NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

POSTGRADUATE PROGRAM
"DATA SCIENCE AND INFORMATION TECHNOLOGIES"

SPECIALIZATION
“BIOINFORMATICS - BIOMEDICAL DATA SCIENCE”

MASTER THESIS

Flexible single-cell RNAseq data analysis pipelines using
MLscAN

George A. Koliopanos

Supervisor: Elias S. Manolakos, Professor, Department of Informatics and
Telecommunication, National and Kapodistrian University of
Athens

ATHENS

DECEMBER 2021

EONIKO KAI KAIMOAIZTPIAKO MNMANENIZTHMIO AGHNQN
2XOAH OETIKQON ENIZTHMQON
TMHMA NAHPO®OPIKHZ KAI THAETIKOINQNIQN
AIATMHMATIKO NPOIrPAMMA METANTYXIAKQN ZIMNMOYAQN
"ENIZTHMH AEAOMENQN KAI TEXNOAOI'IEZ NAHPO®OPIAZ"
EIAIKEYZH
“BIONAHPO®OPIKH - EMIZTHMH BIOIATPIKQN AEAOMENQN”

AINAQMATIKH EPTrAzIA

EuéAIKTEG po€G avaAuong dedopévwy single-cell RNAseq e
Xpryon tou MLscAN

Flewpylog A. KoAlotrdvog

EmBAéTTWYV: HAiag Z. MavwAdkog, KabnyntAg, Tunua MNMNAnpo@opikig Kai
TnAemikoivwviwy, EBvikd kal KatrodioTpiakd MNavemoTruio
ABnvwv

AOHNA

AEKEMBPIOZ 2021

MASTER THESIS

Flexible single-cell RNAseq data analysis pipelines using MLSCAN

SUPERVISOR:

EXAMINATION
COMMITEE:

George A. Koliopanos
SRN: DS2.18.0007

Elias S. Manolakos, Professor, Department of Informatics and
Telecommunication, National and Kapodistrian University of
Athens

Elias S. Manolakos, Professor , Department of Informatics
and Telecommunication, National and Kapodistrian
University of Athens

Ema Anastasiadou, Investigator - Assistant Professor
Level, Biomedical Research Foundation of the Academy of
Athens (BRFAA)

Dimitris Konstantopoulos, Postdoctoral Researcher,
Biomedical Sciences Research Center "Alexander Fleming

December 2021

AINAQMATIKH EPIrAzIA

EuéNikTeg poég avaAuong dedopévwy single-cell RNAseq pe xprjon Tou MLscCAN
Mewpylog A. KoAlotravog
A.M.: DS2.18.0007

ENMIBAENQN: HAiag Z. MavwAdkog, Kadnyntig, Tunua MNMAnpo@opikAig Kai
TnAemkoivwviwy, EBviKS kal KatrodioTplakd MNavetTioTAWIo
ABnvwyv

EZETAZTIKH HAiag Z. MavwAdkog, KabnyntAg, Tunua MNMNAnpo@opikAg Kai
EMITPOIH: TnAemikoivwviwy, EBvikS kal KatrodioTpiako MNavetmoTripio
ABnvwv
‘Epa AvaoTtaoiadou, Epsuvntig I, 16pupa latpofioAoyikwyv
Epeuvwv Akadnuiag ABnvwyv
Anpntpng KwvoTtavrétmrouAog, MeTadidakTopikog
Epeuvntng, EpguvnTtiko Kévrpo Bloiatpikwyv EmoTnuwy
"ANEEaVOPOG PAEUIVYK"

AekéuBprog 2021

ABSTRACT

The single-cell RNA sequencing technology (scRNA-seq) was introduced to overcome its
predecessor’s, bulk RNAseq, low resolutions limitations. By providing gene expression
profiles at the level of individual cells, scRNA-seq enables us to detect rare cell
subpopulations, offering unique insights into fundamental cell interaction mechanisms in
developmental and cancer biology. Many specialized data analysis tools have emerged
to extract information from large and noisy scRNA-seq datasets. They aim to reconstruct
a dataset's “epigenetic landscape” by discerning cell states and/or inferring trajectory
networks. However, very few support an unbiased exploration of the large model space
for capturing that landscape based on probabilistic machine learning.

MLscAN (Machine Learning for Single-Cell ANalytics) is a set of methods and a
corresponding R-package developed by our group employing unsupervised machine
learning single-cell data analysis based on Gaussian Mixture Models. Without any prior
knowledge, by using only a preprocessed expression matrix of a SCRNA-seq dataset,
MLscAN can discover cell-states and infer state transitions using a probabilistic approach.
A distinct feature of the MLsCAN pipeline is that it partitions state transitions into
consecutive phases (micro-states), identifies the “key-genes” governing the transition,
and reconstructs Gene Regulatory Networks for every micro-state. MLscCAN was initially
built with the “naive users” (with limited expertise in computational biology or R
programming) in mind providing an automated end-to-end pipeline and extensive
visualization for interpreting the results of every stage. However, it has gradually evolved
to allow advanced users to customize a run invoke alternative processing methods and
import results from other tools in nearly every step of the MLscAN analysis.

The main objective of this graduate thesis was to enhance MLscAN’s versatility and
flexibility by improving the integration of external results into the computational pipeline.
The second objective was to develop methods to isolate and analyze separately “mixed
states” that may emerge from GMM. These states have large variance and may
encapsulate many small yet potentially significant cell subpopulations that may contribute
interesting hypotheses into how the landscape of states may be structured if properly
handled. Finally, particular emphasis was placed on demonstrating the MLscCAN
capabilities and versatility using representative and instructive use cases based on non-
trivial real-world datasets.

SUBJECT AREA: single-cell RNA-seq data analysis, bioinformatics,
unsupervised machine learning, probabilistic modeling

KEYWORDS: single-cells, RNA sequencing, state transitions, epigenetic landscape,
trajectory inference, gene regulatory networks, R package

NEPIAHWH

O1 texvohoyieg single-cell RNA- sequencing (scRNA-seq) €ioixBnkav yia va PTTopécOuV va
EeTepaOTOUV O TTEPIOPICMOI TTOU dnuioupyouce n TrpoyeveéoTepn Texvohoyia bulk RNA-seq.
MapéxovTtag pag eva yovidlakd TTpo@iA ékppaong o€ eTTiredo single-cell, To scRNA-seq pag divel
TN OuvatoéTNTA VA AVIXVEUOUUE OTTAVIOUG KUTTAPIKOUG UTTOTTANBUCHOUG, TTPOCPEPOVTOG
ONPAVTIKEG YVWOEIG YIA TOUG BEPEAIWDEIG PUNXAVIOUOUG OAANAETTIOPAONG TwV KUTTAPWY OTNV
avaTtrTugliokn BloAoyia kal TNV épeuva yia Tov Kapkivo. NMoAAG e€e1dikeupéva epyalcia avaAuong
d0edouévwyv éxouv avatrTuxBei yia Tnv €gaywyr TTANpo@opiwy atrd PeyaAa Kal Bopufwdn
oedopéva scRNA-seq. Ta ev AOyw TTOKETA OTOXEUOUV OTNV AVAKOTAOKEUR €VOG «ETTIYEVETIKOU
TOTTiIOU» BIAKPIVOVTOG KATOOTACEIG KUTTAPWY EVW EVA HEPOG AUTWY £EAYEI KAI TPOXIEG METAEU TWV
KataoTaocewv. QoTO00, TTOAU Aiya TTOKETA TTAPEXOUV MIG AMEPOANTITN €EEpelivnon TOU PeydAou
XWPOU TWV MOVTEAWV YIa TNV OTTOTUTTIWON auToU TOU TOTToU PE BAan Tnv TBAVOTIKN WNXAVIKN
pNadnon.

To MLscAN (Machine Learning for Single-Cell ANAlytics) eivar éva oUvoAo peBOdwv TToU
avamTuxenke atmmd Tnv oudda Pag oTnv YAWwooa TTpoypaupaTioyol R yia avdAuon dedouévwv
single-cell xpAONUOTTOIWVTAG W ETTOTITEUOUEVN PUNXAVIKR HdBnon ue Bdon Ta Gaussian Mixture
Models. Xwpi¢ kapia TTponyouuevn yvwaon, XPNOoIKOTTOIWVTAG UOVO TTPOETTEEEPYATHEVA DeDOUEVA
yovIOIoKAG €k@paong evdg ouvolou dedopévwv scRNA-seq, To MLscAN ptTopei va avakaAUWel
KUTTAPIKEG KATAOTAOEIG KAl VA £EAYEl HETARBACEIG PETAGU TWV KATOOTACEWY XPNOIMOTTOIWVTAG Hid
mBeavoTikr TTpoatyyion. Eva Eexwpiotd xapaktnpioTikd tou MLscAN eivail 611 diaxwpilel Tig
MeTaBdoeIC KAaTaoTAOEWY O€ OIadOXIKEG PAOEIS (MIKPO-KATAOTAON), TTPoadiopilel Ta «yovidla-
KA€IOId» TTOU dIETTOUV TN METABaON Kal avadopei Ta puBUIoTIKA dikTua yovidiwv yia KAaBe
MikpokaTtdoTaon. To MLscAN KaTtaokeudoTnke apxikKé yia Tov «apxa@pio xprRotn» (ue
TTEPIOPIOUEVN TEXVOYVWOia 0TNV UTTOAOYIOTIKA BloAoyia A Tov TTpoypaupaTiond o€ R) TrTapéxovtag
MIO QUTOMOTOTTOINMEVN AVOAUGH KAl EKTEVH) OTTTIKOTTOINGN YIO TNV EPUNVEIO TWV ATTOTEAEOUATWY
KABe oTtadiou. QoTd00, £xel £€eAiXBei OTABIAKA YIa VA ETTITPETTEI OTOUG TTPOXWPNHEVOUG XPAOTES
va TTPOCapPOlouv TNV avaAucn Toug Kal va €lodyouv atroteAéopaTa atrd AAAa epyaAsia o€
oxedOV KABe Bripa TNG avaAuong Tou.

O KuUplog ot1déx0G¢ auTAG TnG OIMAWMATIKAG epyaciag Atav va evioxuoel 170 MLscAN
BEATIOTOTTOIWVTAG TNV EVOWMNATWON EEWTEPIKWY OTTOTEAEOUATWY. O &eUTEPOG OTOXOG ITAV N
avaTTugn HEBAdWY yia TNV ATTONOVWAON Kal TNV avAAuon «MEIKTWY KATAOTACEWY» TTOU JTTOPEI va
TTPOKUWOUV aTTé T0 GMM. AUTEG O KATOOTACEIG £€X0Uv PEYAAN dlakuuavon Kai gival Toavo va
TTEPIKAEIOUV TTOAAOUG HIKPOUG OAAG duvNTIKG ONPOVTIKOUG KUTTAPIKOUG UTTOTTANBUCUOUG TToU
MTTOPEI VO CUVEICPEPOUV O€ EVOIOPEPOUTEG UTTOBECEIS OTO TTWG OOUEITAI TO KETTIVEVETIKO TOTTIO»
€AV QVTIMETWTTIOTOUV CWOTA. TEAOG, 660NKe 181aiTEPN £UPacn OTnV ETTIOLIEN TWV dUVATOTHTWY Kal
NG eueAi§iag Tou MLSCAN YXpnOIUOTTOIWVTAG KATAAANAG QVTITTIPOOWTTEUTIKA KAl ETTINOPPWTIKA
Tapadeiyparta Tou Bacifovral o€ TTPAYUATIKA OUVOAQ SESOUEVWIV.

OEMATIKH NEPIOXH: avaAuon dedouévwyv sScRNA-seq, BIOTTANPOQOPIKH,
MN TTOTITEUSHEVN UNXAVIKA HdBnon, mOavoTiK& JovTéAa

AEZ=EIZ KAEIAIA: pepovwpéva kuttapa, aAAnhouxion RNA, HeTaBAOEIG KUTTOPIKAG
KATAOTOONG, ETTIVEVETIKO TOTTIO KUTTOPIKWY KATACTACEWY, avayvwpion
KUTTAPIKWY TPOXIWY, pUBUIOTIKA dikTua yovidiwv, TTakETo R

ACKNOWLEDGEMENTS

| would like to thank my professor and thesis advisor Elias S Manolakos, for the great
opportunity he gave me to be involved in this project, the watchfulness and availability he
provided to discuss and brainstorm in all the steps of the project. | want also to
acknowledge the effort he put on making sure this manuscript is of high quality.

| would also like to thank the examination committee, Dr. Ema Anastasiadou of BFRAA
and Dr. Dimitris Konstantopoulos of the Fleming Institute, both experts in life sciences,
for their comments that helped improve the final manuscript.

Special thanks go to my colleague Arsenios Chatzigeorgiou, with whom we were the main
developers of the MLscAN team for the duration of this work, and our cooperation and
mutual understanding has been exceptional.

| want to thank also every other member of the MLscAN team for their contributions: Dr.
Panos Tsakanikas and Dr. Dimitris Manatakis for working with Prof. Manolakos to give
shape to the initial idea of MLScAN, but also for their helpful insights in later development.
Mrs Efi Malesiou, the initial developer of the MLscAN R package, whose work was the
cornerstone of every later MLscAN improvement. Mrs Rania Theologi for proposing the
need for TrajecoryPath function and Mr. Nikolas Kalavros for his help on vignette writing
and the suggestions he provided.

This thesis would not be possible if we did not have access to GRNET Knossos resources
for analyzing a vast number of sizable datasets.

Table of Contents

AB ST R A CT o 5
FTEPIAHWH . et e e 6
1. INTRODUCGTION ...ttt e e e e e e e et e e e e e e e e eaa s 12
IO R N 1= Lo oo o 1T OO PT PP RPR 12
1.2 THESIS OBDJECTIVES ...ttt e e et e s ek e e e e bt e e e nb et e e anbe e e e e nees 13
1.3 TNESIS OFQANIZALION ..eeeiiieititeittee ettt ettt e s e e e s be e e smn e e s R et e sn e e e ne e e nnr e e nneeennnee e 15
2. RELATED WORK ...ttt e e e e e e e e e e e e e e ean s 16
2.1 Single-Cell data @NaAlY SISccoiiiiieiiiiie e 16
2.1.1 Some popular pipelines and their FEAtUIES ... 17
2.2 DIiStINCt MLSCAN FRALUIES ...ttt ettt e et e e et e e s aabne e e e nees 19
3. THE MLSCAN PIPELINE ... oottt e e ean e eaa e 21
3.1 OVEIVIEW - PIPEIINE STAQBS ..o 21
3.2 Adding flexibility - Integration with external ProCesSSiNgcccovuiiiiiiiiiii i 25
3.3 SD PIOL ANAIYSIS i —————————————— 27
3.4 Results analysis FIEXIDIITYc..eeiiiiiie e 28
o R I = V=Tt (o] VA 0 =1 L TP PO PPPPPPPPPPPPRP 28
3.4.2 Cluster Markers analySiS.........ccoiiiiiiiiii i 28
.5 MIXEA STALESeeiieiiitiie ettt e e e st e oo et e e e e et e e e et e e e e e e e e e e e e e e 28
3.5.1 MLSCAN Mixed States identifiCatioN............ccoiriiiiiiiiiee e e e 28
3.5.2 Mixed State handling apPrOACHES.ccuuiii i e e 29
4. USE CASE - MLSCAN WORKFLOW....... e 30
A1 FIFST MLSCAN FUN Lottt ettt ettt ettt e e e sttt e e ot et e e e oa b bt e e e oab et e e e aa b bt e e e aabbe e e e snbbeeeeanbneeeean 30
4.2 TRE FUN SUMMIAIY .iiiiiieiieeeeeeee ettt ettt ettt ettt ettt e e et e taeeaaeaaaeeees 31
4.3 The MLSCAN ProdUCEA OULPULS ..ceiiiiiiiiiiiiiee ittt ettt e et e e et e e e sabb e e e s sabb e e e e snbreeeean 35
4.4 Characteristics of the gene expreSSion MAiX i ee e e 37
4.5 DIMENSIONAlITY FEAUCTION ...eiiiiiiiiii ettt e et e e e st b e e e s bbeeeesbreeeeans 40
4.6 Unsupervised MOdel SEIECTION . ..o it e e e e e et e e ee e e e e e enes 43
A7 TranSitioNs @Nd TrAJECTOTIES . ..uuiii ittt et e e e st e e e snba e e e snbb e e e e snbbeeeesbneeeeans 45
4.8 TraECLOITES ANAIYSIS .eeiiiiiiiiii ettt ettt e ettt e e st et e e st et e e e aaba e e e e abbeeeeabbeeeesbneeeeans 49
4.9 GeNe ReQUIALOTY NEIWOTKSiiiiiiiiiiiie ittt ettt e e e ettt e e e e e e e e bbb e et e e e e e e sanbnbreeeaaeeeaanns 55
OV D =T] = A= P PR TUPRPTPPRR 60

