

SCHOOL OF HEALTH SCIENCES
DEPARTMENT OF PHARMACY
SECTION OF PHARMACOGNOSY AND CHEMISTRY OF NATURAL PRODUCTS

ISOLATION AND STRUCTURE ELUCIDATION OF SECONDARY METABOLITES FROM MARINE ORGANISMS OF THE RED SEA

DOCTORAL THESIS

MOHAMED TAMMAM

ATHENS
DECEMBER 2020

THREE-MEMBERED ADVISORY COMMITTEE

Vassilios Roussis (Supervisor)

Professor, Department of Pharmacy, National and Kapodistrian University of Athens

Efstathia Ioannou

Assistant Professor, Department of Pharmacy, National and Kapodistrian University of Athens

Olga Tzakou

Professor, Department of Pharmacy, National and Kapodistrian University of Athens

SEVEN-MEMBERED EXAMINATION COMMITTEE

Vassilios Roussis

Professor, Department of Pharmacy, National and Kapodistrian University of Athens

Efstathia Ioannou

Assistant Professor, Department of Pharmacy, National and Kapodistrian University of Athens

Olga Tzakou

Professor, Department of Pharmacy, National and Kapodistrian University of Athens

Maria-Marina Couladis

Professor, Department of Pharmacy, National and Kapodistrian University of Athens

Nikolaos Thomaidis

Professor, Department of Chemistry, National and Kapodistrian University of Athens

Maria Zervou

Researcher B, Institute of Chemical Biology, National Hellenic Research Foundation

Carlos Duarte

Professor, Red Sea Research Center, King Abdullah University of Science and Technology, Saudi Arabia

ABSTRACT

Despite the continuous efforts of many research groups to develop new therapeutic treatments for various health problems, current medicines yield low cure rates and undesirable side effects. In the ongoing search for more effective anticancer and antibiotic agents, marine organisms have emerged as a promising new resource yielding unusual chemical structures with potent biological activities. The vast diversity and relatively unexplored nature of these unique sources of chemodiversity is expected to open a new era to drug discovery. Natural products have been the predominant source of new pharmaceuticals in the last fifty years. Between 1981 and 2002, 60% of the anticancer drugs and 75% of the anti-infectious disease drugs could be traced to or were inspired by natural products. Humankind has explored and exploited the terrestrial environment for more than 3,000 years, but only relatively recently turned its attention to the oceans as a possible source for natural medicines. From the early investigations in the 1970s until now marine organisms have yielded more than 32,000 natural products. Already a number of them are available in the pharmaceutical market, such as ziconotide (strong analgesic for severe pain relief by the brand name Prialt®) and ecteinascidin 743 (potent antitumor for the treatment of soft tissue sarcoma by the brand name Yondelis®), while many compounds are in advanced clinical trials for the treatment of numerous diseases.

In the framework of the present PhD thesis, the chemical composition of organic extracts obtained after the exhaustive extraction of three marine organisms, namely the red alga *Laurencia majuscula*, a sponge of the genus *Lamellodysidea* and the soft coral *Sinularia polydactyla*, collected from Hurghada and Thuwal, in the Red Sea (Egypt and Saudi Arabia) was investigated. To isolate the secondary metabolites of these marine organisms, the extracts were submitted to a series of chromatographic separations with various solvents and different types of chromatography. The isolated metabolites were identified on the basis of their spectroscopic data (NMR, MS, IR, UV-Vis) and comparison with literature data. In total 64 secondary metabolites have been isolated from these marine organisms, among which 59 have been structurally characterized, including 18 new natural products and one previously reported as a synthetic derivative.

Twenty-two secondary metabolites (1-22) were isolated and identified on the basis of their spectroscopic characteristics from the red alga *L. majuscula* collected from Hurghada, Egypt. These included seven laurane sesquiterpenes (1-7), one cuparane sesquiterpene (8), one seco-laurane derivative (9), one snyderane derivative (10), two chamigranes (11 and 12) and two rearranged chamigranes (13 and 14), one aristolane sesquiterpene (15), one tricyclic diterpene (16), one five-membered C₁₅ acetogenin (17), four tricyclic C₁₅ acetogenins of the maneonene type (18-21) and a chlorinated fatty acid derivative (22). Compounds 2, 3, 5, 6, 9, 17 and 19-21 are new natural products.

From the marine sponge *Lamellodysidea* sp. collected from the coral reef off Thuwal in Saudi Arabia, 11 sesquiterpenes (23-31), mostly containing furan or γ -lactone in their structures, were isolated, three of which are new natural products (25, 30 and 31) and one (33) is reported for the first time from a natural source.

Twenty six steroids (34-59) have been isolated and structurally characterized from the soft coral *S. polydactyla* collected from Hurghada, Egypt, including 15 4α -methylated derivatives. Compounds 34, 35, 39, 41, 46 and 53 are new natural products. Among them, metabolites 34 and 35 feature the rare 4-methyl-8,9-seco-cholastane steroidal nucleus.

The cytotoxic, anti-inflammatory, anti-angiogenic, and neuroprotective activity of compounds 36–40, 42–45, 47–53 and 55–59, as well as their effect on androgen receptor-regulated transcription was evaluated in vitro in human tumor and non-cancerous cells.

ПЕРІЛНЧН

Παρά τις συνεχείς προσπάθειες πολλών ερευνητικών ομάδων για την ανάπτυξη νέων θεραπευτικών αγωγών για διάφορες ασθένειες, τα υπάρχοντα φάρμακα παρέχουν σχετικά χαμηλά ποσοστά θεραπείας συχνά συνοδευόμενα με ανεπιθύμητες παρενέργειες. Στην αναζήτηση νέων και πιο αποτελεσματικών φαρμάκων με αντικαρκινική και αντιβιοτική δράση, οι θαλάσσιοι οργανισμοί έχουν αναδειχθεί ως μία πολλά υποσχόμενη πηγή νέων μορίων με ασυνήθιστες χημικές δομές και υψηλή βιολογική δράση.

Η τεράστια ποικιλία αυτών των σχετικά ανεξερεύνητων οργανισμών ως πηγή χημειοποικιλότητας αναμένεται να ανοίζει μια νέα εποχή στην εξέλιξη νέων φαρμάκων. Τα φυσικά προϊόντα έχουν αποτελέσει την βασική πηγή νέων φαρμακευτικών προϊόντων τα τελευταία πενήντα χρόνια. Μεταξύ του 1981 και του 2002, το 60% των αντικαρκινικών φαρμάκων και το 75% των φαρμάκων κατά των λοιμωδών νόσων προέρχονταν ή είχαν εμπνευστεί από φυσικά προϊόντα. Η ανθρωπότητα έχει εξερευνήσει και εκμεταλλευτεί το χερσαίο περιβάλλον για περισσότερα από 3.000 γρόνια, αλλά μόνο σγετικά πρόσφατα στράφηκε στους ωκεανούς αναζητώντας νέες πηγές βιοδραστικών μορίων. Από τις πρώτες έρευνες, που ξεκίνησαν στη δεκαετία του 1970 έως τώρα οι θαλάσσιοι οργανισμοί έχουν αποδώσει περισσότερα από 32.000 φυσικά προϊόντα. Ήδη ορισμένα από αυτά είναι εμπορικά διαθέσιμα φάρμακα, όπως π.γ. το ziconotide (ισχυρό αναλγητικό για ανακούφιση από έντονους πόνους, με το εμπορικό σήμα Prialt) και η ecteinascidin 743 (ισχυρό αντικαρκινικό για τη θεραπεία σαρκώματος μαλακών ιστών με το εμπορικό σήμα Yondelis), ενώ πολλοί άλλοι μεταβολίτες από θαλάσσιους οργανισμούς βρίσκονται σε προχωρημένα στάδια κλινικών δοκιμών για τη θεραπεία πολλών ασθενειών.

Στο πλαίσιο της παρούσας διδακτορικής διατριβής μελετήθηκε η χημική σύσταση των οργανικών εκχυλισμάτων που παρελήφθησαν κατόπιν εξαντλητικής εκχύλισης τριών θαλάσσιων οργανισμών που συλλέχθηκαν στην Ερυθρά Θάλασσα. Συγκεκριμένα η μελέτη εστιάσθηκε στο ροδοφύκος Laurencia majuscula, ενός σπόγγου του γένους Lamellodysidea και του μαλακού κοραλλιού Sinularia polydactyla που συλλέχθηκαν από τις περιοχές της Hurghada και του Thuwal, στην Ερυθρά Θάλασσα (Αίγυπτος και Σαουδική Αραβία). Για την απομόνωση των δευτερογενών μεταβολιτών αυτών των θαλάσσιων οργανισμών, τα οργανικά τους εκχυλίσματα υποβλήθηκαν σε σειρά χρωματογραφικών διαχωρισμών με ποικίλους διαλύτες και τύπους χρωματογραφίας.

Οι απομονωμένοι μεταβολίτες ταυτοποιήθηκαν κατόπιν ανάλυσης των φασματοσκοπικών τους δεδομένων (NMR, MS, IR, UV-Vis) και σύγκρισης με δεδομένα βιβλιογραφίας όπου υπήρχαν διαθέσιμα. Συνολικά από τους ανωτέρω θαλάσσιους οργανισμούς απομονώθηκαν 64 δευτερογενείς μεταβολίτες, εκ των οποίων οι 59 έχουν χαρακτηριστεί πλήρως ως προς την χημική τους δομή και μεταξύ αυτών περιλαμβάνονται 18 μεταβολίτες με νέες χημικές δομές καθώς και 1 μόριο που απομονώνεται για πρώτη φορά ως φυσικό προϊόν.

Από το ροδοφύκος *L. majuscula* που συλλέχθηκε από την περιοχή της Hurghada της Αιγύπτου απομονώθηκαν και ταυτοποιήθηκαν με βάση τα φασματοσκοπικά χαρακτηριστικά τους είκοσι δύο δευτερογενείς μεταβολίτες (1-22) Μεταξύ αυτών συμπεριλαμβάνονται επτά σεσκιτερπένια με σκελετό λαουράνιου (1-7), ένα σεσκιτερπένιο με σκελετό κουπαράνιου (8), ένας μεταβολίτης με σκελετό σεκολαυρανίου (9), ένα παράγωγο σνυδερανίου (10), δύο μεταβολίτες με τσαμιγκρανικό σκελετό (11 και 12), δύο αναδιαταγμένα τσαμιγκράνια (13 και 14), ένα σεσκιτερπένιο με σκελετό αριστολανίου (15), ένα τρικυκλικό διτερπένιο (16), μία C₁₅ ακετογενίνη με πενταμελή δακτύλιο (17), τέσσερεις τρικυκλικές C₁₅ ακετογενίνες τύπου μανεονένης (18-21) και ένα χλωριωμένο παράγωγο λιπαρού οξέος (22). Οι ενώσεις 2, 3, 5, 6, 9, 17 και 19-21 αποτελούν νέα φυσικά προϊόντα.

Από τον θαλάσσιο σπόγγο Lamellodysidea sp. που συλλέχθηκε από τη περιοχή του Thuwal στη Σαουδική Αραβία, απομονώθηκαν 11 σεσκιτερπένια (23-31) που περιέχουν στις δομές τους φουράνιο ή γ-λακτόνη, τρία εκ των οποίων αποτελούν νέα φυσικά προϊόντα (25, 30 και 31) και ένα (33) που αναφέρεται για πρώτη φορά από φυσική πηγή.

Από το μαλακό κοράλλι S. polydactyla που συλλέχθηκε από την Ερυθρά θάλασσα στην περιοχή της Hurghada στην Αίγυπτο απομονώθηκαν και χαρακτηρίσθηκαν ως προς την χημική δομή τους είκοσι έξι στεροειδή (34-59) μεταξύ των οποίων περιλαμβάνονται 15 4α-μεθυλιωμένα στεροειδή. Οι ενώσεις 34, 35, 39, 41, 46 και 53 αποτελούν νέα φυσικά προϊόντα. Μεταξύ αυτών, οι μεταβολίτες 34 και 35 παρουσιάζουν τον σπάνιο σκελετό 4-μεθυλο-8,9-σεκο-χολαστανίου.

Η κυτταροτοξική, η αντιφλεγμονώδης, η αντι-αγγειογενετική και η νευροπροστατευτική δράση των μεταβολιτών 36–40, 42–45, 47–53 και 55–59, καθώς και η επίδρασή τους στη μεταγραφή που ρυθμίζεται από τον ανδρογόνο υποδοχέα αξιολογήθηκε in vitro σε ανθρώπινες καρκινικές και φυσιολογικές κυτταρικές σειρές.

ACKNOWLEDGEMENTS

Above all, all praise belongs to Allah, the Lord of the worlds, for His most Bounteous guidance throughout the various stages of this research.

I would like to express my extreme gratitude to my esteemed Professors, Professor Vassilios Roussis, Assistant Professor Efstathia Ioannou and Professor Olga Tzakou. They have offered me the best academic guidance and the warmest family care in the course of this study and my life in my second home Greece. It has been a great privilege and joy to work under their guidance and their encouragement.

I also owe special thanks to the other members of the examination committee Professor Carlos Duarte, Dr. Maria Zervou, Professor Nikolaos Thomaidis and Professor Maria-Marina Couladis, for reading and evaluating my PhD thesis.

Special thanks should go to my professors in the Department of Biochemistry, Faculty of Agriculture, Fayoum University, Egypt for their kind and endless support and inspiring me to deal with these scientific fields.

I would like to thank Professor Carlos Duarte (Red Sea Research Center, King Abdullah University for Science and Technology, Saudi Arabia) for enabling the collection of the marine sponge studied, as well as for the acquisition of a number of NMR spectra.

Furthermore, I would like to thank Professor Miroslav Strnad and Dr. Lucie Rarova (Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacky University, Olomouc, Czech Republic) for the evaluation of the biological activity of a number of the isolated metabolites.

I would also like to acknowledge with gratitude all dear colleagues, postgraduate students, candidate PhD students, postdoctoral researchers and technicians of our laboratory who have always advised and supported me at different stages of the current research.

Special thanks should go to the mission sector of the Ministry of High Education of the Arab Republic of Egypt (Egyptian cultural bureau in Athens) for funding me during my joint supervision.

I would also like to acknowledge the Directorate of Education and Cultural Affairs, Ministry of Foreign Affairs E1 Greece, for funding me during my PhD thesis.

I would like to extend my sincere thanks to the non-profit organization "Kleon Tsetis" for their kind support during my PhD thesis.

I also owe special thanks to everyone in my family. In particular, many thanks must go to my father and my mother, who have always enlightened my life. I thank them for their generous advice and passionate care. Without their prayers, support and encouragement, this research would not have come to light. It is my pleasure to dedicate this research to them.

I am also deeply indebted to my wife Hanaa, whose lots of love and support have meant so much to me. I thank her for her patience, sympathy and always-generous support to a husband whose mind was always occupied with his research.

TABLE OF CONTENTS

ABSTRACT	`i
ПЕРІЛНҰН	iii
ACKNOWL	EDGEMENTSv
TABLE OF	CONTENTSvii
LIST OF FIG	GURESxi
LIST OF TA	BLESxvii
ABBREVIA	TIONSxxiii
1. INTRODU	JCTION1
1.1 Pha	rmacognosy - Natural products chemistry1
1.2 Mai	rine natural products
1.3 Rec	algae of the genus Laurencia
1.3.1	Sesquiterpenes
1.3.2	Diterpenes
1.3.3	Triterpenes
1.3.4	Acetogenins
1.3.5	Indoles
1.3.6	Aromatic compounds
1.3.7	Steroids
1.3.8	Miscellaneous metabolites
1.4 Spc	nges of the genus Lamellodysidea
1.4.1	Sesquiterpenes
1.4.2	Steroids
1.4.3	Polychlorinated pyrrolidinones
1.4.4	Dysinosins
1.4.5	Polyhalogenated diphenyl ethers
1.5 Sof	t corals of the genus Sinularia
1.5.1	Sesquiterpenes
1.5.2	Diterpenes
1.5.3	Steroids
1.5.4	Nitrogen-containing compounds
1.6 Ain	n of the study40
2. MATERIA	ALS AND METHODS41

	2.1	General experimental procedures
	2.2	Solvents and chemical reagents
	2.3	Collection of organisms 42
	2.4	Extraction and isolation of metabolites from the alga $Laurencia\ majuscula\\ 43$
	2.5	Extraction and isolation of metabolites from the sponge Lamellodysidea sp 60
	2.6	Extraction and isolation of metabolites from the soft coral Sinularia
	polydo	actyla77
	2.7	Evaluation of the biological activity of some of the isolated compounds 110
	2.7.	1 Cell Culture
	2.7.	Evaluation of cytotoxicity
	2.7.	3 Cell-surface ELISA CD62E (E-Selectin, ELAM)
	2.7.	4 Migration scratch assay
	2.7.	5 AR-Transcriptional reporter aAssay
	2.7.	6 SH-SY5Y cell treatments and evaluation of cell viability/cytotoxicity. 111
	2.7.	7 Statistical analysis
3.	. RESU	LTS AND DISCUSSION
	3.1	Identification and structure elucidation of isolated metabolites from the red
	alga <i>L</i>	aurencia majuscula114
	3.1.	1 Metabolite 1
	3.1.	2 Metabolite 2
	3.1.	3 Metabolite 3
	3.1.	4 Metabolite 4
	3.1.	5 Metabolite 5
	3.1.	6 Metabolite 6
	3.1.	7 Metabolite 7
	3.1.	8 Metabolite 8
	3.1.	9 Metabolite 9
	3.1.	10 Metabolite 10
	3.1.	11 Metabolite 11
	3.1.	12 Metabolite 12
	3.1.	13 Metabolite 13
	3.1.	14 Metabolite 14
	3.1.	15 Metabolite 15
	3.1.	16 Metabolite 16

3.1.17	Metabolite 17	163
3.1.18	Metabolite 18	169
3.1.19	Metabolite 19	172
3.1.20	Metabolite 20	178
3.1.21	Metabolite 21	183
3.1.22	Metabolite 22	188
3.2 Ide	entification and structure elucidation of isolated metabolites from the	sponge
Lamellody	ysidea sp	190
3.2.1	Metabolite 23	190
3.2.2	Metabolite 24	192
3.2.3	Metabolite 25	194
3.2.4	Metabolite 26	199
3.2.5	Metabolite 27	201
3.2.6	Metabolite 28	203
3.2.7	Metabolite 29	205
3.2.8	Metabolite 30	207
3.2.9	Metabolite 31	212
3.2.10	Metabolite 32	217
3.2.11	Metabolite 33	219
3.3 Ide	entification and structure elucidation of isolated metabolites from the	ne soft
coral Sinu	ılaria polydactyla	221
3.3.1	Metabolite 34	221
3.3.2	Metabolite 35	227
3.3.3	Metabolite 36	231
3.3.4	Metabolite 37	233
3.3.5	Metabolite 38	235
3.3.6	Metabolite 39	237
3.3.7	Metabolite 40	243
3.3.8	Metabolite 41	246
3.3.9	Metabolite 42	252
3.3.10	Metabolite 43	255
3.3.11	Metabolite 44	258
3.3.12	Metabolite 45	261
3.3.13	Metabolite 46	264

3.3.1	4 Metabolite 47	270
3.3.1	5 Metabolite 48	273
3.3.1	6 Metabolite 49	276
3.3.1	7 Metabolite 50	279
3.3.1	8 Metabolite 51	281
3.3.1	9 Metabolite 52	283
3.3.2	20 Metabolite 53	285
3.3.2	21 Metabolite 54	291
3.3.2	22 Metabolite 55	293
3.3.2	23 Metabolite 56	296
3.3.2	24 Metabolite 57	299
3.3.2	25 Metabolite 58	302
3.3.2	26 Metabolite 59	305
3.4	Evaluation of the biological activity of isolated compounds	308
CONCL	USIONS	313
REFERE	NCES	319

LIST OF FIGURES

Figure 1. Approved drugs from 1981 until 2014	2
Figure 2. Global distribution map for the genus Laurencia.	4
Figure 3. Contribution of the different chemical classes to the total number of	
metabolites isolated from Laurencia species	4
Figure 4. Global distribution map for the genus Sinularia	
Figure 5. The marine organisms investigated in the present PhD thesis	42
Figure 6. Fractionation scheme for the isolation of metabolites from the crude extra	
LMH (part 1).	44
Figure 7. Fractionation scheme for the isolation of metabolites from the crude extra	ct
LMH (part 2).	44
Figure 8. Fractionation scheme for the isolation of metabolites from the crude extra	ct
LMH (part 3).	45
Figure 9. Fractionation scheme for the isolation of metabolites from the crude extra	ct
LMH (part 4).	46
Figure 10. Fractionation scheme for the isolation of metabolites from the crude extr	act
k649 (small-scale)	61
Figure 11. Fractionation scheme for the isolation of metabolites from the crude extr	act
kr649 (large-scale)	65
Figure 12. Fractionation scheme for the isolation of metabolites from the crude extr	
sp (part 1)	78
Figure 13. Fractionation scheme for the isolation of metabolites from the crude extr	
sp (part 2)	
Figure 14. Fractionation scheme for the isolation of metabolites from the crude extr	
sp (part 3)	
Figure 15. Mass spectrum (EIMS) of metabolite 1.	
Figure 16. ¹ H NMR spectrum of metabolite 1	
Figure 17. Mass spectrum (EIMS) of metabolite 2.	116
Figure 18. ¹ H NMR spectrum of metabolite 2	
Figure 19. COSY and important HMBC correlations observed for metabolite 2	
Figure 20. HSQC-DEPT spectrum of metabolite 2.	
Figure 21. HMBC spectrum of metabolite 2.	
Figure 22. COSY spectrum of metabolite 2.	
Figure 23. Mass spectrum (EIMS) of metabolite 3.	
Figure 24. ¹ H NMR spectrum of metabolite 3	
Figure 25. COSY and important HMBC correlations observed for metabolite 3	
Figure 26. HSQC-DEPT spectrum of metabolite 3.	
Figure 27. HMBC spectrum of metabolite 3.	
Figure 28. COSY spectrum of metabolite 3.	
Figure 29. Mass spectrum (EIMS) of metabolite 4.	
Figure 30. ¹ H NMR spectrum of metabolite 4	
Figure 31 Mass spectrum (FIMS) of metabolite 5	126

Figure 32.	¹ H NMR spectrum of metabolite 5	127
Figure 33.	COSY and important HMBC correlations observed for metabolite 5	127
Figure 34.	HSQC-DEPT spectrum of metabolite 5.	128
Figure 35.	HMBC spectrum of metabolite 5.	128
Figure 36.	COSY spectrum of metabolite 5.	129
Figure 37.	Mass spectrum (EIMS) of metabolite 6	131
_	¹ H NMR spectrum of metabolite 6	
Figure 39.	COSY and important HMBC correlations observed for metabolite ${\bf 6}$	132
Figure 40.	HSQC-DEPT spectrum of metabolite 6.	133
Figure 41.	HMBC spectrum of metabolite 6.	133
_	COSY spectrum of metabolite 6	
Figure 43.	NOESY spectrum of metabolite 6	135
Figure 44.	Mass spectrum (EIMS) of metabolite 7.	136
Figure 45.	¹ H NMR of metabolite 7.	137
Figure 46.	Mass spectrum (EIMS) of metabolite 8	138
Figure 47.	¹ H NMR of metabolite 8 .	139
	Mass spectrum (EIMS) of metabolite 9.	
Figure 49.	¹ H NMR spectrum of metabolite 9	141
Figure 50.	COSY and important HMBC correlations observed for metabolite 9	141
Figure 51.	HSQC-DEPT spectrum of metabolite 9.	142
	HMBC spectrum of metabolite 9.	
Figure 53.	COSY spectrum of metabolite 9.	143
Figure 54.	Mass spectrum (EIMS) of metabolite 10.	144
Figure 55.	¹ H NMR spectrum of metabolite 10	145
	Mass spectrum (EIMS) of metabolite 11.	
Figure 57.	¹ H NMR spectrum of metabolite 11	148
Figure 58.	Mass spectrum (EIMS) of metabolite 12.	149
Figure 59.	¹ H NMR spectrum of metabolite 12 in CDCl ₃	150
	¹ H NMR spectrum of metabolite 12 in C ₆ D ₆ .	
Figure 61.	Mass spectrum (EIMS) of metabolite 13.	152
Figure 62.	¹ H NMR spectrum of metabolite 13	153
Figure 63.	Mass spectrum (EIMS) of metabolite 14	154
Figure 64.	¹ H NMR spectrum of metabolite 14	155
Figure 65.	Mass spectrum (EIMS) of metabolite 15.	156
Figure 66.	¹ H NMR spectrum of metabolite 15	157
Figure 67.	Mass spectrum (EIMS) of metabolite 16.	158
Figure 68.	¹ H NMR spectrum of metabolite 16	159
Figure 69.	HSQC-DEPT spectrum of metabolite 16.	160
Figure 70.	HMBC spectrum of metabolite 16.	160
Figure 71.	COSY spectrum of metabolite 16.	161
Figure 72.	Mass spectrum (EIMS) of metabolite 17.	163
Figure 73.	¹ H NMR spectrum of metabolite 17	164
Figure 74.	COSY and important HMBC correlations observed for metabolite $17.\ldots$	164
Figure 75.	HSQC-DEPT spectrum of metabolite 17.	165

Figure 76. HMBC spectrum of metabolite 17.	
Figure 77. COSY spectrum of metabolite 17.	
Figure 78. NOESY spectrum of metabolite 17	167
Figure 79. Mass spectrum (EIMS) of metabolite 18.	169
Figure 80. ¹ H NMR spectrum of metabolite 18 in C ₆ D ₆ .	170
Figure 81. ¹ H NMR spectrum of metabolite 18 in CDCl ₃	170
Figure 82. Mass spectrum (EIMS) of metabolite 19.	172
Figure 83. ¹ H NMR spectrum of metabolite 19	173
Figure 84. COSY and important HMBC correlations observed for metabolite 19	174
Figure 85. HSQC-DEPT spectrum of metabolite 19.	174
Figure 86. HMBC spectrum of metabolite 19.	175
Figure 87. COSY spectrum of metabolite 19.	175
Figure 88. NOESY spectrum of metabolite 19.	
Figure 89. 3D structure of metabolite 19.	176
Figure 90. Mass spectrum (EIMS) of metabolite 20.	178
Figure 91. ¹ H NMR spectrum of metabolite 20.	179
Figure 92. COSY and important HMBC correlations observed for metabolite 20	179
Figure 93. HSQC-DEPT spectrum of metabolite 20.	180
Figure 94. HMBC spectrum of metabolite 20.	180
Figure 95. COSY spectrum of metabolite 20.	181
Figure 96. NOESY spectrum of metabolite 20.	182
Figure 97. Mass spectrum (EIMS) of metabolite 21.	183
Figure 98. ¹ H NMR spectrum of metabolite 21	184
Figure 99. HSQC-DEPT spectrum of metabolite 21.	185
Figure 100. COSY spectrum of metabolite 21.	185
Figure 101. NOESY spectrum of metabolite 21.	186
Figure 102. 3D structure of metabolite 21.	
Figure 103. Mass spectrum (EIMS) of metabolite 22.	188
Figure 104. ¹ H NMR spectrum of metabolite 22	189
Figure 105. Mass spectrum (EIMS) of metabolite 23.	
Figure 106. ¹ H NMR spectrum of metabolite 23	191
Figure 107. Mass spectrum (EIMS) of metabolite 24.	192
Figure 108. ¹ H NMR spectrum of metabolite 24	193
Figure 109. Mass spectrum (EIMS) of metabolite 25.	194
Figure 110. ¹ H NMR spectrum of metabolite 25	195
Figure 111. COSY and important HMBC correlations observed for metabolite 25.	195
Figure 112. HSQC-DEPT spectrum of metabolite 25.	196
Figure 113. HMBC spectrum of metabolite 25.	196
Figure 114. COSY spectrum of metabolite 25.	197
Figure 115. NOESY spectrum of metabolite 25.	198
Figure 116. Mass spectrum (EIMS) of metabolite 26.	199
Figure 117. ¹ H NMR spectrum of metabolite 26	200
Figure 118. Mass spectrum (EIMS) of metabolite 27.	201
Figure 119. ¹ H NMR spectrum of metabolite 27	202

Figure 1	120. Mass spectrum (EIMS) of metabolite 28.	203
Figure 1	121. ¹ H NMR spectrum of metabolite 28	204
Figure 1	122. Mass spectrum (EIMS) of metabolite 29.	205
Figure 1	123. ¹ H NMR spectrum of metabolite 29	206
Figure 1	124. Mass spectrum (EIMS) of metabolite 30.	207
Figure 1	125. ¹ H NMR spectrum of metabolite 30	208
Figure 1	126. COSY and important HMBC correlations observed for metabolite a	30 208
Figure 1	127. HSQC-DEPT spectrum of metabolite 30.	209
Figure 1	128. HMBC spectrum of metabolite 30.	209
Figure 1	129. COSY spectrum of metabolite 30.	210
Figure 1	130. NOESY spectrum of metabolite 30	211
Figure 1	131. Mass spectrum (EIMS) of metabolite 31.	212
Figure 1	132. ¹ H NMR spectrum of metabolite 31	213
Figure 1	133. COSY and important HMBC correlations observed for metabolite a	31 213
Figure 1	134. HSQC-DEPT spectrum of metabolite 31.	214
_	135. HMBC spectrum of metabolite 31.	
0	136. COSY spectrum of metabolite 31.	
_	137. Mass spectrum (EIMS) of metabolite 32.	
	138. ¹ H NMR spectrum of metabolite 32	
Figure 1	139. Mass spectrum (EIMS) of metabolite 33.	219
Figure 1	140. ¹ H NMR spectrum of metabolite 33	220
_	141. Mass spectrum (HR-APCIMS) of metabolite 34.	
_	142. ¹ H NMR spectrum of metabolite 34	
_	143. COSY and important HMBC correlations observed for metabolite a	
	144. HSQC-DEPT spectrum of metabolite 34.	
	145. HMBC spectrum of metabolite 34.	
_	146. COSY spectrum of metabolite 34 .	
_	147. 3D structure and key NOESY cross-peaks for metabolite 34	
0	148. Mass spectrum (HR-APCIMS) of metabolite 35.	
_	149. ¹ H NMR spectrum of metabolite 35	
_	150. COSY spectrum of metabolite 35.	
_	151 . Mass spectrum (EIMS) of metabolite 36	
_	152. ¹ H NMR spectrum of metabolite 36	
_	153. Mass spectrum (HR-ESIMS) of metabolite 37	
_	154. ¹ H NMR spectrum of metabolite 37	
_	155. Mass spectrum (EIMS) of metabolite 38.	
	156. ¹ H NMR spectrum of metabolite 38	
_	157 . Mass spectrum (HR-APCIMS) of metabolite 39	
_	158. ¹ H NMR spectrum of metabolite 39	
_	159 . COSY and important HMBC correlations observed for metabolite 3	
_	160. HSQC-DEPT spectrum of metabolite 39.	
_	161. HMBC spectrum of metabolite 39 .	
_	162. COSY spectrum of metabolite 39 .	
Figure 1	163. NOESY spectrum of metabolite 39	241

Figure 164. Mass spectrum (EIMS) of metabolite 40.	243
Figure 165. ¹ H NMR spectrum of metabolite 40	244
Figure 166. Mass spectrum (HR-APCIMS) of metabolite 41.	246
Figure 167. ¹ H NMR spectrum of metabolite 41	247
Figure 168. COSY and important HMBC correlations observed for metabolite 41	1 248
Figure 169. HSQC-DEPT spectrum of metabolite 41.	248
Figure 170. HMBC spectrum of metabolite 41.	249
Figure 171. COSY spectrum of metabolite 41.	249
Figure 172. NOESY spectrum of metabolite 41	250
Figure 173. Mass spectrum (EIMS) of metabolite 42.	252
Figure 174. ¹ H NMR spectrum of metabolite 42	
Figure 175. Mass spectrum (EIMS) of metabolite 43.	255
Figure 176. ¹ H NMR spectrum of metabolite 43	256
Figure 177. Mass spectrum (EIMS) of metabolite 44.	258
Figure 178. ¹ H NMR spectrum of metabolite 44	
Figure 179. Mass spectrum (EIMS) of metabolite 45.	261
Figure 180. ¹ H NMR spectrum of metabolite 45	262
Figure 181. Mass spectrum (HR-APCIMS) of metabolite 46.	264
Figure 182. ¹ H NMR spectrum of metabolite 46	265
Figure 183. COSY and important HMBC correlations observed for metabolite 40	5 265
Figure 184. HSQC-DEPT spectrum of metabolite 46.	266
Figure 185. HMBC spectrum of metabolite 46.	266
Figure 186. COSY spectrum of metabolite 46.	
Figure 187. NOESY spectrum of metabolite 46.	268
Figure 188. Mass spectrum (EIMS) of metabolite 47.	
Figure 189. ¹ H NMR spectrum of metabolite 47	271
Figure 190. Mass spectrum (EIMS) of metabolite 48.	
Figure 191. ¹ H NMR spectrum of metabolite 48	274
Figure 192. Mass spectrum (EIMS) of metabolite 49.	276
Figure 193. ¹ H NMR spectrum of metabolite 49	
Figure 194. Mass spectrum (EIMS) of metabolite 50.	279
Figure 195. ¹ H NMR spectrum of metabolite 50	280
Figure 196. Mass spectrum (EIMS) of metabolite 51.	281
Figure 197. ¹ H NMR spectrum of metabolite 51	282
Figure 198. Mass spectrum (EIMS) of metabolite 52.	283
Figure 199. ¹ H NMR spectrum of metabolite 52	284
Figure 200. Mass spectrum (HR-ESIMS) of metabolite 53.	285
Figure 201. ¹ H NMR spectrum of metabolite 53	286
Figure 202. COSY and important HMBC correlations observed for metabolite 53	3 286
Figure 203. HSQC-DEPT spectrum of metabolite 53.	287
Figure 204. HMBC spectrum of metabolite 53.	287
Figure 205. COSY spectrum of metabolite 53.	
Figure 206. NOESY spectrum of metabolite 53.	289
Figure 207. Mass spectrum (EIMS) of metabolite 54.	291

