
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

BSc THESIS

Generating realistic nanorough surfaces via a Generative
Adversarial Network

Vassileios G. Sioros

Supervisors: George Giannakopoulos, Research Fellow

Vassileios Constantoudis, Researcher

Panagiotis Stamatopoulos, Assistant Professor

ATHENS

OCTOBER 2021

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Δημιουργία ρεαλιστικών νανοδομημένων επιφανειών
μέσω ενός Παραγωγικού Δικτύου Αντιπαράθεσης

Βασίλειος Γ. Σιώρος

Επιβλέποντες: Γεώργιος Γιαννακόπουλος, Επιστημονικός Συνεργάτης

Βασίλειος Κωνσταντούδης, Ερευνητής

Παναγιώτης Σταματόπουλος, Επίκουρος Καθηγητής

ΑΘΗΝΑ

ΟΚΤΏΒΡΙΟΣ 2021

BSc THESIS

Generating realistic nanorough surfaces via a Generative Adversarial Network

Vassileios G. Sioros
S.N.: 1115201500144

SUPERVISORS: George Giannakopoulos, Research Fellow

Vassileios Constantoudis, Researcher

Panagiotis Stamatopoulos, Assistant Professor

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Δημιουργία ρεαλιστικών νανοδομημένων επιφανειών μέσω ενός Παραγωγικού Δικτύου
Αντιπαράθεσης

Βασίλειος Γ. Σιώρος
Α.Μ.: 1115201500144

ΕΠΙΒΛΕΠΟΝΤΕΣ: Γεώργιος Γιαννακόπουλος, Επιστημονικός Συνεργάτης

Βασίλειος Κωνσταντούδης, Ερευνητής

Παναγιώτης Σταματόπουλος, Επίκουρος Καθηγητής

ABSTRACT

Generating artificial nanorough surfaces in the context of a multiphysics simulation re
quires (1) identifying the structural feature space so that the generation of new nanorough
surfaces is possible and (2) the reconstruction process to be propertypreserving. In this
work, we examine the possibility of providing multiphysics simulations with a computa
tionally inexpensive way of integrating new nanorough surfaces similar to a predefined
sample of surfaces. We focus on how a Generative Adversarial Network (GAN) based
approach, given a nanorough surface data set, can learn to produce statistically equival
ent samples. Additionally, we examine how pairing our model with a set of nanorough
similarity metrics, can improve the realisticity of the resulting nanorough surfaces. We
showcase via multiple experiments that our framework is able to produce sufficiently real
istic nanorough surfaces, in many cases indistinguishable from real data. The complete
source code is available at https://github.com/billsioros/RoughML.

SUBJECT AREA: Machine Learning

KEYWORDS: Nanotechnology, Machine Learning, Graph Theory

https://github.com/billsioros/RoughML

ΠΕΡΙΛΗΨΗ

Η δημιουργία τεχνητών νανοδομημένων επιφανειών στο πλαίσιο μιας φυσικοχημικής
προσομοίωσης απαιτεί (1) να προσδιοριστεί ο χώρος των δομικών χαρακτηριστικών, ώστε
να επιτραπεί η ανακατασκευή νέων, ρελιστικών επιφανειών και (2) η διαδικασία ανακατα
σκευής να διατηρεί τις ιδιότητες των επιφανειών. Σε αυτή την εργασία, εξετάζουμε τη δυνα
τότητα να παρέχουμε στις φυσικοχημικές προσομοιώσεις μια υπολογιστικά φθηνή λύση
όσον αφορά την δημιουργία και ενσωμάτωση νέων νανοδομημένων επιφανειών παρό
μοιων με ένα προκαθορισμένο σύνολο επιφανειών. Eπικεντρωνόμαστε στο πώς ένα Πα
ραγωγικό Δίκτυο Αντιπαράθεσης (ΠΔΑ), δεδομένου ενός συνόλου νανοδομημένων επιφα
νειών, είναι ικανό να μάθει να παράγει στατιστικά ισοδύναμα δείγματα επιφανειών. Στη συ
νέχεια, εξετάζουμε πώς ο συνδυασμός του μοντέλου μας με ένα σύνολο μετρικών ομοιότη
τας νανοδομημένων επιφανειών, έχει ως αποτέλεσμα πιο ρεαλιστικές νανοδοημένες επι
φάνειες. Αποδεικνύουμε μέσω πολλαπλών πειραμάτων, ότι το σύστημά μας είναι σε θέση
να παράγει αρκετά ρεαλιστικές νανοδομημένες επιφάνειες, τις οποίες, σε πολλές περιπτώ
σεις, είναι αδύνατον να διακρίνει κανείς από τις πραγματικές. Ο πλήρης πηγαίος κώδικας
είναι διαθέσιμος στην ηλεκτρονική διεύθυνση https://github.com/billsioros/RoughML.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Μηχανική Μάθηση

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Νανοτεχνολογία, Μηχανική Μάθηση, Θεωρία Γράφων

https://github.com/billsioros/RoughML

ACKNOWLEDGEMENTS

I would like to wholeheartedly thank Dr.Georgios Giannakopoulos and Dr.Vassilios
Kostantoudis for their valuable input and considerable support in completing this thesis.

CONTENTS

1. INTRODUCTION 13

2. BACKGROUND AND RELATED WORK 15

2.1 Nanotechnology . 15
2.1.1 Nanoelectronics . 15
2.1.2 Nanofabrication . 15

2.2 Nanometrology . 16
2.2.1 Structural Characteristics of Nanorough Surfaces 16

2.2.1.1 Vertical Parameters . 16
2.2.1.2 Horizontal Parameters . 17

2.3 Machine Learning . 18

2.4 Deep Learning . 18
2.4.1 An Artificial Neuron . 18
2.4.2 SingleLayer Perceptron Network (SLP) . 19
2.4.3 Convolutional Neural Network (CNN) . 19

2.4.3.1 Convolution . 20
2.4.3.2 Convolutional Layer . 21

2.4.4 Activation Functions . 21
2.4.5 Back Propagation . 22

2.4.5.1 Mathematical Statement . 22
2.4.6 Gradient Descent . 24

2.4.6.1 Mathematical Statement . 25
2.4.7 Extensions and Variants of Gradient Descent . 26

2.4.7.1 Stochastic Gradient Descent . 26
2.4.7.2 Momentum . 27
2.4.7.3 RMSProp . 27
2.4.7.4 Adam . 27

2.4.8 Batch Normalization . 28
2.4.8.1 Mathematical Statement . 28
2.4.8.2 Limitations and Hindrances . 30

2.4.9 Generative Adversarial Network (GAN) . 30
2.4.9.1 Mathematical Statement . 30
2.4.9.2 Training . 31

2.5 NGram Graphs . 32
2.5.1 Similarity Metrics . 33
2.5.2 Variants . 33

2.5.2.1 Merged Model Graph . 33
2.5.2.2 Hierarchical Proximity Graph . 34

2.6 State of the Art . 35

3. METHODOLOGY 37

3.1 Problem Definition . 37

3.2 System Overview . 38
3.2.1 Nanorough Surface Generation . 39
3.2.2 Nanorough Surface Quantization . 40
3.2.3 Content Similarity Metrics . 42

3.2.3.1 The NGram Graph Content Similarity Metric (NGG) 42
3.2.3.2 The TwoDimensional Array Graph Content Similarity Metric (A2G) 43
3.2.3.3 The Hierarchical Proximity Graph Content Similarity Metric (HPS) 44
3.2.3.4 The Fourier & Histogram Space Content Similarity Metric (FHS) 46

3.2.4 Frameworks . 46
3.2.4.1 SingleLayer Perceptron GAN (SLPGAN) 47
3.2.4.2 Deep Convolutional GAN (DCGAN) . 48
3.2.4.3 Training . 49

4. EXPERIMENTAL RESULTS 51

4.1 Experimental Setup . 51
4.1.1 DCGAN Weight Initialization . 52
4.1.2 Evaluating the scalability of the Content Similarity Metrics 53

4.1.2.1 Scalability of the NGram Graph Content Similarity Metric 53
4.1.2.2 Scalability of the TwoDimensional Array Graph Content Similarity Metric . . . 54
4.1.2.3 Scalability of the Hierarchical Proximity Graph Content Similarity Metric 54

4.1.3 Evaluating the FHS Content Similarity Metric . 55

4.2 Results and Discussion . 56
4.2.1 SLPGAN paired with A2G . 56
4.2.2 DCGAN . 58
4.2.3 DCGAN paired with NGG . 59
4.2.4 DCGAN paired with A2G . 60
4.2.5 Evaluating the statistical significance of our results 62
4.2.6 Training DCGAN paired with A2G on additional data sets 63
4.2.7 Determining the minimal amount of training data required 66
4.2.8 Assessing the scalability of our framework . 68

5. CONCLUSIONS AND FUTURE WORK 69

ABBREVIATIONS ACRONYMS 71

REFERENCES 74

LIST OF FIGURES

2.1 An artificial neuron . 19
2.2 Convolution with a stride of 1 and no padding 20

3.1 System overview . 38
3.2 Comparing Uniform and Quantile Binning 40
3.3 Nanorough Surface Quantization . 41
3.4 The SLPGAN framework . 47
3.5 The DCGAN framework . 48

4.1 Real nanorough surface samples (ξy = 8, ξx = 8, α = 1) 52
4.2 Training DCGAN with the conventional weight initialization scheme 53
4.3 NGG scalability . 53
4.4 A2G scalability . 54
4.5 HPS scalability . 54
4.6 HPS scalability (Additional cases) . 55
4.7 Comparing the FHS values of real and artificial nanorough surface samples

(ξy = 8, ξx = 8, α = 1) . 56
4.8 Training SLPGAN . 56
4.9 Nanorough surface samples generated by SLPGAN 57
4.10 A2G & FHS similarity scores in the case of SLPGAN (ξy = 8, ξx = 8, α = 1) . 57
4.11 Training DCGAN . 58
4.12 Nanorough surface samples generated by DCGAN 58
4.13 Training DCGAN paired with NGG . 59
4.14 Nanorough surface samples generated by DCGAN+NGG 59
4.15 A2G & FHS similarity scores in the case of DCGAN+NGG (ξy = 8, ξx =

8, α = 1) . 60
4.16 Training DCGAN paired with A2G . 60
4.17 Nanorough surface samples generated by DCGAN+A2G 61
4.18 A2G & FHS similarity scores in the case of DCGAN+A2G (ξy = 8, ξx =

8, α = 1) . 61
4.19 The FHS score populations used in the context of the Wilcoxon signedrank

tests . 62
4.20 Real nanorough surface samples (α = 0.5) 64
4.21 Nanorough surface samples generated by DCGAN+A2G (α = 0.5) 64
4.22 Real nanorough surface samples (α = 1) 65
4.23 Nanorough surface samples generated by DCGAN+A2G (α = 1) 65
4.24 Training DCGAN paired with A2G (ξy = 4, ξx = 4, α = 1) 66
4.25 Training DCGAN (ξy = 4, ξx = 4, α = 1) . 66
4.26 Comparing nanorough surface samples generated by DCGAN+A2G (α =

1) with respect to the size of the training data set 67
4.27 A2G & FHS scores for different training data set sizes 67
4.28 The generation cost as a function of the desired number of nanorough sur

faces . 68

LIST OF TABLES

4.1 The results of the twotailed Wilcoxon signedrank test with regards to dif
ferent sample combinations . 63

4.2 The results of the onetailed Wilcoxon signedrank test with regards to dif
ferent sample combinations . 63

PREFACE

The present thesis was carried out in collaboration with the National Center of Scientific
Research Demokritos.

Generating realistic nanorough surfaces via a Generative Adversarial Network

1. INTRODUCTION

In this work, we examine the possibility of providing multiphysics simulations with a com
putationally inexpensive way of integrating new nanorough surfaces, similar to the ones
being measured.

Modeling nanorough surfaces, requires (1) identifying the structural feature space so
that the generation of new nanorough surfaces is possible and (2) the nanorough sur
face reconstruction process to be propertypreserving, meaning that newly constructed
nanorough surfaces should showcase structural properties similar to the the ones being
modeled.

One additional requirement would be that the system is nanoroughsurfaceconfiguration
agnostic. This would enable the system to model a set of nanorough surfaces with no a
priori knowledge of the underlying characteristics of the nanorough surfaces.

The essential idea is, given a set of nanostructures (in some digital format) to develop
a method, which is able to learn the stochastic nature of their morphology by fitting a
supervised learning model to the data set. This model can then be subsequently used to
construct nanostructures with similar structural properties.

In this work:

1. We examine how Generative Adversarial Network (GAN) [1] based frameworks can
be trained to generate realistic nanorough surfaces. We develop 2 different flavors
of the GAN framework. We use a plethora of data sets corresponding to a variety of
nanorough surface populations in order to train our models and examine how well
they are able to adapt to different levels of stochasticity and correlation.

2. We develop 3 graphbased nanorough surface similarity metrics, which will provide
additional feedback to the GAN model at hand, throughout the training process. We
evaluate these metrics with regards to their computational cost and their effect on
the realisticity of the resulting nanorough surfaces.

3. We design a novel nanorough surface similarity metric, which is used to evaluate
the quality of the synthetic nanorough surfaces. Using the established similarity
measures, we showcase that our method is able to generate nanorough surfaces
virtually indistinguishable from real data.

4. We determine that a Deep Convolutional Generative Adversarial Network (DCGAN)
[2] paired with one of our graphbased similarity metrics further improves on the case
of merely utilizing a DCGAN, through multiple Wilcoxon signedrank tests.

5. We investigate how the size of the training data set and the structural parameters
of the nanorough surfaces making it up affect the quality of the synthetic nanorough
surfaces, and note some limitations of our framework with regards to different de
grees of correlation, stochasticity, and smoothness of the input nanorough surfaces.

This document is organized as follows; Section 2 introduces the reader to basic concepts
and ideas that are related to the problem at hand rather than completely reviewing the do
main. Section 3 provides a more formal description of the problem and elaborates on our
technical approach. Section 4 showcases the results of our various experiments. We look
into (1) the computational cost of the various nanorough similarity metrics, (2) how different

V. Sioros 13

Generating realistic nanorough surfaces via a Generative Adversarial Network

combinations of GAN flavors and nanorough surface similarity metrics affect the quality of
the synthetic nanorough surfaces, (3) the behavior of our framework when being trained
on different data sets corresponding to varying amounts of correlation, stochasticity, and
smoothness, and (4) the scalability of our framework with regards to nanorough surface
generation. In Section 5, we conclude our work with findings regarding the advantages
and limitations of our framework, and propose future research avenues.

V. Sioros 14

Generating realistic nanorough surfaces via a Generative Adversarial Network

2. BACKGROUND AND RELATED WORK

2.1 Nanotechnology

Nanotechnology may be defined as the use of matter on an atomic, molecular, and
supramolecular scale for industrial purposes. To be more specific, nanotechnology
encompasses the design, construction as well as operation of devices and systems, that
contain materials the structural elements of which have dimensions less than 100 nm.

This definition reflects the fact that quantum mechanical effects are important at this
quantumrealm scale, and so the definition shifted from a particular technological goal
to a research category inclusive of all types of research and technologies that deal with
the special properties of matter occurring below the given size threshold.

Nanotechnology can be separated into three main areas:

• Nanoelectronics, which is an evolution of microelectronics, refers to the use of
nanotechnology in electronic components. The term covers a diverse set of devices
andmaterials, with the common characteristic that they are so small that interatomic
interactions and quantum mechanical properties need to be studied extensively.

• Nanomedicine, which is themedical application of nanotechnology and ranges from
the medical applications of nanomaterials and biological devices to nanoelectronic
biosensors.