5 USE CASE - DIMENSIONALITY REDUCTION USING UMAPccoiiiiiiiiiiiiiiiin, 61

5.1 Using an alternative dimensionality reduction methodccoccceiiiiiiii 61

5.2 Post MLSCAN run analysis — Gene ClUSTEr MaArkersScccviiiiiiiiiciiiiiece s 68
6 MLSCAN MIXED STATE ISSUE e 72
6.1 MLscAN Mixed State issue approach: Mixed State analysisccccoceveiiiiiieeiniiee e 72
6.1.1 MLSCAN MixXed STate AN@IYSISveeieiiiiiiieiiiite ettt et e et e e e e e e e 72
6.1.2 MiXed State ANAIYSIS FUN....eeiiieiiiiiieiiee e e e et r e e e e s e e e e e e s s et e e e e e e s s saantareeeeeeesaanntannreeeeesannnnrenes 74
6.1.3 MLscAN run combining the results of the two previous runs (Initial and Mixed State analysis)....... 77
6.1.4 PSeUdO-tIME MEta-ANalYSIS........ccuriiiieie et s e e s s e e e e s e st r e e e e e s s s an e e e e e e e e e annnrrees 82
6.2 MLscAN Mixed State issue approach: Mixed State removalcccccceeeiiiiiiiiiiiee e 83
SR A 11 (0 To 18t i o o RO TP P PR PPRRPRRPTRN 83
6.2.2 THE IMLSCAN FUN ...ttt ettt ettt e ekt e oo s e bt e e e e st et e e e amb et e e e asbe e e e e ambb e e e e anbe e e e e anbneeeennee 83
6.2.3 MiIXEA SEALE FEIMOVALeeiiiiiiiiie ettt ettt e e e ettt e e it et e e e st e e e s anbe e e e e annee 87
7. CONCLUSIONS AND FURTHER RESEARCH ... 93

REFERENCES 95

LIST OF FIGURES

Figure 1 Example of a single-cell data analysis pipelineccccccovviiiiiiiiiiiiiiiiiiinnnnnn. 17
Figure 2 Overview of the MLscAN Pipeline. Since there are multiple pairwise trajectories
per model, we have multiple instances of trajectory class per model. Accordingly in
MiICro StatesS and GRINuuiiii et e e e e e e e et e e e e e e eeeeene 22
Figure 3 Plot that depicts the knee-point method for choosing number of dimensions. 23
Figure 4 . Overview of the MLscAN Pipeline pointing out the stages of the analysis

where a user can intervene and import his data or functionsccccccvvvveiiiiiiiiiinnnnn. 26
Figure 5 SD plot depicting PCs, States, and cumulative variance explained 27
Figure 6 Picture of MLSCAN OUtpUL dIF€CLOIYvvvuiiieeeiieieeiie e e 36
Figure 7 Tree with depicting all folders and subfolder of an MLsScCAN output................. 36
Figure 8. Gene expression DOXPIOtccooeeeeiiiiiiiiice e 37
Figure 9 Min, mean, and max gene expression values per cell...........ccccccvveeiiiiieeiinnnnn, 38
Figure 10 Mean vs. Standard Deviation per Cell.............cooviiiiiiiiii e 39
Figure 11 Gene expression NeatMapcoocceciviiieiiiiiii e e e e e eeeaens 40
Figure 12 Visualizing the PCA reSUILSccooiriiiiiiii e 41
Figure 13 PC1 vs. PC2 with cells colored by cell type (ground truth)ooe.. 42
Figure 14 Cells on PC1, PC2, and PC3 dimensions colored by cell type...................... 43
Figure 15 BIC value of different GMM models as the number of inferred states (clusters)
1o == TSP 44
Figure 16 States Composition plots colored using cell typecoevvvviiiiiiiiiiiiiiiiiiiennnn. 45
Figure 17 Transitions and their Propensitiesccevvvviiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee 46
Figure 18 Trajectories between pairs of states and their key-genescccccccvvvvvennnnnn. 47
Figure 19 Trajectory MICrO-STALES.ccviiiiiiiiiiiiiiieeieeeeeeeeeee e 48
Figure 20 Alluvial plot relating states to cell types (ground truth) and next (transition)

] =11 F PP PPPTIN 49
Figure 21 Posterior probabilities of trajectory Cells..........vvviiiiiiiiiiiiiiiiiiiiie 50
Figure 22 The circle trajectory plot displays information about the trajectory cells........ 51
Figure 23 Bimodal gene expression of key-genes along the trajectorycccccceeeeeeee. 52
Figure 24 Gene expression switches modes along a trajectoryccceeeeeeveeeeeeeennn, 53
Figure 25 The heatmap of key-genes expression for the trajectory cells 54
Figure 26 Dot plot of key-genes expression for the trajectory cells at the different micro-
] 21 (1 TSP UPPPPTRRPPPIN 55
Figure 27 Inferred GRN. Green (red) edges indicate activation (inhibition).................. 56
Figure 28 Constructing GRN for trajectory miCro-states..........ccccoeeveeviiiiiiiiiiiiin e, 57
Figure 29 Visualizing the GRN weights between regulators and their targets............... 58
Figure 30 Visualizing the GRN weights between regulators and their targets............... 59
Figure 31 Inspect the PC1 vs. PC2 results with cells colored by cell type (ground truth)
.. 62
Figure 32 Inferred states Composition plots colored by cell type (cell cycle stage)....... 63

Figure 33 BIC values of different models considered..............ccccconriiiimiiiiii i, 64

file:///C:/Users/George/Desktop/Final%20chapters/finalised/master_thesis_first_complete_draft_George.docx%23_Toc89362585
file:///C:/Users/George/Desktop/Final%20chapters/finalised/master_thesis_first_complete_draft_George.docx%23_Toc89362585
file:///C:/Users/George/Desktop/Final%20chapters/finalised/master_thesis_first_complete_draft_George.docx%23_Toc89362585

Figure 34 UMAP dim1 vs. UMAP dim2 with cells colored by cell type (ground truth).... 65

Figure 35 States Composition plots colored using cell type (cell cycle stage)............... 66
Figure 36 Inferred state tranSItiONS.........cooeiieeiiiieeeee e e e e eeeeeeanns 67
Figure 37 Inferred trajectories and their Key-genes............o.oveiiiiieeiiiieeciiiic e 68
Figure 38 UMAP dim1 vs. UMAP dim2 with cells colored by cell states........................ 69
Figure 39 UMAP dim1 vs. UMAP dim2 with cells colored by gene lahl [G11to S
MAIKEI] EXPIESSION.....cciiiiiiiiiiiiiiie ettt ettt e e e e e e e e e e e 70
Figure 40 UMAP dim1 vs. UMAP dim2 with cells colored by gene Enpp3 [G2M to S
MAIKEI] EXPIESSION....cciiiiiiiiiiiiiiie ittt ettt ettt e e e e e e e e e 70
Figure 41 UMAP dim1 vs. UMAP dim2 with cells colored by gene Stk17b [G12to S
MAIKEI] EXPIESSION.....cciiiiiiiiiiiiiiee ittt ettt ettt e e e e e e e e eeeees 71
Figure 42 Inspect the PC1 vs. PC2 results with cells colored by cell type (ground truth)
.. 73
Figure 43 States Composition plots colored using cell typecovvvvvvvviiiiiiiiiiiiiiiieennn. 74
Figure 44 Inspect the PC1 vs. PC2 results with cells colored by cell type (ground truth)
.. 76
Figure 45 States Composition plots colored using cell typecccooeeeviiiviiiiiiiiieeeeeeeeea, 77
Figure 46 Inspect the PC1 vs. PC2 results with cells colored by cell type (ground truth)
.. 79
Figure 47 States Composition plots colored using cell typec.cooeevviviiiiiiiiiiiieeieeeens 80
Figure 48 Inferred trajectories and their Key-genes...........ccccccceeeiiiiieciieeeciicie e 81
Figure 49 Inferred state tranSItIONS.........cooiieiiiiiiecee e e e e eeeanns 82
Figure 50 Part of the matrix produced by TrajectoryPath................cooovviiiiiiiiiiiienieeeenns 83
Figure 51 Inspect the PC1 vs. PC2 results with cells colored by cell type (ground truth)
.. 85
Figure 52 States Composition plots colored using cell typeccooevviiviiiiiiiiiiieeieieenn, 86
Figure 53 Inferred state tranSItiONS.........cooceeiiiiiieiice e e e 87
Figure 54 Inspect the PC1 vs. PC2 results with cells colored by cell type (ground truth)
.. 89
Figure 55 States Composition plots colored using cell typecovvvvviiiiiiiiiiiiiiiiiiiennne. 90
Figure 56 Inferred trajectories and their Key-genes..........ccccccvvvvviiiiiiiiiiiiiiiiiiiiiiiiiieeee, 91

Figure 57 Inferred state tranSitioNS...........oovviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee e 92

1. INTRODUCTION
1.1 Thesis scope

Paul Ehrlich, in his Nobel lecture (1908) [1] while talking about the cell concept he quoted:

z

“For this concept is the axis around which the whole of the modern science of life revolves”

Even a hundred years later, it remains one of the main subjects of interest in biomedical
research. A cell is widely considered to be the smallest structural and functional unit of
an organism and it presents a great diversity of forms. This diversity can be explained by
looking at the proteome of the different cells, which is a translation of the transcriptome.

RNA sequencing was invented to quantitatively assess the transcriptome of cells and
understand how biological function is related to gene expression levels [2]. This
revolutionary biotechnology can capture a snapshot of the gene expression of cells [3].
The first RNA sequencing technology was “bulk” RNA seq, in which a population of cells
is analyzed to obtain an average gene expression profile of the entire cell mixture.
However, average gene expression does not reveal the role of individual cell types in the
mixture. This lack of resolution does not allow us to study developmental or cancer-
related processes as we cannot observe the gradual differentiation and interaction of cells
participating in an evolving biological process.

Single-cell RNA sequencing was introduced in the early 2010s to overcome these
limitations [4]. Single-cell RNA seq (scRNA seq) isolates the cells in a mixture and
provides gene expression profiles for each individual cell. It allows us to detect rare
subpopulations and investigate intracellular state transitions. Single-cell RNA seq has
already played a significant role in cancer research since it enabled us to study the
interaction of tumor cells with different immune cells present in the same
microenvironment and decipher their role [5]. Also, it has contributed dramatically to
developmental biology by offering the ability to describe the continuity of cells maturing
processes and their dynamics [6].

The emergence of scRNA-seq created the need for specialized analysis tools that can
process effectively and efficiently large single-cell datasets. Since single-cell expression
data are noisier than bulk RNA seq data [7], better quality control and preprocessing
techniques have been developed. Using the preprocessed data, bioinformaticians, with
the help of machine learning, developed techniques to discern cell states (clusters) and/or
discover rare cell subpopulations. Next, the transition inference field emerged to
investigate the interaction between the discovered cell clusters. Transition inference
approaches try to capture the stages of a biological process by importing multiple single
cells snapshots from the same sample/tissue. These snapshots are then used to create
a pseudotemperal ordering of the cells based on their gene expression. In a sense, every
cell can be thought of as a distinct step in a continuum of cell states.

Our project, called “Machine Learning for single-cell Analytics”, or MLscAN, came to
address the unbiased single-cell data analysis and transition inference problems in a solid
probabilistic framework. MLscAN provides a flexible end-to-end computational pipeline
that performs all stages of the downstream data analysis in an unbiased manner, i.e.,
without requiring any prior knowledge (e.g., cell types, gene markers etc.). Starting with
a preprocessed expression matrix, MLscAN can infer the landscape of cell states, state
transitions, key-genes driving each transition, and Gene Regulatory Networks capturing
how the key-genes regulate all phases of each state transition. MLScAN was first created
with the “naive" users (non-computational experts with limited R expertise) in mind and
thus provides automatically extensive visualization of the results at every step of the data
analysis. However, in its current incarnation, it also serves the advanced users
(computational biologists, R experts), giving them all the flexibility they need to explore
different models and how they capture their data [8], [9]).

The main distinguishing characteristics of the MLScAN pipeline are the following:

. Unsupervised/unbiased model selection. No prior knowledge is assumed (cell
types, markers etc.). Using unsupervised machine learning methods to infer

cell states.

. Probabilistic statistical machine learning methods are used instead of
heuristics.

. Emphasis on reconstructing the epigenetic landscape of cell states and

transitions suggested by a dataset using unsupervised machine learning

methods

. Emphasis on inferring pairwise state-to-state transitions and identifying the

“key-genes” that drive them

. Emphasis on inferring dynamic Gene Regulatory Networks (GRN) capturing

how the key-genes interact during all phases of a state transition

. Effective visualization of the results at all stages of the pipeline, with no user

effort.

1.2 Thesis Objectives

This graduate thesis was conducted in the context of the MLscAN project led by Prof.
Elias S. Manolakos at the National and Kapodistrian University of Athens. Mrs Efi
Malesiou, as part of her thesis, has created the first version of the MLsSCAN R package
based on methods developed earlier in Matlab and reported in [8]. As the field moves

very fast and the package was not originally tested using large datasets, some aspects
of MLscAN needed improvement and adding flexibility to its pipeline that was deemed
necessary. Furthermore, while we analyzed large datasets, the “mixed states” issue (see
chapter 3.5) was discovered and needed to be addressed. Finally, even though the
package is very suitable for the ‘naive’ users, we needed to demonstrate how a more
experienced user can take full advantage of the capabilities of MLsCAN by incorporating
results from external pipelines at different stages of the analysis.

With all these points in mind, the main goals of this thesis work were the following:

Goal 1: Flexible pipelines creation: In its default pipeline, MLScAN uses Principal
Components Analysis (PCA) for dimensionality reduction and Generalized Mixture
Modeling (GMM) for inferring cell states (clustering). However, other methods for
dimensionality reduction and/or cell clustering can be more suitable for a particular
dataset. We wanted users to be able to implement any dimensionality reduction or
clustering method they prefer outside the package and still be able to import their results
into MLScAN to explore its unique capabilities for inferring trajectories, their key-genes,
and GRNs. We have made the needed interventions and present here use cases
showcasing this added flexibility (see chapter 3.2).

Moreover, we improved a function that can be used for dataset exploration in the model
selection space before MLscAN runs are initiated, implemented two new functions for
further analysis of MLscCAN results (see chapter 3.3-3.4), and improved a lot of the
visualization functions in the original version.

Goal 2: Mixed States handling: During clustering of big datasets, GMM may infer cell
states with very large variances that quite often correspond to a mixture of small disparate
cell clusters and/or outliers. It is very important to have tools to analyze those potentially
interesting “mixed states” and handle them appropriately (break them into smaller states
or remove them altogether) before moving to the stage of transitions inference. We have
developed such methods and also show how they can be used (see chapter 3.5).

Goal 3: Demonstration through well-selected use cases: Finally, to guide the user on
how to take full advantage of MLscAN, we used four well-known datasets to demonstrate
four different use cases:

e General overview of the improved MLscAN pipeline exploring many of its

visualization capabilities (see chapter 4)

e How to incorporate UMAP different dimensionality reduction results into an

MLscAN run (see chapter 5)

e How to handle a Mixed State that encapsulates cell subpopulations of interest (see
chapter 6.1)

e How to handle a Mixed State that includes mostly outliers (see chapter 6.2)

1.3 Thesis Organization

The rest of the thesis is organized as follows:

In Chapter 2 we review the most commonly used single-cell data analysis packages

and explain what MLscAN can offer compared to them.

In Chapter 3 we describe the MLscAN pipeline extensively and how someone can
integrate results from other pipelines into MLSCAN analysis. In addition, we present
some external functions that were developed in this work and explain the Mixed State

problem.

In Chapter 4 we present a general overview of MLscAN and demonstrate a lot of its

visualization capabilities via a complete analysis example.

In Chapter 5 we demonstrate how a user can implement dimensionality reduction

using UMAP and include these results in downstream MLscCAN analysis.
In Chapter 6, we propose two different ways of dealing with a Mixed State.

Finally, in Chapter 7, we summarize our contributions and suggest future

improvements for the MLSCAN project.

2. RELATED WORK
This chapter will present an overview of representative state-of-the-art single-cell RNAseq
data analysis packages. We will focus on the main ingredients of their pipelines and how
MLscAN distinguishes itself relative to them.

