
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

BSc THESIS

The Friv Reinforcement Learning Environment

George S. Stamatelis

Supervisor: Panagiotis Stamatopoulos, Assistant Professor

ATHENS

NOVEMBER 2021

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Περιβαλλον Ενισχυτικής Μηχανικής Μάθησης Βασιμένο
στο Friv

Γεώργιος Σ. Σταματέλης

Επιβλέπων: Παναγίωτης Σταματόπουλος, Επίκουρος Καθηγητής

ΑΘΗΝΑ

ΝΟΕΜΒΡΙΟΣ 2021

BSc THESIS

The Friv Reinforcement Learning Environment

George S. Stamatelis
S.N.: 1115201800185

SUPERVISOR: Panagiotis Stamatopoulos, Assistant Professor

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Περιβαλλον Ενισχυτικής Μηχανικής Μάθησης Βασιμένο στο Friv

Γεώργιος Σ. Σταματέλης
Α.Μ.: 1115201800185

ΕΠΙΒΛΕΠΩΝ: Παναγίωτης Σταματόπουλος, Επίκουρος Καθηγητής

ABSTRACT

The goal of the thesis is to provide a new environment based on the popular video game
website FRIV to evaluate single player reinforcement learning agents. Specifically, it
provides a good platform to examine an agent’s capability to explore a large state space
with sparse rewards. Moreover, it can also be used to experiment with transfer reinforce
ment learning.

SUBJECT AREA: Artificial Intelligence

KEYWORDS: Reinforcement Learning, Deep Learning, Convolutional Neural Net
works, Computer Vision, Control, Video Games, Sequential Decision
Making

ΠΕΡΙΛΗΨΗ

Οσκοπός της πτυχιακής εργασίας είναι να εισάγει ένα νέο περιβάλλον ανάπτυξης και αξιο
λόγησης αλγορίθμων ενισχυτικής μηχανικής μάθησης βασισμένο στην ιστοσελίδα παιχνι
διών FRIV. Πιο συγκεκριμένα, είναι ενας καλός τρόπος αξιολόγησης της δυνατότητας ενός
πράκτορα να εξερευνεί τον μεγαλο χωρο αναζήτησης εφόσον τα σήματα επιβράβευσης
είναι αραιά. Επιπλέον, μπορει να χρησιμοποιηθεί για να γινουν πειραματα ενισχυτικής
μηχανικής μάθησης μέσω μεταφοράς.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Τεχνιτή Νοημοσύνη

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Ενισχυτική Μηχανική Μάθηση, Βαθιά Μάθηση, Νευρωνικά
Δίκτυα Συνελίξεων, Τεχνητή Οραση, Ελεγχος, Βιντεοπαιχνίδια,
Ακολουθιακή Λήψη Αποφάσεων

Αφιερώνεται στην μητέρα μου

ACKNOWLEDGEMENTS

Για τη διεκπεραίωση της παρούσας Πτυχιακής Εργασίας, θα ήθελα να ευχαριστήσω τον
επιβλέποντα, επ. καθ .Παναγιώτη Σταματόπουλο, για τη συνεργασία και την πολύτιμη συμ
βολή του στην ολοκλήρωση της.

CONTENTS

1. INTRODUCTION 15

2. BACKGROUND 16

2.1 Introduction to reinforcement learning . 16
2.1.1 Characteristics of reinforcement learning . 16
2.1.2 Markov Decision Processes(MDP) . 16
2.1.3 Policies and Value functions . 17

2.2 Bellman Equations . 18
2.2.1 Policy ordering and optimal policy . 18

2.3 Reinforcement learning Methods . 18
2.3.1 Dynamic Programming . 19
2.3.2 Monte Carlo Methods . 20
2.3.3 Temporal Difference Learning . 22

2.3.3.1 n step Bootstrapping . 23
2.3.3.2 Averaging over n step returns . 23
2.3.3.3 Eligibility traces . 24
2.3.3.4 Backward view TD (λ) . 24
2.3.3.5 Sarsa , Q learning and expected Sarsa 24
2.3.3.6 Double Q learning . 26

2.3.4 Model Based Reinforcement learning and planning 26
2.3.4.1 Learning the dynamics of a model using observed data 26
2.3.4.2 Using the model to plan . 27

2.3.5 Dyna . 27
2.3.6 Prioritized sweeping . 29
2.3.7 Rollout algorithms . 29
2.3.8 Monte Carlo Tree search . 30
2.3.9 Function Approximation . 30

2.3.9.1 Monte Carlo Methods . 31
2.3.9.2 TD(0) . 31
2.3.9.3 Backward view TD(λ) . 31

2.3.10 Policy Gradient Methods . 32
2.3.10.1 Policy gradient theorem . 32
2.3.10.2 REINFORCE ALGORITHM(MonteCarlo policy gradient) 32
2.3.10.3 REINFORCE with baseline . 33
2.3.10.4 ACTOR CRITIC METHODS . 33

2.3.11 Trust Region Policy Optimisation . 34
2.3.12 Proximal Policy Optimisation . 35

2.3.12.1 Clipped Surrogate Objective . 35
2.3.12.2 Adaptive KL Penalty Coefficient . 35
2.3.12.3 Algorithm . 35

2.4 Neural Networks . 36
2.4.1 Perceptron . 36

2.4.2 Feed forward neural networks . 36
2.4.3 Convolutional Neural Networks . 38
2.4.4 Long Short Term Memory Neural Networks . 38

2.5 Deep Reinforcement learning . 40
2.5.1 Deadly Triad . 40
2.5.2 Deep Q learning . 41
2.5.3 Dueling Architecture . 42
2.5.4 Double Deep Q learning . 42
2.5.5 Noisy Nets for exploration . 42
2.5.6 Distributional Reinforcement Learning . 43
2.5.7 Rainbow (combination of improvements) . 43

2.6 Asynchronous Reinforcement Learning . 44

3. Related Work 45

3.1 TD Gammon . 45

3.2 Arcade earning environment and Atari . 45

3.3 Pygame learning environment (PLE) . 46

3.4 Dota 2 . 46

3.5 Alpha Go (with human knowledge) . 47

3.6 Alpha Go without human knowledge . 47

3.7 Other Games . 49

4. The Friv Learning Environment(FLE) 50

4.1 Agent Platformer . 52

4.2 Super Onion Boy . 52

4.3 Car Parking . 53

4.4 Zombie Onslaught . 54

4.5 I love traffic . 55

4.6 Go Chicken Go . 55

4.7 Eyecopter Gemland . 56

4.8 Spin soccer . 57

4.9 Boss Level Pumpkin . 58

5. Results 60

6. CONCLUSIONS AND FUTURE WORK 61

ABBREVIATIONS ACRONYMS 64

LIST OF FIGURES

2.1 Integration of acting, learning and planning in Dyna 28
2.2 perceptron algorithm applied on linearly seperable data 37
2.3 A simple Feed Forward Neural Network performing binary classification of

2 dimensional data. It has 2 hidden fully connected layers . The biases at
each layer have been emitted from the diagram for simplicity. 37

2.4 The 3 most common activation functions in Neural Networks 38
2.5 Convolution layer example . 39
2.6 pooling layer example. 2x2 kernel , stride=1 39
2.7 THE LSTMCell By Guillaume Chevalier File:The_LSTM_Cell.svg, CC BY

SA 4.0, https://commons.wikimedia.org/w/index.php?curid=109362147 . . 41

4.1 Collision detection in Eyecopter Gemland 50
4.2 Collision detection in boss level pumpkin . 51
4.3 The three levels of Agent Platformer . 52
4.4 Super onion boy environment . 53
4.5 Car parking environment . 54
4.6 Zombie onslaught environment . 54
4.7 Two levels of the I love traffic environments 55
4.8 Go Chicken Go environment. There are two identical levels,the only differ

ence is the speed of the cars and logs , and the frequency in which they
appear. 56

4.9 The EyeCopter Gemland game . 56
4.10 Spin Soccer . 57
4.11 First Levels of Boss Level Pumpkin . 58
4.12 The third level of Boss Level Pumpkin . 59

LIST OF TABLES

5.1 The performance of different agents in FLE 60

PREFACE

The following work was done as part of the BSc program of studies an the Department
of Informatics and Telecommunications of the National and Kapodistrian University of
Athens.

The Friv Reinforcement Learning Environment

1. INTRODUCTION

In the past few years, a lot of research has been conducted in the field of deep reinforce
ment learning concerning games. On the one hand games are very easy to implement
and experiment with, compared to other areas such as self driving vehicles or robotics.
On the other hand they require a certain level of ”intelligence” to perform well. Moreover,
most modern games are too large to be solved with traditional search strategies.
Deep Q learning [13] and its improvements have managed to produce very exiting and un
expected results compared to older strategies. That being said, as we will see, they still
encounter a lot of problems and can perform really poorly even in simple video games.
Our goal in this thesis is to create and publicly distribute a collection of video games, based
on the very popular website FRIV, in which modern reinforcement learning algorithms
struggle. These games will be emulated on top of [6] , to make experimenting with new al
gorithms easy for researchers. Additionally, we will implement multiple levels of the same
game, to make it easy to experiment with transfer learning from simpler to tougher tasks.
We will also provide a performance baseline.
Chapter 2 contains the necessary background for this thesis. Chapter 3 provides an over
view of other successful applications of deep reinforcement learning. In chapter 4 we dis
cuss the games we implemented and in chapter 5 we present the performance of some
popular reinforcement learning algorithms. Last but not least, in chapter 6 we propose
some possible directions for future research.
The accompanying source code can be found here.

G. Stamatelis 15

https://github.com/georgestamatelis/gym-friv

The Friv Reinforcement Learning Environment

2. BACKGROUND

2.1 Introduction to reinforcement learning

We will start by formulating the reinforcement learning problem and providing some basic
definitions and algorithms. We will also briefly discuss some of the most common artifi
cial neural networks used in deep reinforcement learning (for more information [5] or [8]).
Finally, we will present some of the most successful algorithms of deep reinforcement
learning. The pseudocode segments provided are from [22], the images(unless stated
otherwise) are created by the author.

2.1.1 Characteristics of reinforcement learning

In the reinforcement learning setting, there is an agent that interacts with the environment.
That agent is both the learner and the decision maker. Environment is everything outside
the agent. The agent interacts with the environment and receives reward signals.
A reward Rt is a scalar number indicating how well an agent has done. Our goal is to find
a sequence of actions that maximise that reward signal. The whole field of reinforcement
learning is based on the reward hypothesis. All goals can be described by the maximisa
tion of expected cumulative rewards. In practise this approach has proven very flexible
and widely applicable.
At each time step t, the agent is at a state St. St is a Markov state iff

P [St+1|St] = P [St+1|S1, ...St]

That means St contains all the useful information from the history. For that reason Markov
states can also be called information states.

2.1.2 Markov Decision Processes(MDP)

A Markov process is any memoryless random process operating over Markov states. A
Markov reward processes is a Markov process that observes rewards. A Markov decision
process is a reward process that ”makes decisions”. Therefore, at each time step t it is at
a state St. It chooses to take an action At and it transitions to a state St+1. It also observes
a reward Rt+1 ∈ R.
In reinforcement learning literature, we usually denote the set of all possible states as S,
the set of all possible rewards as R and the set of all possible actions at a given state as
A(s).