• Nanomaterials, where materials with nanostructured surfaces or nanostructures
are developed and investigated. Materials with structure at the nanoscale often have
unique optical, electronic, thermophysical, or mechanical properties.

2.1.1 Nanoelectronics

In 1965, GordonMoore observed that the size of silicon transistors were undergoing a con
tinual process of scaling downward, an observation which was later codified as Moore’s
Law. Since his observation, transistor minimum feature sizes have decreased from 10
micrometers to the 10nm range as of 2019.

The performance of an electronic device, and microchips, in particular, is determined by
the number of transistors, which make them up. A large number of transistors corresponds
to increased performance.

Nanoelectronics holds the promise of making computer processors more powerful than
is possible with conventional semiconductor fabrication techniques. Several approaches
are currently being researched, including new forms of nanolithography, as well as the
use of nanomaterials such as nanowires or small molecules in place of traditional CMOS
components.

2.1.2 Nanofabrication

There is no single accepted definition of nanofabrication, nor a definition of what separ
ates nanofabrication from microfabrication. To meet the continuing challenge of shrinking

V. Sioros 15

Generating realistic nanorough surfaces via a Generative Adversarial Network

component size in microelectronics, new tools and techniques are being continuously de
veloped. Component sizes went from tens of micrometers, to singledigit micrometers, to
hundreds of nanometers, and finally to a few tens of nanometers where they stand today.
As a result, what used to be called microfabrication was rebranded as nanofabrication,
although the governing principles have remained essentially the same. The main driver
of this technology has been the manufacture of integrated circuits, but there have been
tremendous side benefits to other areas, including photonics.

Nanofabrication approaches can be separated into two main categories:

• Bottomup or selfassembly approaches to nanofabrication use chemical or phys
ical forces operating at the nanoscale to assemble basic units into larger structures.
Researchers hope to replicate nature’s ability to produce small clusters of specific
atoms, which can then selfassemble into moreelaborate structures.

• Topdown approaches involve the breaking down of the bulk material into nanos
ized structures or particles. Topdown approaches are inherently simpler, compared
to Bottomup approaches. They depend either on the removal or division of bulk
material or on miniaturization of bulk fabrication processes to produce the desired
structure with appropriate properties.

2.2 Nanometrology

Nanometrology is a subfield of metrology, concerned with the science of measurement
at the nanoscale level. Having manufactured a nanostructure, its structural character
ization is required, before its application. Nanometrology significantly contributes to the
production of accurate and reliable nanomaterials and devices.

The structural qualities of a nanostructure dramatically affect its functionality. The meas
urements, that are carried out in the context of Nanometrology, concern the geometric
characteristics of measurements (height, width, roughness, etc.), as well as their chemical
compounds, physical properties, and interactions with the environment.

2.2.1 Structural Characteristics of Nanorough Surfaces

The structural characteristics of a nanorough surface can be separated into those that
characterize the distribution of its heights (or vertical parameters) and those that charac
terize the correlation of its points on a twodimensional coordinate system (or horizontal
parameters).

2.2.1.1 Vertical Parameters

Moments are a set of quantitative measures describing the shape of a given distribution.
Assuming a multivariate realvalued discrete series z(k, l), its nth moment is given by:

un =
n−1∑
k=0

m−1∑
l=0

(zk,l − z̄)n

mn
(2.1)

V. Sioros 16

Generating realistic nanorough surfaces via a Generative Adversarial Network

Using 2.1, we are able to calculate all the moments of z(k, l). The first moment corres
ponds to the expected value, the second central moment to the variance, the third stand
ardized moment to the skewness, and the fourth standardized moment to the kurtosis of
z(k, l):

Mean = µ =
n−1∑
k=0

m−1∑
l=0

zk,l − z̄

mn
(2.2)

Standard Deviation = σ =

√√√√n−1∑
k=0

m−1∑
l=0

(zk,l − z̄)2

mn
(2.3)

Skewness = S =
n−1∑
k=0

m−1∑
l=0

(zk,l − z̄)3

σ3
(2.4)

Kurtosis = K =
n−1∑
k=0

m−1∑
l=0

(zk,l − z̄)4

σ4
(2.5)

A nanorough surface can be interpreted as amultivariate realvalued discrete series z(k, l),
that maps different 2D coordinates y, x to the height of the nanorough surface on the
specific coordinates z(y, x). Hence, we can characterize it using the statistical moments
2.22.5.

2.2.1.2 Horizontal Parameters

Other than the aforementioned statistical measures, the correlation length of a given sur
face should be taken into consideration during its study. The correlation length can be
defined as a measure of the constraint between height displacements of neighboring
points of the surface. This constraint is expected to be significant if two points are well
inside the correlation length and negligible outside it.

The correlation length of a given nanorough surface is determined by its Autocorrelation
Function (ACF). Autocorrelation is the correlation of a signal with a delayed copy of itself
as a function of the delay.

Given the profile of a nanorough surface, i.e. a discrete normalized height function y(x),
the ACF is given by the following equation:

ACF (rx) =
1

σ2(l − rx)

l−rx∑
1

(y(x)− ⟨y⟩)(y(x+ rx)− ⟨y⟩) (2.6)

where l is the length of the profile in the direction of the horizontal axis and rx is the distance
between 2 points of the profile.

The ACF for small values of rx can be expressed in exponential form as such:

ACF (rx) = exp(
−rx
β

) (2.7)

The correlation length of a given nanorough surface, is the length where the ACF has

V. Sioros 17

Generating realistic nanorough surfaces via a Generative Adversarial Network

decreased by a specific percentage compared to its original value. Usually, the desired
percentage is around 10%, where ACF = 0.1.

2.3 Machine Learning

The term Machine learning (ML) describes a set of computer algorithms that can im
prove automatically through the use of data. Machine learning algorithms ”learn” to make
predictions or decisions without being explicitly programmed to do so.

Machine learning algorithms aim at modeling complex functions and can be divided into
two broad categories, the Supervised Learning (SL) and the Unsupervised Learning
(UL) algorithms. We are going to be focusing on SL, and more specifically Deep Learning
methods.

2.4 Deep Learning

Deep learning (also known as Deep Structured Learning) is part of a broader family of
machine learningmethods based on artificial neural networks with representation learning.

Representation learning or Feature Learning is a set of techniques that allows a system
to automatically discover the representations needed for feature detection from raw data.
This replaces manual feature engineering, which is the process of using domain know
ledge to extract features (characteristics, properties, attributes) from raw data, and allows
a machine to both learn the features and use them to perform a specific task. By the term
feature, we refer to an individual measurable property or characteristic of a phenomenon.
Features are usually numeric, but structural features such as strings and graphs can also
be used. The concept of ”feature” is related to that of explanatory variables used in stat
istical techniques such as linear regression.

Artificial neural networks (ANNs) were inspired by information processing and distrib
uted communication nodes in biological systems. ANNs, though are quite different from
biological brains. ANNs are comprised of an input layer, one or more hidden layers, and
an output layer. Each node or artificial neuron has inputs and produces a single output that
can be sent to multiple other neurons. The inputs can be the feature values of a sample of
external data, such as images or documents, or they can be the outputs of other neurons.
The outputs of the final output neurons of the neural net accomplish the task, such as
recognizing an object in an image.

An ANNwherein connections between the nodes do not form cycles or loops, is referred to
as FeedForward Neural Network. The FeedForward Neural Network was the first and
simplest type of artificial neural network devised. In this network, the information moves
in only one direction, forward from the input nodes, through the hidden nodes (if any), and
to the output nodes.

2.4.1 An Artificial Neuron

Artificial neurons are elementary units in an artificial neural network. The artificial neuron
receives one or more inputs and sums them to produce an output. Each input is separately

V. Sioros 18

Generating realistic nanorough surfaces via a Generative Adversarial Network

weighted, and the sum is passed through a nonlinear function known as an activation
function.

Other than the neuron’s weights, another term is added to the total sum before being
passed through the activation function. This term is the socalled bias. Bias allows you to
shift the activation function, analogously to a constant in the context of a linear function,
whereby the line is effectively transposed by the constant value.

y...

x0

x1

xm

y := ϕ(z)

Figure 2.1: An artificial neuron. This visualization was produced using code adapted from David
Stutz’s work [3].

2.4.2 SingleLayer Perceptron Network (SLP)

The simplest kind of neural network is a SingleLayer Perceptron Network, which con
sists of a single layer of output nodes; the inputs are fed directly to the outputs via a series
of weights. The sum of the products of the weights and the inputs is calculated in each
node and passes through a, commonly nonlinear, function. Singlelayer perceptrons are
only capable of learning linearly separable patterns.

For a given artificial neuron k, let there be m + 1 inputs with signals x0 through xm and
weights wk,0 through wk,m. To achieve a bias inclusive representation, the x0 input is
assigned the value +1 and corresponds to the neuron’s bias, with wk,0 = bk. Then the
output of neuron k is given by the following equation:

yk = ϕ(
m∑
j=0

wk,jxj) (2.8)

where ϕ stands for the activation function of choice. This operation is demonstrated by
Figure 2.1, where k is left out as we are demonstrating the case of a single neuron.

2.4.3 Convolutional Neural Network (CNN)

A Convolutional Neural Network (CNN) [4, 5] is a class of artificial neural networks, that
take advantage of the hierarchical structure of data, assembling patterns of increasing
complexity using smaller and simpler ones.

CNNs were inspired by the primary visual cortex of the brain, which is responsible for
processing visual information. Individual cortical neurons respond to stimuli only in a re
stricted region of the visual field known as the receptive field. The receptive fields of
different neurons partially overlap such that they cover the entire visual field.

V. Sioros 19

Generating realistic nanorough surfaces via a Generative Adversarial Network

2.4.3.1 Convolution

Assuming data with a gridlike topology, Convolution refers to the process of passing a
sliding window of predetermined size over the data, and computing the dot product of a
small matrix of numbers, better known as kernel or filter, with each submatrix of the input
data. The resulting matrix is most commonly referred to as feature map.

Denoting the input as I, the kernel as K, and the feature map as F, convolution is described
by the following equation:

F [m,n] = (I ·K)[m,n] =
∑

j

∑
k
I[m− j, n− k]×K[j, k] (2.9)

The convolution process (Figure 2.2) is controlled by two hyperparameters, namingly the
padding and the stride. Stride controls by how much we shift the convolution kernel. More
specifically, for any integer s > 0 a stride s means that the kernel is translated s units at
a time. A stride of 1 leads to heavily overlapping receptive fields between the columns,
and a large output volume. A greater stride means a smaller overlap of receptive fields
and smaller spatial dimensions of the output volume. In practice, s ≥ 3 is quite rare.
Sometimes, it is convenient to pad the input with zeros (or other values, such as the
average of the respective region) on the border of the input volume. Padding determines
the spatial size of the output volume.

Assuming stride s and padding p, the dimension of the output feature map is given by the
following expression:

nout = ⌊
nin + 2× p− f

s
+ 1⌋ (2.10)

8 5 3 5
4 7 4 2
7 8 7 3
5 8 4 1

37 35
32 30

1 0 1
1 0 0
1 1 1

I

K

F = I ·K

Figure 2.2: Convolution with a stride of 1 and no padding

In case, more than one kernel is to be applied, the convolution process is separately
carried out for each one, and the results are stacked into a single three dimensional matrix.
It is important that the kernel(s) have the same number of channels as the input. By
channels we refer to the depth of the input data. Two dimensional data are treated as
having a single channel. For example, in the case of RGB images, there are 3 channels,
one for each color.

Denoting n as the size of the input data k as the kernel size, nc as the number of channels
of the input data, and nk as the number of kernels to be applied on the data, the dimensions

V. Sioros 20

Generating realistic nanorough surfaces via a Generative Adversarial Network

of the output feature map are given by the following expression:

[n, n, nc] · [k, k, nc] = [⌊nin + 2× p− f

s
+ 1⌋, ⌊nin + 2× p− f

s
+ 1⌋, nk] (2.11)

2.4.3.2 Convolutional Layer

The Convolutional Layer is the core building block of the CNN architecture. A CNN is is
constructed by stacking such along with other types (activation function, min/max/average
pooling, etc.) of layers.

A convolutional layer receives a block of input feature maps, convolves it using a set of
learnable kernels, and generates a block of output feature maps. These kernels activate
when the convolutional layer detects a specific type of feature at some spatial position in
the input. Different kernels learn to activate for different features. A certain combination
of features in a certain area can signal a larger, more complex feature. For example,
in the case of visual imagery, detecting a set of curves might result in detecting a set of
circles (a combination of curves), which consequently might result in detecting a bicycle
(a combination of line and circle features), and so on.

During the forward pass, each kernel is convolved across the width and height of the input
volume. A bias term is optionally added to expression 2.9, and the result is stored in the
output feature map. Every entry in the output volume can thus be interpreted as an output
of a neuron that examines only a small region of the input data and shares parameters
with other neurons in the same feature map. Moreover, the number of output channels
determines the number of neurons that connect to the same region of the input volume.
Hence, not all neurons in two consecutive layers are connected to each other.

Fully connected feedforward neural networks are generally impractical for large inputs,
such as highresolution images, where each pixel is a relevant input feature, as it would
require a tremendous number of neurons, even in the case of a shallow architecture. In
this scenario, CNNs are a preferable option as connections are local in space and neurons
of the same feature map share weights, thus reducing the number of free parameters,
and allowing the network to be deeper. Furthermore, CNNs, contrary to traditional neural
network architectures which treat input values that are far apart the same way as values
that are close together, do take the spatial structure of data into account. This renders
them ideal for data with a gridlike topology.

2.4.4 Activation Functions

Activation functions are a way of introducing nonlinearity to a neural network. In the
absence of an activation function, nomatter howmany layers there are in a neural network,
the last layer is going to be a linear function of the first. As a result, the neural network
degenerates into a linear regression model with limited expressive capabilities.

Other than nonlinear, activation functions are often monotonically increasing, continuous,
differentiable, and bounded.

Popular choices include the Rectified Linear Unit (ReLU), Hyperbolic Tangent (TanH),
the Sigmoid (σ) and LeakyReLU activation functions:

V. Sioros 21

Generating realistic nanorough surfaces via a Generative Adversarial Network

ReLU(x) = max(0, x) (2.12)
TanH(x) = tanh(x) (2.13)

σ(x) = (1 + e−x)−1 (2.14)
LeakyReLUα = max(0, x) + α ·min(0, x) (2.15)

2.4.5 Back Propagation

Backpropagation [6] is a widely used algorithm for training feedforward neural networks,
wherein the gradient of a loss function is computed with respect to the weights of the
network for a specific inputoutput instance.

The gradient of a scalarvalued differentiable function f of several variables is the vector
field (or vectorvalued function) ∇f whose value at a point p is the vector whose compon
ents are the partial derivatives of f at p. That is, for f : Rn → R, its gradient ∇f : Rn → Rn

is defined at the point p = (x1, . . . , xn) in ndimensional space as the vector:

∇f(p) =

∂f
∂x1

(p)
...

∂f
∂xn

(p)

 (2.16)

A loss function calculates the difference between the network output and its expected
output after a training example has propagated through the network. Loss functions are
not fixed and are chosen depending on the task at hand.

During backpropagation the gradients are computed one layer at a time, iterating back
ward from the last layer.

During model evaluation, the weights are fixed, while the inputs vary and the target out
put is unknown. Whereas during model training, the inputoutput pairs are fixed and the
weights vary.

