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ABSTRACT

Generating artificial nanorough surfaces in the context of a multi-physics simulation re-
quires (1) identifying the structural feature space so that the generation of new nanorough
surfaces is possible and (2) the reconstruction process to be property-preserving. In this
work, we examine the possibility of providing multi-physics simulations with a computa-
tionally inexpensive way of integrating new nanorough surfaces similar to a predefined
sample of surfaces. We focus on how a Generative Adversarial Network (GAN) based
approach, given a nanorough surface data set, can learn to produce statistically equival-
ent samples. Additionally, we examine how pairing our model with a set of nanorough
similarity metrics, can improve the realisticity of the resulting nanorough surfaces. We
showcase via multiple experiments that our framework is able to produce sufficiently real-
istic nanorough surfaces, in many cases indistinguishable from real data. The complete
source code is available at https://github.com/billsioros/RoughML.

SUBJECT AREA: Machine Learning

KEYWORDS: Nanotechnology, Machine Learning, Graph Theory
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NEPIAHWH

H dnuioupyia TexvNTWV VAVOSOUNUEVWY ETTIPAVEIWY OTO TTAQICIO PIAG QUOIKO-XNMIKAG
TTpocopoiwong atraiTei (1) va TTpocdIoPIoTE 0 XWPOG TV OOUIKWY XAPAKTNPIOTIKWY, WOTE
VQ ETTITPATTEI N AVOKATAOKEUN VEWYV, PEAICTIKWYV ETTIQAVEIWV Kal (2) n diadikaoia avakaTa-
OKEUNG va d1atnpei TIG IBIOTNTES TWV ETTIPAVEIWV. Z€ AUTH TNV epyaaia, e¢eTdloupe Tn duva-
TOTNTA VA TTAPEXOUNE OTIG PUOIKO-XNMIKEG TTIPOCOUOIWOEIG MIA UTTOAOYIOTIKA @Onvry Auon
600V agopd TNV dnuioupyia Kal EVOWUATWON VEWV VAVODOUNUEVWY ETTIPAVEIWV TTAPO-
MOIWV HE £va TTPOKABOPICHEVO OUVOAO eTTIQavEIwY. ETTIKEVTpWVOUAOTE 0TO TTWG €va lNa-
paywyiké Aiktuo AvtiTrapdBeong (MAA), dedouévou evog GuvOAOU VavOBOUNPEVWYV ETTIPA-
VEIWV, €ival IKavo va Ydbel va TrTapdyel OTATIOTIKA I000UvVaa OEiyUaATA ETTIQAVEIWV. 2TN OU-
VEXEIQ, EEETACOUNE TTWG O CUVOUACHOG TOU JOVTEAOU JAG ME Eva OUVOAO PETPIKWY OUOIOTN-
TAG VAVODOUNMEVWV ETTIQAVEIWYV, EXEI WG ATTOTEAEOUA TTIO PEANIOTIKEG VAVODONUEVEG ETTI-
QAvelES. ATTOOEIKVUOUNE HECW TTOAATTAWYV TTEIPAUATWY, OTI TO CUCTNUA Yag gival o€ Béon
Va TTAPAYEI APKETA PEAAIOTIKEG VAVODOUNUEVEG ETTIPAVEIEG, TIG OTTOIEG, OE TTOAEG TTEPITTTW-
oe€lg, gival aduvartov va dIakpivel Kaveic atrd TG TTpaydaTiKES. O TTARPNS TTNYAIog KWAIKAG
gival d1aB€aoipog otnv nAekTpovikr dieuBuvon https://github.com/billsioros/RoughML.

OEMATIKH MNMEPIOXH: Mnxavikii MaBnon

AEZEIZ KAEIAIA: Navotexvoloyia, Mnxavikry M&Bnaon, Ocwpia INpdewv
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Generating realistic nanorough surfaces via a Generative Adversarial Network

1. INTRODUCTION

In this work, we examine the possibility of providing multi-physics simulations with a com-
putationally inexpensive way of integrating new nanorough surfaces, similar to the ones
being measured.

Modeling nanorough surfaces, requires (1) identifying the structural feature space so
that the generation of new nanorough surfaces is possible and (2) the nanorough sur-
face reconstruction process to be property-preserving, meaning that newly constructed
nanorough surfaces should showcase structural properties similar to the the ones being
modeled.

One additional requirement would be that the system is nanorough-surface-configuration-
agnostic. This would enable the system to model a set of nanorough surfaces with no a
priori knowledge of the underlying characteristics of the nanorough surfaces.

The essential idea is, given a set of nano-structures (in some digital format) to develop
a method, which is able to learn the stochastic nature of their morphology by fitting a
supervised learning model to the data set. This model can then be subsequently used to
construct nano-structures with similar structural properties.

In this work:

1. We examine how Generative Adversarial Network (GAN) [1] based frameworks can
be trained to generate realistic nanorough surfaces. We develop 2 different flavors
of the GAN framework. We use a plethora of data sets corresponding to a variety of
nanorough surface populations in order to train our models and examine how well
they are able to adapt to different levels of stochasticity and correlation.

2. We develop 3 graph-based nanorough surface similarity metrics, which will provide
additional feedback to the GAN model at hand, throughout the training process. We
evaluate these metrics with regards to their computational cost and their effect on
the realisticity of the resulting nanorough surfaces.

3. We design a novel nanorough surface similarity metric, which is used to evaluate
the quality of the synthetic nanorough surfaces. Using the established similarity
measures, we showcase that our method is able to generate nanorough surfaces
virtually indistinguishable from real data.

4. We determine that a Deep Convolutional Generative Adversarial Network (DCGAN)
[2] paired with one of our graph-based similarity metrics further improves on the case
of merely utilizing a DCGAN, through multiple Wilcoxon signed-rank tests.

5. We investigate how the size of the training data set and the structural parameters
of the nanorough surfaces making it up affect the quality of the synthetic nanorough
surfaces, and note some limitations of our framework with regards to different de-
grees of correlation, stochasticity, and smoothness of the input nanorough surfaces.

This document is organized as follows; Section 2 introduces the reader to basic concepts
and ideas that are related to the problem at hand rather than completely reviewing the do-
main. Section 3 provides a more formal description of the problem and elaborates on our
technical approach. Section 4 showcases the results of our various experiments. We look
into (1) the computational cost of the various nanorough similarity metrics, (2) how different

V. Sioros 13
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combinations of GAN flavors and nanorough surface similarity metrics affect the quality of
the synthetic nanorough surfaces, (3) the behavior of our framework when being trained
on different data sets corresponding to varying amounts of correlation, stochasticity, and
smoothness, and (4) the scalability of our framework with regards to nanorough surface
generation. In Section 5, we conclude our work with findings regarding the advantages
and limitations of our framework, and propose future research avenues.

V. Sioros 14
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2. BACKGROUND AND RELATED WORK

2.1 Nanotechnology

Nanotechnology may be defined as the use of matter on an atomic, molecular, and
supramolecular scale for industrial purposes. To be more specific, nanotechnology
encompasses the design, construction as well as operation of devices and systems, that
contain materials the structural elements of which have dimensions less than 100 nm.

This definition reflects the fact that quantum mechanical effects are important at this
quantum-realm scale, and so the definition shifted from a particular technological goal
to a research category inclusive of all types of research and technologies that deal with
the special properties of matter occurring below the given size threshold.

Nanotechnology can be separated into three main areas:

* Nanoelectronics, which is an evolution of microelectronics, refers to the use of
nanotechnology in electronic components. The term covers a diverse set of devices
and materials, with the common characteristic that they are so small that inter-atomic
interactions and quantum mechanical properties need to be studied extensively.

+ Nanomedicine, which is the medical application of nanotechnology and ranges from
the medical applications of nanomaterials and biological devices to nanoelectronic
biosensors.

« Nanomaterials, where materials with nanostructured surfaces or nanostructures
are developed and investigated. Materials with structure at the nanoscale often have
unique optical, electronic, thermo-physical, or mechanical properties.

2.1.1 Nanoelectronics

In 1965, Gordon Moore observed that the size of silicon transistors were undergoing a con-
tinual process of scaling downward, an observation which was later codified as Moore’s
Law. Since his observation, transistor minimum feature sizes have decreased from 10
micrometers to the 10nm range as of 2019.

The performance of an electronic device, and microchips, in particular, is determined by
the number of transistors, which make them up. A large number of transistors corresponds
to increased performance.

Nanoelectronics holds the promise of making computer processors more powerful than
is possible with conventional semiconductor fabrication techniques. Several approaches
are currently being researched, including new forms of nanolithography, as well as the
use of nanomaterials such as nanowires or small molecules in place of traditional CMOS
components.

2.1.2 Nanofabrication

There is no single accepted definition of nanofabrication, nor a definition of what separ-
ates nanofabrication from microfabrication. To meet the continuing challenge of shrinking

V. Sioros 15



Generating realistic nanorough surfaces via a Generative Adversarial Network

component size in microelectronics, new tools and techniques are being continuously de-
veloped. Component sizes went from tens of micrometers, to single-digit micrometers, to
hundreds of nanometers, and finally to a few tens of nanometers where they stand today.
As a result, what used to be called microfabrication was rebranded as nanofabrication,
although the governing principles have remained essentially the same. The main driver
of this technology has been the manufacture of integrated circuits, but there have been
tremendous side benefits to other areas, including photonics.

Nanofabrication approaches can be separated into two main categories:

+ Bottom-up or self-assembly approaches to nanofabrication use chemical or phys-
ical forces operating at the nanoscale to assemble basic units into larger structures.
Researchers hope to replicate nature’s ability to produce small clusters of specific
atoms, which can then self-assemble into more-elaborate structures.

» Top-down approaches involve the breaking down of the bulk material into nanos-
ized structures or particles. Top-down approaches are inherently simpler, compared
to Bottom-up approaches. They depend either on the removal or division of bulk
material or on miniaturization of bulk fabrication processes to produce the desired
structure with appropriate properties.

2.2 Nanometrology

Nanometrology is a subfield of metrology, concerned with the science of measurement
at the nanoscale level. Having manufactured a nanostructure, its structural character-
ization is required, before its application. Nanometrology significantly contributes to the
production of accurate and reliable nanomaterials and devices.

The structural qualities of a nanostructure dramatically affect its functionality. The meas-
urements, that are carried out in the context of Nanometrology, concern the geometric
characteristics of measurements (height, width, roughness, etc.), as well as their chemical
compounds, physical properties, and interactions with the environment.

2.21 Structural Characteristics of Nanorough Surfaces

The structural characteristics of a nanorough surface can be separated into those that
characterize the distribution of its heights (or vertical parameters) and those that charac-
terize the correlation of its points on a two-dimensional coordinate system (or horizontal
parameters).

2.2.1.1 Vertical Parameters

Moments are a set of quantitative measures describing the shape of a given distribution.
Assuming a multivariate real-valued discrete series z(k, 1), its n,, moment is given by:

=

3

u, = Ny (2 —2)" (2.1)

mn

il
o
Il

o
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Using 2.1, we are able to calculate all the moments of z(k, ). The first moment corres-
ponds to the expected value, the second central moment to the variance, the third stand-
ardized moment to the skewness, and the fourth standardized moment to the kurtosis of
z(k,1):

n—1m—1 _
Mean = = Pkl " 2 (2.2)
mmn
k=0 [=0
n—1m 1 Z . Z)
Standard Deviation = 0 = il (2.3)
=0 l
n—1m—1 (z Z 3
k1l —
Skewness =S =) e (2.4)
k=0 [=0
n—1m—1 . 4
Kurtosis = K = (2 : ?) (2.5)
k=0 [=0 g

A nanorough surface can be interpreted as a multivariate real-valued discrete series z(k, 1),
that maps different 2D coordinates i,z to the height of the nanorough surface on the
specific coordinates z(y, z). Hence, we can characterize it using the statistical moments
2.2-2.5.

2.2.1.2 Horizontal Parameters

Other than the aforementioned statistical measures, the correlation length of a given sur-
face should be taken into consideration during its study. The correlation length can be
defined as a measure of the constraint between height displacements of neighboring
points of the surface. This constraint is expected to be significant if two points are well
inside the correlation length and negligible outside it.

The correlation length of a given nanorough surface is determined by its Autocorrelation
Function (ACF). Autocorrelation is the correlation of a signal with a delayed copy of itself
as a function of the delay.

Given the profile of a nanorough surface, i.e. a discrete normalized height function y(x),
the ACF is given by the following equation:

l—ry
1

20=r) D (@) — ) (ylz +72) = () (2.6)

where [ is the length of the profile in the direction of the horizontal axis and r,, is the distance
between 2 points of the profile.