Figure 208. ¹ H NMR spectrum of metabolite 54	292
Figure 209. Mass spectrum (EIMS) of metabolite 55.	293
Figure 210. ¹ H NMR spectrum of metabolite 55	294
Figure 211. Mass spectrum (EIMS) of metabolite 56.	296
Figure 212. ¹ H NMR spectrum of metabolite 56	297
Figure 213. Mass spectrum (EIMS) of metabolite 57.	299
Figure 214. ¹ H NMR spectrum of metabolite 57	300
Figure 215. Mass spectrum (EIMS) of metabolite 58.	302
Figure 216. ¹ H NMR spectrum of metabolite 58 in CD ₃ OD	303
Figure 217. ¹ H NMR spectrum of metabolite 58 in CDCl ₃	
Figure 218. Mass spectrum (EIMS) of metabolite 59.	305
Figure 219. ¹ H NMR spectrum of metabolite 59 in CD ₃ OD	306
Figure 220. ¹ H NMR spectrum of metabolite 59 in CDCl ₃	306
Figure 221. Compounds 44, 45, 55 and 56 inhibited migration of HUVECs after	20 h of
treatment at 20 μM .	309
Figure 222. Compounds 36-40, 42-45, 47-53 and 55-59 did not affect the relati	ve
amount of E-selectin on the cell surface of endothelial cells	310
Figure 223. The influence of compounds 43, 44, 45, 49 and 53 on the androgen	
receptor-mediated transcription in the 22Rv1-ARE14 reporter cell line	311
Figure 224. (A) Cytotoxicity of compounds 44 and 56 in human neuron-like SH-	SY5Y
cells after 48 h of treatment. (B) Neuroprotective activity of compounds 44 and 5	6 in
the 3-nitropropionic acid (3-NPA)-induced model of Huntington's disease on hun	nan
neuron-like SH-S. (C) Cell death of neuron-like SH-SY5Y induced by 3-NPA and	d the
protective effect of compounds 44 and 56 after 48 h.	312

LIST OF TABLES

Table 1 . Collection data for the marine organisms investigated in the present PhD	
thesis.	42
Table 2. Experimental details for the separation of the crude extract LMH	43
Table 3. Experimental details for the separation of fraction LMH2	47
Table 4. Experimental details for the separation of fraction LMH2a.	47
Table 5. Experimental details for the separation of fraction LMH2a1.	47
Table 6. Experimental details for the separation of fraction LMH2f	48
Table 7. Experimental details for the separation of fraction LMH2f2	48
Table 8. Experimental details for the separation of fraction LMH3.	49
Table 9. Experimental details for the separation of fraction LMH3a.	49
Table 10. Experimental details for the separation of fraction LMH3a1.	49
Table 11. Experimental details for the separation of fraction LMH3b.	50
Table 12. Experimental details for the separation of fraction LMH3c.	50
Table 13. Experimental details for the separation of fraction LMH3c2.	51
Table 14. Experimental details for the separation of fraction LMH3d.	51
Table 15. Experimental details for the separation of fraction LMH3e.	52
Table 16. Experimental details for the separation of fraction LMH3e4.	52
Table 17. Experimental details for the separation of fraction LMH3e4c.	52
Table 18. Experimental details for the separation of fraction LMH3e5.	53
Table 19. Experimental details for the separation of fraction LMH4	53
Table 20 . Experimental details for the separation of fraction LMH4b	54
Table 21. Experimental details for the separation of fraction LMH4b1	54
Table 22. Experimental details for the separation of fraction LMH4b2	55
Table 23. Experimental details for the separation of fraction LMH4b3	55
Table 24. Experimental details for the separation of fraction LMH4h	55
Table 25. Experimental details for the separation of fraction LMH4i	56
Table 26. Experimental details for the separation of fraction LMH4j	56
Table 27. Experimental details for the separation of fraction LMH4k	56
Table 28. Experimental details for the separation of fraction LMH4k7	
Table 29. Experimental details for the separation of fraction LMH4k8	57
Table 30. Experimental details for the separation of fraction LMH4k8b	57
Table 31. Experimental details for the separation of fraction LMH4k8b3	58
Table 32. Experimental details for the separation of fraction LMH4k8c.	58
Table 33. Experimental details for the separation of fraction LMH4k8d	
Table 34. Experimental details for the separation of fraction LMH4k8d1	58
Table 35. Experimental details for the separation of fraction LMH4k8d2	59
Table 36. Isolated metabolites from the red alga L. majuscula.	59
Table 37. Experimental details for the separation of the crude extract k649 (small-	
scale).	62
Table 38. Experimental details for the separation of fraction k649c.	
Table 39 . Experimental details for the separation of fraction k649c4	63

Table 40.	Experimental details for the separation of fraction k649d	. 63
Table 41.	Experimental details for the separation of fraction k649d7	. 64
Table 42.	Experimental details for the separation of fraction k649d7c	. 64
Table 43.	Experimental details for the separation of the crude extract kr649 (large-	
scale)		. 66
Table 44.	Experimental details for the separation of fraction kr649a	. 66
Table 45.	Experimental details for the separation of fraction kr649b.	. 67
Table 46.	Experimental details for the separation of fraction kr649b5.	. 68
Table 47.	Experimental details for the separation of fraction kr649b5a	. 68
Table 48.	Experimental details for the separation of fraction kr649b5a1	. 68
Table 49.	Experimental details for the separation of fraction kr649b5a1a	. 69
Table 50.	Experimental details for the separation of fraction kr649b5a1b	. 69
Table 51.	Experimental details for the separation of fraction kr649b5a1d	. 69
Table 52.	Experimental details for the separation of fraction kr649b6	. 70
Table 53.	Experimental details for the separation of fraction kr649b6a	. 70
Table 54.	Experimental details for the separation of fraction kr649b6b.	. 70
Table 55.	Experimental details for the separation of fraction kr649b6b1	. 71
Table 56.	Experimental details for the separation of fraction kr649b6b2	. 71
Table 57.	Experimental details for the separation of fraction kr649b6b2a	. 71
Table 58.	Experimental details for the separation of fraction kr649b6b2d	. 72
Table 59.	Experimental details for the separation of fraction kr649b7	. 72
	Experimental details for the separation of fraction kr649b7a	
Table 61.	Experimental details for the separation of fraction kr649b7b	. 73
	Experimental details for the separation of fraction kr649b7a5	
	Experimental details for the separation of fraction kr649b8	
	Experimental details for the separation of fraction kr649b8a	
	Experimental details for the separation of fraction kr649b8a4	
	Experimental details for the separation of fraction kr649b8a4b	
	Experimental details for the separation of fraction kr649b8b	
	Experimental details for the separation of fraction kr649b8b1	
	Experimental details for the separation of fraction kr649b8b2	
Table 70.	Experimental details for the separation of fraction kr649b8b2b	. 76
Table 71.	Isolated metabolites from the sponge Lamellodysidea sp	. 76
Table 72.	Experimental details for the separation of the crude extract sp	. 77
Table 73.	Experimental details for the separation of fraction sp2.	. 81
Table 74.	Experimental details for the separation of fraction sp2f	. 81
	Experimental details for the separation of fraction sp2f5b	
	Experimental details for the separation of fraction sp2f7	
	Experimental details for the separation of fraction sp2f71	
	Experimental details for the separation of fraction sp2f8	
	Experimental details for the separation of fraction sp2f8e	
	Experimental details for the separation of fraction sp2f9	
	Experimental details for the separation of fraction sp3	
	Experimental details for the separation of fraction sp3e	

Table 83 . Experimental details for the separation of fraction sp3e5	86
Table 84. Experimental details for the separation of fraction sp3e10	86
Table 85. Experimental details for the separation of fraction sp3e10c	86
Table 86. Experimental details for the separation of fraction sp3f	87
Table 87. Experimental details for the separation of fraction sp3f6	87
Table 88. Experimental details for the separation of fraction sp3f8	88
Table 89. Experimental details for the separation of fraction sp3g	88
Table 90. Experimental details for the separation of fraction sp3g8	89
Table 91. Experimental details for the separation of fraction sp3g9	89
Table 92. Experimental details for the separation of fraction sp3h	89
Table 93. Experimental details for the separation of fraction sp3h3	90
Table 94. Experimental details for the separation of fraction sp3h9	90
Table 95. Experimental details for the separation of fraction sp3h10	90
Table 96. Experimental details for the separation of fraction sp3h11	91
Table 97. Experimental details for the separation of fraction sp3h11c	91
Table 98. Experimental details for the separation of fraction sp3h11c2	91
Table 99. Experimental details for the separation of fraction sp4.	92
Table 100. Experimental details for the separation of fraction sp4g	92
Table 101. Experimental details for the separation of fraction sp4g4	93
Table 102. Experimental details for the separation of fraction sp4h	93
Table 103. Experimental details for the separation of fraction sp4h2	94
Table 104. Experimental details for the separation of fraction sp4h7	94
Table 105. Experimental details for the separation of fraction sp4h8	
Table 106. Experimental details for the separation of fraction sp4h8d3	95
Table 107. Experimental details for the separation of fraction sp4i	95
Table 108. Experimental details for the separation of fraction sp4j	97
Table 109. Experimental details for the separation of fraction sp4k	
Table 110. Experimental details for the separation of fraction sp4k4	99
Table 111. Experimental details for the separation of fraction sp 41.	
Table 112. Experimental details for the separation of fraction sp414	
Table 113. Experimental details for the separation of fraction sp4k3	100
Table 114. Experimental details for the separation of fraction sp5.	
Table 115. Experimental details for the separation of fraction sp5c.	100
Table 116. Experimental details for the separation of fraction sp5c4.	
Table 117. Experimental details for the separation of fraction sp5e.	
Table 118. Experimental details for the separation of fraction sp5g.	
Table 119. Experimental details for the separation of fraction sp5e8.	
Table 120. Experimental details for the separation of fraction sp6.	
Table 121. Experimental details for the separation of fraction sp6f	
Table 122. Experimental details for the separation of fraction sp6f7	
Table 123. Experimental details for the separation of fraction sp7.	
Table 124. Experimental details for the separation of fraction sp7e.	
Table 125 . Experimental details for the separation of fraction sp7g	
Table 126. Experimental details for the separation of fraction sp7g5	105

Table 127. Experimental details for the separation of fraction sp8.	105
Table 128. Experimental details for the separation of fraction sp8g.	106
Table 129. Experimental details for the separation of fraction sp8g5.	106
Table 130. Experimental details for the separation of fraction sp8g8.	108
Table 131. Experimental details for the separation of fraction sp9.	108
Table 132. Experimental details for the separation of fraction sp9f	108
Table 133. Experimental details for the separation of fraction sp9g.	109
Table 134. Isolated metabolites from the soft coral S. polydactyla.	109
Table 135 . ¹ H NMR data of metabolite 1 in CDCl ₃ (δ in ppm, J in Hz)	115
Table 136 . ¹ H and ¹³ C NMR data of metabolite 2 in CDCl ₃ (δ in ppm, J in Hz)	119
Table 137 . 1 H and 13 C NMR data of metabolite 3 in CDCl ₃ (δ in ppm, J in Hz)	123
Table 138 . ¹ H NMR data of metabolite 4 in CDCl ₃ (δ in ppm, J in Hz)	125
Table 139 . 1 H and 13 C NMR data of metabolite 5 in CDCl ₃ (δ in ppm, J in Hz)	130
Table 140 . ¹ H and ¹³ C NMR data of metabolite 6 in CDCl ₃ (δ in ppm, J in Hz)	135
Table 141 . ¹ H NMR data of metabolite 7 in CDCl ₃ (δ in ppm, J in Hz)	137
Table 142 . ¹ H NMR data of metabolite 8 in CDCl ₃ (δ in ppm, J in Hz)	139
Table 143 . 1 H and 13 C NMR data of metabolite 9 in CDCl ₃ (δ in ppm, J in Hz)	143
Table 144. ¹ H NMR data of metabolite 10 in CDCl ₃ (δ in ppm, J in Hz)	146
Table 145 . ¹ H NMR data of metabolite 11 in CDCl ₃ (δ in ppm, J in Hz)	148
Table 146 . ¹ H NMR data of metabolite 12 in CDCl ₃ (δ in ppm, J in Hz)	151
Table 147 . ¹ H NMR data of metabolite 13 in CDCl ₃ (δ in ppm, J in Hz)	153
Table 148 . ¹ H NMR data of metabolite 14 in C_6D_6 and $CDCl_3$ (δ in ppm, J in Hz)	155
14 bit 146. If NVIII data of inclabolite 14 in C ₆ D ₆ and CDC ₁₃ (b in ppin, b in 112)	
Table 149. ¹ H NMR data of metabolite 15 in CDCl ₃ and (CD ₃) ₂ SO (δ in ppm, J in H	
Table 149 . ¹ H NMR data of metabolite 15 in CDCl ₃ and (CD ₃) ₂ SO (δ in ppm, J in H	z). 157
Table 149. ¹ H NMR data of metabolite 15 in CDCl ₃ and (CD ₃) ₂ SO (δ in ppm, J in H Table 150. ¹ H and ¹³ C NMR data of metabolite 16 in CDCl ₃ and C ₆ D ₆ (δ in ppm, J in	z). 157 n
Table 149. ¹ H NMR data of metabolite 15 in CDCl ₃ and (CD ₃) ₂ SO (δ in ppm, J in H	z). 157 n 162
Table 149. ¹ H NMR data of metabolite 15 in CDCl ₃ and (CD ₃) ₂ SO (δ in ppm, J in H Table 150. ¹ H and ¹³ C NMR data of metabolite 16 in CDCl ₃ and C ₆ D ₆ (δ in ppm, J in Hz). Table 151. ¹ H and ¹³ C NMR data of metabolite 17 in C ₆ D ₆ (δ in ppm, J in Hz)	z). 157 n 162 168
Table 149. ¹ H NMR data of metabolite 15 in CDCl ₃ and (CD ₃) ₂ SO (δ in ppm, J in H	z). 157 n 162 168
Table 149. ¹ H NMR data of metabolite 15 in CDCl ₃ and (CD ₃) ₂ SO (δ in ppm, J in H Table 150. ¹ H and ¹³ C NMR data of metabolite 16 in CDCl ₃ and C ₆ D ₆ (δ in ppm, J in Hz) Table 151. ¹ H and ¹³ C NMR data of metabolite 17 in C ₆ D ₆ (δ in ppm, J in Hz) Table 152. ¹ H and ¹³ C NMR data of metabolite 18 in C ₆ D ₆ (δ in ppm, J in Hz) Table 153. ¹ H and ¹³ C NMR data of metabolite 19 in CDCl ₃ (δ in ppm, J in Hz)	z). 157 n 162 168 171
Table 149. ¹ H NMR data of metabolite 15 in CDCl ₃ and (CD ₃) ₂ SO (δ in ppm, J in H	z). 157 n 162 168 171 177
Table 149. ¹ H NMR data of metabolite 15 in CDCl ₃ and (CD ₃) ₂ SO (δ in ppm, J in H Table 150. ¹ H and ¹³ C NMR data of metabolite 16 in CDCl ₃ and C ₆ D ₆ (δ in ppm, J in Hz) Table 151. ¹ H and ¹³ C NMR data of metabolite 17 in C ₆ D ₆ (δ in ppm, J in Hz) Table 152. ¹ H and ¹³ C NMR data of metabolite 18 in C ₆ D ₆ (δ in ppm, J in Hz) Table 153. ¹ H and ¹³ C NMR data of metabolite 19 in CDCl ₃ (δ in ppm, J in Hz)	z). 157 n 162 168 171 177
Table 149. ¹ H NMR data of metabolite 15 in CDCl ₃ and (CD ₃) ₂ SO (δ in ppm, J in H	z). 157 n 162 168 171 177 182
Table 149. ¹ H NMR data of metabolite 15 in CDCl ₃ and (CD ₃) ₂ SO (δ in ppm, J in H mathematical mathematical metabolite 16 in CDCl ₃ and C ₆ D ₆ (δ in ppm, J in Hz) Table 151. ¹ H and ¹³ C NMR data of metabolite 17 in C ₆ D ₆ (δ in ppm, J in Hz) Table 152. ¹ H and ¹³ C NMR data of metabolite 18 in C ₆ D ₆ (δ in ppm, J in Hz) Table 153. ¹ H and ¹³ C NMR data of metabolite 19 in CDCl ₃ (δ in ppm, J in Hz) Table 154. ¹ H and ¹³ C NMR data of metabolite 20 in CDCl ₃ (δ in ppm, J in Hz) Table 155. ¹ H and ¹³ C NMR data of metabolite 21 in CDCl ₃ (δ in ppm, J in Hz) Table 156. ¹ H NMR data of metabolite 22 in CDCl ₃ (δ in ppm, J in Hz) Table 157. ¹ H NMR data of metabolite 23 in CDCl ₃ and CCl ₄ (δ in ppm, J in Hz)	z). 157 n 162 168 171 177 182 187 189
Table 149. ¹ H NMR data of metabolite 15 in CDCl ₃ and (CD ₃) ₂ SO (δ in ppm, J in H	z). 157 n 162 168 171 177 182 187 191
Table 149. ¹ H NMR data of metabolite 15 in CDCl ₃ and (CD ₃) ₂ SO (δ in ppm, J in H	z). 157 n 162 168 171 177 182 187 191 193
Table 149 . ¹ H NMR data of metabolite 15 in CDCl ₃ and (CD ₃) ₂ SO (δ in ppm, J in H mathematical metabolite 16 in CDCl ₃ and C ₆ D ₆ (δ in ppm, J in Hz)	z). 157 n 162 168 171 177 182 187 191 193 198
Table 149. ¹ H NMR data of metabolite 15 in CDCl ₃ and (CD ₃) ₂ SO (δ in ppm, J in H metabolite 150. ¹ H and ¹³ C NMR data of metabolite 16 in CDCl ₃ and C ₆ D ₆ (δ in ppm, J in Hz) Table 151. ¹ H and ¹³ C NMR data of metabolite 17 in C ₆ D ₆ (δ in ppm, J in Hz) Table 152. ¹ H and ¹³ C NMR data of metabolite 18 in C ₆ D ₆ (δ in ppm, J in Hz) Table 153. ¹ H and ¹³ C NMR data of metabolite 19 in CDCl ₃ (δ in ppm, J in Hz) Table 154. ¹ H and ¹³ C NMR data of metabolite 20 in CDCl ₃ (δ in ppm, J in Hz) Table 155. ¹ H and ¹³ C NMR data of metabolite 21 in CDCl ₃ (δ in ppm, J in Hz) Table 156. ¹ H NMR data of metabolite 22 in CDCl ₃ (δ in ppm, J in Hz) Table 157. ¹ H NMR data of metabolite 23 in CDCl ₃ and CCl ₄ (δ in ppm, J in Hz) Table 158. ¹ H NMR data of metabolite 24 in CDCl ₃ and CCl ₄ (δ in ppm, J in Hz) Table 159. ¹ H and ¹³ C NMR data of metabolite 25 in CDCl ₃ (δ in ppm, J in Hz) Table 160. ¹ H NMR data of metabolite 26 in CDCl ₃ (δ in ppm, J in Hz) Table 161. ¹ H NMR data of metabolite 27 in CDCl ₃ (δ in ppm, J in Hz)	z). 157 n 162 168 171 177 182 187 191 193 198 200 202
Table 149. ¹ H NMR data of metabolite 15 in CDCl ₃ and (CD ₃) ₂ SO (δ in ppm, J in H metabolite 150. ¹ H and ¹³ C NMR data of metabolite 16 in CDCl ₃ and C ₆ D ₆ (δ in ppm, J in Hz)	z). 157 n 162 168 171 177 182 187 191 193 200 202 204
Table 149 . 1 H NMR data of metabolite 15 in CDCl ₃ and (CD ₃) ₂ SO (δ in ppm, J in H	z). 157 n 162 168 171 177 182 187 193 198 200 202 204 206
Table 149. 1 H NMR data of metabolite 15 in CDCl ₃ and (CD ₃) ₂ SO (δ in ppm, J in H	z). 157 n 162 168 171 187 187 189 191 198 200 202 204 206 211
Table 149. 1 H NMR data of metabolite 15 in CDCl ₃ and (CD ₃) ₂ SO (δ in ppm, J in H metabolite 150. 1 H and 13 C NMR data of metabolite 16 in CDCl ₃ and C ₆ D ₆ (δ in ppm, J in Hz)	z). 157 n 162 168 171 177 182 187 193 200 202 204 206 211 216
Table 149. ¹ H NMR data of metabolite 15 in CDCl ₃ and (CD ₃) ₂ SO (δ in ppm, J in H metabolite 150. ¹ H and ¹³ C NMR data of metabolite 16 in CDCl ₃ and C ₆ D ₆ (δ in ppm, J in Hz)	z). 157 n 162 168 171 187 189 191 198 200 202 204 206 211 216
Table 149. 1 H NMR data of metabolite 15 in CDCl ₃ and (CD ₃) ₂ SO (δ in ppm, J in H metabolite 150. 1 H and 13 C NMR data of metabolite 16 in CDCl ₃ and C ₆ D ₆ (δ in ppm, J in Hz)	z). 157 n 162 168 171 177 182 187 199 200 202 204 206 211 216 218 220

Table 169. ¹ H NMR data of metabolite 35 in CDCl ₃ (δ in ppm, J in Hz)	230
Table 170 . ¹ H NMR data of metabolite 36 in CDCl ₃ (δ in ppm, J in Hz)	232
Table 171 . ¹ H and ¹³ C NMR data of metabolite 37 in CDCl ₃ (δ in ppm, J in Hz)	234
Table 172 . ¹ H NMR data of metabolite 38 in CDCl ₃ (δ in ppm, J in Hz)	236
Table 173 . ¹ H and ¹³ C NMR data of metabolite 39 in CDCl ₃ (δ in ppm, J in Hz)	242
Table 174 . ¹ H and ¹³ C NMR data of metabolite 40 in CDCl ₃ (δ in ppm, J in Hz)	245
Table 175 . 1 H and 13 C NMR data of metabolite 41 in CDCl ₃ (δ in ppm, J in Hz)	251
Table 176 . ¹ H and ¹³ C NMR data of metabolite 42 in CDCl ₃ (δ in ppm, J in Hz)	254
Table 177 . ¹ H NMR data of metabolite 43 in CDCl ₃ (δ in ppm, J in Hz)	257
Table 178 . ¹ H NMR data of metabolite 44 in CDCl ₃ (δ in ppm, J in Hz)	260
Table 179 . ¹ H NMR data of metabolite 45 in CDCl ₃ (δ in ppm, J in Hz)	263
Table 180. 1 H and 13 C NMR data of metabolite 46 in CDCl ₃ (δ in ppm, J in Hz)	269
Table 181 . ¹ H NMR data of metabolite 47 in CDCl ₃ (δ in ppm, J in Hz)	272
Table 182 . ¹ H NMR data of metabolite 48 in CDCl ₃ (δ in ppm, J in Hz)	275
Table 183 . ¹ H NMR data of metabolite 49 in CDCl ₃ (δ in ppm, J in Hz)	278
Table 184 . ¹ H NMR data of metabolite 50 in CDCl ₃ (δ in ppm, J in Hz)	280
Table 185 . ¹ H NMR data of metabolite 51 in CDCl ₃ (δ in ppm, J in Hz)	282
Table 186 . ¹ H NMR data of metabolite 52 in CDCl ₃ (δ in ppm, J in Hz)	284
Table 187 . ¹ H and ¹³ C NMR data of metabolite 53 in CDCl ₃ (δ in ppm, J in Hz)	290
Table 188 . ¹ H NMR data of metabolite 54 in CDCl ₃ and CD ₃ OD (δ in ppm, J in Hz).	
	292
Table 189 . ¹ H NMR data of metabolite 55 in CDCl ₃ (δ in ppm, J in Hz)	295
Table 190. ¹ H NMR data of metabolite 56 in CDCl ₃ (δ in ppm, J in Hz)	
Table 191 . ¹ H and ¹³ C NMR data of metabolite 57 in CDCl ₃ and CD ₃ OD (δ in ppm,	
Hz)	
Table 192 . ¹ H NMR data of metabolite 58 in CD ₃ OD (δ in ppm, J in Hz)	
Table 193 . ¹ H NMR data of metabolite 59 in CD ₃ OD (δ in ppm, J in Hz)	307
Table 194. Cytotoxicity (IC $_{50}$; μ M) of compounds 36–40, 42–45, 47–53 and 55–59	
against human cancer cell lines and fibroblasts after 72 h of treatment	308

ABBREVIATIONS

1D-NMR One-dimensional NMR experiment 2D-NMR Two-dimensional NMR experiment

¹H NMR 1D-NMR experiment of hydrogen nuclei (proton)

¹³C NMR 1D-NMR carbon core experiment, with broad-spectrum decoupling

(proton-noise decoupled)

 $[\alpha]_D$ Optical rotation

Ac Acetyl

APCIMS Atmospheric Pressure Chemical Ionization Mass Spectrometry

 $\begin{array}{lll} br & Broad \,(NMR) \\ C_6D_6 & Deuterated \,benzene \\ CD_3OD & Deuterated \,methanol \\ CDCl_3 & Deuterated \,chloroform \\ CH_2Cl_2 & Dichloromethane \\ CHCl_3 & Chloroform \\ cHex & Cyclohexane \\ \end{array}$

COSY 2D-NMR homonuclear correlation experiment ${}^{1}\text{H}$ - ${}^{1}\text{H}$ for ${}^{2}J$ and ${}^{3}J$

(Correlated Spectroscopy)

d doublet (NMR)

EIMS Electron Impact Mass Spectrometry

ESIMS ElectroSpray Ionization Mass Spectrometry

EtOAc Ethyl acetate

GC Gas Chromatography

H₂O Water

HMBC 2D-NMR ${}^{1}\text{H}-{}^{13}\text{C}$ heterologous correlation experiment for ${}^{2}J$ and ${}^{3}J$

(Heteronuclear Multiple-Bond Correlation)

*n*Hex Normal hexane

HPLC High Pressure Liquid Chromatography
HR-MS High Resolution Mass Spectrometry

2D-NMR 1H-13C heterologous correlation experiment for ${}^{1}J$

HSQC (Heteronuclear Single Quantum Coherence)

IR Infrared Spectroscopy

J Coupling constant (in Hz) (NMR)

m Multiplet (NMR)

Me Methyl MeOH Methanol

MS Mass Spectrometry m/z Mass to charge ratio

NMR Nuclear Magnetic Resonance Spectroscopy

NOE, nOe Nuclear Overhauser Effect

NOESY 2D-NMR Nuclear Overhauser Effect SpectroscopY (Nuclear Overlapping

Effect Spectroscopy)

q quaternary (NMR)
RI Refractive Index
s singlet (NMR)
t triplet (NMR)

TLC Thin Layer Chromatography

tR Retention time

UV-Vis UV-visible Spectroscopy

Chemical shift in the absorbance of a core relative to tetramethylsilane (in

ppm) (NMR)

1. INTRODUCTION

1.1 Pharmacognosy - Natural products chemistry

Since ancient times, nature has been proven to be the most prolific source of biological and chemical diversity. It continues to be the most promising source of bioactive metabolites used for modern drug development (Harizani et al., 2016).

People have been using different natural sources for food and medicinal purposes for thousands of years, acquiring extensive knowledge of their properties (Brouwer et al., 2005).

The term "natural products" is usually associated with the secondary metabolites produced by an organism, which in many cases function as a defense mechanism against herbivores, microorganisms, insects and competing plants (Majeed et al., 2012).

Natural products are usually complex molecules with defined stereochemistry which grants them a specific relation with their biological targets. Furthermore, they are often used as lead molecules for the development of new drugs and hold an important place in the interests of the pharmaceutical industry (Montaser & Luesch, 2011). In the 1990s the focus was primarily on combinatorial chemistry and rapid evaluation methods for the identification of new active molecules (Kong et al., 2010).

These nature-based medicines have generated a rich source of structurally diverse substances with a wide range of biological activities, which could be useful for the development of alternative or adjunctive therapies.

Finding new bioactive compounds with new modes of action has become an urgent target for scientists due to the fast increase of diseases, such as cancer, diabetes, hepatitis, hypertension, chronic pains and microbial infections (El-Demerdash et al., 2018).

A large number of molecules from different natural sources have been approved for clinical use or used as the starting points for optimization programs (Medina-Franco, 2019). Figure 1 shows the contribution of natural products to drug development from 1981 until 2016 (Newman & Cragg, 2016).

Morphine (1) was the first natural product introduced commercially for therapeutic use in 1826 (Veeresham, 2012) and approved by FDA in 1827. In 1973, pilocarpine (2), an alkaloid extracted from the leaves of the tropical plant *Pilocarpus jaborandi*, was approved for the treatment of glaucoma. Cabazitaxel (3) which is a semisynthetic analog of the natural product taxol®, isolated from the bark of the yew tree, was approved in 2010, exhibiting cytotoxic activity against a broad range of cancer cell lines and tumor models with greater potency than docetaxel (Patridge et al., 2016).

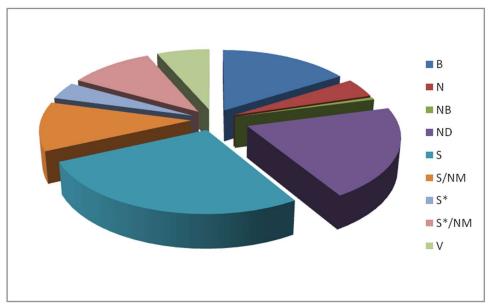


Figure 1. Approved drugs from 1981 until 2014.

(B: Biological macromolecule; N: Unaltered natural product; NB: Botanical drug (defined mixture); ND: Natural product derivative; S: Synthetic drug; S*: Synthetic drug (NP pharmacophore); V: Vaccine; /NM: Mimic of nature)

1 2

3

1.2 Marine natural products

Almost 70% of the Earth's surface is covered with water, showing extraordinary biological and chemical diversity. A significant number of novel drugs have been isolated from marine organisms, especially from sponges, corals and tunicates (El-Demerdash et al., 2019).

Marine natural products (MNPs) continue to be in the spotlight in the global drug discovery endeavor. More than 34,000 structurally diverse secondary metabolites

have been isolated from marine sources according to MarinLit database (MarinLit, 2020), making MNPs a profound source of novel compounds for pharmaceuticals, food, cosmeceutical, chemical, and agrochemical applications.

Up to now, a significant number of MNPs and their derivatives were released in the market, e.g. ω-3 acid ethyl esters (4) (Lovaza®, approved by FDA in 2004 for lowering blood triglycerides levels in adults with severe hypertriglyceridemia), cytarabine (5) (Cytosar-U®, DepoCyst®', FDA approval in 1969 for cancer treatment), trabectedin (6) (Yondelis®, ET- 743, EU approval in 2011 for cancer treatment), and vidarabine (7) (Vira-A®, approved by FDA in 1976 as an antiviral drug) (El-Demerdash et al., 2019).

1.3 Red algae of the genus Laurencia

Algae were one of the first groups of marine organisms to be studied as sources for food, nutrition supplements, soil fertilizers, and bioactive metabolites (Harizani et al., 2016).

Macroalgae are classified into three classes, namely green (Chlorophyceae), brown (Phaeophyceae), and red (Rhodophyceae). Red algae are commonly found in subtropical and tropical waters and their populations in deeper waters are more dense in comparison with green and brown algae (Darley, 1982).