Backpropagation requires the derivatives of the activation functions to be known at net
work design time. Additionally, the loss function must be expressible as a function of
the outputs of the neural network as well as an average over individual error functions
Qi(w), where each summand function Qi is typically associated with the ith observation in
a nlarge training data set:

Q(w) =
1

n

∑n

i=1
Qi(w) (2.17)

2.4.5.1 Mathematical Statement

Given a feedforward neural network architecture, let x be the neural network’s input,
which is a vector of features, y be the target output, C be the loss function, L be the
number of layers that make up the neural network,W l = (wl

j,k) be the weights, where wl
j,k

is the weight between the kth node in layer l − 1 and the jth node in layer l and f l be the
activation functions at layer l.

V. Sioros 22

Generating realistic nanorough surfaces via a Generative Adversarial Network

Assuming that nodes in each layer are connected only to nodes in the immediate next
layer, without skipping any layers, the overall network can be mathematically described
as a combination of function composition and matrix multiplication, as such:

g(x) := fL(WLfL−1(W l−1 · · · f 1(W 1x) · · ·)) (2.18)

Given an inputoutput pair (x, y) the loss function is:

C(y, g(x)) = C(y, fL(WLfL−1(W l−1 · · · f 1(W 1x) · · ·))) (2.19)

The derivative of the loss in terms of the inputs is given by the chain rule as:

∂C

∂aL
· ∂a

L

∂zL
· ∂zL

∂aL−1
· ∂a

L−1

∂zL−1
· ∂z

L−1

∂aL−2
· · · ∂a

1

∂z1
· ∂z

1

∂x
(2.20)

The chain rule is a formula that expresses the derivative of the composition of two differ
entiable functions f and g in terms of the derivatives f

′ and g
′. To elaborate, if a variable

z depends on a variable y, which itself depends on a x, then z depends on x as well, via
the intermediate variable y and the chain rule states that:

∂z

∂x
=

∂z

∂y
· ∂y
∂x

(2.21)

Taking into consideration that:

(f l)
′
=

∂al

∂zl
(2.22)

W l =
∂W lal−1

∂al−1
=

∂zl

∂al−1
(2.23)

2.20 can be rewritten as:

∂C

∂aL
· (fL)

′ ·WL · (fL−1)
′ ·WL−1 · · · (f 1)

′ ·W 1 (2.24)

The gradient (∇) is the transpose of the derivative of the output in terms of the input. The
transpose of a matrix is an operator which flips amatrix over its diagonal; that is, it switches
the row and column indices of the matrix A by producing another matrix, often denoted
by AT . The transpose of a product of matrices is the product, in the reverse order, of the
transposes of the factors:

(AB)T = BTAT (2.25)

Using 2.24 and 2.25 we can calculate the gradient as such:

∇xC = (W 1)T · (f 1)
′ · · · (WL−1)T · (fL−1)

′ · (WL)T · (fL)
′ · ∇aLC (2.26)

V. Sioros 23

Generating realistic nanorough surfaces via a Generative Adversarial Network

We shall now introduce the auxiliary quantity δl, which stands for the ”error at level l” and
is defined as the gradient of the input values at level l:

δl = (f l)
′ · (W l+1)T · · · (WL−1)T · (fL−1)

′ · (WL)T · (fL)
′ · ∇aLC (2.27)

The gradient of the weights in layer l is then:

∇W lC = δl(al−1)T (2.28)

δl is multiplied by a factor of al−1, as the weightsW l, between levels l−1 and l, affect level
l proportionally to the inputs.

2.27 can be rewritten as:

δl−1 = (f l−1)
′ ◦ (W l)T · δl (2.29)

where ◦ is the Hadamard product, that is a binary operation that takes two matrices of the
same dimensions, and produces another matrix where each element i, j is the product of
elements i, j of the original two matrices.

Backpropagation essentially consists of utilizing expression 2.29 to recursively evaluate
expression 2.28, starting at the last layer and working our way to the first layer.

Backpropagation is capable of efficiently computing the gradient by avoiding duplicate
calculations and not computing unnecessary intermediate values. Computing δl−1 in terms
of δl avoids the duplicate multiplication of layers l, l+1, · · · , L−1, L. Propagating the error
backwards means that each step simply multiplies the vector δl by the matrices of weights
(W l)T and derivatives of activation functions (f l−1)

′. By contrast, multiplying forwards,
starting from the changes at an earlier layer, means that each multiplication multiplies
a matrix by a matrix. This is much more expensive and corresponds to tracking every
possible path of a change in one layer l forward to changes in the layer l+2 (for multiplying
W l+1 byW l+2, with additional multiplications for the derivatives of the activation functions),
which unnecessarily computes the intermediate quantities of how weight changes affect
the values of hidden nodes.

The term Backpropagation strictly refers to the process of computing the gradients, and
not how they are used.

2.4.6 Gradient Descent

Gradient descent optimization algorithms [7] are usually used jointly with backpropaga
tion to train multilayer networks, updating the network’s weights and thus minimizing the
network’s loss. One of the more popular ones is the Gradient Descent method.
Gradient Descent is a firstorder iterative optimization algorithm for finding a local minimum
of a differentiable function. The idea is to take repeated steps in the opposite direction of
the gradient of the function at the current point because this is the direction of steepest
descent. Conversely, stepping in the direction of the gradient will lead to a local maximum
of that function; the procedure is then known as gradient ascent.

Gradient Descent works in spaces of any number of dimensions, even in infinitedimensional
ones.

V. Sioros 24

Generating realistic nanorough surfaces via a Generative Adversarial Network

2.4.6.1 Mathematical Statement

Gradient Descent is based on the observation that if themultivariable function F is defined
and differentiable in a neighborhood of a point a, then F (x) decreases fastest if one goes
from a in the direction of the negative gradient of F at a, −∇F (a). It follows that if

an+1 = an − γ∇F (a) (2.30)

for γ ∈ R+ small enough, then F (an) ≥ F (an+1). In other words, the term γ∇F (a) is sub
tracted from a, because we want to move against the gradient, toward the local minimum.
With this observation in mind, one starts with a guess x0 for a local minimum of F and
considers the sequence x0, x1, x2 . . . such that

xn+1 = xn − γ∇F (xn), n ≥ 0 (2.31)

We have a monotonic sequence

F (x0) ≥ F (x1) ≥ F (x2) ≥ . . . (2.32)

so, hopefully, the sequence (xn) converges to the desired local minimum. Note that the
value of the step size γ is allowed to change at every iteration.

Since using a step size γ that is too small would slow convergence, and a γ too large
would lead to divergence, finding a good setting of γ is an important practical problem.
Other than the step size γ, one could also alter the direction of the descent. Whilst using
a direction that deviates from the steepest descent direction may seem counterintuitive,
the idea is that the smaller slope may be compensated for by being sustained over a much
longer distance. Let’s consider the more general update rule with direction pn and step
size γn:

an+1 = an − γnpn (2.33)

Finding good settings of pn and γn requires a little thought. First of all, we would like the
update direction to point downhill. Mathematically, letting θn denote the angle between
∇F (an) and pn, this requires that cos θn > 0. Under the fairly weak assumption that F is
continuously differentiable, we may prove that:

F (an+1) ≤ F (an)− γn ∥∇F (an)∥2 ∥pn∥2
[
cos θn − max

t∈[0,1]

∥∇F (an − tγnpn)−∇F (an)∥2
∥∇F (an)∥2

]
(2.34)

This inequality implies that the amount by which we can be sure the function F is de
creased depends on a tradeoff between the two terms in square brackets. The first term
in square brackets measures the angle between the descent direction and the negative
gradient. The second term measures how quickly the gradient changes along the descent
direction.

In principle, this inequality could be optimized over pn and γn to choose an optimal step size
and direction. The problem is that evaluating the second term in square brackets requires

V. Sioros 25

Generating realistic nanorough surfaces via a Generative Adversarial Network

evaluating ∇F (an − tγnpn), and extra gradient evaluations are generally expensive and
undesirable.

With certain assumptions on the function F and particular choices of γ, convergence to a
local minimum can be guaranteed, for example, when the function F is convex, all local
minima are also global minima, so in this case, gradient descent can converge to the
global solution.

2.4.7 Extensions and Variants of Gradient Descent

Various Gradient Descent variants have been designed through the years, which improve
upon different aspects or tackle limitations of the original Gradient Descent method. We
are going to be exploring a few of these.

2.4.7.1 Stochastic Gradient Descent

As previously mentioned in 2.4.5, training a neural network effectively evaluates to min
imizing an objective function that can be expressed as:

Q(w) =
1

n

∑n

i=1
Qi(w) (2.35)

where the parameter w which minimizesQ(w) is to be estimated. Each summand function
Qi is typically associated with the ith observation in the training data set.

When used to minimize the above function, the standard (or ”batch”) gradient descent
method would perform the following iterations:

w := w − γ∇Q(w) = w − γ

n

∑n

i=1
∇Qi(w) (2.36)

where γ is a step size or learning rate.

In stochastic (or ”online”) gradient descent, the true gradient of Q(w) is approximated by
a gradient at a single example:

w := w − γ∇Qi(w) (2.37)

Especially in highdimensional optimization problems, this reduces the computational bur
den, achieving faster iterations in trade for a lower convergence rate. As the algorithm
sweeps through the training set, it performs the above update for each training example.
Several passes can be made over the training set until the algorithm converges.

A compromise between computing the true gradient and the gradient at a single example is
to compute the gradient against more than one training example (called a ”minibatch”) at
each step. This can perform significantly better than the ”true” stochastic gradient descent
described because the code can make use of vectorization libraries rather than comput
ing each step separately. It may also result in smoother convergence, as the gradient
computed at each step is averaged over more training examples.

V. Sioros 26

Generating realistic nanorough surfaces via a Generative Adversarial Network

2.4.7.2 Momentum

Stochastic gradient descent with momentum [8] keeps track of the update ∆w at each
iteration, and determines the next update as a linear combination of the gradient and the
previous update:

∆w := α∆w − γ∇Qi(w)

w := w +∆w

 =⇒ w := w − γ∇Qi(w) + α∆w (2.38)

where α is an exponential decay factor between 0 and 1 that determines the relative con
tribution of the current gradient and earlier gradients to the weight change.

Momentum allows the search to build inertia in a direction in the search space and over
come the oscillations of noisy gradients and coast across flat spots of the search space.

2.4.7.3 RMSProp

In Root Mean Square Propagation (RMSProp) [9], the learning rate is adapted for each
of the parameters. The idea is to divide the learning rate for a weight by a running average
of the magnitudes of recent gradients for that weight.

So, first the running average is calculated in terms of means square:

v(w, t) := βv(w, t− 1) + (1− β)(∇Qi(w))
2 (2.39)

where β is the forgetting factor. And the parameters are updated as such:

w := w − γ√
v(w, t)

∇Qi(w) (2.40)

2.4.7.4 Adam

Adaptive Moment Estimation (Adam) [10] is an extension of RMSProp. In Adam, run
ning averages of both the gradients and the second moments of the gradients are used.

Given parameters w(t) and a loss function L(t), where t indicates the current training iter
ation, the parameters are updated as such:

m(t+1)
w ← β1m

(t)
w + (1− β1)∇wL

(t) (2.41)
v(t+1)
w ← β2v

(t)
w + (1− β2)(∇wL

(t))2 (2.42)

m̂w =
m

(t+1)
w

1− β1

(2.43)

v̂w =
v
(t+1)
w

1− β2

(2.44)

w(t+1) ← w(t) − γ
m̂w√
v̂w + ϵ

(2.45)

V. Sioros 27

Generating realistic nanorough surfaces via a Generative Adversarial Network

where ϵ is a small scalar (e.g. 10−8) used to prevent division by 0, and β1 (e.g. 0.9) and
β2 (e.g. 0.999) are the forgetting factors for gradients and second moments of gradients,
respectively.

2.4.8 Batch Normalization

Each layer of a neural network has inputs with a corresponding distribution, which is af
fected during the training process by the randomness in the parameter initialization and
the randomness in the input data. The effect of these sources of randomness on the distri
bution of the inputs to internal layers during training is described as internal covariate shift.
Although a clearcut precise definition seems to be missing, the phenomenon observed in
experiments is the change in means and variances of the inputs to internal layers during
training.

Batch normalization [11] was initially proposed to mitigate internal covariate shift. During
the training stage of networks, as the parameters of the preceding layers change, the
distribution of inputs to the current layer changes accordingly, such that the current layer
needs to constantly readjust to new distributions. This problem is especially severe for
deep networks because small changes in shallower hidden layers will be amplified as
they propagate within the network, resulting in a significant shift in deeper hidden layers.
Therefore, the method of batch normalization is proposed to reduce these unwanted shifts
to speed up training and to produce more reliable models. Some scholars have argued
that batch normalization does not reduce internal covariate shift, but rather smooths the
objective function, which in turn improves performance.

Besides reducing internal covariate shift, batch normalization is believed to introduce
many other benefits. With this additional operation, the network can use a higher learning
rate without vanishing or exploding gradients. Furthermore, batch normalization seems
to have a regularizing effect such that the network improves its generalization properties.
This prevents the model from corresponding too closely to a particular set of data and
therefore failing to fit additional data or predict future observations reliably (also known as
Overfitting).

It has been observed also that batch normalization the network becomes more robust to
different initialization schemes and learning rates.

2.4.8.1 Mathematical Statement

In a neural network, batch normalization is achieved through a normalization step that
fixes the means and variances of each layer’s inputs. Ideally, the normalization would
be conducted over the entire training set, but to use this step jointly with stochastic op
timization methods, it is impractical to use the global information. Thus, normalization is
restrained to each minibatch in the training process.

Use B to denote a minibatch of size m of the entire training set. The empirical mean and
variance of B could thus be denoted as

V. Sioros 28

Generating realistic nanorough surfaces via a Generative Adversarial Network

µB =
1

m

m∑
i−1

xi (2.46)

σ2
B =

1

m

m∑
i−1

(xi − µB)
2 (2.47)

For a layer of the network with ddimensional input, x = (x(1), ..., x(d)), each dimension of
its input is then normalized (i.e. recentered and rescaled) separately

x̂
(k)
i =

x
(k)
i − µ

(k)
B√

σ
(k)2

B + ϵ

(2.48)

where k ∈ [1, d] and i ∈ [1,m]; µ(k)
B and σ

(k)2

B are the perdimension mean and variance,
respectively. ϵ is added in the denominator for numerical stability and is an arbitrarily small
constant.

The resulting normalized activation x̂(k) have zero mean and unit variance if ϵ is not taken
into account. To restore the representation power of the network, a transformation step
then follows as

y
(k)
i = γ(k)x̂

(k)
i + β(k) (2.49)

where the parameters γ(k) and β(k) are subsequently learned in the optimization process.

Formally, the operation that implements batch normalization is a transform, the Batch
Normalization Transform

BNγ(k),β(k) : x
(k)
1...m → y

(k)
1...m (2.50)

The output of the BN transform y(k) = BNγ(k),β(k)(x(k)) is then passed to other network
layers, while the normalized output x̂(k)

i remains internal to the current layer.

During inference, the normalization step is computed with the population statistics such
that the output could depend on the input in a deterministic manner.

E[x(k)] = EB[µ
(k)
B] (2.51)

Var[x(k)] =
m

m− 1
EB[σ

(k)2

B] (2.52)

The BN transform in the inference step thus becomes

y(k) = BN inf
γ(k),β(k)(x

(k)) =
γ(k)√

Var[x(k)] + ϵ
x(k) +

(
β(k) − γ(k)E[x(k)]√

Var[x(k)] + ϵ

)
(2.53)

where y(k) is passed on to future layers instead of x(k). Since the parameters are fixed
in this transformation, the batch normalization procedure is essentially applying a linear
transform to the activation.