For any Markov state s and a successor s’ and an action a, we define the state transition
probability as

p(s′|s, a) = Pr{St = s′|St−1 = s, At−1 = a}

Therefore we will denote a Markov decision process as a tupple <S,A,P,R>. S is the set of
all possible states, R the set of all possible rewards, A(s) is the set of all possible actions
from a state s and P is a matrix containing the state transition probability for every state

G. Stamatelis 16

The Friv Reinforcement Learning Environment

action pair.
We can also compute the expected rewards for all state action pairs as :

r(s, a) = E[Rt|St−1 = S,At−1 = a] =
∑
r∈R

r
∑
s′∈S

p(s′, r|s, a)

The return is usually formulated as the total discounted reward from time step t.

Gt = Rt+1 + γ ∗Rt+1 + γ2Rt+3 + ...

γ ∈ [0, 1]
Here we have considered that the episode termination is a self looping state (cycles back
to itself) with zero reward forever. We use the parameter γ because having something
”good” now is preferable than having something ”good” 100 steps later. That being said,
its use is optional and indeed some applications don’t require that. If that is the case you
can formulate the return as

Gt = Rt+1 +Rt+2 +Rt+3 + ...

Its worth noting that there exist many different types of Markov decision processes.
Episodic Markov decision processes always terminate.
Infinite MDPs take place over countably infinite state spaces and/or action spaces. They
might take place over continuous state/action spaces or over continious time steps.
Partially observed MDPs are MDPs with hidden states. The agent at state St doesn’t have
access to the complete information regarding that state.
We will focus on discrete time /discrete action spaces episodic MDPs (since that’s what
games are).

2.1.3 Policies and Value functions

The concept of expected return is used to formulate how good it is for the agent to be in a
given state and/or perform an action a at that state.
A policy π is a mapping from states to probabilities of selecting each action. The value
of states under policy π is the expected return starting from that state and taking actions
according to π.

Vπ(s) = Eπ[Gt|St = s]

The value of taking action a in a state s under policy π is called action value function and
it is given by the formula

qπ(s, a) = Eπ[Gt|St = s, At = a] = Eπ[
∞∑
k=0

γk ∗Rt+k+1|St = s, At = a]

G. Stamatelis 17

The Friv Reinforcement Learning Environment

2.2 Bellman Equations

The value function can be decomposed in two parts, the immediate reward and the value
function of the state the agent ends up in discounted by a factor of γ. Hence

Vπ(s) = Eπ[Gt|St = s] = Eπ[Rt+1 + γ ∗Gt+1|St = s]

=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a)[r + γ ∗ Eπ[Gt+1|St+1 = s′]]

=
∑

a∈A(s)

π(a|s) ∗
∑
s′,r

p(s′, r|s, a)[r + γVπ(S
′)]

for every state s ∈ S .
Theoretically we could use the bellman equations for each state and solve a linear system
of equations to find the optimal state value functions or action value functions.

v∗(s) = max
π

vπ(s),∀s ∈ S

q∗(s, a) = max
π

qπ(s, a),∀s ∈ S

However, most interesting problems are of significant size. As a consequence, this ap
proach is computationally impossible. We need to find a way to approximate v or q in
order to solve large problems.
Notice that both vπ and qπ can be estimated from experience. For instance, we could fol
low π , maintain the average of actual returns for every time the agent has visited a state
s and use that average to approximate the value for that state. If we let the agent run long
enough that average will converge to vπ(s). If we keep separate averages for each state
action pairs then we can estimate qπ.
Both of the previous approaches are used in Monte Carlo methods which we will examine
later.

2.2.1 Policy ordering and optimal policy

• A policy π is defined to be better than π’ if its expected return is greater than, or
equal to that of π’ for each state.

• There is always at least one policy that is better than or equal to all the other policies.

• that is the optimal policy π∗.

2.3 Reinforcement learning Methods

Now we will discuss some of the most basic and widely used methods in reinforcement
learning. As you will see, most of RL uses two ”functions”. One evaluates a policy and
the other uses those evaluations to improve it. This idea is called Generalised Policy
Iteration(GPI)

G. Stamatelis 18

The Friv Reinforcement Learning Environment

2.3.1 Dynamic Programming

In practise, classical DP methods are of limited utility. Nevertheless, they are very import
ant for understanding the foundations of other algorithms.
We usually assume that the environment is a finite MDP and then use the bellman equa
tions to evaluate a policy. After that we improve that policy and reevaluate it and so on.
Since exact solutions are usually impossible for large problems, we will try to provide it
erative solutions. At each iteration k, we use Vk to update Vk+1 for each state s. The
new value of s is given by the old values of it’s successors plus the expected immediate
one step reward. As k approaches infinity, the sequence of approximate value functions
v0, v1, converges to vπ. This kind of operation is called EXPECTED UPDATE.

Algorithm 1 Iterative Policy evaluation
Data: π the policy to be evaluated
Result: V ≈ Vπ

V(s)← 0 for each state s in S
repeat

∆← 0
foreach s in S do

V← V(s)
V(s)←

∑
a π(a|s) ∗

∑
s′,r p(s

′, r|s, a)[r + γ ∗ V (s′)]
∆← max(∆,|vV(s)|)

end
until ∆ < θ, θ is a small positive number ;

Now, using the previous algorithmwe can find an optimal policy. We start off with a random
policy and then use it to evaluate the current policy. For each state, we choose ”Greedily”
the best action and check if the action differs from the action of the policy. If that is the
case, then we have improved over the original policy. When we go through all the states
without changing a single action, we have discovered an optimal policy.

G. Stamatelis 19

The Friv Reinforcement Learning Environment

Algorithm 2 Policy Iteration
Result: V ≈ V∗ and π ≈ π∗
1)
initialise V(s) ∈ R and π(s) ∈ A(s) arbitrarily for all states s
2)
Iterative Policy Evaluation for π
3)
policyStable← True
foreach s ∈ S do

oldAction← π(s)
π(s)← argmaxa

∑
s′,r p(s

′, r|s, a)[r + γ ∗ V (s)]

if oldAction != π(s) then
policyStable← False

end
end
4) if policyStable then

return
end
Go back to step 2

While policy iteration converges, for each iteration we do a full sweep of policy evaluation.
Therefore, the algorithm can be very slow. There is also an algorithm called value iteration.
In that algorithm, policy evaluation is stopped exactly after one step .

Algorithm 3 Value Iteration
Result: π ≈ π∗
Initialize V(s) =0 for all s ∈ S
repeat

∆← 0
foreach s in S do

v← V(s)
V(s)← maxa

∑
s′,r p(s

′, r|s, a)[r + γ ∗ V (s′)];
∆← max(∆, |v − V (s)|)
end

until until ∆ < θ;
π(s)=argmaxa

∑
r,s′ p(s

′, r|s, a)[r + γ ∗ V (s′)]

Both DP methods however require operating over the entire state space and that can be
very time consuming. In Asynchronous DP we update the estimates only for a subset of
states rather than the entire state space at every policy evaluation iteration.
If the reader is interested in learning more about dynamic programming methods, they are
advised to study [4].

2.3.2 Monte Carlo Methods

The most import assumption Monte Carlo(MC) methods make is that the task at hand is
episodic. That means that every sequence of states and actions pairs terminates.

G. Stamatelis 20

The Friv Reinforcement Learning Environment

MC methods don’t require complete knowledge of the environment, instead they use the
average of samples of the return value G for each action pair. Moreover unlike DP and TD
learning(which we will soon see) MC methods do not bootstrap. The estimates for every
state are based on actual sampled experience. There are two different versions of Monte
Carlo prediction.

• First visit MC. Vπ(s) is estimated as the average of returns following the first visits to
s(s might be visited multiple times in the same episode).

• Every visit MC. Vπ(s) is the average of returns following all visits to s .

It is worth noting that first visit Monte Carlo methods have been studied since the 1940s.
As the number of visits increases towards infinity both methods approach Vπ.
Monte Carlo methods, can also face a serious problem as we shall see. Every stateaction
pair s,a is said to be visited if when the agent visits s it takes action a. Therefore, some
pairs might never be visited if we act ”greedily” during policy iteration. This problem/trade
off is known as exploration vs exploitation and it’s extremely often encountered in rein
forcement learning. One solution would be the exploring starts assumption. We could
specify that the episodes start in s,a pair and that every pair has a nonzero probability of
being chosen as start. While this could work, usually the εgreedy approach is used. At
each state, we pick an action greedily with probability 1ε. Otherwise, we pick an action
randomly.
All in all, starting with a random policy, we use either first visit MC or every visit MC for
policy evaluation and (ε)greedy or exploring starts to improve our policy.
Bellow I will provide two pseudocode segments. The first describes first visit MC prediction
and the second onpolicy control using first visit MC and εgreedy policy.

Algorithm 4 First Visit MC prediction
Data: policy π to be evaluated
Result: V ≈ vπ
Initialize returns←an empty list for all s ∈ S
repeat

Generate an episode using π
foreach state s in episode do

G← the return that follows the occurence of S
Append G to returns(s)
V(s)=average(returns(s))

end
until forever ;

G. Stamatelis 21

The Friv Reinforcement Learning Environment

Algorithm 5 MC Control
Result: policy π ≈ π∗
Initialisation:
foreach s,a ∈ S,A(s) do
Q(s,a)← arbitrary
Returns(s,a)← empty list
π(a|s)← a random policy

end
repeat

Generate an episode using π
foreach pair s,a in the episode do

G← the return that follows the first occurence of s,a in the episode
append G to returns(s,a)
Q(s,a)← average(returns(s,a))

end
foreach s in the episode do

A∗ ← arg maxa Q(s, a)
foreach a ∈ A(s) do

if a is Optimal then
π(a|s) = ϵ/|A(s)|
else

π(a|s) = 1− ϵ+ ϵ/|(s)|
end

end
end

until forever;

As you can notice, in order to perform control with MC methods, we have to run an entire
episode before we can improve our policy. That is not the case with temporal difference
learning as we will see.

2.3.3 Temporal Difference Learning

TDmethods can be thought as a compromise betweenMonte Carlo methods and dynamic
programming. In fact,when the state space is very large,variants of the TD method may
be the only feasible option.
We first learn from some rewards and then we bootstrap(that is, guess the value of a
state), without having to wait until the end of the episode like MC. Both TD andMC updates
are sample updates, whereas DP updates are based on a complete distributions over all
possible successors of each state. Therefore both TD and MC can be significantly faster
than DP.
First we are going to examine the simplest case of the TD(0) algorithm, and then we are
going to extend our discussion about nstep bootstrapping, TD(λ) and eligibility traces.
The quantity Rt+1 + γ ∗V (St+1) is called the target for the TD(0) update , and the TD error
is Rt+1+γ ∗V (St+1)−V (St). The update rule for the TD(0) algorithm therefore is given by

V (St)← V (St) + a ∗ TDError(St)

G. Stamatelis 22

The Friv Reinforcement Learning Environment

It is worth noting that, a very important open question in reinforcement learning is the fol
lowing.
” Since both TD and MC methods converge to V∗ which is faster?”
Bellow is displayed the basic TD(0) algorithm for policy evaluation.