ACF(r,) =

The ACF for small values of r, can be expressed in exponential form as such:

ACF(r,) = exp(_gx) (2.7)

The correlation length of a given nanorough surface, is the length where the ACF has

V. Sioros 17
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decreased by a specific percentage compared to its original value. Usually, the desired
percentage is around 10%, where ACF = 0.1.

2.3 Machine Learning

The term Machine learning (ML) describes a set of computer algorithms that can im-
prove automatically through the use of data. Machine learning algorithms "learn” to make
predictions or decisions without being explicitly programmed to do so.

Machine learning algorithms aim at modeling complex functions and can be divided into
two broad categories, the Supervised Learning (SL) and the Unsupervised Learning
(UL) algorithms. We are going to be focusing on SL, and more specifically Deep Learning
methods.

2.4 Deep Learning

Deep learning (also known as Deep Structured Learning) is part of a broader family of
machine learning methods based on artificial neural networks with representation learning.

Representation learning or Feature Learning is a set of techniques that allows a system
to automatically discover the representations needed for feature detection from raw data.
This replaces manual feature engineering, which is the process of using domain know-
ledge to extract features (characteristics, properties, attributes) from raw data, and allows
a machine to both learn the features and use them to perform a specific task. By the term
feature, we refer to an individual measurable property or characteristic of a phenomenon.
Features are usually numeric, but structural features such as strings and graphs can also
be used. The concept of "feature” is related to that of explanatory variables used in stat-
istical techniques such as linear regression.

Artificial neural networks (ANNs) were inspired by information processing and distrib-
uted communication nodes in biological systems. ANNSs, though are quite different from
biological brains. ANNs are comprised of an input layer, one or more hidden layers, and
an output layer. Each node or artificial neuron has inputs and produces a single output that
can be sent to multiple other neurons. The inputs can be the feature values of a sample of
external data, such as images or documents, or they can be the outputs of other neurons.
The outputs of the final output neurons of the neural net accomplish the task, such as
recognizing an object in an image.

An ANN wherein connections between the nodes do not form cycles or loops, is referred to
as Feed-Forward Neural Network. The Feed-Forward Neural Network was the first and
simplest type of artificial neural network devised. In this network, the information moves
in only one direction, forward from the input nodes, through the hidden nodes (if any), and
to the output nodes.

2.41 An Artificial Neuron

Artificial neurons are elementary units in an artificial neural network. The artificial neuron
receives one or more inputs and sums them to produce an output. Each input is separately
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weighted, and the sum is passed through a non-linear function known as an activation
function.

Other than the neuron’s weights, another term is added to the total sum before being
passed through the activation function. This term is the so-called bias. Bias allows you to
shift the activation function, analogously to a constant in the context of a linear function,
whereby the line is effectively transposed by the constant value.

x@% y = ¢(2)
7

Figure 2.1: An artificial neuron. This visualization was produced using code adapted from David
Stutz’s work [3].

Zo
T
T,
2.4.2 Single-Layer Perceptron Network (SLP)

The simplest kind of neural network is a Single-Layer Perceptron Network, which con-
sists of a single layer of output nodes; the inputs are fed directly to the outputs via a series
of weights. The sum of the products of the weights and the inputs is calculated in each
node and passes through a, commonly non-linear, function. Single-layer perceptrons are
only capable of learning linearly separable patterns.

For a given artificial neuron £, let there be m + 1 inputs with signals x, through z,, and
weights wy, o through wy ,,,. To achieve a bias inclusive representation, the z, input is
assigned the value +1 and corresponds to the neuron’s bias, with w; o = b;. Then the
output of neuron k is given by the following equation:

v = () wiix;) (2.8)
=0

where ¢ stands for the activation function of choice. This operation is demonstrated by
Figure 2.1, where £ is left out as we are demonstrating the case of a single neuron.

2.4.3 Convolutional Neural Network (CNN)

A Convolutional Neural Network (CNN) [4, 5] is a class of artificial neural networks, that
take advantage of the hierarchical structure of data, assembling patterns of increasing
complexity using smaller and simpler ones.

CNNs were inspired by the primary visual cortex of the brain, which is responsible for
processing visual information. Individual cortical neurons respond to stimuli only in a re-
stricted region of the visual field known as the receptive field. The receptive fields of
different neurons partially overlap such that they cover the entire visual field.
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2.4.3.1 Convolution

Assuming data with a grid-like topology, Convolution refers to the process of passing a
sliding window of predetermined size over the data, and computing the dot product of a
small matrix of numbers, better known as kernel or filter, with each sub-matrix of the input
data. The resulting matrix is most commonly referred to as feature map.

Denoting the input as |, the kernel as K, and the feature map as F, convolution is described
by the following equation:

Flm,n] = (I - K)[m,n] = ijkl[m —jon—k] x K[j, k] (2.9)

The convolution process (Figure 2.2) is controlled by two hyperparameters, namingly the
padding and the stride. Stride controls by how much we shift the convolution kernel. More
specifically, for any integer s > 0 a stride s means that the kernel is translated s units at
a time. A stride of 1 leads to heavily overlapping receptive fields between the columns,
and a large output volume. A greater stride means a smaller overlap of receptive fields
and smaller spatial dimensions of the output volume. In practice, s > 3 is quite rare.
Sometimes, it is convenient to pad the input with zeros (or other values, such as the
average of the respective region) on the border of the input volume. Padding determines
the spatial size of the output volume.

Assuming stride s and padding p, the dimension of the output feature map is given by the
following expression:

49 _
Nows = | 22T SXp L (2.10)
8]5]3]5
4742 3735
718]7]3 - 32(30
50841
I 11011 FeIl K
1100
1111

Figure 2.2: Convolution with a stride of 1 and no padding

In case, more than one kernel is to be applied, the convolution process is separately
carried out for each one, and the results are stacked into a single three dimensional matrix.
It is important that the kernel(s) have the same number of channels as the input. By
channels we refer to the depth of the input data. Two dimensional data are treated as
having a single channel. For example, in the case of RGB images, there are 3 channels,
one for each color.

Denoting n as the size of the input data k& as the kernel size, n. as the number of channels
of the input data, and n;, as the number of kernels to be applied on the data, the dimensions
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of the output feature map are given by the following expression:

nm—l—2>< — nm—l—2>< —
p f+1J,L p—f

[n,n,ne - [k, k,ne] =[] . 3

+ 1], ] (2.11)

2.4.3.2 Convolutional Layer

The Convolutional Layer is the core building block of the CNN architecture. A CNN is is
constructed by stacking such along with other types (activation function, min/max/average
pooling, etc.) of layers.

A convolutional layer receives a block of input feature maps, convolves it using a set of
learnable kernels, and generates a block of output feature maps. These kernels activate
when the convolutional layer detects a specific type of feature at some spatial position in
the input. Different kernels learn to activate for different features. A certain combination
of features in a certain area can signal a larger, more complex feature. For example,
in the case of visual imagery, detecting a set of curves might result in detecting a set of
circles (a combination of curves), which consequently might result in detecting a bicycle
(a combination of line and circle features), and so on.

During the forward pass, each kernel is convolved across the width and height of the input
volume. A bias term is optionally added to expression 2.9, and the result is stored in the
output feature map. Every entry in the output volume can thus be interpreted as an output
of a neuron that examines only a small region of the input data and shares parameters
with other neurons in the same feature map. Moreover, the number of output channels
determines the number of neurons that connect to the same region of the input volume.
Hence, not all neurons in two consecutive layers are connected to each other.

Fully connected feed-forward neural networks are generally impractical for large inputs,
such as high-resolution images, where each pixel is a relevant input feature, as it would
require a tremendous number of neurons, even in the case of a shallow architecture. In
this scenario, CNNs are a preferable option as connections are local in space and neurons
of the same feature map share weights, thus reducing the number of free parameters,
and allowing the network to be deeper. Furthermore, CNNs, contrary to traditional neural
network architectures which treat input values that are far apart the same way as values
that are close together, do take the spatial structure of data into account. This renders
them ideal for data with a grid-like topology.

2.4.4 Activation Functions

Activation functions are a way of introducing non-linearity to a neural network. In the
absence of an activation function, no matter how many layers there are in a neural network,
the last layer is going to be a linear function of the first. As a result, the neural network
degenerates into a linear regression model with limited expressive capabilities.

Other than non-linear, activation functions are often monotonically increasing, continuous,
differentiable, and bounded.

Popular choices include the Rectified Linear Unit (ReLU), Hyperbolic Tangent (TanH),
the Sigmoid (o) and LeakyRel U activation functions:
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RelLU(x) = max(O ) (2.12)
TanH(z) = tanh(z) (2.13)
o(r) = (1 e ™)t (2.14)
LeakyReLU, = max(0, z) + o - min(0, z) (2.15)

2.4.5 Back Propagation

Backpropagation [6] is a widely used algorithm for training feed-forward neural networks,
wherein the gradient of a loss function is computed with respect to the weights of the
network for a specific input-output instance.

The gradient of a scalar-valued differentiable function f of several variables is the vector
field (or vector-valued function) V f whose value at a point p is the vector whose compon-
ents are the partial derivatives of f at p. Thatis, for f: R — R, its gradient Vf: R" — R"

is defined at the point p = (x4, ..., z,) in n-dimensional space as the vector:
L)
Vip) =1 (2.16)
L (p)

A loss function calculates the difference between the network output and its expected
output after a training example has propagated through the network. Loss functions are
not fixed and are chosen depending on the task at hand.

During backpropagation the gradients are computed one layer at a time, iterating back-
ward from the last layer.

During model evaluation, the weights are fixed, while the inputs vary and the target out-
put is unknown. Whereas during model training, the input-output pairs are fixed and the
weights vary.

Backpropagation requires the derivatives of the activation functions to be known at net-
work design time. Additionally, the loss function must be expressible as a function of
the outputs of the neural network as well as an average over individual error functions
Q:(w), where each summand function Q; is typically associated with the i** observation in
a n-large training data set:

Q) = > Qi) (2.17)

2.4.51 Mathematical Statement

Given a feed-forward neural network architecture, let = be the neural network’s input,
which is a vector of features, y be the target output, C' be the loss function, L be the
number of layers that make up the neural network, W' = (w! ) be the weights, where w!
is the weight between the k" node in layer | — 1 and the j** node in layer [ and f! be the
activation functions at layer /.
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Assuming that nodes in each layer are connected only to nodes in the immediate next

layer, without skipping any layers, the overall network can be mathematically described
as a combination of function composition and matrix multiplication, as such:

gla) = fRWEEI W fr W ) ) (2.18)
Given an input-output pair (z, y) the loss function is:

Cly,g(x)) = Cly, fAWEFH W fL (W) - 0))) (2.19)

The derivative of the loss in terms of the inputs is given by the chain rule as:

oC  da* 028  9att 02E1 9al 02!

oal  92L 9aL-l 0zL-1 9al-2 92! ox

(2.20)

The chain rule is a formula that expresses the derivative of the composition of two differ-
entiable functions f and ¢ in terms of the derivatives ' and ¢'. To elaborate, if a variable
z depends on a variable y, which itself depends on a z, then z depends on x as well, via
the intermediate variable y and the chain rule states that:

0z 0z 0Oy

Taking into consideration that:
/ aal
(1 =52 (222)
OW'lgl—1 0z
l
W= a1 fal-! (2.23)
2.20 can be rewritten as:
ac Ly’ L L—1\' L—1 1\/ 1
B W (R W (2.24)

The gradient (V) is the transpose of the derivative of the output in terms of the input. The
transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches
the row and column indices of the matrix A by producing another matrix, often denoted
by AT. The transpose of a product of matrices is the product, in the reverse order, of the
transposes of the factors:

(AB)T = BT AT (2.25)

Using 2.24 and 2.25 we can calculate the gradient as such:

VoC = (WHT(fY) - (WEDT (f2N - (WhT - (f) - Ve C (2.26)
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We shall now introduce the auxiliary quantity 6/, which stands for the “error at level I” and
is defined as the gradient of the input values at level I:

o = () - (WEDT e (WEHT (P70 (WET - (F5) - Ve C (2.27)

The gradient of the weights in layer [ is then:

Vi C = 8(a )T (2.28)

5" is multiplied by a factor of /!, as the weights W', between levels [ — 1 and [, affect level
[ proportionally to the inputs.

2.27 can be rewritten as:

Ot = (Y o (WHT . ¢! (2.29)

where o is the Hadamard product, that is a binary operation that takes two matrices of the
same dimensions, and produces another matrix where each element ¢, j is the product of
elements ¢, j of the original two matrices.

Backpropagation essentially consists of utilizing expression 2.29 to recursively evaluate
expression 2.28, starting at the last layer and working our way to the first layer.