2.1 Single-cell data analysis

The need for higher resolution increased single-cell experiments' popularity during the
past decade. This trend has led to the creation of different methodologies for analyzing
scRNA-seq datasets. However, single-cell data are far noisier than bulk RNA se [7] q.
Therefore, the pre-processing part of the analysis usually includes the following steps:
Quality Control to omit poor-quality data [7] , correction of batch effects [10],
normalization [11], and data imputation [12]. The main processing usually starts with
projecting the preprocessed single-cell expression profiles to a lower-dimensional space
using methods such as PCA [13], Diffusion Maps [14], t-SNE [15], UMAP [16]. The
reduced dimension data are then used to cluster cells and possibly infer trajectories, gene
markers, etc.

Transition Inference methods aim to derive a pseudo temporal ordering of the cells along
a trajectory path using genes expression profiles information. In this ordering, the position
of a cell in the trajectory path is assumed to represent its relative position in the course of
an evolving biological process (developmental stage, differentiation, cancer progression,
etc.) [17]. There are more than 70 tools that are trying to address the trajectory Inference
problem using different approaches [17].

PRE-PROCESSING DOWNSTREAM ANALYSIS

Raw data processing

-
8 T

Cluster annotation

Tutt cells <
% Goblet cells
EEC s o
A £n T paneth cells
Stem cells
Enterocytes EP (ate)
_ — S
Quality control Normalization / \
. Trajectory inference Differential expression
£ I =9 o0
3 "
3 ProgenNy | a1 |
© ® P
| « %0) -
Count depth =] - oo ‘.‘
% 200 b
Data correction (e.g. batch) s
w Y
00
log2 FC
Compositional analysis
Condition 1 Condition 2

v w

©EMB0

Figure 1 Example of a single-cell data analysis pipeline

2.1.1 Some popular pipelines and their features

There is a large number of packages following different approaches to address single-
cell data analysis. Below we present the most popular ones and the main steps of their
default computational pipelines.

Seurat pipeline [18]:

I. Normalization of data (preprocessing)

Il. Feature selection
[ll. Dimensionality reduction PCA [13], ICA [19], t-SNE [20]
IV. Graph-based clustering

SC3 pipeline [21]:

I. Gene filtering

Distance matrix calculation using Euclidean, Pearson, and Spearman correlation
Dimensionality Reduction using PCA [13] on distance matrices
K-means clustering [22]on the first distance matrix eigenvectors

Consensus clustering using Cluster-based Similarity Partitioning Algorithm
(CSPA) [23]

Seurat and SC3 are not providing Transition Inference analysis.

Some well-known Transition Inference packages are Monocle [24], Slingshot [25], and
PAGA/PAGA Tree [26].

Monocle pipeline:

V.

Dimensionality reduction PCA [13] on preprocessed data
K-means clustering [22]
“Shifting” cells towards closest vertex

If algorithm does not converge, repeat k-means clustering and shift cells towards

closest vertex

Calculate pseudotime using distance from root node

Slingshot pipeline:

Dimensionality reduction using PCA(default: irlba [27] with 20 PCs)
Clustering technique: Partition Around Medoids [28]

Minimum spanning tree on clusters to determine the number and shape of

lineages
IV. Obtain smooth representations of each lineage using simultaneous principal
curves
V. Calculate pseudotime values using orthogonal projections onto the curves
PAGA/PAGA TREE:

Generate neighborhood graph of single-cells

Graph-partitioning, clustering

lll. Cell ordering using distance from a root cell [random-walk-based distance]

SCANPY pipeline:

I. Preprocessing
II. Visualization using tSNE [20]
[ll. Dimensionality reduction using PCA [13]
IV. Louvain Clustering [29]
V. Finding markers in Louvain clusters
VI. Pseudotime analysis

TSCAN pipeline:

I. Dimensionality reduction using gene clusters instead of genes to perform PCA
II. Clustering using Gaussian Mixture Modeling [30]
lll. Cluster ordering with Minimum Spanning Tree [31]
IV. Cell ordering: Each cell is projected to an edge of the cluster order

2.2 Distinct MLscAN features

MLscAN was designed to serve both the “naive” user (non-expert in computational
biology and R programming) and the more experienced user.

Unlike most packages, a call to MLscAN implements a complete end-to-end analysis
pipeline with required input only a preprocessed expression matrix. It also returns a whole
directory structure and an abundance of plots and files to visualize the results produced
at every pipeline stage.

The default MLscAN pipeline includes the following steps:
« Dimensionality Reduction using PCA [13]

o Clustering (cell states identification) using Gaussian Mixture Modeling [13] and
parsimonious best model selection

« State-to-state transitions and trajectories inference
e For each inferred trajectory

o Partition the ordered cells into successive micro-states (phases)

o ldentify the “key-genes”, i.e., those with bimodal and mode switching
expression behavior when considering the two micro-states at the trajectory
ends

o Gene Regulatory Networks (GRN) inference for micro-states

o Flexibility to import alternative dimensionality reduction and/or clustering results
before producing trajectories and GRNs downstream.

o Analysis of “mixed states” (mixtures of subpopulations)

The complete end-to-end analysis with one function call also distinguishes MLscAN from
the rest of the state-of-the-art single-cell analysis packages, as they require executing
each step of the pipeline manually.

This automated pipeline invocation allows the inexperienced R user to get well-described
results easily without being a proficient R programmer. At the same time, by providing a
significant number of additional fully documented arguments, an experienced user can
tune her pipeline run to probe deeper into different aspects of interest.

Gaussian Mixture Modeling (GMM) allows casting the pairwise state trajectories Inference
problem in the posterior probabilities space. In MLscAN, each cell has a posterior
distribution, i.e., a probability to each cluster inferred by GMM. The largest two posterior
probabilities in this distribution define the state-to-state transition that a specific cell
belongs to. TSCAN and SCANPY are the only algorithms following probabilistic
approaches; however, they do not offer trajectories analysis into phases (micro-states)
and GRNs inference for the trajectory driving mechanisms.

MLscAN considers pairwise trajectories as means to model state-to-state interactions in
the “epigenetic landscape”. Pairwise MLscAN trajectories can also be “stitched together”
to reconstruct long trajectory paths connecting distant states and infer cells pseudotime
ordering. This makes MLscAN also compatible with more conventional Tl inferences
methods that do not focus on the analysis of state-to-state interactions. We should remark
that the main motivation for inferring MLSCAN pairwise trajectories is to decipher the
regulatory mechanisms that control them and how these may evolve dynamically in the
course of a trajectory (pseudotime).

In summary, MLscAN was created to provide unbiased, unsupervised, probabilistic
SCRNA seq data analysis in an easy to use, yet flexible, versatile pipeline, with main focus
to reconstruct in posterior probabilities space a representation of the “epigenetic
landscape” of states (major cellular phenotypes) and decipher the regulatory mechanisms
driving local state-to-state interactions. Moreover, MLSCAN promotes by default
parsimonious modeling and respects the Occam’s razor principle [32] as much as
possible in all its default actions.

3. THE MLSCAN PIPELINE

This chapter will briefly describe the MLscAN pipeline and explain how the user can
intervene to import her external results at various stages. We will also present some
MLscAN functions that we introduced to analyze the MLscAN results further. Finally, we
explain what are the “mixed states”, how they emerge and suggest different approaches
to handle them.

3.1 Overview - Pipeline stages
In this section, we briefly present the MLscAN pipeline and show to which steps the user
can intervene.

The main steps of the fully automated MLsScAN pipeline [8] are shown below:

1. Dataset input
Importing a preprocessed gene expression matrix
2. Dimensionality Reduction

Gene filtering and PCA analysis

3. Model selection

States (clusters) identification using Gaussian Mixture Modeling

4. Trajectories extraction

Pairwise state-to-state trajectories inference

5. Micro-States identification

Partitioning each trajectory to micro-states

6. Key Genes identification

Identification of the key-genes driving each trajectory

7. Gene Regulatory Networks inference

GRN inference for each trajectory micro-state.

Dimensionality

mput Reduction

Model Selection

Key Genes

Trajectory GRN

Micro States

Figure 2 Overview of the MLscAN Pipeline. Since there are multiple pairwise trajectories per model,

we have multiple instances of trajectory class per model. Accordingly in Micro States and GRN

A more detailed description of the pipeline is provided below:

Required Input: The only required input for running the MLscAN pipeline is the
preprocessed single-cell gene expressions matrix resulting from scRNA sequencing. Any
desired data transformation, preprocessing, cells, or genes filtering, should be performed
before MLscAN initiation. The expected matrix should have the format cells (rows) by
genes (columns).

Dimensionality Reduction: Analyzing big and complex datasets is often the case with
single-cell experiments. Those two characteristics can increase processing time and add
noise. To overcome those problems, MLscAN finds the 500 most variable genes of the
dataset using Seurat’s function Seurat::FindVariableFeatures [18]. The next step is to use
PCA to reduce dimensions. Default PCA method in MLsScAN is prcomp [33]. However,
when both dimensions of the input expression matrix exceed 100, the irlba PCA method
[27] is used as default, significantly reducing computational time.

MLscAN selects the number of PCs to be used by calculating the “knee-point” of the
variance explained per PC using the algorithm described below developed by our group.

Knee-point algorithm to determine the number of PCs in PCA

Variance explained per dimension

Variance explained

Dimension

Figure 3 Plot that depicts the knee-point method for choosing number of dimensions.

Given a sequence of points (n,1;,) on the dimension vs. variance explained plane (see
Figure 3), where n is the current number of PCs examined and V,, is the extra variance
explained when using n PCs instead of n — 1, 1 < n < N, the knee-point k is selected as
the number of PCs for which the distance d of point (k, Vi) to the line connecting the two
extreme points (1, Vi) and (N, Vn) is minimized (see Figure 3).

Model selection: MLscAN uses unsupervised Gaussian Mixture Modeling (GMM) [30] to
identify cell clusters in dimensionality reduced data. As it is using the mclust package [34],
MLscAN considers a range for the number of states (default [2:9]) and the gaussian
component types. The default is to consider all the 14 “models names” (covariance matrix
structures) supported by mclust. MLscAN then finds in a parsimonious manner the best
model (number of states, model nhame combination) by applying the developed by our
team “deltaBIC” (11BIC) algorithm.

This [JBIC algorithm uses the Bayesian Information Criterion (BIC) score of the different
examined GMM models. Specifically, it considers the difference in BIC values among the
largest-BIC GMM models as the number of states increases from low to high values in
the defined range. Briefly, for a given number of states n, the absolute BIC difference
(deltaBIC) of the largest-BIC GMM model to the largest-BIC GMM models for the

previous (n-1) and the next (n+1) number of states is computed and compared to a
threshold. In the end, the simplest model (Occam’s razor principle) having the smallest
number of states and deltaBIC values to its left and right “neighbors” below the threshold
is identified and considered the “best” parsimonious model.

Trajectories inference: The best GMM model produces a posterior probabilities matrix
(cells x posterior probabilities to inferred states), allowing us to cast trajectories inference
in posterior probabilities space. For MLSCAN, a trajectory A-to-B, connecting a “start” state
(A) to a “destination” state (B), consists of the subset of cells in the matrix whose two
largest posterior probabilities are for states A and B, ordered in decreasing probability to
the start state A. For a trajectory to be considered valid, (i) the total number of its cells
should be at least 6, and (ii) at least 3 cells should belong to each one of the two states
defining the trajectory. Sometimes we refer to the start (destination) states also as the
“ground” (“landing”) states, respectively.

Transitions and their propensity: If a trajectory does not meet the above two
conditions, it is still considered as a state transition. A transition is characterized by its
“strength” or “propensity”. The propensity of an (A,B) transition is the sum of two ratios:
the ratio of state A’s cells having second-highest posterior to state B, and the ratio of
state B’s cells having second-highest posterior to state A [8].

For example, let’'s assume that there are three states overall in the best GMM model: A,
B, and C. Moreover, 90% of cells in state A have their second-highest posterior probability
in state B, and 60% of cells in state B have their second-highest posterior probability in
state A. In that case, the propensity of the transition (A, B) will be 1.5 (=0.9 + 0.6).
Obviously, the maximum value for a transition propensity is two (2), and that happens
when all cells of state A “look towards” (have second-highest posterior for) state B, and
in addition, all cells of state B “look towards” state A. Intuitively, the larger the percentages
of cells of the two interacting states (A, B) that “look towards” each other in posterior
probabilities space, the higher the support in the model for the existence of the specific
state transition. This support is what the transition propensity ties to estimate. If all cells
of a transition happen to belong to one of the two interacting states (say to state A) the
transition (A, B) is called unidirectional (A-to-B transition).

Trajectory Micro-states: Micro-states (m-states) are non-overlapping consecutive
subsets of the ordered trajectory cells. Typically, we can identify three successive micro-
states (phases) that partition the cells of an A-to-B trajectory. They are called: the ground
m-state, at the beginning with cells departing from the start state A, the transitional m-
state, in the middle with cells mid-way in the trajectory, and the landing m-state, at the
end with cells arriving in the destination state B. MLsCAN uses a splines-based algorithm
and the posterior probability curve of the ordered trajectory cells to the start state A to
determine the micro-state boundaries. For an m-state to be considered valid it should
contain at least two (2) cells. When the algorithm cannot extract three valid micro-states,
then two m-states, called the start and the destination m-states are defined, including the

trajectory cells belonging (having highest posterior) to the start and the destination states,
respectively.

Key-genes identification: As a trajectory models a one-way biological process, “key-
genes” of a trajectory are those genes that govern this underlying biological process
dynamics. MLscAN detects “key-genes” based on two properties: (i) They exhibit bimodal
expression along the trajectory, and (ii) switch expression mode (low-to-high or the
opposite) as cells “move” from the ground to the landing micro-states. MLscAN has its
own algorithm that checks for those conditions [8] but also supports other algorithms that
look for genes with differential expression between the ground and landing m-states. The
additional supported methods are currently: t-test, MAS T [35], edgeR [36], which fits the
counts using a Negative Binomial distribution, and SwitchDE [37], which identifies switch-
like behavior by fitting a sigmoid curve on the gene expression data. While any method
can be used alone, MLscAN also offers a helper function that implements a majority voting
scheme after calling all of them. In this case, a candidate gene must be voted by at least
3 out of the 5 currently supported methods to be a key-gene. Voting helps select fewer
key-genes for which we are more confident at the expense of increased computation time.

Gene Regulatory Networks inference: In MLscAN a Gene regulatory Network (GRN)
is a directed graph with nodes the key-genes capturing the regulatory relationships
between gene-regulators and gene-targets [7]. MLscAN generates a GRN for each
micro-state of a trajectory using the GENIE3 algorithm [8] that is based on bootstrapping
[38] and Random Forests [39] to infer the regulatory relationships for each key-gene
target.

3.2 Adding flexibility - Integration with external processing

Even though MLscAN is a pipeline that performs by default automatically all stages of the
above-described analysis, it also allows a user to import results produced outside the
package easily and at all its pipeline stages.

Importing Dimensionality Reduction results: In single-cell experiments, it is common
to use tSNE [20] or UMAP [16] to visualize high-dimensional data. However, we can also
use tSNE [20] and UMAP [16] dimensionality reduced data to perform clustering using
GMM in MLscAN. In complex datasets, this may help GMM to identify the correct clusters.
Another common approach is using PCA [40] output as input in UMAP [16] and tSNE [20]
to reduce computation time. The user may import a dimensionality reduced data matrix
to MLscAN produced using any method she chooses using the dimRedData argument.
We provide a use case demonstrating this flexibility in Chapter 5.

GMM initialization: There are cases where GMM cannot provide the appropriate
clustering for a particular dataset and other clustering techniques may outperform GMM.
Therefore, a user may want to provide already available clustering results and is
interested in examining the trajectories MLscAN produces with them. We have added this
flexibility allowing a user to initialize MLscAN clustering with some known class labels for

the cells used as initial conditions for GMM. By default, GMM initialization is conducted
automatically by mclust using hierarchical agglomerative clustering [34].

To perform an initialized MLscAN run, the user should provide in an argument called
modellnit a named vector; its names are the corresponding cells, and its values are their
initial states. MLSCAN uses this named vector to produce an initial posterior probabilities
matrix of all cells [rows] with the value of 1 to their declared state [column] and O to the
rest of the states that is used as the initial value for GMM. We provide and discuss a use
case example using GMM initialization with known clustering results in Chapter 6.