The red algal genus *Laurencia* has a wide distribution all over the world (Figure 2), with the southern hemisphere hosting the majority of the species (McDermid, 1988).

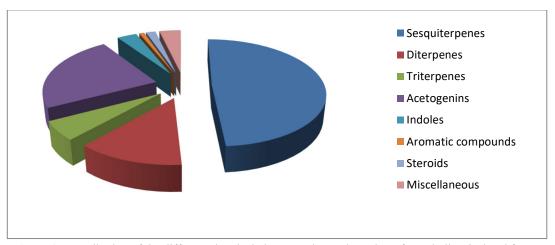


Figure 2. Global distribution map for the genus Laurencia.

The genus *Laurencia* is one of the richest sources of new secondary metabolites among red algae (Blunt et al., 2015). The plasticity of the morphoanatomical characters of *Laurencia* species has resulted in frequent taxonomic revisions of the genus that along with the genera *Chondrophycus*, *Osmundea*, *Palisada*, *Yuzurua*, and *Laurenciella*, are now included in the so called "*Laurencia* complex" (Harper & Garbary, 1997; Nam & Choi, 2000; Serio et al., 1999; Yoneshigue-Valentin et al., 2003). The cosmopolitan distribution, along with the chemical variation influenced to a significant degree by environmental and genetic factors, have resulted in an almost endless array of metabolites, often featuring multiple halogenation sites (Harizani et al., 2016).

Currently, 146 species are included in the genus *Laurencia* (order Ceramiales, family Rhodomelaceae, tribe Laurencieae) and are mainly found in tropical, subtropical, and temperate coastal waters (Guiry & Guiry, 2015).

Sesquiterpenes, diterpenes, triterpenes and C₁₅ acetogenins are the major classes of secondary metabolites isolated from the genus *Laurencia*, while indoles, aromatic compounds and steroids have also been reported (Figure 3) (Harizani et al., 2016).

Figure 3. Contribution of the different chemical classes to the total number of metabolites isolated from *Laurencia* species.

1.3.1 Sesquiterpenes

More than 500 sesquiterpenes, comprising the largest group of secondary metabolites isolated from the genus *Laurencia* until now, have been reported from *Laurencia* species, featuring mono-, bi-, or tri-carbocyclic skeletons, often with fused-or spiro-ring systems (Harizani et al., 2016).

Sesquiterpenes from the genus *Laurencia* can be classified according to the their carbon framework in chamigranes, lauranes, cyclolauranes, snyderanes, bisabolanes, perforanes, cycloperforanes, brasilanes, cuparanes, eudesmanes, cycloeudesmanes, aristolanes, among others (Harizani et al., 2016).

More than 150 chamigranes have been isolated from the genus *Laurencia*, e.g. (10R)-10-bromo-α-chamigrene (8) isolated from Laurencia nipponica (Suzuki et al., 1985), 2,10-dibromo-3-chloro-α-chamigrene (9) isolated from Laurencia nidifica (Kimura et al., 1999) showing moderate toxicity against brine shrimps (Li et al., 2012a), 2,10-dibromo-3-chloro-chamigra-7,9-diene-5-ol (10)isolated from Laurencia composita (Ji et al., 2008), obtusol (11) isolated from Laurencia dendroidea showing in-vitro and in-vivo leishmanicidal activity and very low cytotoxicity (da Silva Machado et al., 2011), dendroidone (12) isolated from L. dendroidea (da Silva Machado et al., 2014), tristichones A and B (13 and 14), tristichols A-D (15-18) and tristichones C and D (19 and 20) isolated from Laurencia tristicha (Chen et al., 2016), compositacins A-K (21-31) isolated from L. composita, with compositacin G (27) showing significant antifungal activity against *Microsporum gypseum* (Yu et al., 2017).

About 100 lauranes and cyclolauranes have been isolated from the genus Laurencia, e.g. laurene (32) isolated from Laurencia elata (Hall & Reiss, 1986) and found to be a moderate antibacterial agent against Escherichia coli and Staphylococcus aureus (Li et al., 2012b), 10,11-dibromo-7-hydroxylaurene (33) isolated from Laurencia majuscula (Masuda et al., 2002), isolaurinterol acetate (34) isolated from Laurencia okamurai (Mao & Guo, 2005), debromofiliformin (35) isolated from Laurencia caduciramulosa (Cassano et al., 2008) and found to be moderately toxic towards brine shrimps (Liang et al., 2012), debromoallolaurinterol acetate (36) and allolaurinterol acetate (37) isolated from L. okamurai, both showing strong antibacterial activity against E. coli and S. aureus (Li et al., 2012b), laurokamurene D (38) isolated from L. okamurai (Yu et al., 2014), 8,11-dihydro-1-methoxy-laurokamuren-12-ol (39) obtained from Laurencia obtusa (Angawi et al., 2014), debromo-3α-hydroperoxy-3epiaplysin (40) and debromo- 3β -hydroperoxyaplysin (41) isolated from L. okamurai (Li et al., 2015), debromoaplysinal (42) isolated from Laurencia sp. showing weak antifouling activity against larvae of the barnacle Amphibalanus amphitrite (Oguri et al., 2017), 3α -hydroperoxy-3-epiaplysin (43) and 3β -hydroperoxyaplysin (44) isolated from L. okamurai (Yang et al., 2018).

Examples of snyderanes isolated from the genus Laurencia include $(8R^*)$ -8-bromo-10-epi- β -snyderol (45) isolated from L. obtusa and showing antimalarial activity with IC₅₀ values of 2.7 and 4 mg/mL against the D6 and W2 clones of Plasmodium falciparum, respectively (Topcu et al., 2003), luzondiol (46) isolated from Laurencia luzonensis (Makhanu et al., 2006), 4-hydroxy-palisadin C (47) isolated from Laurencia saitoi (Su et al., 2009a), dactyloxene A (48) isolated from Laurencia nangii (Vairappan et al., 2014).

Another group of sesquiterpenes isolated from the genus *Laurencia* is the bisabolanes, including gossonorol (49) isolated from *L. tristicha* (Sun et al., 2005), (5S)-5-acetoxy-acetylcaespitol (50) isolated from *Laurencia catarinensis* (Lhullier et al., 2010), (5S)-5-acetoxy- β -bisabolene (51) isolated from *L. okamurai* (Yu et al., 2014).

9-Hydroxy-3-epi-perforenone A (**52**) isolated from *Laurencia perforata* (Wright et al., 2003) and perforenol B (**53**) isolated from *L. obtusa* showing weak cytotoxicity towards K562 and CHO cell lines (Kladi et al., 2006) are examples of the perforanes and cycloperforanes.

Additionally, brasilanes, such as 4-hydroxy-5-brasilene (**54**) isolated from *L. obtusa* (Amico et al., 1991), and cuparanes, such as 10-bromo-3-chloro-cupar-5-en-2-ol (**55**) isolated from *L. okamurai* (Li et al., 2012c) and 4α -hydroxy-bromo-cuparene (**56**) isolated from *L. tristicha* (Chen et al., 2016) are examples of sesquiterpenes commonly isolated from the genus of *Laurencia*.

Eudesmanes and cycloeudesmanes are also isolated from the genus *Laurencia*, e.g. 1-bromo-selin-4(14),11-diene (57) isolated from *L. composita* (Li et al., 2012b) and 1β -bromo-6,8-cycloselin-4(15)-ene (58) isolated from *L. composita* (Ji et al., 2016).

Aristolan- 1α -bromo- 9β , 10β -epoxide (59) isolated from *Laurencia similis* (Li et al., 2010) and debilone (60) isolated from *Laurencia complanata* (Rahelivao et al., 2015) are examples of aristolanes isolated from the genus *Laurencia*.

1.3.2 Diterpenes

Diterpenes are one of the biggest classes of secondary metabolites isolated from the genus Laurencia until now (Harizani et al., 2016). They can be classified into pargueranes and isopargueranes, e.g. 15-bromo-parguer-9(11)-en-16-ol (61) isolated from L. nipponica (Lyakhova et al., 2004) and parguerol 7,19-diacetate (62) isolated from L. saitoi (Ji et al., 2008), labdanes and pimaranes, e.g. 3-bromobarekoxide (63) isolated from L. luzonensis (Kuniyoshi et al., 2000) and compound 64 isolated from L. obtusa (Esselin et al., 2018), irieanes and neoirieanes, e.g. 11-deacetyl-pinnaterpene C (65) isolated from Laurencia decumbens (Ji et al., 2007a) and neoirietriol (66) isolated from Laurencia yonaguniensis (Takahashi et al., 2010), dactylomelanes, e.g. punctatene (67) isolated from Laurencia sp. (Fernández et al., 2005) and laurendecumtriol (68) isolated from L. decumbens (Ji et al., 2007a), obtusanes and 15,14-friedoobtusanes, e.g. rogioldiol A (69) isolated from L. microladia (Guella et al., 1997) and laurenditerpenol (70) isolated from Laurencia intricata showing inhibitory effect on HIF-1-mediated hypoxic signaling in breast tumor cells (Mohammed et al., 2004), prevezanes and neorogiolanes, e.g. prevezol C (71) and neorogioldiol B (72) isolated from L. obtusa with both compounds showing potent cytotoxicity (Iliopoulou et al., 2003), and diterpenes featuring prenylated sesquiterpene skeletons, e.g. compound 73 isolated from Laurencia sp. and found to exhibit antifouling activity against larvae of the barnacle A. amphitrite (Oguri et al., 2017).

1.3.3 **Triterpenes**

Triterpenes isolated from the genus *Laurencia* can be classified (Harizani et al., 2016) into three classes: triterpenes possessing a 2,7-dioxabicyclo[4.4.0]decane ring system e.g. alfredensinol A (74) isolated from Laurencia alfredensis (Dziwornu et al., 2017), triterpenes possessing a 2,8-dioxabicyclo[5.4.0]undecane ring system e.g. dioxepandehydrothyrsiferol (75) isolated from Laurencia viridis (Manríquez et al., 2001) and triterpenes possessing symmetry elements e.g. intricatriol (76) isolated from Laurencia sp. (Oguri et al., 2017).

1.3.4 Acetogenins

Acetogenins isolated from the genus *Laurencia* can be classified (Harizani et al., 2016) into:

Acetogenins containing a five-membered cyclic ether (tetrahydrofuran) ring which can be divided into four subgroups, namely: (1) those containing one tetrahydrofuran ring e.g. omazallene (77) isolated from *Laurencia* sp. showing promising antifouling activity (Umezawa et al., 2014); (2) those containing two isolated tetrahydrofuran rings e.g. laurefurenyne B (78) isolated from *Laurencia* sp. (Abdel-Mageed et al., 2010); (3) those containing two fused tetrahydrofuran rings e.g. laurentusenin (79) isolated from *L. obtusa* which may play a role in apoptosis induction, initiation and propagation of inflammatory responses (Ghandourah et al., 2019); and (4) maneonenes and isomaneonenes containing three tetrahydrofuran rings e.g. the three rare C₁₂ acetogenins 80–82 isolated from the Red Sea *L. obtusa* showing promising anti-inflammatory effects (Alarif et al., 2019).

Acetogenins containing a six-membered cyclic ether (tetrahydropyran) ring which can be divided into four subgroups, namely: (1) those containing one tetrahydropyran ring e.g. sagonenyne (83) isolated from *L. obtusa* (Esselin et al., 2018); (2) those containing isolated tetrahydrofuran and tetrahydropyran rings e.g. compound 84 isolated from *L. obtusa* (Esselin et al., 2018); (3) those containing fused tetrahydrofuran and tetrahydropyran rings e.g. japonenyne C (85) isolated from *Laurencia japonensis* (Takahashi et al., 1999); and (4) those containing two fused tetrahydropyran rings e.g. vagiallene (86) isolated from *L. obtusa* (Perdikaris et al., 2019).

Acetogenins containing a seven-membered cyclic ether (oxepane) ring which can be divided into three subgroups: (1) monocyclic acetogenins with a 1-bromopropanyl side chain attached to C-12 e.g. neonipponallene (87) isolated from *L. nipponica* (Lyakhova et al., 2006); (2) branched monocyclic acetogenins with bromomethyl and ethyl side chains attached to C-11 and C-12, respectively e.g. rogiolenyne A (88) isolated from *L. microcladia* (Guella & Pietra, 1991); and (3) acetogenins with a 1-bromopropanyl side chain attached to C-12 featuring a second ether ring formed between C-6 and C-9 e.g. (3*E*)-neoisoprelaurefucin (89) isolated from *L. obtusa* (Aydoğmuş et al., 2004).

Acetogenins containing an eight-membered cyclic ether (oxocane) ring which can be divided into six subgroups, namely: (1) those with a 6,12-epoxy, also known as laurenan-type acetogenins e.g. marilzallene B (90) isolated from *Laurencia chondrioides* (Kokkotou et al., 2014); (2) those with a 7,13-epoxy, also known as lauthisan-type acetogenins e.g. bermudenynol acetate (91) isolated from *L. intricata* (Grode & Cardellina, 1984); (3) those with a 4,7:6,12-bisepoxy e.g. desepilaurallene (92) isolated from *L. okamurai* (Li et al., 2012c); (4) those with a 6,12-epoxy and a second epoxy system between C-7 and either C-9, C-10 or C-11 e.g. okamuragenin (93) isolated from *L. okamurai* (Liang et al., 2012); (5) those with a 7,13-epoxy and a second epoxy system between C-6 and either C-9 or C-10 e.g. laurefurenyne F (94) isolated from *Laurencia* sp. showing moderate cytotoxicity towards three solid tumours (Abdel-Mageed et al., 2010); and (6) those with a 4,10:9,13-bisepoxy e.g. microcladallene C (95) isolated from *L. obtusa* (Kennedy et al., 1984).

• Acetogenins containing a nine- or ten-membered cyclic ether ring. Among the nine-membered acetogenins, three subgroups can be discriminated, namely: (1) those containing a 5,12-epoxy ring e.g. compound 96 isolated from *Laurencia implicata* (Coll & Wright, 1989); (2) those containing a 6,13-epoxy ring e.g. (3E,12R,13R)-

obtusenyne (97) isolated from *L. chondrioides* (Kokkotou et al., 2014); and (3) those containing a 4,7:6,13-bisepoxy system e.g. laurendecumallene A (98) isolated from *L. decumbens* (Ji et al., 2007b). An example of an acetogenin containing a tenmembered cyclic ether is compound 99 isolated from *L. implicata* (Coll & Wright, 1989).

- Acetogenins containing a twelve-membered cyclic ether ring e.g. marilzanin (100) isolated from *Laurencia marilzae* (Gutiérrez-Cepeda et al., 2016).
- Linear acetogenins e.g. (3*Z*,9*Z*,12*E*)-7-acetoxy-6-chloropentadeca-3,9,12-trien-1-yne (**101**) isolated from *Laurencia glandulifera* (Kladi et al., 2009).

1.3.5 Indoles

Indoles isolated from the genus *Laurencia* can be divided into three subclasses (Harizani et al., 2016), namely: (1) monoindoles, e.g. 2,5,6-tri-bromo-3[(3⁻-bromo-4⁻-hydroxyl-phenyl)-methyl]-1*H*-indole (**102**) isolated from *L. similis* exhibiting promising antimicrobial activity (Li et al., 2016); (2) bisindoles, e.g. 3,3⁻-bis-(2,5,6-tribromo)indole (**103**) isolated from *L. similis* (Su et al., 2009b); and (3) spirotrisindoles, e.g. similisine A (**104**) isolated from *L. similis* (Sun et al., 2013).

1.3.6 Aromatic compounds

A low number of aromatic compounds has been isolated from the genus *Laurencia* e.g. 3,5,6,6-tetrabromo-2,4-dimethyldiphenyl ether (**105**) isolated from *L. similis* showing strong inhibition effect against protein tyrosine phosphatase 1B (Qin et al., 2010).

1.3.7 Steroids

Steroids isolated from the genus *Laurencia* are very few in comparison with the other classes of secondary metabolites isolated. A recently isolated example is alfredensterol (106) obtained from *L. alfredensis* and showing cytotoxicity towards HeLa cervical cancer cell line (Dziwornu et al., 2017).

1.3.8 Miscellaneous metabolites

Other metabolites have been isolated from the genus *Laurencia* that cannot be assigned to one of the previous groups. One of the most recent examples is the glycolipid 1,2-di-O-palmitoyl-3-O-(6-sulfo- α -D-quinovopyranosyl)-glycerol (107) isolated from *L. alfredensis* (Dziwornu et al., 2017).

1.4 Sponges of the genus *Lamellodysidea*

Marine sponges (phylum Porifera) are a large phylum within the Kingdom Animalia. They are considered to be prolific factories of bioactive natural products (El-Demerdash et al., 2018).

Recently a reclassification of the genus *Dysidea* resulted in its splitting and creation of the new genus *Lamellodysidea*, including three species up to now i.e. *Lamellodysidea herbacea*, *Lamellodysidea chlorea* and *Lamellodysidea fragilis* (Kapojos et al., 2018; Sauleau & Bourguet-Kondracki, 2005). Among them, the most extensively studied is the species *L. herbacea* (Hanif et al., 2007).

The symbiotic relation with the filamentous cyanobacterium *Oscillatoria* spongeliae was found to be a biological characteristic for the genus *Lamellodysidea* (Hanif et al., 2007).

Up to now, only a low number of compounds has been isolated from the genus *Lamellodysidea* (MarinLit, 2020), including sesquiterpenes (Torii et al., 2017) polyhydroxysterols (Sauleau & Bourguet-Kondracki, 2005), polychlorinated pyrrolidinones (Sauleau et al., 2005), dysinosins (Carroll et al., 2004), and polyhalogenated diphenyl ethers (Kapojos et al., 2018).

1.4.1 Sesquiterpenes

Lamellodysidines A and B, O,O-dimethyl-lingshuiolide A, 11-epi-O,O-dimethyl-lingshuiolide A and O-methyl-nakafuran-8 lactone (108-112) were isolated from the organic extract of an Indonesian L. herbacea (Torii et al., 2017).

Two monocyclofarnesol-derived sesquiterpenes, namely lamellolactones A and B (113 and 114) have been isolated from *Lamellodysidea* sp. (Kapojos et al., 2018).

1.4.2 Steroids

Up to now only four steroids have been isolated from the genus Lamellodysidea, namely cholesta-8(9)-en-3 β ,5 α ,6 α ,25-tetraol (115), cholesta-8(14)-en-3 β ,5 α ,6 α ,25-tetraol (116), cholesta-8(9),24-dien-3 β ,5 α ,6 α -triol (117) and cholesta-8(14),24-dien-3 β ,5 α ,6 α -triol (118) isolated from L. herbacea, with 117 and 118 showing antifungal activity against $Candida\ tropicalis$ (Sauleau & Bourguet-Kondracki, 2005).

1.4.3 Polychlorinated pyrrolidinones

Eleven polychlorinated pyrrolidinones analogs dysidamide (119), dysidamide D (120), dysidamide E (121), dysidamide B (122), dysidamide H (123), 7,7,7-tricholoro-3-hydroxy-2,2,6 trimethyl-4-(4,4,4-trichloro-3-methyl-1-oxobutyl-amino)-heptanoic acid methyl ester (124), 7,7,7-tricholoro-2,2,6 trimethyl-3-oxo-4-(4,4,4-trichloro-3-methyl-1-oxobutyl-amino)-heptanoic acid methyl ester (125), dysidamide F (126), dysidamide C (127), dysidamide G (128) and 5-epi-dysidamide G (129) have been isolated from *L. herbacea* collected in the Red Sea. Among them, dysidamide (119) was found to be neurotoxic towards mesencephalic and cortical murine neurons with concentration 0.8 μ g/ml (Sauleau et al., 2005).

$$\begin{array}{c} HO \\ \\ CI \\ \\ CI$$

1.4.4 Dysinosins

Three dysinosin analogs, namely dysinosins B-D (130-132) have been isolated from *L. chlorea* and were found to be blood coagulation cascade serine proteases factor VIIa and thrombin inhibitors (Carroll et al., 2004).

1.4.5 Polyhalogenated diphenyl ethers

Fourteen polybrominated diphenyl ethers (133-146) have been isolated from the organic extract of an Indonesian *L. herbacea*. These compounds were found to have strong antibacterial activity against *Bacillus subtilis* (Hanif et al., 2007).

2-(2',4'-Dibromophenoxy)-3,5-dibromophenol (147), 2-(2',4'dibromophenoxy)-4,6-dibromophenol (148) and 2-(2'-dibromophenoxy)-3,4,5,6-tetrabromophenol (149), three polybromobiphenyl ethers have been isolated from *L. cf. herbacea*, showing inhibitory effects towards protein tyrosine phosphatase 1B (PTP1B) with IC₅₀ values of 5.3, 7.8, and 5.3 μ M, respectively (Kapojos et al., 2018).

1.5 Soft corals of the genus Sinularia

Sinularia is a genus of soft corals that belongs to the phylum Cnidaria, the class Alcyonaria and the family Alcyoniidae. The taxonomy is based on the spicules' examination and a fairly reliable taxonomic key is available to guide species' identification (Kamel & Slattery, 2005; Verseveldt, 1980).

The genus *Sinularia* is widely distributed from western Pacific to the east of Africa (Figure 4) and consists of approximately 90 species, among which more than 50 have been chemically investigated (Chen et al., 2012).

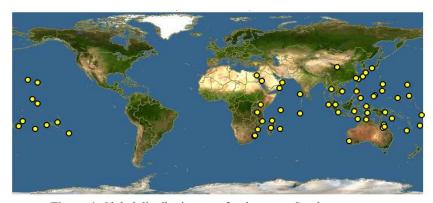


Figure 4. Global distribution map for the genus Sinularia.

Over 500 metabolites have been isolated from soft corals of the genus *Sinularia*, including sesquiterpenes, diterpenes, polyhydroxylated steroids, alkaloids and polyamines (Hegazy et al., 2016).

1.5.1 Sesquiterpenes

A furano-sesquiterpenoid acid, namely furanoic acid (**150**), was the first reported sesquiterpene obtained from *Sinularia gonatodes* (Coll et al., 1977). Later, in 1994 its *in vitro* anti-inflammatory activity against bee venom phospholipase A2 (bvPLA2) with an IC₅₀ value of 0.5μM was reported (Grace et al., 1994).

Africanene (151), the most commonly reported sesquiterpene from species of the genus *Sinularia*, was first reported from *Sinularia polydactyla* (Braekman et al., 1980). Africanene (151) has mild CNS depressant activity and dose-dependent hypotensive activity. Furthermore, it acts as an anti-inflammatory agent against carrageenan-induced rat edema with a 60% reduction at a dose of 10 mg/kg body weight as compared to ibuprofen (Reddy et al., 1999).

Sesquiterpenes **152** and **153**, along with 9α ,15-dihydroxyafricanane (**154**) have been isolated from *Sinularia dissecta* (Ramesh & Venkateswarlu, 1999).

A sesquiterpene featuring the aromadendrane skeleton, namely spathulenol (155), has been isolated from *Sinularia kavarattiensis* (Goud et al., 2002).

Capillobenzopyranol (156), capillobenzofuranol (157) and capillofuranocarboxylate (158) have been isolated from *Sinularia capillosa* (Cheng et al., 2010). Capillobenzopyranol (156) was weakly cytotoxic against P-388 with an ED₅₀ value of 12.7 μ M, while capillobenzofuranol (158) showed antiviral activity (IC₅₀ = 13.5 μ M) (Arepalli et al., 2009).

Peroxygibberol (159), gibberodione (160) and sinugibberodiol (161) were isolated from *Sinularia gibberosa* (Ahmed et al., 2005). Peroxygibberol (159) exhibited mild cytotoxic activity against human liver carcinoma cell line.

Polydactins A (162) and B (163), along with 10α -hydroxy-cadin-4-en-15-al (164), have been isolated from *S. polydactyla*. Polydactin B (163) was weakly cytotoxic against KB and MCF cell lines, while polydactin A (162) showed moderate cytotoxic effects against KB and MCF cell lines with IC₅₀ values 13.0 and 14.0 µg/ml, respectively (Zhang et al., 2008).

Extraction of *Sinularia nanolobata* with *n*Hex yielded nanolobatol A (**165**), nanolobatol B (**166**), sinularianin B (**167**) and sinularianin D (**168**) (Ngoc et al., 2017).

The seco-guaiane-type sesquiterpenes molestin A (169), epi-gibberodione (170) and its S-isomer at position 1 (171) and three guaiane-type sesquiterpenes molestin B (172), molestin C (173) and molestin D (174) have been isolated from Sinularia cf. molesta. Molestin C (173) and molestin D (174) exhibited strong inhibitory effect against PTP1B with IC₅₀ values 218 and 344 μ M, respectively (Chu et al., 2018).

 3β , 5α -Dihydroxy-eudesma-4(15),11-diene (175), 4(15)-eudesmene- 1β , 6α -diol (176), 6α -hydroxy-eudesm-4(15)-ene-1-one (177) and 4β ,15-epoxy-eudesmene- 1β , 6α -

diol (178) have been isolated from the methanolic extract of *Sinularia erecta*. 3β , 5α -Dihydroxy-eudesma-4(15),11-diene (175) showed selective cytotoxicity against A549 cell line (IC₅₀ = 14.8±0.91 μ M) (Huong et al., 2018).

1.5.2 Diterpenes

Two cembrene diterpenes, namely (1R,4R,2E,7E,11E)-cembra-2,7,11-trien-4-ol (179) and (1R,3S,4S,7E,11E)-3,4-epoxy-cembra-7,11,15-triene (180) have been isolated from *Sinularia facile* (Bowden et al., 1981).

The ethyl acetate extract of *Sinularia flexibilis* afforded flexibiloide (181) and dihydroflexibilolide (182) (Anjaneyulu & Sagar, 1996).

Chromatographic separation of the organic extract of *S. capillosa* allowed for the isolation of capillolide (**183**), sinulariolide (**184**), flexibilide (**185**) and (1*R*,4*R*,5*S*,8*R*,9*S*,12*S*,13*S*)-9-acetoxy-5,8:12,13-diepoxy-cembr-15(17)-en-16,4-olide (**186**). All of them were found to be moderately to strongly cytotoxic against P-388 and L1210 cancer cell lines (Su et al., 2000).

Microclavatin (187), a diterpene obtained from the EtOAc extract of the soft coral *Sinularia microclavata*, was found to be cytotoxic against KB and MCF with IC_{50} values of 5.0 and 20.0 μ g/mL, respectively (Zhang et al., 2005).

Grandilobatins A-E (188-192) have been isolated from *Sinularia grandilobata*. Grandilobatin D (191) was found to be pro-inflammatory for iNOS protein of LPS-stimulated RAW264.7 macrophage cells at 50 μ M (Ahmed et al., 2008).

Pavidolides A-E (193-197), sarchophytin (198) and chatancin (199) have been obtained from *Sinularia pavida*. Their cytotoxicity was tested against HL-60, HCT-8, HePG2, BGC-823, A549 and A375 cancer cell lines. Pavidolides B (194) and C (195) exhibited activity against HL-60 with IC₅₀ values of 2.7 and 5.3 μ g/mL, respectively. Furthermore, pavidolides C (195) and D (196) showed mild antifouling activity against *A. amphitrite* (ED₅₀ 4.32 and 2.12 μ g/mL, respectively) with low cytotoxicity (LD₅₀> 50 μ g/mL) (Shen et al., 2012).

Sinulariaoids A-D (200-203), dihydrosinularin (204), sinularin (205) and dihydrosinflexoide (206) have been isolated from a South China Sea *Sinularia* sp. and their cytotoxicity was evaluated against HPG2, HPG2/ADM, MCF-7 and MCF-7/ADM

human cancer cell lines. While sinulariaoids B-D (201-203), dihydrosinularin (204) and dihydrosinflexoide (206) were found to be inactive, sinulariaoid A (200) and sinularin (205) showed moderate cytotoxicity (Lei et al., 2014).

Chemical examination of the organic extract of *S. flexibilis* yielded nine α -methylene- δ -lactone-bearing cembranoids, namely 9α -hydroxy-flexibilide (207), 15(17)-dehydro-manaarenolide E (208), 8-dehydroxy-15(17)-dehydro-manaarenolide E (209), 15(17)-dehydro-manaarenolide C (211), epi-flexilarin A (212), flexibilide (213), sinuflexolide (214), 11-acetyl-sinuflexolide (215), the 15-membered macrocyclic epoxyflexibilene (216) and the two cembrane dimers sinulaflexiolide L (217) and sinulaflexiolide A (218). Flexibilide (213) exhibited anti-tumor activity against the inositol-requiring 1/X-box-binding protein 1 (IRE1/XBP1) signaling pathway (IC $_{50}$ = $4.1 \mu g/mL$) (Chen et al., 2015).

Chemical investigation of *S. nanolobata* afforded sinulariols A, C, D, H and J (219-223), nanolobols A-C (224-226), calyculone I (227) and nanoculones A and B (228 and 229). Sinulariol C (220) was found to be a promising anti-inflammatory agent (Chao et al., 2016).

Sinularcasbanes M, N and O (230-232), scabrolide F (233) and ineleganolide (234) were isolated from the Egyptian Red Sea *S. polydactyala* (Hegazy et al., 2016).

Xishacorenes A-C (235-237) and fuscol (238) were isolated from a Chinese *S. polydactyala* (Ye et al., 2017).

The methanolic extract of *S. flexibilis* afforded sinulaflexiolides L, M, N and O (239-242), ent-sinuflexibilin D (243), enolide I (244), sinularin (245), dihydrosinularin (246), 11-dehydrosinulariolide (247), 14-deoxycrassin (248), thioflexibilolide A (249), epoxycembrane A (250), diepoxyceane A (251) and flexilarin B (252). Compounds 239-245, 248, 249 and 252 were tested for their inhibitory effect against lipopolysaccharide (LPS)-induced nitric oxide (NO) production and the levels of TNF- α in RAW 264.7 macrophages. Among them, compound 245 exhibited the highest inhibitory effect with 88.6 and 94.2%, respectively, at a 10 μ M concentration (Zhao et al., 2018).

Chemical examination of *S. flexibilis* led to the isolation of xidaosinularides A-C (253-255), sinuladiterpene I (256), 5-dehydrosinulariolide (257), 11-epi-sinulariolide acetate (258) and diepoxycembrene A (259), along with sinulariolide (184) and flexilarin B (252). Among them, compounds 258, 184 and 252 were found to be strong anti-inflammatory agents with IC₅₀ values of 2.7, 4.7 and 4.2 μ M, respectively. Moreover compound 257 showed cytotoxicity against several cancer cell line (Wu et al., 2019).

1.5.3 Steroids

Approximately 50 steroids have been reported from the genus *Sinularia* (MarinLit, 2020). Five polyoxygenated steroids, namely 24(S)-methyl-cholest-

 3β , 5α , 6β ,25-tetraol (**260**), cholest- 1β , 3β , 5α , 6β , 11α -pentaol (**261**), 24(28)-methyl-cholesten- 1β , 3β , 5α , 6β , 11α -pentaol (**262**), 24(28)-methyl-cholesten- 1β , 3β , 5α , 6α , 11α -pentaol (**263**) and 24(*S*)-methyl-cholest- 11α , 12α -epoxy- 1β , 3β , 6β -triol (**264**) were isolated from the soft coral *S. dissecta* (Ramesh & Venkateswarlu, 1999).

Chemical investigation of *S. grandilobata* led to the isolation of four steroids, namely sinugrandisterols A-D (265-268) (Ahmed et al., 2007).

24-Methylene-cholesterol (**269**), 24(*S*)-methyl-cholesterol (**270**), 24(*S*)-methyl-cholestan- 1α ,3 β -diol (**271**), 24(*S*)-methyl-cholestan- 1α ,3 β ,25-triol (**272**), 11α -acetoxy-24(*S*)-methyl-cholestan- 1α ,3 β ,5 α ,6 β -tetraol (**273**), 6-oxo-24(*S*)-methyl-cholestan- 3β ,5 α -diol (**274**), gorgosterol (**275**) and 6-oxo-grogostan- 3α ,5 β -diol (**276**) were isolated from an Indonesian *Sinularia* sp. Among them, compounds **271** and **275** were found to have a consistently antagonistic activity with the farnesoid X-activated receptor (FXR) which is useful for the cholestasis treatment (Putra et al., 2012).