Algorithm 6 TD(0) policy evaluation
Data: policy π to be evaluated
Result: V ≈ v∗
V(S)=0 for each s in S
foreach episode do

Initialize S
foreach step of the episode do

A← action given by π for S
Take action A and observe S’ and R
V(s)← V(s) + α *[R+γV (S ′)− V (S)]
S← S’
if S is Terminal then

break
end

end
end

2.3.3.1 n step Bootstrapping

n step Bootstrapping TD is a compromise between MC and TD. The goal is to be able to
easily transition from MC to TD(0) and vise versa, as smoothly as possible depending on
the task at hand. The agent takes n steps forward, stores the rewards and makes a guess.
For instance the 3 step update would be based on the first 3 rewards and the estimated
value of the state 3 steps later.
As we already know, the n step return is given by

Gt:t+n = Rt+1 + γ ∗Rt+2 + γ2 ∗Rt+3 ++ γn−1 ∗Rt+n + γn ∗ V (St+n)

Therefore the n step TD update rule becomes

v(St)← V (St) + α ∗ [Gt:t+n − V (St)]

2.3.3.2 Averaging over n step returns

This very popular method of temporal difference learning is often denoted as TD(λ) and it
combines all of the n step returns .

Gt:λ = (1− λ) ∗
∞∑
n=1

λn−1 ∗Gt:n

therefore, the update rule becomes

V (St) = V (St) + α ∗ [Gt:λ − V (St)]

G. Stamatelis 23

The Friv Reinforcement Learning Environment

This is called forward view TD(λ) and can be computationally expensive since we have
to run entire trajectories. Luckily for us, there is an equivalent backward view TD(λ). But
first,we have to discuss eligibility traces.

2.3.3.3 Eligibility traces

Imagine you are playing a board game or a card game against a player X. Player X smiles
and does a certain move. Then they smile again and do the same move. After 2,3 moves
you see them smile. What move do you think they are going to play? Now imagine,a lot
of rounds go by and the player plays that move without smiling a few times. You see them
smile again, is your assumption about their following move the same?
Eligibility traces assign credit to the most frequent states but if they have not occurred
recently, that credit gradually decays. Mathematically:
E0(s) = 0,∀s ∈ S
Et(s) = γ ∗ λ ∗ Et−1(S) + 1(St = S)

2.3.3.4 Backward view TD (λ)

All in all, we keep an eligibility trace for each state s. The update rule now becomes

V (St)← V (St) + a ∗ TDError ∗ Et(s)

When λ=0, we are following the TD(0) method we discussed previously. When λ=1 TD(1)
is the same as Monte Carlo methods.

2.3.3.5 Sarsa , Q learning and expected Sarsa

There are two different variations of control

• on policy control. That is, we follow a policy and evaluate it .

• off policy control. That is, we follow a policy while estimating the value of a target
policy

First, we will examine the SARSA(State Action Reward State Action) algorithm, which
performs on policy control. Unlike previous methods where we considered state to state
transitions and learned the value of states, here we examine the values of stateaction
pairs. The update rule therefore is:

Q(St, At)← Q(St, At) + α ∗ [Rt+1 + γ ∗Q(St+1, At+1)−Q(St, At)]

And if St+1 is terminal we consider Q(St+1, At+1) to be zero.
The agent estimates qπ and then updates policy π using the εgreedy method.

G. Stamatelis 24

The Friv Reinforcement Learning Environment

Algorithm 7 Sarsa
Initialise Q(s,a) for every action state pair
All terminal States are initialised to Zero
foreach episode do

Initialise S
Use the Q values to choose an action A(usually following an ϵ Greedy policy π)
repeat

Take action A and observe S’ ,R
Choose action A’ from S’ using the Q values(εgreedy)
Q(S,A)← Q(S,A) + a*[R+ γQ(S’,A’)Q(S,A)]
(S,A)← (S’,A’)

until S is terminal;
end

The Q learning algorithm, on the other hand, performs off policy control. The agent runs
a (suboptimal) policy while ”greedily” improving another policy. All that is required for
convergence, is that all state action pairs continue to be updated. If that is true then the
algorithm converges to q∗.
The update rule is :

Q(St, At)← Q(St, At) + α ∗ [Rt+1 + γ ∗max
a

Q(St+1, a)−Q(St, At)]

Algorithm 8 Q learning
Algorithm Parameters step size a ∈ [0, 1] , small ϵ > 0

Initialise Q(s,a) for each state s and it’s actions A(s)
Q(terminal,.) =0
foreach episode do

Initialise S
repeat

Choose action A from S using policy derived from Q values
Take action A observe reward R and state S’
Q(S,A)← Q(S,A) + α [R + γ maxaQ(S ′, a)−Q(S,A)] S← S’

until Until S is terminal;
end

There is also a variation of SARSA, that works just like Q learning, but instead of finding
the maximum over the next state action pair, it uses the expected action value as a target.
Therefore the update rule becomes

Q(St, At)← Q(St, At) + α ∗ [Rt+1 + γ ∗ E[Q(St+1, At+1|St)]−Q(St, At)]

That algorithm is called expected SARSA. While it is more computationally expensive, it
eliminates the variance introduced by the selection of At+1. In practise, it usually performs
slightly better than SARSA.

G. Stamatelis 25

The Friv Reinforcement Learning Environment

2.3.3.6 Double Q learning

If the action values contain random errors or if there is noise in the environment itself,
traditional Q learning can overestimate it’s targets leading to sub optimal policies.
Q learning uses the same parameters θ both for the selection and evaluation of an action.
Double Q learning uses two (sets of) parameters, one is used for determining the greedy
policy and the other for evaluating it. The target for the classic Q learning algorithm can be
written as yQt = Rt+1+γQ(St+1, argmaxa Q(St+1, a; θt); θt) The target for double Q learning
is
yQt = Rt+1 + γQ(St+1, argmaxa Q(St+1, a; θt); θ

′
t)

and only θt is updated at each time step.
θ′t can be updated by symmetrically switching the roles of the parameters. In fact, in the
original implementation of double Q learning, the algorithm randomly chooses at each
time step whether to update θt or θ′t

2.3.4 Model Based Reinforcement learning and planning

So far, we have examined model free methods in reinforcement learning. For the rest of
section 2.3 we will examine model based reinforcement learning.
Model based RL combines planning and reinforcement learning.
As a model we define anything an agent can use to predict how the environment will
react to an action. For instance, it might take a state s and an action a and output the
new state s’ (perhaps not the actual next state) and the predicted reward. As model
based RL we define any approach to solve a mdp problem using a model and learning to
approximate a global value or policy function. It is worth noting that in the planning and
search community the theoretic framework behind model based reinforcement learning
was described as learning realtime A * [11] .
There are three main categories of model based RL

• Model based RL with a learned model. We learn a model and a value or policy. A
well known example is the dyna algorithm which we will discuss shortly.

• Using an already known model for planning to learn a global value or policy function.
This approach was used in AlphaGO zero

• learning about a model and using it to plan LOCALLY without estimating global v or
π .

2.3.4.1 Learning the dynamics of a model using observed data

This is the first step of performingmodel based RL. In control literature this is called system
identification. There are different types of model an agent can learn.

• A forward model predicts a future state given current state and action. It is used very
often.

(st, at)→ (st+1)

• A backward/reverse model predicts possible precursors.

(St+1)→ (St, at)

G. Stamatelis 26

The Friv Reinforcement Learning Environment

• An inverse model predicts an action given a state and it’s successor.

(St, St+1)→ at

A second distinction is about what supervised machine learning method we will use .

• Parametric approach (e.g linear regression or Neural Networks)

• Non parametric approach (e.g decision trees or Nearest neighbor)

Parametric approaches are by far the most popular.

2.3.4.2 Using the model to plan

The goal of this step is to use the model to recommend an action or improve a policy.
There are quite a few considerations for planning.

• At which state do we start planning?
We can choose the state randomly like in DP. Unfortunately, that approach does not
scale well in high dimensions. We can also start only from already visited states.
Therefore we only examine reachable states instead of the entire state space. We
might also assign some states a priority. We will discuss about the prioritised sweep
ing algorithm in the next sections. Finally if our aim is to find more local information,
we can only start from the current state.

• When do we start planing ? The number of real steps before a planing cycle .

• How much ”Budget” is devoted on planning ?

• How to plan?
In discrete planning which is the main approach to classic AI, discrete states are
stored in a tree or an array and used to update V,Q or π. This is suitable for games.
Some popular methods include the infamous minmax algorithm and MonteCarlo
tree search(MCTS).
Differential planning (better known as value gradients in RL community) is a gradi
ent based approach and requires a differential model of the environment. It is very
popular in robotics but less applicable to discrete problems.

There are many more categories of planning methods. The interested reader can study
[14].

2.3.5 Dyna

Dyna is a general framework for model based reinforcement learning. We will provide the
basic idea behind it and then we will discuss a simple example of the Dyna Q algoritm.
Dyna combines planning,acting and learning in one algorithm. Real experience of the
environment can be used for two things. It can be used to improve the value function
or the policy using any reinforcement learning algorithm(direct RL). It can also be used
to improve the model. More accurate models can also improve the value function or the

G. Stamatelis 27

The Friv Reinforcement Learning Environment

policy indirectly(indirect RL). Both of these approaches have some advantages and some
disadvantages. Dyna combines them in a single algorithm.
In an ideal setting, as the agent interacts with the environment, the following happen sim
ultaneously.

• The agent uses the experience gained and an RL algorithm to improve its value
function or policy.

• The agent uses the same experience to improve the model.

• Simulated experience from the model is also used to improve the value function or
policy through planning.

Figure 2.1: Integration of acting, learning and planning in Dyna

In a real implementation, we have to specify the order in which these happen. In the dyna
Q algorithm direct reinforcement learning using tabular Q learning is performed first. Model
learning is then performed. The model is also table based and assumes the environment
is deterministic. Planning takes place last.

G. Stamatelis 28

The Friv Reinforcement Learning Environment

Algorithm 9 Tabular dyna Q
Initialize Q(s,a) and Model(S,a) for all state action pairs
repeat

S← current state
A← εgreedy(Q,S)
Execute A , observe R and S’
Q(S,A)← Q(S,A) +α*[R+γ*maxaQ(S ′, a)−Q(S, a)]
Model(S,A)← R,S’
foreach i in range(0,n) do

S← random previously observed state
A← random action previously taken from S
R,S’← Model(S,A)
Q(S,A)← Q(S,A) +α*[R+γ*maxaQ(S ′, a)−Q(S, a)]

end
until forever ;

2.3.6 Prioritized sweeping

Uniform selection of state action pairs can be inefficient. For a lot of tasks, focusing on
”good” pairs can lead to much better performance. During planning, a lot of state action
pairs examined yield very little rewards, hence evaluating them can be a waste of com
putational resources. We want to move backwards from states whose value has changed
significantly. If a state’s value remains the same over an extended period of time then we
have probably picked a very good action. Also, if a state’s value changes, chances are
the values of it’s predecessors will also change.
We can maintain a priority queue for every state action pair whose value changes signi
ficantly. At each step, we pop the top pair in the queue and calculate the effect updating it
would have on it’s predecessor pairs. For each of the later, if it is greater than a threshold
we push that pair back in the queue with a new priority(if it is already in the queue).

