Mt for large times t in the
case of linear growth. For simplicity we shall additionally assume that the
initial surface M0 has bounded curvature. We saw in Proposition 3.10 that
the surfaces Mt ”flatten out” as t→∞, and if they do not diverge to ∞ (e.g.
if u is bounded in time), then they must converge to a plane.

However, in general the surfaces do diverge to infinity, in fact at speed
proportional to t−1/2, and Proposition 3.10 does not yield any information
about their global shape.

To study the global shape ofMt for t→∞ we will now rescale the surfaces
in such a way that they do not diverge to infinity. We then examine the
properties of the rescaled manifolds and retain a bound on their curvature.

5.1 Rescaling

We define

ϕ̃(s) :=
1√

2t+ 1
ϕ(t) (21)

where the new ”time” variable s is given by

s =
1

2
log(2t+ 1), s ∈ [0,+∞)

The basic geometric quantities rescale as follows:

g̃ij =

〈
∂ϕ̃

∂xi
,
∂ϕ̃

∂xj

〉
=

(
1

√
2t+ 1

)2
〈
∂ϕ

∂xi
,
∂ϕ

∂xj

〉
=

1

2t+ 1
gij

h̃ij =

〈
∂ν̃

∂xi
,
∂ϕ̃

∂xj

〉
=

1
√

2t+ 1

〈
∂ν

∂xi
,
∂ϕ

∂xj

〉
=

1
√

2t+ 1
hij

H̃ = g̃ijh̃ij =
√

2t+ 1gijhij =
√

2t+ 1H

ν̃ = ν because
{
ν̃⊥

∂ϕ̃

∂xk
, |ν̃| = 1

}
Notice that we adopted another convention for hij than previously. This will
help with the proofs that follow throughout this last chapter. We cite here
the corresponding formulae affected by this convention.
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•
∂

∂t
ν = −∇H becomes

∂

∂t
ν = ∇H

• ∂
∂t
hij = ∆hij + 2Hhilg

lshsj − |A|2hij

• ∂
∂t
H = ∆H +H|A|2

• The MCF equation doesn’t change

The normalized equation then becomes

d

dt
ϕ̃ = H̃ν̃ − ϕ̃ (22)

Indeed

ϕ̃ =
1√

2t+ 1
ϕ

⇒ ∂ϕ̃

∂s
=

(
ds

dt

)−1
∂

∂t

(
ϕ√

2t+ 1

)
= (2t+ 1)

(
(2t+ 1)1/2Hν − (2t+ 1)−1/2ϕ

2t+ 1

)
=
(
(2t+ 1)1/2Hν − ϕ̃

)
= H̃ν̃ − ϕ̃.

The estimates from Proposition 3.3, Corollary 3.5,Corollary 3.8 and
Proposition 3.10 translate to estimates for the rescaled embedding

ũ2(x, s) ≤ c̃0

(
1 + |ỹ|2 − ũ2(x, s)

)
,

υ̃(x, s) ≤ c1,

|Ã|2(x, s) ≤ c2,

with constants depending only on the initial bounds for the respective quan-
tities on M0.

Indeed:

ũ
(
ỹ(x), s

)
= 〈ỹ, ω〉 =

1
√

2t+ 1
〈y(s), ω〉 =

1
√

2t+ 1
u
(
y(x), s

)
(23)

� Notice that we count in the new time scale: s instead of t�
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So the rescaled height estimate is

ũ2 =
1

2t+ 1
u2

≤
1

2t+ 1
c0

(
1 + |y|2 − u2 + 2nt

)
t→∞ = c0

(
n+ |ỹ|2 − ũ2

)
The new gradient estimate:

υ̃(x, s) = 〈ν̃, ω〉−1 = 〈ν, ω〉−1 = υ(x, s) ≤ c1

since ν̃ = ν
As for the rescaled curvature:

|Ã|2 = g̃(Ã, Ã) = g̃jkg̃ilh̃ijh̃kl

= (2t+ 1)2

(
1√

2t+ 1

)2

gjkgilhijhkl

= (2t+ 1)|A|2

=
2t+ 1

t
t|A|2

(
t|A|2≤c2

) ≤ (2 +
1

t

)
c2

(t→∞) ≤ c′2

For the rescaled surfaces, M̃s = ϕ̃s(M) we then establish the following result
concerning asymptotic convergence.