Backpropagation is capable of efficiently computing the gradient by avoiding duplicate
calculations and not computing unnecessary intermediate values. Computing §'~! in terms
of ' avoids the duplicate multiplication of layers /,{+1,--- , L — 1, L. Propagating the error
backwards means that each step simply multiplies the vector ¢’ by the matrices of weights
(WHT and derivatives of activation functions (f'~!)". By contrast, multiplying forwards,
starting from the changes at an earlier layer, means that each multiplication multiplies
a matrix by a matrix. This is much more expensive and corresponds to tracking every
possible path of a change in one layer [ forward to changes in the layer [+ 2 (for multiplying
Wit by W*2, with additional multiplications for the derivatives of the activation functions),
which unnecessarily computes the intermediate quantities of how weight changes affect
the values of hidden nodes.

The term Backpropagation strictly refers to the process of computing the gradients, and
not how they are used.

2.4.6 Gradient Descent

Gradient descent optimization algorithms [7] are usually used jointly with backpropaga-
tion to train multi-layer networks, updating the network’s weights and thus minimizing the
network’s loss. One of the more popular ones is the Gradient Descent method.

Gradient Descent is a first-order iterative optimization algorithm for finding a local minimum
of a differentiable function. The idea is to take repeated steps in the opposite direction of
the gradient of the function at the current point because this is the direction of steepest
descent. Conversely, stepping in the direction of the gradient will lead to a local maximum
of that function; the procedure is then known as gradient ascent.

Gradient Descent works in spaces of any number of dimensions, even in infinite-dimensional
ones.
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2.4.6.1 Mathematical Statement

Gradient Descent is based on the observation that if the multi-variable function F' is defined
and differentiable in a neighborhood of a point a, then F'(x) decreases fastest if one goes
from a in the direction of the negative gradient of F' at a, —V F'(a). It follows that if

Ap+1 = Ap — ’YVF(G) (230)

for v € R™ small enough, then F(a,) > F(a,+1). In other words, the term vV F'(a) is sub-
tracted from a, because we want to move against the gradient, toward the local minimum.
With this observation in mind, one starts with a guess z, for a local minimum of £ and
considers the sequence xg, r1, zs . .. such that

We have a monotonic sequence

F(zg) > F(x1) > F(xg) > ... (2.32)

so, hopefully, the sequence (x,) converges to the desired local minimum. Note that the
value of the step size ~ is allowed to change at every iteration.

Since using a step size ~ that is too small would slow convergence, and a v too large
would lead to divergence, finding a good setting of ~ is an important practical problem.
Other than the step size v, one could also alter the direction of the descent. Whilst using
a direction that deviates from the steepest descent direction may seem counter-intuitive,
the idea is that the smaller slope may be compensated for by being sustained over a much
longer distance. Let’s consider the more general update rule with direction p, and step
size v,:

Ap+1 = An — YnPn (233)

Finding good settings of p,, and ~,, requires a little thought. First of all, we would like the
update direction to point downhill. Mathematically, letting 6,, denote the angle between
VF(a,) and p,, this requires that cos, > 0. Under the fairly weak assumption that F is
continuously differentiable, we may prove that:

IVF(an — tynpn) — VF(an)Hz
Fla,i1) < Fl(a,) — v, ||VF(a, nlls | COS 6, — max
(a +1) = (a ) i ” (a )HQHP ||2 £€[0,1] HVF(an)H2

(2.34)

This inequality implies that the amount by which we can be sure the function F' is de-
creased depends on a trade-off between the two terms in square brackets. The first term
in square brackets measures the angle between the descent direction and the negative
gradient. The second term measures how quickly the gradient changes along the descent
direction.

In principle, this inequality could be optimized over p,, and ~,, to choose an optimal step size
and direction. The problem is that evaluating the second term in square brackets requires

V. Sioros 25



Generating realistic nanorough surfaces via a Generative Adversarial Network

evaluating VF'(a, — ty,p,), and extra gradient evaluations are generally expensive and
undesirable.

With certain assumptions on the function F and particular choices of +, convergence to a
local minimum can be guaranteed, for example, when the function F' is convex, all local
minima are also global minima, so in this case, gradient descent can converge to the
global solution.

2.4.7 Extensions and Variants of Gradient Descent

Various Gradient Descent variants have been designed through the years, which improve
upon different aspects or tackle limitations of the original Gradient Descent method. We
are going to be exploring a few of these.

2.4.7.1 Stochastic Gradient Descent

As previously mentioned in 2.4.5, training a neural network effectively evaluates to min-
imizing an objective function that can be expressed as:

1 x—n
Q) == Qi(w) (2.35)
where the parameter w which minimizes Q(w) is to be estimated. Each summand function
Q; is typically associated with the i*" observation in the training data set.

When used to minimize the above function, the standard (or "batch”) gradient descent
method would perform the following iterations:

w:=w—7VQ(w) =w — ZZ:;VQZ-(UJ) (2.36)

where + is a step size or learning rate.

In stochastic (or “on-line”) gradient descent, the true gradient of Q(w) is approximated by
a gradient at a single example:

w:=w —YVQ;(w) (2.37)

Especially in high-dimensional optimization problems, this reduces the computational bur-
den, achieving faster iterations in trade for a lower convergence rate. As the algorithm
sweeps through the training set, it performs the above update for each training example.
Several passes can be made over the training set until the algorithm converges.

A compromise between computing the true gradient and the gradient at a single example is
to compute the gradient against more than one training example (called a "mini-batch”) at
each step. This can perform significantly better than the "true” stochastic gradient descent
described because the code can make use of vectorization libraries rather than comput-
ing each step separately. It may also result in smoother convergence, as the gradient
computed at each step is averaged over more training examples.
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24.7.2 Momentum

Stochastic gradient descent with momentum [8] keeps track of the update A, at each
iteration, and determines the next update as a linear combination of the gradient and the
previous update:

A, = alA, —7VQ;(w)

= w:=w—yVQ;(w) + al, (2.38)
wi=w+ A,

where « is an exponential decay factor between 0 and 1 that determines the relative con-
tribution of the current gradient and earlier gradients to the weight change.

Momentum allows the search to build inertia in a direction in the search space and over-
come the oscillations of noisy gradients and coast across flat spots of the search space.

2.4.7.3 RMSProp

In Root Mean Square Propagation (RMSProp) [9], the learning rate is adapted for each
of the parameters. The idea is to divide the learning rate for a weight by a running average
of the magnitudes of recent gradients for that weight.

So, first the running average is calculated in terms of means square:

v(w,t) := Bu(w,t — 1)+ (1 — B)(VQ;(w))? (2.39)

where [ is the forgetting factor. And the parameters are updated as such:

W= w -~V Qy(w) (2.40)

Vo(w,t)

2.4.7.4 Adam

Adaptive Moment Estimation (Adam) [10] is an extension of RMSProp. In Adam, run-
ning averages of both the gradients and the second moments of the gradients are used.

Given parameters w® and a loss function L®), where t indicates the current training iter-
ation, the parameters are updated as such:

mi — Biml) + (1= 1)V, LY (2.41)

I B ® 4 (1 — By)(V LD)? (2.42)

(t+1)

My

My = 2.43
5 (2.43)

v(t+1)
By = — 244
- (2.44)
(1) oy ® A T 2.45
w Rt by (2.45)
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where ¢ is a small scalar (e.g. 1078) used to prevent division by 0, and 3, (e.g. 0.9) and
B2 (e.g. 0.999) are the forgetting factors for gradients and second moments of gradients,
respectively.

2.4.8 Batch Normalization

Each layer of a neural network has inputs with a corresponding distribution, which is af-
fected during the training process by the randomness in the parameter initialization and
the randomness in the input data. The effect of these sources of randomness on the distri-
bution of the inputs to internal layers during training is described as internal covariate shift.
Although a clear-cut precise definition seems to be missing, the phenomenon observed in
experiments is the change in means and variances of the inputs to internal layers during
training.

Batch normalization [11] was initially proposed to mitigate internal covariate shift. During
the training stage of networks, as the parameters of the preceding layers change, the
distribution of inputs to the current layer changes accordingly, such that the current layer
needs to constantly readjust to new distributions. This problem is especially severe for
deep networks because small changes in shallower hidden layers will be amplified as
they propagate within the network, resulting in a significant shift in deeper hidden layers.
Therefore, the method of batch normalization is proposed to reduce these unwanted shifts
to speed up training and to produce more reliable models. Some scholars have argued
that batch normalization does not reduce internal covariate shift, but rather smooths the
objective function, which in turn improves performance.

Besides reducing internal covariate shift, batch normalization is believed to introduce
many other benefits. With this additional operation, the network can use a higher learning
rate without vanishing or exploding gradients. Furthermore, batch normalization seems
to have a regularizing effect such that the network improves its generalization properties.
This prevents the model from corresponding too closely to a particular set of data and
therefore failing to fit additional data or predict future observations reliably (also known as
Overfitting).

It has been observed also that batch normalization the network becomes more robust to
different initialization schemes and learning rates.

2.4.8.1 Mathematical Statement

In a neural network, batch normalization is achieved through a normalization step that
fixes the means and variances of each layer’s inputs. ldeally, the normalization would
be conducted over the entire training set, but to use this step jointly with stochastic op-
timization methods, it is impractical to use the global information. Thus, normalization is
restrained to each mini-batch in the training process.

Use B to denote a mini-batch of size m of the entire training set. The empirical mean and
variance of B could thus be denoted as
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1 m

- Z 2 (2.46)
1 m

o =— (v~ pp)” (2.47)
i—1

For a layer of the network with d-dimensional input, z = (zV, ..., 2(9)), each dimension of
its input is then normalized (i.e. re-centered and re-scaled) separately

o z®_®
i = ==L (2.48)
ag) + €

where k € [1,d] and i € [1,m]; MB and aff are the per-dimension mean and variance,

respectively. ¢ is added in the denominator for numerical stability and is an arbitrarily small
constant.

The resulting normalized activation #*) have zero mean and unit variance if ¢ is not taken
into account. To restore the representation power of the network, a transformation step
then follows as

y =W 4 g (2.49)

where the parameters v*) and 3*) are subsequently learned in the optimization process.

Formally, the operation that implements batch normalization is a transform, the Batch
Normalization Transform

BN,y(k),ﬁ(k) : xgk)m — y%k)m (250)

The output of the BN transform y® = BN, u 50 (2¥)) is then passed to other network

layers, while the normalized output jgk) remains internal to the current layer.

During inference, the normalization step is computed with the population statistics such
that the output could depend on the input in a deterministic manner.

E[J}(k)]
Var[z®)] =

SAMY (2.51)
" Eglol}] (2.52)

m —

The BN transform in the inference step thus becomes

. (k) ®) o)

g v z

y® = BN (o) = 04 (g0 - Ll (2.53)
Var[z®)] + Var([z®)] + ¢

where y*) is passed on to future layers instead of z(*). Since the parameters are fixed
in this transformation, the batch normalization procedure is essentially applying a linear
transform to the activation.
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2.4.8.2 Limitations and Hindrances

When activation functions are used whose derivatives can take on larger values, one
risks encountering the exploding gradient problem, which refers to accumulating gradi-
ents resulting in very large updates to neural network model weights during training. This
renders the model unstable and unable to learn from the training data.

Even though batch normalization was originally introduced to alleviate gradient vanishing
or explosion problems, a deep batch normalization network suffers from gradient explo-
sion at initialization time, no matter what it uses for non-linearity. Thus the optimization
landscape is very far from smooth for a randomly initialized, deep batch normalization
network. More precisely, if the network has L layers, then the gradient of the first layer
weights has norm > c\* for some A > 1, ¢ > 0 depending only on the non-linearity. For
any fixed non-linearity, A\ decreases as the batch size increases. For example, for ReLU,
A decreases to - ~ 1.467 as the batch size tends to infinity. Practically, this means deep
batch normalization networks are untrainable. This is only relieved by skip connections in
the fashion of residual networks. Note that, the gradient explosion depends on stacking
batch normalization layers typical of modern deep neural networks.

249 Generative Adversarial Network (GAN)

A Generative Adversarial Network (GAN) [1] is a machine learning framework wherein,
two models, namely the generator and the discriminator are simultaneously trained and
play a minimax two-player game.

The generative model captures the data distribution and generates candidates, while the
discriminative network, given a sample, estimates the probability that it originates from the
training data rather than the generative model.

The contest operates in terms of data distributions. Typically, the generative network
learns to map from a latent space to a data distribution of interest.

GANSs are implicit generative models, which means that they do not explicitly model the
likelihood function nor provide means for finding the latent variable corresponding to a
given sample.

2.4.9.1 Mathematical Statement

The adversarial modeling framework is most straightforward to apply when the models
are both multi-layer perceptrons. To learn the generator’s distribution p, over data x, we
define a prior on input noise variables p.(z), then represent a mapping to data space
as G(z;0,), where G is a differentiable function represented by a multi-layer perceptron
with parameters ¢,. We also define a second multi-layer perceptron D(x; 6,) that outputs a
single scalar. D(z) represents the probability that = came from the data rather than p,. We
train D to maximize the probability of assigning the correct label to both training examples
and samples from G. We simultaneously train G to minimize log(1IXID(G(2))).