V. Sioros 29

Generating realistic nanorough surfaces via a Generative Adversarial Network

2.4.8.2 Limitations and Hindrances

When activation functions are used whose derivatives can take on larger values, one
risks encountering the exploding gradient problem, which refers to accumulating gradi
ents resulting in very large updates to neural network model weights during training. This
renders the model unstable and unable to learn from the training data.

Even though batch normalization was originally introduced to alleviate gradient vanishing
or explosion problems, a deep batch normalization network suffers from gradient explo
sion at initialization time, no matter what it uses for nonlinearity. Thus the optimization
landscape is very far from smooth for a randomly initialized, deep batch normalization
network. More precisely, if the network has L layers, then the gradient of the first layer
weights has norm > cλL for some λ > 1, c > 0 depending only on the nonlinearity. For
any fixed nonlinearity, λ decreases as the batch size increases. For example, for ReLU,
λ decreases to π

π−1
≈ 1.467 as the batch size tends to infinity. Practically, this means deep

batch normalization networks are untrainable. This is only relieved by skip connections in
the fashion of residual networks. Note that, the gradient explosion depends on stacking
batch normalization layers typical of modern deep neural networks.

2.4.9 Generative Adversarial Network (GAN)

A Generative Adversarial Network (GAN) [1] is a machine learning framework wherein,
two models, namely the generator and the discriminator are simultaneously trained and
play a minimax twoplayer game.

The generative model captures the data distribution and generates candidates, while the
discriminative network, given a sample, estimates the probability that it originates from the
training data rather than the generative model.

The contest operates in terms of data distributions. Typically, the generative network
learns to map from a latent space to a data distribution of interest.

GANs are implicit generative models, which means that they do not explicitly model the
likelihood function nor provide means for finding the latent variable corresponding to a
given sample.

2.4.9.1 Mathematical Statement

The adversarial modeling framework is most straightforward to apply when the models
are both multilayer perceptrons. To learn the generator’s distribution pg over data x, we
define a prior on input noise variables pz(z), then represent a mapping to data space
as G(z; θg), where G is a differentiable function represented by a multilayer perceptron
with parameters θg. We also define a second multilayer perceptronD(x; θd) that outputs a
single scalar. D(x) represents the probability that x came from the data rather than pg. We
trainD to maximize the probability of assigning the correct label to both training examples
and samples from G. We simultaneously train G to minimize log(1�D(G(z))).

In other words, D and G play the following twoplayer minimax game with value function

V. Sioros 30

Generating realistic nanorough surfaces via a Generative Adversarial Network

V (G,D):

min
G

max
D

V (G,D) = Ex∼pdata(x)

[
logD(x)

]
+ Ez∼pz(z)

[
1− logD(G(z))

]
(2.54)

In [1] Ian Goodfellow et al. proved that this minimax game has a global optimum for
pg = pdata.

2.4.9.2 Training

The generative network’s training objective is to increase the error rate of the discriminative
network, by producing novel candidates that the discriminator fails to distinguish from real
data.

A known data set serves as the initial training data for the discriminator. Training involves
presenting it with samples from the training data set until it achieves acceptable accuracy.
The generator trains based on whether it succeeds in fooling the discriminator. Typic
ally the generator is seeded with randomized input that is sampled from a predefined
latent space (e.g. a multivariate normal distribution). Thereafter, candidates synthes
ized by the generator are evaluated by the discriminator. Independent backpropagation
procedures are applied to both networks so that the generator produces better samples,
while the discriminator becomes more skilled at flagging synthetic samples. The gradient
based updates can use any standard gradientbased learning rule, but we are going to be
presenting a minibatch stochastic gradient descent (along with momentum) approach, as
this is the one explored in [1]:

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial
nets. The number of steps to apply to the discriminator, k, is a hyperparameter
1: for number of training iteration do
2: for k steps do
3: Sample mini-batch of m noise samples {z(1) · · · z(m)} from noise prior

pg(z).
4: Sample mini-batch of m examples {x(1) · · ·x(m)} from data generating

distribution pdata(x).
5: Update the discriminator by ascending its stochastic gradient:

∇θd

1

m

∑m

1

[
logD

(
x(i)
)
+ log

(
1−D

(
G
(
z(i)
)))]

6: Sample mini-batch of m noise samples {z(1) · · · z(m)} from noise prior
pg(z).

7: Update the generator by descending its stochastic gradient:

∇θg

1

m

∑m

1
log
(
1−D

(
G
(
z(i)
)))

Early in learning, whenG is poor,D can reject samples with high confidence because they
are clearly different from the training data. In this case, log(1�D(G(z))) saturates. Rather

V. Sioros 31

Generating realistic nanorough surfaces via a Generative Adversarial Network

than training G to minimize log(1�D(G(z))) we can train G to maximize logD(G(z)). This
objective function results in the same fixed point of the dynamics of G and D but provides
much stronger gradients early in learning.

Optimizing D to completion in the inner loop of training is computationally prohibitive, and
on finite data sets would result in overfitting. Instead, we alternate between k steps of
optimizing D and one step of optimizing G. This results in D being maintained near its
optimal solution, so long as G changes slowly enough.

This algorithm optimizes function 2.54, thus obtaining the desired result of pg ≈ pdata.

2.5 NGram Graphs

In the fields of computational linguistics and probability, an ngram is a contiguous se
quence of n items from a given sample of text or speech. The items can be phonemes,
syllables, letters, words, or base pairs according to the application.

Assuming a text (T l), an elementary way of extracting its corresponding set of ngrams
SSn is described by Algorithm 2:

Algorithm 2 Extracting ngrams from a text
1: SSn ← ∅
2: for all i in [1, length(T)− n+ 1] do
3: SSn ← SSn

⋃
Si,i+n−1

In [12] George Giannakopoulos et al. proposed the ngram graph model, which is a
languageneutral, statistical approach of representing a text document. In [13], the au
thors, using the ngram graph model, designed an automatic summary evaluation system.

The ngram graph is a graph G = {V,E, L,W}, where V is the set of vertices, E is the set
of edges, L is a onetoone function assigning a label to each vertex and to each edge and
W is a function assigning a weight to every edge. The graph has ngrams as its vertices
v ∈ V and edges e ∈ E connecting them. The weights w ∈ W of the edges indicate either
the distance or the number of cooccurrences of two ngrams, within a given windowDwin,
in the original text. The meaning of distance and window size changes by whether we use
character or word ngrams.

In [12] 3 different weighting approaches were presented based on different types of win
dows. Denoting a random ngram as N0 located at position p0, the various approaches
are described below:

• The nonsymmetric approach where, then the window will span from p0 − Dwin

to p0 − 1, taking into account only preceding ngrams. Every neighbor contributes
equally to the corresponding edge’s weight.

• The symmetric approach where, then the window will span from p0 −
⌊
Dwin

2

⌋
to

p0 +
⌊
Dwin

2

⌋
, taking into account both preceding and succeeding ngrams. Every

neighbor contributes equally to the corresponding edge’s weight.

• The Gaussnormalized symmetric approach where, then the window will span
from p0 −

⌊
3×Dwin

2

⌋
to p0 +

⌊
3×Dwin

2

⌋
, taking into account both preceding and suc

V. Sioros 32

Generating realistic nanorough surfaces via a Generative Adversarial Network

ceeding ngrams. Each neighbor contribution is weighted based on that neighbor’s
distance to the target ngram.

2.5.1 Similarity Metrics

In [12]George Giannakopoulos et al. introduced a variety of metrics aimed at determining
the similarity between two ngram graphs. These metrics include the Value Similarity
(VS), the Size Similarity (SS) and the Normalized Value Similarity (NVS).
Assuming two ngram graphs G1 = {V1, E1, L1,W1} and G2 = {V2, E2, L2,W2}, then the
Value Similarity is defined as:

VS(G1, G2) =

∑
e∈E1∩E2

VR(e)
max(|E1| , |E2|)

(2.55)

where |Ei| stands for the cardinality of Ei. VR stands for Value Ratio and is defined as:

VR(e) =
min(we

1, w
e
2)

max(we
1, w

e
2)

(2.56)

where we
1 and we

2 correspond to the weights of edge e in graphs G1 and G2 respectively.

Size Similarity is defined as:

SS(G1, G2) =
min(|E1| , |E2|)
max(|E1| , |E2|)

(2.57)

Finally, Normalized Value Similarity uses both 2.55 and 2.57 and is defined as:

NVS(G1, G2) =
VS(G1, G2)

SS(G1, G2)
(2.58)

2.5.2 Variants

In [13] George Giannakopoulos et al. presented two variants of ngram graphs, targeting
the task of summarization evaluation. The first method, referred to as Merged Model
Graph (MeMoG), utilizes a single ngram graph to represent a set of documents, while the
second method, referred to as Hierarchical Proximity Graph (HPG), utilizes a hierarchy
of graphs to represent a set of documents with different granularity levels.

2.5.2.1 Merged Model Graph

The Merged Model Graph approach allows modeling a whole set of documents using one
representative graph. Given a set DN of N documents, the construction of the represent
ative graph comprises of:

1. Constructing N individual graphs, one for each document in DN

2. Merging these N graphs into one representative graph

V. Sioros 33

Generating realistic nanorough surfaces via a Generative Adversarial Network

Merging the individual graphs is carried out using the Update Operator U(G1, G2, l), which
takes as input two graphs, one that is considered to be the preexisting graph G1 and one
that is considered to be the new graphG2. The operator also expects a parameter referred
to as the learning factor l ∈ [0, 1], which determines the sensitivity of G1 to changes in G2.
More precisely:

• A value of l = 0 indicates that G1 will completely ignore the changes introduced by
G2.

• A value of l = 1 indicates that the weights of the edges of G1 will be overwritten by
the weights of the edges of G2.

Assuming two graphs G1 and G2, applying U results in the following weight update:

W i(e) = W 1(e) + (W 2(e)−W 1(e))× l (2.59)

where W 1(e) and W 2(e) is the weight of edge e on graphs G1 and G2 respectively and
W l(e) corresponds to the weight of edge e on the resulting graph.

In the case of MeMoG, the representative graph’s edges are required to hold weights
averaging the weights of all of its constituent graphs. In order to achieve that, the ith

graph update should contribute to the representative graph with a learning factor of l = 1
i
,

i > 1.

Finally, MeMoG is structured as a standard ngram graph, hence similarity metrics 2.56
2.58 can be used to compare two MeMoGs.

2.5.2.2 Hierarchical Proximity Graph

AnHPG ofL ∈ N∗ levels is a hierarchyH of proximity graphs, where subgraphs of symbols
from a lower level l − 1 serve as the symbols of the level l ∈ [1, L]. Each level Hl holds a
proximity graph Jl and an index of symbols Il.

Given a source text, in order to create the first level, we need to extract its corresponding
set of ngrams. Afterwards, the index I1 maps, through a bijection, every distinct ngram
to an integer symbol, and vertices are created in the proximity graph J1, one for each
symbol. Considering the source text as a sequence of symbols Z and given a window
Dwin, all symbols found within a maximum distance (the number of ngrams between two
ngrams of interest) of Dwin in Z have their vertices linked by an edge.

The aforementioned process is repeated for every symbol in Z, resulting in the construc
tion of multiple graphs, referred to as sneighborhoods, each one connecting a symbol to
its neighbors. Each sneighborhood serves as a symbol for the next level of graphs and
is, thus, mapped to an integer in the corresponding index.

Constructing levels 1 < l ≤ L of the HPG, consists of

• Retrieving the symbol sequence corresponding to level l − 1.

• Constructing the sneighborhoods of the current level and adding them to index Il.

• Generating the current level proximity graph Jl.

V. Sioros 34

Generating realistic nanorough surfaces via a Generative Adversarial Network

The resulting hierarchy of proximity graphs H =< J1, · · · , JL > is referred to as a Hier
archical Proximity Graph (HPG).
Note that, every level uses a different window size and more specifically, the window size
increases linearly with the level, Dwinl = ⌊Dwin× l⌋. This is based on the intuition, that the
notion of neighborhood changes completely, going from a word to a paragraph, as entities
that are further away should be now considered neighboring.

Lastly, the similarity between two HPGs H1 and H2 is given by the weighted normalized
sum of value similarities between the corresponding levels of H1 and H2:∑

l∈[1,L]l ×VSl(H1, H2)∑
l∈[1,L]l

(2.60)

where V Sl(H1, H2) is the Value Similarity (2.55) of the l level proximity graphs of H1 and
H2.

2.6 State of the Art

Deep generative networks have already been successfully applied in the field of Nanotech
nology andmore specifically to the task of characterizing microstructures and synthesizing
artificial ones.

Ahmet Cecen et al. [14] employ a 3D convolutional neural network in order to reliably
link a microstructure to its properties. The learned 3DCNN features are then used along
side other spatial metrics to estimate higherorder statistics leading to improved accuracy
in terms of property prediction. Zijiang Yang et al. [15] employ a convolutional neural
network in order to predict the microscale elastic strain field of a threedimensional voxel
based microstructure of a highcontrast twophase composite. The model is trained on
multiple data sets corresponding to varying degrees of contrast and is able to signific
antly outperform stateoftheart methods. Antonios Stellas et al. [16] showcased that
deep neural networks, as well as other machine learning models, can efficiently predict
a nanosurface’s active area given its corresponding structural parameters, such as the
RMS, association length(s) etc.

Satoshi Noguchi et al. [17] utilize a Variational AutoEncoder [18] in order to map material
microstructures to a latent space and subsequently use a PixelCNN in order to generate
statistically equivalent microstructures based on these latent features. Zijiang Yang et al.
[19] develop a threedimensional CNN aiming to model elastic homogenization linkages
for threedimensional highcontrast composite material system which improves on past
physicsinspired approaches. Ruijin Cang et al. [20] employ a convolutional deep belief
network [21] aiming to establish a twoway conversion between microstructures and their
corresponding lowerdimensional feature representations. The proposed model is applied
to a wide spectrum of heterogeneous material systems and is able to produce material re
constructions that are close to the original samples with respect to twopoint correlation
functions and mean critical fracture strength while achieving an 1000fold dimensional re
duction from the microstructure space. Daria Fokina et al. [22] utilize a StyleGAN [23]
in their efforts to synthesize larger microstructures from several smaller samples. The
authors use image quilting between the borders of two nearby patches to generate real
istically looking samples of a larger size. The method is tested on microstructure synthesis
and porous media reconstruction and it is shown that the generated structures closely re

V. Sioros 35

Generating realistic nanorough surfaces via a Generative Adversarial Network

semble the real ones with regards to their effective properties. Lukas Mosser et al. [24]
evaluate the application of generative adversarial neural networks [1] for stochastic im
age reconstruction of porous media and show through various measures that the model
is able to capture the statistical and physical behavior of the training data. Andrea Gayon
Lombardo et al. [25] implement a deep convolutional generative adversarial network [2]
with the goal of generating realistic nphase microstructural data. The model is success
fully applied on two different threephase microstructures, namely a lithiumion battery
cathode and a solid oxide fuel cell anode and it is able to produce artificial microstructures
that are virtually indistinguishable from real data.

The motivation behind this work is developing a datadriven framework aiming at the
stochastic reconstruction of nanorough surfaces. We employ a DCGAN [2] with the goal of
improving upon its sole performance by utilizing a novel graphbased nanorough surface
similarity metric. This similarity metric is going to alter the generator’s applied loss and
effectively guide the model throughout the training course. We consider the generation of
nanorough surfaces as a datadriven supervised learning task, where nanorough surfaces
of predefined structural parameters serve as the training data set.