2.3.7 Rollout algorithms

Rollout algorithms are decision time algorithms. They begin at the current state, stimulate
many (MonteCarlo) trajectories and average their returns. The average is used to update
the value of the current state. Then, the agent picks the action that will move them to the
state S’ with the highest value. Notice that unlike traditional MonteCarlo methods, we do
not have to compute q* or qπ, we only produce estimates for the current state and a given
policy called rollout policy. By picking the best action for the current state we perform
one step policy iteration.
Unfortunately, simulating many trajectories can be slow. Luckily, we can sample many
trajectories in parallel and/or perform pruning to speed up the process.
Rollout algorithms do not maintain long term memories of values or policies(we make
immediate use of value calculations and then discard them) hence they are not considered
learning algorithms.

G. Stamatelis 29

The Friv Reinforcement Learning Environment

For more information about rollout algorithms , the user can study [3].

2.3.8 Monte Carlo Tree search

Monte Carlo Tree search is a rollout algorithm with a twist. Instead of discarding value
estimates from MC stimulation, we store them in order to direct simulations towards more
highly rewarding trajectories.
MCTS builds and uses a tree in the following manner:

• Selection step Traverse the tree of already discovered states balancing exploration
and exploitation(perhaps εgreedy). The edges of the graph represent action values.

• Expansion step When the game reaches a state not on the tree, add that state to
the tree as a new node.

• Simulation Simulate the rest of the episode randomly using the rollout policy (it is
possible to use heuristic knowledge).

• Backpropagation Using the return of the simulated episode, update all the edges
of the tree visited. No values are saved for the states and actions visited by the
rollout policy.

MCTS has been applied to board games with tremendous success outperforming alpha
beta pruning.

2.3.9 Function Approximation

So far, we have used tabular methods (where a value function or a policy is stored in a
tabular form). This approach has to very serious problems. First of all, in most interesting
problems there can be too many states or stateaction pairs to store. In addition, even if
we store them, learning can be to slow. To deal with this problem we will try and ”learn”
a function V̂ that approximates Vπ or a function Q̂ that approximates Qπ. The three most
common types of value function approximation are :

• from state s to V̂ (s, w)

• from stateaction pair (s,a) to q̂(s, a, w)

• from state s to q̂(s, a1, w)...q̂(s, am, w) where {a1, a2, ..., am} = A(s)

We also use a feature vector for each stateX(s) =

X1(S)
X2(S)
...

Xn(S)

 where the features might be

the positions of all the pieces in chess or the distance from 4 walls in robotics. Then using
that feature vector and the targets of each RL algorithm , we solve a regular regression
problem. It is also worth noting, that unlike traditional supervised learning , our target
values might change as our policy improves. In the next three subsections we are going
to examine some examples of function approximation on traditional algorithms.

G. Stamatelis 30

The Friv Reinforcement Learning Environment

2.3.9.1 Monte Carlo Methods

As we already know, MC target is the total return Gt. We will use the sequence of states
and their returns as training data and we will try minimise the empirical error:

J(w) =
T∑
i=1

(Gi − V̂ (Si))
2

The update rule is

w ← w + α ∗ [Gt − V̂ (S,w)] ∗ dV̂ (S,w)

dw

For the simplest model of linear regression, the value function approximation becomes

V (S,w) = wT ∗X(S)

and the derivative with respect to w

dV̂ (S,w)

dw
= X(s)

Algorithm 10 MC Evaluation with Gradient Descent
Data: A policy π to be evaluated and a differentiable function v̂
Result: v̂ ≈ vπ
Initialise weights w =0
repeat

Generate an episode S0, A0, R1, S1, A1, ..., RT , AT using π
foreach t=0,1,...,T1 do

w← w + α ∗ [Gt − V̂ (S,w)] ∗ dV̂ (S,w)
dw

end
until forever ;

2.3.9.2 TD(0)

The target now is Rt+1 + γ ∗ V̂ (St+1, w) therefore the error becomes

J(w) =
T∑
t=1

(Rt+1 + γ ∗ V̂ (St+1, w)− V (St))
2

If we are at a state S, take action A, observe reward R and end up at state S’, the gradient
descent update rule becomes:

w ← w + a ∗ [R + γ ∗ V̂ (S ′, w)− V̂ (S,W)]
dV̂ (S,W)

dW

2.3.9.3 Backward view TD(λ)

For each state St The TD error is :

δt = Rt+1 + γ ∗ V̂ (St+1, w)− V̂ (St, w)

G. Stamatelis 31

The Friv Reinforcement Learning Environment

and the eligibility trace is
Et = γ ∗ Et−1 + x(St)

Therefore the update rule at that state is

w ← w + a ∗ δt ∗ Et

2.3.10 Policy Gradient Methods

So far, we have discussed algorithms trying to approximate the value, or actionvalue
function. PGM try to approximate the optimal policy using a parametric function π(a|s, θ)
and performing gradient ascent. At each time step t

θt+1 ← θt + a ∗ dĴ(θt)
dθ

where dĴ(θt)
dθ

is a stochastic estimate of the performance measure’s gradient.
We want actions with the highest performance to be assigned the highest probability, while
still maintaining some exploration. We can use the softmax policy

π(α|s, θ) = exp(h(s, a, θ))∑
b exp(h(s, b, θ))

Where h can be a neural network or a linear function approximator, or any other machine
learning model.
Unlike actionvalue methods, policy gradient methods can actually find stochastic policies.
They also have stronger convergence guarantees.

2.3.10.1 Policy gradient theorem

We assume that we are in an episodic task and that every episode starts at state s0. We
define the performance as

J(θ) = Vπθ
(s0)

The policy gradient theorem establishes that

∇J(θ) ∝
∑
s

µ(s) ∗
∑
a

qπ(s, a) ∗ ∇θπ(a|s, θ)

where µ(s) is called onpolicy distribution under π and is given by

µ(s) =
number of time steps spent on s on average∑
s′ number of time steps spent on s’ on average

2.3.10.2 REINFORCE ALGORITHM(MonteCarlo policy gradient)

Since µ is a distribution, we can rewrite the policy gradient theorem as

∇θJ(θ) ∝ Eπ[
∑
a

qπ(St, a)∇θπ(a|St, θ)]

G. Stamatelis 32

The Friv Reinforcement Learning Environment

If we now replace a with sample At we get

∇θJ(θ) = Eπ[Gt ∗
∇θπ(At|St, θ)

π(At|St, θ)
]

Therefore, the stochastic gradient ascent rule is:

θt+1 ← θt + a ∗Gt
∇θπ(At|St, θt)

π(At|St, θt)

the fraction can be also written as ∇θlnπ(At|St, θ) and is usually referred to in literature as
eligibility vector.
The algorithm using this update rule is called REINFORCE. Since it uses complete returns
from time t it is a MonteCarlo algorithm and it is well defined only for episodic tasks.
If we are using linear action preferences , while following a softmax policy the eligibility
vector can be written as

∇θlnπ(a|s, θ) = X(s, a)−
∑
b

(π(b|s, θ) ∗X(s, b)

It is important to note that although REINFORCE has good theoretical properties it can
produce slow learning.

2.3.10.3 REINFORCE with baseline

The policy gradient theorem can be modified to compare the action value with an arbitrary
baseline b(s)

∇J(θ) ∝
∑
s

µ(s) ∗
∑
a

(qπ(s, a)− b(s)) ∗ ∇θπ(a|s, θ)

Using similar steps as the previous section, the update rule becomes

θt+1 ← θt + a ∗ (Gt − b(St))
∇θπ(At|St, θt)

π(At|St, θt)

The baseline leaves the expected value of the update unaffected, but it can significantly
reduce the variance. As a result , it can significantly speed up the learning process. Usu
ally, we choose a parametric estimate of v(s), v̂(s, w) as the baseline function. The weight
vector w can be learned using one of the function approximation methods discussed pre
viously.

2.3.10.4 ACTOR CRITIC METHODS

The goal of actor critic methods is to improve the REINFORCE algorithm by introducing
bias through bootstrapping. One step actor critic methods replace the MC full return of
REINFORCE with one step immediate return + prediction. Just like TD methods, we can
choose the degree of bootstrapping and include eligibility traces. The update rule for one
step bootstrapping is :

θt+1 ← θt + α ∗ (Rt+1 + γv̂(St+1, w))− v̂(St, w)) ∗
∇θπ(At|St, θt)

π(At|St, θt)
)

The actor critic algorithm maintains two sets of parameters

G. Stamatelis 33

The Friv Reinforcement Learning Environment

• A critic that maintains action value parameters w as we have discussed in the pre
vious subsections.

• An actor that updates θ as suggested by the critic(Since the critic modifies the es
timate of v, they direct the updates of θ).

The pseudocode for Actor Critic with one step bootstrapping can be found bellow.

Algorithm 11 One step Actor Critic(Episodic)
Data: π(a|s,θ) , v̂(s, w)
Two different stepsizes aθ > 0 and aw > 0

Initialise policy parameter θ and state value weights w
while 1 do

Initialise S
I← 1
while S not terminal do

Take action a according to parametric policy π

Observe S’,R
/* if S' is terminal then v̂(S ′, w) = 0 */

δ ← R +γ ∗ v̂(S ′,W)− v̂(S,w)

w← w + aw ∗ I ∗ δ ∗ ∇wv̂(S,w)

θ ← θ + aθ ∗ I ∗ δ ∗ ∇θlnπ(A|S, θ)
I← γ ∗ I
S← S’

end

end

There is also a variation of the actor critic algorithm in which the actor calculates an ad
vantage function A along with the value function.

2.3.11 Trust Region Policy Optimisation

When using policy gradient methods, large updates of the policy parameters can guide
the agent to follow poor policies. If this happens a few times, the model can be trapped to
following poor policies for ever. Even if the model is initially following a good policy, large
updates of the policy parameters can force it to ”forget”.
The goal of TRPO [17](and PPO [18]) is to force the model to make ”small” updates of
the policy parameters. There is a extensive mathematical background behind these al
gorithms, which is beyond the scope of this paper.
TRPO maximises an objective function called surrogate objective subject to the size of
the policy update.

max
θ

E[
πθ(at|st)
πθold(at|st)

At − βKL[πθold(.|st), πθ(.|st)]

where θold is the set of parameters before the update , KL is the Kullback–Leibler diver
gence and β is a hyperparameter. The problem with this maximisation is that it is hard

G. Stamatelis 34

The Friv Reinforcement Learning Environment

to choose a value for β that performs well in different tasks(e.g atari games and robotics).
That’s why TRPO solves the following problem instead :

max
θ

E[
πθ(at|st)
πθold(at|st)

∗ At]

subject to
E[KL[πθold(.|st), πθ(.|st)] ≤ δ

where δ is a positive number

2.3.12 Proximal Policy Optimisation

2.3.12.1 Clipped Surrogate Objective

The main objective is

LCLIP (θ) = Et[min(
πθ(at|st)
πθold(at|st)

At, clip(
πθ(at|st)
πθold(at|st)

, 1− ϵ, 1 + ϵ) ∗ At)]

The first term is the same as TRPO. ϵ is a hyperparameter used to keep πθ

πθold
in a certain

range. Because of the min operator the final objective is a pessimistic(lower) bound on
the unclipped objective.
All in all , LCLIP is a lower bound on the TRPO objective, with a penalty for having too
large policy update

2.3.12.2 Adaptive KL Penalty Coefficient

A penalty can be used to keep KL divergence close to a target value dtarg. In each policy
update, the algorithm performs the following two steps :

• Optimize

LKPEN = Et[
πθ(at|st)
πθold(at|st)

At − β ∗KL(πθold(.|st), πθ(.|st)]

with several SGD epochs

• Compute d = Et[KL(πθold(.|st), πθ(.|st))]
if d is smaller than dtarg/1.5 then β ← β/2.
if d is larger than dtarg ∗ 1.5 then β ← β ∗ 2

In practise the algorithm converges regardless of the initial value of β

2.3.12.3 Algorithm

The surrogate loss from the previous sections can be computed from traditional policy
gradient methods. If using automatic differentiation, one simply replaces traditional policy
gradient objective with CLIP or KLPEN objective and performs gradient ascent. A com
bination of both is also possible. Many techniques also combined a learned value function
V(s).