Chemical examination of *Sinularia acuta* led to the isolation of 24-oxo-6 β -acetoxy,22(E)-cholest-22(23)-ene-3 β ,5 α -diol (277), 28,6 β -diacetoxy-ergost-24(25)-ene-3 β ,5 α -diol (278), 6 β -acetoxy-24-methyl-cholest-24(28)-ene-3 β ,5 α -diol (279), 6 β -acetoxy-24(S)-methyl-cholesta-3 β ,5 α -diol (280), 6 β -acetoxy-16 β -methoxy-23,24-dimethyl-ergost-17(20)-ene-3 β ,5 α -diol (281), 16 β -methoxy-23,24-dimethyl-ergost-5(6),17(20)-diene-3 β -ol (282), 6 β -acetoxy-20-oxo-pregn-16(17)-en-3 β -ol (283) and 20-oxo-pregn-5(6),16(17)-dien-3 β -ol (284) (Zhang et al., 2015).

Five polyhydroxylated sterols, namely (22*E*)-24-methyl-cholesta-22,24(28)-dien-3 β ,5 α ,6 β -triol (**285**), 24-methyl-cholest-24(28)-en-3 β ,5 α ,6 β -triol (**286**), (22*E*)-24-methyl-cholest-22(23)-en-3 β ,5 α ,6 β -triol (**287**), 24-methyl-cholest-3 β ,5 α ,6 β -triol (**289**) were obtained from a Chinese *Sinularia* sp., with all of them being cytotoxic against HepG2 and HeLa cell lines with IC₅₀ values between 8.36 to 37.30 μ M (Sun et al., 2016).

Sinubrassione (290), ergosta- 1α , 3β , 5α , 6β , 11α -pentaol (291), sarcoaldesterol B (292), ergosta- 1β , 3β , 5α , 6β -tetraol (293), ergosta- 3β , 5α , 6β -triol (294), sarcoaldesterol A (295), sinubrassioside (296) and pregnedioside A (297) were isolated from a Vietnamese *Sinularia brassica* (Tran et al., 2017).

Chemical examination of a Chinese *Sinularia* sp. led to the isolation of ximaosteroids E and F (**298** and **299**), astrogorgol N (**300**) and 20(*S*)-20-hydroxycholest-1-ene-3,16-dione (**301**). Ximaosteroids E and F (**298** and **299**) and 20(*S*)-20-hydroxycholest-1-ene-3,16-dione (**301**) exhibited potent cytotoxicity against HL-60 (Li et al., 2018).

1.5.4 Nitrogen-containing compounds

A series of acylspermidines, namely compounds 302-309, were obtained from *Sinularia* sp. Acylspermidines 304-306, 308 and 309 exhibited potent cytotoxicity against A431 cells derived from vulval squamous cell carcinoma (SCC) and NAKATA cells derived from oral SCC (Ojika et al., 2003).

Three ceramides, namely N-[(2S,3R,E)-1,3-dihydroxyhexacos-4-en-2-yl]icosanamide, N-[(2S,3S,4R)-1,3,4-trihydroxyhexacosan-2-yl]icosanamide and (R)-2-hydroxy-N-[(2S,3S,4R)-1,3,4-trihydroxypentacosan-2-yl]nonadecanamide (310-312), were isolated from the Egyptian Red Sea *Sinularia candidula*, with all three showing

reduction of virus H5N1 titer by 48.8, 10.4 and 15.8, respectively, at a concentration of 1 ng/mL (Ahmed et al., 2013).

1.6 Aim of the study

In view of the immense but underexplored potential of marine organisms from the Red Sea as sources of metabolites with potent bioactivities, the aim of the present PhD thesis was the chemical investigation of a number of marine organisms collected from the Red Sea towards the isolation and structure elucidation of new natural products, as well as the evaluation of their biological activity.

2. MATERIALS AND METHODS

2.1 General experimental procedures

NMR spectra were obtained on Bruker AC 200, Bruker DRX 400, Avance NEO 700 and Avance NEO 950 (Bruker BioSpin GmbH, Rheinstetten, Germany) and Varian 600 (Varian, Inc., Palo Alto, CA, USA) spectrometers. The 2D NMR experiments (HSQC, HMBC, COSY, NOESY) were performed using standard Bruker or Varian pulse sequences. Chemical shifts are given on the δ (ppm) scale with reference to the solvent signals.

Low-resolution EI mass spectra were measured on a Thermo Electron Corporation DSQ mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) or Hewlett Packard 5973 mass spectrometer. High-resolution APCI or ESI mass spectra were measured on a LTQ Orbitrap Velos mass spectrometer (Thermo Fisher Scientific, Bremen, Germany).

Optical rotations were measured on a Krüss polarimeter (A. KRÜSS Optronic GmbH, Hamburg, Germany) equipped with a 0.5 dm cell. UV spectra were recorded on a Lambda 40 UV/Vis spectrophotometer (Perkin Elmer Ltd., Beaconsfield, UK). IR spectra were obtained on an Alpha II FTIR spectrometer (Bruker Optik GmbH, Ettlingen, Germany).

High pressure liquid chromatography (HPLC) separations were conducted on a Waters 600 liquid chromatography pump equipped with a Waters 410 differential refractometer (Waters Corporation, Milford, MA, USA) or an Agilent 1100 series liquid chromatography pump equipped with an Agilent 1100 series refractive index detector, using (a) a Kromasil 100 C₁₈ (MZ-Analysentechnik GmbH, 5 μm, 25 cm × 8 mm i.d.), (b) an Econosphere C₁₈ (Grace, 25 cm × 10 mm i.d.), (c) a Supelcosil Si (Supelco, 25 cm × 10 mm i.d.) or (d) an Econosphere Silica 10μ (Grace, 25 cm × 10 mm i.d.) column.

Evaporation of the solvents was performed under vacuum using a BÜCHI Rotavapor R-200 rotary evaporator at temperatures up to 40 °C.

The minimal energy structure steric configurations were designed with the computational molecular modeling program HyperChem 8.0 (Hypercube, Inc.).

2.2 Solvents and chemical reagents

Normal- or reversed-phase vacuum column chromatography separations were performed with Silica 60, 0.015-0.04 mm (Macherey-Nagel) or Kieselgel 60 RP-18, 40-63 µm (Merck), respectively.

Normal-phase gravity column chromatography separations were performed with Silica 60, 0.04-0.063 mm (Macherey-Nagel).

Solid phase extractions were performed using normal (SiOH) or reversed (C18) phase cartridges (Waters Associates or Macherey-Nagel).

Normal- or reversed-phase thin layer chromatography (TLC) separations were performed using ALUGRAM SIL G/UV_{254} (Macherey-Nagel, thickness of layer 0.2

mm) or ALUGRAM RP-18 W/UV₂₅₄ (Macherey-Nagel, thickness of layer 0.15 mm) aluminium sheets, respectively, and spots were detected under a UV lamp at 254 and 365 nm and after spraying with 25% H₂SO₄ in MeOH reagent and heating at 100 °C for 1-2 min.

All solvents used in extractions and chromatographic separations, with the exception of H₂O, were purchased from LAB-SCAN Analytical Sciences. Me₂CO was of A.R. grade, cHex, EtOAc, CH₂Cl₂ and MeOH were of A.R. grade that were distilled prior to use and MeCN was of HPLC grade. H₂O used in chromatographic separations was initially distilled and further purified through a reverse osmosis membrane and filtered through a deionization resin. All solvents prior to use in HPLC separations were filtered under vacuum and sonicated.

NMR spectra were measured in deuterated solvents (CDCl₃, CD₃OD or C₆D₆) without TMS as internal standard, obtained from Deutero GmbH.

2.3 Collection of organisms

Specimens of the investigated marine organisms (Figure 5) were hand-picked by SCUBA diving either at Hurghada, Egypt or in Thuwal, Saudi Arabia (Table 1) and transported to the laboratory in ice chests, where they were stored at -20 °C until analyzed. Voucher specimens have been deposited at the animal collection of the Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens.

Figure 5. The marine organisms investigated in the present PhD thesis.

Table 1. C	follection da	ata for the	marine or	ganisms	investigated	in the	present PhD	thesis.

Herbarium code	Organism	Type	Depth	Location	Date	
ATPH/	Laurencia	Algo	10 m	Hurghada,	07/2016	
MP0548	majuscula	Alga	10 111	Egypt	07/2010	
ATPH/	I am all a desai de a an	Change	1 2	KAEC lagoon,	01/2018	
MP0649	<i>Lamellodysidea</i> sp.	Sponge	1-2 m	Saudi Arabia	01/2018	
ATPH/	Sinularia	Soft	10 m	Hurghada,	10/2015	
MP0533	polydactyla	coral	10 111	Egypt	10/2013	

2.4 Extraction and isolation of metabolites from the alga Laurencia majuscula

Specimens of the alga *L. majuscula* were extensively extracted with mixtures of CH₂Cl₂ and MeOH to afford after evaporation of the solvents in vacuo a crude extract that was subjected to a series of chromatographic separations (Figure 6, Figure 7, Figure 8, Figure 9), including normal- and reversed-phase vacuum column chromatography, gravity column chromatography and HPLC, to allow for the isolation of a number of metabolites in pure form. After each chromatographic step, the fractions were analyzed by ¹H NMR spectroscopy.

Initially, the organic extract LMH (9.0 g) was subjected to normal-phase vacuum column chromatography, using cHex with increasing amounts of EtOAc, followed by EtOAc with increasing amounts of MeOH as the mobile phase, to afford 16 fractions, which after an initial screening with TLC were combined into 14 fractions (Table 2).

Table 2. Experimental details for the separation of the crude extract LMH.

Mobile phase							
Fraction		Volume (mL)					
Traction	cHex %	cHex % EtOAc % MeOH %					
LMH1	100	-	-	450			
	95	5	-	250			
LMH2	90	10	-	250			
LMH3	85	15	-	250			
LMH4	80	20	-	250			
LMH5	70	30	-	250			
LMH6	60	40	-	250			
LMH7	50	50	-	250			
LMH8	40	60	-	250			
LMH9	30	70	-	250			
LMH10	20	80	-	250			
LMH11	10	90	-	250			
LMH12	-	100	-	250			
	-	80	20	250			
LMH13	-	50	50	250			
LMH14	-	-	100	250			

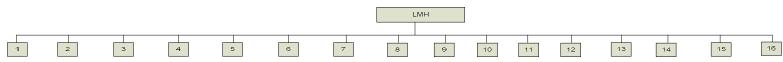


Figure 6. Fractionation scheme for the isolation of metabolites from the crude extract LMH (part 1).

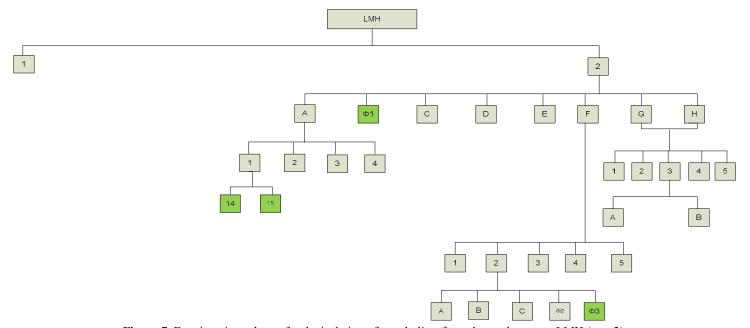


Figure 7. Fractionation scheme for the isolation of metabolites from the crude extract LMH (part 2).

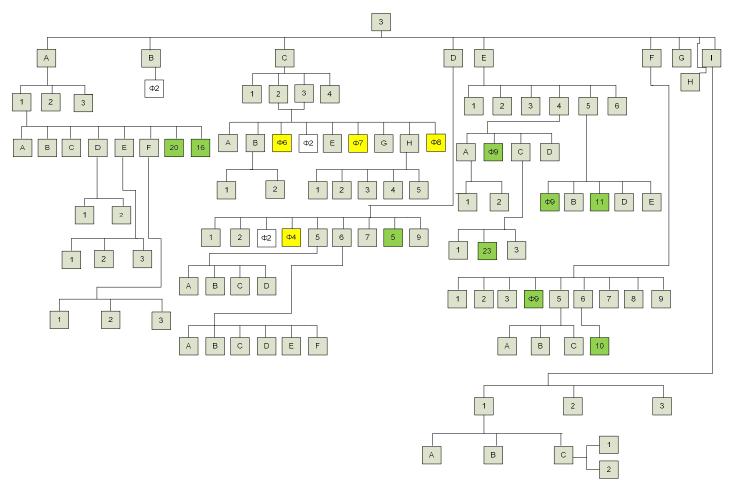


Figure 8. Fractionation scheme for the isolation of metabolites from the crude extract LMH (part 3).

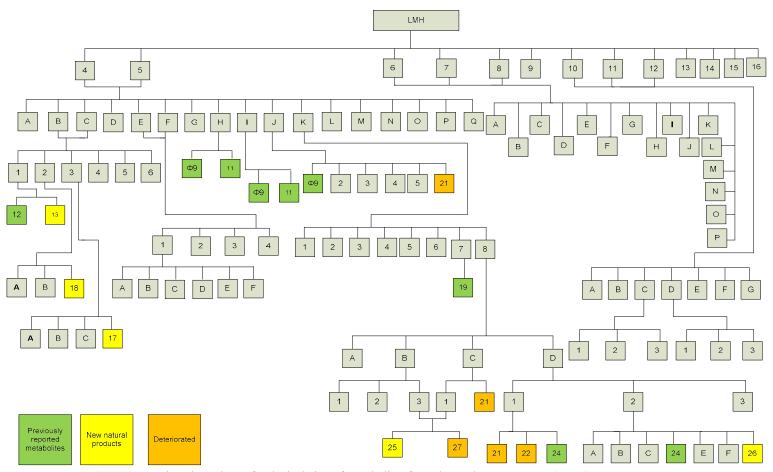


Figure 9. Fractionation scheme for the isolation of metabolites from the crude extract LMH (part 4).

Fraction LMH2 (222.4 mg) was further fractionated by normal-phase gravity column chromatography, using cHex with increasing amounts of EtOAc as the mobile phase, to afford 55 fractions of approx. 20 mL each, which after an initial screening with TLC were combined into 8 fractions (Table 3), among which fraction LMH2b was identified as metabolite **LMH01**.

Table 3. Experimental details for the separation of fraction LMH2.

Fraction	Mobile phase		Volume (mI)
Fraction	cHex %	EtOAc %	Volume (mL)
LMH2a	99	1	120
LMH2b	99	1	140
LMH2c	98	2	60
LMH2d	98	2	80
LMH2e	98	2	100
LMH2f	97	3	200
	95	5	100
LMH2g	90	10	100
	80	20	50
LMH2h	80	20	50
Livil 1211	-	100	100

Fraction LMH2a (9.7 mg) was further fractionated by normal-phase SPE chromatography, using nHex and cHex with increasing amounts of EtOAc as the mobile phase, to afford four fractions (Table 4).

Table 4. Experimental details for the separation of fraction LMH2a.

Fraction	Mobile phase			Volume (mI)
Fraction	nHex %	cHex %	EtOAc %	Volume (mL)
LMH2a1	100	-	-	6
LMH2a2	-	98	2	4
LMH2a3	-	95	5	4
LMH2a4	-	-	100	4

Fraction LMH2a1 (3.5 mg) was subjected to normal-phase HPLC to yield two fractions LMH2a1a and LMH2a1b (Table 5) which were identified as metabolites **LMH14** and **LMH15**, respectively.

Table 5. Experimental details for the separation of fraction LMH2a1.

Chromatographic conditions	
Column Econosphere Silica 10μ (250 mm × 10 mm i.d.)	
Mobile phase nHex 100%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
LMH2a1a	11.9	2.1
LMH2a1b	13.0	0.7

Fraction LMH2f (60.6 mg) was further fractionated by normal-phase SPE chromatography, using cHex with increasing amounts of EtOAc as the mobile phase, to afford five fractions (Table 6).

Table 6. Experimental details for the separation of fraction LMH2f.

Fraction	Mobile phase		Volume (mI)
Fraction	cHex %	EtOAc %	Volume (mL)
LMH2f1	95	5	20
LMH2f2	90	10	10
LMH2f3	80	20	10
LMH2f4	-	100	10
LMH2f5	-	100	10

Fraction LMH2f2 (23.3 mg) was subjected to normal-phase HPLC to yield five fractions (Table 7), among which fraction LMH2f2e was identified as metabolite LMH03.

Table 7. Experimental details for the separation of fraction LMH2f2.

Chromatographic conditions		
Column	Econosphere Silica 10μ (250 mm × 10 mm i.d.)	
Mobile phase	cHex/EtOAc 96:4%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
LMH2f2a	10.0	12.0
LMH2f2b	13.7	2.0
LMH2f2c	15.6	1.9
LMH2f2d	17.8	2.6
LMH 2f2e	19.0	2.1

Fraction LMH3 (1.0 g) was further fractionated by normal-phase gravity column chromatography, using cHex with increasing amounts of EtOAc as the mobile phase, to afford 116 fractions of approx. 25 mL each, which after an initial screening with TLC were combined into 9 fractions (Table 8).

Table 8. Experimental details for the separation of fraction LMH3.

Fraction	Mobile phase		Volume (mI)
Fraction	cHex %	EtOAc %	Volume (mL)
	100	-	250
	99	1	200
LMH3a	98	2	200
LIVITISA	97	3	200
	96	4	200
	95	5	50
LMH3b	95	5	250
LIVITISU	94	6	50
LMH3c	94	6	150
LMH3d	94	6	50
LIVITISU	93	7	100
LMH3e	93	7	250
LMH3f	92	8	250
т МП2 α	90	10	200
LMH3g	85	15	100
LMH2h	75	25	200
LMH3i	-	100	200

Fraction LMH3a (354.2 mg) was further fractionated by normal-phase SPE chromatography, using nHex with increasing amounts of EtOAc as the mobile phase, to afford three fractions (Table 9).

Table 9. Experimental details for the separation of fraction LMH3a.

Fraction	Mobile phase		Volume (mL)
Fraction	nHex %	EtOAc %	volume (mL)
LMH3a1	99	1	60
LMH3a2	99	1	10
LMH3a3	-	100	50

Fraction LMH3a1 (74.8 mg) was subjected to normal-phase HPLC to yield eight fractions (Table 10), among which fractions LMH3a1g and LMH3a1h were identified as metabolites **LMH20** and **LMH16**, respectively.

Table 10. Experimental details for the separation of fraction LMH3a1.

Chromatographic conditions		
Column	Econosphere Silica 10μ (250 mm × 10 mm i.d.)	
Mobile phase	nHex/EtOAc 92:8%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
LMH3a1a	10.0	4.5
LMH3a1b	10.7	2.1
LMH3a1c	14.8	6.7
LMH3a1d	17.1	4.6
LMH3a1e	18.2	4.2
LMH3a1f	19.1	11.9
LMH3a1g	22.1	3.3
LMH3a1h	24.3	3.8

Fraction LMH3b (41.6 mg) was subjected to normal-phase HPLC to yield one fraction (Table 11) which was identified as metabolite **LMH02**.

Table 11. Experimental details for the separation of fraction LMH3b.

Chromatographic conditions		
Column	Econosphere Silica 10μ (250 mm × 10 mm i.d.)	
Mobile phase	cHex/EtOAc 96:4%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
LMH3b1	21.9	30.0

Fraction LMH3c (124.4 mg) was further fractionated by normal-phase SPE chromatography, using cHex with increasing amounts of EtOAc as the mobile phase, to afford 6 fractions which after an initial screening with TLC were combined into 4 fractions (Table 12).

Table 12. Experimental details for the separation of fraction LMH3c.

Fraction	Mobile phase		Volume (mI)
rraction	cHex %	EtOAc %	Volume (mL)
LMH3c1	100	-	30
LMH3c2	95	5	20
LMH3c3	90	10	20
	80	20	20
LMH3c4	-	100	20
	-	100	20

Fractions LMH3c2 and LMH3c3, pooled together in one fraction thereafter designated as LMH3c2 (85 mg), were subjected to normal-phase HPLC to yield nine fractions (Table 13), among which fractions LMH3c2c, LMH3c2d, LMH3c2f and LMH3c2i were identified as metabolites LMH06, LMH02, LMH07 and LMH08, respectively.

Table 13. Experimental details for the separation of fraction LMH3c2.

Chromatographic conditions		
Column Econosphere Silica 10μ (250 mm × 10 mm i.d.)		
Mobile phase cHex/EtOAc 96:4%, 1.5 mL/min		

Fraction	Retention time (min)	Weight (mg)
LMH3c2a	10.9	3.8
LMH3c2b	16.1	2.9
LMH3c2c	17.9	7.6
LMH3c2d	22.4	12.3
LMH3c2e	26.2	0.9
LMH3c2f	27.5	8.2
LMH3c2g	30.1	1.2
LMH3c2h	31.5	7.6
LMH3c2i	34.1	19.5

Fraction LMH3d (108.6 mg) was subjected to normal-phase HPLC to yield nine fractions (Table 14), among which fractions LMH3d3, LMH3d4 and LMH3d8 were identified as metabolites **LMH02**, **LMH04** and **LMH05**, respectively.

Table 14. Experimental details for the separation of fraction LMH3d.

Chromatographic conditions	
Column Econosphere Silica 10μ (250 mm × 10 mm i.d.)	
Mobile phase cHex/EtOAc 96:4%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
LMH3d1	10.9	2.1
LMH3d2	15.8	1.9
LMH3d3	21.8	13.9
LMH3d4	25.5	3.6
LMH3d5	27.2	4.1
LMH3d6	28.9	36.9
LMH3d7	33.2	2.7
LMH3d8	35.5	8.8
LMH3d9	41.5	3.3

Fraction LMH3e (62.3 mg) was further fractionated by normal-phase SPE chromatography, using cHex with increasing amounts of EtOAc as the mobile phase, to afford 8 fractions which after an initial screening with TLC were combined into 6 fractions (Table 15).

Table 15. Experimental details for the separation of fraction LMH3e.

Fraction	Mobile phase		Volumo (mI)
Fraction	cHex %	EtOAc %	Volume (mL)
LMH3e1	100	-	30
LMH3e2	97	3	15
LIVINSEZ	95	5	15
LMH3e3	92	8	15
LMH3e4	90	10	15
LMH3e5	88	12	15
	85	15	15
LMH3e6	80	20	15
	-	100	15

Fraction LMH3e4 (20.4 mg) was subjected to normal-phase HPLC to yield four fractions (Table 16).

Table 16. Experimental details for the separation of fraction LMH3e4.

Chromatographic conditions	
Column	Econosphere Silica 10μ (250 mm × 10 mm i.d.)
Mobile phase	cHex/EtOAc 90:10%, 1.5 mL/min

Fraction	Retention time (min)	Weight (mg)
LMH3e4a	16.2	2.2
LMH3e4b	16.7	6.9
LMH3e4c	18.3	2.6
LMH3e4d	21.8	0.7

Fraction LMH3e4c (2.6 mg) was subjected to normal-phase HPLC to yield three fractions (Table 17), among which fraction LMH3e4c2 was identified as metabolite **LMH23**.

Table 17. Experimental details for the separation of fraction LMH3e4c.

Chromatographic conditions	
Column Econosphere Silica 10μ (250 mm × 10 mm i.d.)	
Mobile phase cHex/Acetone 93:7%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
LMH3e4c1	14.6	0.6
LMH3e4c2	23.4	0.2
LMH3e4c3	36.9	0.7

Fraction LMH3e5 (5.5 mg) was subjected to normal-phase HPLC to yield five fractions (Table 18), among which fraction LMH3e5c was identified as metabolite LMH11.

Table 18. Experimental details for the separation of fraction LMH3e5.

Chromatographic conditions	
Column Econosphere Silica 10μ (250 mm × 10 mm i.d.)	
Mobile phase cHex/EtOAc 90:10%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
LMH3e5a	16.7	1.3
LMH3e5b	18.2	0.6
LMH3e5c	19.0	0.8
LMH3e5d	22.1	0.6
LMH3e5e	27.3	0.5

Fractions LMH4 and LMH5, pooled together in one fraction thereafter designated as LMH4 (1.2 g), were further fractionated by normal-phase gravity column chromatography, using cHex with increasing amounts of EtOAc and EtOAc with increasing amounts of MeOH as the mobile phase, to afford 116 fractions of approx. 25 mL each, which after an initial screening with TLC were combined into 17 fractions (Table 19).

Table 19. Experimental details for the separation of fraction LMH4.

Fraction		Mobile phase		Volume (mI)
Fraction	cHex %	EtOAc %	MeOH %	Volume (mL)
LMH4a	95	5	-	125
LMH4b	95	5	-	75
LMH4c	94	6	-	100
LMH4d	94	6	-	50
LMH4e	93	7	-	75
LMH4f	93	7	-	125
LMH4g	91	9	-	75
LMH4h	91	9	-	100
LMH4i	90	10	-	100
LMH4j	90	10	-	50
LMH4k	88	12	-	225
LMH41	85	15	-	100
LMH4m	85	15	-	75
LIVIT4III	80	20	-	150
LMH4n	80	20	-	75
LIVITI4II	70	30	-	250
LMH4o	60	40	-	200

LMH4p	50	50	-	200
LMH4q	-	100	-	250
	-	97	3	100
	-	90	10	100
	-	50	50	300

Fraction LMH4b and LMH4c, pooled together in one fraction thereafter designated as LMH4b (73.6 mg), were further fractionated by normal-phase SPE chromatography, using cHex with increasing amounts of EtOAc as the mobile phase, to afford 9 fractions which after an initial screening with TLC were combined into 6 fractions (Table 20).

Table 20 . Experimental details for the separation of fraction LMH4b.

Fraction	Mobile phase		Volume (mL)
Fraction	cHex %	EtOAc %	volume (mL)
LMH4b1	100	-	30
LWII1401	98	2	20
LMH4b2	96	4	20
LMH402	94	6	20
LMH4b3	92	8	20
LIVITI403	90	10	20
LMH4b4	88	12	20
LMH4b5	80	20	20
LMH4b6	-	100	20

Fraction LMH4b1 (21.9 mg) was subjected to normal-phase HPLC to yield two fractions (Table 21) which were identified as metabolites **LMH12** and **LMH13**, respectively.

Table 21. Experimental details for the separation of fraction LMH4b1.

Chromatographic conditions		
Column Econosphere Silica 10μ (250 mm × 10 mm i.d.)		
Mobile phase nHex 100%, 1.0 mL/min		

Fraction	Retention time (min)	Weight (mg)
LMH4b1a	17.4	5.2
LMH4b1b	21.3	3.4

Fraction LMH4b2 (14.6 mg) was subjected to normal-phase HPLC to yield three fractions (Table 22), among which fraction LMH4b2c was identified as metabolite LMH18.

Table 22. Experimental details for the separation of fraction LMH4b2.

Chromatographic conditions		
Column Econosphere Silica 10μ (250 mm × 10 mm i.d.)		
Mobile phase	cHex/EtOAc 96:4%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
LMH4b2a	12.9	1.4
LMH4b2b	14.0	0.7
LMH4b2c	15.2	0.8

Fraction LMH4b3 (10.4 mg) was subjected to normal-phase HPLC to yield four fractions (Table 23), among which fraction LMH4b3d was identified as metabolite LMH17.

Table 23. Experimental details for the separation of fraction LMH4b3.

Chromatographic conditions		
Column Econosphere Silica 10μ (250 mm × 10 mm i.d.)		
Mobile phase	cHex/EtOAc 90:10%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
LMH4b3a	14.5	0.7
LMH4b3b	15.8	1.4
LMH4b3c	18.8	0.6
LMH4b3d	19.6	3.3

Fraction LMH4h (15.8 mg) was subjected to normal-phase HPLC to yield two fractions (Table 24), among which fraction LMH4h2 was identified as metabolite LMH11.

Table 24. Experimental details for the separation of fraction LMH4h.

Chromatographic conditions		
Column Econosphere Silica 10μ (250 mm × 10 mm i.d.)		
Mobile phase	cHex/EtOAc 90:10%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
LMH4h1	17.1	3.8
LMH4h2	19.5	3.3

Fraction LMH4i (26.1 mg) was subjected to normal-phase HPLC to yield two fractions (Table 25), among which fraction LMH4i2 was identified as metabolite LMH11.

Table 25. Experimental details for the separation of fraction LMH4i.

Chromatographic conditions	
Column	Econosphere Silica 10μ (250 mm × 10 mm i.d.)
Mobile phase	cHex/EtOAc 90:10%, 1.5 mL/min

Fraction	Retention time (min)	Weight (mg)
LMH4i1	16.7	4.5
LMH4i2	20.2	1.6

Fraction LMH4j (15.8 mg) was subjected to normal-phase HPLC to yield six fractions (Table 26), among which fraction LMH4j6 was identified as metabolite **LMH21**.

Table 26. Experimental details for the separation of fraction LMH4j.

Chromatographic conditions	
Column	Econosphere Silica 10μ (250 mm × 10 mm i.d.)
Mobile phase	cHex/EtOAc 80:20%, 1.5 mL/min

Fraction	Retention time (min)	Weight (mg)
LMH4j1	11.4	1.0
LMH4j2	12.0	0.5
LMH4j3	13.3	0.6
LMH4j4	14.3	0.9
LMH4j5	16.6	0.3
LMH4j6	17.1	1.0

Fractions LMH4k and LMH4l, pooled together in one fraction thereafter designated as LMH4k (334.2 mg), were further fractionated by normal-phase gravity column chromatography, using cHex with increasing amounts of EtOAc as the mobile phase, to afford 46 fractions of approx. 15 mL each, which after an initial screening with TLC were combined into 8 fractions (Table 27).

Table 27. Experimental details for the separation of fraction LMH4k.

Fraction	Mobile phase		Volume (mL)
Fraction	cHex %	EtOAc %	Volume (mL)
LMH4k1	92	8	150
LIVII 14K1	90	10	45
LMH4k2	90	10	45
LMH4k3	90	10	30
LIVITIANS	88	12	30
LMH4k4	88	12	45
LMH4k5	85	15	60
LMH4k6	85	15	60

	80	20	75
LMH4k7	80	20	60
LMH4k8	-	100	100

Fraction LMH4k7 (9.9 mg) was subjected to normal-phase HPLC to yield one fraction (Table 28) which was identified as metabolite **LMH19**.

Table 28. Experimental details for the separation of fraction LMH4k7.

Chromatographic conditions	
Column	Econosphere Silica 10μ (250 mm × 10 mm i.d.)
Mobile phase	cHex/EtOAc 80:20%, 1.5 mL/min

Fraction	Retention time (min)	Weight (mg)
LMH4k7a	19.2	3.0

Fraction LMH4k8 (78.0 mg) was further fractionated by normal-phase SPE chromatography, using cHex with increasing amounts of EtOAc as the mobile phase, to afford 4 fractions (Table 29).

Table 29. Experimental details for the separation of fraction LMH4k8.

	1		
Enaction	Mobile phase		Volume (mI)
Fraction	cHex %	EtOAc %	Volume (mL)
LMH4k8a	80	20	25
LMH4k8b	80	20	15
LMH4k8c	80	20	15
LMH4k8d	-	100	20

Fraction LMH4k8b (12.7 mg) was subjected to normal-phase HPLC to yield three fractions (Table 30).

Table 30. Experimental details for the separation of fraction LMH4k8b.

Chromatographic conditions	
Column	Econosphere Silica 10μ (250 mm × 10 mm i.d.)
Mobile phase	cHex/EtOAc 75:25%, 1.5 mL/min

Fraction	Retention time (min)	Weight (mg)
LMH4k8b1	9.3	0.6
LMH4k8b2	17.8	2.9
LMH4k8b3	22.1	1.6

Fraction LMH4k8b3 (1.6 mg) was subjected to normal-phase HPLC to yield two fractions (Table 31) which were identified as metabolites **LMH25** and **LMH27**, respectively.

Table 31. Experimental details for the separation of fraction LMH4k8b3.

Chromatographic conditions	
Column	Econosphere Silica 10μ (250 mm × 10 mm i.d.)
Mobile phase	cHex/EtOAc 82:18%, 1.5 mL/min

Fraction	Retention time (min)	Weight (mg)
LMH4k8b3a	16.3	1.5
LMH4k8b3b	17.5	0.7

Fraction LMH4k8c (10.0 mg) was subjected to normal-phase HPLC to yield two fractions (Table 32) which were identified as metabolites **LMH25** and **LMH21**, respectively.

Table 32. Experimental details for the separation of fraction LMH4k8c.

Chromatographic conditions	
Column Econosphere Silica 10μ (250 mm × 10 mm i.d.)	
Mobile phase	cHex/EtOAc 75:25%, 1.5 mL/min

Fraction	Retention time (min)	Weight (mg)
LMH4k8c1	22.1	1.2
LMH4k8c2	23.9	3.6

Fraction LMH4k8d, (33.0 mg) was further fractionated by normal-phase SPE chromatography, using cHex with increasing amounts of EtOAc as the mobile phase, to afford 3 fractions (Table 33).

Table 33. Experimental details for the separation of fraction LMH4k8d.