V. Sioros 36

Generating realistic nanorough surfaces via a Generative Adversarial Network

3. METHODOLOGY

3.1 Problem Definition

A nanorough surface can be approximated by a height map, that is a matrix containing the
height values of different point samples. Note that such a representation entails limitations
regarding its representative capabilities due to utilizing a discrete number of points, as
described in [26]:

S =

s1,1 . . . s1,n
...

sm,1 . . . sm,n

 (3.1)

A nanorough surface can be characterized by its RMS, horizontal and vertical correlation
lengths (ξx, ξy), as well as other metrics. We are going to be referring to the set of values

C =< RMS, ξx, ξy > (3.2)

as the configuration of the nanorough surface.

Our goal is to generate nanorough surfaces of a specific configuration, without a priori
knowledge of their specific configuration, but only of nanorough surface samples. Hence,
we need to determine a function, mapping a set of nanorough surfaces SC∗ to another set
of nanorough surfaces of the same configuration C∗:

F : UC∗ → UC∗ (3.3)

where UC∗ is the set containing every possible nanorough surfaces with a configuration of
C∗.

V. Sioros 37

Generating realistic nanorough surfaces via a Generative Adversarial Network

3.2 System Overview

Dataset

Quantizer
Similarity

Discriminator
Network

Generator
Network

Latent
Space

Artificial
Samples

Figure 3.1: System overview

Our framework employs a CNNbased GAN. More specifically, the generator, which is a
convolutional neural network competes with the discriminator, which is a deconvolutional
neural network. The models are trained on a set of nanorough surfaces corresponding to
a specific parameter configuration C∗.

The training set is loaded and the nanorough surfaces are processed in batches. Fol
lowing Algorithm 1, the generator and the discriminator are trained separately via back
propagation. The discriminator is trained on real and artificially generated data, while the
generator on the other hand is trained based on the discriminator’s output. More spe
cifically, the discriminator outputs a value in the range [0, 1], which corresponds to the
likelihood of a surface originating from the real nanorough surface distribution.

A set of novel ngram graphbased metrics are used in conjunction with the discriminator,
providing additional feedback to the generator model, regarding a surface’s origins, that
is whether or not it originates from the real data distribution. All similarity metrics require
that their input consists of a fixed set of symbols. Hence, the nanorough surfaces must
undergo a processes referred to as Quantization, wherein the data is translated from a 2D
real matrix to a 2D symbol matrix representation.

Our framework was implemented in Python. Nanorough surface generation described
in Section 3.2.1, utilizes NumPy [27], SciPy [28] and SymPy [29]. Nanorough surface
quantization described in Section 3.2.2 utilizes scikitlearn [30]. The implementation of the
graphbased content similarity metrics described in Section 3.2.3 utilizes the PyINSECT
[31] module. Both flavors of the GAN framework described in Section 3.2.4 were imple
mented using the PyTorch [32] ML framework. The visualizations showcased throughout
Chapter 4 were created using Matplotlib [33] and Plotly [34]. The complete source code
can be found at https://github.com/billsioros/RoughML.

V. Sioros 38

https://github.com/billsioros/RoughML

Generating realistic nanorough surfaces via a Generative Adversarial Network

3.2.1 Nanorough Surface Generation

It was required that we generate a large number of nanorough surfaces to serve as the
training data to our models. For this, we simply ported the algorithm used by Antonios
Stellas et al. in [26] to Python.

The nanorough surface generation algorithm can be configured by modifying on of follow
ing 9 parameters:

• n_points: the square root of the actual nanorough surface size. The resulting sur
faces will be square matrices of size n_points× n_points.

• rms, skewness and kurtosis: the root mean square error, skewness and kurtosis
of the height value distribution.

• corlength_x and corlength_y: the desired correlation lengths (ξx, ξy) of the result
ing nanorough surfaces.

• alpha, beta_x and beta_y: the smoothing hyperparameters α, βx and βy (βx and
βy are only present on the Bessel variant of the algorithm).

The nanorough surface generation algorithm consists of:

1. PopulatingR, anN×N matrix, with values resulting from the provided autocorrelation
function (more on that later).

2. Calculating the power spectrum, FR(R), of R based on the Wiener–Khinchin the
orem, as well as the expression AMPR(R) =

√
d2x + d2y × |FR(R)|.

3. Generating an N × N matrix, corresponding to white noise, normalizing it and cal
culating its Fourier transform, XF .

4. Calculating the inverse Fourier transform of the productXF ×
√
AMPR(R), extract

ing the real part, normalizing and scaling it by RMS.

5. Generating an N × N matrix, zngn, corresponding to a Pearson type III continuous
random variable.

6. Flattening both z and zngn, sorting their values in descending order, reordering zngn
based on the order of z and reshaping zngn into a 2D matrix vngs

∗.

7. The conjugate transpose of v_ngs∗ (z_ngs) corresponds to a nonGaussian correl
ated nanorough surface.

The two nanorough surface generation algorithm flavors are differentiated only by the
autocorrelation functions they utilize:

Standard(x, y) = RMS2 × e
−
∣∣∣√ x

ξx

2+ y
ξy

2
∣∣∣2×α

(3.4)

Bessel(x, y) = Standard(x, y)× J0(2π
√

x

βx

2

+
y

βy

2

) (3.5)

where J0(x) is the Bessel function of the first kind, for n = 0. In this work, we only experi
mented with the socalled Standard version of the algorithm.

V. Sioros 39

Generating realistic nanorough surfaces via a Generative Adversarial Network

3.2.2 Nanorough Surface Quantization

The ngram graph model, as well as its variants, were originally applied in the field of Nat
ural Language Processing and more specifically in the context of Summary Evaluation.
Consequently, they were initially designed to operate on strings, that is sequences of
symbols from some alphabet. On the other hand, a nanorough surface is represented as
a twodimensional real matrix, whose values correspond to the height of the nanorough
surface in different sampling coordinates. Therefore, in order to represent a nanorough
surface as an ngram graph, the corresponding twodimensional real matrix must be trans
lated to a twodimensional matrix of symbols. The process responsible for achieving this
is commonly referred to as Quantization (or Binning).
The term Binning describes the process of, given some data points, replacing the original
data points which fall into different value ranges (i.e. bins) by a value representative of
that interval. There is a plethora of Binning methods, differentiated mainly by the way the
bin edges are calculated. Two prominent examples of Binning methods are:

• Uniform Binning, wherein all bins have identical widths.

• Quantile Binning, wherein we assign the same number of observations to every
bin.

Figure 3.2 showcases how 1000 samples drawn from a standard normal distribution are
segregated, in both cases, using 5 bins. First of all, the data points are sorted in ascending
numerical order. Afterwards, the edges of each and every bin are calculated. Finally, every
data point is replaced by the index of its respective bin.

Figure 3.2: Comparing Uniform and Quantile Binning. In the Uniform Binning case, the bin edges
are [−2.874,−1.694,−0.514, 0.665, 1.845, 3.025]. Whereas, in the Quantile Binning case, the bin edges

are [−2.874,−0.838,−0.259, 0.247, 0.841, 3.025].

For our purposes, we opted for 5 bins and the Quantile Binning approach, as more height
values being mapped to the same symbol, entails sparser graph representations and con
sequently renders the process of calculating the appropriateness of a given nanorough
surface less computationally expensive.

V. Sioros 40

Generating realistic nanorough surfaces via a Generative Adversarial Network

In the case of Quantile Binning, the edges of the bins are calculated using Algorithm 3
[35, 36]. More specifically, when using 5 bins the 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 quantiles
are calculated. These 6 values delimit the edges of the 5 bins, and any value that falls
within the range of a given bin, is replaced by its corresponding index, e.g. a value in the
range [quantile(0.0),quantile(0.2)] will be replaced by 0.

Algorithm 3 Calculating the pth quantile of an nlarge set of real numbers R (It is assumed
that the values have already been sorted).
1: m = n× p
2: minteger = ⌊m⌋
3: mfloat = m−minteger

4: if mfloat ≈ 0 then
5: return R[minteger]
6: else
7: return R[minteger−1]+R[minteger]

2

The edges of the bins are initially calculated using the training data set in its entirety. The
training data set is first transformed into a 2D matrix, where every row corresponds to
a different nanorough surface. Binning is then carried out separately on every column
(feature) of this matrix.

0.6 0.1 0.9

0.9 0.7 0.5

0.8 0.3 0.2

0.6 0.1 0.9

0.9 0.7 0.5

0.8 0.3 0.2

0.6 0.1 0.9

0.9 0.7 0.5

0.8 0.3 0.2

0.6 0.1 0.9

0.9 0.7 0.5

0.8 0.3 0.2

0.6 0.1 0.9

0.9 0.7 0.5

0.8 0.3 0.2

0.8 0.5 0.3

0.4 0.7 0.4

0.7 0.8 0.7

0.8 0.5 0.3

0.4 0.7 0.4

0.7 0.8 0.7

0.6 0.1 0.9

0.9 0.7 0.5

0.8 0.3 0.2

0.8 0.5 0.3 0.4 0.7 0.4 0.7 0.8 0.7

0.6 0.1 0.9 0.9 0.7 0.5 0.8 0.3 0.2

Dataset

Matrix No.1 Matrix No.2

Combined Matrix

Figure 3.3: Nanorough Surface Quantization. The multiple 2D matrices making up the training data
set are transformed to 1D matrices by unrolling them in rowmajor order. The 1D matrices are then

compressed into a single 2D matrix where every row corresponds to an individual 1D matrix.
Binning is then carried out separately on every column of this 2D matrix, resulting to different bin

edges per column.

While training our models, quantization is carried out on batches of artificially generated
nanorough surfaces. The batches are again transformed, as previously described, into a
2D matrix. Binning is now carried out using the initially calculated bin edges.

Quantization serves as a preprocessing step to every graphbased content similarity met
ric.

V. Sioros 41

Generating realistic nanorough surfaces via a Generative Adversarial Network

3.2.3 Content Similarity Metrics

We developed various methods of measuring how similar two nanorough surfaces are,
which utilize the ngram graph model and its variants to represent nanorough surfaces
as graphs. To be more specific, we developed the NGram Graph (NGG), the 2D Array
Graph (A2D) and the Hierarchical Proximity Graph (HPS) content similarity metrics. In
all cases, we used cooccurrences of symbols as the edges’ weight factor. Additionally,
we designed a nongraphbased content similarity metric referred to as Fourier & Histo
gram Space (FHS) content similarity, which will be used to evaluate the realisticity of the
artificially generated nanorough surfaces.

In the following sections it is assumed that, the data serving as input to the similarity metric
at hand, has already been quantized.

3.2.3.1 The NGram Graph Content Similarity Metric (NGG)

The NGG content similarity metrics follows the MeMoG approach presented in section
2.5.2.1. More specifically, an ngram graph is created for each and every one of the
nanorough surfaces making up the training data set. Afterwards, the individual graphs are
all merged into a single representative graph. Having created the representative graph,
the similarity of a nanorough surface with regard to the training data set (also referred to
as appropriateness) is calculated by means of 2.55.

Given that the ngram graph is designed to work on onedimensional data the twodimensional
matrices, representing nanorough surfaces, must be first reshaped into onedimensional
vectors. The transformation is done in rowmajor order and is referred to as Flattening.

The construction of an ngram graph, given an N ×N input matrix M, consists of:

1. Flattening matrix M into vector V

2. Generating the ngrams corresponding to V, using Algorithm 2

3. Passing a sliding window over the resulting ngram array, creating edges connecting
every pair of ngrams within the sliding window.

A more thorough presentation of the procedure is given in Algorithm 4. Bare in mind that,
we adopt the nonsymmetric edge weighting approach described in section 2.5.

Algorithm 4 Constructing an ngram Graph given an N ×N input matrix M
1: V← Flatten(M)
2: SSn ← ExtractNGrams(M)
3: G← ∅
4: for w ∈ [0, · · · , ⌊LEN(SS

n)
W ⌋] do

5: for ngramy ∈ {ngramw·W, · · · , ngram(w+1)·W} do
6: for ngramx ∈ {ngramw·W, · · · , ngram(w+1)·W} do
7: if ngramy ̸= ngramx then
8: G← G

⋃
+{(ngramy, ngramx)}

where
⋃

+ stands for the Edge Update operator, which either introduces a new edge, with
an associated weight of 1, to the graph or increases the weight of a preexisting edge.

V. Sioros 42

Generating realistic nanorough surfaces via a Generative Adversarial Network

More specifically, given that an edge already exists, any consecutive occurrence of the
same vertex pair within the predefined ngram window contributes equally to the total
edge weight. ExtractNGrams stands for the process carried out by Algorithm 2. Flatten
is described by Algorithm 5.

Algorithm 5 Flattening a N ×M input matrix M
1: V← [0, · · · , 0](N×M,1)

2: for y ∈ [0, · · · , N] do
3: for x ∈ [0, · · · ,M] do
4: V[y ·M + x] = M[y, x]

The individual ngram graphs are merged using theUpdate operator presented previously
in section Section 2.5.2.1. We are employing a dynamic learning rate, as described in the
aforementioned section, so that the representative graph’s edges are assigned weights
averaging the weights of all the individual graphs that have contributed to it.

3.2.3.2 The TwoDimensional Array Graph Content Similarity Metric (A2G)

The NGG and A2D content similarity metrics differ only with respect to the construction of
the per nanorough surface individual ngram graphs.

In contrast to the NGG content similarity metric, A2D is able to processes twodimensional
data. More specifically, given a twodimensional matrix corresponding to a nanorough
surface, graph construction in the context of the A2D content similarity consists of:

1. Initializing an empty graph

2. Sliding a twodimensional window of predetermined size over the given matrix and
processing individual submatrices of it.

3. Adding edges to the graph, connecting all possible pairwise combinations of symbols
for each and every one of those submatrices.

This process is described by Algorithm 6:

Algorithm 6 Constructing a 2D Array Graph given an N ×N input matrix M
1: G← ∅
2: for y ∈ [0, · · · , N] do
3: for x ∈ [0, · · · , N] do
4: vertexy,x = M[y, x]
5: neighborhood← ∅
6: neighbormin

y = ClampN(y − ⌊W2 ⌋)
7: neighbormax

y = ClampN(y + ⌊W2 ⌋)
8: for neighbory ∈ [neighbormin

y , · · · , neighbormax
y] do

9: neighbormin
x = ClampN(x− ⌊W2 ⌋)

10: neighbormax
x = ClampN(x+ ⌊W

2
⌋)

11: if neighbory ̸= y orneighborx ̸= x then
12: vertexneighbory ,neighborx = M[neighbory, neighborx]
13: G← G

⋃
+{(vertexy,x, vertexneighbory ,neighborx)}

V. Sioros 43

Generating realistic nanorough surfaces via a Generative Adversarial Network

where operator ClampN constraints the input in the real value range [0, N] and is given by
the following equation:

ClampN(v) = max(0,min(v,N)) (3.6)

3.2.3.3 The Hierarchical Proximity Graph Content Similarity Metric (HPS)

As the name suggests, this similarity metric utilizes the Hierarchical Proximity Graph
model to represent nanorough surfaces. In contrast to NGG and A2D, HPS does not use
a representative graph, but rather maintains a collection of distinct hierarchical proximity
graphs corresponding to individual nanorough surfaces. Moreover, the appropriateness
of a nanorough surface is calculated using 2.60.

As described in section 2.5.2.2, HPGs utilize a perlevel index to keep track of the symbols
that serve as vertices on the perlevel graphs that make up the HPG. This index is a
fuzzy keyvalue like storage, referred to as Graph Index, wherein graphs serve as keys
to symbol values. The Graph Index is responsible for mapping from a graph to a symbol.

The mapping is not an exact one and graphs that are ”close enough” are treated as
identical. Two graphs are considered identical based on how their similarity value com
pares to the hyperparameters, minimum and maximum merging margin (µmin, µmax).