Theorem 5.1. Suppose M0 satisfies the linear growth condition (15) and
has bounded curvature. If in addition the estimate

〈y, ν〉 ≤ c3

(
1 + |y|2

)1−δ
(24)

is valid on M0 for some constants c3, δ > 0. Then the solution M̃s of the
normalized equation (22) converges for s → ∞ to a limiting surface M̃∞
satisfying the equation

〈ỹ, ν̃〉 = H̃ (25)

We refer the reader to [1] for an explicit counterexample proving that condi-
tion (24) is indeed necessary.
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The result follows from the estimate

sup
M̃s

(
H̃ − 〈ỹ, ν̃〉

)2
υ̃2(

1 + α|ỹ|2
)1−ε ≤ e−βs sup

M̃0

(
H − 〈y, ν〉

)2
υ2(

1 + α|y|2
)1−ε (26)

which we derive for all ε < δ with some constants α > 0, β > 0 depending
only on ε, n, c1 and c2.

The right supremmum is finite on every compact subset of M̃0. This im-
plies, in particular, exponentially fast convergence on compact subsets

Remarks
i) In view of the interior estimates in Proposition 3.10 the conclusion of The-
orem 5.1 remains valid for Lipschitz initial data provided condition (24) is
satisfied for some t0 > 0.

ii) Any initial surface M0 given by ϕ0 : M → Rn+1 satisfying (25) gives
rise to an expanding selfsimilar solution of the mean curvature flow in the
sense that

ϕt =
√

2t+ 1ϕ0

satisfies (
d

dt
ϕ

)⊥
= H.

Theorem 5.1 then says that Mt becomes asymptotically selfsimilar.

In the one-dimensional case an example for ”curves of constant shape” evolv-
ing from a corner was numerically obtained by Brakke in [6]. It is an open
problem to understand and possibly classify solutions of equation (25). We
show in the appendix that the equation

ϕ⊥ = −Hν

(characterizing contracting selfsimilar solutions of the mean curvature flow)
has only trivial solutions in the class of entire graphs of polynomial growth.
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We begin the proof of the theorem with the following lemma.

Lemma 5.2. The quantity 〈y, ν〉 satisfies the evolution equation(
d

dt
−∆

)
〈y, ν〉 = |A|2 〈y, ν〉+ 2H.

Proof. Remember that y = ϕ(x)
From the equation (d/dt)ν = ∇H we compute

d

dt
〈y, ν〉 = 〈Hν, ν〉+ 〈y,∇H〉

= H + 〈y,∇H〉

while

∆ 〈ϕ, ν〉 = 〈∆ϕ, ν〉+ 〈ϕ,∆ν〉+ 2 〈∇ϕ,∇ν〉
∗ = H −

〈
ϕ, |A|2ν −∇H

〉
− 2H

= −H − |A|2 〈ϕ, ν〉+ 〈ϕ,∇H〉

So(
d

dt
−∆

)
〈y, ν〉 = H + 〈y,∇H〉+H + |A|2 〈y, ν〉 − 〈y,∇H〉

= 2H + |A|2 〈y, ν〉

(∗) : 〈∇ϕ,∇ν〉 = ∇
�
�
�
�
��

〈
∇ϕ︸︷︷︸
∈M>

, ν

〉
− 〈∆ϕ, ν〉 = −H

We can now show that up to a time-dependent factor, condition (24) is
preserved for all s > 0.

Lemma 5.3. Suppose M0 satisfies the assumptions of Theorem 5.1. Then
on M̃s we have the estimate

〈ỹ, ν〉2 ≤ C(s)(1 + |ỹ|2)1−δ

with a constant depending on s and c2.
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Proof. Since the constant in the estimate is allowed to depend on time it is
sufficient to look at the unnormalized flow. From the previous lemma we
infer(

d

dt
−∆

)
〈y, ν〉2 = 2 〈y, ν〉

(
d

dt
−∆

)
〈y, ν〉 − 2|∇ 〈y, ν〉 |2

= 2|A|2 〈y, ν〉2 + 4H 〈y, ν〉 − 2|∇ 〈y, ν〉 |2

≤ C
(
〈y, ν〉2 + 1

)
− 2|∇ 〈y, ν〉 |2 (27)

Because we consider |A|2 ≤ C̃, therefore H ≤ C̃, and using Young on
4H 〈y, ν〉 ≤ 2H2 + 2 〈y, ν〉2 we get