Fraction	Mobile phase		Volume (mL)
Fraction	cHex %	EtOAc %	volume (mL)
LMH4k8d1	60	40	20
LMH4k8d2	60	40	30
LMH4k8d3	-	100	15

Fraction LMH4k8d1 (17.4 mg) was subjected to normal-phase HPLC to yield three fractions (Table 34), which were identified as metabolites **LMH21**, **LMH22** and **LMH24**, respectively.

Table 34. Experimental details for the separation of fraction LMH4k8d1.

Chromatographic conditions	
Column Econosphere Silica 10μ (250 mm × 10 mm i.d.)	
Mobile phase	cHex/EtOAc 65:35%, 1.5 mL/min

Fraction	Retention time (min)	Weight (mg)
LMH4k8d1a	16.9	6.5
LMH4k8d1b	19.8	2.3
LMH4k8d1c	25.0	0.6

Fraction LMH4k8d2 (17.4 mg) was subjected to normal-phase HPLC to yield seven fractions (Table 35), among which fractions LMH4k8d2d and LMH4k8d2g were identified as metabolites **LMH24** and **LMH26**, respectively.

Table 35. Experimental details for the separation of fraction LMH4k8d2.

Chromatographic conditions	
Column Econosphere Silica 10μ (250 mm × 10 mm i.d.)	
Mobile phase	cHex/EtOAc 60:40%, 1.5 mL/min

Fraction	Retention time (min)	Weight (mg)
LMH4k8d2a	15.0	0.5
LMH4k8d2b	17.0	1.0
LMH4k8d2c	17.8	0.5
LMH4k8d2d	20.8	1.1
LMH4k8d2e	23.4	3.4
LMH4k8d2f	25.9	0.7
LMH4k8d2g	34.7	0.8

In total, from the chemical investigation of the organic extract of the red alga L. majuscula, 25 metabolites were isolated in pure form (Table 36).

Table 36. Isolated metabolites from the red alga *L. majuscula*.

Metabolite	Code	Fraction Weight (mg	
1	LMH12	LMH4b1a 5.2	
2	LMH17	LMH4b3d	3.3
3	LMH13	LMH4b1b	3.4
4	LMH20	LMH3a1g	2.0
5	LMH18	LMH4b2c	0.8
6	LMH25	LMH4k8b3a, LMH4k8c1	2.7
7	LMH24	LMH4k8d1c, LMH4k8d2d	1.7
8	LMH19	LMH4k7a 3.0	
9	LMH26	LMH4k8d2g	0.8
10	LMH23	LMH3e4c2	0.2
11	LMH01	LMH2b	76.6
12	LMH15	LMH2a1b	0.7
13	LMH03	LMH2f2e	2.0
14	LMH14	LMH2a1a	2.1
15	LMH05	LMH3d8 8.8	

16	LMH11	LMH3e5c, LMH4h2, LMH4i2	5.7
17	LMH04	LMH3d4	3.6
18	LMH02	LMH3b1, LMH3c2d, LMH3d3	56.2
19	LMH06	LMH3c2c	7.6
20	LMH07	LMH3c2f	8.2
21	LMH08	LMH3c2i	19.5
22	LMH16	LMH3a1h	3.8
	LMH21	LMH4j6, LMH4k8c2, LMH4k8d1a	11.1
	LMH22	LMH4k8d1b	2.3
	LMH27	LMH4k8b3b	0.7

2.5 Extraction and isolation of metabolites from the sponge Lamellodysidea sp.

Initially, a small quantity of the sponge *Lamellodysidea* sp. was extensively extracted with mixtures of CH₂Cl₂ and MeOH to afford after evaporation of the solvents in vacuo a crude extract (small-scale) that was subjected to a series of chromatographic separations (Figure 10), including normal- and reversed-phase vacuum column chromatography, gravity column chromatography and HPLC, to allow for the isolation of a number of metabolites in pure form. After each chromatographic step, the fractions were analyzed by ¹H NMR spectroscopy.

The organic extract k649 (905.5 mg) was subjected to normal-phase gravity column chromatography, using cHex with increasing amounts of EtOAc, followed by EtOAc with increasing amounts of MeOH as the mobile phase, to afford 95 fractions, of approx. 25 mL each, which after an initial screening with TLC were combined into 11 fractions (Table 37).

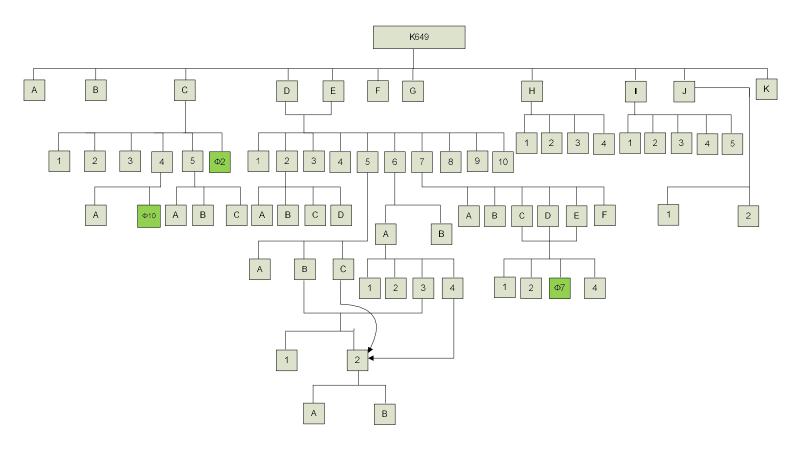


Figure 10. Fractionation scheme for the isolation of metabolites from the crude extract k649 (small-scale).

Table 37. Experimental details for the separation of the crude extract k649 (small-scale).

Fraction		Mobile phase		
Fraction	cHex %	EtOAc %	МеОН %	Volume (mL)
k649a	95	5	-	200
k649b	90	10	-	50
k649c	90	10	-	75
K049C	85	15	-	75
k649d	85	15	-	150
	80	20	-	200
k649e	75	25	-	100
	70	30	-	75
	70	30	-	75
k649f	60	40	-	150
	50	50	-	75
k649g	50	50	-	125
K049g	45	55	-	100
	45	55	-	50
k649h	40	60	-	125
K049II	35	65	-	100
	30	70	-	100
	25	75	-	100
k649i	20	80	-	100
K0491	10	90	-	100
	-	100	-	50
k649j	-	100	-	100
k649k	-	50	50	100

Fraction k649c (28.0 mg) was subjected to normal-phase HPLC to yield six fractions (Table 38), among which fraction k649c6 was identified as metabolite **K649-02**.

Table 38. Experimental details for the separation of fraction k649c.

Chromatographic conditions	
Column Econosphere Silica 10μ (250 mm × 10 mm i.d.)	
Mobile phase	cHex/EtOAc 90:10%, 1.5 mL/min

Fraction	Retention time (min)	Weight (mg)
k649c1	10.4	0.1
k649c2	12.8	1.3
k649c3	14.9	0.8
k649c4	15.8	4.3
k649c5	17.8	4.2
k649c6	19.2	10.7

Fraction k649c4 (4.3 mg) was subjected to normal-phase HPLC to yield two fractions (Table 39), among which fraction k649c4b was identified as metabolite **K649-10**.

Table 39. Experimental details for the separation of fraction k649c4.

Chromatographic conditions			
Column Econosphere Silica 10μ (250 mm × 10 mm i.d.)			
Mobile phase cHex/Acetone 93:7%, 1.5 mL/min			

Fraction	Retention time (min)	Weight (mg)
k649c4a	14.6	2.6
k649c4b	15.2	3.8

Fractions k649d and k649e, pooled together in one fraction thereafter designated as k649d (192.7 mg), were further fractionated by normal-phase gravity column chromatography, using cHex with increasing amounts of EtOAc as the mobile phase, to afford 57 fractions of approx. 15 mL each, which after an initial screening with TLC were combined into 10 fractions (Table 40).

Table 40. Experimental details for the separation of fraction k649d.

Fraction	Mobile phase		Volume (mI)
	cHex %	EtOAc %	Volume (mL)
k649d1	90	10	120
k649d2	90	10	45
k649d3	90	10	45
k649d4	90	10	75
k649d5	90	10	45
k649d6	90	10	30
k649d7	90	10	165
k649d8	90	10	120
k649d9	90	10	75
K049U9	80	20	60
k649d10	-	100	75

Fraction k649d7 (18.9 mg) was further fractionated by normal-phase SPE chromatography, using cHex with increasing amounts of EtOAc as the mobile phase, to afford 10 fractions which after an initial screening with TLC were combined into 6 fractions (Table 41).

Table 41. Experimental details for the separation of fraction k649d7.

Fraction	Mobil	Mobile phase	
rraction	cHex %	EtOAc %	Volume (mL)
	95	5	7
k649d7a	90	10	5
K049U/a	90	10	5
	88	12	5
k649d7b	88	12	5
k649d7c	88	12	5
K049U/C	85	15	7
k649d7d	85	15	7
k649d7e	85	15	7
k649d7f	50	50	7

Fractions k649d7c, k649d7d and k649d7e, pooled together in one fraction thereafter designated as k649d7c (15.1 mg), were subjected to normal-phase HPLC to yield four fractions (Table 42), among which fraction k649d7c3 was identified as metabolite **K649-07**.

Table 42. Experimental details for the separation of fraction k649d7c.

Chromatographic conditions			
Column Econosphere Silica 10μ (250 mm × 10 mm i.d.)			
Mobile phase cHex/EtOAc 80:20%, 1.5 mL/min			

Fraction	Retention time (min)	Weight (mg)
k649d7c1	16.1	4.3
k649d7c2	18.7	0.2
k649d7c3	22.0	9.2
k649d7c4	24.5	0.5

Subsequently, a larger quantity of the sponge *Lamellodysidea* sp. was extensively extracted with mixtures of CH₂Cl₂ and MeOH to afford after evaporation of the solvents in vacuo a crude extract (large-scale) that was subjected to a series of chromatographic separations (Figure 11), including normal- and reversed-phase vacuum column chromatography, gravity column chromatography and HPLC, to allow for the isolation of a number of metabolites in pure form. After each chromatographic step, the fractions were analyzed by ¹H NMR spectroscopy.

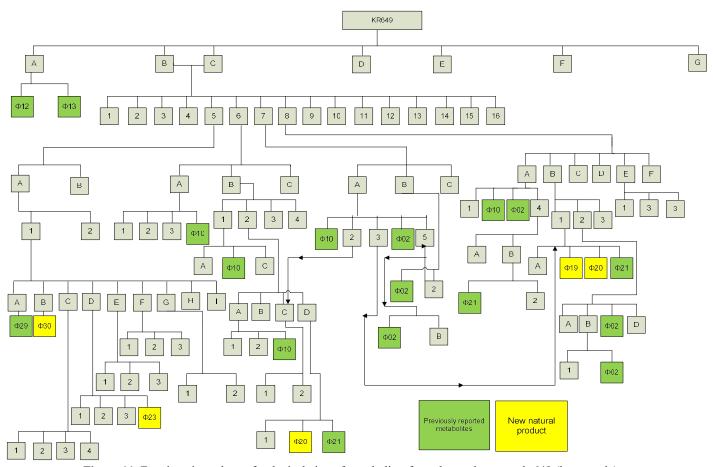


Figure 11. Fractionation scheme for the isolation of metabolites from the crude extract kr649 (large-scale).

The organic extract kr649 (15.5 g) was subjected to normal-phase vacuum column chromatography, using cHex with increasing amounts of EtOAc, followed by EtOAc with increasing amounts of MeOH as the mobile phase, to afford 18 fractions, which after an initial screening with TLC were combined into 7 fractions (Table 43).

Table 43. Experimental details for the separation of the crude extract kr649 (large-scale).

Eugation		Mobile phase		Y7.1 (T.)
Fraction	cHex %	EtOAc %	МеОН %	Volume (mL)
	100	-	-	700
kr649a	95	5	-	250
K1049a	90	10	-	250
	85	15	-	250
	80	20	-	250
kr649b	75	25	-	250
K10490	70	30	-	250
	60	40	-	250
1rm6 40 o	50	50	-	250
kr649c	40	60	-	250
kr649d	30	70	-	250
K10490	20	80	-	250
	10	90	-	250
kr649e	-	100	-	250
	-	90	10	250
kr649f	-	75	25	250
	-	-	100	250
kr649g	-	-	100	250

Fraction kr649a (107.0 mg) was subjected to reverse-phase HPLC to yield two fractions (Table 44) which were identified as metabolites **KR649-12** and **KR649-13**, respectively.

Table 44. Experimental details for the separation of fraction kr649a.

Chromatographic conditions			
Column Kromasil 100-7-C ₁₈ (250 mm × 10 mm i.d.)			
Mobile phase MeCN 100%, 1.5 mL/min			

Fraction	Retention time (min)	Weight (mg)
kr649a1	18.5	76.3
kr649a2	20.0	15.6

Fractions kr649b and kr649c, pooled together in one fraction thereafter designated as kr649b (4.9 g), were further fractionated by normal-phase gravity column chromatography, using cHex with increasing amounts of EtOAc and EtOAC with

increasing amounts of MeOH as the mobile phase, to afford 175 fractions of approx. 35 mL each, which after an initial screening with TLC were combined into 16 fractions (Table 45).

Table 45. Experimental details for the separation of fraction kr649b.

Fraction	Mobile phase			Volume (mI)
Fraction	cHex %	EtOAc %	МеОН %	Volume (mL)
kr649b1	90	10	-	315
kr649b2	90	10	-	280
kr649b3	90	10	-	105
kr649b4	90	10	-	105
kr649b5	90	10	-	245
kr649b6	90	10	-	105
K104900	88	12	-	175
kr649b7	88	12	-	140
1, u6 10h 0	88	12	-	245
kr649b8	84	16	-	420
kr649b9	84	16	-	140
kr649b10	84	16	-	350
K1049010	82	18	-	105
kr649b11	82	18	-	280
kr649b12	82	18	-	70
Kr649612	80	20	-	350
	80	20	-	175
kr649b13	70	30	-	210
	60	40	-	385
kr649b14	60	40	-	105
KIU49014	40	60	-	315
1-u6 401-15	20	80	-	315
kr649b15	-	100	-	315
1ru6 101-16	-	100	-	285
kr649b16 —	-	95	5	595

Fraction kr649b5 (75.1 mg) was further fractionated by normal-phase SPE chromatography, using cHex with increasing amounts of Acetone as the mobile phase, to afford 4 fractions which after an initial screening with TLC were combined into 2 fractions (Table 46).

Table 46. Experimental details for the separation of fraction kr649b5.

Fraction	Mobile phase		Volume (mI)
Fraction	cHex %	Acetone %	Volume (mL)
kr649b5a	95	5	34
	93	7	20
kr649b5b	90	10	20
	-	100	40

Fraction kr649b5a (67.5 mg) was further fractionated by normal-phase SPE chromatography, using cHex with increasing amounts of EtOAc as the mobile phase, to afford 4 fractions which after an initial screening with TLC were combined into 2 fractions (Table 47).

Table 47. Experimental details for the separation of fraction kr649b5a.

Fraction	Mobile phase		Volume (mL)
Fraction	cHex %	EtOAc %	voiume (mL)
	95	5	35
kr649b5a1	93	7	20
	90	10	20
kr649b5a2	90	10	20

Fraction kr649b5a1 (57.5 mg) was subjected to normal-phase HPLC to yield nine fractions (Table 48).

Table 48. Experimental details for the separation of fraction kr649b5a1.

Chromatographic conditions		
Column	Econosphere Silica 10μ (250 mm × 10 mm i.d.)	
Mobile phase cHex/Acetone 94:6%, 1.5 mL/min		

Fraction	Retention time (min)	Weight (mg)
kr649b5a1a	12.7	4.1
kr649b5a1b	13.6	2.3
kr649b5a1c	14.3	2.3
kr649b5a1d	15.1	3.3
kr649b5a1e	15.6	3.9
kr649b5a1f	16.4	2.9
kr649b5a1g	17.5	3.4
kr649b5a1h	18.7	10.0
kr649b5a1i	20.4	2.6

Fraction kr649b5a1a (4.1 mg) was subjected to normal-phase HPLC to yield one fraction (Table 49) which was identified as metabolite **KR649-29**.

Table 49. Experimental details for the separation of fraction kr649b5a1a.

Chromatographic conditions		
Column	Econosphere Silica 10μ (250 mm × 10 mm i.d.)	
Mobile phase	nHex/EtOAc 92:8%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
kr649b5a1a1	12.8	3.3

Fraction kr649b5a1b (3.0 mg) was subjected to normal-phase HPLC to yield one fraction (Table 50) which was identified as metabolite **KR649-30**.

Table 50. Experimental details for the separation of fraction kr649b5a1b.

Chromatographic conditions		
Column Econosphere Silica 10μ (250 mm × 10 mm i.d.)		
Mobile phase	nHex/EtOAc 92:8%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
kr649b5a1b1	13.5	2.4

Fraction kr649b5a1d (3.3 mg) was subjected to normal-phase HPLC to yield four fractions (Table 51), among which fraction kr649b5a1d4 was identified as metabolite **KR649-23**.

Table 51. Experimental details for the separation of fraction kr649b5a1d.

Chromatographic conditions		
Column Econosphere Silica 10μ (250 mm × 10 mm i.d.)		
Mobile phase cHex/Acetone 98:2%, 1.5 mL/min		

Fraction	Retention time (min)	Weight (mg)
kr649b5a1d1	14.7	0.1
kr649b5a1d2	15.4	0.1
kr649b5a1d3	16.8	0.1
kr649b5a1d4	17.5	1.0

Fraction kr649b6 (60.8 mg) was further fractionated by normal-phase SPE chromatography, using cHex with increasing amounts of EtOAc as the mobile phase, to afford 4 fractions which after an initial screening with TLC were combined into 3 fractions (Table 52).

Table 52. Experimental details for the separation of fraction kr649b6.

Fraction	Mobile phase		Volume (mL)
Fraction	cHex %	EtOAc %	voiume (mL)
kr649b6a	94	6	30
K104900a	92	8	15
kr649b6b	90	10	15
kr649b6c	-	100	15

Fraction kr649b6a (18.7 mg) was subjected to normal-phase HPLC to yield four fractions (Table 53), among which fraction kr649b6a4 was identified as metabolite **KR649-10**.

Table 53. Experimental details for the separation of fraction kr649b6a.

Chromatographic conditions		
Column	Econosphere Silica 10μ (250 mm × 10 mm i.d.)	
Mobile phase	cHex/EtOAc 93:7%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
b6a1	14.3	2.4
b6a2	15.8	1.4
b6a3	16.6	6.9
b6a4	20.0	3.6

Fraction kr649b6b (34.6 mg) was further fractionated by normal-phase SPE chromatography, using cHex with increasing amounts of EtOAc as the mobile phase, to afford five fractions which after an initial screening with TLC were combined into 4 fractions (Table 54).

Table 54. Experimental details for the separation of fraction kr649b6b.

Fraction	Mobile phase		Volume (mL)
Fraction	cHex %	EtOAc %	voiume (mL)
kr649b6b1	96	4	20
K10490001	94	6	10
kr649b6b2	94	6	10
kr649b6b3	93	7	10
kr649b6b4	92	8	10

Fraction kr649b6b1 (17.5 mg) was subjected to normal-phase HPLC to yield three fractions (Table 55), among which fraction kr649b6b1b was identified as metabolite **KR649-10**.

Table 55. Experimental details for the separation of fraction kr649b6b1.

Chromatographic conditions		
Column	Econosphere Silica 10μ (250 mm × 10 mm i.d.)	
Mobile phase	cHex/EtOAc 93:7%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
kr649b6b1a	15.6	2.4
kr649b6b1b	18.8	1.4
kr649b6b1c	19.8	6.9

Fraction kr649b6b2 (13.3 mg) was subjected to normal-phase HPLC to yield four fractions (Table 56).

Table 56. Experimental details for the separation of fraction kr649b6b2.

Chromatographic conditions		
Column Econosphere Silica 10μ (250 mm × 10 mm i.d.)		
Mobile phase cHex/EtOAc 93:7%, 1.5 mL/min		

Fraction	Retention time (min)	Weight (mg)
kr649b6b2a	19.4	3.8
kr649b6b2b	20.5	1.9
kr649b6b2c	22.5	2.4
kr649b6b2d	24.0	1.3

Fraction kr649b6b2a (3.8 mg) was subjected to normal-phase HPLC to yield three fraction (Table 57), among which fraction kr649b6b2a3 was identified as metabolite **KR649-10**.

Table 57. Experimental details for the separation of fraction kr649b6b2a.

Chromatographic conditions		
Column Econosphere Silica 10μ (250 mm × 10 mm i.d.)		
Mobile phase cHex/Acetone 96:4%, 1.5 mL/min		

Fraction	Retention time (min)	Weight (mg)
kr649b6b2a1	12.8	0.6
kr649b6b2a2	19.4	2.4
kr649b6b2a3	20.2	2.1

Fraction kr649b6b2d (1.3 mg) was subjected to normal-phase HPLC to yield three fractions (Table 58), among which fractions kr649b6b2d2 and kr649b6b2d3 were identified as metabolites **KR649-20** and **KR649-21**, respectively.

Table 58. Experimental details for the separation of fraction kr649b6b2d.

Chromatographic conditions		
Column Econosphere Silica 10μ (250 mm × 10 mm i.d.)		
Mobile phase cHex/Acetone 96:4%, 1.5 mL/min		

Fraction	Retention time (min)	Weight (mg)
kr649b6b2d1	12.6	0.1
kr649b6b2d2	21.0	0.1
kr649b6b2d3	23.3	0.2

Fraction kr649b7 (39.5 mg) was further fractionated by normal-phase SPE chromatography, using cHex with increasing amounts of EtOAc as the mobile phase, to afford six fractions which after an initial screening with TLC were combined into 3 fractions (Table 59).

Table 59. Experimental details for the separation of fraction kr649b7.

Fraction	Mobile phase		Volume (mL)
Fraction	cHex %	EtOAc %	volume (mL)
	96	4	20
kr649b7a	94	6	10
	94	6	10
kr649b7b	93	7	10
K1049070	92	8	10
kr649b7c	-	100	10

Fraction kr649b7a (21.4 mg) was subjected to normal-phase HPLC to yield five fractions (Table 60), among which fractions kr649b7a1 and kr649b7a4 were identified as metabolites **KR649-10** and **KR649-02**, respectively.

Table 60. Experimental details for the separation of fraction kr649b7a.

Chromatographic conditions		
Column Econosphere Silica 10μ (250 mm × 10 mm i.d.)		
Mobile phase cHex/EtOAc 93:7%, 1.5 mL/min		

Fraction	Retention time (min)	Weight (mg)
kr649b7a1	19.5	6.4
kr649b7a2	22.9	2.1
kr649b7a3	24.2	2.3
kr649b7a4	26.4	3.3
kr649b7a5	27.9	1.4

Fraction kr649b7b (11.0 mg) was subjected to normal-phase HPLC to yield two fractions (Table 61), among which fraction kr649b7b1 was identified as metabolites **KR649-02**.

Table 61. Experimental details for the separation of fraction kr649b7b.

Chromatographic conditions	
Column Econosphere Silica 10μ (250 mm × 10 mm i.d.)	
Mobile phase cHex/EtOAc 93:7%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
kr649b7b1	26.5	5.8
kr649b7b2	28.0	1.1

Fractions kr649b7a5 and kr649b7b2, pooled together in one fraction thereafter designated as kr649b7a5 (2.5 mg), were subjected to normal-phase HPLC to yield two fractions (Table 62), among which fraction kr649b7a5a was identified as metabolites **KR649-02**.

Table 62. Experimental details for the separation of fraction kr649b7a5.

Chromatographic conditions	
Column Econosphere Silica 10μ (250 mm × 10 mm i.d.)	
Mobile phase cHex/Acetone 96:4%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
kr649b7a5a	21.7	1.1
kr649b7a5b	23.6	1

Fraction kr649b8 (181.7 mg) was further fractionated by normal-phase SPE chromatography, using cHex with increasing amounts of EtOAc as the mobile phase, to afford six fractions (Table 63).

Table 63. Experimental details for the separation of fraction kr649b8.

Fraction	Mobile phase		Volume (mL)
Fraction	cHex %	EtOAc %	voiume (m.L.)
kr649b8a	96	4	46
kr649b8b	94	6	30
kr649b8c	94	6	30
kr649b8d	93	7	30
kr649b8e	92	8	30
kr649b8f	-	100	30

Fraction kr649b8a (15.5 mg) was subjected to normal-phase HPLC to yield four fractions (Table 64), among which fractions kr649b8a2 and kr649b8a3 were identified as metabolites **KR649-10** and **KR649-02**, respectively.

Table 64. Experimental details for the separation of fraction kr649b8a.

Chromatographic conditions	
Column Econosphere Silica 10μ (250 mm × 10 mm i.d.)	
Mobile phase cHex/Acetone 96:4%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
kr649b8a1	12.9	2.5
kr649b8a2	19.9	2.7
kr649b8a3	21.9	3.8
kr649b8a4	23.6	1.7

Fraction kr649b8a4 (1.7 mg) was subjected to normal-phase HPLC to yield two fractions (Table 65).

Table 65. Experimental details for the separation of fraction kr649b8a4.

Chromatographic conditions	
Column Econosphere Silica 10μ (250 mm × 10 mm i.d.)	
Mobile phase nHex/Acetone 94:6%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
kr649b8a4a	19.5	0.1
kr649b8a4b	22.4	0.9

Fraction kr649b8a4b (0.9 mg) was subjected to normal-phase HPLC to yield two fractions (Table 66), among which fraction kr649b8a4b1 was identified as metabolite **KR649-21**.

Table 66. Experimental details for the separation of fraction kr649b8a4b.

Chromatographic conditions	
Column Econosphere Silica 10μ (250 mm × 10 mm i.d.)	
Mobile phase nHex/EtOAc 92:8%, 2.0 mL/min	

Fraction	Retention time (min)	Weight (mg)
kr649b8a4b1	21.0	0.1
kr649b8a4b2	24.8	0.5

Fraction kr649b8b (86.5 mg) was subjected to normal-phase HPLC to yield three fractions (Table 67).

Table 67. Experimental details for the separation of fraction kr649b8b.

Chromatographic conditions	
Column Econosphere Silica 10μ (250 mm × 10 mm i.d.)	
Mobile phase cHex/EtOAc 93:7%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
kr649b8b1	23.5	3.7
kr649b8b2	25.6	42.9
kr649b8b3	32.3	19.4

Fractions kr649b7a3 and kr649b8b1, pooled together in one fraction thereafter designated as kr649b8b1 (6.0. mg), were subjected to normal-phase HPLC to yield four fractions (Table 68), among which fractions kr649b8b1b, kr649b8b1c and kr649b8b1d were identified as metabolites **KR649-19**, **KR649-20** and **KR649-21**, respectively.

Table 68. Experimental details for the separation of fraction kr649b8b1.

Chromatographic conditions		
Column Econosphere Silica 10μ (250 mm × 10 mm i.d.)		
Mobile phase	cHex/Acetone 96:4%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
kr649b8b1a	13.6	0.4
kr649b8b1b	22.8	1.5
kr649b8b1c	24.5	1.0
kr649b8b1d	26.1	0.7

Fraction kr649b8b2 (42.9 mg) was subjected to normal-phase HPLC to yield four fractions (Table 69), among which fraction kr649b8b2c was identified as metabolite **KR649-02**.

Table 69. Experimental details for the separation of fraction kr649b8b2.

Chromatographic conditions		
Column Econosphere Silica 10μ (250 mm × 10 mm i.d.)		
Mobile phase	cHex/Acetone 96:4%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
kr649b8b2a	14.0	0.9
kr649b8b2b	19.6	1.9
kr649b8b2c	21.6	27.7
kr649b8b2d	23.5	9.0

Fraction kr649b8b2b (1.9 mg) was subjected to normal-phase HPLC to yield two fractions (Table 70), among which fraction kr649b8b2b2 was identified as metabolite **KR649-02**.

Table 70. Experimental details for the separation of fraction kr649b8b2b.

Chromatographic conditions		
Column Econosphere Silica 10μ (250 mm × 10 mm i.d.)		
Mobile phase	nHex/Acetone 94:6%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
kr649b8b2b1	17.7	0.2
kr649b8b2b2	19.3	0.4

In total, from the chemical investigation of the organic extracts (small- and large-scale) of the sponge *Lamellodysidea* sp., 11 metabolites were isolated in pure form (Table 71).

Table 71. Isolated metabolites from the sponge *Lamellodysidea* sp.

Metabolite	Code	Fraction	Weight (mg)
23	KR649-13	kr649a2	15.6
24	KR649-12	kr649a1	76.3
25	KR649-23	kr649B5a1d4	1.0
	K649-10	k649c4b	
26	KR649-10	kr649b6a4, kr649b6b1b, kr649b6b2a3, kr649b7a1, kr649b8a2	24.0
27	KR649-21	kr649b6b2d3, kr649b8a4b1, kr649b8b1d	1.7
28	KR649-07	K649d7c3	9.2
29	K649-02	K649c6	
	KR649-02	kr649b7a4, kr649b7b1, kr649b7a5a, kr649b8a3, kr649b8b2b2, kr649b8b2c	58.2
30	KR649-20	kr649b6b2d2, kr649b8b1c	1.3
31	KR649-19	kr649b8b1b	2.1
32	KR649-29	kr649b5a1a1	3.3
33	KR649-30	kr649b5a1b1	2.4

2.6 Extraction and isolation of metabolites from the soft coral Sinularia polydactyla

Specimens of the soft coral *S. polydactyla* were extensively extracted with mixtures of CH₂Cl₂ and MeOH to afford after evaporation of the solvents in vacuo a crude extract that was subjected to a series of chromatographic separations (Figure 12, Figure 13, Figure 14), including normal- and reversed-phase vacuum column chromatography, gravity column chromatography and HPLC, to allow for the isolation of a number of metabolites in pure form. After each chromatographic step, the fractions were analyzed by ¹H NMR spectroscopy.

Initially, the organic extract sp (18.5 g) was subjected to normal-phase vacuum column chromatography, using cHex with increasing amounts of EtOAc, followed by EtOAc with increasing amounts of MeOH as the mobile phase, to afford 20 fractions, which after an initial screening with TLC were combined into 10 fractions (Table 72).

Table 72. Experimental details for the separation of the crude extract sp.

	Mobile phase			_
Fraction	cHex %	EtOAc %	МеОН %	Volume (mL)
	100	-	-	500
sp1	90	10	-	250
	80	20	-	250
	70	30	-	250
an2	60	40	-	250
sp2	50	50	-	250
			-	250
an2	40	60	-	250
sp3	30	70	-	250
an A	20	80	-	250
sp4	10	90	-	250
sp5	-	100	-	250
sp6	-	90	10	250
	-	75	25	250
	-	50	50	250
sp7	-	50	50	250
sp8	-	-	100	250
sp9	-	-	100	250
sp10	-	-	100	250
	-	-	100	250

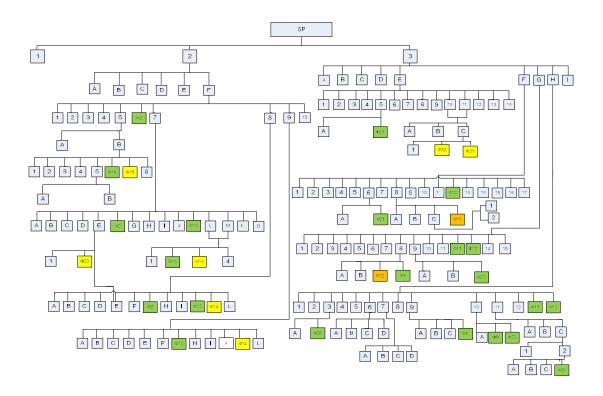


Figure 12. Fractionation scheme for the isolation of metabolites from the crude extract sp (part 1).

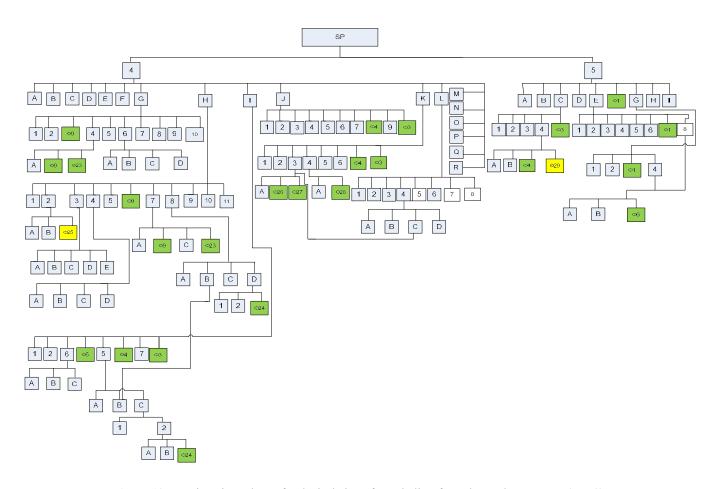


Figure 13. Fractionation scheme for the isolation of metabolites from the crude extract sp (part 2).