Given a graph G, performing a Graph Index lookup is described by Algorithm 7

Algorithm 7 Perform a Graph Index lookup given a graph G

1: S ← −1
2: for i ∈ [0, · · · ,LEN(GraphIndex)] do
3: similarity(G,GraphIndex[i]) = NVS(G,Gi)
4: if similarity ≥ µmax then
5: S ← i
6: return
7: else
8: if similarity ≥ µmin then
9: GraphIndex[i]← GraphIndex[i]

⋃
{G}

10: COUNT [i] = COUNT [i] + 1
11: S ← i
12: return
13: else
14: if 1− similarity ⪆ 0 then
15: G← (G ∩GraphIndex[i])

′

16: if S < 0 then
17: S ← LEN(GraphIndex)]
18: GraphIndex[S] = G
19: COUNT [S] = 1
20: return

As you can see, for every existing keygraph we calculate its similarity to the querygraph
at hand. There are three scenarios:

V. Sioros 44

Generating realistic nanorough surfaces via a Generative Adversarial Network

1. If the similarity of the graph at hand with an existing graph/key is greater than the
maximum merging margin, then simply return the corresponding integer symbol.

2. If the similarity of the graph at hand with an existing graph/key is not greater than
the maximum merging margin but is greater than the minimum merging margin then
merge the graphs together and again return the corresponding integer symbol.

3. In case none of the previous statements is true, remove any edges included in the
keygraph from the querygraph and proceed with the rest of the graphkeys. If, even
after processing the entirety of the graph index, there is no match then simply add
a new entry corresponding to the supplied graph and return a newly created symbol
indicated by the graph index size.

Having described the inner workings of the Graph Index, we shall now provide a more
thorough explanation of the HPG construction procedure, described in section 2.5.2.2.
Given an N ×N input matrix M constructing an HPG is carried out by Algorithm 8

Algorithm 8 Construct a Hierarchical Proximity Graph G given an N × N input matrix
M. W denotes the original window size, whilst W∗ denotes the current level window size
1: PerLevelData[0]←M
2: PerLevelGraphs[0]← GraphOf(M)
3: for level ∈ [1, NumberOfLevels] do
4: W∗ ←W · level
5: for y ∈ [0, N] do
6: for x ∈ [0, N] do
7: M∗ ← SubmatrixW

∗

(y,x)(M)
8: sneighborhood← GraphOf(M∗)
9: symbol ← GraphLookUp(sneighborhood)

10: PerLevelData[level][y, x]← symbol

11: PerLevelGraphs[level]← GraphOf(PerLevelData[level])

where GraphOf denotes the perlevel graph / sneighborhood construction procedure.
We used the 2D Array Graph approach, described in Algorithm 6, to represent the s
neighborhoods, any ngram graph variant method could be used instead. GraphLookUp
refers to the process described by Algorithm 7. Finally, SubmatrixW

∗

(y,x) refers to the pro
cess of extracting an N × N submatrix of M, centered around coordinates (y, x) and is
described by Algorithm 9.

Algorithm 9 Extracting a submatrix M∗ of size W∗ ×W∗ centered around coordinates
(y, x)

1: x∗
min = ClampN(x− ⌊W

∗

2
⌋)

2: x∗
max = ClampN(x+ ⌊W∗

2
⌋)

3: y∗min = ClampN(y − ⌊W
∗

2
⌋)

4: y∗max = ClampN(y + ⌊W
∗

2
⌋)

5: for y∗in[y∗min, · · · , y∗max] do
6: for x∗in[x∗

min, · · · , x∗
max] do

7: M∗[y∗ − y, x∗ − x] = M[y∗, x∗]

V. Sioros 45

Generating realistic nanorough surfaces via a Generative Adversarial Network

3.2.3.4 The Fourier & Histogram Space Content Similarity Metric (FHS)

As mentioned before, FHS is the only nongraphbased content similarity metric. While
training, it requires calculating and storing the 2D Fast Fourier Transform (2D FFT) and
histogram of height values corresponding to each nanorough surface belonging to the
training data set. On evaluation time, calculating the appropriateness of a given nanor
ough surface M can be broken down into the following tasks (we denote the training data
set as T):

1. Calculating the 2D FFT of the provided nanorough surface.

2. Calculating the histogram of height values corresponding to the provided nanorough
surface.

3. Calculating the Root Mean Square Deviation (RMSD), with regards to the mean 2D
FFT (RMSDF) and histogram (RMSDH), between the provided nanorough surface
and a subset of the training data set (by default the training data set in its entirety).

4. Calculating the expression

1

1 + RMSDH(M,T)+RMSDF(M,T)
2

(3.7)

which corresponds to the appropriateness of the provided nanorough surface.

The whole procedure is described by Algorithm 10.

Algorithm 10 Calculating the FHS similarity of a nanorough surface M, assuming an n
large collection FH of pairs of matrices and vectors corresponding to the 2D FFT and
Histogram of the nanorough surfaces making up the training data set
1: HM ← Histogram(M)
2: FM ← FF2D(M)
3: losstotal ← 0
4: for Histogram, Fourier ∈ FH do
5: MeanSquareHistogramError ← (Histogram−HM)2

6: MeanSquareFourierError ← (Histogram−HM)2

7: loss = loss+
√
MeanSquareHistogramError

n×2

8: loss = loss+
√
MeanSquareFourierError

n×2

9: return 1
1+losstotal

3.2.4 Frameworks

Two vastly different approaches to modeling nanorough surfaces were developed. We
developed a SingleLayer Perceptron GAN (SLPGAN), which is going to serve as our
baseline and a DCGAN aiming at improving on the performance of our baseline model.

Bothmodels expect amatrix (also referred to as batch of latent vectors) of sizeBatchSize×
100 × 1 × 1 drawn from a Gaussian distribution. The models were trained on data sets
containing nanorough surface representations of size 128× 128× 1. The process can be
generalized to different latent space vector and nanorough surface sizes.

V. Sioros 46

Generating realistic nanorough surfaces via a Generative Adversarial Network

3.2.4.1 SingleLayer Perceptron GAN (SLPGAN)

x0

x1

...

x100

y1

...

y16384

input layer

output layer

(a) Generator Network

x0

x1

...

x16384

y1

input layer

output layer

(b) Discriminator Network

Figure 3.4: The SLPGAN framework. This visualization was produced using code adapted from
David Stutz’s work [3].

TheSLPGAN consists of two SingleLayer Perceptron networks that serve as the generator
discriminator pair.

The generator consists of a single feedforward layer with 100 input units and 16384 (128×
128) output units. No activation function is used by the generator. Every batch processed
by the SLP Generator must be initially transformed so that the feedforward layer can
process it. The output is also reshaped, so that it matches the nanorough surface matrix
representation. For example, given a matrix of size BatchSize × 100 × 1 × 1 i.e. a batch
of BatchSize 100 × 1 × 1 latent vectors, the batch is transformed into a matrix of size
BatchSize× 100. It is then processed by the feedforward layer which outputs a matrix of
size BatchSize× 16384× 1, which is finally reshaped into a matrix of size BatchSize× 1×
128× 128.

The discriminator consists of a single feedforward layer with 16384 input nodes and a
single output node and is paired with a Sigmoid activation function. Again the input is
required to be transformed, and more specifically flattened, on model entry. Given an
input matrix of size BatchSize × 1 × 128 × 128, the matrix is firstly transformed into a
twodimensional matrix of size BatchSize × 16384, which is then processed by the feed
forward layer and passed through the activation function. The resulting BatchSize × 1
matrix contains the scores corresponding to the nanorough surfaces at hand.

V. Sioros 47

Generating realistic nanorough surfaces via a Generative Adversarial Network

3.2.4.2 Deep Convolutional GAN (DCGAN)

1001
1

INPUT

2048 4
4

1024 8
8

512
16

16

256
32

32

128

64

64

1

128

128

OUTPUT

CONV 1 CONV 2 CONV 3 CONV 4 CONV 5 CONV 6

(a) Generator Network

1

128

128

INPUT

128

64

64

256
32

32

512
16

16
1024 8

8
1 1

1

OUTPUT

CONV 1 CONV 2 CONV 3 CONV 4 CONV 5

(b) Discriminator Network

Figure 3.5: The DCGAN framework. This visualization was produced using software adapted from
PlotNeuralNet [37]

Our DCGAN implementation is heavily based on the work of Alec Radford et al. [2] and
shares the same basic principles. The changes made to the architecture mainly con
cern the difference in input dimensions. More specifically, the original implementation of

V. Sioros 48

Generating realistic nanorough surfaces via a Generative Adversarial Network

DCGAN supports 64× 64 images, while in our case the supported size was increased to
128× 128 units.

The generator is comprised of 6 deconvolutional layers. A deconvolutional layer is identical
to a standard convolutional layer except that it is mainly used for upsampling data instead.
Every deconvolutional layer is paired with a batch normalization layer and a ReLU activ
ation function, with the exception of the last layer. All deconvolutional layers employ a
kernel size of 4 × 4, a stride of 2, and padding of 1 with the exception of the initial layer,
which uses a stride of 1 and no padding.

As previously mentioned, the latent space vectors, that the model expects as input, are
transformed into twodimensional matrices corresponding to nanorough surfaces, via a
series of strided twodimensional deconvolutional layers.

The generator model does not utilize any activation function on the final layer, as con
straining the model’s output to a certain range is not desirable in this scenario.

The discriminator consists of 5 strided convolutional layers. The first layer is paired with a
LeakyReLU activation function, the 3 following layers are additionally paired with a batch
normalization layer each, while the last layer is only paired with a Sigmoid activation func
tion. Every layer utilizes a kernel size of 4 × 4, a stride of 2, and a padding of 1, with
the exception of the last layer, which utilizes a kernel size of 8 × 8, a stride of 1, and no
padding.

The Sigmoid activation function is used to produce the scores of the nanorough surfaces
at hand. Strided convolution is used, in favor of pooling, to downsample the initial in
put as it lets the network learn its own pooling function. Batch normalization along with
the LeakyReLU activation function promote healthy gradient flow through the discrimin
ator, which in the context of the GAN framework, is critical for the learning process of the
discriminator, as well as the generator model.

3.2.4.3 Training

When it comes to training our models, we used a slightly modified version of the GAN
training algorithm presented in [1] and described by Algorithm 1. In our version, we alter
the generator’s loss based on the the output of one of the graphbased content similarity
metrics. More specifically, on every batch iteration, the output of the generator, which
corresponds to a batch of artificial nanorough surfaces, is passed through the chosen
graphbased content similarity and the appropriateness of the provided nanorough sur
faces is calculated. These values, one for every sample in the batch are used to calculate
the perbatch average appropriateness of artificial data. This process is carried out for
every single batch making up the training data set and the values corresponding to single
artificial batches are used to calculate the running average of the perbatch average appro
priateness of artificial data. Hence, the per batch iteration generator loss GeneratorLossn
is:

GeneratorLossn =
BCE(D(G(Noise)), Labels)

ϵ+
∑n

i=0
CS(G(Noise)))

N

(3.8)

where G and D correspond to the generator and discriminator networks respectively and

V. Sioros 49

Generating realistic nanorough surfaces via a Generative Adversarial Network

BCE denotes the Binary Cross Entropy Loss and is defined as:

BCE(x, y) = − 1

N

N∑
n=0

[yn · log(xn) + (1�yn) · log(1�xn)] (3.9)

x and y are N sized vectors corresponding to the predicted and real label values respect
ively. BCE is commonly used when training a binary classifier, such as our discriminator
model and serves as a means of determining how accurate a model really is.

D(G(Noise)) results in the creation of a BatchSize × 1 vector containing values in the
range [0, 1] corresponding to the scores of the artificial nanorough surfaces generated by
the generator (G(Noise)). When training the generator the Labels or y is a vector of size
BatchSize×1 filled with ones andBCE(D(G(Noise)), Labels) corresponds to the standard
GAN generator loss calculation.

The denominator is calculated by dividing the accumulated content similarity values (CS)
of all so far processed batches by the total number of batches (N). Finally, a padding value
of 0 ≤ ϵ ≤ 1 is added to the denominator. For our purposes, a value of 0.5 was chosen.
Notice that similarity values close to 0 result in greater loss values, while similarity values
close to 1 result in smaller loss values, compared to ones returned by the standard GAN
training procedure. The intuition behind this approach is that the introduction of the content
similarity metric will serve as an implicit learning rate scheduling mechanism, providing the
generator with valuable feedback as to the quality of the generated nanorough surfaces
and guiding throughout the training process. Initially, we were merely adding the content
loss i.e. 1−CS(G(Noise))), but we quickly noticed that this approach would have little to
no effect to the value of the generator loss. This occurs due to BCE taking any possible
value in R+, while CS only able to take values in the range [0, 1].

We opted to train the discriminator on a certain batch only once (k = 1) as this was the
cheapest option computationallywise and is the approach followed by the authors of the
original paper.

V. Sioros 50

Generating realistic nanorough surfaces via a Generative Adversarial Network

4. EXPERIMENTAL RESULTS

4.1 Experimental Setup

We are going to be training each model for 100 epochs, using Backpropagation and the
Adam optimization algorithm with a learning rate of 2 × 10−4, β1 = 0.5, β2 = 0.999 and a
batch size of 32. The data are going to be reshuffled on every epoch.

We are going to be evaluating our framework based on the perepoch discriminator output
and the loss of both the generator and discriminator models per epoch. More specifically,
we are going to be monitoring the following expression

GeneratorLoss× (DiscriminatorLoss+ 1) (4.1)

Expression 4.1 corresponds to the generator’s discriminatorrelative performance per epoch.
This measure is going to be indicative of how well the generator performs with respect to
how efficient of a discriminator, it is required to face. This metric is essential, as a generator
model that succeeds in tricking a discriminator model, only because of the discriminator
model’s poor performance, should not be considered wellbehaved.

In addition to the discriminator’s output per epoch, we are going to be examining the
expression following expression

|D(Real)− 0.5|+ |D(Fake)− 0.5| (4.2)

where D(Real) and D(Fake) correspond to the perepoch mean output of the discrimin
ator, when it comes to real and artificially generated nanorough surfaces, respectively.
Ideally, this amount would converge to 0 implying that the discriminator is unable to dis
tinguish real from artificially generated nanorough surfaces.

We are also going to be examining the mean FHS content similarity of the nanorough
surfaces produced by the generator model. This is going to provide us with significant
insight with regards to how realistic the resulting nanorough surfaces can be considered
and whether or not the generator is trained successfully.

We are going to be training our models on a data set consisting of 1000 128×128 nanorough
surfaces generated using a configuration of RMS = 3, Skewness = 0, Kurtosis = 3,
Correlation Lengths = (ξy, ξx) = (8, 8) and Smoothing Factor = α = 1.

V. Sioros 51

Generating realistic nanorough surfaces via a Generative Adversarial Network

Figure 4.1: Real nanorough surface samples (ξy = 8, ξx = 8, α = 1)

The grayscale and 3D surface representation of a few nanorough surface samples be
longing to this data set are shown in Figure 4.1.

The experiments were carried out in a workstation equipped with an Intel(R) Core(TM)
i79750H CPU @ 2.60GHz, 2592 Mhz with 6 Core(s) and 12 Logical Processor(s), 16,0
GB of RAM, an NVIDIA GeForce GTX 1660 Ti GPU with an additional 6GB of VRAM and
24 processing units.

4.1.1 DCGAN Weight Initialization

According to the original paper by Alec Radford et al. [2], all weights of the DCGAN
architecture are supposed to be initialized from a zerocentered Normal distribution with
a standard deviation of 0.02.