G. Stamatelis 35

The Friv Reinforcement Learning Environment

Both TRPO and PPO can be used for discrete and continuous action spaces, and they can
be improved by simulating multiple environments in parallel. In our experiments on the
Friv Learning Environment (chapter 4) we notice that Proximal Policy Optimisation uses
up far less memory and CPU resources than Deep Q learning(2.5.0.2).

2.4 Neural Networks

2.4.1 Perceptron

The perceptron algorithm was developed by Rossenblat in 1962 and it has a very import
ant historical value to the field of machine learning. It is a binary linear classifier that aims
to learn a threshold function separating the data vectors in 2 classes.
The perceptron function is given by the following formula:

f(xi) =

{
1 if wT ∗ xi + b ≥ 0

1, otherwise.

xi is a training example and b is called bias. Usually the target label is denoted as ti.
The algorithm aims to discover a vector w such that for the data points xi in the first class
f(xi) ≥ 0 and for the rest f(xi) < 0. Consequently, if a data point is correctly classified
the following will be true

(wTxi + b) ∗ ti ≥ 0

Therefore, the algorithm aims to minimise the following quantity called perceptron criterion

EP (x) = −
∑
xi∈D

wT ∗ (wT ∗ xi + b) ∗ ti

Where D is the set of all the incorrectly classified elements. The stochastic gradient des
cent update rule on the parameter w is

w(τ+1) = w(τ) + a∇wEP (w) = w(τ) + (w(τ)Tx+ b) ∗ t (2.1)

The perceptron training algorithm can be naturally interpreted in the following manner.
Looping through each element xi calculate the perceptron function. If it is correctly classi
fied then the weight vector remains unchanged. If it is incorrectly classified then remove
wT ∗ xi + b from the weight vector.
If an exact linearly separable solution exists, the algorithm is guaranteed to converge in a
finite number of steps.

2.4.2 Feed forward neural networks

Deep feed forward neural networks are often calledmulti layer perceptrons (MLP) because
the are a network of perceptron classifiers. They are the most simple yet most important
neural network architecture and they consist of multiple layers from 2, to several thou
sands. Other more complex architectures are built on top of them.
The first layer is called input layer and the last layer is called output layer. Every layer
in between is called hidden layer. Each layer consists of several nodes. Each node of a

G. Stamatelis 36

The Friv Reinforcement Learning Environment

Figure 2.2: perceptron algorithm applied on linearly seperable data

layer is usually connected with all the nodes of the previous layer. The values of those con
nections are called weights. If a node n is connected with nodes 1,2,...m trough weights
w1, w2, ..., wm then the output of the node is

output(n) =
m∑
i=1

output(i) ∗ wi

The output of each node usually passes through an activation function. In most modern
architectures that is the reLU function it can however be another function such as the sig
moid or the tanh function.
They are called feed forward because computation only moves forward there are no cycles
or loops. They can be used for classification and regression (supervised learning) ,as fea
ture extractors for other classifiers ,and they can perform unsupervised learning .

Figure 2.3: A simple Feed Forward Neural Network performing binary classification of 2
dimensional data. It has 2 hidden fully connected layers . The biases at each layer have been

emitted from the diagram for simplicity.

G. Stamatelis 37

The Friv Reinforcement Learning Environment

−6 −4 −2 2 4 6

−2

2

4

6

8

x

y sigmoid
tanh
ReLU

Figure 2.4: The 3 most common activation functions in Neural Networks

2.4.3 Convolutional Neural Networks

Convolutional Neural Networks(often denoted as CNNs or ConvNets) are a class of ar
tificial Neural Networks most often used for visual data (or data with certain properties).
They take advantage of hierarchical patterns in data to improve the performance of feed
forward neural networks. The input is a tensor with shape (number of inputs x height x
width x input channels).
Some of the hidden layers (as well as the input layer) perform convolution operation. That
is a dot product of the input matrix with a matrix called convolution kernel. The kernel
slides along the input matrix generating another matrix called feature map. The feature
map goes through an activation function before being provided to the next layer.
Other layers can be pooling layers. Pooling layers decrease the dimension of the data
by combining outputs of multiple nearby neurons into a single value. Today, most pooling
layers use the maximum value of each cluster as output (max pooling). Other forms of
pooling such as average polling can be used with good results.
Usually a sequence of convolution layers and pooling layers are followed by some feed
forward fully connected layers. Other classifiers such as support vector machines can be
used instead of the feed forward layers.

2.4.4 Long Short Term Memory Neural Networks

Long Short Term Memory Neural Networks(LSTMs) were initially proposed by Sepp Ho
chreiter and Juergen Schmidhuber in 1997 to deal with the vanishing gradient problem in
regular recurrent neural networks. Vanilla recurrent neural networks can remember very
long dependencies in the input sequence causing a lot of practical(computational) prob
lems. While training RNNs long term gradients may become very small or extremely large
causing severe numerical instability. LSTMs regulate that problem but they can still suffer
from it. Since their initial introduction there have been some improvements such as Pee
phole LSTMs and Convolutional LSTMs. Since we are not going to use LSTMs in the Friv
Learning Environment we are going to discuss about the simple LSTMs with forget gates.
The interested reader can view the original paper [10] or their wikipedia page for a briefer

G. Stamatelis 38

The Friv Reinforcement Learning Environment

Figure 2.5: Convolution layer example

Figure 2.6: pooling layer example. 2x2 kernel , stride=1

introduction.
LSTMs are one of the most important achievements of deep learning and they have suc
cessfully been used in various sequence to sequence mapping problems such as machine
translation.In the field of Reinforcement learning they are used in partially observed envir
onments.
LSTMs consist of a sequence of units. Unlike feed forward neural networks and CNNs,
LSTMs have both feedforward and feedback connections between units. A common
LSTM unit consists of a cell an input gate an output gate and a forget gate. The cell
remembers values through time and gates deal with the flow of information in and out of
the cell.
We will now examine the variables assosiated with a single LSTM cell. A unit can contain

G. Stamatelis 39

The Friv Reinforcement Learning Environment

many cells.

• h denotes the number of hidden units, d denotes the dimension of the input

• xt ∈ Rd is the input vector

• ft denotes the output of the forget gate , it denotes the input/update gate’s output
and ot denotes the output gate’s output.

• ht denotes the output vector of the LSTM unit

• ĉt denotes the cell input activation vector

• ct represents the cell state vector

• W ∈ Rhxd, U ∈ Rhxh are weight matrices and b ∈ Rh is the bias

• s is the sigmoid function and tanh is the hyperbolic tangent function

The equations determining the values of the previous variables during a single forward
pass are the following.

ft = s(Wf ∗ xt + Uf ∗ ht−1 + bf)

it = s(Wi ∗ xt + Ui ∗ ht−1 + bi)

ot = s(Wo ∗ xt + Uo ∗ ht−1 + bo)

ĉt = tanh(Wc ∗ xt + Uc ∗ ht−1 + bc)

ct = ft ◦ ct−1 + it ◦ ĉt
ht = ot ◦ tahn(ct)

As you can see, their values depend on both the current input and the previous output.
The initial values c and h are both 0. ◦ represents the hadammard product.

2.5 Deep Reinforcement learning

Deep Reinforcement learning(DRL) is used to refer to reinforcement learning with value
function approximation, or with policy approximation, where the parametric function ap
proximating the value or policy is a Neural Network.

2.5.1 Deadly Triad

It has been shown from Tsitsiklis and Van Roy in [25] that when the following 3 conditions
are combined there is a high probability that instability and divergence of the RL algorithm
will occur.

• off policy learning

• function approximation (Especially non linear)

G. Stamatelis 40

The Friv Reinforcement Learning Environment

Figure 2.7:
THE LSTM Cell

By Guillaume Chevalier File:The_LSTM_Cell.svg, CC BYSA
4.0, https://commons.wikimedia.org/w/index.php?curid=109362147

• Bootstrapping

These conditions are usually referred to as the deadly triad in RL literature and for years
they discouraged RL researchers from using neural networks.

2.5.2 Deep Q learning

Mnih at all introduced DQN in 2015 [13]. DQN uses a convolutional neural network to
approximate the optimal action value function

Q∗(St, a) = max
π

[Rt+1 + γ ∗max
a

Q(St+1, a)]

DQN uses experience replay and target networks to address instability issues.
First, we will discuss experience replay. Replay buffer(sometimes referred in literature as
replay memory, or simply experience replay) is a fixed size buffer usually implemented as
a circular buffer. The oldest transition is removed from the buffer in order to make space
for a new one. It holds the most recent tuples (St, at, rt, St+1) These tuples are sampled
randomly at fixed intervals and used for training. As far as the sampling is concerned,
usually all tuples are assigned the same probability, but there are other sampling strategies
such as prioritised experience replay.
A Target network is a neural network that keeps its parameters separate from the main NN
and only updates them periodically. It therefore manages to reduce correlation between
Q(s,a) and target r+ γ ∗maxaQ(s′, a) . The loss function for state t using a target network
becomes

(Rt+1 + γ ∗max
a

Qtarget(S
′, a, w∗)−Q(S, a, w))2

The gradient descent update rule(for w not w∗) is:

wt+1 ← wt + α ∗ [Rt+1 + γ ∗max
a

Q̂target(St+1, a, w
∗
t)− Q̂(St, At, wt)] ∗ ∇wQ̂(St, At, wt)

G. Stamatelis 41

The Friv Reinforcement Learning Environment

Mnih et. all also regularised the update(value inside the brackets) in the range [−1, 1] to
improve stability.
All in all, the agent starts playing the game randomly. At each time step it stores the
<state,action,reward,successor > tuples in the experience replay. The state is a ”screen
shot” of the game console. It samples some of the tuples to train the neural network, and
uses it to pick the optimal action. The newly explored tuples are again stored in the buf
fer for further training. An ϵ−greedy strategy is used to increase exploration. The main
network’s parameters are periodically copied to the target network.