2(
√

2H)(
√

2 〈y, ν〉) ≤ 2H2 + 2 〈y, ν〉2

2 〈y, ν〉2 |A|2 + 4H 〈y, ν〉 ≤ 2C̃ 〈y, ν〉2 + 2C̃ + 2 〈y, ν〉2

≤ 2
(
C̃ + 1

)
〈y, ν〉2 + 2C̃ + 2

C:=2(C̃+1) = C
(
〈y, ν〉2 + 1

)
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From now on we denote all constants depending only on c2 and s by C.
We now write f = 〈y, ν〉, multiply the above equation by a test function ρ
and estimate(

d

dt
−∆

)
f 2ρ = ρ

(
C(f 2 + 1)− 2|∇f |2

)
+ f 2

(
d

dt
−∆

)
ρ− 2 〈∇f,∇ρ〉

= ρ

(
Cf 2 + C − 2|∇f |2

)
+ ρ−1ρf 2

(
d

dt
−∆

)
ρ− 2 〈∇f,∇ρ〉

= f 2ρ

(
C + ρ−1

(
d

dt
−∆

))
+ Cρ− 2ρ|∇f |2 − 2 〈∇f,∇ρ〉

Young ≤
(
C + ρ−1

(
d

dt
−∆

))
f 2ρ+ Cρ

Choosing ρ = ηδ−1
1 where η1 = 1 + |x|2 + 2nt we derive from Lemma 3.2,(

d

dt
−∆

)
ρ =

(
d

dt
−∆

)
ηδ−1

1

= −(δ − 1)(δ − 2)|∇η1|2ηδ−3
1 + (...)

��
�
��

��
(
d

dt
−∆

)
η1

= −(δ − 1)(δ − 2)|∇η1|2ηδ−3
1

≤ 0 since δ < 1

Furthermore,

ρ−2|∇ρ|2 = (1 − δ)2η−2
1 |∇η1|2 ≤ 4(1 − δ)2η1 ≤ 4

since |∇η1|2 ≤ 4η1.

Altogether we conclude(
d

dt
−∆

)
f 2ρ ≤ C

(
f 2ρ+ 1

)
such that by Corollary 3.1, f 2ρ can at most grow exponentially in time.
This implies the result. Let’s see this for the rescaled flow:

f 2ρ ≤ et ⇒ f 2 ≤ ρ−1e−t
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i.e.

〈y, ν〉2 ≤ e−t(1 + |y|2 + 2nt)1−δ

y=
√

2t+1ỹ ⇒(2t+ 1) 〈ỹ, ν〉2 ≤ C(t)
(

1 + (2t+ 1)|ỹ|2 + 2nt
)1−δ

⇔〈ỹ, ν〉2 ≤ C(t)

(
(2t+ 1)|ỹ|2 + 2nt+ 1

)1−δ

2t+ 1

⇔〈ỹ, ν〉2 ≤ C(t)
(
|ỹ|2 + c(δ)

)1−δ
.

Lemma 5.4. The normalized quantity H̃−〈ỹ, ν〉 satisfies the evolution equa-
tion (

d

ds
− ∆̃

)(
H̃ − 〈ỹ, ν〉

)
=
(
|Ã|2 − 1

)(
H̃ − 〈ỹ, ν〉

)
(28)

Proof. We first compute

∆̃f = g̃ij∇ijf = (2t+ 1)gij∇ijf = (2t+ 1)∆f

∂

∂s
f =

(
ds

dt

)−1
∂

∂t
f = (2t+ 1)

∂

∂t
f

Very helpfully then
�̃f = (2t+ 1)�f

for any f .
From the evolution of H (see chapter 2) and Lemma 5.2 we compute the
identities (

d

ds
− ∆̃

)
H̃ = |Ã|2H̃ + H̃(

d

ds
− ∆̃

)
〈ỹ, ν〉 = |Ã|2 〈ỹ, ν〉+ 2H̃ − 〈ỹ, ν〉 .