This initialization scheme proved prohibitive to the training of our models, as it resulted in
consistently high generator loss values and the generator completely diverging. This is
showcased in Figure 4.2

V. Sioros 52

Generating realistic nanorough surfaces via a Generative Adversarial Network

Figure 4.2: Training DCGAN with the conventional weight initialization scheme

We therefore decided that, we will not be utilizing this initialization scheme in the rest of
our experiments.

4.1.2 Evaluating the scalability of the Content Similarity Metrics

We will now be comparing the various graphbased content similarity metrics, that we
developed with regards to their scalability.

We will be training every content similarity metric, with different numbers of nanorough
surfaces of different dimensions. We will be using 2, 4, 6, 8 or 10 nanorough surfaces of
dimensions 2× 2, 4× 4, 8× 8, 16× 16 and 32× 32. Each content similarity metric is going
to be trained on every possible pairwise combination of the aforementioned values.

4.1.2.1 Scalability of the NGram Graph Content Similarity Metric

Figure 4.3: NGG scalability

V. Sioros 53

Generating realistic nanorough surfaces via a Generative Adversarial Network

NGG’s computational cost with regards to both training and inference increases logar
ithmically with respect to the dimension size. In fact, every time the dimension of the
nanorough surfaces is squared, the training/inference time increases by a factor of ≈ 4.
NGG scales linearly, when it comes to both training and inference, with respect to the
number of surfaces. This behavior is showcased in Figure 4.3.

4.1.2.2 Scalability of the TwoDimensional Array Graph Content Similarity Metric

A2G showcases a similar behavior to NGG. In fact, the training and evaluation compu
tational cost with respect to dimension size again increases logarithmically, whilst it in
creases linearly with respect to the number of surfaces.

Figure 4.4: A2G scalability

4.1.2.3 Scalability of the Hierarchical Proximity Graph Content Similarity Metric

Figure 4.5 indicates that HPS scales exponentially with regards to the nanorough surface’s
dimension size and linearly with regards to the number of nanorough surfaces required to
be processed. Figure 4.6 further supports this.

Figure 4.5: HPS scalability

V. Sioros 54

Generating realistic nanorough surfaces via a Generative Adversarial Network

Figure 4.6: HPS scalability (Additional cases)

NGG proved to be the computationally cheapest of them all. A2G is a bit more costly
computationallywise when compared to NGG, but not by a great margin. A2G’s per
sample (nanorough surface) graph construction from a 2D matrix is a lot more complex
when compared to the NGG’s vector (flattened matrix) graph construction. HPS is the
most costly of them all and by a great margin. Throughout, the HPG graph construction
process multiple 2D array graphs are created representing the different neighborhoods
making up the nanorough surface. HPGs also utilize multiple levels of graphs, as well as
a graph index. As a result, the greater computational cost is to be expected. This is the
reason why we will not be utilizing the HPS content similarity metric throughout the rest of
our experiments.

4.1.3 Evaluating the FHS Content Similarity Metric

The FHS Content Similarity measure had to undergo thorough evaluation, so that we were
able to determine how good of a nanorough surface similarity metric it really is. This was
required, as we will be using FHS to evaluate the realisticity of the artificially generated
nanorough surfaces.

V. Sioros 55

Generating realistic nanorough surfaces via a Generative Adversarial Network

Figure 4.7: Comparing the FHS values of real and artificial nanorough surface samples
(ξy = 8, ξx = 8, α = 1)

The nanorough surfaces used in the evaluation of FHS originate from a nanorough data
set corresponding to a configuration of ξy = 8, ξx = 8, α = 1, while the artificially gener
ated nanorough surfaces were created by populating a twodimensional matrix with values
sampled from a Gaussian distribution and then scaled by the RMS characterizing the real
nanorough surfaces.

Figure 4.7 showcases that FHS is able to distinguish nanorough surfaces originating in
the real data distribution from artificial ones.

4.2 Results and Discussion

4.2.1 SLPGAN paired with A2G

Figure 4.8: Training SLPGAN

As indicated by Figure 4.8, the SLP discriminator fails to consistently identify samples
originating from the generator’s data distribution. It is apparent that, especially during
the first few training epochs, the generator is able to trick the discriminator into assigning

V. Sioros 56

Generating realistic nanorough surfaces via a Generative Adversarial Network

higher than expected scores to artificially generated nanorough surfaces. Consequently,
the generator is not provided with appropriate feedback and is improperly trained. After
the 2530 training epoch mark, the discriminator seems to finally be able to distinguish
real from fake data.

Figure 4.9: Nanorough surface samples generated by SLPGAN

Sadly, the SLPGAN framework suffers from the Mode Collapse problem, meaning that
the generator learns to produce only a small set of outputs over and over again. This be
comes obvious when comparing nanorough surfaces drawn from the real data distribution
with nanorough surfaces artificially generated by the framework at hand (Figure 4.1 and
Figure 4.9).

Figure 4.10: A2G & FHS similarity scores in the case of SLPGAN (ξy = 8, ξx = 8, α = 1)

In Figure 4.10 we can also see that both A2G and FHS stay close to 0, meaning that the
SLPGAN is unable to generate realistic nanorough surfaces.

V. Sioros 57

Generating realistic nanorough surfaces via a Generative Adversarial Network

4.2.2 DCGAN

When using the DCGAN framework, even in the absence of any content similarity metric,
the discriminator is able to train almost to optimality at every epoch, thus promoting the
healthy training of the generator, which is consequently capable of better fitting the data
compared to the SLPGAN case.

Figure 4.11: Training DCGAN

Figure 4.12: Nanorough surface samples generated by DCGAN

All issues aside, DCGAN is able to generate sufficiently realistic nanorough surfaces with
regards to the topology of the original surfaces and the stochasticity characterizing these
microstructures. One noticeable downside of this approach is the introduction of a sub
stantial amount of noise to the resulting nanorough surface. The nanorough surfaces
drawn from the real data distribution do not showcase such rampant changes in height
values. This becomes apparent when comparing figures Figure 4.1 and Figure 4.12.

V. Sioros 58

Generating realistic nanorough surfaces via a Generative Adversarial Network

4.2.3 DCGAN paired with NGG

DCGAN paired with the NGG Content Similarity is yet again able to produce sufficiently
realistic nanorough.

Figure 4.13: Training DCGAN paired with NGG

Figure 4.14: Nanorough surface samples generated by DCGAN+NGG

We notice from Figure 4.14 that in this case a different type of noise is introduced. In
contrast to 4.2.2, there are no rampant changes in the height values, instead the topology
of the generated nanorough surfaces is characterized by similarly high mountains and
valleys. This could be a result of the NGG content similarity metric failing to discriminate
between topologies of different steepness.

V. Sioros 59

Generating realistic nanorough surfaces via a Generative Adversarial Network

Figure 4.15: A2G & FHS similarity scores in the case of DCGAN+NGG (ξy = 8, ξx = 8, α = 1)

Figure 4.15 showcases that both A2G and FHS reach a plateau after the 80th epoch,
indicating that the framework has reached its expressive limits.

4.2.4 DCGAN paired with A2G

As in 4.2.2, the discriminator showcases nearoptimal performance when it comes to dis
tinguishing real from artificially generated samples, throughout the training process, thus
allowing the generator to properly train, by providing him with appropriate feedback.

Figure 4.16: Training DCGAN paired with A2G

V. Sioros 60

Generating realistic nanorough surfaces via a Generative Adversarial Network

Figure 4.17: Nanorough surface samples generated by DCGAN+A2G

We can immediately tell two main advantages of this method over the conventional GAN
training procedure. First of all, the discriminator tends to miscategorize sufficiently more
samples in this case. Given that only the generator’s training procedure is altered, this
behavior indicates that the generator model produces even more realistic nanorough sur
faces and is therefore capable of more frequently tricking the discriminator. Secondly, the
perepoch generator loss follows a clearly descending trajectory, which indicates that the
training procedure is a lot more stable. As previously stated, the intuition behind this is
that the augmented generator loss calculated by 3.8, serves as an implicit learning rate
scheduling mechanism.

This approach showcases the best results so far with regards to mimicking the topology
and the stochasticity of the real nanorough surface samples. In contrast to, utilizing no
content similarity or NGG, this approach does not introduce rampant changes in height
values nor does it result in a topology consisting of similarly high mountains and valleys.

Figure 4.18: A2G & FHS similarity scores in the case of DCGAN+A2G (ξy = 8, ξx = 8, α = 1)

It is clear from Figure 4.18 that, both A2G and FHS content similarity increases as the

V. Sioros 61

Generating realistic nanorough surfaces via a Generative Adversarial Network

training procedure progresses. This is a strong indicator that the generator model is able
to produce realistic nanorough surfaces.

4.2.5 Evaluating the statistical significance of our results

We decided to evaluate the statistical significance of our results using the Wilcoxon
signedrank test approach. TheWilcoxon signedrank test is a nonparametric version of
the paired ttest and, given a set of matched samples x and y, tests whether the distribution
of the differences x− y is symmetric about zero.

In our case, we are interested in comparing DCGAN paired with no content similarity
metric, DCGAN paired with NGG, and DCGAN paired with A2G.

First of all, we trained the FHS evaluation content similarity metric on the ξy = 8, ξx =
8, α = 1 data set. We then generated 30 nanorough surface samples using each method.
These samples were generated by providing each generator with a fixed input drawn from
a standard normal distribution. Having generated our 3 different nanorough surface popu
lations, we collected the FHS values corresponding to each population. The distributions
of these values are shown in Figure 4.19.

Figure 4.19: The FHS score populations used in the context of the Wilcoxon signedrank tests

Having collected the FHS similarity scores corresponding to the 3 different populations of
nanorough surfaces, we perform 3 twotailed Wilcoxon signedrank tests, with our null
hypothesis being that the distribution of the differences x− y is symmetric about zero.

V. Sioros 62

Generating realistic nanorough surfaces via a Generative Adversarial Network

Samples W+ pvalue

A2G vs NGG 5.500000e+01 2.613431e04

A2G vs None 1.000000e+00 1.920921e06

NGG vs None 9.700000e+01 5.319684e03

Table 4.1: The results of the twotailed Wilcoxon signedrank test with regards to different sample
combinations. W+ stands for the sum of the ranks of the differences above zero

The results are showcased in Table 4.1. We reject the null hypothesis, in every single
case, at a confidence level of < 1%, concluding that there is a significant difference in
FHS similarity between each pair of nanorough surface groups.

We now need to determine how the 3 approaches rank with respect to FHS similarity. We
perform 3 additional onetailedWilcoxon signedrank tests, where we again compare the
3 approaches, the only difference being that now the null hypothesis is that the median is
negative against the alternative that it is positive.

Samples W+ pvalue

A2G vs NGG 4.100000e+02 1.306715e04

A2G vs None 4.640000e+02 9.604606e07

NGG vs None 3.680000e+02 2.659842e03

Table 4.2: The results of the onetailed Wilcoxon signedrank test with regards to different sample
combinations. W+ stands for the sum of the ranks of the differences above zero

The results of the onetailed tests are shown in Table 4.2. We reject the null hypothesis
that the median of the differences is negative in every single case. This implies that in
every single case the first approach outperforms the second one. It is now apparent that
there is a clear hierarchy with regards to FHS appropriateness and consequently with
regards to the realisticity of the generated nanorough surfaces:

DCGAN+A2G > DCGAN+NGG > DCGAN

4.2.6 Training DCGAN paired with A2G on additional data sets

Having determined that DCGAN paired with the A2G content similarity metric showcases
the most promising results, we tested this architecture on 5 additional data sets. These
data sets correspond to different combinations of correlation lengths and alpha and should
provide us with greater insight, as to how different parameters affect the performance of
our framework. All data sets consist of 1000 nanorough surfaces and each nanorough
surface is 128× 128 pixels large.

V. Sioros 63

Generating realistic nanorough surfaces via a Generative Adversarial Network

(a) ξy = 2, ξx = 2 (b) ξy = 4, ξx = 4 (c) ξy = 8, ξx = 8

Figure 4.20: Real nanorough surface samples (α = 0.5)

(a) ξy = 2, ξx = 2 (b) ξy = 4, ξx = 4 (c) ξy = 8, ξx = 8

Figure 4.21: Nanorough surface samples generated by DCGAN+A2G (α = 0.5)

DCGAN paired with the A2G content similarity metric is able to produce realistic nanor
ough surfaces, for data sets corresponding to an α = 0.5. The nanorough surfaces appear
noisy, but the amount of noise introduced is relatively insignificant. This problem could be
mitigated by finetuning parameters such as the learning rate, the batch size, the optim
ization algorithm initial decay rates etc. but we are not going to be exploring this in this
work. This behavior is showcased in Figure 4.20 and Figure 4.21.

V. Sioros 64

Generating realistic nanorough surfaces via a Generative Adversarial Network

(a) ξy = 2, ξx = 2 (b) ξy = 4, ξx = 4 (c) ξy = 8, ξx = 8

Figure 4.22: Real nanorough surface samples (α = 1)

(a) ξy = 2, ξx = 2 (b) ξy = 4, ξx = 4 (c) ξy = 8, ξx = 8

Figure 4.23: Nanorough surface samples generated by DCGAN+A2G (α = 1)

As we can see from Figure 4.22 and Figure 4.23, our framework fails to correctly model
nanorough surfaces corresponding to α = 1, regardless of the correlation lengths ξy, ξx,
with the exception of ξy = 8 and ξx = 8. The smoothing quality, that higher values of
α introduce, in combination with the small correlation length result in highly stochastic
nanorough surfaces. The fact that, in this case, our training data so closely resemble
random noise could be the reason why our framework fails to successfully model them.

V. Sioros 65

Generating realistic nanorough surfaces via a Generative Adversarial Network

Figure 4.24: Training DCGAN paired with A2G (ξy = 4, ξx = 4, α = 1)

A configuration of ξy = 4 and ξx = 4 corresponds to our framework’s so far worst per
formance. As indicated by Figure 4.24 the framework fails to fit the training data and the
training procedure effectively halts after a few epochs. We decided to examine if utilizing
no content similarity metric would result in a better performance.

Figure 4.25: Training DCGAN (ξy = 4, ξx = 4, α = 1)

Figure 4.25 demonstrates that DCGAN with no content similarity metric was unable to
effectively fit the data as well. In fact, DCGAN paired with A2G was able to escape the
local minimum, where the training procedure had previously halted, and carry on for a few
more epochs.

4.2.7 Determining the minimal amount of training data required

In order to determine the amount of training data required, so that our generator model
is able to generate realistic enough nanorough surface samples, we performed 2 exper
iments with 10 and 100 training samples originating from the ξy = 8, ξx = 8, α = 1 data
set.

V. Sioros 66

Generating realistic nanorough surfaces via a Generative Adversarial Network

(a) Real sample (b) Artificial sample
corresponding to a

training data set of size
1000

(c) Artificial sample
corresponding to a

training data set of size
100

(d) Artificial sample
corresponding to a

training data set of size 10

Figure 4.26: Comparing nanorough surface samples generated by DCGAN+A2G (α = 1) with
respect to the size of the training data set

It becomes immediately apparent from Figure 4.26 that the amount of training samples re
quired so that the generator model is capable of producing sufficiently realistic nanorough
surfaces is close to 1000.

The generator having been trained on the data set consisting of 10 nanorough surfaces
was unable to learn its characteristics and produced samples of pure noise. On the other
hand, training the generator on 100 samples improved on the previous case, but again
proved insufficient as the resulting nanorough surfaces appear flat and quite periodic. It is
clear from Figure 4.27, that in the case of 10 training samples, the value of FHS showcases
a decreasing tendency throughout the training process, while in the case of 100 training
samples it does not.