2.5.3 Dueling Architecture

Dueling architecture [27] estimates both value function V(s) and an advantage function
A(s,a). In traditional CNNS there are a number of convolution layers(and polling, RELU
layers), followed by a feed forward NN. Now the convolution layers will be followed by two
separate branches of feed forward neural networks F1 and F2. One estimates V the other
estimates A. We can obtain Q with the following equation.

Q(s, a;w,F1, F2)← V (s;w,F1) + ((A(s, a;w,F2)−max
a′

A(s, a′;w,F2))

where F1 denotes the parameters of the feed forward NN responsible for estimating V and
F2 the parameters of the other one.
Wang et al. propose to replace max operator with average for better stability.Hence Q is
recovered by the following equation

Q(s, a;w,F1, F2)← V (s;w,F1) + ((A(s, a;w,F2)−
1

A(s)

∑
a′

A(s, a′;w,F2))

Using the dwelling architecture(Along with some algorithmic improvements) the authors
managed to improve over previous state of the art performance in the Atari Domain(section
3.2).

2.5.4 Double Deep Q learning

There is no need for additional neural networks as the target network in traditional deep Q
learning is used as the second value function. The greedy policy is evaluated according
to the online network and it’s value is estimated using the target network. The target of
the double Q learning algorithm is

yDoubleDQN
t = Rt+1 + γ ∗Qtarget(St+1, argmax

a
Qonline(St+1, a))

The rest of the components of the original DQN algorithm remain the same. The weights
of the online network are periodically copied to the target network. Double DQN [26] finds
better policies than classic DQN on the Atari 2600 Domain.

2.5.5 Noisy Nets for exploration

Noisy nets [7] are artificial neural networks whose weights and biases are perturbed by a
parametric function of noise. The output of the ANNs therefore is

y = fθ(x)

G. Stamatelis 42

The Friv Reinforcement Learning Environment

where
θ := µ+ Σ ∗ ϵ

With ∗ denoting the hadamard product.
µ and Σ are learnable parameters and ϵ is noise with zero mean. The loss of the ANN is
an expectation over the noise

L̂((µ,Σ)) = E[L(θ)]

optimisation happens only with respect to µ and Σ Consider a linear layer of an traditional
ANN with p inputs and q outputs y = wx+b the corresponding noise linear layer is defined
as

y = (µW + σW ∗ ϵW)x+ µb + σb ∗ ϵb

eb and ew are not learnable parameters, they are noise.
The researchers in deep mind that came up with the idea of Noisy Nets experimented on
two different choices for the noise distribution.

• Independent Gaussian noise
The noise applied to each weight and bias is independently drawn from a unit Gaus
sian distribution.

• Factorised Gaussian noise
p unit noise Gaussian variables are used for noise of the inputs and q for noise of
the outputs.

The noisy layers have been applied successfully to both DQN and dueling architecture
DQN. Because of the introduced noise, ϵ− greedy policy iteration is no longer necessary.
The policy greedily optimizes the randomised action value Q.
Noisy Net agents outperformed traditional DQN and Dueling DQN and A3C agents for the
majority of Atari games.

2.5.6 Distributional Reinforcement Learning

So far, Q learning (and its variants) try to maximise the expected return. In the distribu
tional RL [1] setting the goal is to approximate the distribution of the return. In order to
achieve that, a variant of Bellman’s equation has been introduced. The distributional Q
learning algorithm aims to minimise the KullbeckLeibler divergence between the current
distribution and the target distribution.
Explaining this approach in depth is beyond the scope of this thesis. The reader can take
a look at [1]

2.5.7 Rainbow (combination of improvements)

The Rainbow [9] agent integrates all the improvements of section 2.5, as well as multi step
learning into a single agent.
Rainbow agent was tested in the Atari domain and it outperformed all previously published
baselines both in data efficiency and in final performance.

G. Stamatelis 43

The Friv Reinforcement Learning Environment

2.6 Asynchronous Reinforcement Learning

So far the methods of deep RL we have examined store the data from each timestep on
a replay buffer and randomly sample some to train the ANN. This approach, while very
powerful, uses a lot of memory per iteration(as we will see in the experiments).
Asynchronous methods [12] execute multiple agents in parallel on multiple instances of
the environment instead of using experience replay. This approach has both theoretical
and practical benefits.
It has been applied successfully on one step Q learning, n step Q learning, one step
SARSA and actor critic. In fact, the Asynchronous Advantage Actor Critic(A3C) is one of
the most successful agents to date.

G. Stamatelis 44

The Friv Reinforcement Learning Environment

3. RELATED WORK

3.1 TD Gammon

TD Gammon [24] is a program developed by Gerald Tesauro in 1992, designed to play
backgammon. It has tremendous historical value to the field of artificial intelligence, and
remains one of the most impressive application of reinforcement learning to date. In that
time, there was already another program called neurogammon that could play backgam
mon really well using a large corpus of states evaluated by experts. TD Gamon managed
to outperform it using zero human knowledge.
It uses temporal difference learning TD(λ) with non linear function approximation through
feed forward neural networks (which were considerably smaller than today’s standards).
The game of backgammon consists of 32 pieces, each of them can be in one of 24 pos
sible locations. The game tree has an effective branching factor of about 400 making it
impossible to use traditional heuristic methods and tree search.
The neural network takes as input 198 units. For each point in the board 4 units represent
the number of white pieces and 4 units the number of black pieces. There is also a unit for
white pieces on the bar and one for black pieces on the bar. Moreover, one unit represents
the white pieces taken from the table and one unit represents the black pieces taken from
table. Finally, two more units determine whether it is the black or the white player’s turn.
The outputs of the hidden units were passing through sigmoid activation function. Most of
today’s architectures use relu instead. The neural network outputs the probability of the
current player winning.
It was trained using self play. The reward is +1 if the current player wins, 1 if the current
player looses and 0 in any other case. Since the parameters where initialised randomly
early games lasted from hundreds to thousands of moves. After a few dozen episodes the
performance increased significantly. After about 300.000 episodes it performed as well
as neurogammon. A few years latter Tessauro came up TD Gammon 1.0 which combined
human knowledge(labeled examples) and self play and performed even better. Apart from
the impact TD Gammon had on the field of AI, it changed the way top human players play
the game.

3.2 Arcade earning environment and Atari

The Arcade Learning environment [2] was developed by Bellemare et all in 2012 and
helped achieve significant breakthroughs in Reinforcement Learning. It provides an inter
face to hundreds of Atari 2600 game environments. It is a benchmark for evaluating and
comparing RL algorithms. The authors applied standard RL algorithms with linear func
tion approximation without achieving impressive results. That being said, ALE has been
one the most important papers behind almost all the achievements in deep reinforcement
learning of the past decade.
Mnih et all used DQN with experience replay as previously discussed on ALE and man
aged to improve previous work. Raw pixel images (With some cropping and filtering)
were given as input on the networks. It outperformed all previous approaches on 6 of the
games and surpassed human experts in 3. Unlike TDgammon, the neural networks did
not ”need” carefully constructed feature representations to perform well.
Since then, deep Q learning variations, proximal policy optimisation algorithms, massively
parallel algorithms, exploration strategies, and other ideas have been used to improve on

G. Stamatelis 45

The Friv Reinforcement Learning Environment

the ALE domain, and their performance keeps getting better and better.

3.3 Pygame learning environment (PLE)

PLE [23] is a collection of 9 single player video games, emulated in python using pygame.
It has been designed to allow easy evaluation of reinforcement learning algorithm on those
games, relieving the practitioners of having to deal with graphics and implementation.
Researchers can also addmore games by implementing a fewmethods (They do not have
to start from scratch). Only some very basic python libraries are required to use it. Most
machine learning practitioners have already installed them for other software packages.

3.4 Dota 2

Dota 2 is a real time strategy multiplayer game. It presents a very difficult challenge for
the following reasons

• long time horizons

• partial observability

• high dimensionality of both action space and observation space

• complex rules

• The game is being actively developed and constantly changing. Therefore the dy
namics of the environments change over time.

Researchers in OpenAI developed a program called OpenAI Five [15] that managed to
beat two world champions in dota 2. They actually emulated a simple version of dota 2.
Each player can choose one of 17 users (instead of 117). Also, there is no support for
items which allow a player to temporarily control multiple units at the same time. The exact
implementation of the model is very complex and we will not describe it in full depth. We
will provide a brief overview of the methods they used,and the problems they faced.
The observation space is very complex, the model takes as input approximately 16 thou
sand values. Those values are a flattened set of data arrays.
The action space consists of a single primary action and a set of parameter actions. For
instance the action could be to attack or to cast a spell and the parameters could be the
targets. The available number of action varies from time to time and averages around 8.1.
In the emulated game, the agent can take one of 6 main action types and the appropriate
secondary actions.
Designing reward signals is also pretty challenging compared to previous applications
such as PLE or ALE. The goal is obviously to beat the other team(zero sum game). That
being said, some rewards are given to the whole team and others to the hero who took
the action. As the game progresses, each player’s “power” increases significantly. As a
result, the learning procedure might end up focusing completely on the later stages of the
game. To combat this all rewards other than win/loss rewards decay over time.
Additionally, team based rewards can increase variance when a different agent takes a
good action. To combat that each hero earns a linear combination of a raw reward and

G. Stamatelis 46

The Friv Reinforcement Learning Environment

the average team reward.
Moving forward, the neural network architecture, consists of a 4096unit LSTM that takes
the flattened observation and the hero embedding as input and outputs two predictions.
One for the value function and one for the action. Each of the five heroes in a team is
controlled by one neural network of this architecture. The Adam optimiser is used to train
the network with back propagation through time.
Agents learn to maximise cumulative reward with Proximal Policy Optimisation(PPO). A
central pool of optimisers each running on its own GPU stores game data from self play
asynchronously in local experience replay buffers. Each optimiser samples a minibatch
of data randomly from it’s local buffer and uses it to compute the gradient. The gradients
are then averaged over the entire pool and used to update the parameters of the model.
The entire system was trained on large distributed platform over google cloud for months.

3.5 Alpha Go (with human knowledge)

The game of Go is considered the most challenging classic game for AI. It has an enorm
ous search tree making it impossible to learn efficiently. In order to ”solve” it researchers
at deep mind combined some classic algorithms as well some new ideas[20]. They also
combined a dataset of board positions labeled by human experts and self play.
The main idea is to train two different neural networks and use them to perform MCTS.
A value network used to evaluate board position and a policy network used to sample
actions. Value networks can help decrease the depth of the search tree. As they both be
come more accurate the rollout policy becomes more accurate forcing Monte Carlo Tree
Search to search more relevant states.
The board position is converted to a 19x19 image and provided to a sequence of convo
lution and pooling layers for feature extraction. After that, the learned representation is
provided to a value network and a policy network. The training pipeline consists of the
following three steps.

• First, a policy network ρσ is trained using the labeled dataset. Moreover, a fast rollout
policy ρπ with linear function approximation is trained as well.

• A policy network ρρ is trained. ρρ is initialised with the values of ρσ. The rewards are
+1 if the current player wins, 1 if the current player looses and 0 otherwise.

• Finally, a value network vθ is trained using self play. It has a similar architecture to the
policy networks but outputs a single prediction instead of a probability distribution.