In other words, D and G play the following two-player minimax game with value function
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V(G, D):

mcin max V(G,D) = Ezepyora(@) [Iog D(x) (2.54)

+ Eenp.(2) [1 —log D(G(2))

In [1] lan Goodfellow et al. proved that this minimax game has a global optimum for
pg = DPdata-

2.4.9.2 Training

The generative network’s training objective is to increase the error rate of the discriminative
network, by producing novel candidates that the discriminator fails to distinguish from real
data.

A known data set serves as the initial training data for the discriminator. Training involves
presenting it with samples from the training data set until it achieves acceptable accuracy.
The generator trains based on whether it succeeds in fooling the discriminator. Typic-
ally the generator is seeded with randomized input that is sampled from a predefined
latent space (e.g. a multivariate normal distribution). Thereafter, candidates synthes-
ized by the generator are evaluated by the discriminator. Independent backpropagation
procedures are applied to both networks so that the generator produces better samples,
while the discriminator becomes more skilled at flagging synthetic samples. The gradient-
based updates can use any standard gradient-based learning rule, but we are going to be
presenting a mini-batch stochastic gradient descent (along with momentum) approach, as
this is the one explored in [1]:

Algorithm 1 Mini-batch stochastic gradient descent training of generative adversarial
nets. The number of steps to apply to the discriminator, k, is a hyperparameter

1: for number of training iteration do
2: for k steps do

3: Sample mini-batch of m noise samples {z(1)---z(m)} from noise prior
py(2).

4: Sample mini-batch of m examples {z(l)---z(m)} from data generating
distribution pgu.(T).

5: Update the discriminator by ascending its stochastic gradient:

VoY oo | 109D () + log (1~ D (G (:)))

6: Sample mini-batch of m noise samples {z(1)---z(m)} from noise prior
py(2).
7: Update the generator by descending its stochastic gradient:

Vi, 3 log (1 D (G (1))

Early in learning, when G is poor, D can reject samples with high confidence because they
are clearly different from the training data. In this case, log(1XID(G(z))) saturates. Rather
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than training G to minimize log(1XID(G(%))) we can train G to maximize log D(G(z)). This
objective function results in the same fixed point of the dynamics of G and D but provides
much stronger gradients early in learning.

Optimizing D to completion in the inner loop of training is computationally prohibitive, and
on finite data sets would result in overfitting. Instead, we alternate between £ steps of
optimizing D and one step of optimizing . This results in D being maintained near its
optimal solution, so long as G changes slowly enough.

This algorithm optimizes function 2.54, thus obtaining the desired result of p;, ~ pyaia-

2.5 N-Gram Graphs

In the fields of computational linguistics and probability, an n-gram is a contiguous se-
quence of n items from a given sample of text or speech. The items can be phonemes,
syllables, letters, words, or base pairs according to the application.

Assuming a text (T'), an elementary way of extracting its corresponding set of n-grams
SS™ is described by Algorithm 2:

Algorithm 2 Extracting n-grams from a text
1: SS" < ()
2: forall ¢ in [1,length(T) —n + 1] do
3: SS™ «+ SS"” U S’L’,i+nfl

In [12] George Giannakopoulos et al. proposed the n-gram graph model, which is a
language-neutral, statistical approach of representing a text document. In [13], the au-
thors, using the n-gram graph model, designed an automatic summary evaluation system.

The n-gram graphis a graph G = {V, E, L, W}, where V is the set of vertices, E is the set
of edges, L is a one-to-one function assigning a label to each vertex and to each edge and
W is a function assigning a weight to every edge. The graph has n-grams as its vertices
v € V and edges e € F connecting them. The weights w € W of the edges indicate either
the distance or the number of co-occurrences of two n-grams, within a given window D, ;,,,
in the original text. The meaning of distance and window size changes by whether we use
character or word n-grams.

In [12] 3 different weighting approaches were presented based on different types of win-
dows. Denoting a random n-gram as N, located at position p,, the various approaches
are described below:

* The non-symmetric approach where, then the window will span from py — D.»
to pp — 1, taking into account only preceding n-grams. Every neighbor contributes
equally to the corresponding edge’s weight.

» The symmetric approach where, then the window will span from p, — L%J to

Do + LD“Q“"IJ, taking into account both preceding and succeeding n-grams. Every

neighbor contributes equally to the corresponding edge’s weight.

* The Gauss-normalized symmetric approach where, then the window will span

from py — | 28w | to p, 4 | 28wz |, taking into account both preceding and suc-
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ceeding n-grams. Each neighbor contribution is weighted based on that neighbor’s
distance to the target n-gram.

2.5.1 Similarity Metrics

In [12] George Giannakopoulos et al. introduced a variety of metrics aimed at determining
the similarity between two n-gram graphs. These metrics include the Value Similarity
(VS), the Size Similarity (SS) and the Normalized Value Similarity (NVS).

Assuming two n-gram graphs G, = {V}, E1, L1, W1} and Gy = {V%, Ey, Lo, W5}, then the
Value Similarity is defined as:

ZeEElﬂEg VR(e)
max(|E1|, |Esl)

VS(Gy, Gy) = (2.55)

where |E;| stands for the cardinality of E;. VR stands for Value Ratio and is defined as:

VR(e) = Min(wi, ws) (2.56)

 maz(wf, ws)

where w{ and w§ correspond to the weights of edge e in graphs G; and G, respectively.

Size Similarity is defined as:

n(|Enl, | o)
SS(Gy. Gy) = MU BN 2.57
(AN 2R 250
Finally, Normalized Value Similarity uses both 2.55 and 2.57 and is defined as:
VS(Gy, Gy)
NV == 2.
S(Gy, Gs) SS(Gy. o) (2.58)

2.5.2 Variants

In [13] George Giannakopoulos et al. presented two variants of n-gram graphs, targeting
the task of summarization evaluation. The first method, referred to as Merged Model
Graph (MeMoG), utilizes a single n-gram graph to represent a set of documents, while the
second method, referred to as Hierarchical Proximity Graph (HPG), utilizes a hierarchy
of graphs to represent a set of documents with different granularity levels.

2.5.21 Merged Model Graph

The Merged Model Graph approach allows modeling a whole set of documents using one
representative graph. Given a set Dy of N documents, the construction of the represent-
ative graph comprises of:

1. Constructing N individual graphs, one for each document in Dy

2. Merging these N graphs into one representative graph
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Merging the individual graphs is carried out using the Update Operator U(G, G2, 1), which
takes as input two graphs, one that is considered to be the pre-existing graph G, and one
that is considered to be the new graph GG5. The operator also expects a parameter referred
to as the learning factor | € |0, 1], which determines the sensitivity of G; to changes in G,.
More precisely:

» A value of [ = 0 indicates that GG; will completely ignore the changes introduced by
Go.

* A value of [ = 1 indicates that the weights of the edges of G; will be overwritten by
the weights of the edges of G..

Assuming two graphs G; and G,, applying U results in the following weight update:

Wie) = Wh(e) + (W?(e) — W'(e)) x (2.59)

where Wl(e) and W?2(e) is the weight of edge ¢ on graphs G, and G, respectively and
W'(e) corresponds to the weight of edge ¢ on the resulting graph.

In the case of MeMoG, the representative graph’s edges are required to hold weights
averaging the weights of all of its constituent graphs. In order to achieve that, the i
graph update should contribute to the representative graph with a learning factor of | = %
1> 1.

Finally, MeMoG is structured as a standard n-gram graph, hence similarity metrics 2.56-
2.58 can be used to compare two MeMoGs.

2.5.2.2 Hierarchical Proximity Graph

An HPG of L. € N* levels is a hierarchy H of proximity graphs, where subgraphs of symbols
from a lower level | — 1 serve as the symbols of the level [ € [1, L|. Each level H, holds a
proximity graph J; and an index of symbols I;.

Given a source text, in order to create the first level, we need to extract its corresponding
set of n-grams. Afterwards, the index I; maps, through a bijection, every distinct n-gram
to an integer symbol, and vertices are created in the proximity graph .J;, one for each
symbol. Considering the source text as a sequence of symbols Z and given a window
D .in, all symbols found within a maximum distance (the number of n-grams between two
n-grams of interest) of D,;, in Z have their vertices linked by an edge.

The aforementioned process is repeated for every symbol in Z, resulting in the construc-
tion of multiple graphs, referred to as s-neighborhoods, each one connecting a symbol to
its neighbors. Each s-neighborhood serves as a symbol for the next level of graphs and
is, thus, mapped to an integer in the corresponding index.

Constructing levels 1 < [ < L of the HPG, consists of

* Retrieving the symbol sequence corresponding to level [ — 1.
» Constructing the s-neighborhoods of the current level and adding them to index I;.

* Generating the current level proximity graph J,.

V. Sioros 34



Generating realistic nanorough surfaces via a Generative Adversarial Network

The resulting hierarchy of proximity graphs H =< Jy,---,J; > is referred to as a Hier-
archical Proximity Graph (HPG).

Note that, every level uses a different window size and more specifically, the window size
increases linearly with the level, D,;,; = | Dwin X 1. This is based on the intuition, that the
notion of neighborhood changes completely, going from a word to a paragraph, as entities
that are further away should be now considered neighboring.

Lastly, the similarity between two HPGs H; and H, is given by the weighted normalized
sum of value similarities between the corresponding levels of H; and H:

Diep il % VS!(H,, H)
Zle[l,L]l

where V S'(H,, H,) is the Value Similarity (2.55) of the I level proximity graphs of H, and
H,.

(2.60)

2.6 State of the Art

Deep generative networks have already been successfully applied in the field of Nanotech-
nology and more specifically to the task of characterizing microstructures and synthesizing
artificial ones.

Ahmet Cecen et al. [14] employ a 3D convolutional neural network in order to reliably
link a microstructure to its properties. The learned 3D-CNN features are then used along-
side other spatial metrics to estimate higher-order statistics leading to improved accuracy
in terms of property prediction. Zijiang Yang et al. [15] employ a convolutional neural
network in order to predict the micro-scale elastic strain field of a three-dimensional voxel-
based microstructure of a high-contrast two-phase composite. The model is trained on
multiple data sets corresponding to varying degrees of contrast and is able to signific-
antly outperform state-of-the-art methods. Antonios Stellas et al. [16] showcased that
deep neural networks, as well as other machine learning models, can efficiently predict
a nanosurface’s active area given its corresponding structural parameters, such as the
RMS, association length(s) etc.

Satoshi Noguchi et al. [17] utilize a Variational Auto-Encoder [18] in order to map material
microstructures to a latent space and subsequently use a PixelCNN in order to generate
statistically equivalent microstructures based on these latent features. Zijiang Yang et al.
[19] develop a three-dimensional CNN aiming to model elastic homogenization linkages
for three-dimensional high-contrast composite material system which improves on past
physics-inspired approaches. Ruijin Cang et al. [20] employ a convolutional deep belief
network [21] aiming to establish a two-way conversion between microstructures and their
corresponding lower-dimensional feature representations. The proposed model is applied
to a wide spectrum of heterogeneous material systems and is able to produce material re-
constructions that are close to the original samples with respect to two-point correlation
functions and mean critical fracture strength while achieving an 1000-fold dimensional re-
duction from the microstructure space. Daria Fokina et al. [22] utilize a StyleGAN [23]
in their efforts to synthesize larger microstructures from several smaller samples. The
authors use image quilting between the borders of two nearby patches to generate real-
istically looking samples of a larger size. The method is tested on microstructure synthesis
and porous media reconstruction and it is shown that the generated structures closely re-
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semble the real ones with regards to their effective properties. Lukas Mosser et al. [24]
evaluate the application of generative adversarial neural networks [1] for stochastic im-
age reconstruction of porous media and show through various measures that the model
is able to capture the statistical and physical behavior of the training data. Andrea Gayon-
Lombardo et al. [25] implement a deep convolutional generative adversarial network [2]
with the goal of generating realistic n-phase micro-structural data. The model is success-
fully applied on two different three-phase microstructures, namely a lithium-ion battery
cathode and a solid oxide fuel cell anode and it is able to produce artificial microstructures
that are virtually indistinguishable from real data.