Figure 14. Fractionation scheme for the isolation of metabolites from the crude extract sp (part 3).

Fraction sp2 (2.373 g) was subjected to normal-phase vacuum column chromatography, using cHex with increasing amounts of EtOAc as the mobile phase, to afford 11 fractions, which after an initial screening with TLC were combined into 6 fractions (Table 73).

Table 73. Experimental details for the separation of fraction sp2.

Fraction	Mobil	Mobile phase	
Fraction	cHex %	EtOAc %	Volume (mL)
sp2a	100	-	300
sp2a	98	2	150
an 2h	98	2	150
sp2b	96	4	150
sp2c	94	6	150
	92	8	150
sp2d	90	10	150
sp2e	88	12	150
	85	15	150
sp2f	80	20	150
	70	30	150

Fraction sp2f (494 mg) was further fractionated by normal-phase gravity column chromatography, using cHex with increasing amounts of EtOAc as the mobile phase, to afford 55 fractions of approx. 20 mL each, which after an initial screening with TLC were combined into 10 fractions, among which fraction sp2f6 was identified as metabolite **SP-02** (Table 74).

Table 74. Experimental details for the separation of fraction sp2f.

Fraction	Mobil	e phase	Volume (mI)
Fraction	cHex %	EtOAc %	Volume (mL)
sp2f1	90	10	200
sp2f2	90	10	
sp2f3			
sp2f4	00	12	200
sp2f5	- 88	12	200
sp2f6			
	85	15	200
sp2f7	80	20	200
	60	40	50
sp2f8	60	40	100
sp2f9	60	40	50
5p219	-	100	50
sp2f10	-	100	50

Fraction sp2f5 (118.8 mg) was fractionated into two parts according to the solubility in MeOH, namely sp2f5a and sp2f5b. Fraction sp2f5b (92.6 mg) which was soluble in MeOH was subjected to reversed-phase HPLC to yield eight fractions (Table 75), among which fractions sp2f5b6 and sp2f5b7 were identified as metabolites **SP-16** and **SP-15**, respectively.

Table 75. Experimental details for the separation of fraction sp2f5b.

Chromatographic conditions	
Column	Kromasil 100 C ₁₈ (250 mm × 8 mm i.d.)
Mobile phase	MeOH 100%, 2.5 mL/min

Fraction	Retention time (min)	Weight (mg)
sp2f5b1	4.8	1.7
sp2f5b2	8.3	0.6
sp2f5b3	17.3	0.6
sp2f5b4	31.2	0.9
sp2f5b5	36.7	1.4
sp2f5b6	41.9	9.1
sp2f5b7	47.1	8.8
sp2f5b8	54.8	14.5

Fraction sp2f7 (78.0 mg) was subjected to reversed-phase HPLC to yield fifteen fractions (Table 76), among which fractions sp2f7f and sp2f7k were identified as metabolites **SP-02** and **SP-13**, respectively.

Table 76. Experimental details for the separation of fraction sp2f7.

Chromatographic conditions	
Column Kromasil 100 C_{18} (250 mm × 8 mm i.d.)	
Mobile phase	MeOH 100%, 1.5 mL/min

Fraction	Retention time (min)	Weight (mg)
sp2f7a	7.2	1.9
sp2f7b	9.6	1
sp2f7c	11.9	0.9
sp2f7d	13.0	2.5
sp2f7e	13.6	0.5
sp2f7f	15.9	14
sp2f7g	19.1	1
sp2f7h	21.5	2.4
sp2f7i	23.9	1.7
sp2f7j	24.6	1
sp2f7k	25.3	6.4
sp2f7l	27.4	8.9

sp2f7m	28.6	4.6
sp2f7n	30.8	1.5
sp2f7o	32.1	1.1

Fractions sp2f7l and sp2f7m, pooled together in one fraction thereafter designated as sp2f7l (13.5 mg), were further subjected to reversed-phase HPLC to yield four fractions (Table 77), among which fractions sp2f7l2 and sp2f7l3 was identified as metabolites **SP-13** and **SP-14**, respectively.

Table 77. Experimental details for the separation of fraction sp2f7l.

Chromatographic conditions	
Column	Kromasil 100 C ₁₈ (250 mm × 8 mm i.d.)
Mobile phase	MeOH/H ₂ O 98:2%, 2 mL/min

Fraction	Retention time (min)	Weight (mg)
sp2f711	6.5	3.4
sp2f712	30.6	1.8
sp2f713	33.8	5.7
sp2f7l4	34.9	2.6

Fraction sp2f8 (25.8 mg) was subjected to reversed-phase HPLC to yield twelve fractions (Table 78), among which fractions sp2f8g, sp2f8j and sp2f8k were identified as metabolites **SP-02**, **SP-13** and **SP-14**, respectively.

Table 78. Experimental details for the separation of fraction sp2f8.

Chromatographic conditions	
Column	Kromasil 100 C ₁₈ (250 mm × 8 mm i.d.)
Mobile phase	MeOH 100%, 1.5 mL/min

Fraction	Retention time (min)	Weight (mg)
sp2f8a	7.2	0.8
sp2f8b	8.1	0.3
sp2f8c	9.8	1.3
sp2f8d	11.6	1.4
sp2f8e	13.6	0.6
sp2f8f	17.8	0.2
sp2f8g	19.8	4.9
sp2f8h	22.2	0.1
sp2f8i	24.5	1.0
sp2f8j	25.7	2.4
sp2f8k	28.0	1.8
sp2f8l	29.0	0.6

Fractions sp2f7e and sp2f8e, pooled together in one fraction thereafter designated as sp2f8e (1.1 mg), were further subjected to reversed-phase HPLC to yield two fractions (Table 79), among which fraction sp2f8e2 was identified as metabolite **SP-20**.

Table 79. Experimental details for the separation of fraction sp2f8e.

Chromatographic conditions	
Column	Kromasil 100 C ₁₈ (250 mm × 8 mm i.d.)
Mobile phase	MeOH/H ₂ O 98:2%, 2 mL/min

Fraction	Retention time (min)	Weight (mg)
sp2f8e1	6.5	0.6
sp2f8e2	13.8	0.5

Fraction sp2f9 (15.5 mg) was subjected to reversed-phase HPLC to yield twelve fractions (Table 80), among which fractions sp2f9g and sp2f9k were identified as metabolites **SP-13** and **SP-14**, respectively.

Table 80. Experimental details for the separation of fraction sp2f9.

Chromatographic conditions	
Column	Kromasil 100 C ₁₈ (250 mm × 8 mm i.d.)
Mobile phase	MeOH 100%, 1.0 mL/min

Fraction	Retention time (min)	Weight (mg)
sp2f9a	7.9	2.6
sp2f9b	9.6	1.0
sp2f9c	11.0	1.3
sp2f9d	12.9	0.6
sp2f9e	14.3	1.3
sp2f9f	15.2	0.9
sp2f9g	18.8	0.8
sp2f9h	19.9	0.2
sp2f9i	21.9	0.7
sp2f9j	23.6	0.4
sp2f9k	28.7	1.6
sp2f9l	31.2	0.5

Fraction sp3 (2.486 g) was subjected to normal-phase vacuum column chromatography, using cHex with increasing amounts of EtOAc as the mobile phase, to afford 21 fractions, which after an initial screening with TLC were combined into 9 fractions (Table 81).

Table 81. Experimental details for the separation of fraction sp3.

Fraction	Mobil	le phase	Volume (mI)
Fraction	cHex %	EtOAc %	Volume (mL)
	100	-	400
	98	2	150
sp3a	96	4	150
	94	6	150
	92	8	150
sp3b	90	10	150
spso	88	12	150
sp3c	85	15	150
spsc	80	20	150
	80	20	150
sp3d	80	20	150
	75	25	150
sp3e	70	30	150
sp3f	65	35	150
sp31	60	40	150
sp3g	60	40	150
	60	40	150
sp3h	50	50	150
	50	50	150
sp3i	50	50	150
spor	50	50	150

Fraction sp3e (138.6 mg) was subjected to reversed-phase HPLC to yield fourteen fractions (Table 82).

Table 82. Experimental details for the separation of fraction sp3e.

Chromatographic conditions	
Column Kromasil $100 C_{18}$ (250 mm × 8 mm i.d.)	
Mobile phase MeOH 100%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
sp3e1	8.1	10.2
sp3e2	10.8	2
sp3e3	11.6	2.1
sp3e4	12.2	1.6
sp3e5	12.8	11.9
sp3e6	13.5	21.0
sp3e7	15.3	3.3
sp3e8	16.1	2.1
sp3e9	16.8	34.8

sp3e10	19.5	2.1
sp3e11	21.0	1.9
sp3e12	22.4	2.7
sp3e13	25.2	5.7
sp3e14	26.1	1.1

Fraction sp3e5 (11.9 mg) was subjected to reversed-phase HPLC to yield two fractions (Table 83), among which fraction sp3e5b was identified as metabolite **SP-21**.

Table 83. Experimental details for the separation of fraction sp3e5.

Chromatographic conditions	
Column	Kromasil 100 C ₁₈ (250 mm × 8 mm i.d.)
Mobile phase	MeOH/H ₂ O 98:2%, 1.5 mL/min

Fraction	Retention time (min)	Weight (mg)
sp3e5a	7.9	2.0
sp3e5b	16.9	6.3

Fractions sp3e510 and sp3e511, pooled together in one fraction thereafter designated as sp3e10 (4.0 mg), were subjected to reversed-phase HPLC to yield three fractions (Table 84).

Table 84. Experimental details for the separation of fraction sp3e10.

Chromatographic conditions	
Column Kromasil $100 C_{18} (250 \text{ mm} \times 8 \text{ mm i.d.})$	
Mobile phase	MeOH/H ₂ O 98:2%, 2 mL/min

Fraction	Retention time (min)	Weight (mg)
sp3e10a	6.0	0.1
sp3e10b	10.2	0.1
sp3e10c	21.3	1.3

Fraction sp3e10c (1.3 mg) was subjected to reversed-phase HPLC to yield three fractions (Table 85), among which fractions sp3e10c2 and sp3e10c3 were identified as metabolites **SP-30** and **SP-31**, respectively.

Table 85. Experimental details for the separation of fraction sp3e10c.

Chromatographic conditions	
Column Kromasil $100 C_{18}$ (250 mm × 8 mm i.d.)	
Mobile phase	MeOH/H ₂ O 97:3%, 1.5 mL/min

Fraction	Retention time (min)	Weight (mg)
sp3e10c1	7.8	0.1
sp3e10c2	32.2	0.3
sp3e10c3	35.7	0.7

Fraction sp3f (254.7 mg) was subjected to reversed-phase HPLC to yield seventeen fractions (Table 86).

Table 86. Experimental details for the separation of fraction sp3f.

Chromatographic conditions	
Column	Kromasil 100 C ₁₈ (250 mm × 8 mm i.d.)
Mobile phase	MeOH 100%, 1.5 mL/min

Fraction	Retention time (min)	Weight (mg)
sp3f1	7.2	6.9
sp3f2	9.3	7.3
sp3f3	10.8	3.7
sp3f4	11.5	5.1
sp3f5	12.1	6.2
sp3f6	12.8	11.5
sp3f7	13.4	53.7
sp3f8	15.2	10
sp3f9	16.8	58.2
sp3f10	18.0	6.3
sp3f11	19.2	3.4
sp3f12	21.0	2.5
sp3f13	22.2	4.2
sp3f14	23.1	4.1
sp3f15	24.0	3.3
sp3f16	25.0	3
sp3f17	27.9	1.7

Fraction sp3f6 (11.5 mg) was subjected to reversed-phase HPLC to yield two fractions (Table 87), among which fraction sp3f6b was identified as metabolite **SP-21**.

Table 87. Experimental details for the separation of fraction sp3f6.

Chromatographic conditions	
Column	Kromasil 100 C ₁₈ (250 mm × 8 mm i.d.)
Mobile phase	MeOH/H ₂ O 98:2%, 1.5 mL/min

Fraction	Retention time (min)	Weight (mg)
sp3f6a	7.9	2.2
sp3f6b	16.9	1.9

Fraction sp3f8 (10.0 mg) was subjected to reversed-phase HPLC to yield four fractions (Table 88), among which fraction sp3f8d was identified as metabolite **SP-18**.

Table 88. Experimental details for the separation of fraction sp3f8.

Chromatographic conditions	
Column	Kromasil 100 C ₁₈ (250 mm × 8 mm i.d.)
Mobile phase	MeOH/H ₂ O 98:2%, 1.5 mL/min

Fraction	Retention time (min)	Weight (mg)
sp3f8a	6.2	2.0
sp3f8b	11.5	0.2
sp3f8c	15.5	3.3
sp3f8d	44.6	2.2

Fraction sp3g (136.7 mg) was subjected to reversed-phase HPLC to yield fifteen fractions (Table 89).

Table 89. Experimental details for the separation of fraction sp3g.

Chromatographic conditions	
Column	Kromasil 100 C ₁₈ (250 mm × 8 mm i.d.)
Mobile phase	MeOH 100%, 1.5 mL/min

Fraction	Retention time (min)	Weight (mg)
sp3g1	7.6	5.6
sp3g2	10.3	3.6
sp3g3	11.2	2.6
sp3g4	11.9	4
sp3g5	12.7	3.6
sp3g6	13.2	20.08
sp3g7	14.4	2.8
sp3g8	14.8	7.6
sp3g9	15.6	7.2
sp3g10	16.6	20.1
sp3g11	18.0	6.6
sp3g12	19.0	3.7
sp3g13	20.5	3.6
sp3g14	22.1	2.1
sp3g15	23.6	2.1

Fraction sp3g8 (7.6 mg) was subjected to reversed-phase HPLC to yield four fractions (Table 90), among which fractions sp3g8c and sp3g8d were identified as metabolites **SP-22** and **SP-09**, respectively.

Table 90. Experimental details for the separation of fraction sp3g8.

Chromatographic conditions	
Column	Kromasil 100 C ₁₈ (250 mm × 8 mm i.d.)
Mobile phase	MeOH/H ₂ O 98:2%, 1.5 mL/min

Fraction	Retention time (min)	Weight (mg)
sp3g8a	7.9	0.5
sp3g8b	12.8	0.3
sp3g8c	20.9	0.8
sp3g8d	21.6	2.4

Fraction sp3g9 (7.2 mg) was subjected to reversed-phase HPLC to yield three fractions (Table 91), among which fraction sp3g9c was identified as metabolite **SP-23**.

Table 91. Experimental details for the separation of fraction sp3g9.

Chromatographic conditions	
Column	Kromasil 100 C ₁₈ (250 mm × 8 mm i.d.)
Mobile phase	MeOH/H ₂ O 98:2%, 1.5 mL/min

Fraction	Retention time (min)	Weight (mg)
sp3g9a	7.9	0.3
sp3g9b	21.2	0.5
sp3g9c	22.8	2.2

Fraction sp3h (156.6 mg) was subjected to reversed-phase HPLC to yield fourteen fractions (Table 92).

Table 92. Experimental details for the separation of fraction sp3h.

Chromatographic conditions	
Column	Kromasil 100 C ₁₈ (250 mm × 8 mm i.d.)
Mobile phase	MeOH 100%, 1.5 mL/min

Fraction	Retention time (min)	Weight (mg)
sp3h1	7.1	5.2
sp3h2	9.1	2.4
sp3h3	9.7	3.9
sp3h4	11.3	6.4
sp3h5	12.0	4.6
sp3h6	12.9	10.7
sp3h7	13.4	23.1
sp3h8	14.1	3.9
sp3h9	14.9	15.9
sp3h10	15.9	11.6

sp3h11	16.9	14.6
sp3h12	18.1	4.7
sp3h13	19.4	5
sp3h14	21.0	2.4

Fraction sp3h3 (3.9 mg) was subjected to reversed-phase HPLC to yield two fractions (Table 93), among which fraction sp3h3b was identified as metabolite **SP-26**.

Table 93. Experimental details for the separation of fraction sp3h3.

Chromatographic conditions	
Column	Kromasil 100 C ₁₈ (250 mm × 8 mm i.d.)
Mobile phase	MeOH/H ₂ O 96:4%, 1.2 mL/min

Fraction	Retention time (min)	Weight (mg)
sp3h3a	9.5	1.0
sp3h3b	16.8	0.6

Fraction sp3h9 (15.9 mg) was subjected to reversed-phase HPLC to yield four fractions (Table 94), among which fraction sp3h9d was identified as metabolite **SP-09**.

Table 94. Experimental details for the separation of fraction sp3h9.

Chromatographic conditions	
Column	Kromasil 100 C ₁₈ (250 mm × 8 mm i.d.)
Mobile phase	MeOH/H ₂ O 98:2%, 1.5 mL/min

Fraction	Retention time (min)	Weight (mg)
sp3h9a	7.9	0.5
sp3h9b	12.7	0.1
sp3h9c	20.2	0.3
sp3h9d	21.0	5.7

Fraction sp3h10 (11.6 mg) was subjected to reversed-phase HPLC to yield three fractions (Table 95), among which fractions sp3h10b and sp3h10c were identified as metabolites **SP-09** and **SP-23**, respectively.

Table 95. Experimental details for the separation of fraction sp3h10.

Chromatographic conditions	
Column	Kromasil 100 C ₁₈ (250 mm × 8 mm i.d.)
Mobile phase	MeOH/H ₂ O 98:2%, 1.5 mL/min

Fraction	Retention time (min)	Weight (mg)
sp3h10a	7.9	0.3
sp3h10b	21.4	1.2

sp3h10c	22.9	5.7

Fraction sp3h11 (14.6 mg) was subjected to reversed-phase HPLC to yield three fractions (Table 96).

Table 96. Experimental details for the separation of fraction sp3h11.

Chromatographic conditions	
Column Kromasil 100 C ₁₈ (250 mm × 8 mm i.d.)	
Mobile phase	MeOH/H ₂ O 98:2%, 1.5 mL/min

Fraction	Retention time (min)	Weight (mg)
sp3h11a	7.9	0.9
sp3h11b	23.2	0.8
sp3h11c	24.4	6.5

Fraction sp3h11c (6.5 mg) was subjected to reversed-phase HPLC to yield two fractions (Table 97).

Table 97. Experimental details for the separation of fraction sp3h11c.

Chromatographic conditions		
Column	Kromasil 100 C ₁₈ (250 mm × 8 mm i.d.)	
Mobile phase	MeOH/H ₂ O 97:3%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
sp3h11c1	8.0	1.0
sp3h11c2	28.2	5.5

Fraction sp3h11c2 (5.5 mg) was subjected to reversed-phase HPLC to yield four fractions (Table 98), among which fraction sp3h11c2d was identified as metabolite **SP-24**.

Table 98. Experimental details for the separation of fraction sp3h11c2.

Chromatographic conditions		
Column Kromasil 100 C ₁₈ (250 mm × 8 mm i.d.)		
Mobile phase AC-N/H ₂ O 98:2%, 2.0 mL/min		

Fraction	Retention time (min)	Weight (mg)
sp3h11c2a	6.1	0.5
sp3h11c2b	25.5	0.7
sp3h11c2c	27.2	0.7
sp3h11c2d	38.7	0.3

Fraction sp4 (863 mg) was subjected to normal-phase gravity column chromatography, using cHex with increasing amounts of Acetone as the mobile phase, to afford 132 fractions of approx. 25 mL each, which after an initial screening with TLC were combined into 18 fractions (Table 99).

Table 99. Experimental details for the separation of fraction sp4.

Evention	Fraction Mobile phase		Volume (mI)	
rraction	cHex %	Acetone %	EtOAc %	Volume (mL)
sp4a	90	10	-	120
sp4b	90	10	-	80
~~ 4 ~	90	10	-	100
sp4c	87	13	-	180
sp4d	87	13	-	120
sp4e	85	15	-	300
sp4f	85	15	-	240
~	85	15	-	60
sp4g	82	18	-	200
sp4h	80	20	-	180
sp4i	80	20	-	100
sp4j	80	20	-	100
an 41r	80	20	-	60
sp4k	77	23	-	100
	77	23	-	100
sp4l	75	25	-	100
	72	28	-	120
an 1 m	72	28	-	180
sp4m	70	30	-	60
sp4n	70	30	-	80
sp4o	70	30	-	80
sp4p	65	35	-	240
sp4q	60	40	-	100
an Ar	60	40	-	100
sp4r	-	-	100	200

Fraction sp4g (150.7 mg) was subjected to reversed-phase HPLC to yield ten fractions (Table 100), among which fraction sp4g3 was identified as metabolite **SP-09**.

Table 100. Experimental details for the separation of fraction sp4g.

Chromatographic conditions		
Column	Kromasil 100 C ₁₈ (250 mm × 8 mm i.d.)	
Mobile phase	MeOH 100%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
sp4g1	7.2	19.5
sp4g2	12.6	3.1
sp4g3	15.1	6.3
sp4g4	16.0	11.1
sp4g5	16.9	13.6
sp4g6	17.5	4.2
sp4g7	19.5	3.3
sp4g8	21.8	45.3
sp4g9	25.4	1.8
sp4g10	29.4	1.1

Fraction sp4g4 (11.1 mg) was subjected to reversed-phase HPLC to yield three fractions (Table 101), among which fractions sp4g4b and sp4g4c were identified as metabolites **SP-09** and **SP-23**, respectively.

Table 101. Experimental details for the separation of fraction sp4g4.

Chromatographic conditions		
Column Kromasil 100 C_{18} (250 mm × 8 mm i.d.)		
Mobile phase	MeOH/H ₂ O 97:3%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
sp4g4a	8.0	1
sp4g4b	24.4	1.5
sp4g4c	26.5	8.2

Fraction sp4h (130.4 mg) was subjected to reversed-phase HPLC to yield eleven fractions (Table 102), among which fraction sp4h6 was identified as metabolite **SP-09**.

Table 102. Experimental details for the separation of fraction sp4h.

Chromatographic conditions		
Column Kromasil 100 C_{18} (250 mm × 8 mm i.d.)		
Mobile phase	MeOH 100%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
sp4h1	7.2	14.7
sp4h2	9.8	4.7
sp4h3	13.0	2.7
sp4h4	13.4	2.9
sp4h5	14.4	0.9
sp4h6	14.9	8.7
sp4h7	15.8	3.2
sp4h8	16.8	16.2

sp4h9	19.1	2
sp4h10	21.6	22.1
sp4h11	22.7	4.3

Fraction sp4h2 (4.7 mg) was subjected to reversed-phase HPLC to yield three fractions (Table 103), among which fraction sp4h2c was identified as metabolite **SP-25**.

Table 103. Experimental details for the separation of fraction sp4h2.

Chromatographic conditions		
Column Kromasil 100 C_{18} (250 mm × 8 mm i.d.)		
Mobile phase	MeOH/H ₂ O 98:2%, 1.5.0 mL/min	

Fraction	Retention time (min)	Weight (mg)
sp4h2a	7.9	1.0
sp4h2b	11.8	0.3
sp4h2c	12.6	1.3

Fraction sp4h7 (3.2 mg) was subjected to reversed-phase HPLC to yield four fractions (Table 104), among which fractions sp4h7b and sp4h7d were identified as metabolite **SP-09** and **SP-23**, respectively.

Table 104. Experimental details for the separation of fraction sp4h7.

Chromatographic conditions		
Column Kromasil 100 C_{18} (250 mm × 8 mm i.d.)		
Mobile phase	MeOH/H ₂ O 98:2%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
sp4h7a	7.9	0.1
sp4h7b	21.2	1.1
sp4h7c	22.3	1
sp4h7d	23.4	0.9

Fraction sp4h8 (16.2 mg) was subjected to reversed-phase HPLC to yield four fractions (Table 105).

Table 105. Experimental details for the separation of fraction sp4h8.

Chromatographic conditions		
Column Kromasil 100 C_{18} (250 mm × 8 mm i.d.)		
Mobile phase	MeOH/H ₂ O 98:2%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
sp4h8a	7.9	0.6
sp4h8b	11.5	1.1

sp4h8c	23.5	0.7
sp4h8d	24.7	11.9

Fraction sp4h8d (11.9 mg) was subjected to reversed-phase HPLC to yield three fractions (Table 106), among which fraction sp4h8d3 was identified as metabolite **SP-24**.

Table 106. Experimental details for the separation of fraction sp4h8d3.

Chromatographic conditions		
Column Kromasil 100 C_{18} (250 mm × 8 mm i.d.)		
Mobile phase	AC-N/H ₂ O 98:2%, 2.0 mL/min	

Fraction	Retention time (min)	Weight (mg)
sp4h8d1	6.1	1.5
sp4h8d2	33.2	7.2
sp4h8d3	38.2	2.3

Fraction sp4i (50.1 mg) was subjected to reversed-phase HPLC to yield eight fractions (Table 107), among which fractions sp4i4, sp4i6 and sp4i8 were identified as metabolites **SP-05**, **SP-04** and **SP-03**, respectively.

Table 107. Experimental details for the separation of fraction sp4i.

Chromatographic conditions		
Column Kromasil 100 C_{18} (250 mm × 8 mm i.d.)		
Mobile phase	MeOH 100%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
sp4i1	7.2	3.1
sp4i2	12.8	1.1
sp4i3	13.2	3.7
sp4i4	15.3	9.4
sp4i5	16.4	5.4
sp4i6	17.9	3.9
sp4i7	21.3	2.1
sp4i8	22.2	10.5

Fraction sp4j (53.1 mg) was subjected to reversed-phase HPLC to yield ten fractions (

Table 108), among which fractions sp4j8 and sp4j10 were identified as metabolites SP-04 and SP-03, respectively.

Table 108. Experimental details for the separation of fraction sp4j.

Chromatographic conditions		
Column Kromasil 100 C_{18} (250 mm × 8 mm i.d.)		
Mobile phase	MeOH 100%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
sp4j1	8.7	3.7
sp4j2	12.3	1.6
sp4j3	13.1	1.5
sp4j4	13.5	3.3
sp4j5	14.5	2.8
sp4j6	15.8	1.4
sp4j7	16.9	2.1
sp4j8	18.4	5.2
sp4j9	22.0	1
sp4j10	23.0	10.4

Fraction sp4k (56.6 mg) was subjected to reversed-phase HPLC to yield eight fractions (Table 109), among which fractions sp4k7 and sp4k8 were identified as metabolites **SP-04** and **SP-03**, respectively.

Table 109. Experimental details for the separation of fraction sp4k.

Chromatographic conditions		
Column Kromasil 100 C_{18} (250 mm × 8 mm i.d.)		
Mobile phase MeOH 100%, 1.5 mL/min		

Fraction	Retention time (min)	Weight (mg)
sp4k1	7.2	1.8
sp4k2	7.9	11.5
sp4k3	9.7	6.6
sp4k4	12.3	3.2
sp4k5	13.3	2.7
sp4k6	14.0	4.5
sp4k7	18.6	1.1
sp4k8	23.2	3.9

Fraction sp4k4 (3.2 mg) was subjected to reversed-phase HPLC to yield two fractions (

Table 110), among which fraction sp4k4b was identified as metabolite SP-28.

Table 110. Experimental details for the separation of fraction sp4k4.

Chromatographic conditions		
Column Kromasil 100 C_{18} (250 mm × 8 mm i.d.)		
Mobile phase	MeOH/H ₂ O 97:3%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
sp4k4a	8.0	1.0
sp4k4b	18.2	1.1

Fraction sp4l (25.5 mg) was subjected to reversed-phase HPLC to yield eight fractions (Table 111).

Table 111. Experimental details for the separation of fraction sp 4l.

Chromatographic conditions		
Column Kromasil 100 C_{18} (250 mm × 8 mm i.d.)		
Mobile phase MeOH 100%, 1.5 mL/min		

Fraction	Retention time (min)	Weight (mg)
sp411	7.5	1.3
sp412	8.5	2.1
sp4l3	9.6	1.0
sp4l4	9.8	3.1
sp415	10.9	1.0
sp4l6	12.5	0.8
sp417	12.9	0.7
sp418	13.7	0.7

Fraction sp4l4 (3.1 mg) was subjected to reversed-phase HPLC to yield four fractions (Table 112).

Table 112. Experimental details for the separation of fraction sp4l4.

Chromatographic conditions		
Column Kromasil 100 C_{18} (250 mm × 8 mm i.d.)		
Mobile phase MeOH/H ₂ O 98:2%, 1.5 mL/min		

Fraction	Retention time (min)	Weight (mg)
sp414a	7.9	1.5
sp414b	12.1	0.1
sp414c	12.5	0.6
sp414d	13.1	0.2

Fractions sp4k3 and sp4l4c, pooled together in one fraction thereafter designated as sp4k3 (7.2 mg), were further subjected to reversed-phase HPLC to yield three

fractions (Table 113), among which fractions sp4k3b and sp4k3c were identified as metabolites **SP-26** and **SP-27**, respectively.

Table 113. Experimental details for the separation of fraction sp4k3.

Chromatographic conditions		
Column Kromasil 100 C ₁₈ (250 mm × 8 mm i.d.)		
Mobile phase	MeOH/H ₂ O 97:3%, 1 mL/min	

Fraction	Retention time (min)	Weight (mg)
sp4k3a	11.6	1.0
sp4k3b	19.0	4.0
sp4k3c	19.9	2.2

Fraction sp5 (251.6 mg) was further fractionated by normal-phase gravity column chromatography, using cHex with increasing amounts of Acetone as the mobile phase, to afford 56 fractions of approx. 25 mL each, which after an initial screening with TLC were combined into 9 fractions (Table 114), among which fraction sp5f was identified as metabolite **SP-01**.

Table 114. Experimental details for the separation of fraction sp5.

Fraction		Mobile phase		Volume (mI)
Fraction	cHex %	Acetone %	EtOAc %	Volume (mL)
sp5a	85	15	-	200
sp5b	80	20	-	150
sp5c	80	20	-	75
sp5d	80	20	-	100
an5a	80	20	-	150
sp5e	78	22	-	50
sp5f	78	22	-	25
sp5g	78	22	-	200
sp5h	78	22	-	100
	75	25	-	100
sp5i	70	30	-	100
	-	-	100	150

Fraction sp5c (55.1 mg) was subjected to reversed-phase HPLC to yield five fractions (Table 115), among which fraction sp5c5 was identified as metabolite **SP-03**.

Table 115. Experimental details for the separation of fraction sp5c.

Chromatographic conditions		
Column	Kromasil 100 C ₁₈ (250 mm × 8 mm i.d.)	
Mobile phase	MeOH 100%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
sp5c1	7.2	1.2
sp5c2	14.4	4.4
sp5c3	17.7	2.4
sp5c4	19.2	7.4
sp5c5	24.0	17.5

Fraction sp5c4 (7.4 mg) was subjected to reversed-phase HPLC to yield four fractions (Table 116), among which fractions sp5c4c and sp5c4d were identified as metabolites **SP-04** and **SP-29**, respectively.

Table 116. Experimental details for the separation of fraction sp5c4.

Chromatographic conditions		
Column Kromasil $100 C_{18} (250 \text{ mm} \times 8 \text{ mm i.d.})$		
Mobile phase	MeOH/H ₂ O 97:3%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)	
sp5c4a	8.0	0.5	
sp5c4b	30.2	0.9	
sp5c4c	31.1	1.7	
sp5c4d	32.3	2	

Fraction sp5e (23.5 mg) was subjected to reversed-phase HPLC to yield eight fractions (Table 117), among which fraction sp5e7 was identified as metabolite **SP-01**.

Table 117. Experimental details for the separation of fraction sp5e.

Chromatographic conditions		
Column	Kromasil 100 C ₁₈ (250 mm × 8 mm i.d.)	
Mobile phase	MeOH 100%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
sp5e1	7.9	0.7
sp5e2	8.6	0.8
sp5e3	9.3	1.2
sp5e4	10.6	0.2
sp5e5	10.9	1.6
sp5e6	13.8	1.4
sp5e7	15.2	5.3
sp5e8	16.7	1.4

Fraction sp5g (36.1 mg) was subjected to reversed-phase HPLC to yield four fractions (Table 118), among which fraction sp5g3 was identified as metabolite **SP-01**.

Table 118. Experimental details for the separation of fraction sp5g.

Chromatographic conditions		
Column	Kromasil 100 C ₁₈ (250 mm × 8 mm i.d.)	
Mobile phase	MeOH 100%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
sp5g1	8.2	5.6
sp5g2	12.9	3.4
sp5g3	14.5	21.2
sp5g4	16.3	0.9

Fractions sp5e8 and sp5g4, pooled together in one fraction thereafter designated as sp5e8 (2.3 mg), were further subjected to reversed-phase HPLC to yield three fractions (Table 119), among which fraction sp5e8c was identified as metabolite **SP-06**.