Importing a Posterior Probabilities matrix: The user may even import a posterior
probabilities matrix using the argument modelPostProbs. This option can be helpful if the
user wants to use posterior results from a previous MLsScAN analysis that stopped at an
earlier stage without producing trajectories and wishes to continue the run without
repeating the same analysis. Also, if the user wants to import a posterior probabilities
matrix calculated using a different method than GMM and still wants to produce
trajectories and GRNs using MLscAN.

Dataset input
_ o _ Dimensionality
! nality “
Reduction 0 Reg:gon
GIg
Initialization
Modei Sefection *———
Posterior
Probahifities
Matrix

Trajectory inference

Micro-States
Identification

Key genes
«——— identification
Function

Key Genes
Identifitication

Gene Requiatory
Netowrok nference

Figure 4 . Overview of the MLscAN Pipeline pointing out the stages of the analysis where a user

can intervene and import his data or functions

The figure above summarizes the steps in the MLscAN analysis where a user can import
either their results or a certain function to customize his run according to his will.

It is essential to remark that the MLsScCAN object can provide the results of all stages of
the analysis after they have been produced using the proper MLscAN getter function.

Also, MLscAN allows partial runs that do not go all the way to producing trajectories and/or
GRNs that are time-consuming steps before the user has fully explored the models space
and has settled on the model that best fits their dataset. The possible options are:

e Stop at model: Do not continue to trajectory inference
e Stop at trajectory: Do not continue to micro states and key genes identification

3.3 SD plot analysis

It is advisable to avoid splitting cells into too many or too few clusters, as this will lead to
introducing noise in the data, which will carry over through the pipeline and affect the
results. MLscAN contains functionality to aid users in varying the number of PCs and see
how that affects the number of inferred states before they commit to a model. This is
possible through a function called plotSD. PlotSD needs as input the preprocessed gene
expression matrix of the dataset we plan to analyze with MLSCAN. The user also needs
to define the range of the number of PC’s and the model name of the GMM models she
desires to explore. The function then applies dimensionality reduction, estimates the
number of states using GMM, and reports the cumulative variance explained as the
number of dimensions increases. It also locates the “knee-point” of the variance per PC
curve and suggests that point as a possible good solution to try first for the given model
name. Below, we present an example of the plotSD function application to the pancreatic
cells dataset used in Chapter 4 [41].The plot suggests using five (5) PCs leading to a
model with three (3) states when using the model name EEV in GMM.

SD plotModelName EEY

7- -100

-40

-70
—
-0
-0
-40
-30
-10
-10
3

. Final no. states . Knee-point of variance per PC

'
=)
=

Mo, states
pauie|dxa aoUBLEA SARRINLING

] G 7

MNo. dimensions

8

2 3 4

Cumulative variance

Figure 5 SD plot depicting PCs, States, and cumulative variance explained

3.4 Results analysis flexibility

During this thesis, we introduced two functions for further analysis of the MLSCAN results.
These functions are not called during the MLscAN pipeline execution. In contrast, they
use the produced MLscAN run object as input to provide additional information on
demand. In the future, more functions of this nature (post-run analysis) will be added to
the package.

3.4.1 Trajectory paths

Most trajectory inference packages have as a final goal to create a pseudo time cell
ordering [24]. Even though MLscAN focuses on inferring and analyzing state-to-state
transitions, we have created a function that assigns pseudotime to cells. TrajectoryPath
is an external function that can produce cell ordering for a certain trajectory path. It takes
as input an MLscAN object and the name of a valid trajectory path and returns a matrix
with three columns: cell name, cell order, cell cluster. To decide cell ordering, it uses the
posterior probabilities for each state-to-state trajectory in the path. We provide an
example of using this function in the use case of Chapter 6.1.

3.4.2 Cluster markers analysis

In case a user does not have prior knowledge about the types of cells in the analyzed
dataset, we provide a function that identifies clusters markers. The function
FindClustersMarkers requires as input an MLSCAN object and a vector of states (default
all inferred states). It provides a list containing the most differentiated genes for each state
in regards to the rest of the states in the list. For this particular function implementation,
we use Scran’s findMarkers function [42]. We provide an example of using
FindClustersMarkers in the use case of Chapter 5.

3.5 Mixed States

After conducting a plethora of MLscAN runs using datasets of different sizes, we detected
that the best GMM model might occasionally create a false state with a very big variance
in PC space parsing through the other states. We name this overreaching cluster a “mixed
state” because it usually corresponds to a mixture of smaller states (clusters) that
parsimonious modeling refused to split as it promotes “simpler” solutions. If not properly
handled, mixed states may cause problems in downstream trajectories analysis since all
the other states may be “attracted” to a mixed state.

3.5.1 MLscAN Mixed States identification

MLscAN detects potential mixed states by calculating the variance for the first and second
dimensions after dimensionality reduction for each inferred cluster (state) and comparing
them with the corresponding variance for the whole dataset. Suppose that a cluster's
variance in either one of the first two dimensions is bigger than the entire dataset's
variance for the same dimension. In that case, the cluster is characterized as a potential
mixed state, and its name will end with a "#" character.

It is also possible to stop the analysis when a possible mixed state appears by using the
option MLscANIgnoreMixedState= FALSE. Moreover, MLScAN isolates the mixed states
in a separate output directory and provides plots to visualize their cells in low dimensions
to get a visual impression of the situation.

3.5.2 Mixed State handling approaches
There are two orthogonal approaches in handling a mixed state, removing it or further
analyzing it.

First, if a mixed state contains a very small percentage of the total cells, it may be a state
of outliers. In this case, the user can easily remove those cells and either rerun MLsCAN
or start an MLscAN run initialized with the original MLscAN run’s clusters minus the mixed
state cluster. We provide an example of this procedure in the use case of Chapter 6.1.

Otherwise, if a mixed state consists of more cells or the user wants to analyze it anyway,
MLscAN can come to the rescue for that purpose. For example, the mixed state cells can
be easily isolated, and MLscAN can be called to analyze them alone. Then the user can
see if some interesting cell subpopulations have emerged that warrant more attention. In
that case, it is possible to incorporate them easily in a final MLSCAN run and give them
the chance to contribute to the epigenetic landscape's inference. By combining the
clustering results of the original MLscAN run and the mixed state alone MLsScAN run, we
can initialize a final MLscAN run that may provide better-resolved clusters of different
sizes without increasing too much the number of states (keeping in mind parsimonious
modeling) while getting more informative trajectories. The use case of Chapter 6.2
provides a detailed example of this split-then-integrate approach.

We can also use the above strategies in combination and recursively when processing
large datasets if an MLsScAN run detects more than one mixed states. To the best of our
knowledge, identifying mixed states is a unique feature of MLSCcAN, and properly handling
them is an added recent feature and a contribution of this thesis work.

4. USE CASE - MLSCAN WORKFLOW

In this section, we present the main workflow of the MLScAN R package for single-cell
RNA seq data analysis to demonstrate its core capabilities. We show and explain the
different results and plots that the package produces to help the user interpret the results
obtained at different stages of the MLSCAN computational pipeline.

In this use case, we use the Gene Expression Omnibus data under the
accession GSE83139. Briefly, the authors of this study perform scRNA-seq on pancreatic
islet cells of all four types (a, B, and PPY) from diabetic and non-diabetic donors [41]. This
dataset serves well the purpose of illustrating the main capabilities of MLsCAN as the
authors have already provided a curated label for each cell based on signature genes’
expression.

In the analysis that follows, we will use only the B-cells taken from three categories:
diabetic adults, non-diabetic adults, and children. The initial expression matrix contained
88 B-cells with 19.949 genes. The preprocessed expression matrix we used here consists
of only 86 cells (we removed two outlier cells) and 123 genes. The genes were selected
by filtering the 19.949 initial genes using a two-part generalized linear model (GLM),
which explicitly considers stochastic dropout and bimodal expression provided by
package MAST [35], combined with a t-test to discover differentially expressed genes.

4.1 First MLscAN run

res <- MLscAN(exprData=exprs, #Expression matrix, mandatory

MLscANCellFeatures=cellFeatures, #Cell features, optional

kgGenesSelFun=kg_voting(), #Function to select key genes using
voting(helper)among 5 methods

modelNumStates = c(2:7), #Selected range of number of States to be
considered in GMM based model selection

modelStateNameMode="mostFreqPerState", #Inferred States naming scheme

MLscANOutMode = "all") # Produce all plots

it

Creating the MLsCAN object...

Performing dimensionality reduction...
Creating the model...

Forming the sub-populations...

Possible mixed state(s): child

Creating the trajectories...

Generating the output files...

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE83139

We start with a near default MLscAN run. In this run, only two arguments assume non-
default values for the possible number of states and the method we employ to detect the
“key genes” for inferred trajectories.

We use a different range of states from the default [2:9] to save computation time since
we know that the expected number of states will be less than 9.

Beyond its default method, MLscAN supports some more well-established techniques in
the literature to select “key genes” for inferred trajectories and build Gene Regulatory
Networks (GRNs). Those methods are: t-test, MAST [35], edgeR [36], which fits the
counts using a Negative Binomial distribution, and SwitchDE [37], which identifies switch-
like behavior by fitting a sigmoid curve on the gene expression data. While any one
method can be used alone, MLscAN can also implement a majority voting scheme after
calling all of them. In that case, a gene is considered a “key-gene” only if chosen (voted)
by at least 3 out of the 5 currently supported methods. This can help de-clutter the output
by selecting key genes for which we are more confident. So, in our current analysis, we
selected this voting scheme.

4.2 The run summary

print(res) #Check out the summary output
An S4 object of class "MLsCAN"
An S4 object of class "MLscAN®

##H## GENERAL INFORMATION ####

- Initial expression data: 86 cells x 123 genes

- Expression data used: 86 cells x 123 genes

- Mixed States: 1 (child#), mixed state cells: 18 (20.9%)

- No. dimensions of dimensionality reduction results used: 5
** VVariance explained: 55.9%

** Dim. names: PC1, PC2, PC3, PC4, PC5

- Confusion matrix (%) - state:

type "adult’ type "T2D" type child
state ‘'T2D" 9.090909 90.909091 0.00000
state “child# 5.555556 0.000000 94.44444

state "adult” 97.826087 2.173913 0.00000

- Confusion matrix (%) - type:

state 'T2D" state “child#" state "adult’
type "adult’” 4.166667 2.083333 93.750000
type 'T2D° 95.238095 0.000000 4.761905
type “child® 0.000000 100.000000 0.000000

#H## CELL TYPES - GROUND TRUTH ####
- Type "adult’: 48 cells (55.8%)

** 2 cells in state "T2D" (9.1% of the state)

** 1 cells in state “child# (5.6% of the state)

** 45 cells in state "adult’ (97.8% of the state)

- Type 'T2D": 21 cells (24.4%)
** 20 cells in state "T2D" (90.9% of the state)
** (cells in state “child#" (0.0% of the state)

** 1 cells in state "adult’ (2.2% of the state)

- Type “child™: 17 cells (19.8%)
** (cells in state "T2D" (0.0% of the state)
** 17 cells in state “child#" (94.4% of the state)

** (cells in state "adult” (0.0% of the state)

CELL STATES - INFERRED
- 3 states

** State names: T2D, child#, adult

- State "T2D": 22 cells (25.6% of all cells)

** 22 cells (100.0%) in the sub-population of the state
** 2nd largest a posteriori probability:

---- state “child#: 0 cells (0.0%)

---- state "adult™: 22 cells (100.0%)

- State “child#: 18 cells (20.9% of all cells)

** 18 cells (100.0%) in the sub-population of the state
** 2nd largest a posteriori probability:

---- state "T2D": 15 cells (83.3%)

---- state "adult’: 2 cells (11.1%)

- State "adult™: 46 cells (53.5% of all cells)

** 46 cells (100.0%) in the sub-population of the state
** 2nd largest a posteriori probability:

---- state "T2D": 45 cells (97.8%)

---- state “child#: 1 cells (2.2%)

#H## TRAJECTORIES - INFERRED ####

- Trajectory "T2D-to-adult’

** 67 cells (77.9%)

** No. micro-states: 3

** No. micro-states: 3

---- ground micro-state: 20 cells (29.9%), valid GRN: TRUE

---- transitional micro-state: 15 cells (22.4%), valid GRN: TRUE
---- landing micro-state: 32 cells (47.8%), valid GRN: TRUE

** Valid key-genes: TRUE

---- Key-genes default method: No

---- No. key-genes: 19 (15.4% of all genes)

---- Key-genes: HLA-G,HLA-J,PRSS3P2,PRSS1,CLPS,REG1B,HLA-
F,CTRB2,MT1E,CPB1,PRSS2, TMEM37,C90rf16,HLA-
L,CELF2,0LFM4,ZNF880,REG1A,RPL19P12

- Trajectory "adult-to-T2D"

** 67 cells (77.9%)

** No. micro-states: 3

** No. micro-states: 3

---- ground micro-state: 24 cells (35.8%), valid GRN: TRUE

---- transitional micro-state: 23 cells (34.3%), valid GRN: TRUE
---- landing micro-state: 20 cells (29.9%), valid GRN: TRUE

** Valid key-genes: TRUE

---- Key-genes default method: No

---- No. key-genes: 19 (15.4% of all genes)

---- Key-genes: HLA-G,PRSS3P2,HLA-J,REG1B,PRSS1,CLPS,TMEM37,HLA-
F,PRSS2,CTRB2,CELF2,CPB1,MT1E,ZNF880,HLA-H,OLFM4,HLA-L,REG1A,C90rf16

By invoking a print on the MLscAN object we obtain a human-friendly overview of the
unbiased data analysis. It includes summary of information about the dimensionality
reduction, namely the number of Principal Components selected, and the total variance
explained.

Furthermore, it provides a confusion matrix comparing the curated cell types with the cell
states inferred using unsupervised Generalized Mixture Modeling (GMM) based
clustering. We observe that each state (cluster) is populated mainly by one cell type, and
each inferred state is named after the cell type that is most frequently (more than 70%)
represented in the cells of that state.

A distinguishing characteristic of MLSCAN is that it not only infers state-to-state
trajectories but also partitions the cells of a trajectory into three consecutive subsets that
we call “micro-states” [8]. We can think of a micro-state as a phase of the biological
progression modeled by an MLscAN state transition. Each cell's micro-state is decided
based on the posterior probabilities of being in each one of the two states defining the
trajectory. For example, a cell belongs to the “ground micro-state” if its posterior
probability to the “departing”, or “ground”, state of a trajectory is much larger than the
posterior to the “destination”, or “landing”, state of the trajectory, and vice versa. There
may also exist a transitory micro-state, including cells with these two posterior
probabilities close in value.

Moreover, MLscAN also identifies the “key-genes” of each state-to-state trajectory, i.e.,
genes with a markedly differential expression in the cells of the ground and landing micro-
states.

A unique feature of MLsSCcAN is that it also infers Gene Regulatory Networks (GRNSs) of
the key-genes for each micro-state of a trajectory. These GRNSs provide insights into how
the dynamic regulatory mechanisms governing a state transition evolve with pseudo-time.

While MLscAN automatically produces many useful plots, special attention is given here
only to some of the more informative ones. Plots can be generated automatically using
the argument MLscANOutMode and setting it to “all” or “plots”. However, MLscAN also
provides functionality to suppress plotting or generate individual plots on demand.

4.3 The MLscAN produced outputs

An MLscAN run produces by default an output split into six main folders with many plots
to visually assess the outcomes of the various analysis stages of the computational
pipeline at different levels of detail. In brief, these folders are the following:

Expr_plots folder to help the user understand the statistical characteristics of the gene
expression profiles matrix of the analyzed dataset,

DimRed_plots folder, providing different views of the dimensionality reduction stage
results,

States_plots folder, providing a simple recap of the GMM clustering process for every
inferred state,

Types_plots folder correlating the curated cell types, as provided by the user, to the
inferred by MLscAN states and transition states,

Traj_plots folder analyzing each trajectory, down to its micro-states, key-genes, and
inferred GRNSs.

Overview_plots, providing a top-level summary of the whole MLscAN run.

Users are encouraged to browse the Overview_plots folder before drilling down to the
other directories, starting from the dimensionality reduction plots, state and type plots,
and finally, the trajectory plots. To get a sense of the analyzed expression matrix
characteristics, the Expr_plots are also useful. To keep the discussion confined, we will
present here examples of only a subset of the produced plots.