The motivation behind this work is developing a data-driven framework aiming at the
stochastic reconstruction of nanorough surfaces. We employ a DCGAN [2] with the goal of
improving upon its sole performance by utilizing a novel graph-based nanorough surface
similarity metric. This similarity metric is going to alter the generator’s applied loss and
effectively guide the model throughout the training course. We consider the generation of
nanorough surfaces as a data-driven supervised learning task, where nanorough surfaces
of predefined structural parameters serve as the training data set.
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3. METHODOLOGY

3.1 Problem Definition

A nanorough surface can be approximated by a height map, that is a matrix containing the
height values of different point samples. Note that such a representation entails limitations
regarding its representative capabilities due to utilizing a discrete number of points, as
described in [26]:

S=|: . (3.1)
Sm,1 -+ Smmn

A nanorough surface can be characterized by its RMS, horizontal and vertical correlation
lengths (&, €,), as well as other metrics. We are going to be referring to the set of values

C =< RMS,&,,&, > (3.2)

as the configuration of the nanorough surface.

Our goal is to generate nanorough surfaces of a specific configuration, without a priori
knowledge of their specific configuration, but only of nanorough surface samples. Hence,
we need to determine a function, mapping a set of nanorough surfaces S¢- to another set
of nanorough surfaces of the same configuration C*:

F: Ug« — Uc~ (33)

where Ug- is the set containing every possible nanorough surfaces with a configuration of
C™.
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3.2 System Overview

Atrtificial
Samples

Dataset Discriminator Generator Latent
Network Network Space

( Quantizer |
L Similarity

J

Figure 3.1: System overview

Our framework employs a CNN-based GAN. More specifically, the generator, which is a
convolutional neural network competes with the discriminator, which is a deconvolutional
neural network. The models are trained on a set of nanorough surfaces corresponding to
a specific parameter configuration C*.

The training set is loaded and the nanorough surfaces are processed in batches. Fol-
lowing Algorithm 1, the generator and the discriminator are trained separately via back-
propagation. The discriminator is trained on real and artificially generated data, while the
generator on the other hand is trained based on the discriminator’s output. More spe-
cifically, the discriminator outputs a value in the range [0, 1], which corresponds to the
likelihood of a surface originating from the real nanorough surface distribution.

A set of novel n-gram graph-based metrics are used in conjunction with the discriminator,
providing additional feedback to the generator model, regarding a surface’s origins, that
is whether or not it originates from the real data distribution. All similarity metrics require
that their input consists of a fixed set of symbols. Hence, the nanorough surfaces must
undergo a processes referred to as Quantization, wherein the data is translated from a 2D
real matrix to a 2D symbol matrix representation.

Our framework was implemented in Python. Nanorough surface generation described
in Section 3.2.1, utilizes NumPy [27], SciPy [28] and SymPy [29]. Nanorough surface
quantization described in Section 3.2.2 utilizes scikit-learn [30]. The implementation of the
graph-based content similarity metrics described in Section 3.2.3 utilizes the PyINSECT
[31] module. Both flavors of the GAN framework described in Section 3.2.4 were imple-
mented using the PyTorch [32] ML framework. The visualizations showcased throughout
Chapter 4 were created using Matplotlib [33] and Plotly [34]. The complete source code
can be found at https://github.com/billsioros/RoughML.
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3.2.1 Nanorough Surface Generation

It was required that we generate a large number of nanorough surfaces to serve as the
training data to our models. For this, we simply ported the algorithm used by Antonios
Stellas et al. in [26] to Python.

The nanorough surface generation algorithm can be configured by modifying on of follow-
ing 9 parameters:

* n_points: the square root of the actual nanorough surface size. The resulting sur-
faces will be square matrices of size n_points x n_points.

* rms, skewness and kurtosis: the root mean square error, skewness and kurtosis
of the height value distribution.

+ corlength_x and corlength_y: the desired correlation lengths (&, &,) of the result-
ing nanorough surfaces.

+ alpha, beta_x and beta_y: the smoothing hyper-parameters «, 3, and 3, (8, and
B, are only present on the Bessel variant of the algorithm).

The nanorough surface generation algorithm consists of:

1. Populating R, an N x N matrix, with values resulting from the provided auto-correlation
function (more on that later).

2. Calculating the power spectrum, FR(R), of R based on the Wiener—Khinchin the-
orem, as well as the expression AMPR(R) = /d2 + d2 x |FR(R)|.

3. Generating an N x N matrix, corresponding to white noise, normalizing it and cal-
culating its Fourier transform, X F'.

4. Calculating the inverse Fourier transform of the product X F' x \/AM PR(R), extract-
ing the real part, normalizing and scaling it by RMS.

5. Generating an N x N matrix, z,,,, corresponding to a Pearson type Ill continuous
random variable.

6. Flattening both 2 and z,,,, sorting their values in descending order, reordering z,,,
based on the order of z and reshaping z,,, into a 2D matrix v, gs*.

7. The conjugate transpose of v_ngs* (z_ngs) corresponds to a non-Gaussian correl-
ated nanorough surface.

The two nanorough surface generation algorithm flavors are differentiated only by the
auto-correlation functions they utilize:

v 2, 52 2Xa

Standard(z,y) = RMS? x e*‘ Ty

(3.4)

Bessel(z,y) — Standard(z, y) x Jo(2r 512 4 %2) (3.5)
z y

where J,(z) is the Bessel function of the first kind, for n = 0. In this work, we only experi-
mented with the so-called Standard version of the algorithm.
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3.2.2 Nanorough Surface Quantization

The n-gram graph model, as well as its variants, were originally applied in the field of Nat-
ural Language Processing and more specifically in the context of Summary Evaluation.
Consequently, they were initially designed to operate on strings, that is sequences of
symbols from some alphabet. On the other hand, a nanorough surface is represented as
a two-dimensional real matrix, whose values correspond to the height of the nanorough
surface in different sampling coordinates. Therefore, in order to represent a nanorough
surface as an n-gram graph, the corresponding two-dimensional real matrix must be trans-
lated to a two-dimensional matrix of symbols. The process responsible for achieving this
is commonly referred to as Quantization (or Binning).

The term Binning describes the process of, given some data points, replacing the original
data points which fall into different value ranges (i.e. bins) by a value representative of
that interval. There is a plethora of Binning methods, differentiated mainly by the way the
bin edges are calculated. Two prominent examples of Binning methods are:

* Uniform Binning, wherein all bins have identical widths.
* Quantile Binning, wherein we assign the same number of observations to every

bin.

Figure 3.2 showcases how 1000 samples drawn from a standard normal distribution are
segregated, in both cases, using 5 bins. First of all, the data points are sorted in ascending
numerical order. Afterwards, the edges of each and every bin are calculated. Finally, every
data point is replaced by the index of its respective bin.

Uniform Binning Quantile Binning

200 4

175 A

150

Count

=3 =2 -1 o] 1 2 3 =3 =2 -1 0 1 2 3
Values Values

Figure 3.2: Comparing Uniform and Quantile Binning. In the Uniform Binning case, the bin edges
are [—2.874, —1.694, —0.514, 0.665, 1.845, 3.025]. Whereas, in the Quantile Binning case, the bin edges
are [—2.874, —0.838, —0.259, 0.247, 0.841, 3.025].

For our purposes, we opted for 5 bins and the Quantile Binning approach, as more height
values being mapped to the same symbol, entails sparser graph representations and con-
sequently renders the process of calculating the appropriateness of a given nanorough
surface less computationally expensive.

V. Sioros 40



Generating realistic nanorough surfaces via a Generative Adversarial Network

In the case of Quantile Binning, the edges of the bins are calculated using Algorithm 3
[35, 36]. More specifically, when using 5 bins the 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 quantiles
are calculated. These 6 values delimit the edges of the 5 bins, and any value that falls
within the range of a given bin, is replaced by its corresponding index, e.g. a value in the
range [quantile(0.0), quantile(0.2)] will be replaced by 0.

Algorithm 3 Calculating the p'* quantile of an n-large set of real numbers R (It is assumed
that the values have already been sorted).
. m=nXp
2: Minteger = LmJ
3: M float = T — Minteger
4: if myo0 ~ 0 then
5: return R[m,cger
6
7

. else
return

R[minteger_1]+R[minteger}
2

The edges of the bins are initially calculated using the training data set in its entirety. The
training data set is first transformed into a 2D matrix, where every row corresponds to
a different nanorough surface. Binning is then carried out separately on every column
(feature) of this matrix.

Y

0.8/0.5(0.3/0.4|0.7/0.4(0.7|0.8|0.7

0.8/0.5(0.3
0.4/0.7|0.4
0.7/0.8|0.7

Dataset

Y

0.8/0.5/0.3 0.6/0.1]0.9
0.4/0.7/0.4 0.9/0.7|0.5
0.7/0.8/0.7 0.8/0.3|0.2
Matrix No.1 Matrix No.2

Combined Matrix

Figure 3.3: Nanorough Surface Quantization. The multiple 2D matrices making up the training data
set are transformed to 1D matrices by unrolling them in row-major order. The 1D matrices are then
compressed into a single 2D matrix where every row corresponds to an individual 1D matrix.
Binning is then carried out separately on every column of this 2D matrix, resulting to different bin
edges per column.

While training our models, quantization is carried out on batches of artificially generated
nanorough surfaces. The batches are again transformed, as previously described, into a
2D matrix. Binning is now carried out using the initially calculated bin edges.

Quantization serves as a preprocessing step to every graph-based content similarity met-
ric.
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3.2.3 Content Similarity Metrics

We developed various methods of measuring how similar two nanorough surfaces are,
which utilize the n-gram graph model and its variants to represent nanorough surfaces
as graphs. To be more specific, we developed the N-Gram Graph (NGG), the 2D Array
Graph (A2D) and the Hierarchical Proximity Graph (HPS) content similarity metrics. In
all cases, we used co-occurrences of symbols as the edges’ weight factor. Additionally,
we designed a non-graph-based content similarity metric referred to as Fourier & Histo-
gram Space (FHS) content similarity, which will be used to evaluate the realisticity of the
artificially generated nanorough surfaces.

In the following sections it is assumed that, the data serving as input to the similarity metric
at hand, has already been quantized.

3.2.3.1 The N-Gram Graph Content Similarity Metric (NGG)

The NGG content similarity metrics follows the MeMoG approach presented in section
2.5.2.1. More specifically, an n-gram graph is created for each and every one of the
nanorough surfaces making up the training data set. Afterwards, the individual graphs are
all merged into a single representative graph. Having created the representative graph,
the similarity of a nanorough surface with regard to the training data set (also referred to
as appropriateness) is calculated by means of 2.55.

Given that the n-gram graph is designed to work on one-dimensional data the two-dimensional
matrices, representing nanorough surfaces, must be first reshaped into one-dimensional
vectors. The transformation is done in row-major order and is referred to as Flattening.

The construction of an n-gram graph, given an N x N input matrix M, consists of:

1. Flattening matrix M into vector V
2. Generating the n-grams corresponding to V, using Algorithm 2

3. Passing a sliding window over the resulting n-gram array, creating edges connecting
every pair of n-grams within the sliding window.

A more thorough presentation of the procedure is given in Algorithm 4. Bare in mind that,
we adopt the non-symmetric edge weighting approach described in section 2.5.

Algorithm 4 Constructing an n-gram Graph given an N x N input matrix M

1: V + Flatten(M)

2: SS™ «— ExtractNGrams(M)

3G« 0

4: forwe |0, L%H do

5: for ngram, € {ngram,,,--- ,ngramg, ,w} do

6 for ngram, € {ngram,,y,--- ,ngramg, ,).w} do
7 if ngram,, # ngram, then

8: G+ G {(ngram,,ngram,)}

where | J, stands for the Edge Update operator, which either introduces a new edge, with
an associated weight of 1, to the graph or increases the weight of a pre-existing edge.
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More specifically, given that an edge already exists, any consecutive occurrence of the
same vertex pair within the predefined n-gram window contributes equally to the total
edge weight. ExtractNGrams stands for the process carried out by Algorithm 2. Flatten
is described by Algorithm 5.

Algorithm 5 Flattening a N x M input matrix M

1: V< [0,---,0](VxM1)

2: forye0,--- ,N]do

3: forz € [0,---,M] do

4: Vly - M + z] = M|y, x|

The individual n-gram graphs are merged using the Update operator presented previously
in section Section 2.5.2.1. We are employing a dynamic learning rate, as described in the
aforementioned section, so that the representative graph’s edges are assigned weights
averaging the weights of all the individual graphs that have contributed to it.

3.2.3.2 The Two-Dimensional Array Graph Content Similarity Metric (A2G)

The NGG and A2D content similarity metrics differ only with respect to the construction of
the per nanorough surface individual n-gram graphs.

In contrast to the NGG content similarity metric, A2D is able to processes two-dimensional
data. More specifically, given a two-dimensional matrix corresponding to a nanorough
surface, graph construction in the context of the A2D content similarity consists of:

1. Initializing an empty graph

2. Sliding a two-dimensional window of predetermined size over the given matrix and
processing individual sub-matrices of it.

3. Adding edges to the graph, connecting all possible pairwise combinations of symbols
for each and every one of those sub-matrices.