Table 119. Experimental details for the separation of fraction sp5e8.

Chromatographic conditions		
Column	Kromasil 100 C ₁₈ (250 mm × 8 mm i.d.)	
Mobile phase	MeOH 100%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
sp5e8a	7.9	0.5
sp5e8b	14.8	0.4
sp5e8c	16.2	1.0

Fraction sp6 (434.0 mg) was further fractionated by normal-phase gravity column chromatography, using cHex with increasing amounts of Acetone as the mobile phase, to afford 81 fractions of approx. 25 mL each, which after an initial screening with TLC were combined into 11 fractions (Table 120), among which fractions sp6g and sp6h were identified as metabolite **SP-01**.

Table 120. Experimental details for the separation of fraction sp6.

Fraction	Mobile phase		Volumo (mI)
	cHex %	Acetone %	Volume (mL)
sp6a	90	10	250
sp6b	90	10	275
sp6c	85	15	500
sp6d	80	20	100
sp6e	75	25	150
sp6f	75	25	125

sp6g	70	30	50
sp6h	70	30	125
sp6i	70	30	50
spor	65	35	50
an6i	65	35	50
sp6j	60	40	100
on6lz	50	50	100
sp6k	0	100	100

Fraction sp6f (24.9 mg) was subjected to reversed-phase HPLC to yield eight fractions (Table 121).

Table 121. Experimental details for the separation of fraction sp6f.

Chromatographic conditions		
Column Kromasil 100 C_{18} (250 mm × 8 mm i.d.)		
Mobile phase MeOH 100%, 1.5 mL/min		

Fraction	Retention time (min)	Weight (mg)
sp6f1	8.0	1.4
sp6f2	11.9	4.4
sp6f3	13.8	1.2
sp6f4	14.7	1.1
sp6f5	15.2	3.8
sp6f6	15.9	1.3
sp6f7	16.8	1.9
sp6f8	17.5	1.2

Fraction sp6f7 (1.9 mg) was subjected to reversed-phase HPLC to yield two fractions (Table 122), among which fraction sp6f7b was identified as metabolite **SP-06**.

Table 122. Experimental details for the separation of fraction sp6f7.

Chromatographic conditions		
Column Kromasil 100 C_{18} (250 mm × 8 mm i.d.)		
Mobile phase	MeOH/H ₂ O 97:3%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
sp6f7a	8.0	0.5
sp6f7b	27.5	0.9

Fraction sp7 (144.4 mg) was further fractionated by normal-phase vacuum column chromatography, using cHex with increasing amounts of EtOAc, followed by EtOAc with increasing amounts of MeOH as the mobile phase, to afford 12 fractions, which after an initial screening with TLC were combined into 7 fractions (Table 123).

Table 123. Experimental details for the separation of fraction sp7.

Fraction		Mobile phase		Volume (mI)
rraction	cHex %	EtOAc %	МеОН %	Volume (mL)
cn70	50	50	-	400
sp7a	40	60	-	200
sp7b	30	70	-	200
sp/0	20	80	-	200
an7a	15	85	-	200
sp7c	10	90	-	200
an 7 d	5	95	-	200
sp7d	0	100	-	200
an7a	-	99	1	200
sp7e	-	98	2	200
sp7f	-	98	2	200
sp7g	-	95	5	200

Fraction sp7e (33.6 mg) was subjected to reversed-phase HPLC to yield six fractions (Table 124), among which fraction sp7e5 was identified as metabolite **SP-07**.

Table 124. Experimental details for the separation of fraction sp7e.

Chromatographic conditions		
Column Kromasil 100 C_{18} (250 mm × 8 mm i.d.)		
Mobile phase MeOH 100%, 1.5 mL/min		

Fraction	Retention time (min)	Weight (mg)
sp7e1	6.9	2.4
sp7e2	9.9	8.9
sp7e3	12.6	2.3
sp7e4	13.4	1.1
sp7e5	14.5	6.9
sp7e6	17.1	0.9

Fraction sp7g (39.7 mg) was subjected to reversed-phase HPLC to yield five fractions (Table 125), among which fraction sp7g4 was identified as metabolite **SP-17**.

Table 125. Experimental details for the separation of fraction sp7g.

Chromatographic conditions		
Column Kromasil $100 C_{18} (250 \text{ mm} \times 8 \text{ mm i.d.})$		
Mobile phase MeOH 100%, 1.5 mL/min		

Fraction	Retention time (min)	Weight (mg)
sp7g1	6.9	6.0
sp7g2	10.7	1.5
sp7g3	11.6	0.8
sp7g4	13.4	3.1
sp7g5	14.2	3.3

Fraction sp7g5 (3.3 mg) was subjected to reversed-phase HPLC to yield three fractions (Table 126), among which fractions sp7g5b and sp7g5c were identified as metabolites **SP-17** and **SP-08**, respectively.

Table 126. Experimental details for the separation of fraction sp7g5.

Chromatographic conditions		
Column Kromasil 100 C_{18} (250 mm × 8 mm i.d.)		
Mobile phase MeOH/H ₂ O 97:3%, 1.5 mL/min		

Fraction	Retention time (min)	Weight (mg)
sp7g5a	8.0	0.5
sp7g5b	21.3	0.6
sp7g5c	23.1	2.0

Fraction sp8 (1.0 g) was further fractionated by normal-phase vacuum column chromatography, using cHex with increasing amounts of EtOAc, followed by EtOAc with increasing amounts of MeOH as the mobile phase, to afford 19 fractions, which after an initial screening with TLC were combined into 11 fractions (Table 127).

Table 127. Experimental details for the separation of fraction sp8.

Fraction		Mobile phase		Volume (mI)
	cHex %	EtOAc %	МеОН %	Volume (mL)
	50	50	-	400
sp8a	40	60	-	200
	30	70	-	200
an 9h	20	80	-	200
sp8b	15	85	-	200
sp8c	10	90	-	200
sp8d	5	95	-	200
sp8e	-	100	-	200
spee	-	99	1	200
sp8f	-	98	2	200
sp8g	-	98	2	200
an 9h	-	95	5	200
sp8h	-	90	10	200
sp8i	-	80	20	200

sp8j	-	70	30	200
sp8k	-	60	40	200
	-	50	50	200
	-	-	100	200
	-	-	100	200

Fraction sp8g (34.0 mg) was subjected to reversed-phase HPLC to yield ten fractions (Table 128).

Table 128. Experimental details for the separation of fraction sp8g.

Chromatographic conditions	
Column	Kromasil 100 C ₁₈ (250 mm × 8 mm i.d.)
Mobile phase	MeOH 100%, 1.5 mL/min

Fraction	Retention time (min)	Weight (mg)
sp8g1	7.7	0.4
sp8g2	8.8	1.4
sp8g3	10.0	0.8
sp8g4	12.0	1.4
sp8g5	12.8	1.8
sp8g6	13.1	1.6
sp8g7	15.5	0.6
sp8g8	16.3	7.0
sp8g9	18.5	1.9
sp8g10	20.1	1.3

Fraction sp8g5 (1.8 mg) was subjected to reversed-phase HPLC to yield three fractions (Table 129), among which fraction sp8g5c was identified as metabolite **SP-19**.

Table 129. Experimental details for the separation of fraction sp8g5.

Chromatographic conditions		
Column	Kromasil 100 C ₁₈ (250 mm × 8 mm i.d.)	
Mobile phase	MeOH/H ₂ O 97:3%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
sp8g5a	8.0	0.6
sp8g5b	16.6	0.4
sp8g5c	23.0	0.5

Fraction sp8g8 (7.0 mg) was subjected to reversed-phase HPLC to yield four fractions ($\,$

Table 130), among which fraction sp8g8d was identified as metabolite SP-19.

Table 130. Experimental details for the separation of fraction sp8g8.

Chromatographic conditions		
Column	Kromasil 100 C ₁₈ (250 mm × 8 mm i.d.)	
Mobile phase	MeOH/H ₂ O 97:3%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
sp8g8a	8.0	0.6
sp8g8b	16.3	0.6
sp8g8c	21.6	2.3
sp8g8d	24.0	0.2

Fractions sp9 and sp10, pooled together in one fraction thereafter designated as sp9 (200 mg), were further fractionated by normal-phase vacuum column chromatography, using cHex with increasing amounts of EtOAc, followed by EtOAc with increasing amounts of MeOH as the mobile phase, to afford 12 fractions, which after an initial screening with TLC were combined into 11 fractions (Table 131).

Table 131. Experimental details for the separation of fraction sp9.

Fraction		Mobile phase		Volume (m.I.)
Fraction	cHex %	EtOAc %	МеОН %	Volume (mL)
sp9a	10	90	-	400
sp9b	5	95	-	200
sp9c	-	100	-	200
sp9d	-	99	1	200
sp9e	-	98	2	200
sp9f	-	98	2	200
sp9g	-	95	5	200
sp9h	-	90	10	200
span	-	50	50	200
sp9i	-	-	100	200
sp9j	-	-	100	200
sp9k	-	-	100	200

Fraction sp9f (15.8 mg) was subjected to reversed-phase HPLC to yield four fractions (Table 132), among which fraction sp9f4 was identified as metabolite **SP-19**.

Table 132. Experimental details for the separation of fraction sp9f.

Chromatographic conditions		
Column	Kromasil 100 C ₁₈ (250 mm × 8 mm i.d.)	
Mobile phase	MeOH 100%, 1.5 mL/min	

Fraction	Retention time (min)	Weight (mg)
sp9f1	7.7	1.0
sp9f2	8.4	3.1
sp9f3	9.4	2.8
sp9f4	16.3	1.4

Fraction sp9g (10.5 mg) was subjected to reversed-phase HPLC to yield four fractions (Table 133), among which fraction sp9g4 was identified as metabolite **SP-19**.

Table 133. Experimental details for the separation of fraction sp9g.

Chromatographic conditions	
Column	Kromasil 100 C ₁₈ (250 mm × 8 mm i.d.)
Mobile phase	MeOH 100%, 1.5 mL/min

Fraction	Retention time (min)	Weight (mg)
sp9g1	7.9	2.7
sp9g2	9.9	0.6
sp9g3	14.5	0.1
sp9g4	16.4	2.0

In total, from the chemical investigation of the organic extract of the soft coral *S. polydactyla*, 28 metabolites were isolated in pure form (Table 134).

Table 134. Isolated metabolites from the soft coral *S. polydactyla*.

Metabolite	Code	Fraction	Weight (mg)
34	SP-31	sp3e10c3	0.7
35	SP-30	sp3e10c2	0.3
36	SP-16	sp2f5b6	9.1
37	SP-15	sp2f5b7	8.8
38	SP-13	sp2f7k, sp2f7l2, sp2f8j, sp2f9g	11.4
39	SP-14	sp2f7l3, sp2f8k, sp2f9k	9.1
40	SP-21	sp3e5b, sp3f6b	8.2
41	SP-20	sp2f8e2	0.5
42	SP-09	sp3g8d, sp3h9d, sp3h10b, sp4g3, sp4g4b, sp4h6, sp4h7b	26.9
43	SP-23	sp3g9c, sp3h10c, sp4g4c, sp4h7d	17.0
44	SP-26	sp3h3b, sp4k3b	4.6
45	SP-27	sp4k3c	2.2
46	SP-25	sp4h2c	1.3
47	SP-28	sp4k4b	1.1
48	SP-05	sp4i4	9.4
49	SP-24	sp3h11c2d, sp4h8d3	2.6

50	SP-02	sp2f6, sp2f7f, sp2f8g	232.9
51	SP-04	sp4i6, sp4j8, sp4k7, sp5c4c	11.9
52	SP-03	sp4i8, sp4j10, sp4k8, sp5c5	42.3
53	SP-29	sp5c4d	2.0
54	SP-19	sp8g5c, sp8g8d, sp9f4, sp9g4	4.1
55	SP-01	sp5f, sp5e7, sp5g3, sp6g, sp6h	155.4
56	SP-06	sp5e8c, sp6f7b	1.9
57	SP-07	sp7e5	6.9
58	SP-17	sp7g4, sp7g5b	3.7
59	SP-08	sp7g5c	2.0
	SP-18	sp3f8d	2.2
	SP-22	sp3g8d	0.8

2.7 Evaluation of the biological activity of some of the isolated compounds

2.7.1 Cell Culture

The tested compounds were dissolved in DMSO to afford 10 mM stock solutions. Human cervical carcinoma (HeLa) and human breast adenocarcinoma (MCF7) cell lines were purchased from European Collection of Authenticated Cell Cultures (ECACC, Salisbury, UK) and cultivated in Dulbecco's Modified Eagle Medium (DMEM) (Merck, Darmstadt, Germany), as previously reported (Rárová et al., 2016). Human umbilical vein endothelial cells (HUVECs) were a kind gift of Prof. Jitka Ulrichová (Faculty of Medicine and Dentistry, Palacky University, Olomouc). The cultivation and assay was performed in Endothelial Cell Proliferation Medium (ECPM, Provitro, Berlin, Germany) (Rárová et al., 2018). The 22Rv1-ARE14 reporter cell line (Bartonkova et al., 2015) was a generous gift of Prof. Zdeněk Dvořák (Department of Cell Biology and Genetics, Palacký University). The 22Rv1-ARE14 cell line was grown in Roswell Park Memorial Institute 1640 Medium (RPMI 1640) (Jorda et al., 2019). All cells were maintained in a humidified CO2 incubator at 37 °C using the standard trypsinization procedure twice or three times a week. The SH-SY5Y human neuroblastoma cell line (ECACC, Salisbury, UK) was cultivated in DMEM and Ham's F12 Nutrient Mixture (DMEM:F12, 1:1), as previously described (Colle et al., 2016). Cells were used up to twenty passages. All trans-retinoic acid (10 µM) in 1% FBS DMEM/F12 medium was added to SH-SY5Y cells to achieve differentiation conditions (Cheung et al., 2009; Dwane et al., 2013) to reach longer neurites and reduced proliferation (48 h). All cells were maintained in a humidified CO₂ incubator at 37 °C using the standard trypsinization procedure twice or three times a week.

2.7.2 Evaluation of cytotoxicity

In cytotoxicity assays, cancer cells were treated with six different concentrations of each tested compound for 72 h. Cells were stained with resazurin and IC₅₀ values

were calculated as previously reported (Dengler et al., 1995). Triplicates from at least three independent experiments were used. For the ELAM assay, the Calcein AM (Molecular Probes, Invitrogen, Karlsruhe, Germany) cytotoxicity assay, which assessed HUVEC viability after 4 h treatment, was used as previously described (Morrogh-Bernard et al., 2017).

2.7.3 Cell-surface ELISA CD62E (E-Selectin, ELAM)

An enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of the cell adhesion molecule ELAM in HUVEC cells after 30 min of incubation with the tested compounds and 4 h of stimulation with TNF α , as previously described (Morrogh-Bernard et al., 2017).

2.7.4 Migration scratch assay

The scratch test was performed with HUVEC cells and evaluated after 20 h of treatment, as previously reported (Rárová et al., 2018).

2.7.5 AR-Transcriptional reporter aAssay

AR-transcriptional reporter assays were performed on 22Rv1-ARE14 cells after 24 h of incubation, as previously described (Jorda et al., 2019).

2.7.6 SH-SY5Y cell treatments and evaluation of cell viability/cytotoxicity

Cell viability of neuron-like SH-SY5Y cells growing in 96-well plates (7,000 cells/well) 24 h after treatment was evaluated using the Calcein AM assay (Rárová et al., 2016), with minor modification of Calcein AM concentration (0.75 μM). Cell death of SH-SY5Y cells (20,000 cells/well) was determined using the propidium iodide (PI) assay according to Stone et al. with a slight modification (Stone et al., 2003). Briefly, PI solution in PBS is added to cell medium to reach concentration 1 μg/mL, incubated for 15 min. at room temperature and quantified at 535/617 nm (excitation/emission) by Infinite M200 Pro reader (Tecan, Austria). The resulting fluorescence of 3-NPA toxin was considered as 100% cell death. In the assays, neuron-like cells were treated with the tested compounds in 0.1–10 μM concentration range for 48 h. DMSO treated cells (≤0.1% v/v) were used as healthy controls.

2.7.7 Statistical analysis

All data are expressed as mean \pm SD or SEM. Data were evaluated by non-parametric Kruskal–Wallis test followed by post-hoc Mann–Whitney test with sequential Bonferroni correction of p-values or ANOVA followed by Tukey's multiple

comparison test (Figure 5) using the PAST (version 1.97) software package (Hammer et al., 2001). *P*-values < 0.05 were considered statistically significant.

3. RESULTS AND DISCUSSION

The aim of the present PhD thesis was to investigate the chemical profile of marine organisms from the Red Sea. Following an initial screening, the organic extracts of the red alga *Laurencia majuscula*, of a sponge belong to the genus *Lamellodysidea* and of the soft coral *Sinularia polydactyla* exhibited interesting chemical profiles and were selected for in depth chemical analysis.

Fresh algal tissues of the red alga *L. majuscula* collected by SCUBA diving from the coastline of Hurghada at the Egyptian Red Sea at a depth of 4-6 m in June 2015 were extracted with mixtures of organic solvents. The obtained organic extract was subjected to a series of chromatographic separations that led to the isolation of 25 secondary metabolites, among which **1-22** were identified on the basis of their spectroscopic data.

The chemical investigation of the organic extract of the marine sponge *Lamellodysidea* sp. collected from the coral reef of Thuwal in the Saudi Arabian Red Sea afforded 11 compounds (23-33).

A series of normal and reversed-phase chromatographic separations of the organic extract of the soft coral *S. polydactyla* collected from the Egyptian Red Sea coastline at Hurghada at a depth of 10 m allowed for the isolation of 28 compounds, 26 of which (34-59) were identified after extensive analysis of their NMR and MS data.

The identification of isolated metabolites was based on the analysis of their spectroscopic data (mainly NMR and MS) and their comparison with data from similar preciously reported structures.

3.1 Identification and structure elucidation of isolated metabolites from the red alga *Laurencia majuscula*

3.1.1 Metabolite 1

Metabolite 1 (LMH12) was isolated after a series of chromatographic separations as a colorless oil (5.2 mg).

The mass spectrum of metabolite 1 (Figure 15) exhibited a molecular ion peak $[M]^+$ at m/z 200, as well as fragment ion peaks at m/z 185 and 170, corresponding to $[M-CH_3]^+$ and $[M-2CH_3]^+$, respectively.

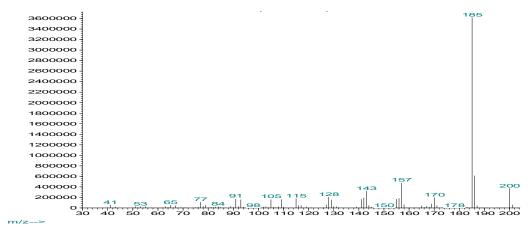


Figure 15. Mass spectrum (EIMS) of metabolite 1.

In the ¹H NMR spectrum of metabolite 1 (Figure 16) obvious were:

- One aliphatic methyl on a non-protonated carbon at δ 1.35,
- Two olefinic methyls at δ 1.38 and 1.70,
- One aromatic methyl at δ 2.30, and
- Two doublets at δ 7.08 and 7.11 integrating for two protons each and attributed to four aromatic protons.

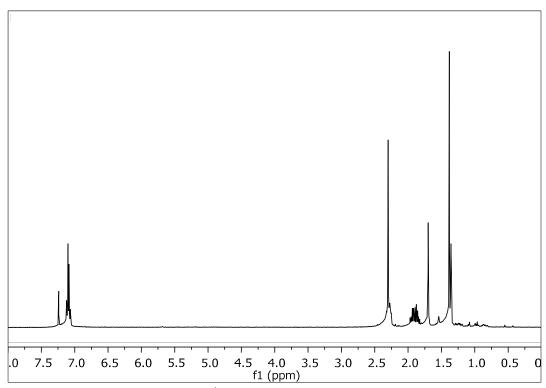


Figure 16. ¹H NMR spectrum of metabolite 1.

Analysis of the NMR and MS data of 1 led to the molecular formula $C_{15}H_{20}$. Taking into account the four carbon-carbon double bonds as four of the six degrees of unsaturation, the molecular structure of 1 was determined as bicyclic.

Comparison of the spectroscopic and physical characteristics of metabolite 1 with those reported in the literature led to its identification as isolaurene, previously isolated from the alga *L. okamurai* (Suzuki & Kurosawa, 1979) and synthetically prepared (Takeshita et al., 1984). The ¹H NMR data of metabolite 1 are reported in Table 135.

Table 135. ¹H NMR data of metabolite 1 in CDCl₃ (δ in ppm, J in Hz).

Position	δ H,exp	δ H,lit
7	7.08 (d, 8.2)	7.07 (s)
8	7.11 (d, 8.2)	7.07 (s)
10	7.11 (d, 8.2)	7.07 (s)
11	7.08 (d, 8.2)	7.07 (s)
12	1.38 (s)	1.39 (s)
13	1.70 (s)	1.71 (s)
14	1.35 (s)	1.37 (s)
15	2.30 (s)	2.30(s)

3.1.2 Metabolite 2

Metabolite 2 (LMH-17) was isolated after a series of chromatographic separations as a colorless oil (3.3 mg).

The mass spectrum of metabolite **2** (Figure 17) exhibited a molecular ion peak $[M]^+$ at m/z 214, as well as a fragment ion peak at m/z 199 corresponding to $[M-CH_3]^+$.

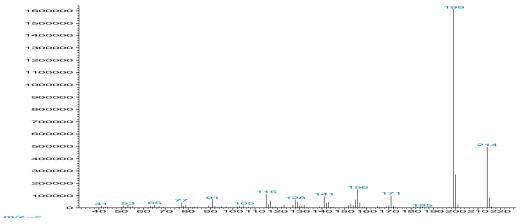


Figure 17. Mass spectrum (EIMS) of metabolite 2.

In the ¹H NMR spectrum of metabolite **2** (Figure 18) obvious were:

- One aliphatic methyl on a non-protonated carbon at δ 1.56,
- Two olefinic methyls at δ 1.71 and 1.76,
- One aromatic methyl at δ 2.30, and
- Two doublets at δ 7.04 and 7.10 integrating for two protons each and attributed to four aromatic protons.

Analysis of the NMR and MS data of $\bf 2$ led to the molecular formula $C_{15}H_{18}O$. Taking into account the four carbon-carbon double bonds and the carbonyl moiety as five of the seven degrees of unsaturation, the molecular structure of $\bf 2$ was determined as bicyclic.



Figure 18. ¹H NMR spectrum of metabolite 2.

The planar structure of metabolite **2** was determined on the basis of the homonuclear and heteronuclear correlations (Figure 19) observed in the HSQC-DEPT (Figure 20), HMBC (Figure 21) and COSY (Figure 22) spectra. In particular, the position of Me-14 on C-1 was confirmed by the HMBC correlations of Me-14 (δ_H 1.56) with C-1 (δ_C 47.8), C-5 (δ_C 53.3) and the aromatic carbon C-6 (δ_C 142.0). The correlations of Me-12 (δ_H 1.71) with C-1, C-2 (δ_C 176.2) and C-3 (δ_C 135.5) and of Me-13 (δ_H 1.76) with C-2, C-3 and C-4 (δ_C 208.6) secured the position of Me-12 on C-2 and Me-13 on C-3. Additionally, the presence of the two doublets at δ 7.04 and 7.10 integrating for two protons each indicated a *para*-substituted aromatic ring.

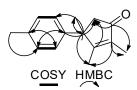
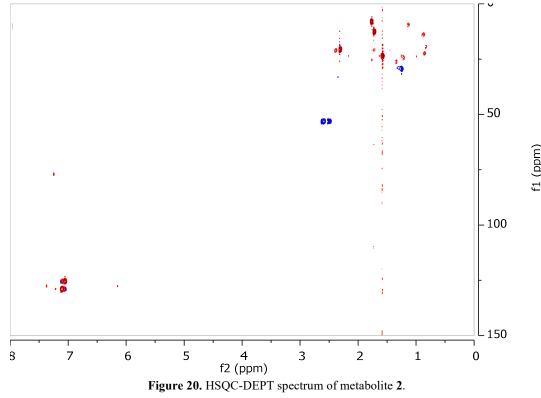



Figure 19. COSY and important HMBC correlations observed for metabolite 2.

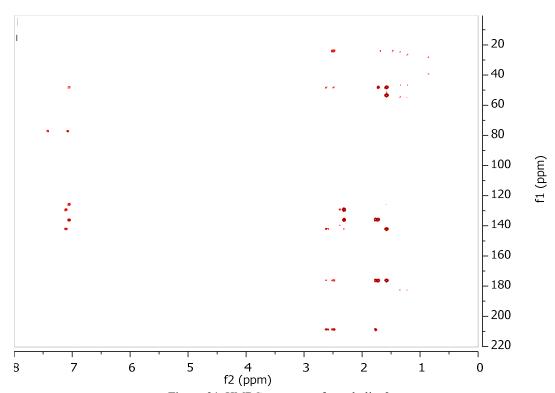


Figure 21. HMBC spectrum of metabolite 2.

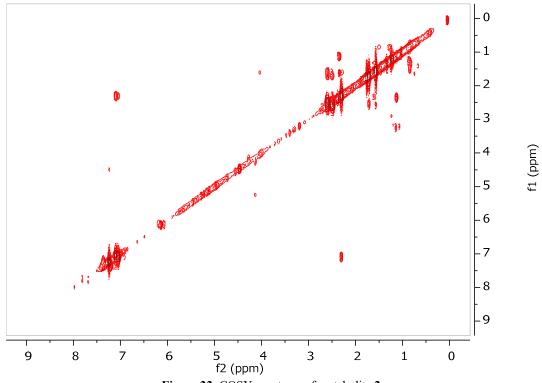


Figure 22. COSY spectrum of metabolite 2.

Comparison of the spectroscopic and physical characteristics of metabolite 2 with those reported in the literature led to its identification as a new natural product, which was designated as 4-oxo-isolaurene. The NMR data of metabolite 2 are reported in Table 136.

Table 136. ¹H and ¹³C NMR data of metabolite **2** in CDCl₃ (δ in ppm, J in Hz).

Position	δ_{C}	$\delta_{ m H}$
1	48.3	-
2	176.2	-
3	135.5	-
4	208.6	-
5	53.5	2.60 (d, 18.7), 2.49 (d, 18.7)
6	142.0	-
7	129.3	7.04 (d, 8.1)
8	129.3	7.10 (d, 8.1)
9	135.9	-
10	125.5	7.10 (d, 8.1)
11	125.5	7.04 (d, 8.1)
12	12.7	1.71 (s)
13	8.2	1.76 (s)
14	23.8	1.56 (s)
15	20.9	2.30 (s)

3.1.3 Metabolite 3

Metabolite 3 (LMH13) was isolated after a series of chromatographic separations as a colorless oil (3.4 mg).

The mass spectrum of metabolite 3 (Figure 23) exhibited a molecular ion peak $[M]^+$ at m/z 278 with an isotopic ion peak at m/z 280 in a 1:1 ion intensity, indicating the presence of a bromine atom in the molecule, as well as fragment ion peaks at m/z 263 and 265, corresponding to $[M-CH_3]^+$.

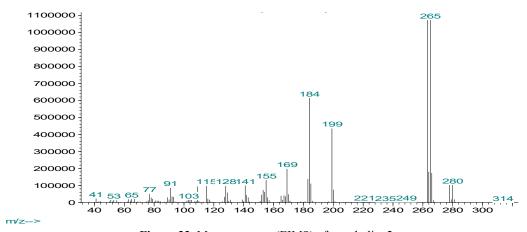


Figure 23. Mass spectrum (EIMS) of metabolite 3.

In the ¹H NMR spectrum of metabolite **3** (Figure 24) obvious were:

- One aliphatic methyl on a non-protonated carbon at δ 1.38,
- Two olefinic methyls at δ 1.35 and 1.68,
- One singlet at δ 4.46 integrating for two protons and attributed to an aromatic halogenated methylene, and
- Two doublets at δ 7.18 and 7.28 integrating for two protons each and attributed to four aromatic protons.

Analysis of the NMR and MS data of **3** led to the molecular formula C₁₅H₁₉Br. Taking into account the four carbon-carbon double bonds as four of the six degrees of unsaturation, the molecular structure of **3** was determined as bicyclic.

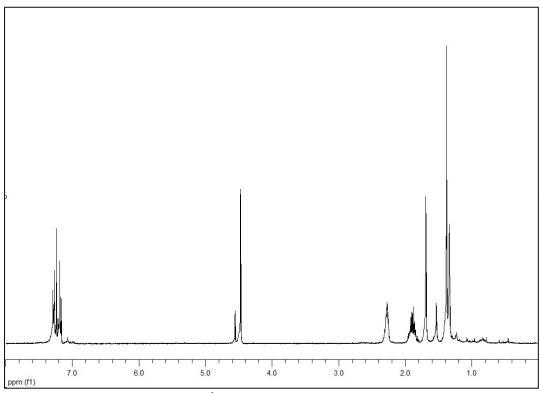


Figure 24. ¹H NMR spectrum of metabolite 3.

The planar structure of metabolite **3** was determined on the basis of the homonuclear and heteronuclear correlations (Figure 25) observed in the HSQC-DEPT (Figure 26), HMBC (Figure 27) and COSY (Figure 28) spectra. In particular, the position of Me-14 on C-1 was evident from the HMBC correlations of Me-14 ($\delta_{\rm H}$ 1.38) with C-1 ($\delta_{\rm C}$ 53.8), C-2 ($\delta_{\rm C}$ 136.4) and C-6 ($\delta_{\rm C}$ 150.1), while the correlations of Me-12 ($\delta_{\rm H}$ 1.37) with C-1, C-2 and C-3 ($\delta_{\rm C}$ 132.9), as well as of Me-13 ($\delta_{\rm H}$ 1.70) with C-2, C-3 and C-4 ($\delta_{\rm C}$ 35.8) secured the position of Me-12 and Me-13 at C-2 and C-3, respectively. The presence of a 1,4-disubstituted benzene ring was indicated by the two doublets at δ 7.18 and 7.28 integrating for four aromatic methines. The position of the brominated methylene at C-15 was confirmed by the correlations of H₂-15 with C-8/C-10 ($\delta_{\rm C}$ 128.8) and C-9 ($\delta_{\rm C}$ 133.0).

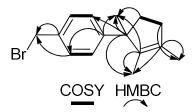


Figure 25. COSY and important HMBC correlations observed for metabolite 3.

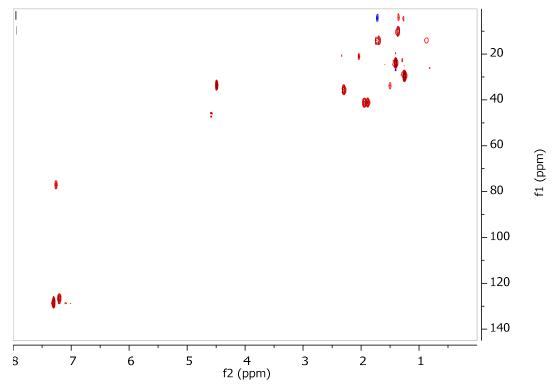


Figure 26. HSQC-DEPT spectrum of metabolite 3.

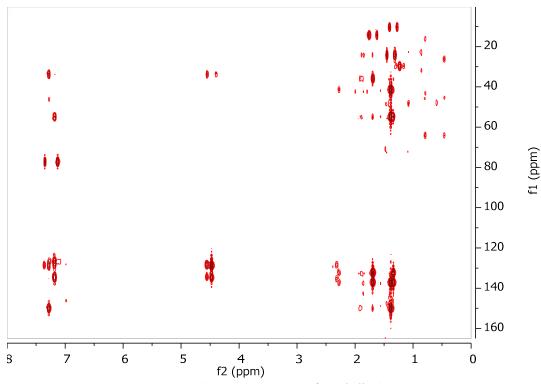


Figure 27. HMBC spectrum of metabolite 3.

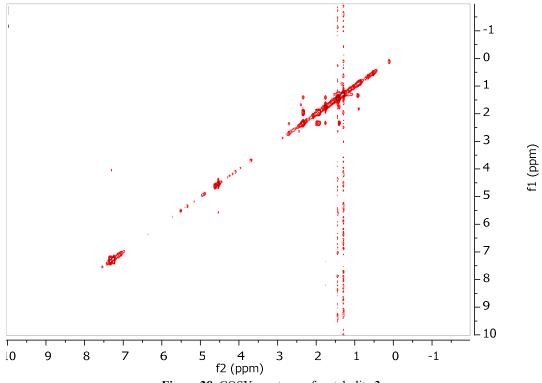


Figure 28. COSY spectrum of metabolite 3.