DirnRed_plots
Expr_plots
Mixedstates_plots
Oreerview_plots
States_plots
Traj_plots
Types_plots
=| MLscAM_Args ot
B=) MLscAM_cellinfo.csw
=| MALscAM_Epigenetichatrix ot
B MLscAN_genelnfo.csy
=| MALscAM_Infosummany ot
B MLscAMN_trajGeneslnfo.cav
Bz MLscAN_trajlnfo.csv

Figure 6 Picture of MLscAN output directory

DimRed plots w MixedStates plots (verview plots w w Tipes plas
® TEEEGEEER
ey genes plots fiey genes plats

Figure 7 Tree with depicting all folders and subfolder of an MLscAN output

The first picture is a snapshot of the MLsSCAN output directory created for the example
analysis below. In the second picture, we can see a tree containing all folders of MLSCAN
output with their respective subfolders created by a complete MLscAN run. We can
observe in States plots subdirectories for all three states and in the Traj_plots
subdirectories for the two inferred trajectories.

As we move forward we will present representative examples from the plethora of plots
that MLscAN generates. Not much emphasis will be placed to the biological interpretation
of the results, as the purpose of this vignette is to provide an overview of the MLscAN
analysis pipeline. While most of the plots shown here are generated automatically, the
code snippets we provide can also be used to create them individually.

4.4 Characteristics of the gene expression matrix
plotExprBoxplot(exprData(res),
output_filename = "tmp_plotl.png")

15- s

—
o

Expression

(@)

Cells x genes

Figure 8. Gene expression boxplot

The plots in this section characterize the expression matrix and provide a useful overview
of its statistical characteristics. For example, the boxplot above shows that most log-
transformed gene expression matrix entries have a low value. It also explains why a log
transformation was used for this dataset. MLscAN uses GMM to infer cell states which
assumes that cell subpopulations in the dataset follow a normal distribution. Substantial
differences in the data values (many orders of magnitude in un-logged data) can lead to
spurious results.

plotExprMinMeanMax(exprData(res),
output_filename = "tmp_plot2.png")

15

— rmir.
— max

Wby

Ty \{

10

Expression

\\

T 1 1 1 T
0 20 40 60 a0

Cells {zarted by the mean expr)

Figure 9 Min, mean, and max gene expression values per cell

In this plot, cells are sorted in descending order of their mean expression value, and the
maximum, minimum, and mean gene expression values are shown. We can see that
some cells have markedly lower mean gene expression than others, which might indicate
differences in sequencing depth.

plotExprMeanSD(exprData(res),
title = "Mean and SD of expression per cell",
output_filename="tmp_plot3.png")

Cells

4.0- —
3.5-
*e count
© 3.0 2
2
1
1
2.5-
[]
20- e
2 3 4 5

mean

Figure 10 Mean vs. Standard Deviation per cell

The mean gene expression vs. the standard deviation per cell is provided in the above
plot. We can see that the standard deviation levels are on the same order of magnitude
as the mean levels. Since overdispersion is not that prominent, it is not problematic to
use GMM downstream, which assumes a normal distribution for its components.

plotExprHeatmap(exprData(res),
save = TRUE,
saveDir =".",
z_scores = FALSE)

Expression heatmap

Figure 11 Gene expression heatmap

The above heatmap shows a sizeable difference in gene expression for many genes
within the cells, with a notable “backbone” of genes (rows) with high expression across
all cells (columns).

Suppose the user prefers to inspect the relative expression values in the heatmap. In that
case, z-score normalization can be performed by MLscAN automatically by setting the
z_scores argument in the plotExprHeatmap function to TRUE. The produced heatmap
will then depict the z-scores of the transformed gene expressions matrix.

4.5 Dimensionality reduction

plotVarianceComb(res, #MLscAN object
save = TRUE, #Save file
fileOnly = TRUE, #Save file, don’t display
saveDir = ".") #Where to save?

Variance & c.var. explained (method "prcomp’)

1.00 -

0.75-

0.50 -

Variance explained

0.25-

0.00 -
1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 &%
Dimensions

- cumulative variance . no. dimensions used
knee-point - variance

Figure 12 Visualizing the PCA results

The above plot is a mainstay in any analysis involving Principal Components Analysis. It
shows the variance explained per PC component (blue line) and the cumulative variance
explained (red line) in the same plot. Additionally, it highlights the number of PCs MLscAN
suggests using based on the “knee-point” method (default) and the number of dimensions
the user has selected (which is the suggested by MLscAN in this case). Moreover, we
can see in the title that the SVD method used was prcomp [33]. MLsScAN also supports
using the ilrba PCA method [27] that is faster for very large datasets.

plotDimRed(res, #MLscAN object
dim1="PC1", #Which dimension to plot?
dim2="PC2", #Which dimension to plot?
feature="cellType",#Annotate cells based on ground truth cell type
save = TRUE, #Save to file
saveDir =".", #Where to save?
fileOnly = TRUE) #Save file, don’t display

Dimensionality reduction results:
PC1to PC2

Feature: “cellType’

Model Name: EEV

ail—

0 -
5-
10 0

PC2 (7.5%)

e

20 R
PC1 (35.4%)

adut [child T2D

Figure 13 PC1 vs. PC2 with cells colored by cell type (ground truth)

We can see from the above plot that the cell types (ground truth) are mapped nicely into
the states (inferred using unsupervised ML). So, for example, PC1 seems to capture age
information as it separate child cells from adult normal and T2D cells, while PC2

separates the adult normal from the adult T2D cells.

plotDimRedPairs(res, #MLscAN object
dims=paste0("PC", seq(3)), #Can be done with >2 dims
save = TRUE, #Save plot to file
saveDir =".", #Where to save?
fileOnly = TRUE) #Save file, don't display

Dimensionality reduction results
PC1 (35.4%) PC2 (7.5%) PC3 (6.4%)

A -

==

(%S"2) 20d (%¥°ge) LOd

(%¥9) €0d

adult [l chila# T2D

Figure 14 Cells on PC1, PC2, and PC3 dimensions colored by cell type

More detailed plots can be generated with the plotDimRedPairs function, showing all PCs
pair-wise and how the cells (samples) are projected to them. This can help us understand
what aspect of the data each PC is capturing.

4.6 Unsupervised model selection

MLscAN also creates an overview plot showing the Bayesian Information Criterion (BIC)
score of different candidate models it examined. This helps the user understand how its
unbiased, unsupervised, parsimonious modeling approach arrives at a model selection.

plotBIC(res, #The MLsScAN object
save = TRUE, #Save the image (png)
saveDir =".", #Where to save?
showModelNames = TRUE, # Show BIC plot for all GMM model names
fileOnly = TRUE) #Save in file, don’t display

BIC values

Diagonal spherical Model Name O eee A\ eel 4 eev X Ei
Distribution

. Ellipsoidal

X

-2000 -

xB>

-2100 -

BIC value

% X / }\ X
- g/é/“

2 3 a 5 6 7
Number of states

Figure 15 BIC value of different GMM models as the number of inferred states (clusters) increases

MLscAN follows by default an unbiased unsupervised parsimonious model selection
approach. It advocates using the simplest possible model (with the smallest number of
states) that explains (fits) the data reasonably well following the Occam’s razor principle
[43]. Of course, the users may override the default method and use alternative
approaches if they so desire.

To that end, we identify the “best” GMM model using MLscAN “deltaBIC” method. Briefly,
with the number of states increasing, the absolute BIC difference (deltaBIC) of the largest-
BIC (best performing) GMM model to the largest-BIC models obtained for the previous
and the following number of states is computed and compared to a threshold. In the end,
the simplest model with the smallest number of states having deltaBIC values to both its
neighbors below the threshold is identified. This is considered by MLscAN as the “best”
model in the parsimonious “deltaBIC sense” and is marked in the plot. In our case, we
see that the GMM model with name EEV, having only three components (states) with
ellipsoidal covariance matrix shape is the optimal.

The above plot provides a visualization of all BIC values for every GMM model type
(model name, i.e., covariance matrix structure) and number of states considered in model
selection process, also highlighting the covariance structure family each considered
model belongs to.

plotStatesComposition(res, #MLscAN object
feature="cellType", #Annotate cells using ground truth cell types
save = TRUE, #Save to file
saveDir =".", #Where to save?
fileOnly = TRUE) #Save in file, don’t display

dimensions: 5 | Cumulative var :56%
cellType B adult B child B8 T2D

T2D-

child# -

States

adult-

20 30 40
No. cells per cellType

o
=
o

Figure 16 States Composition plots colored using cell type

The State composition plot above is the most efficient way to depict the MLsScAN
clustering results obtained by using the “best” model. We see that the unsupervised
clustering results are very close to the ground truth since the inferred states consist mainly
of cells of the same type.

Having a model resulting in good clustering is vital before we continue to state-to-state
trajectories inference.

4.7 Transitions and Trajectories
plotTransitions(res, #MLscAN object

save = TRUE, #Save plot to file

saveDir =".", #Where to save?

fileOnly = TRUE) #Save file, don’t display

Transition propensities
threshold = 0.2

adult

1.98

/ 0.83 - —

T2D child#

State adult child# T2D
Figure 17 Transitions and their propensities

MLscAN not only infers cell states (major cellular phenotypes) in an unsupervised
manner, but also infers state-to-state transitions suggested by the data and estimates
their “strengths” (propensities) in an unbiased manner. For a specific transition to be
depicted in this plot, its propensity should surpass a set threshold (default value = 0.2).

In the inferred transitions plot, each state is represented as a circle of radius increasing
with the number of cells assigned to it (i.e., cells having the highest posterior probability
for that state). A transition (grey line) exists between two states if there exist a set of cells
whose two highest posterior probabilities (resulting from the GMM clustering) are in those
two states. This is depicted by the edge connecting a pair of nodes in the plot. The edge’s
weight (and line width) depends on the percentage of cells in the two states having this
property. By adding those two percentages, the propensity value of the transition is
calculated.

For example, say there are 3 states overall in a model: A, B, and C. Moreover, 90% of ¢
state A cells have their second-highest posterior probability in state B, and 60% of the
state B cells have their second-highest posterior probability in state A. In that case, the
propensity of the transition will be 1.5 (=0.9 + 0.6). Obviously, the largest possible
propensity value is 2. The edge line connecting the centers of the two circles representing
states A and B is black at its extremes. The length of this black portion grows with the
percentage of the cells of state A that have their second-highest posterior probability
value in state B, the other state of the pair. If that percentage is, say, 50%, then half of
the radius length of the circular node for state A is depicted as black.

In our case, almost all state “adult” cells have their second posterior to state “T2D” and
vice versa. So the aligned radii of both state circles are darkened almost to their full length,
indicating that the transition propensity value is very close to 2.

We also see a “unidirectional” transition (with arrow) from the “child” to the “T2D” state
with a propensity 0.83. That means 83% of the child state cells have second-highest
posterior to the T2D state, but no cell of T2D has a second posterior to the child state.

It is interesting that in our example, MLscAN could not detect a direct path from the child
to the normal adults’ state, but rather this forward evolution path passes through the T2D
adults' state. This supports the theory that T2D may be a “remembered” state, crossed
as cells evolve from the child to the adult state. According to this theory, the transition
from adult to T2D state could possibly be considered as a later in life activation of a de-
differentiation process along that remembered path [41]!

plotTrajectories(res,
save = TRUE,
saveDir =".",
fileOnly = TRUE) #Save file, don’t display

Trajectories

1918

Figure 18 Trajectories between pairs of states and their key-genes

MLscAN imposes some limitations on which transitions can result in trajectories. For a
transition A-to-B to be a trajectory, it should have at least 3 cells belonging to each of the

two states A, B. If a transition has cells that belong only to one state (is unidirectional)
then it is not considered a valid trajectory. In our example, the transition child>T2D is
unidirectional, as the arrow indicates in the transitions plot, and therefore it did not
produce a trajectory.

plotMStates(res,
mode="num", #X axis is absolute frequency of cells,not percentage
save = TRUE,
saveDir =".",
fileOnly = TRUE) #Save to file, don’t display

Number of cells per micro-state per Trajectory

m-state . ground . trans . land

T2D-to-adult-

Trajectories

adult-to-T2D -

) '
50 75
Number of cells

(=]
N
(4]

Figure 19 Trajectory micro-states

The bar plot above shows the proportion of cells that belong in each micro-state for each
trajectory. Moreover, to the right of each bar is the numbers of key-genes identified for
the corresponding trajectory. The two trajectories connecting the two states may have
different micro-state boundaries and key-genes in general. For example, in the plot
above, we see that the middle transitory micro-state (green) has more cells in the adult-
to-T2D trajectory than in the opposite direction T2D-to-adult trajectory. Also, both
trajectories have 19 key-genes, which may not be identical. Moreover, the inferred GRNs
for the micro-states of the two trajectories may be very different since they model the
regulation of different biological processes.

plotAlluvialState(res,
save = TRUE,
saveDir =".",
fileOnly = TRUE)

All cells: type x state x transition-state

75-

a
o
1

Cell index

25+

' ! !
cellType state transition-state

D adult ! child . child# |:| T2D

Figure 20 Alluvial plot relating states to cell types (ground truth) and next (transition) states

The alluvial plot above helps visualizing the correlation between the MLscAN inferred cell
states (middle column) with the known cell-types (ground truth) on the left and the inferred
transition (next) states on their right. We observe that the inferred states match very well
to the cell types, indicating a near-perfect clustering. Moreover, each state has a strongly
preferred transition (next) state, but more than one state may have a preference to the
same transition state. For example, T2D is the most popular transition state having almost
all cell of the other two states “looking towards” it. This is also evident visually by
observing the black proportion of the radii of the adult and child state circles in the
transitions plot; they are both large and “looking towards” the T2D state circle.

Moreover, we observe that a few adult cells have “child” as their transition state, but this
transition is not depicted in the transitions plot. This is so because the percentage of these
adult cells is very small, leading to a transition propensity lower than the set threshold
(0.2).

4.8 Trajectories Analysis

plotProbTraj(res, #MLscAN object
traj="adult-to-T2D", #Which trajectory
save = TRUE, #Save plot as image
saveDir=".", #Where to save?
fileOnly = TRUE) #Save in file, don’t display

Trajectory: adult-to-T2D

adult g trans. T2D |
m-state m-state m-state

1.0

0.94

0.8+
2
5 0.7
E State
C 06+
o adult
205+ T2D
L
804+
o

0.34

0.2 1

0.14

0.04

1 24 47 67
Cell index

Figure 21 Posterior probabilities of trajectory cells

A set of cells belongs to a state-to-state trajectory, e.g., adult-to-T2D, if their two highest
posterior probabilities are in those two states. As shown in the figure above, the 67
trajectory cells form a list organized in decreasing order of their posterior probability to
the first or “departing” (or “ground”) state (red curve) as we move from left to right.
Moreover, MLScAN uses an algorithm to determine the posterior probabilities thresholds
that partition a trajectory into consecutive micro-states, called “ground”, “transitory”, and

‘landing” m-states (going from left to right).

These micro-state regions are visualized on the plot above using color shading. We see
that as cells transition from the adult ground m-state to the T2D landing m-state, their
posterior to the adult state is strictly non-increasing (red curve) while their posterior to the
T2D state is in most cases increasing (purple curve).

plotCircleTraj(res, #MLscAN object
traj="adult-to-T2D", #Which trajectory
save = TRUE, #Save plot as image
saveDir=".", #Where to save?
fileOnly = TRUE) #Save in file, don’t display

Trajectory 'adult-to-T2D' cells

1.0
04
0.a
07
0.6
s
0.4
0.3

U8

State adult 4@ Knee-point T2D

Figure 22 The circle trajectory plot displays information about the trajectory cells

The above circular plot is another way to visually capture the cells of a trajectory as an
ordered list of cells in posterior probability space. Every cell is a node on the trajectory
circle, colored according to its state (highest posterior) and connected to the circle’s
center by a line colored according to its transition state (2nd posterior). As we move on
the circle counterclockwise, the posterior probability (radius length) of cells (nodes) with
the same color to their state decreases.