This process is described by Algorithm 6:

Algorithm 6 Constructing a 2D Array Graph given an N x N input matrix M
1: G+ 0
2: forye[0,---,N| do
3: forz €0,---,N| do

4: vertex, , = My, z]

5; neighborhood < ()

6: neighbor)™ = Clampy (y — | 4])

7: neighbor® = Clampy (y + [ 5])

8: for neighbor, € [neighboer, -+, neighbor*"| do

o: neighbor™" = Clampy(z — [ %))
10: neighbor, ™ = Clampy(z + [ 5 ])

1: if neighbor, # yorneighbor, # x then
12: VerteTneighbor, neighbor, = M(neighbor,, neighbor ]
13: G <+ GU,{(vertex,,, Uertexneighborymeighborx)}
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where operator Clamp,, constraints the input in the real value range [0, N] and is given by
the following equation:

Clampy(v) = max(0, min(v, N)) (3.6)

3.2.3.3 The Hierarchical Proximity Graph Content Similarity Metric (HPS)

As the name suggests, this similarity metric utilizes the Hierarchical Proximity Graph
model to represent nanorough surfaces. In contrast to NGG and A2D, HPS does not use
a representative graph, but rather maintains a collection of distinct hierarchical proximity
graphs corresponding to individual nanorough surfaces. Moreover, the appropriateness
of a nanorough surface is calculated using 2.60.

As described in section 2.5.2.2, HPGs utilize a per-level index to keep track of the symbols
that serve as vertices on the per-level graphs that make up the HPG. This index is a
fuzzy key-value like storage, referred to as Graph Index, wherein graphs serve as keys
to symbol values. The Graph Index is responsible for mapping from a graph to a symbol.

The mapping is not an exact one and graphs that are “close enough” are treated as
identical. Two graphs are considered identical based on how their similarity value com-
pares to the hyper-parameters, minimum and maximum merging margin (tmin, fimax)-

Given a graph G, performing a Graph Index look-up is described by Algorithm 7

Algorithm 7 Perform a Graph Index look-up given a graph G
1. S+ —1
2: fori e [0,--- ,LEN(Graphindex)] do
3: SIMAlarity G Graphindes)i]) = NVS(G, G;)

4: if similarity > pumax then

5: S <1

6: return

7 else

8: if similarity > pmin then

o: GraphIndex[i] < GraphlIndez[i] | J{G}
10: COUNT[i| = COUNTTIi| + 1
11: S+

12: return

13: else

14: if 1 — similarity £ 0 then

15: G <« (G N Graphindexli))’

16: if S < 0 then

17: S < LEN(GraphIndex)]
18: GraphIndex[S] = G

19:  COUNTIS] =1

20: return

As you can see, for every existing key-graph we calculate its similarity to the query-graph
at hand. There are three scenarios:
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1. If the similarity of the graph at hand with an existing graph/key is greater than the
maximum merging margin, then simply return the corresponding integer symbol.

2. If the similarity of the graph at hand with an existing graph/key is not greater than
the maximum merging margin but is greater than the minimum merging margin then
merge the graphs together and again return the corresponding integer symbol.

3. In case none of the previous statements is true, remove any edges included in the
key-graph from the query-graph and proceed with the rest of the graph-keys. If, even
after processing the entirety of the graph index, there is no match then simply add
a new entry corresponding to the supplied graph and return a newly created symbol
indicated by the graph index size.

Having described the inner workings of the Graph Index, we shall now provide a more
thorough explanation of the HPG construction procedure, described in section 2.5.2.2.
Given an N x N input matrix M constructing an HPG is carried out by Algorithm 8

Algorithm 8 Construct a Hierarchical Proximity Graph G given an N x N input matrix
M. W denotes the original window size, whilst W* denotes the current level window size

1: PerLevelData|0] <— M

2: PerLevelGraphs[0] < GraphOf(M)

3: for level € [1, NumberO f Levels| do

4: W* < W - level

5 for y € [0, N] do

6 for z € [0, N] do

7: 4 Submatnx

8: s-neighborhood «+ éraphOf (M*)
9

0

symbol <+ GraphLookUp(s-neighborhood)
Per Level Datallevel]ly, x] < symbol

11: PerLevelGraphs(level] < GraphOf(Per Level Datallevel])

where GraphOf denotes the per-level graph / s-neighborhood construction procedure.
We used the 2D Array Graph approach, described in Algorithm 6, to represent the s-
neighborhoods, any n-gram graph variant method could be used instead. GraphLookUp
refers to the process described by Algorithm 7. Finally, Submatrlx(y ») refers to the pro-
cess of extracting an N x N sub-matrix of M, centered around coordinates (y,x) and is
described by Algorithm 9.

Algorithm 9 Extracting a sub-matrix M* of size W* x W* centered around coordinates
(y, @)

1: :cmm = Clampy(x — |
zt o = Clampy(z 4+ | %
Ymin = Clampy(y — |
y?nax = ClampN(y + L 2 J)
for Y in[ymln’ T 7yr>'kna><] do
for 'm[xmm, e, )] do

w

*
—
~—

=\

*
| E—
SN—

Noa kR b
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3.2.3.4 The Fourier & Histogram Space Content Similarity Metric (FHS)

As mentioned before, FHS is the only non-graph-based content similarity metric. While
training, it requires calculating and storing the 2D Fast Fourier Transform (2D FFT) and
histogram of height values corresponding to each nanorough surface belonging to the
training data set. On evaluation time, calculating the appropriateness of a given nanor-
ough surface M can be broken down into the following tasks (we denote the training data
setas T):

1. Calculating the 2D FFT of the provided nanorough surface.

2. Calculating the histogram of height values corresponding to the provided nanorough
surface.

3. Calculating the Root Mean Square Deviation (RMSD), with regards to the mean 2D
FFT (RMSDp) and histogram (RMSD ), between the provided nanorough surface
and a subset of the training data set (by default the training data set in its entirety).

4. Calculating the expression

1
RMSDy (M, T)+RMSDg (M,T)
2

(3.7)
1+

which corresponds to the appropriateness of the provided nanorough surface.

The whole procedure is described by Algorithm 10.

Algorithm 10 Calculating the FHS similarity of a nanorough surface M, assuming an n-
large collection F'H of pairs of matrices and vectors corresponding to the 2D FFT and
Histogram of the nanorough surfaces making up the training data set

Hy < Histogram(M)

Fy + FF2D(M)

108Siotar < 0

for Histogram, Fourier € FH do
MeanSquareHistogramError < (Histogram — Hy)?

MeanSquareFourier Error < (Histogram — Hy)?
o v/ MeanSquareHistogramError

loss = loss + =5
o v/MeanSquareFourier Error

loss = loss + s

© X NoOa R w2

1
1+lossiotal

return

3.2.4 Frameworks

Two vastly different approaches to modeling nanorough surfaces were developed. We
developed a Single-Layer Perceptron GAN (SLPGAN), which is going to serve as our
baseline and a DCGAN aiming at improving on the performance of our baseline model.

Both models expect a matrix (also referred to as batch of latent vectors) of size BatchSizex
100 x 1 x 1 drawn from a Gaussian distribution. The models were trained on data sets
containing nanorough surface representations of size 128 x 128 x 1. The process can be
generalized to different latent space vector and nanorough surface sizes.
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3.2.41 Single-Layer Perceptron GAN (SLPGAN)

input layer input layer

g

e output layer
N

output layer

(a) Generator Network (b) Discriminator Network

02010

Figure 3.4: The SLPGAN framework. This visualization was produced using code adapted from
David Stutz’s work [3].

The SLPGAN consists of two Single-Layer Perceptron networks that serve as the generator-
discriminator pair.

The generator consists of a single feed-forward layer with 100 input units and 16384 (128 x
128) output units. No activation function is used by the generator. Every batch processed
by the SLP Generator must be initially transformed so that the feed-forward layer can
process it. The output is also reshaped, so that it matches the nanorough surface matrix
representation. For example, given a matrix of size BatchSize x 100 x 1 x 1 i.e. a batch
of BatchSize 100 x 1 x 1 latent vectors, the batch is transformed into a matrix of size
BatchSize x 100. It is then processed by the feed-forward layer which outputs a matrix of
size BatchSize x 16384 x 1, which is finally reshaped into a matrix of size BatchSize x 1 x
128 x 128.

The discriminator consists of a single feed-forward layer with 16384 input nodes and a
single output node and is paired with a Sigmoid activation function. Again the input is
required to be transformed, and more specifically flattened, on model entry. Given an
input matrix of size BatchSize x 1 x 128 x 128, the matrix is firstly transformed into a
two-dimensional matrix of size BatchSize x 16384, which is then processed by the feed-
forward layer and passed through the activation function. The resulting BatchSize x 1
matrix contains the scores corresponding to the nanorough surfaces at hand.
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3.2.4.2 Deep Convolutional GAN (DCGAN)

CONY|6

CONV |5
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OUTPUT
(a) Generator Network
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Je g
11

8
16 1024

CONV 1
>

OUTPUT

128

(b) Discriminator Network

Figure 3.5: The DCGAN framework. This visualization was produced using software adapted from
PlotNeuralNet [37]

Our DCGAN implementation is heavily based on the work of Alec Radford et al. [2] and
shares the same basic principles. The changes made to the architecture mainly con-
cern the difference in input dimensions. More specifically, the original implementation of
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DCGAN supports 64 x 64 images, while in our case the supported size was increased to
128 x 128 units.

The generator is comprised of 6 deconvolutional layers. A deconvolutional layer is identical
to a standard convolutional layer except that it is mainly used for up-sampling data instead.
Every deconvolutional layer is paired with a batch normalization layer and a ReLU activ-
ation function, with the exception of the last layer. All deconvolutional layers employ a
kernel size of 4 x 4, a stride of 2, and padding of 1 with the exception of the initial layer,
which uses a stride of 1 and no padding.

As previously mentioned, the latent space vectors, that the model expects as input, are
transformed into two-dimensional matrices corresponding to nanorough surfaces, via a
series of strided two-dimensional deconvolutional layers.

The generator model does not utilize any activation function on the final layer, as con-
straining the model’s output to a certain range is not desirable in this scenario.

The discriminator consists of 5 strided convolutional layers. The first layer is paired with a
LeakyReLU activation function, the 3 following layers are additionally paired with a batch
normalization layer each, while the last layer is only paired with a Sigmoid activation func-
tion. Every layer utilizes a kernel size of 4 x 4, a stride of 2, and a padding of 1, with
the exception of the last layer, which utilizes a kernel size of 8 x &, a stride of 1, and no
padding.

The Sigmoid activation function is used to produce the scores of the nanorough surfaces
at hand. Strided convolution is used, in favor of pooling, to down-sample the initial in-
put as it lets the network learn its own pooling function. Batch normalization along with
the LeakyRel.U activation function promote healthy gradient flow through the discrimin-
ator, which in the context of the GAN framework, is critical for the learning process of the
discriminator, as well as the generator model.

3.2.4.3 Training

When it comes to training our models, we used a slightly modified version of the GAN
training algorithm presented in [1] and described by Algorithm 1. In our version, we alter
the generator’s loss based on the the output of one of the graph-based content similarity
metrics. More specifically, on every batch iteration, the output of the generator, which
corresponds to a batch of artificial nanorough surfaces, is passed through the chosen
graph-based content similarity and the appropriateness of the provided nanorough sur-
faces is calculated. These values, one for every sample in the batch are used to calculate
the per-batch average appropriateness of artificial data. This process is carried out for
every single batch making up the training data set and the values corresponding to single
artificial batches are used to calculate the running average of the per-batch average appro-
priateness of artificial data. Hence, the per batch iteration generator loss Generator Loss,
is:

BCE(D(G(Noi Label
Generator Loss,, = CE( <(G;( ggfg&g;isg))e s) (3.8)
DD

where G and D correspond to the generator and discriminator networks respectively and
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BCE denotes the Binary Cross Entropy Loss and is defined as:

N
BCE(z,y) —%Z (v - 109(22) + (1K) - log (1K) (3.9)
n=0

x and y are N sized vectors corresponding to the predicted and real label values respect-
ively. BCE is commonly used when training a binary classifier, such as our discriminator
model and serves as a means of determining how accurate a model really is.

D(G(Noise)) results in the creation of a BatchSize x 1 vector containing values in the
range [0, 1] corresponding to the scores of the artificial nanorough surfaces generated by
the generator (G(Noise)). When training the generator the Labels or y is a vector of size
BatchSize x 1 filled with ones and BCE(D(G(Noise)), Labels) corresponds to the standard
GAN generator loss calculation.