(a) 10 training samples (b) 100 training samples

Figure 4.27: A2G & FHS scores for different training data set sizes

V. Sioros 67

Generating realistic nanorough surfaces via a Generative Adversarial Network

4.2.8 Assessing the scalability of our framework

We will be examining the scalability of our framework with regard to nanorough surface
generation. Given that our framework is aiming to provide an alternative solution to con
ventional Fourierbasedmethods, we will only be considering its performance on inference
time.

Figure 4.28: The generation cost as a function of the desired number of nanorough surfaces

We can clearly see from Figure 4.28 that the required time to generate a given number
of nanorough surfaces increases linearly to the number of nanorough surfaces in all 3
cases. We further observe that our approach outperforms that of Antonios Stellas et al.
[16] with regards to required processing time. Utilizing the GPU provides us with even
greater results.

V. Sioros 68

Generating realistic nanorough surfaces via a Generative Adversarial Network

5. CONCLUSIONS AND FUTURE WORK

In this work, we examined howGANbased frameworks can be trained to generate realistic
nanorough surfaces.

We developed 4 nanorough surface content similarity metrics, the NGram Graph (NGG),
2D Array Graph (A2G),Hierarchical Proximity Graph (HPS), and Fourier & Histogram
Space (FHS) content similarity metrics. FHS assisted us in evaluating our framework, with
regards to the realisticity of the generated nanorough surfaces, while the other 3 metrics
were designed to be used during training, so that they provide additional feedback to the
generator model and guiding it throughout the training process. HPS was ruled out, due
to its prohibitive time requirements.

A SingleLayer Perceptron GAN (SLPGAN) served as our baseline. Due to its simplistic
architecture, this model suffers from the Mode Collapse problem, which is quite common
in the field of GANs, and was able to produce only a small subset of nanorough surfaces.
More specifically, the SLPGAN generated nanorough surface with very small vertical fluc
tuations that closely resemble a flat plain.

We also developed aDeep Convolutional GAN (DCGAN), which generally speaking was
able to closely fit the training data and generate nanorough surfaces indistinguishable
from real ones. DCGAN failed to model training data sets corresponding to configuration
of small correlation lengths (ξy = ξx ≤ 4) and high α (α = 1) values, where the great
stochasticity characterizing the data results in them closely resembling random noise.
DCGAN performed the best on the ξy = ξx ≤ 8, α = 1 data set and worst on the ξy =
ξx ≤ 4, α = 1 data sets. A number of nanorough surface training samples close to 1000 is
minimally required, so that the generator is able to produce sufficiently realistic nanorough
surfaces.

Lastly, we carried out multiple one and twotailed Wilcoxon signedrank tests, comparing
the FHS similarity scores of DCGAN, DCGAN+NGG, and DCGAN+A2G, and confirmed
that DCGAN+A2G outperforms the rest by a substantial margin.

There are a lot of different aspects of the problem that we weren’t able to explore and
an even greater number of questions that remain unanswered. Some topics that are of
special interest and should be further investigated are:

1. Training our framework on nanorough surfaces of different correlation lengths, α
values, kurtosis, skewness, etc. This is going to be telling of how well our framework
is able to adapt to different nanorough surface parameter configurations.

2. Extending our CNN architecture so that it supports nanorough surfaces of sizes other
than 128× 128.

3. Having extended our CNN architecture, we could also elaborate on the scalability of
our framework with regards to nanorough surface size. More specifically, we could
train our framework on different nanorough surface sizes and evaluate its computa
tional complexity on training as well as on inference/generation time.

4. Extending our framework, so that it is capable not only of generating realistic nanor
ough surfaces but also superresolving them. By superresolution we refer to the
task of increasing the resolution of the nanorough surface, effectively enlarging it.

V. Sioros 69

Generating realistic nanorough surfaces via a Generative Adversarial Network

5. Evaluating our framework using other generativemodelspecific criteria like the Fréchet
Inception Distance [38] or Inception Score [39].

6. A review of our findings can be carried out, wherein multiple experts in the domain of
nanotechnology would be tasked with distinguishing real from synthetic data. This
would provide us with valuable insight with regard to our model’s expressive capab
ilities.

7. Given that our framework fails to adapt to nanorough surfaces with small correlation
lengths and high smoothing factors, we would like to further investigate the reason
why.

V. Sioros 70

Generating realistic nanorough surfaces via a Generative Adversarial Network

ABBREVIATIONS ACRONYMS

2D Two Dimensional

3D Three Dimensional

A2G TwoDimensional Array Graph Content Similarity

ACF Autocorrelation Function

Adam Adaptive Moment Estimation

ANN Artificial Neural Network

BCE Binary Cross Entropy

CNN Convolutional Neural Network

FFT Fast Fourier Transform

FHS Fourier & Histogram Space Content Similarity

GAN Generative Adversarial Network

HPG Hierarchical Proximity Graph

HPS Hierarchical Proximity Graph Content Similarity

MeMoG Merged Model Graph

ML Machine Learning

NGG NGram Graph Content Similarity

NVS Normalized Value Similarity

PDF Probability Density Function

ReLU Rectified Linear Unit

RMS Root Mean Square

RMSD Root Mean Square Deviation

RMSProp Root Mean Square Propagation

SL Supervised Learning

SLP SingleLayer Perceptron

SS Size Similarity

TanH Hyperbolic Tangent

UL Unsupervised Learning

VR Value Ratio

V. Sioros 71

Generating realistic nanorough surfaces via a Generative Adversarial Network

VS Value Similarity

V. Sioros 72

Generating realistic nanorough surfaces via a Generative Adversarial Network

BIBLIOGRAPHY

[1] I. J. Goodfellow, J. PougetAbadie, M. Mirza, B. Xu, D. WardeFarley, S. Ozair, A. Courville, and Y. Ben
gio, “Generative adversarial networks,” 2014.

[2] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep convolutional
generative adversarial networks,” 2016.

[3] D. Stutz, “Collection of latex resources and examples..” https://github.com/davidstutz/latexresources,
2020.

[4] K. Fukushima, “Neocognitron: A hierarchical neural network capable of visual pattern recognition,”
Neural Networks, vol. 1, no. 2, pp. 119–130, 1988.

[5] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel, “Back
propagation applied to handwritten zip code recognition,”Neural Computation, vol. 1, no. 4, pp. 541–551,
1989.

[6] D. E. Rumelhart, G. E. Hinton, andR. J.Williams, “Learning representations by backpropagating errors,”
Nature, vol. 323, pp. 533–536, 1986.

[7] S. Ruder, “An overview of gradient descent optimization algorithms,” CoRR, vol. abs/1609.04747, 2016.

[8] N. Qian, “On the momentum term in gradient descent learning algorithms,” Neural Networks, vol. 12,
no. 1, pp. 145–151, 1999.

[9] T. Tieleman and G. Hinton, “Lecture 6.5—RmsProp: Divide the gradient by a running average of its
recent magnitude.” COURSERA: Neural Networks for Machine Learning, 2012.

[10] D. Kingma and J. Ba, “Adam: Amethod for stochastic optimization,” International Conference on Learn
ing Representations, 12 2014.

[11] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal
covariate shift,” CoRR, vol. abs/1502.03167, 2015.

[12] G. Giannakopoulos and V. Karkaletsis, “Ngram graphs: Representing documents and document sets
in summary system evaluation,” Theory and Applications of Categories, 2009.

[13] G. Giannakopoulos, V. Karkaletsis, G. Vouros, and P. Stamatopoulos, “Summarization system evalu
ation revisited: Ngram graphs,” ACM Trans. Speech Lang. Process., vol. 5, pp. 1–39, 10 2008.

[14] A. Cecen, H. Dai, Y. C. Yabansu, S. R. Kalidindi, and L. Song, “Material structureproperty linkages
using threedimensional convolutional neural networks,” Acta Materialia, vol. 146, pp. 76–84, 2018.

[15] Z. Yang, Y. C. Yabansu, D. Jha, W. keng Liao, A. N. Choudhary, S. R. Kalidindi, and A. Agrawal,
“Establishing structureproperty localization linkages for elastic deformation of threedimensional high
contrast composites using deep learning approaches,” Acta Materialia, vol. 166, pp. 335–345, 2019.

[16] V. C. Antonios Stellas, George Giannakopoulos, “Hybridizing ai and domain knowledge in nanotech
nology: The example of surface roughness effects on wetting behavior,” Natural Sciences and AI Work
shop, 11th Hellenic Conference on Artificial Intelligence (SETN), 2020.

[17] S. Noguchi and J. Inoue, “Stochastic characterization and reconstruction of material microstructures
for establishment of processstructureproperty linkage using the deep generative model,” Phys. Rev.
E, vol. 104, p. 025302, Aug 2021.

[18] D. P. Kingma and M. Welling, “Autoencoding variational bayes,” 2014.

[19] Z. Yang, Y. C. Yabansu, R. AlBahrani, W. keng Liao, A. N. Choudhary, S. R. Kalidindi, and A. Agrawal,
“Deep learning approaches for mining structureproperty linkages in high contrast composites from sim
ulation datasets,” Computational Materials Science, vol. 151, pp. 278–287, 2018.

[20] R. Cang, Y. Xu, S. Chen, Y. Liu, Y. Jiao, and M. Yi Ren, “Microstructure Representation and Re
construction of Heterogeneous Materials Via Deep Belief Network for Computational Material Design,”
Journal of Mechanical Design, vol. 139, 05 2017. 071404.

V. Sioros 73

https://github.com/davidstutz/latex-resources

Generating realistic nanorough surfaces via a Generative Adversarial Network

[21] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep belief networks for scalable un
supervised learning of hierarchical representations,” in Proceedings of the 26th Annual International
Conference on Machine Learning, ICML ’09, (New York, NY, USA), p. 609–616, Association for Com
puting Machinery, 2009.

[22] D. Fokina, E. Muravleva, G. Ovchinnikov, and I. Oseledets, “Microstructure synthesis using stylebased
generative adversarial networks,” Physical Review E, vol. 101, Apr 2020.

[23] T. Karras, S. Laine, and T. Aila, “A stylebased generator architecture for generative adversarial net
works,” 2019.

[24] L. Mosser, O. Dubrule, and M. Blunt, “Reconstruction of threedimensional porous media using gen
erative adversarial neural networks,” Physical Review E, vol. 96, 04 2017.

[25] A. Gayon Lombardo, L. Mosser, N. Brandon, and S. Cooper, “Pores for thought: generative adversarial
networks for stochastic reconstruction of 3d multiphase electrode microstructures with periodic bound
aries,” npj Computational Materials, vol. 6, p. 82, 06 2020.

[26] A. Stellas, “Μηχανική μάθηση και Νανοτεχνολογία: Σύνδεση δομικών και λειτουργικών παραμέτρων
νανοδομημένων επιφανειών με νανοτραχύτητα. (Greek) [machine learning and nanotechnology: Link
ing structural and functional parameters of nanorough surfaces],” Master’s thesis, National Technical
University of Athens, 2019.

[27] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser,
J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F.
del Río, M. Wiebe, P. Peterson, P. GérardMarchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi,
C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature, vol. 585, pp. 357–362, Sept.
2020.

[28] E. Jones, T. Oliphant, P. Peterson, et al., “SciPy: Open source scientific tools for Python,” 2001–.

[29] A. Meurer, C. P. Smith, M. Paprocki, O. Čertík, S. B. Kirpichev, M. Rocklin, A. Kumar, S. Ivanov, J. K.
Moore, S. Singh, T. Rathnayake, S. Vig, B. E. Granger, R. P. Muller, F. Bonazzi, H. Gupta, S. Vats,
F. Johansson, F. Pedregosa, M. J. Curry, A. R. Terrel, v. Roučka, A. Saboo, I. Fernando, S. Kulal,
R. Cimrman, and A. Scopatz, “Sympy: symbolic computing in python,” PeerJ Computer Science, vol. 3,
p. e103, Jan. 2017.

[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch
esnay, “Scikitlearn: Machine learning in Python,” Journal of Machine Learning Research, vol. 12,
pp. 2825–2830, 2011.

[31] G. Giannakopoulos, “A python implementation of the jinsect toolkit of ngram graphs.” https://github.
com/ggianna/PyINSECT, 2021.

[32] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, highperformance deep learning library,”
in Advances in Neural Information Processing Systems 32 (H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’AlchéBuc, E. Fox, and R. Garnett, eds.), pp. 8024–8035, Curran Associates, Inc., 2019.

[33] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in Science & Engineering, vol. 9,
no. 3, pp. 90–95, 2007.

[34] P. T. Inc., “Collaborative data science.” https://plot.ly, 2015.

[35] A. M. Mood, F. A. Graybill, and D. C. Boes, Introduction to the Theory of Statistics. New York City:
McGraw Hill, 3 ed., 11 1973.

[36] R. J. Hyndman and Y. Fan, “Sample quantiles in statistical packages,” The American Statistician,
vol. 50, no. 4, pp. 361–365, 1996.

[37] H. Iqbal, “Harisiqbal88/plotneuralnet v1.0.0,” Dec. 2018.

[38] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, G. Klambauer, and S. Hochreiter, “Gans trained
by a two timescale update rule converge to a nash equilibrium,” CoRR, vol. abs/1706.08500, 2017.

[39] T. Salimans, I. J. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Improved techniques
for training gans,” CoRR, vol. abs/1606.03498, 2016.

V. Sioros 74

https://github.com/ggianna/PyINSECT
https://github.com/ggianna/PyINSECT
https://plot.ly

	CONTENTS
	INTRODUCTION
	BACKGROUND AND RELATED WORK
	Nanotechnology
	Nanoelectronics
	Nanofabrication

	Nanometrology
	Structural Characteristics of Nanorough Surfaces
	Vertical Parameters
	Horizontal Parameters

	Machine Learning
	Deep Learning
	An Artificial Neuron
	Single-Layer Perceptron Network (SLP)
	Convolutional Neural Network (CNN)
	Convolution
	Convolutional Layer

	Activation Functions
	Back Propagation
	Mathematical Statement

	Gradient Descent
	Mathematical Statement

	Extensions and Variants of Gradient Descent
	Stochastic Gradient Descent
	Momentum
	RMSProp
	Adam

	Batch Normalization
	Mathematical Statement
	Limitations and Hindrances

	Generative Adversarial Network (GAN)
	Mathematical Statement
	Training

	N-Gram Graphs
	Similarity Metrics
	Variants
	Merged Model Graph
	Hierarchical Proximity Graph

	State of the Art

	METHODOLOGY
	Problem Definition
	System Overview
	Nanorough Surface Generation
	Nanorough Surface Quantization
	Content Similarity Metrics
	The N-Gram Graph Content Similarity Metric (NGG)
	The Two-Dimensional Array Graph Content Similarity Metric (A2G)
	The Hierarchical Proximity Graph Content Similarity Metric (HPS)
	The Fourier & Histogram Space Content Similarity Metric (FHS)

	Frameworks
	Single-Layer Perceptron GAN (SLPGAN)
	Deep Convolutional GAN (DCGAN)
	Training

	EXPERIMENTAL RESULTS
	Experimental Setup
	DCGAN Weight Initialization
	Evaluating the scalability of the Content Similarity Metrics
	Scalability of the N-Gram Graph Content Similarity Metric
	Scalability of the Two-Dimensional Array Graph Content Similarity Metric
	Scalability of the Hierarchical Proximity Graph Content Similarity Metric

	Evaluating the FHS Content Similarity Metric

	Results and Discussion
	SLPGAN paired with A2G
	DCGAN
	DCGAN paired with NGG
	DCGAN paired with A2G
	Evaluating the statistical significance of our results
	Training DCGAN paired with A2G on additional data sets
	Determining the minimal amount of training data required
	Assessing the scalability of our framework

	CONCLUSIONS AND FUTURE WORK
	ABBREVIATIONS - ACRONYMS
	REFERENCES