The black radius extenders mark the trajectory knee points (micro-state boundaries. The
first is the boundary between the ground and the transitory micro-states. The second
marks the boundary between the transitory and the landing micro-states. We see that
most cells belong to the ground and landing micro-states and are those cells used to
determine via bimodality and differential expression tests the key-genes driving a state-
to-state transition along an inferred trajectory.

plotViolinOverlayTraj(res,
traj="adult-to-T2D",
genes=keyGenes(res, traj="adult-to-T2D"),
save = TRUE,
saveDir = ".",
fileOnly = TRUE)

Trajectory: adult-to-T2D

10
m-state
ground
5
landing
0 V V
2 z
<

Expression

O AV P >~ o N L Sy fv o o~ o ¥ w T ©

QL 9D Q” O DU UL D~ TS L~

<TH X5 TSNV o a7 QA M~ RIS

NI F G T G F RN OSLFT TGS

Ié? Fa °FTa SO STITEFS
Gene

Figure 23 Bimodal gene expression of key-genes along the trajectory

The plot above shows expression violin plots for the 19 key-gene of the adult-to-T2D
trajectory. A quick examination of the plot reveals that the key-genes have (a) bimodal
expression and (b) mode-switching behavior along the trajectory. Namely, their
expression is mostly high in the ground micro-state and mostly low in the landing micro-
state, or vice versa. Therefore, the key-genes exhibit a switching behavior (High-to-Low,
or Low-to-High) as cells move along the trajectory connecting two states.

plotBarExprTraj(res, #MLscAN object
traj="adult-to-T2D", #Trajectory to show
gene="HLA-G", #Gene to highlight
save = TRUE, #Save plot to file
saveDir =".", #Where to save?
fileOnly = TRUE) #Save in file, don’t display

Trajectory: adult-to-T2D, gene: HLA-G

adult trans. T2D
m-state m-state m-state
1.0
F6
0.9
0.8
= T
So07 =
g 5
206 -4m
o x
3 e
Los o
[0]
“504- g'
£ 3
0.3 | F2
. |
0.2 : [
. |
0.1 . [:
004 wileillslisgss el ianeniaflaeneeiloelvelavtviild | Lo
1 24 47 67
Cell index

Figure 24 Gene expression switches modes along a trajectory

For example, looking at the behavior of gene HLA-G along the trajectory, we notice a
stark difference in expression patterns between micro-states (separated, by vertical
dotted lines). The adult ground m-state cells have strikingly lower gene expression than
the T2D landing m-state cells. This is also reflected in part to the cells’ posterior
probabilities. Higher gene expression is correlated with a higher posterior probability to
the landing state in this case. In summary, we observe a clear OFF-to-ON expression
switching pattern of the HLA-G gene along the trajectory, which makes it a “key-gene”.

plotHeatmapTraj(res, #MLscAN object
traj="adult-to-T2D", #Trajectory to show
save = TRUE,

saveDir =".",
z_score = FALSE)

Trajectory: adult-o-T2D
ordering state: adult (z-scores per gene)

HLAG . i mstate

ground
PRI33F land

HLA-J 7 frans

REGTE

PRE3T 0

CLPS

THEM3? |2

HLAF

PR32 4

(TREZ

CELF2

CPBI

NTIE

INraa0

HLAH

OLFYM4
I HLAL

REGIA

(Horflg

Figure 25 The heatmap of key-genes expression for the trajectory cells (z-scores)

Heatmaps also assist in the visualization of expression data patterns along trajectories.
In the key-genes expression heatmap above, the cells are organized from left to right
based on their relative position along the trajectory (pseudo-time), and the micro-state
boundaries are marked. Once again, we can confirm the bimodality of gene expression
and the switching of dominant mode as we move from the ground to the landing m-state,
with some key-genes having more pronounced patterns than others.

While all trajectories and their micro-states can be examined and their GRNs plotted, the
“adult-to-T2D” trajectory will be the only one presented here for brevity. MLscAN
automatically provides a complete analysis and several plots for each inferred trajectory
in the respective directory with no extra effort from the user. Users are encouraged to
explore these plots thoroughly to glean valuable nuggets of information.

plotDotTraj(res, #MLscAN object
traj="adult-to-T2D", #Trajectory to show
genes= keyGenes(res, traj="adult-to-T2D"), #All key-genes
save = TRUE, #Save plot to file
saveDir =".", #Where to save?
fileOnly = TRUE) #Save file, don’t display

Trajectory: adult-to-T2D

C9orf16 -
REG1A-
HLA-L -
OLFM4 -
HLA-H -
ZNF880 -
MT1E -
CPB1-
CELF2- (]
CTRB2 -
PRSS2 -
HLA-F -
TMEM37 - ®
CLPS-
PRSS1 -
REG1B-
HLA-J -
PRSS3P2 -
HLA-G -

sd

Gene

mean
@ 2
@ -

o
3
a

])
ground trans
m-state

Figure 26 Dot plot of key-genes expression for the trajectory cells at the different micro-states

The trajectory dot plot is a different way to summarize information about key-genes
expression in the trajectory’s micro-states. The bigger the size of the dot, the higher the
mean expression of the key-gene in an m-state. Also, by looking at the dot's color, we
can assess the key-gene's variability (standard deviation).

4.9 Gene Regulatory Networks

plotGRN(res, #MLscAN object
traj=" adult-to-T2D", #Trajectory selected
mstate="ground", #Which micro-state's GRN to plot?
save = TRUE, #Save plot to file
saveDir =".", #Where to save?
fileOnly = TRUE) #Output in only file

Trajectory: adult-to-T2D

ground m-state

Figure 27 Inferred GRN. Green (red) edges indicate activation (inhibition)

The plotGRN function can be used to visualize any GRN, for any trajectory and micro-
state of interest. MLScCAN creates GRNs using default parameters and the GENIE3
algorithm [44], but users may explore the space of available parameters if so inclined.

plotGRN(res, #MLscAN object
traj="adult-to-T2D", #Trajectory to plot GRN for
mstate="land", #Which micro-state's GRN to plot
save = TRUE, #Save plot to file
saveDir =".", #Where to save?
fileOnly = TRUE) #Save file, don't display

Trajectory: adult-to-T2D

T
NPT

e

land m-state

Figure 28 Constructing GRN for trajectory micro-states

The notion of micro-states was introduced in MLSCAN because gene expression patterns
may change dynamically along a trajectory (pseudo-time), and the mode of regulation of
the same key-genes might be markedly different. This can be vitally important in many
cellular processes and has been shown to occur very often in development, cancer, and
many critical cellular functions [45].

In fact, a simple visual comparison reveals that the regulation mode of the same key-
genes is different in the ground (early) and the landing (late) micro-states of the adult-to-
T2D trajectory. MLsCAN allows users to probe deeper and investigate differential
regulation along the path of micro-states progression for any state-to-state trajectory of
their interest and extract more insights from their datasets.

MLscAN integrates dimensionality reduction, unbiased unsupervised model selection,
trajectories inference, key-genes identification, partitioning trajectories to micro-states,
and GRNs inference down to the micro-state level, all in an easy-to-use pipeline and R
package.

plotGRNHeatmap(res, #MLscAN object
traj="adult-to-T2D", #Trajectory to plot
mstate="ground", # Micro-state to plot
save = TRUE, #Save plot to file
saveDir =".", #Where to save?
fileOnly = TRUE) #Save in file, don’t display

GRN weights & interactions
Trajectory: adult-to-T2D, ground m-state
No. top regulators: 19

0.2 type
|| Corf16 targets
CELF2 " regulators

| CLPS
CPB1
CTRB2
| BN ' HLA-F o
HLA-G
HLA-H
HLA-J
HLA-L
MT1E
OLFM4
PRSS1
PRSS2
PRSS3P2
REG1A
REG1B
TMEM3T7
| ZNF880

0.1

S="

9LH06D
Z4130
Sd10
18d0
28410
En Al
OVIH
H-vTH
r-vIH
TVIH
LN
PIN4TO
LSs¥d
288yd
2dessdd
Y193y
g1934
LEWIWNL
0884NZ

Figure 29 Visualizing the GRN weights between regulators and their targets

plotGRNHeatmap(res, #MLscAN object
traj="adult-to-T2D", #Trajectory to plot
mstate="ground", #Micro-state to plot
save = TRUE, #Save plot to file
saveDir =".", #Where to save?
fileOnly = TRUE) #Save file, don’t display

GRN weights & interactions
Trajectory: adult-to-T2D, land m-state
No. top regulators: 19

type
Corf16 targets
CELF2 0.2 regulators
CLPS 0.1
CPB1
CTRB2

HLA-F -0
M HLA-G

-0.2
HLA-H I

HLA-J
HLAL
MT1E
OLFM4
PRSS1
PRSS2
PRSS3P2

| REG1A
REG1B

| TMEM37

ZNF880

gLH06D
247130
Sd710
1840
[#<tSHke)
Enall
O-VIH
H-¥TH
MYIH
TVH
ALLN
PWAT0
1SS¥d
28Syd
2dESSHd
Y193y
g1934
LEWAWL
0884NZ

Figure 30 Visualizing the GRN weights between regulators and their targets

Large GRN plots may be messy, but the above function allows plotting the inferred GRN
weights between the key-genes in matrix format, revealing hidden regulation trends
between pairs of genes. For example, for any particular gene target (column), we can
check its regulators (rows), see if they are positive (excitatory) or negative (inhibitory),
and how strong their influence is on the target gene. Users can also quickly obtain the
weight values themselves by using grnWeights for any trajectory and micro-state of
interest. Larger weights correspond to more strongly supported by the data regulatory
relationships [44].

Using the weights produced by GENIE3 [44], MLscAN creates for each target gene a list
of its top regulator key-genes ordered by the absolute value of their weights. The user
may define how many of the top regulators she wants to present for each target gene.
The rest of the regulators are colored grey.

Of course, the inferred GRNs may differ significantly between the ground and landing
micro-states of the same trajectory, as is the case in this example.

4.10 Mixed States

You may have observed that the “child#” state contains a “#” at the end of its name. This
is happening because MLscAN has flagged this state as a potential “Mixed State”. Mixed
states are sets of cells with an unusually large variance relative to other inferred states.
Their existence may indicate the existence of interesting cell subpopulations or the
existence of outlier cells and may cause problems in downstream trajectories analysis.
We will see examples of problematic Mixed States and how MLscAN can be used to deal
with them in Chapter 6. However, the child# Mixed state is harmless in this example as it
consists mainly of one cell type.

In conclusion, this overview demonstrated that MLScAN integrates dimensionality
reduction, unbiased and unsupervised model selection, trajectories inference, key-genes
identification, partitioning of trajectories into micro-states, and GRNs inference down to
the micro-state level, all in an easy-to-use flexible computational pipeline. Moreover, it
provides excellent visuals to interpret the results of every pipeline stage.

5 USE CASE - DIMENSIONALITY REDUCTION USING UMAP
The purpose of this use case is to demonstrate the flexibility MLSCAN provides to its users
who may want to explore using alternative dimensionality reduction methods not
supported by the package. For example, this need may arise if they seek to improve the
cell clustering if the results of PCA [40] a linear method, cannot properly represent the
dataset.

For this use case we will use the cell cycle Buettner dataset [46] containing mouse
embryonic cells in 3 different cell cycle stages (G1, S, G2M) identified using flow
cytometry. The dataset contains 264 cells and 6812 genes.

We will begin by trying a default MLSCAN run.

5.1 Using an alternative dimensionality reduction method
In the run shown below the following MLScAN parameters assumed default values:

modelNumStates: Denotes the range of the number of states we want MLSCAN to
consider in model selection. The default range is [2:9].

modelStatesSelFun: Function used to determine the number of states of the “best” model.
Default value: dBIC function, alternative build-in option: maxBIC function.

modelModelNames: These are the types of covariance matrix structures of the GMM
components we want MLscAN to consider in the search for the “best” model that fits the
dimensionality reduced data. By default, MLscAN will try all 14 model types available.

dimRedMethod: Denotes the PCA method to be used by MLscAN. If the dataset is not
small, having more than 100 genes or cells, MLscAN by default uses the irlba [27] SVD
method with 50 dimensions.

dimRedTopN: It is the number of the most variable genes to be used in PCA. The default
value is 1000.

#MLscAN run
cell_cycle_run <- MLscAN(exprData=expressD, #Expression Matrix

MLscANCellFeatures=cellFeat, #Cell Features used in plots
MLscANColors=coloring, #Defined colors for specific cell features
MLscANStopAt="model", #Stop the analysis at model selection, do not
produce trajectories
MLscANOutMode="no", #Do not produce output files
modelStateNameMode = "mostFreqPerState" #an inferred state is named
according to the most represented (70% or more) cell type.
)
##
Creating the MLsScAN object...
Performing dimensionality reduction...
Creating the model...

Forming the sub-populations...
Possible mixed state(s): 1

MLscAN selected the GMM model name VEI with 3 states (components) as the “best”
model. First, let’s visualize the composition of the dimensionality reduced data.

plotDimRed(golden_mlscan,feature="cellType)

Dimensionality reduction results:
PC1to PC2

Feature: cellType’

Model Name: VEI

-E:D -ZID -1ID DI 1ID
PC1 (9.7%)

51 . G2 5
Figure 31 Inspect the PC1 vs. PC2 results with cells colored by cell type (ground truth)

plotStatesComposition(golden_milscan,feature="cellType")

dimensions: 4 | Cumulative var :15%

celType 0 Gt s B S

G2h -

States
ra

5 a0 75 100
No. cells per cellType

= -

Figure 32 Inferred states Composition plots colored by cell type (cell cycle stage)

The results show that clustering is far from optimal. Although the best model has as many
states as the cell types, when examining the PCA plot, we notice that it is hard to
distinguish the cell cycle stages because they are mixed.

In cases like this, PCA may not be appropriate for representing our dataset in low
dimensions. Therefore, one way to improve the clustering results is to try an alternative
dimensionality reduction technique. MLscAN allows to do that outside the package, using
any method of interest, and import the results as input in the MLSCAN run. In this specific
case, we will use UMAP [47] with ten dimensions.

External UMAP run

First, we will use the UMAP package [16] to obtain the dimensionality reduction matrix,
and then we will use the dimRedData argument to import this matrix to the next MLSCAN
run

cell_cycle_ UMAP <- umap::umap(expressD,n_components=10)

For this run MLscAN uses by default dBIC criterion for model selection and use all model
Names available for its model exploration.

cell_cycle_UMAP_miscan<- MLscAN(exprData=expressD, #Expression Matrix

MLscANCellFeatures=cellFeat, #Cell features vector
MLscANStopAt="model", #Analysis stop at model selection, no Trajectories

produced

MLscANOutMode="no", #Do not produce any output file
MLscANColors=coloring, #Use specific colors for the cell features
dimRedData=cell_cycle_UMAP$layout, #Use UMAP dimensionality reduction
results

modelStateNameMode = "mostFreqPerState"”, #Naming method to use for the
states

kgGenesSelFun= kg_voting() #Use voting to determine the key genes for the
inferred state-to-state trajectories

)

it

Creating the MLscAN object...

Performing dimensionality reduction...
Creating the model...

Forming the sub-populations...

Creating the trajectories...

plotBIC(cell_cycle_ UMAP_mlscan,showModelNames = TRUE)

BIC values

O eee X En [X VEV Diagonal . Spherical
Model Name /Z\ EEI EVI Vil Distribution
<> * . Ellipsoidal

+ eev 7 vel § wvi

-500-

-1000-

BIC value

-1500-

2 4 6 8
Number of states

Figure 33 BIC values of different models considered

The above plot provides a visualization of the BIC values versus the number of states for
every GMM model name (covariance matrix type) considered by MLscAN in model
selection. It also reminds us of the covariance matrix structure of each model using a
specific color. MLscAN selected as “best” the EEE model name with four states using the

default parsimonious 8BIC criterion. This combination also happens to be very close to
the maximum BIC value in this example.

plotDimRed(cell_cycle_ UMAP_miscan,feature="cellType")

Dimensionality reduction results:
redDim1 to redDim?2

Feature: "cellType’

Model Name: EEE

0.4-

0.o-
-0.8-

redCim?2

redDim1

s [l o 5

Figure 34 UMAP dim1 vs. UMAP dim2 with cells colored by cell type (ground truth)

We observe that the inferred cell states are less mixed at UMAP dimensions 1 and 2. So
we expect a better clustering result.

plotStatesComposition(cell_cycle_ UMAP_miscan,feature="cellType)

dimensions: 10 | Cumulative var :NA%
cellType B8 G1 Il G2M Bl S

States

0 20 40 60 80
No. cells per cellType

Figure 35 States Composition plots colored using cell type (cell cycle stage)

MLscAN with default parameters detects four states when using UMAP dimensionality
reduced data as input. The unsupervised parsimonious model selection suggests the
existence of two sub-clusters for cell stage G1. All inferred states consist of cells of one
cell type (cell stage) by at least 70%. Even though the states are not entirely “pure”, we
can see that importing the UMAP results to MLscAN improved the clustering results for

this specific dataset.

plotTransitions(cell_cycle_UMAP_miscan)

Transition propensities
threshaold = 0.2

1.02

State [0 11 [c12 [l o [s
Figure 36 Inferred state transitions

The above plot shows the state transitions with propensities that surpass the default
threshold (0.2). We observe the expected cell cycle relations between G12, S, and G2M.
We also see that almost all cells of G11 are “looking towards” G12 as their transition state.

plotTrajectories(cell_cycle_UMAP_mlscan)

Trajectories

@

27 28

16 16 36 36

63 @ 52

26 3

G2M

Figure 37 Inferred trajectories and their key-genes

In the trajectories plot, we can see the triangle with vertices G12, S, and G2M also
observed in plotTransitions. However, we also see an interaction between G11 and G2M
that is missing in the plot of transitions. This is so because it is a low propensity transition.
In an attempt to extract new knowledge, MLscAN analyses all possible state-to-state
trajectories, even those that the data support weakly as possible state transitions. The
number next to a trajectory arrow is the number of key-genes that are driving the
trajectory. MLscAN used voting here to detect key-genes, i.e., it has applied all five
differential expression methods it supports, and then took the majority.