The denominator is calculated by dividing the accumulated content similarity values (CS)
of all so far processed batches by the total number of batches (V). Finally, a padding value
of 0 < € < 1 is added to the denominator. For our purposes, a value of 0.5 was chosen.
Notice that similarity values close to 0 result in greater loss values, while similarity values
close to 1 result in smaller loss values, compared to ones returned by the standard GAN
training procedure. The intuition behind this approach is that the introduction of the content
similarity metric will serve as an implicit learning rate scheduling mechanism, providing the
generator with valuable feedback as to the quality of the generated nanorough surfaces
and guiding throughout the training process. Initially, we were merely adding the content
loss i.e. 1 — CS(G(Noise))), but we quickly noticed that this approach would have little to
no effect to the value of the generator loss. This occurs due to BCE taking any possible
value in R*, while CS only able to take values in the range [0, 1].

We opted to train the discriminator on a certain batch only once (£ = 1) as this was the
cheapest option computationally-wise and is the approach followed by the authors of the
original paper.
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4. EXPERIMENTAL RESULTS

4.1 Experimental Setup

We are going to be training each model for 100 epochs, using Backpropagation and the
Adam optimization algorithm with a learning rate of 2 x 107, 3, = 0.5, 3, = 0.999 and a
batch size of 32. The data are going to be reshuffled on every epoch.

We are going to be evaluating our framework based on the per-epoch discriminator output
and the loss of both the generator and discriminator models per epoch. More specifically,
we are going to be monitoring the following expression

GeneratorlLoss x (DiscriminatorLoss + 1) (4.1)

Expression 4.1 corresponds to the generator’s discriminator-relative performance per epoch.
This measure is going to be indicative of how well the generator performs with respect to
how efficient of a discriminator, it is required to face. This metric is essential, as a generator
model that succeeds in tricking a discriminator model, only because of the discriminator
model’s poor performance, should not be considered well-behaved.

In addition to the discriminator’s output per epoch, we are going to be examining the
expression following expression

|D(Real) — 0.5] + | D(Fake) — 0.5 (4.2)

where D(Real) and D(Fake) correspond to the per-epoch mean output of the discrimin-
ator, when it comes to real and artificially generated nanorough surfaces, respectively.
Ideally, this amount would converge to 0 implying that the discriminator is unable to dis-
tinguish real from artificially generated nanorough surfaces.

We are also going to be examining the mean FHS content similarity of the nanorough
surfaces produced by the generator model. This is going to provide us with significant
insight with regards to how realistic the resulting nanorough surfaces can be considered
and whether or not the generator is trained successfully.

We are going to be training our models on a data set consisting of 1000 128 x 128 nanorough
surfaces generated using a configuration of RMS = 3, Skewness = 0, Kurtosis = 3,
Correlation Lengths = (¢,,¢,) = (8,8) and Smoothing Factor = o = 1.
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Figure 4.1: Real nanorough surface samples ({, =8,{, =8,a =1)

The grayscale and 3D surface representation of a few nanorough surface samples be-
longing to this data set are shown in Figure 4.1.

The experiments were carried out in a workstation equipped with an Intel(R) Core(TM)
i7-9750H CPU @ 2.60GHz, 2592 Mhz with 6 Core(s) and 12 Logical Processor(s), 16,0
GB of RAM, an NVIDIA GeForce GTX 1660 Ti GPU with an additional 6GB of VRAM and
24 processing units.

4.1.1 DCGAN Weight Initialization

According to the original paper by Alec Radford et al. [2], all weights of the DCGAN
architecture are supposed to be initialized from a zero-centered Normal distribution with
a standard deviation of 0.02.

This initialization scheme proved prohibitive to the training of our models, as it resulted in
consistently high generator loss values and the generator completely diverging. This is
showcased in Figure 4.2
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Figure 4.2: Training DCGAN with the conventional weight initialization scheme

We therefore decided that, we will not be utilizing this initialization scheme in the rest of
our experiments.

4.1.2 Evaluating the scalability of the Content Similarity Metrics

We will now be comparing the various graph-based content similarity metrics, that we
developed with regards to their scalability.

We will be training every content similarity metric, with different numbers of nanorough
surfaces of different dimensions. We will be using 2, 4, 6, 8 or 10 nanorough surfaces of
dimensions 2 x 2,4 x 4, 8 x 8, 16 x 16 and 32 x 32. Each content similarity metric is going
to be trained on every possible pairwise combination of the aforementioned values.

41.2.1 Scalability of the N-Gram Graph Content Similarity Metric

Elapsed Time vs Dimension Size Elapsed Time vs Number of surfaces
NGG (Number of surfaces=10) Training NGG (Dimension Size=32) Training
0.5719 1 —— NGG (Number of surfaces=10) Evaluation 0.5783 1 —— NGG (Dimension Size=32) Evaluation
0.5088 - 0.5215 4
o 0.4456 1 W 0.4648
=] =]
c c
S 3
2 0.3825 2 0.4080
£ o
g 03194 £ 0.3513
= =
T 0.2563 4 T 0.2945 4
[} w1
5 5
o 019324 o 0.2378 4
0.1300 + 0.1811 1
0.0669 - 0.1243 4
0.0038 T T T 0.0676 T T T
2 4 8 16 32 2 4 6 8 10
Dimension Size Number of surfaces

Figure 4.3: NGG scalability
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NGG’s computational cost with regards to both training and inference increases logar-
ithmically with respect to the dimension size. In fact, every time the dimension of the
nanorough surfaces is squared, the training/inference time increases by a factor of ~ 4.
NGG scales linearly, when it comes to both training and inference, with respect to the
number of surfaces. This behavior is showcased in Figure 4.3.

4.1.2.2 Scalability of the Two-Dimensional Array Graph Content Similarity Metric

A2G showcases a similar behavior to NGG. In fact, the training and evaluation compu-
tational cost with respect to dimension size again increases logarithmically, whilst it in-
creases linearly with respect to the number of surfaces.

Elapsed Time vs Dimension Size Elapsed Time vs Number of surfaces
A2G (Number of surfaces=10) Training A2G (Dimension Size=32) Training
0.7724 1 —— A2G (Number of surfaces=10) Evaluation 0.7899 1 —— A2G (Dimension Size=32) Evaluation
0.6870 1 0.7221 4
n 0.6016 i 0.6543
=} =}
c =
S g
2 0.5163 A 2 0.5864 -
L) p
L8] L)
£ 0.4309 - £ 0.5186 4
[ =
T 0.3455 T 0.4507
%] w1
5 5
& 0.2601 o 0.3829
0.1748 4 0.3151 4
0.0894 4 0.2472
0.0040 T T T 0.1794 T T T
4 8 16 32 2 4 6 8 10
Dimension Size Number of surfaces

Figure 4.4: A2G scalability

4.1.2.3 Scalability of the Hierarchical Proximity Graph Content Similarity Metric

Figure 4.5 indicates that HPS scales exponentially with regards to the nanorough surface’s
dimension size and linearly with regards to the number of nanorough surfaces required to
be processed. Figure 4.6 further supports this.

Elapsed Time vs Dimension Size Elapsed Time vs Number of surfaces
HPG (Number of surfaces=10) Training HPG (Dimension Size=32) Training
1599 1 —— HPG (Number of surfaces=10) Evaluation 1614 1 —— HPG (Dimension Size=32) Evaluation
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Figure 4.5: HPS scalability
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Elapsed Time vs Dimension Size Elapsed Time vs Number of surfaces
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Figure 4.6: HPS scalability (Additional cases)

NGG proved to be the computationally cheapest of them all. A2G is a bit more costly
computationally-wise when compared to NGG, but not by a great margin. A2G’s per
sample (nanorough surface) graph construction from a 2D matrix is a lot more complex
when compared to the NGG’s vector (flattened matrix) graph construction. HPS is the
most costly of them all and by a great margin. Throughout, the HPG graph construction
process multiple 2D array graphs are created representing the different neighborhoods
making up the nanorough surface. HPGs also utilize multiple levels of graphs, as well as
a graph index. As a result, the greater computational cost is to be expected. This is the
reason why we will not be utilizing the HPS content similarity metric throughout the rest of
our experiments.

4.1.3 Evaluating the FHS Content Similarity Metric

The FHS Content Similarity measure had to undergo thorough evaluation, so that we were
able to determine how good of a nanorough surface similarity metric it really is. This was
required, as we will be using FHS to evaluate the realisticity of the artificially generated
nanorough surfaces.
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Figure 4.7: Comparing the FHS values of real and artificial nanorough surface samples
(gy =8,{ =8 a=1)

The nanorough surfaces used in the evaluation of FHS originate from a nanorough data-
set corresponding to a configuration of ¢, = 8,¢, = 8,a = 1, while the artificially gener-
ated nanorough surfaces were created by populating a two-dimensional matrix with values
sampled from a Gaussian distribution and then scaled by the RMS characterizing the real
nanorough surfaces.

Figure 4.7 showcases that FHS is able to distinguish nanorough surfaces originating in
the real data distribution from artificial ones.

4.2 Results and Discussion

4.2.1 SLPGAN paired with A2G

Discriminator Output per Epoch 20.90 Less per Epoch
19.90 - Generator
0.7280 18.91 A —— Discriminator
0.6933 ] 17.91 1 Generator x (Discriminator + 1)
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Figure 4.8: Training SLPGAN

As indicated by Figure 4.8, the SLP discriminator fails to consistently identify samples
originating from the generator’s data distribution. It is apparent that, especially during
the first few training epochs, the generator is able to trick the discriminator into assigning
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higher than expected scores to artificially generated nanorough surfaces. Consequently,
the generator is not provided with appropriate feedback and is improperly trained. After
the 25-30 training epoch mark, the discriminator seems to finally be able to distinguish
real from fake data.

Figure 4.9: Nanorough surface samples generated by SLPGAN

Sadly, the SLPGAN framework suffers from the Mode Collapse problem, meaning that
the generator learns to produce only a small set of outputs over and over again. This be-
comes obvious when comparing nanorough surfaces drawn from the real data distribution
with nanorough surfaces artificially generated by the framework at hand (Figure 4.1 and
Figure 4.9).

A2G vs FHS Content Similarity (Normalized)
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Figure 4.10: A2G & FHS similarity scores in the case of SLPGAN ({, =8,{, =8,a =1)

In Figure 4.10 we can also see that both A2G and FHS stay close to 0, meaning that the
SLPGAN is unable to generate realistic nanorough surfaces.
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4.2.2 DCGAN

When using the DCGAN framework, even in the absence of any content similarity metric,
the discriminator is able to train almost to optimality at every epoch, thus promoting the
healthy training of the generator, which is consequently capable of better fitting the data
compared to the SLPGAN case.

Discriminator Output per Epoch 46,94 < Loss per Epoch
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Figure 4.11: Training DCGAN

Figure 4.12: Nanorough surface samples generated by DCGAN

All issues aside, DCGAN is able to generate sufficiently realistic nanorough surfaces with
regards to the topology of the original surfaces and the stochasticity characterizing these
microstructures. One noticeable downside of this approach is the introduction of a sub-
stantial amount of noise to the resulting nanorough surface. The nanorough surfaces
drawn from the real data distribution do not showcase such rampant changes in height
values. This becomes apparent when comparing figures Figure 4.1 and Figure 4.12.

V. Sioros 58



Generating realistic nanorough surfaces via a Generative Adversarial Network

4.2.3 DCGAN paired with NGG

DCGAN paired with the NGG Content Similarity is yet again able to produce sufficiently
realistic nanorough.
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Figure 4.13: Training DCGAN paired with NGG

Figure 4.14: Nanorough surface samples generated by DCGAN+NGG

We notice from Figure 4.14 that in this case a different type of noise is introduced. In
contrast to 4.2.2, there are no rampant changes in the height values, instead the topology
of the generated nanorough surfaces is characterized by similarly high mountains and
valleys. This could be a result of the NGG content similarity metric failing to discriminate
between topologies of different steepness.
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A2G vs FHS Content Similarity (Normalized)
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Figure 4.15: A2G & FHS similarity scores in the case of DCGAN+NGG (¢, =8,£, =8,a = 1)

Figure 4.15 showcases that both A2G and FHS reach a plateau after the 80"* epoch,
indicating that the framework has reached its expressive limits.

4.2.4

DCGAN paired with A2G

As in 4.2.2, the discriminator showcases near-optimal performance when it comes to dis-
tinguishing real from artificially generated samples, throughout the training process, thus
allowing the generator to properly train, by providing him with appropriate feedback.
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Figure 4.16: Training DCGAN paired with A2G
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Figure 4.17: Nanorough surface samples generated by DCGAN+A2G

We can immediately tell two main advantages of this method over the conventional GAN
training procedure. First of all, the discriminator tends to miscategorize sufficiently more
samples in this case. Given that only the generator’s training procedure is altered, this
behavior indicates that the generator model produces even more realistic nanorough sur-
faces and is therefore capable of more frequently tricking the discriminator. Secondly, the
per-epoch generator loss follows a clearly descending trajectory, which indicates that the
training procedure is a lot more stable. As previously stated, the intuition behind this is
that the augmented generator loss calculated by 3.8, serves as an implicit learning rate
scheduling mechanism.