When training is done both networks are combined in aMonte Carlo Tree Search algorithm
that selects actions with lookahead. The fast rollout policy is also used for evaluating
states. The predicted value of a state is a linear combination of the value networks output
and the complete episodic reward of a game played by the rollout policy.
Alpha Go is the first computer program that beat a professional Go player. It also outper
formed all other commercial and public Go programs at the time.

3.6 Alpha Go without human knowledge

After the success of Alpha Go with human labeled examples and reinforcement learning,
researchers in Deepmind developed another program that performs even better without

G. Stamatelis 47

The Friv Reinforcement Learning Environment

previous human knowledge [21], while also being significantly simpler. It managed to beat
the previously published Alpha Go program by 1000.
There is only a single CNN fθ that outputs both a probability vector and a scalar value.
The input of the network is the raw representation of black and white stones and its history.
The probability vector for state s , provides an estimate for the optimal policy starting from
state s. Some noise is also added during training, to increase exploration. The scalar
value provides an estimate of the state’s value.
During self play, in every time step a Monte Carlo Tree Search is executed guided by fθ.
The output of the search is probability vector π and a reward z ∈ {−1, 1} depending on
the winner. The goal is to train the Neural Network such that

fθ(s) = (π, z)

Each edge (s,a) of the tree stores three values

• a prior probability P(s,a)

• a visitation count N(s,a)

• an action value Q(s,a)

Each simulation starts from the root and selects moves that maximize Q(s, a) + U(s, a)

where U(s, a) ∝ P (s,a)
1+N(s,a)

until it reaches a leaf node s’. s’ is then expanded for one step
using the neural network.

(P (s′, ∗), V (s′)) = fθ(s)

For each of the edges (s,a) traversed by the simulation the following two operations are
performed

• N(s, a) is increased by 1

• Q(s, , a) = 1
N(s,a)∗

∑
s′|s,a−>s′ V (s′)

Aswe previouslymentionedMCTS also outputs an action probability vector π = (a1, a2,an).
Each action ai is assigned a probability

πai = N(s, a)
1
τ

with τ being a temperature parameter.
The Neural Network loss function sums over the mean squared error of the value estimate
and the cross entropy loss of the policy plus a Tikhonov regulariser. Hence it is given by
the following equation.

l = (z − v)2 − πT logp+ c||θ||2

Using this pipeline, a ”small” neural network was trained for 3 days and it managed to out
perform some of the previous state of the art programs that took months to train. Training
progressed smoothly without running into the problem of catastrophic inference. A larger
network was trained using the same pipeline for approximately 40 days beating all state
of the art programs by a very large margin.

G. Stamatelis 48

The Friv Reinforcement Learning Environment

3.7 Other Games

In the past few years, a lot of researchers have managed to successfully apply the previ
ous algorithms to a variety of different games, both single agent and multi agent. A survey
by Shao et all [19] provides an overview.
It also worth noting that RL has been successfully used in a variety of fields such as ro
botics and combinatorial optimisation.

G. Stamatelis 49

The Friv Reinforcement Learning Environment

4. THE FRIV LEARNING ENVIRONMENT(FLE)

Friv is a website containing a lot of games. Some are directly from Friv, some are adapted
from other platforms. It provides a very rich pool of completely different games. From plat
former and shooting games, to car racing and maze games. Some are endless whereas
others are pretty quick. Some have very realistic physics (e.g hill climb racing) others
not. Some have a narrow action space, others a very large. The last, is the key difference
between the atari games, which are all played by the same console.
We emulated some of the games in python on top of Openai’s gym [6]. We created mul
tiple levels for 9 games. The total number of environments is 23.
Obviously the graphics are going to be somewhat simpler. That being said, the collision
detection mechanics, the physics simulation(when required) and the game difficulty are
pretty close to the actual games. For spinSoccer and carParking we used the box2d phys
ics engine to make sure the physics and collisions are realistic. For the rest we use very
accurate Axis Aligned Bounding Boxes and pygame’s colliderect() function.

Figure 4.1: Collision detection in Eyecopter Gemland

G. Stamatelis 50

The Friv Reinforcement Learning Environment

Figure 4.2: Collision detection in boss level pumpkin

As you can see the AABBs are the smallest possible, while containing the entire objects.
If you play the games yourself you will notice the collision mechanics are just as accurate
as the original games on FRIV.
First wewill provide a brief overview of each game, and thenwe are going to provide a table
evaluating some of the most common reinforcement learning (DQN,PPO,A2C) algorithms
on each game. We will use the Stable Baselines 3 library [16]. We will compare the
performance of the agents, with the following

• A human agent. A human will play 5 games to get used to the rules and mechanics
of the games. Then we will evaluate their performance on an average of 5 games.
The human agent is also the developer/tester of the games, so they will be very
competent.

• A random agent. Again the performance will be an average of 5 games

• A constant agent playing the same action and a perturb agent. The perturb agent
will play the same constant action with probability p and with probability (1p) it will
pick an action randomly.

G. Stamatelis 51

The Friv Reinforcement Learning Environment

As we will see those games provide an interesting challenge due to the sparsity of re
wards. Additionally, multiple levels of the same games can be used for experimenting
with methods for transferring knowledge from simpler to harder tasks.

4.1 Agent Platformer

This is a very interesting experiment because it is a very easy game for human players.
Nevertheless, the rewards are sparse and sometimes misleading. The agent can move
left right fly or jump and must get to the white box. They collect bonus points from coins.
In the first level coins are slightly far away from the white box, which can mislead the
agent.The reward signals are given in the following manner.

• 1 if the agent falls on the spikes and loses .

• + 0.25
6

if the agent collects a coin.

• + 0.75 if the Agent wins. In the last two environments there are no coins so the agent
gets +1 for winning.

• We also added a large negative reward of 1 in case the game has not finished
in 4000 time steps. That reward is not enough to lead the agent to victory but by
observing the training processes we noticed it encouraged the agent to explore a lot
more states.

(a) level 1 (b) level 2 (c) level 3

Figure 4.3: The three levels of Agent Platformer

4.2 Super Onion Boy

The agent controls an onionlooking ”boy” that must navigate to the end of the maze and
collect the blue dot avoiding enemies. It can move left or right and/or jump, it can also
jump on top of boxes. There is also a green lever that can throw it high in the air to collect
more coins. There are bonus reward for jumping on top of different enemies and killing
them and for collecting coins. There are three different types of enemies. Regular pump
kins, flying vegetables and a large ball. To kill the ball you must jump on it twice. After the
first jump it moves a lot faster and it can kill other enemies as well.

G. Stamatelis 52

The Friv Reinforcement Learning Environment

(a) (b)

(c) (d)

Figure 4.4: Super onion boy environment

4.3 Car Parking

In this game, the agent controls a car and must park it on the yellow parking spot without
hitting the walls or other cars. The reward is +1 if parking is successful and 1 if the car
collides with an obstacle or if time runs out. There are no immediate rewards because we
wanted to see the agents’ ability to explore a large state space. We used box2d to make
sure the car’s wheel and tire dynamics are realistic. The agent can pedal forward, reverse
and/or move the wheel slightly to the left or the right.

G. Stamatelis 53

The Friv Reinforcement Learning Environment

(a) level 1 (b) level 2

Figure 4.5: Car parking environment

4.4 Zombie Onslaught

In these game the agent must defend the military base from the incoming zombies. The
zombies try to break the crates and get past the soldier. Some zombies are weaker and
they die after being shot twice some are stronger and die after being shot 4 times. The
reward for each zombie killed is 1

number of total zombies to kill .
We provide two levels of zombie onslaught, one is relatively easy and consists only of weak
zombies, the other is very hard and the human testers did not manage to complete it. The
zombies are spawned in fixed intervals in order to make the experiments reproducible.
We also added a ”loading” time interval to prevent the program from firing bullets faster
than the human tester and therefore having an unfair advantage.

(a) easy level (b) hard level

Figure 4.6: Zombie onslaught environment

G. Stamatelis 54

The Friv Reinforcement Learning Environment

4.5 I love traffic

In this game the agent controls one(or more) traffic lights. The goal is to direct traffic such
that cars do not collide with each other. You loose if there is too much traffic clogged up.
The cars are not ”intelligent” and if they see a green light they will pass without looking
out for other cars. A very important detail is that the agent is being provided incomplete
information, it only gets a picture of some cars. It has no way of knowing how fast a car
is moving or if is stopped (like the human tester). We provided 5 different levels. The first
level is very easy and the rest get harder and harder.

(a) level 3 (b) level 4

Figure 4.7: Two levels of the I love traffic environments

4.6 Go Chicken Go

In this game the agent controls a chicken and must navigate it to the other side of the road
without getting hit by the cars or drowning in the river. To decrease the ”sparsity” of the
reward, it gets a small reward for reaching the river (after crossing the first road) a small
reward after crossing the river and a large reward after crossing the second road safely.
We also choose not to seed the environment, in order to test the ability of the algorithms
to generalise.
Initially, if the chicken got hit by a car or drowned the agent got a reward of 1. That led to
agents becoming ”lazy” and not doing anything. Even after adding a timeout reward of 1
the agents remained inactive. Hence, in the final implementation of the game the agent
gets 1 reward for ”stalling” but only 0.7 reward if the chicken loses. That lead to agents
exploring the game state to a far greater degree. In fact DQN managed to get past the
logs and actually win the game a few times during training. Unfortunately, that exploration
was not enough to consistently win the game.

G. Stamatelis 55

The Friv Reinforcement Learning Environment

Figure 4.8: Go Chicken Go environment. There are two identical levels,the only difference is the
speed of the cars and logs , and the frequency in which they appear.

4.7 Eyecopter Gemland

In this game, the agent controls a helicopter and must navigate it to collect the blue dia
mond and come back to the base without falling outside of the screen. There are also
bonus points for collecting coins. Just like in the Agent Platformer game, small rewards
from collecting coins can mislead the agent away from the large reward of bringing the
diamond to base.
Initially, the rewards where 1 for losing, 0.1 for collecting the diamond, 0.3

number of coins for
collecting a coin and 0.6 for bringing the diamond back to the base. Just like the other
games, however we noticed that the agents tend to get lazy in order to avoid losing. After
adding a large negative reward of 1 for timing out all agents (especially DQN) explore the
state space a lot more effectively .

Figure 4.9: The EyeCopter Gemland game

G. Stamatelis 56

The Friv Reinforcement Learning Environment

4.8 Spin soccer

In this game, the agent controls all the platforms and must navigate a soccer ball to the
goalpost. All platforms move simultaneously. We used the box2d physics engine to make
sure the simulations are realistic. There are a total of 4 tasks of progressive difficulty. All
of them are relatively tough for humans as a small mistake can send the ball very far from
the goalpost.