5.2 Post MLscAN run analysis — Gene cluster markers
MLscAN also provides functions allowing the user to explore more the MLscAN’s run
results.

FindClustersMarkers() is an external MLscAN function, which provides the user with the
markers of each state compared to the other indicated states (default is all states). Also,
the plotDimRed function allows the user to color the cells based on a selected gene's
expression (e.g., a marker gene).

plotDimRed(cell_cycle_UMAP_miscan)

Dimensionality reduction results:
redDim1 to redDim2
Model Name: EEE

=
o

redDim?2

-0.5-

redDim1

ct1 [l o2 [l o 5

Figure 38 UMAP dim1 vs. UMAP dim2 with cells colored by cell states

The plot above presents a dimensionality reduction plot colored by cell states. In the three
dimensionality reduction plots shown below, cells are colored based on the expression of
one of the state markers with respect to the S state. We have isolated the respected
pairs of states in three plots to make the expression differences more visible.

Gene_markers <- FindClusterMarkers(cell_cycle UMAP_miscan,states=c(“G11”, S”))

plotDimRed(cell_cycle UMAP_miscan,gene="lahl" selected states=c)

Dimensionality reduction results:
redDim1 ta redDim2
Gene: “lah1
Model Name: EEE
0.5-

0.0-

redDim2

-0.8-

redDim1

0.0 25 50 75

Figure 39 UMAP dim1 vs. UMAP dim2 with cells colored by gene lah1 [G11 to S Marker]

expression

Gene_markers <- FindClusterMarkers(cell_cycle UMAP_miscan,states=c(“G2M”, S))

plotDimRed(cell_cycle_ UMAP_mlscan,gene="Enpp3"",selected_states=c(“G2M",”S"))

Dimensionality reduction results:
redDim1 to redDim?2

Gene: "Enppd”

Model Name: EEE

0.4-

redOim?

n.o-

-04a-

04 no 04 1.0 1.5
redDim1

Figure 40 UMAP dim1 vs. UMAP dim2 with cells colored by gene Enpp3 [G2M to S Marker]
expression

Gene_markers <- FindClusterMarkers(cell_cycle_ UMAP_miscan,states=c(“G12”, S”))

plotDimRed(cell_cycle_ UMAP_miscan,gene="Stk17b",selected_states=c(“G12","S"))

Dirmensionality reduction results:
redDim1 to redDim?2

Gene: "Stk17h°

Madel Name: EEE

ns- =

=
o
|

redDim?2

-0.4-

0.5 0o [iX3
redDim1

1.0 14

0o 25 50 74

Figure 41 UMAP dim1 vs. UMAP dim2 with cells colored by gene Stk17b [G12 to S Marker]

expression

6 MLSCAN MIXED STATE ISSUE

6.1 MLscAN Mixed State issue approach: Mixed State analysis

We will present here an approach for dealing with the Mixed State issue. For this purpose,
we will use the Hayashi 2018 dataset [48]with scRNA-seq data derived from mouse
Embryonic Stem Cells (mMESC) collected at 0, 12, 24, 48, and 72 hours after the induction
of cell differentiation into Primitive Endoderm cells. We have used the same dataset
before in [9]to demonstrate how exploiting MLscAN'’s flexible model selection capabilities
leads to a representative clustering approximating the ground truth faithfully. Since here
the focus is on mixed states handling, we will not repeat the steps performed in [9]but
rather build on top of that analysis.

6.1.1 MLscAN Mixed State analysis

The run performed in [9] that we will complement here used for unsupervised GMM-based
model selection the default range of 2 to 9 states and the default 8BIC parsimonious
modeling approach. The rest of the arguments were set as follows:

MLscAN_ODbj <- MLscAN(exprData= expressD,#Expression Matrix
MLscANCellFeatures= cellFeat,#Cell Features

modelStateNameMode= "mostFreqPerState",#Naming method for inferred
states

dimRedMethod = "prcomp",#PCA method to use
dimRedTopN= 1000,#number of most variable genes to use in PCA

modelModelNames= "Diagonal”,#Consider only models with diagonal
covariance strutctures (i.e., EEI,VEI,EVI,VVI)in model selection

MLscANStopAt= "model",#Analysis stop at model, do not produce
trajectories

MLscANOutMode= "no",#Do not produce any output files
MLscANColors = coloring #Use provided colors for the cell features

)

plotDimRed(mixed_state_miscan,feature="cellType")

Dimensionality reduction results:
PC1to PCZ

Feature: "cellType’

Model Mame: VEI

20-

10-

-10-

-20-

20 jlu)

a0 1o a 10
PC1 (26.7%)

ooh [1z B zen M 4an 72h

Figure 42 Inspect the PC1 vs. PC2 results with cells colored by cell type (ground truth)

plotStatesComposition(MLscAN_Obj,feature="cellType")

dimensions: 9 | Cumulative var 42%
cellType W9 00h BN 12k BN Z4n BN 48h B0 72h

T2h# -

Aghg -

24h -

States

12h3-

aoh -

=]
ha
(L]
(3]
=]
-
(L]

Mo, cells per cellType
Figure 43 States Composition plots colored using cell type

The above dimensionality reduction and states composition plots give us a clear picture
of the clustering results. We can see four Mixed States, named 1#, 72h#, 12h#, 48h#
(names ending with a # character). The last three consist of cells of one cell type (cell
stage) by at least 70%, so we will not consider them further in the analysis. In contrast,
1# is a large variance state consisting of a mixture of 48h and 72h type cells, suggesting
the possible existence of sub-populations. MLscAN can help us investigate this possibility
by analyzing further this particular mixed state cells.

6.1.2 Mixed state analysis run

We need to run MLscAN analysis using only the 1# mixed state cells to examine the sub-
population hypothesis. To create and analyze the mixed state’s dataset in isolation, we
need to apply the following steps in R.

1. Isolate the cells of the identified mixed state

2. Obtain their expression data

3. Remove the genes that have only zero expression values from the new expression
data matrix

Obtain the cell features data for mixed states’ specific cells.

Run MLscAN with those inputs.

ok

These steps are executed by the code shown below:
MLscANODbj <- MLscAN_Obj # Name of MLscAN object
state <- "1#" # name of Mixed State

Isolate the cells of the mixed state
state_cells <- stateCells(MLsScANODbj,state=state)[[1]]

#0ODbtain the expression data for specific cells
state_exprData <- exprData(MLsScANODbj,cells = state_cells)

Remove the genes that have only 0 expression values from the new expression data
matrix
state_new_expr_data <- state_exprData[,colSums(state_exprData)!=0]

Obtain the dimensionality Reduction Data for specific cells
state_dimRedData <- dimRedData(object = MLscANODj,cells = state_cells)

Obtain the cell Features Data for specific cells
state_CellFeatures <- cellFeatures(object = MLSCANODj, cells = state_cells)

The next step is to use MLsCAN to analyze the mixed state cells in isolation using the default
oBIC method for GMM-based model selection and considering the default range of 2 to 9 states.
MLscAN run for the cells of Mixed State

mixed_state_mlscan <- MLscAN(exprData= state_new_expr_data,#Expression Matrix
MLscANCellFeatures= state CellFeatures,#Cell Features

modelStateNameMode= "mostFreqPerState",#Naming method for inferred
states

dimRedMethod = "prcomp”,#The PCA method to use
dimRedTopN= 1000,#Number of most variable genes to use in PCA

modelModelNames= modelModelNames(MLscANODbj),#Use the same
model name (VEI) as in the initial run

MLscANStopAt= "model",#Stop the analysis at the model creation, do not
produce trajectories

MLscANOutMode= "no",#Do not produce any output files

MLscANColors = coloring #Use specific colors selected for certain cell
features

)

H#H
Creating the MLscAN object...

Performing dimensionality reduction...
Creating the model...

Forming the sub-populations...

Possible mixed state(s): 48h2

plotDimRed(mixed_state_miscan,feature="cellType")

Dimensionality reduction results:
PC2ta PCH

Feature: "cellType

Madel Narme: VEI

: = [0O

.
i

-2‘0 -WID DI 1‘0 2‘0
PC2 (5.7%)

B 72h

20

=T

-20-

Figure 44 Inspect the PC1 vs. PC2 results with cells colored by cell type (ground truth)

plotStatesComposition(mixed_state_miscan,feature="cellType")

dimensions: & | Cumulative var :28%

CE”TW]E I 48h B9 72h

Tih-

48h -

States

48h1 -

10 15 i
No. cells per cellType

i i

Figure 45 States Composition plots colored using cell type

The MLscAN run of the mixed state in isolation reveals three sub-populations, two
containing mainly 48h type cell and one containing mainly 72h type cells.

6.1.3 MLscAN run combining the results of the two previous runs (Initial and
Mixed State analysis)

Our next action will be to use the five clusters [1# excluded] that the initial MLSCAN run
produced and the three clusters that the mixed state run gave us and use the cell class
assignments as initial values to conduct a third but constrained (initialized) MLscAN run.
To initialize the new MLscAN run, we need to create a vector with the cell names and the
states the cells belong to.

Below, we present the steps for creating the initialization vector.

#The initialization vector for the next MLscAN run, Contains clusters found in the initial run
combined with the mixed state run sub-clusters.

#Obtain states and names of cells from the initial run
init_vector <- as.vector(modelMAPState2(MLscANObj)[,1])
names(init_vector) <- rowvnames(modelMAPState2(MLscANODbj))

#Obtain states from the mixed state run
mixed_state _subclusters <- modelMAPState2(mixed_state_mlscan)

#Replace 1# state with the appropriate state created from the mixed staterun

for (subcluster in unique(mixed_state subclusters)){

subcluster_cells <-
rownames(mixed_state subclusters[which(mixed_state subclusters[,1] ==
subcluster),])

init_vector[which(names(init_vector) %in% subcluster_cells) = pasteO(subcluster,” ms")

}

#Find the most variable 500 genes. We will use them to restrict key genes exploration to reduce
computation time

top_500_var_genes <- colnames(getTopNExprData(exprData = new_exprData,topN =
500))

We skip the model selection step through initialization as GMM is applied with a given
number of states and a specific model name. MLscCAN, in this case, just applies the
Expectation-Maximization algorithm using the given parameters to derive posterior
probability distributions for the cells and infer trajectories.

#lInitialized MLscAN run
hayashi_ms_analysis_init <- MLscAN(exprData= expressD, #Expression Matrix

MLscANCellFeatures= cellFeat, #Cell Features
modellnit= init_vector, #Initialization vector

modelStateNameMode= "mostFreqPerState"”, #Naming method for the
inferred states

dimRedMethod = "prcomp", #PCA method to use
dimRedTopN= 1000, #Number of most variable genes to use in PCA

modelModelNames= modelModelNames(MLscANODbj), #The initial run
model name(VEI)

kgGenesSelFun= kg_voting(), #Key genes determined by voting method
MLscANOutMode= "no", #Do not produce any output files

keyGenesVector=top_500_var_genes, #Use specific genes for key genes
discovery

MLscANColors = coloring #Use specific colors for certain cell features

)

#Hit

Creating the MLscAN object...

Performing dimensionality reduction...
Creating the model...

Forming the sub-populations...
Possible mixed state(s): 12h 48h3 48h2 72h1 72h2
Creating the trajectories...

plotDimRed(hayashi_ms_analysis_init,feature="cellType")

Dimensionality reduction results:
PC1to PC2

Feature: "cellType’

Madel Mame: WEI

20-

-20-

20 0 0 10 20 a0
oon B 1zn [2an I 4en 72h

Figure 46 Inspect the PC1 vs. PC2 results with cells colored by cell type (ground truth)

plotStatesComposition(hayashi_ms_analysis_init,feature="cellType”)

dimensions: 9 | Cumulative var :NA%
cellType B9 ooh B 12h B 24h BN 48h B 72h

T2h2a#-

T2h1#-

48h3# -

48h2#-

States

48h1 -

24h-

00h -

! !
0 25 a0 75
MNo. cells per cellType

Figure 47 States Composition plots colored using cell type

MLscAN detects two possible subpopulations for 72h and three for 48h cell types.
However, all subpopulations (states) consist of cells of mostly one type (cell stage) by at
least 70%.

plotTrajectories(hayashi_ms_analysis_init)

Trajectories

2626

12h#

@

2828

24h

3282

=

[}

=
Q

13 72h:

48h2#|

Figure 48 Inferred trajectories and their key-genes

plotTransitions(hayashi_ms_analysis_init)

Transition propensities
threshold = 0.2

T2h2#

0oh
T2hi#

165

141

0583

12h# \ . 48h2#

0.83
1.25
0.41

106 &
s 48h1

” "

48h3#

oon [2en [ssnze P Tanix

12ha 48h1 48h3# T2h2#

State

Figure 49 Inferred state transitions

Moreover, MLscAN infers a logical trajectories network that follows the time progression
of the prior information, as two 48h states are connected with the intermediate 72h2#
state, which connects to the primary 72h1# state. The isolated 48h1 state contains only
a few cells “looking towards” the 72h2# state. Further bioinformatic analysis of these sub-
populations and their interactions revealed by MLscAN in an unbiased and unsupervised
manner may provide new insights. Such analysis is, however, beyond the scope of this
document.

6.1.4 Pseudo-time meta-analysis

Many trajectory inference packages have the final goal to create a pseudo time ordering
using their trajectories [24].MLscAN was created with the main goal to discover cell sub-
populations, assess their state-to-state interactions and their dynamic gene regulatory
mechanisms in an unbiased manner. However, using an external function called
Trajectory path MLscAN can also generate pseudotime- like cell ordering along a
particular multi-state trajectory path using the trajectories cells’ first posteriors. The
function takes as input the MLscAN object and the name of a valid trajectory path. Below
we provide an example of this function using the trajectory path 00h-12h#-24h-48h3#-
48h2#, i.e., the path with the higher transition propensities in the transitions plot.

traj_path <- TrajectoryPath(MLscANODbj = hayashi_ms_analysis_init,trajectory = "00h-
12h#-24h-48h3#-48h2#")

Cell Cell
Cell Name Position | State
RamDA _mESC_00h_EO05 |1 00h
RamDA mESC 00h FO08 | 2 00h
RamDA _mESC_00h_GO08 | 3 00h
RamDA mESC 00h BO03 | 4 00h
RamDA _mESC_00h_B04 | 5 00h
RamDA mESC 00h C11 | 6 00h
RamDA mESC 00h F06 | 7 00h
RamDA mESC 00h F11 |8 00h
RamDA mESC 00h D10 | 9 00h
RamDA mESC 00h E11 | 10 00h
RamDA mESC 00h D03 | 11 00h
RamDA mESC _00h D06 | 12 00h
RamDA mESC _00h BO05 | 13 00h
RamDA mESC 00h HO02 | 14 00h
RamDA mESC _00h_CO06 | 15 00h
RamDA mESC 00h CO08 | 16 00h
RamDA mESC_00h_AO05 | 17 00h
RamDA mESC 00h B06 | 18 00h
RamDA mESC 00h HO1 | 19 00h
RamDA mESC _00h F12 | 20 00h

Figure 50 Part of the matrix produced by TrajectoryPath

6.2 MLscAN Mixed State issue approach: Mixed State removal

6.2.1 Introduction

We will now present an example where a detected mixed state is an outlier state and
show how to remove it from downstream analysis. We will use Engel's natural killer T
single cells dataset [49], consisting of 187 thymic NKT cells and 6774 genes. In their
research, Engel’s group characterized thymic NKT cells into four subsets called NKTO,
NKT1, NKT2, and NKT17 that were highly divergent, despite their antigen similarity, with
many gene-expression and epigenetic differences.

6.2.2 The MLscAN run

As we have discussed, MLscAN uses by default parsimonious modeling based on the
OBIC method to decide the “best” GMM model type and its number of states in an

unbiased manner. However, one may also want to explore using the maximum BIC
model, which usually has more states, including mixed states with few cells.