This approach showcases the best results so far with regards to mimicking the topology
and the stochasticity of the real nanorough surface samples. In contrast to, utilizing no
content similarity or NGG, this approach does not introduce rampant changes in height
values nor does it result in a topology consisting of similarly high mountains and valleys.
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Figure 4.18: A2G & FHS similarity scores in the case of DCGAN+A2G ({, =8,{, =8,a = 1)

It is clear from Figure 4.18 that, both A2G and FHS content similarity increases as the
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training procedure progresses. This is a strong indicator that the generator model is able
to produce realistic nanorough surfaces.

4.2.5 Evaluating the statistical significance of our results

We decided to evaluate the statistical significance of our results using the Wilcoxon
signed-rank test approach. The Wilcoxon signed-rank test is a non-parametric version of
the paired t-test and, given a set of matched samples x and y, tests whether the distribution
of the differences = — y is symmetric about zero.

In our case, we are interested in comparing DCGAN paired with no content similarity
metric, DCGAN paired with NGG, and DCGAN paired with A2G.

First of all, we trained the FHS evaluation content similarity metric on the ¢, = 8,¢, =
8, a = 1 data set. We then generated 30 nanorough surface samples using each method.
These samples were generated by providing each generator with a fixed input drawn from
a standard normal distribution. Having generated our 3 different nanorough surface popu-
lations, we collected the FHS values corresponding to each population. The distributions
of these values are shown in Figure 4.19.

FHS similarity score distributions

0.0030

0.0025

0.0020

0.0015

0.0010

None NGG A2G

Figure 4.19: The FHS score populations used in the context of the Wilcoxon signed-rank tests

Having collected the FHS similarity scores corresponding to the 3 different populations of
nanorough surfaces, we perform 3 two-tailed Wilcoxon signed-rank tests, with our null
hypothesis being that the distribution of the differences = — y is symmetric about zero.
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Samples W p-value
A2G vs NGG 5.500000e+01 2.613431e-04
A2G vs None 1.000000e+00 1.920921e-06
NGG vs None 9.700000e+01 5.319684e-03

Table 4.1: The results of the two-tailed Wilcoxon signed-rank test with regards to different sample
combinations. W+ stands for the sum of the ranks of the differences above zero

The results are showcased in Table 4.1. We reject the null hypothesis, in every single
case, at a confidence level of < 1%, concluding that there is a significant difference in
FHS similarity between each pair of nanorough surface groups.

We now need to determine how the 3 approaches rank with respect to FHS similarity. We
perform 3 additional one-tailed Wilcoxon signed-rank tests, where we again compare the
3 approaches, the only difference being that now the null hypothesis is that the median is
negative against the alternative that it is positive.

Samples W+ p-value
A2G vs NGG 4.100000e+02 1.306715e-04
A2G vs None 4.640000e+02 9.604606e-07
NGG vs None 3.680000e+02 2.659842e-03

Table 4.2: The results of the one-tailed Wilcoxon signed-rank test with regards to different sample
combinations. 1" stands for the sum of the ranks of the differences above zero

The results of the one-tailed tests are shown in Table 4.2. We reject the null hypothesis
that the median of the differences is negative in every single case. This implies that in
every single case the first approach outperforms the second one. It is now apparent that
there is a clear hierarchy with regards to FHS appropriateness and consequently with
regards to the realisticity of the generated nanorough surfaces:

DCGAN + A2G > DCGAN + NGG > DCGAN

4.2.6 Training DCGAN paired with A2G on additional data sets

Having determined that DCGAN paired with the A2G content similarity metric showcases
the most promising results, we tested this architecture on 5 additional data sets. These
data sets correspond to different combinations of correlation lengths and alpha and should
provide us with greater insight, as to how different parameters affect the performance of
our framework. All data sets consist of 1000 nanorough surfaces and each nanorough
surface is 128 x 128 pixels large.
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Figure 4.20: Real nanorough surface samples (« = 0.5)
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Figure 4.21: Nanorough surface samples generated by DCGAN+A2G (o = 0.5)

DCGAN paired with the A2G content similarity metric is able to produce realistic nanor-
ough surfaces, for data sets corresponding to an a = 0.5. The nanorough surfaces appear
noisy, but the amount of noise introduced is relatively insignificant. This problem could be
mitigated by fine-tuning parameters such as the learning rate, the batch size, the optim-
ization algorithm initial decay rates etc. but we are not going to be exploring this in this
work. This behavior is showcased in Figure 4.20 and Figure 4.21.
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Figure 4.23: Nanorough surface samples generated by DCGAN+A2G (o = 1)

As we can see from Figure 4.22 and Figure 4.23, our framework fails to correctly model
nanorough surfaces corresponding to o = 1, regardless of the correlation lengths ¢, &,,
with the exception of {, = 8 and ¢, = 8. The smoothing quality, that higher values of
« introduce, in combination with the small correlation length result in highly stochastic
nanorough surfaces. The fact that, in this case, our training data so closely resemble
random noise could be the reason why our framework fails to successfully model them.

V. Sioros 65



Generating realistic nanorough surfaces via a Generative Adversarial Network

Discriminator Output per Epoch Loss per Epoch

146.0
— 138.7 1 Generator
0.95 1 -'"vv\/—\i \ / \./ 131.4 4 — Discriminator
0.90 1/ ) 124.1 1 Generator x (Discriminator + 1)
0.85 - 116.8 A
g-ggj 109.5
£ 0701 102.2 1
£ 065 - %4.9
O 0.604 87.6
S 0554 Real 80.3
w 0.507 —— Fake 0
T g 73.0
£ g:g- |Real — 0.5] + |Fake — 0.5| 65.7
= o0 r e R
g 0.35 1 58.4
& 030 511
0.25 4 43.8
0.20 - 6.5 \ \
0.15 4 29.2 -4
0.10 1 ] |
0.05 - 21.9
A e A .6 \
0.00 14.6 S
7.3
L e e S e S L AL N s s s S S S S 0.0 Be—pp—p——p———r—r—r—r— T
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Epochs Epochs

Figure 4.24: Training DCGAN paired with A2G (¢, =4,¢, =4,a = 1)

A configuration of {, = 4 and ¢, = 4 corresponds to our framework’s so far worst per-
formance. As indicated by Figure 4.24 the framework fails to fit the training data and the
training procedure effectively halts after a few epochs. We decided to examine if utilizing
no content similarity metric would result in a better performance.
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Figure 4.25: Training DCGAN (¢, =4,¢, =4, =1)

Figure 4.25 demonstrates that DCGAN with no content similarity metric was unable to
effectively fit the data as well. In fact, DCGAN paired with A2G was able to escape the
local minimum, where the training procedure had previously halted, and carry on for a few
more epochs.

4.2.7 Determining the minimal amount of training data required

In order to determine the amount of training data required, so that our generator model
is able to generate realistic enough nanorough surface samples, we performed 2 exper-
iments with 10 and 100 training samples originating from the ¢, = 8,{, = 8,a = 1 data
set.
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Figure 4.26: Comparing nanorough surface samples generated by DCGAN+A2G (o = 1) with
respect to the size of the training data set

It becomes immediately apparent from Figure 4.26 that the amount of training samples re-
quired so that the generator model is capable of producing sufficiently realistic nanorough

surfaces is close to 1000.

The generator having been trained on the data set consisting of 10 nanorough surfaces
was unable to learn its characteristics and produced samples of pure noise. On the other
hand, training the generator on 100 samples improved on the previous case, but again
proved insufficient as the resulting nanorough surfaces appear flat and quite periodic. It is
clear from Figure 4.27, that in the case of 10 training samples, the value of FHS showcases
a decreasing tendency throughout the training process, while in the case of 100 training

samples it does not.
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Figure 4.27: A2G & FHS scores for different training data set sizes
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4.2.8 Assessing the scalability of our framework

We will be examining the scalability of our framework with regard to nanorough surface
generation. Given that our framework is aiming to provide an alternative solution to con-
ventional Fourier-based methods, we will only be considering its performance on inference
time.
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Figure 4.28: The generation cost as a function of the desired number of nanorough surfaces

We can clearly see from Figure 4.28 that the required time to generate a given number
of nanorough surfaces increases linearly to the number of nanorough surfaces in all 3
cases. We further observe that our approach outperforms that of Antonios Stellas et al.
[16] with regards to required processing time. Utilizing the GPU provides us with even
greater results.
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5. CONCLUSIONS AND FUTURE WORK

In this work, we examined how GAN-based frameworks can be trained to generate realistic
nanorough surfaces.

We developed 4 nanorough surface content similarity metrics, the N-Gram Graph (NGG),
2D Array Graph (A2G), Hierarchical Proximity Graph (HPS), and Fourier & Histogram
Space (FHS) content similarity metrics. FHS assisted us in evaluating our framework, with
regards to the realisticity of the generated nanorough surfaces, while the other 3 metrics
were designed to be used during training, so that they provide additional feedback to the
generator model and guiding it throughout the training process. HPS was ruled out, due
to its prohibitive time requirements.

A Single-Layer Perceptron GAN (SLPGAN) served as our baseline. Due to its simplistic
architecture, this model suffers from the Mode Collapse problem, which is quite common
in the field of GANs, and was able to produce only a small subset of nanorough surfaces.
More specifically, the SLPGAN generated nanorough surface with very small vertical fluc-
tuations that closely resemble a flat plain.

We also developed a Deep Convolutional GAN (DCGAN), which generally speaking was
able to closely fit the training data and generate nanorough surfaces indistinguishable
from real ones. DCGAN failed to model training data sets corresponding to configuration
of small correlation lengths (¢, = & < 4) and high o (o« = 1) values, where the great
stochasticity characterizing the data results in them closely resembling random noise.
DCGAN performed the best on the {, = ¢, < 8, o = 1 data set and worst on the {, =
& < 4, a = 1data sets. A number of nanorough surface training samples close to 1000 is
minimally required, so that the generator is able to produce sufficiently realistic nanorough
surfaces.

Lastly, we carried out multiple one and two-tailed Wilcoxon signed-rank tests, comparing
the FHS similarity scores of DCGAN, DCGAN+NGG, and DCGAN+A2G, and confirmed
that DCGAN+A2G outperforms the rest by a substantial margin.

There are a lot of different aspects of the problem that we weren’t able to explore and
an even greater number of questions that remain unanswered. Some topics that are of
special interest and should be further investigated are:

1. Training our framework on nanorough surfaces of different correlation lengths, o
values, kurtosis, skewness, etc. This is going to be telling of how well our framework
is able to adapt to different nanorough surface parameter configurations.

2. Extending our CNN architecture so that it supports nanorough surfaces of sizes other
than 128 x 128.

3. Having extended our CNN architecture, we could also elaborate on the scalability of
our framework with regards to nanorough surface size. More specifically, we could
train our framework on different nanorough surface sizes and evaluate its computa-
tional complexity on training as well as on inference/generation time.

4. Extending our framework, so that it is capable not only of generating realistic nanor-
ough surfaces but also super-resolving them. By super-resolution we refer to the
task of increasing the resolution of the nanorough surface, effectively enlarging it.
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5. Evaluating our framework using other generative model-specific criteria like the Fréchet
Inception Distance [38] or Inception Score [39].

6. Areview of our findings can be carried out, wherein multiple experts in the domain of
nanotechnology would be tasked with distinguishing real from synthetic data. This
would provide us with valuable insight with regard to our model’s expressive capab-
ilities.

7. Given that our framework fails to adapt to nanorough surfaces with small correlation
lengths and high smoothing factors, we would like to further investigate the reason
why.
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ABBREVIATIONS - ACRONYMS

2D Two Dimensional

3D Three Dimensional

A2G Two-Dimensional Array Graph Content Similarity
ACF Autocorrelation Function

Adam Adaptive Moment Estimation

ANN Artificial Neural Network

BCE Binary Cross Entropy

CNN Convolutional Neural Network

FFT Fast Fourier Transform

FHS Fourier & Histogram Space Content Similarity
GAN Generative Adversarial Network

HPG Hierarchical Proximity Graph

HPS Hierarchical Proximity Graph Content Similarity
MeMoG Merged Model Graph

ML Machine Learning

NGG N-Gram Graph Content Similarity

NVS Normalized Value Similarity

PDF Probability Density Function

RelLU Rectified Linear Unit

RMS Root Mean Square

RMSD Root Mean Square Deviation

RMSProp Root Mean Square Propagation

SL Supervised Learning

SLP Single-Layer Perceptron

SS Size Similarity

TanH Hyperbolic Tangent

UL Unsupervised Learning

VR Value Ratio
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VS

Value Similarity
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