(a) level 1 (b) level 2

(c) level 3 (d) level 4

Figure 4.10: Spin Soccer

While the RL agents can learn pretty quickly, letting the training process go for slightly too
long (even just a few hundred timesteps more) can lead to serious catastrophic forgetting.
We also noticed that all agents ”learn” to keep the platforms steady and do nothing. For

G. Stamatelis 57

The Friv Reinforcement Learning Environment

that reason we added a large negative reward after some timesteps. The reward is 0.7 for
losing , 1 for winning and 1 in case of a time out. The time out penalty led to tremendous
improvements in all agents

4.9 Boss Level Pumpkin

This game was introduced by Friv on Halloween. The player, controls a person that moves
left right, jumps and shoots. Above the ground there is a large ghost that tries to hit the
player throwing scary objects. On the first level the objects are not moving, in the latter
levels the objects can move, and the ghost might throw different objects at the same time.
The goal is to shoot the ghost in order to kill it. The player can also buy update packages
to increase their health or damage.
We have implemented 3 levels. In the first and the second level, the ghost throws the
same static objects. The only difference is that in the second level, the ghost can take
more bullets without dying, it moves a little faster, and the objects fall downwards slightly
faster as well. In the third level, the ghost throws moving objects, that detect where the
player is positioned and try to chase them.
We have performed the following simplifications

• In the original game, the player can touch some boxes which then throw grenades
at the ghost. That made the game too easy to conduct interesting experiments so
we did not implement them.

• We removed the player’s ability to buy updates

(a) level 1 (b) level 2

Figure 4.11: First Levels of Boss Level Pumpkin

G. Stamatelis 58

The Friv Reinforcement Learning Environment

Figure 4.12: The third level of Boss Level Pumpkin

G. Stamatelis 59

The Friv Reinforcement Learning Environment

5. RESULTS

Table 5.1: The performance of different agents in FLE

Game PPO A2C DQN Human Random Constant Perturb
SpinSoccer 0 1 1 1 1 0.2 1 0.6
SpinSoccer 1 1 1 1 0.2 0.7 0.7 0.7
SpinSoccer 2 1 1 1 0.6 0.7 0.7 0.7
SpinSoccer 3 1 1 1 0.6 0.36 1 0.7
Platformer 1 0.8 0.8 0.67 1 1 1 1
Platformer 2 1 1 1 1 1 1 1
Platformer 3 1 1 1 1 1 1 1
Zombie Easy 1 0.462 1 1 0.9 1 0.8
Zombie Hard 1 0.74 0.203 0.272 0.94 1 0.93
Traffic 0 1 1 1 1 1 1 1
Traffic 1 1 1 1 1 0.96 1 0.9
Traffic 2 1 1 1 1 0.96 1 0.92
Traffic 3 1 1 1 0.22 1 1 1

I love Traffic 1 0.85 1 0.42 0.92 1 0.86
EyeCoper 1 1 0.6 1 0.985 1 1
OnionBoy 1 1 0.994 0.829 1 1 1

CarParking 1 1 1 1 1 1 1 1
CarParking 2 1 1 1 0.2 1 1 1

Go Chicken Go Slow 0.7 0.7 0.2 0.2 0.7 1 0.76
Go Chicken Go 0.7 0.7 0.52 0.32 0.7 1 0.82

Boss Level Pumpkin 1 0.47 1 0.7 0.244 0.64 0.52 0.55
Boss Level Pumpkin 2 0.707 0.81 0.45 0.674 0.867 0.77 0.8
Boss Level Pumpkin 3 0.69 1 0.30 0.33 0.88 1 0.96

The results are completely expected. When the agent can sufficiently explore the state
space and observe frequent reward signals, it performs comparably or even better than
humans. When the results are sparse or misleading such as in agent platformer and car
parking it performs really poorly. We should keep in mind that both PPO and A2C require
a lot less computational resources (both memory and CPU) than DQN.
We assume that if the reward difference between two agents is less than 0.2 they perform
comparably well. As you can see,in 16 out of 23 games, at least one RL agent performs
comparably well to the human agent. In 8 out of 20 games at least on RL agent outper
forms the human with more than 0.2 reward.

G. Stamatelis 60

The Friv Reinforcement Learning Environment

6. CONCLUSIONS AND FUTURE WORK

All in all, we provided an open source environment for evaluating reinforcement learning
agents based on the website FRIV and hope that other people can use it in their work.
It is very easy to use and maintain. We also provided some performance baselines both
regarding human performance as well as state of the art algorithms. In addition, we men
tioned some interesting observations regarding the training process and the construction
of the reward signals.
The most important outcome of this thesis is the following:
When dealing with a task with infinite or very long horizon and sparse rewards, the agent
tends to stay inactive in order to avoid large negative rewards. Penalising inactivity with
a negative reward larger(in absolute value) than that of losing can improve the agents
performance tremendously.
FLE provides a lot of interesting opportunities. For starters, experimenting with trans
fer learning from easier to harder levels of the same game is a very interesting domain.
Moreover, we could experiment with advanced exploration strategies because most of
the games have very sparse reward signals. Last but not least, we plan on implementing
more games from FRIV since the website has over 50 different games and it occasionally
adds more.

G. Stamatelis 61

The Friv Reinforcement Learning Environment

BIBLIOGRAPHY

[1] Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement learn
ing, 2017.

[2] Marc G. Bellemare, Yavar Naddaf, Joel Veness, andMichael Bowling. The arcade learning environment:
An evaluation platform for general agents. Journal of Artificial Intelligence Research, Vol. 47:253–279,
2012. cite arxiv:1207.4708.

[3] D.P. Bertsekas. Rollout algorithms: an overview. In Proceedings of the 38th IEEE Conference on
Decision and Control (Cat. No.99CH36304), volume 1, pages 448–449 vol.1, 1999.

[4] D.P. Bertsekas. Dynamic Programming and Optimal Control, volume 1 and 2. Athena Scientific, 2
edition, 2001.

[5] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[6] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

[7] Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex Graves,
Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell, and Shane Legg. Noisy
networks for exploration, 2019.

[8] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

[9] Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in deep
reinforcement learning, 2017.

[10] Sepp Hochreiter and Jürgen Schmidhuber. Long shortterm memory. Neural Computation, 9(8):1735–
1780, 1997.

[11] Richard E. Korf. Realtime heuristic search. Artificial Intelligence, 42(2):189–211, 1990.

[12] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim Har
ley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning,
2016.

[13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare,
Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and
Demis Hassabis. Humanlevel control through deep reinforcement learning. Nature, 518(7540):529–
533, February 2015.

[14] Thomas M. Moerland, Joost Broekens, and Catholijn M. Jonker. Modelbased reinforcement learning:
A survey, 2021.

[15] OpenAI, :, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak,
Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal Józefowicz, Scott
Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique P. d. O. Pinto, Jonathan Raiman,
Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang, Filip Wolski,
and Susan Zhang. Dota 2 with large scale deep reinforcement learning, 2019.

[16] Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, and Noah Dormann.
Stable baselines3. https://github.com/DLR-RM/stable-baselines3, 2019.

[17] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy
optimization. In Francis Bach and David Blei, editors, Proceedings of the 32nd International Conference
on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages 1889–1897,
Lille, France, 07–09 Jul 2015. PMLR.

[18] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy op
timization algorithms, 2017.

G. Stamatelis 62

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://github.com/DLR-RM/stable-baselines3

The Friv Reinforcement Learning Environment

[19] Kun Shao, Zhentao Tang, Yuanheng Zhu, Nannan Li, and Dongbin Zhao. A survey of deep reinforce
ment learning in video games, 2019.

[20] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach,
Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go with deep neural
networks and tree search. Nature, 529(7587):484–489, January 2016.

[21] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui,
Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering the game of
go without human knowledge. Nature, 550:354–, October 2017.

[22] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018.

[23] Norman Tasfi. Pygame learning environment. https://github.com/ntasfi/
PyGame-Learning-Environment, 2016.

[24] G. Tesauro. Temporal difference learning and TDGammon. Communications of the ACM, 38(3):58–
68, 1995.

[25] John Tsitsiklis and Benjamin Van Roy. An analysis of temporaldifference learning with function ap
proximation. IEEE Trans. on Automatic Control, 42(5):674–690, 1997.

[26] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double qlearning.
2015. cite arxiv:1509.06461Comment: AAAI 2016.

[27] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and Nando de Freitas.
Dueling network architectures for deep reinforcement learning, 2016.

G. Stamatelis 63

https://github.com/ntasfi/PyGame-Learning-Environment
https://github.com/ntasfi/PyGame-Learning-Environment

The Friv Reinforcement Learning Environment

ABBREVIATIONS ACRONYMS

RL Reinforcement Learning

MDP Markov Decision Process

DP Dynamic Programming

DL Deep Learning

NN Neural Network

MLP Multi Layer Perceptron

ANN Artificial Neural Network

CNN Convolutional Neural Network

RNN Recurrent Neural Network

LSTM Long Short Term Memory

MC Monte Carlo

TD Temporal Difference

MCTS Monte Carlo Tree Search

PGM Policy Gradient Methods

DQN Deep Q Network

KL Kullback Leibler

TRPO Trust Region Policy Optimisation

PPO Proximal Policy Optimization

AC Actor Critic

A2C Advantage Actor Critic

A3C Asynchronous Advantage Actor Critic

ALE Arcade Learning Environment

PLE Pygame Learning Environment

FLE Friv Learning Environment

AABB Axis Aligned Bounding Boxes

G. Stamatelis 64

	CONTENTS
	INTRODUCTION
	BACKGROUND
	Introduction to reinforcement learning
	Characteristics of reinforcement learning
	Markov Decision Processes(MDP)
	Policies and Value functions

	Bellman Equations
	Policy ordering and optimal policy

	Reinforcement learning Methods
	Dynamic Programming
	Monte Carlo Methods
	Temporal Difference Learning
	n step Bootstrapping
	Averaging over n step returns
	Eligibility traces
	Backward view TD ()
	Sarsa , Q learning and expected Sarsa
	Double Q learning

	Model Based Reinforcement learning and planning
	Learning the dynamics of a model using observed data
	Using the model to plan

	Dyna
	Prioritized sweeping
	Rollout algorithms
	Monte Carlo Tree search
	Function Approximation
	Monte Carlo Methods
	TD(0)
	Backward view TD(λ)

	Policy Gradient Methods
	Policy gradient theorem
	REINFORCE ALGORITHM(Monte-Carlo policy gradient)
	REINFORCE with baseline
	ACTOR CRITIC METHODS

	Trust Region Policy Optimisation
	Proximal Policy Optimisation
	Clipped Surrogate Objective
	 Adaptive KL Penalty Coefficient
	Algorithm

	Neural Networks
	Perceptron
	Feed forward neural networks
	Convolutional Neural Networks
	Long Short Term Memory Neural Networks

	Deep Reinforcement learning
	Deadly Triad
	Deep Q learning
	Dueling Architecture
	Double Deep Q learning
	Noisy Nets for exploration
	Distributional Reinforcement Learning
	Rainbow (combination of improvements)

	Asynchronous Reinforcement Learning

	Related Work
	TD Gammon
	Arcade earning environment and Atari
	Pygame learning environment (PLE)
	Dota 2
	Alpha Go (with human knowledge)
	Alpha Go without human knowledge
	Other Games

	The Friv Learning Environment(FLE)
	Agent Platformer
	Super Onion Boy
	Car Parking
	Zombie Onslaught
	I love traffic
	Go Chicken Go
	Eyecopter Gemland
	Spin soccer
	Boss Level Pumpkin

	Results
	CONCLUSIONS AND FUTURE WORK
	ABBREVIATIONS - ACRONYMS