In the following MLscAN run we explore the maxBIC option. For dimensionality reduction,
the run uses the 1000 most variable genes and the irlba [27] PCA method with 100 PCs
by default.

MLScAN run

NKT_miscan <- MLscAN(exprData=expressD,#Expression Matrix

MLscANCellFeatures= cellFeat,#Cell Features

modelStateNameMode = "mostFreqPerState",#Naming method for the inferred st
ates

MLscANColors=NKT _colors,#Use provided colors for cell features
modelStatesSelFun=maxBICState, #Select model name and number of state us
ing maximum BIC

MLscANStopAt="traj", #Analysis stop at trajectories, do not produce key genes a
nd GRNs

MLscANOutMode="no" #Do not produce any output files

)

#it

Creating the MLscAN object...

Performing dimensionality reduction...
Creating the model...

Forming the sub-populations...

Possible mixed state(s): 1

Creating the trajectories...

plotDimRed(NKT_miscan,feature="cellType")

Dimensionality reduction results:
FC1to PC2

Feature: "celType

Model Name: WEI

=

=

o

[

0

o

-20 -10 0
PCI (5.2%)
B o it _ [l w17 _ NKTZ _

Figure 51 Inspect the PC1 vs. PC2 results with cells colored by cell type (ground truth)

By inspection, we can easily detect a mixed state (1#) with a very large PC2 variance in
the dimensionality reduction plot. Because of that, we wait to observe transitions between

the mixed and most of the other states.
plotStatesComposition(NKT_miscan,feature="cellType")

dimensions: 5 | Cumulative var :12%

celType I NKTO _ B NKT1_ B NKTH7 _ MKTZ _

NKTZ _3-
NKTZ _2-
NKTZ _1-

MKT17 _2-

MET1T _1-

States

METT _-

METO _2 -

METO _1-

=
[
[
[
=

10
MNo. cells per cellType

Figure 52 States Composition plots colored using cell type

As we can see in the above states composition plot, MLscAN finds three NKT2, two
NKT17, two NKTO, and one NKT1 sub-clusters. It also creates one mixed state (1#) with
few cells that consists of NKTO, NKT17, and NKT2 type cells. The mixed state has 10
cells out of 187 total cells (5.1%). Since the mixed state is heterogeneous and contains a
very small proportion of the total cells we consider it an outlier and will try to remove it.

plotTransitions(NKT_mlscan)

Transition propensities
threshold = 0.2

HKT2 2

HKTO 1 HKT2 1

042

HKT1 J ok HKT17

120
0.a0 0EZ [ubri=2
160

k Q.80 Qn? K

HKTO _2 NG

033
o 4

1%
HKT2 3

nicra _z [w7 o I wkrz o [ez

State
MK _1 MKTT _ MKT17 _2 MKT2 _32

Figure 53 Inferred state transitions

Before doing so, by examining the transition plot above, we can see that nearly every
other state wants to interact with the mixed state. This is expected because this state
casts a wide net in the posterior probabilities space due to its very large variance.
Therefore, it is justified to remove it as this transition network is not realistic due to that
artifact.

6.2.3 Mixed State removal

We describe below the steps for isolating the mixed state cells and removing them from
the initial dataset using appropriate MLSCAN getter functions.

1. Obtain all cells

Obtain the cells of a certain state (mixed state)

Take the rest of the cells (all cells - mixed state cells)
Obtain the expression data for specific cells (rest of cells)

Obtain the dimensionality Reduction Data for specific cells (rest of cells)

o g~ w0

Remove genes that have only zero expression values from the new expression
matrix

7. Obtain the cell Features Data for specific cells (rest of cells)

8. Run MLscAN with those inputs (rest of cells).

MLscANODbj <- NKT_miscan # Name of MLscAN object
state <- "1#" # name of the Mixed State

#Setting up the arguments for MLscAN run with MLScAN getters removing all mixed sta
te cells

#1st step: Obtain all cells

all_cells <- cellINames(MLscANODbj)

#2nd step: Obtain the cells of a certain State (mixed state)
state_rm_cells <-stateCells(object = MLscANODbj,state = state)[[1]]

#3rd step: taking the rest of the cells
state_cells <- all_cells[which(!(all_cells %in% state_rm_cells))]

#4th step: Obtain expression data for specific cells (rest of cells)
state_exprData <- exprData(MLscANODbj,cells = state_cells)

#5th step: Remove the genes having only O expression values from the new expression
data matrix
new_expr_data <- state_exprData[,colSums(state_exprData)!=0]

#6th step: Obtain dimensionality Reduction Data for specific cells (rest of cells)
state_dimRedData <- dimRedData(object = MLscANODj,cells = state_cells)

#7th step: Obtain cell Features Data for specific cells (rest of cells)
state_CellFeatures <- cellFeatures(object = MLSCANODbj, cells = state_cells)

#Find the most variable 500 genes. We will use them to restrict key genes exploration in this set
to reduce computation time

top_500_var_genes <- colnames(getTopNExprData(exprData = new_exprData,topN =
500))

NKT_remove_mixed_state<-MLscAN(exprData =new_expr_data,#Expression Matrix

MLscANOutMode = "no",#Do not produce any output files
modelStateNameMode = "mostFreqPerState",#Naming method for states
MLscANCellFeatures = new_CellFeatures,#Cell Features

MLscANColors=NKT _colors,#Use provided colors for certain cell features
dimRedData=state_dimRedData,#Dimensionality reduction Data
modelModelNames=modelModelNames(MLscANODbj),#Use the initial run GMM
model name(VEI)

kgGenesSelFun= kg_voting(), #Key genes determined by voting

keyGenesVector=top_500_var_genes #Search for key genes among the 500
most variable genes

)

#Hit

Creating the MLscAN object...

Performing dimensionality reduction...
Creating the model...

Forming the sub-populations...

Creating the trajectories...

plotDimRed(NKT_remove_mixed_state,feature="cellType")

Dimensionality reduction results:
PC1toPC2

Feature: "cellType’

Model Name: VEI

-Z:IJ -1IIJ DI
PC

B oo B o B wkmir_ NKTZ

Figure 54 Inspect the PC1 vs. PC2 results with cells colored by cell type (ground truth)

plotStatesComposition(NKT_remove_mixed_state,feature="cellType")

dimensions: 5 | Cumulative var :NA%
celType M NKTO _ B RKT1_ B NKTIT_ 0 NKT2

NKTZ _3-
NKT2 _2-
NKTZ _1-

NKT1T7 _2-

States

MET1T _1-

NET1 _-

Ma. cells per celType

Figure 55 States Composition plots colored using cell type

Removing the mixed state has improved the clustering as seen by the two plots above.

plotTrajectories(NKT_remove_mixed_state)

Trajectories

NKT1 NKTI7 1
NKTD 2 NKTZ2 3 NKT17 2

]

NKT2 _1

Figure 56 Inferred trajectories and their key-genes

plotTransitions(NKT_remove_mixed_state)

Transition propensities
threshold = 0.2

HKT2 _2

r
HKTO 1 ymg MKT2 1
F o
1574
KT _2 l L
0za 125
162
\ _,l
HKT1 i 033 HKT47 A
HKT2 _3
MIKTD _1 MKT1 _ MKT17 _2 MKTZ 2
State
MKTO _2 MET17 _1 MKTZ _1 NKTZ _3

Figure 57 Inferred state transitions

Removing the mixed allows MLSCAN to create a transition network with way better quality.
We know from Engels’ analysis [49] that NKTO, which contains precursor cells, is closer
to NKT2 cells than the other cell subsets (even if it looks like it is a weak connection
between those states). This seems to be confirmed by our transition plot. Also, we may
conclude that NKT2 is an intermediate subset as it connects to all the other subsets.
Further investigation is needed to assess if there is a biological meaning to the existence
of subclusters and their network of state-to-state trajectories.

7. CONCLUSIONS AND FURTHER RESEARCH

Improving MLscAN to become a more flexible and user-friendly tool was the primary
goal of this thesis. To this end, even though MLscAN was originally designed to
provide an easy to use end-to-end computational analysis pipeline to the “naive” user
(non-computational expert), we now also provide to the more experienced user the
ability to customize her run, incorporate external results, and experiment with model
selection, while still remaining unbiased and using a probabilistic framework.

Another important contribution to the MLScCAN pipeline development was detecting the
Mixed States and implementing ways to handle them properly in MLscAN. Finally, we
put a lot of emphasis on demonstrating all the previous contributions and MLscAN'’s
capabilities, versatility, and flexibility through well-designed use cases.

Specifically, Chapter 4 explores the MLscAN workflow, presenting its capabilities and
navigating through the many different plots the package can create automatically. We
used a pancreatic cells dataset from diabetic and non-diabetic donors [41] for this
purpose.

Chapter 5 provides instructions on integrating alternate dimensionality reductions data
to the MLscAN pipeline and how this can improve the analysis for specific datasets.
For this case, we selected Buettner's dataset (Buettner F, 2015) containing mouse
embryonic cells in the different cell cycle stages.

Finally, we presented two approaches for dealing with the issue of the mixed states in
Chapter 6. Using Hayashi’'s dataset [48], we break a mixed state into its
subpopulations and then repeat the analysis to include them into the epigenetic
landscape before inferring trajectories. On the other hand, using Engel’s dataset [49],
we show how to remove a mixed state of outlier cells. Both techniques can be used
recursively, as needed.

In the fast pacing field of single-cell analytics, MLscAN may need some additions in
the near future. Extending the communication between MLscAN and well-known
single-cell analysis packages like SingleCellExperiments [50] and be able to use R
objects created by these packages as input, will be vital to help inexperienced users
implement effortlessly their expression data and corresponding metadata, minimizing
even less the minimum programming skills needed to use MLscAN. Also, MLscAN
can become even more user-friendly by providing a graphical user interface
environment through Shiny apps [51].

Following the latest Single Cell analytics studies, we can observe an increased use of
RNA velocity data [52] for improving Trajectory Inference approaches. We believe
integrating RNA velocity to single-cell data analysis may offer excellent insights.

Moreover, the combination of different kinds of data modalities other than RNA-seq,
such as proteomics and metabolomics, will be significant for overcoming many of the
limitations we face in single-cell RNA sequencing.

Integrating multi-omics data modalities and combining bioinformatics and machine
learning approaches seems to be the next big step in the long journey of revealing the
biological mechanisms of cells. Furthermore, new tools research will undoubtedly
support multidisciplinary efforts to help us understand and exploit the function and
dynamics of complex biological systems for therapeutic and biotechnological
purposes.

[1]
2]

[3]
[4]

[8]

[9]

[10]

[11]

[12]

[13]
[14]
[15]

[16]

[17]
[18]

[19]

[20]

REFERENCES

P. Ehrlich, Nobel Lecture, Tue. 23 Nov 2021.

A. Weber, Discovering New Biology through Sequencing of RNA, Plant Physiology, November
2015.

Z. Wang, RNA-Seq: a revolutionary tool for transcriptomics, Nature reviews. Genetics, 2009.

E.Pennisi, The biology of genomes. Single-cell sequencing tackles basic and biomedical questions,
Science, 2012.

Zhang, Single-cell RNA sequencing in cancer research, J Exp Clin Cancer, 2021.

M. Jonathan A Griffiths, Using single-cell genomics to understand developmental processes and
cell fate decisions, 2018.

T. Aleksandra A. Kolodziejczyk, The Technology and Biology of Single-Cell RNA Sequencing,
Molecular Cell, 2015.

P. Tsakanikas,E. Manolakos , Machine learning methods to reverse engineer dynamic gene
regulatory networks governing cell state transitions, bioRxiv, 2018.

A. P. Chatzigeorgiou, "MLscAN a tool for implementing flexible pipelines for Single-cell data
analysis using unsupervised Machine learning methods,"” Master thesis, 2021.

G. Chen, "Single-Cell RNA-Seq Technologies and Related Computational Data Analysis," Frontiers
in Genetics, 2019.

C. Kendziorskl, "Design and computational analysis of single-cell RNA-sequencing experiments,”
Genome Biology, 2016.

S. Zhang, "Comparison of Computational Methods for Imputing Single-Cell RNA-Sequencing Data,
Transactions on Computational Biology and Bioinformatics, 2020.

W. Ratajczak, "Principal components analysis (PCA)," Computers & Geosciences, 1993.
S. Lafon, "Diffusion maps," Applied and Computational Harmonic Analysis, 2006.
G. Hinton, "Visualizing Data using t-SNE," Journal of Machine Learning Research, 2008.

L. Mclnnes, UMAP: Uniform Manifold Approximation and Projection, Journal of Open Source
Software, 2018.

W. Saelens, "A comparison of single-cell trajectory inference methods," Nat Biotechnol, 2019.
T. Stuart, "Comprehensive Integration of Single-Cell Data," Cell, 2019.

Wang, " Independent component analysis-based dimensionality reduction with applications in
hyperspectral image analysis.," Geoscience and Remote Sensing, 2006.

G. Hinton, "Visualizing Data using t-SNE," Journal of Machine Learning Research, 2008.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]
[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Kiselev VY, "SC3: consensus clustering of single-cell RNA-seq data,” Nat Methods, 2017.

J. B. MacQueen, " Some Methods for classification and Analysis of Multivariate Observations.
Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability.," University of
California Press, 1967.

Faisal Saeed, " Combining Multiple Individual Clusterings of Chemical Structures Using Cluster-
Based Similarity Partitioning Algorithm," 2012.

Trapnell C, "Nat Biotechnol," 2014.

Street, "Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics,” BMC
Genomics , 2018.

Wolf, " PAGA: graph abstraction reconciles clustering with trajectory inference through a topology
preserving map of single cell,” Genome Biol , 2019.

J. Baglama, IRLBA: Fast Partial Singular Value Decomposition Method, Handbook of Big Data,
2016.

R. P. Kaufman, "Partitioning Around Medoids (Program PAM). In Finding Groups in Data," 1990.

Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre, "Fast unfolding of communities in large
networks," Journal of Statistical Mechanics: Theory and Experiment, 2008.

D. Reynolds, Gaussian Mixture Models, Encyclopedia of Biometrics, 2009.

O. Bor’uvka, O jistém problému minimalnim, 1926.

J. Schaffer, "What Not to Multiply Without Necessity," Australasian Journal of Philosophy, 2015.
R. Development Team. A language and environment for statistical computing, 2015.

L. Scrucca, mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite
Mixture Models, 2016.

Finak, "MAST: a flexible statistical framework for assessing transcriptional changes and
characterizing heterogeneity in single-cell RNA sequencing data," Genome Biol, 2015.

Robinson MD, "edgeR: a Bioconductor package for differential expression analysis of digital gene
expression data," Bioinformatics, 2010.

C. Y. Kieran R Campbell, "switchde: inference of switch-like differential expression along single-cell
trajectories," Bioinformatics, 2017.

P. J. Lavrakas, "Bootstrapping," Encyclopedia of Survey Research Methods, 2008.

T. Ho, "Random decision forests," Proceedings of 3rd international conference on document
analysis and recognition, 1995.

1. Jolliffe, "Principal component analysis. Springer, New York," 1986.

Wang YJ, "Single-Cell Transcriptomics of the Human Endocrine Pancreas. Diabetes," 2016 .

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]
[51]

[52]

Lun ATL, "A step-by-step workflow for low-level analysis of single-cell RNA-seq data with
Bioconductor," 2016.

R. K. Standish, "Why Occam’s razor.," Foundations of Physics Letters , 2004.

Sophie A Harrington, The Wheat GENIE3 Network Provides Biologically-Relevant Information in
Polyploid Wheat G3 Genes|Genomes|Genetics, 2020.

S. X. Deng AC, "Dynamic gene regulatory network reconstruction and analysis based on clinical
transcriptomic data of colorectal cancer,” Math Bioscience Eng, 2020 .

Buettner F, "Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data
reveals hidden subpopulations of cells," Nat Biotechnol, 2015.

L. Mclnnes, "UMAP: Uniform Manifold Approximation and Projection,” Journal of Open Source
Software, 2018.

T. Hayashi, "Single-cell full-length total RNA sequencing uncovers dynamics of recursive splicing
and enhancer RNAs," Nat Commun, 2018.

Engel I, "Innate-like functions of natural killer T cell subsets result from highly divergent gene
programs,” Nat Immunol, 2019 .

A. Amezquita, "Orchestrating single-cell analysis with Bioconductor,” Nature Methods, 2020.
R Development Team, "RStudio: Integrated Development Environment for R," PBC, 2020.

La Manno, "RNA velocity of single cells,” Nature, 2018.