The computation, recalling that H̃ =
√

2t+ 1H, is

�̃H̃ = (2t+ 1)�
√

2t+ 1H

= (2t+ 1)
(√

2t+ 1�H +H�
√

2t+ 1
)

= H|A|2(2t+ 1)3/2 +H(2t+ 1)1/2

= H̃|Ã|2 + H̃ (29)
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Furthermore

�̃ 〈ỹ, ν〉 = (2t+ 1)�(2t+ 1)−1/2 〈y, ν〉
= (2t+ 1)

[
(2t+ 1)−1/2� 〈y, ν〉+ 〈y, ν〉�(2t+ 1)−1/2

]
= (2t+ 1)1/2� 〈y, ν〉 − (2t+ 1) · (2t+ 1)−3/2

= (2t+ 1) · (2t+ 1)−1/2|A|2 〈y, ν〉+ 2H̃ − (2t+ 1)−1/2 〈y, ν〉
= |Ã|2 〈ỹ, ν〉+ 2H̃ − 〈ỹ, ν〉

Proof of the main theorem

From (28) we infer The normalized gradient υ̃ satisfies the equation(
d

ds
− ∆̃

)
υ̃2 = (2t+ 1)

(
d

dt
−∆

)
υ2

= (2t+ 1)

(
− |A|2υ2 − 6|∇υ|2

)
= −|Ã|2υ̃2 − 6|∇υ̃|2g̃

Observe in the last equality that

| · |g̃ =
1

2t+ 1
| · |g

for vectors but
| · |g̃ = (2t+ 1)| · |g

for covectors, such as ∇υ̃
We may then proceed exactly as in the proof of Lemma 3.7 (split and Young)

to obtain for f 2 =
(
H̃ − 〈ỹ, ν〉

)2
υ̃2 the inequality(

d

ds
− ∆̃

)
f 2 ≤ −2f 2 − 2υ̃−1∇υ̃ · ∇f 2.

Multiplying by a test function ρ we compute(
d

ds
− ∆̃

)
ρf 2 ≤ −2ρf 2 − 2ρυ̃−1∇υ̃ · ∇f 2 (30)

+ f 2

(
d

ds
− ∆̃

)
ρ− 2∇ρ · ∇f 2
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Now let 0 < ε < δ and define ρ(ỹ, s) = ηε−1
α (ỹ)eβs with ηα(ỹ) = 1 + α|ỹ|2

where α, β are small positive constants to be determined later. Then the
normalized equation (22) implies(

d

ds
− ∆̃

)
ηα = −2α

(
|ỹ|2 + n

)
and therefore (

d

ds
− ∆̃

)
ρ ≤

(
β + 2(1− ε)(αn+ 1)

)
ρ (31)

Moreover, (same trick as in 3.7)

−2ρυ̃−1∇υ̃ · ∇f 2 − 2∇ρ · ∇f 2 =

− 2
(
υ̃−1∇υ̃ · ρ−1∇ρ

)
· ∇
(
f 2ρ
)

(32)

+ 2|∇ρ|2f 2ρ−1 + 2f 2υ̃−1b∇υ̃ · ∇ρ.

and we obtain from |∇ηα|2 ≤ 4αηα the estimate

|∇ρ| ≤ 2α1/2ρ.

Combining now (30),(31) and (32) and using the fact that |∇υ̃| ≤ |Ã|υ̃2

(which is scale invariant) we derive for g = f 2ρ the inequality(
d

ds
− ∆̃

)
g ≤ ξ · ∇g +

(
β + cα1/2 − 2ε

)
g

where ξ = −2
(
υ̃−1∇υ̃ + ρ−1∇ρ

)
(which is clearly bounded) and c depends

on c1, c2 and n. Choosing then α, β suitably small depending on ε and c we
see that (

d

ds
− ∆̃

)
g ≤ ξ · ∇g

for all s ≥ 0. Lemma (5.3) ensures that g vanishes at infinity (because
f 2 does since δ < 1) and enables us to apply the 3.1 to conclude that g
is uniformly bounded by its initial data. This proves estimate (26) and
completes the proof of Theorem 5.1.

6 Appendix

Proposition 6.1. If M is an entire graph of at most polynomial growth
satisfying the equation ϕ⊥ = Hν or equivalently

〈ϕ, ν〉 = H

then M is a plane.
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Proof. This equation gives ∇iH =
〈
ϕ, ∂

∂xl

〉
hil and hence

∆υ = |A|2υ + 2υ−1|∇υ|2 +

〈
ϕ,

∂

∂xi

〉
∇iυ.

We multiply this equation by ρ = e
−|x|2

2 which after integration by parts leads
to ∫

M

|A|2υρdµ+ 2

∫
M

υ−1|∇υ|2ρdµ = 0,

thus implying the result.
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