Comparison of the spectroscopic and physical characteristics of metabolite **3** with those reported in the literature led to its identification as a new natural product, which was designated as 15-bromo-isolaurene. The NMR data of metabolite **3** are reported in Table 137.

Table 137. ^{1}H and ^{13}C NMR data of metabolite **3** in CDCl₃ (δ in ppm, J in Hz).

Position	δ_{C}	$\delta_{ m H}$
1	53.8	-
2	136.4	-
3	132.9	-
4	35.2	2.27 (m)
5	41.5	1.91 (m), 1.87 (m)
6	150.2	-
7	126.3	7.18 (d, 8.2)
8	128.8	7.28 (d, 8.2)
9	133.0	-
10	128.8	7.28 (d, 8.2)
11	126.3	7.18 (d, 8.2)
12	10.3	1.38 (s)
13	14.0	1.70 (s)
14	24.0	1.35 (s)
15	34.0	4.46 (s)

3.1.4 Metabolite 4

Metabolite 4 (LMH20) was isolated after a series of chromatographic separations as a colorless oil (2.0 mg).

The mass spectrum of metabolite 4 (Figure 29) exhibited a molecular ion peak $[M]^+$ at m/z 214, as well as a fragment ion peak at m/z 199, corresponding to $[M-CH_3]^+$.

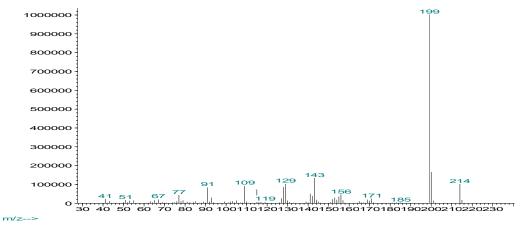


Figure 29. Mass spectrum (EIMS) of metabolite 4.

In the ¹H NMR spectrum of metabolite 4 (Figure 30) obvious were:

- One aliphatic methyl on a non-protonated carbon at δ 1.34,
- Two olefinic methyls at δ 1.43 and 1.71,
- Two doublets at δ 7.38 and 7.77 integrating for two protons each and attributed to four aromatic protons, and
- One singlet at δ 9.95 integrating for one proton and attributed to an aldehyde proton.

Analysis of the NMR and MS data of 4 led to the molecular formula $C_{15}H_{18}O$. Taking into account the four carbon-carbon double bonds and the carbonyl moiety as five of the seven degrees of unsaturation, the molecular structure of 4 was determined as bicyclic.

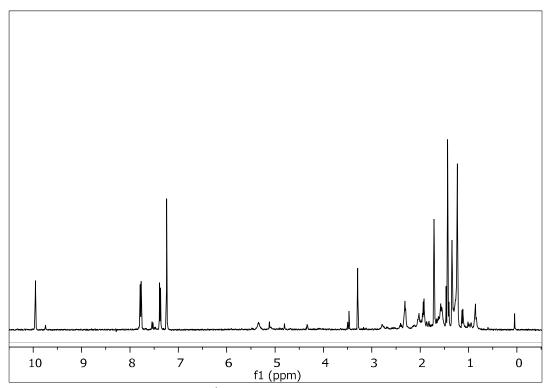


Figure 30. ¹H NMR spectrum of metabolite 4.

Comparison of the spectroscopic and physical characteristics of metabolite 4 with those reported in the literature led to its identification as isolauraldehyde, previously isolated from the red alga *L. obtusa* (Alarif et al., 2012). The ¹H NMR data of metabolite 4 are reported in Table 138.

Table 138. ¹H NMR data of metabolite **4** in CDCl₃ (δ in ppm, J in Hz).

Position	δ H,exp	δ H,lit
4	2.33 (m), 2.30 (m)	2.34 (m), 2.30 (m)
5	1.94 (m), 1.91 (m)	1.95 (m), 1.88 (m)
7	7.38 (d, 8.3)	7.4 (d, 7.8)
8	7.77 (d, 8.3)	7.8 (d, 7.8)
10	7.77 (d, 8.3)	7.8 (d, 7.8)
11	7.38 (d, 8.3)	7.4 (d, 7.8)
12	1.43 (s)	1.45 (s)
13	1.71 (s)	1.72 (s)
14	1.34 (s)	1.36 (s)
15	9.95 (s)	9.98 (s)

3.1.5 Metabolite 5

Metabolite 5 (LMH18) was isolated after a series of chromatographic separations as a colorless oil (0.8 mg).

The mass spectrum of metabolite 5 (Figure 31) exhibited a molecular ion peak $[M]^+$ at m/z 216.

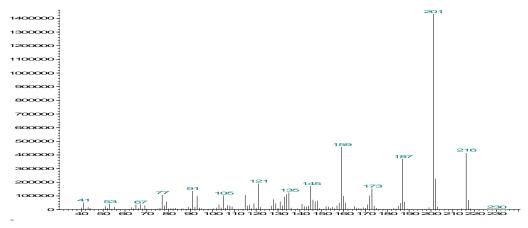


Figure 31. Mass spectrum (EIMS) of metabolite 5.

In the ¹H NMR spectrum of metabolite **5** (Figure 32) obvious were:

- One aliphatic methyl on a non-protonated carbon at δ 1.45,
- Two methyls on non-protonated oxygenated carbons at δ 1.10 and 1.48,
- One aromatic methyl at δ 2.31, and
- Two doublets at δ 7.05 and 7.10 integrating for two protons each and attributed to four aromatic protons.

Analysis of the NMR and MS data of 5 led to the molecular formula $C_{15}H_{20}O$. Taking into account the three carbon-carbon double bonds as three of the six degrees of unsaturation, the molecular structure of 5 was determined as tricyclic.

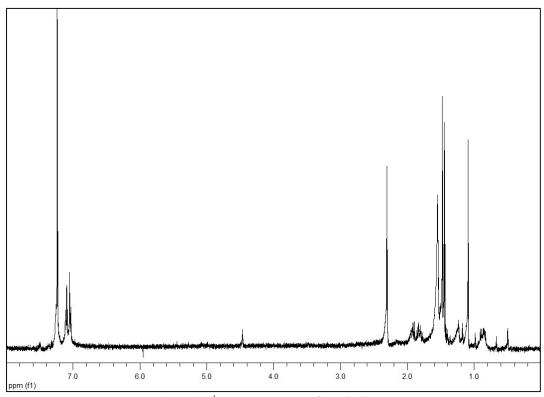


Figure 32. ¹H NMR spectrum of metabolite 5.

The planar structure of metabolite **5** was determined on the basis of the homonuclear and heteronuclear correlations (Figure 33) observed in the HSQC-DEPT (Figure 34), HMBC (Figure 35) and COSY (Figure 36) spectra. In particular, the position of Me-14 on C-1 was evident from the HMBC correlations of Me-14 (δ_H 1.45) with C-1 (δ_C 48.3), C-2 (δ_C 72.6) and C-6 (δ_C 143.4), while the correlations of Me-12 (δ_H 1.10) with C-1, C-2 and C-3 (δ_C 70.3), as well as of Me-13 (δ_H 1.48) with C-2, C-3 and C-4 (δ_C 37.3) secured the position of Me-12 and Me-13 at C-2 and C-3, respectively. The presence of a 1,4-disubstituted benzene ring was indicated by the two doublets at δ 7.05 and 7.10 integrating for four aromatic methines.

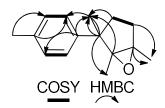
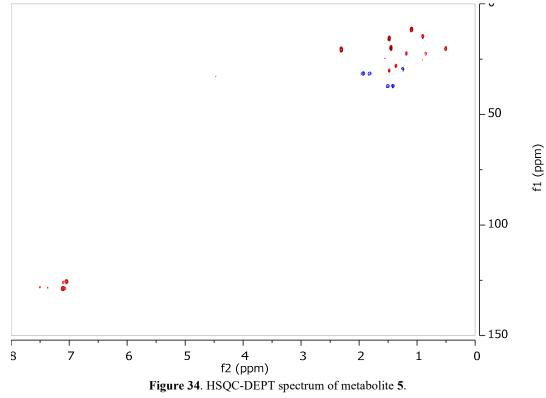



Figure 33. COSY and important HMBC correlations observed for metabolite 5.

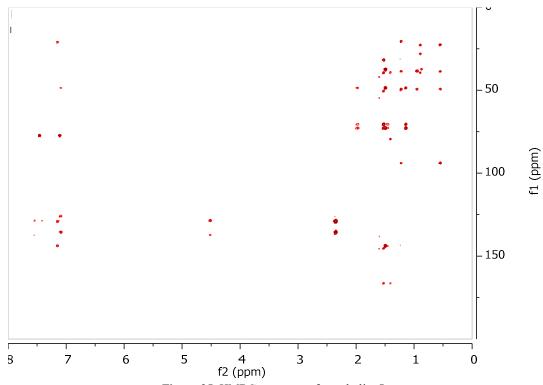


Figure 35. HMBC spectrum of metabolite 5.

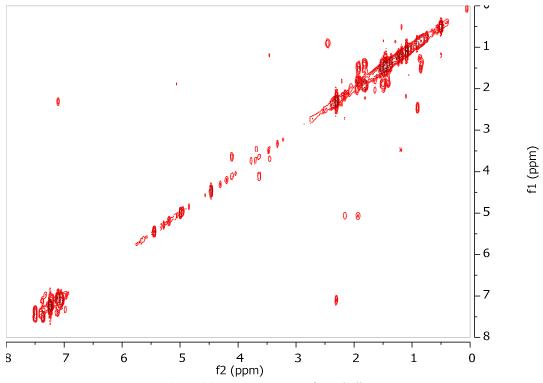


Figure 36. COSY spectrum of metabolite 5.

Metabolite **5** was proven unstable and degraded prior to the acquisition of NOESY spectrum. Nevertheless, the high structural similarity of metabolite **5** with metabolite **6**, i.e. Me-12 ($\delta_{\rm H}$ 1.10), Me-13 ($\delta_{\rm H}$ 1.48), Me-14 ($\delta_{\rm H}$ 1.45), C-2 ($\delta_{\rm C}$ 72.6) and C-3 ($\delta_{\rm C}$ 70.3) of metabolite **5** vs. Me-12 ($\delta_{\rm H}$ 1.09), Me-13 ($\delta_{\rm H}$ 1.49), Me-14 ($\delta_{\rm H}$ 1.47), C-2 ($\delta_{\rm C}$ 72.6) and C-3 ($\delta_{\rm C}$ 70.4) of metabolite **6**, renders safe the assumption that both **5** and **6** share the same relative configuration at their stereogenic centers.

Comparison of the spectroscopic and physical characteristics of metabolite 5 with those reported in the literature led to its identification as a new natural product, which was designated as $2S^*$, $3R^*$ -epoxy-dihydro-isolaurene. The NMR data of metabolite 5 are reported in Table 139.

Table 139. 1 H and 13 C NMR data of metabolite **5** in CDCl₃ (δ in ppm, J in Hz)

Position	$\delta_{ m C}$	δ н
1	48.3	-
2	72.6	-
3	70.3	-
4	37.3	1.50 (m), 1.41 (m)
5	31.6	1.93 (m), 1.82 (m)
6	143.4	-
7	125.7	7.05 (d, 8.0)
8	129.1	7.10 (d, 8.0)
9	135.5	-
10	129.1	7.10 (d, 8.0)
11	125.7	7.05 (d, 8.0)
12	11.5	1.10 (s)
13	15.8	1.48 (s)
14	20.3	1.45 (s)
15	20.6	2.31 (s)

3.1.6 Metabolite 6

Metabolite 6 (LMH25) was isolated after a series of chromatographic separations as a colorless oil (1.5 mg).

The mass spectrum of metabolite 6 (Figure 37) exhibited a molecular ion peak $[M]^+$ at m/z 232, as well as fragment ion peak at m/z 214 corresponding to $[M-H_2O]^+$.

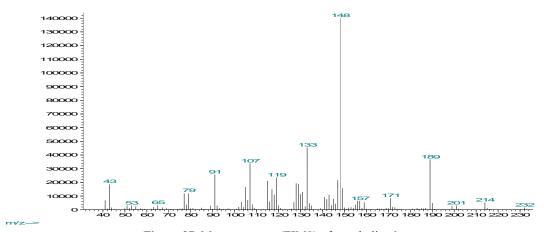


Figure 37. Mass spectrum (EIMS) of metabolite 6.

In the ¹H NMR spectrum of metabolite **6** (Figure 38) obvious were:

- One aliphatic methyl on a non-protonated carbon at δ 1.09,
- Two methyls on non-protonated oxygenated carbons at δ 1.47 and 1.49,
- One broad singlet at δ 4.66 integrating for two protons and attributed to an aromatic hydroxymethylene, and
- Two doublets at δ 7.15 and 7.30 integrating for two protons each and attributed to four aromatic protons.

Analysis of the NMR and MS data of $\bf{6}$ led to the molecular formula $C_{15}H_{20}O_2$. Taking into account the three carbon-carbon double bonds as three of the six degrees of unsaturation, the molecular structure of $\bf{6}$ was determined as tricyclic.

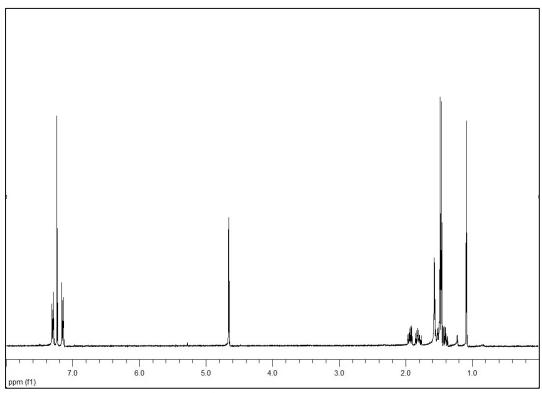


Figure 38. ¹H NMR spectrum of metabolite 6.

The spectroscopic data of **6** were rather similar to those of metabolite **5**, with the main difference being the replacement of the methyl group at C-9 by a hydroxymethylene. Indeed, the planar structure of metabolite **6** was confirmed by the homonuclear and heteronuclear correlations (Figure 39) observed in the HSQC-DEPT (Figure 40), HMBC (Figure 41) and COSY (Figure 42) spectra.

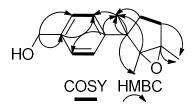


Figure 39. COSY and important HMBC correlations observed for metabolite 6.

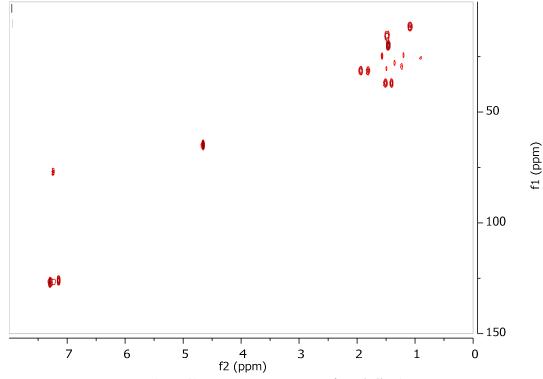


Figure 40. HSQC-DEPT spectrum of metabolite 6.

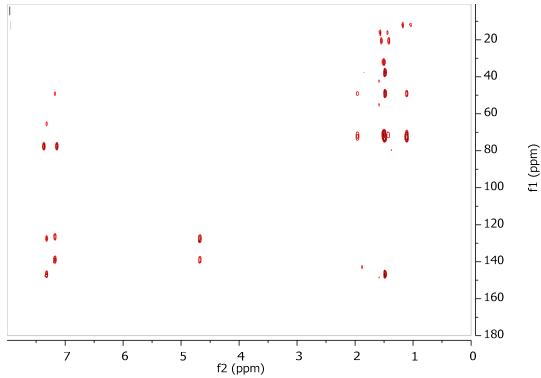


Figure 41. HMBC spectrum of metabolite 6.

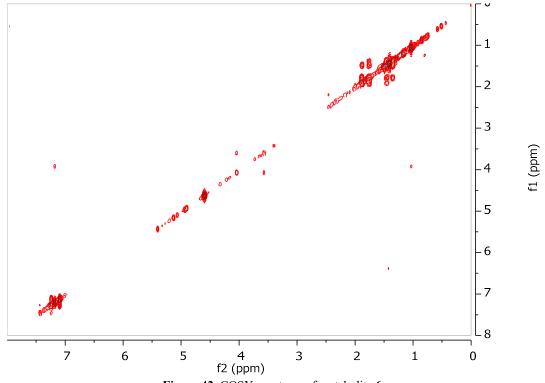
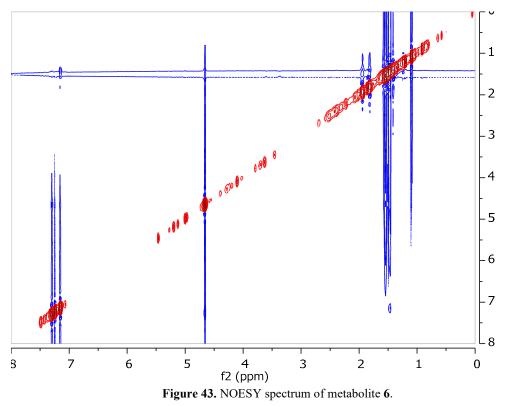



Figure 42. COSY spectrum of metabolite 6.

The relative configuration of the asymmetric centers of metabolite 6 was determined on the basis of the correlations observed in the NOESY spectrum (Figure 43). Specifically, the strong NOE correlation between Me-12 and Me-13, in conjunction with the lack of NOE correlation between Me-12 or Me-13 and Me-14 suggested the opposite orientation of Me-14 in relation to Me-12 and Me-13.

Comparison of the spectroscopic and physical characteristics of metabolite 6 with those reported in the literature led to its identification as a new natural product, which was designated as $2S^*$, $3R^*$ -epoxy-15-hydroxy-dihydro-isolaurene. The NMR data of metabolite 6 are reported in Table 140.

Table 140. ^{1}H and ^{13}C NMR data of metabolite **6** in CDCl₃ (δ in ppm, J in Hz)

		2 (11)
Position	$oldsymbol{\delta}_{ ext{C}}$	$\delta_{ m H}$
1	48.7	-
2	72.6	-
3	70.4	-
4	37.4	1.53 (m), 1.42 (m)
5	31.7	1.94 (m), 1.83 (m)
6	146.4	-
7	127.2	7.30 (d, 8.1)
8	126.1	7.15 (d, 8.1)
9	138.5	-
10	126.1	7.15 (d, 8.1)
11	127.2	7.30 (d, 8.1)
12	11.8	1.10 (s)
13	15.9	1.49 (s)
14	20.2	1.47 (s)
15	65.1	4.66 (brs)

3.1.7 Metabolite 7

Metabolite 7 (LMH24) was isolated after a series of chromatographic separations as a colorless oil (mg).

The mass spectrum of metabolite 7 (Figure 44) exhibited a molecular ion peak $[M]^+$ at m/z 232, as well as a fragment ion peak at m/z 214 corresponding to $[M-H_2O]^+$.

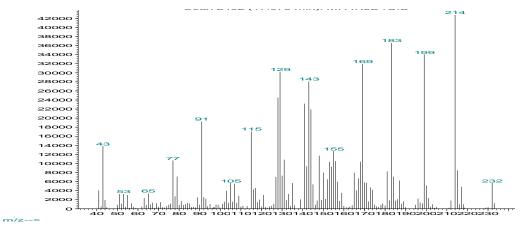


Figure 44. Mass spectrum (EIMS) of metabolite 7.

In the ¹H NMR spectrum of metabolite 7 (Figure 45) obvious were:

- One aliphatic methyl on a non-protonated carbon at δ 1.49,
- One methyl on a non-protonated oxygenated carbon at δ 1.36,
- One singlet at δ 4.65 integrating for two protons and attributed to an aromatic hydroxymethylene,
- Two singlets at δ 5.00 and 5.47 integrating for one proton each and attributed to the protons of an exomethylene group, and
- Two doublets at δ 7.27 and 7.33 integrating for two protons each and attributed to four aromatic protons.

Analysis of the NMR and MS data of 7 led to the molecular formula C₁₅H₂₀O₂. Taking into account the four carbon-carbon double bonds as four of the six degrees of unsaturation, the molecular structure of 7 was determined as bicyclic.

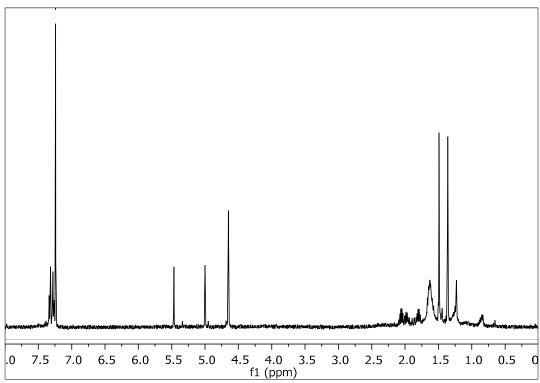


Figure 45. ¹H NMR of metabolite 7.

Comparison of the spectroscopic and physical characteristics of metabolite 7 with those reported in the literature led to its identification as laur-2-ene-3,15-diol, previously isolated from the alga *L. obtusa* (Angawi et al., 2014). The ¹H NMR data of metabolite 7 are reported in Table 141.

Table 141. ¹H NMR data of metabolite 7 in CDCl₃ (δ in ppm, J in Hz).

Position	δ H,exp	δ H,lit
4	2.05 (m), 1.97 (m)	2.11 (ddd, 12.6, 6.6, 6.0),
		2.03 (ddd, 13.2, 9.0, 1.8)
5	1.82 (m), 1.61 (m)	1.86 (ddd, 12.6, 6.6, 6.0),
		1.65 (ddd, 13.2, 6.6, 1.8)
7	7.33 (d, 8.4)	7.37 (d, 8.4)
8	7.27 (d, 8.4)	7.31 (d, 8.4)
10	7.27 (d, 8.4)	7.31 (d, 8.4)
11	7.33 (d, 8.4)	7.37 (d, 8.4)
12	5.47 (s), 5.00 (s)	5.52 (s), 5.05 (s)
13	1.36 (s)	1.41 (brs)
14	1.49 (s)	1.54 (s)
15	4.65 (s)	4.69 (s)

3.1.8 Metabolite 8

Metabolite **8** (LMH19) was isolated after a series of chromatographic separations as a colorless oil (6.0 mg).

The mass spectrum of metabolite **8** (Figure 46) exhibited a fragment ion peak at m/z 216 corresponding to $[M-H₂O]^+$.

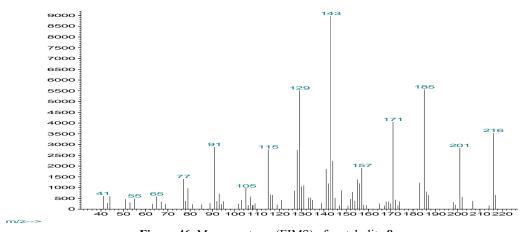


Figure 46. Mass spectrum (EIMS) of metabolite 8.

In the ¹H NMR spectrum of metabolite **8** (Figure 47) obvious were:

- Three aliphatic methyls on non-protonated carbons at δ 0.60, 1.08 and 1.42,
- One oxygenated methine at δ 4.03,
- One singlet at δ 4.65 integrating for two protons and attributed to a hydroxymethylene group, and
- Two doublets at δ 7.20 and 7.27 integrating for two protons each and attributed to four aromatic protons.

Analysis of the NMR and MS data of $\bf 8$ led to the molecular formula $C_{15}H_{22}O_2$. Taking into account the three carbon-carbon double bonds as three of the five degrees of unsaturation, the molecular structure of $\bf 8$ was determined as bicyclic.

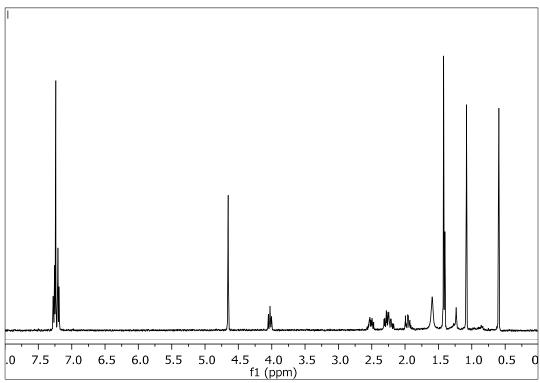


Figure 47. ¹H NMR of metabolite 8.

Comparison of the spectroscopic and physical characteristics of metabolite $\bf 8$ with those reported in the literature led to its identification as cuparene-3,15-diol, previously isolated from the red alga L. obtusa (Angawi et al., 2014). The 1 H NMR data of metabolite $\bf 8$ are reported in Table 142.

Table 142. ¹H NMR data of metabolite **8** in CDCl₃ (δ in ppm, J in Hz).

Position	δ H,exp	δ H,lit
3	4.03 (t, 9.4)	4.08 (dd, 10.2, 9.0)
		2.56 (dddd, 15.0, 9.6, 9.0,
4	2.52 (m), 2.21 (m)	5.4), 2.26 (dddd, 15.0, 10.2,
		10.2, 4.8)
5	2.29 (m), 1.95 (m)	2.33 (ddd, 13.2, 9.6, 4.8), 2.01
3	2.29 (m), 1.93 (m)	(ddd, 13.2, 10.2, 5.4)
7	7.27 (d, 8.4)	7.30 (d, 8.4)
8	7.20 (d, 8.4)	7.24 (d, 8.4)
10	7.20 (d, 8.4)	7.24 (d, 8.4)
11	7.27 (d, 8.4)	7.30 (d, 8.4)
12	0.60 (s)	0.65 (s)
13	1.08 (s)	1.13 (s)
14	1.42 (s)	1.47 (s)
15	4.65 (s)	4.69 (s)

3.1.9 Metabolite 9

Metabolite 9 (LMH26) was isolated after a series of chromatographic separations as a colorless oil (0.8 mg).

The mass spectrum of metabolite **9** (Figure 48) exhibited a fragment ion peak at m/z 230 corresponding to $[M-H₂O]^+$.

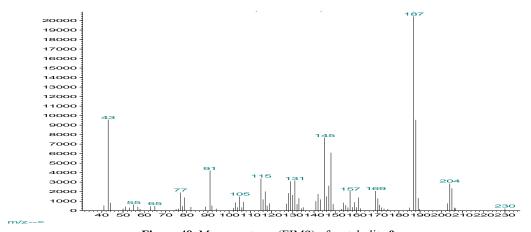


Figure 48. Mass spectrum (EIMS) of metabolite 9.

In the ¹H NMR spectrum of metabolite **9** (Figure 49) obvious were:

- One aliphatic methyl on a non-protonated carbon at δ 1.45,
- Two deshielded methyls on non-protonated carbons at δ 1.90 and 2.07,
- One broad singlet at δ 4.69 integrating for two protons and attributed to an aromatic hydroxymethylene, and
- Two doublets at δ 7.20 and 7.34 integrating for two protons each and attributed to four aromatic protons.

Analysis of the NMR and MS data of $\bf 9$ led to the molecular formula $C_{15}H_{20}O_3$. Taking into account the three carbon-carbon double bonds and the two carbonyl moieties as five of the six degrees of unsaturation, the molecular structure of $\bf 9$ was determined as monocyclic.

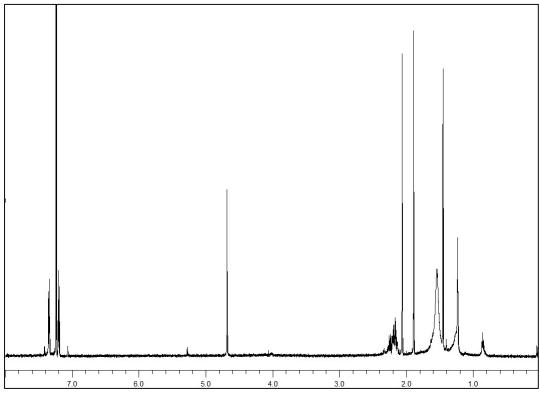


Figure 49. ¹H NMR spectrum of metabolite 9.

The planar structure of metabolite **9** was determined on the basis of the homonuclear and heteronuclear correlations (Figure 50) observed in the HSQC-DEPT (Figure 51), HMBC (Figure 52) and COSY (Figure 53) spectra. In particular, the position of Me-14 ($\delta_{\rm H}$ 1.45) was fixed at C-1 due to its correlations with C-1 ($\delta_{\rm C}$ 54.8), C-2 ($\delta_{\rm C}$ 210.0), C-5 ($\delta_{\rm C}$ 31.2) and C-6 ($\delta_{\rm C}$ 141.5) observed in the HMBC spectrum. In addition, the HMBC correlations of Me-12 ($\delta_{\rm H}$ 1.90) with the carbonyl carbon C-2 ($\delta_{\rm C}$ 210.0) and of Me-13 ($\delta_{\rm H}$ 2.07) with the carbonyl carbon C-3 ($\delta_{\rm C}$ 208.1) supported the cleavage of C-2/C-3 bond. The presence of the aromatic hydroxymethylene at position C-15 was verified by the HMBC correlations of H₂-15 with C-8/C-10 ($\delta_{\rm C}$ 127.7) and C-9 ($\delta_{\rm C}$ 139.2).

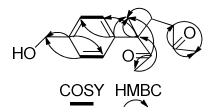


Figure 50. COSY and important HMBC correlations observed for metabolite 9.

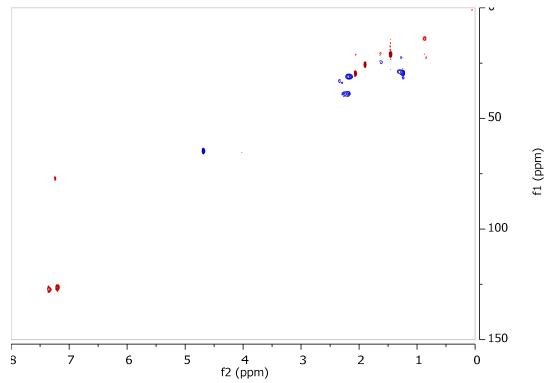


Figure 51. HSQC-DEPT spectrum of metabolite 9.

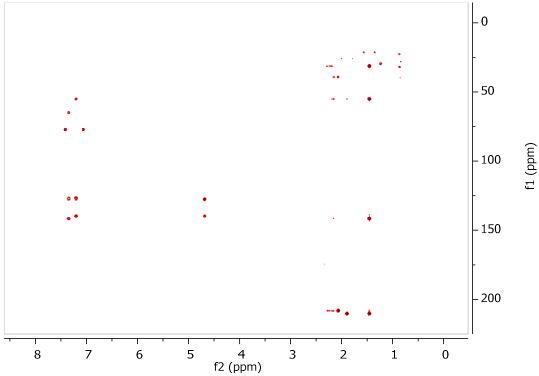
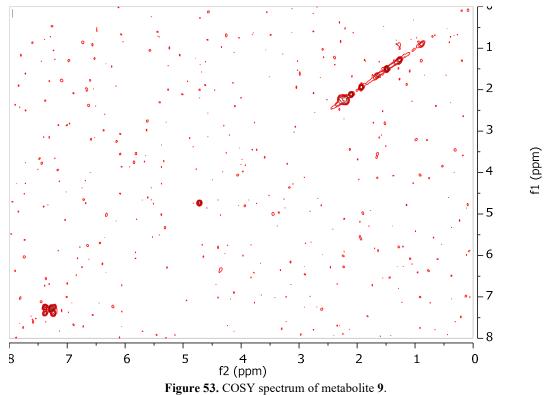



Figure 52. HMBC spectrum of metabolite 9.

rigure so. Cost spectrum of metasonic 3.

Comparison of the spectroscopic and physical characteristics of metabolite 9 with those reported in the literature led to its identification as a new natural product. The NMR data of metabolite 9 are reported in Table 143.

Table 143. ¹H and ^{13C} NMR data of metabolite **9** in CDCl₃ (δ in ppm, J in Hz).

Position	δ c	$\delta_{ m H}$
1	54.8	-
2	210.0	-
3	208.1	-
4	38.8	2.24 (m), 2.18 (m)
5	31.2	2.18 (m), 2.14 (m)
6	141.5	-
7	126.5	7.20 (d, 8.1)
8	127.7	7.34 (d, 8.1)
9	139.2	-
10	127.7	7.34 (d, 8.1)
11	126.5	7.20 (d, 8.1)
12	25.7	1.90 (s)
13	29.8	2.07 (s)
14	21.3	1.45 (s)
15	64.8	4.69 (brs)

3.1.10 Metabolite 10

Metabolite **10** (LMH23) was isolated after a series of chromatographic separations as a colorless oil (1.0 mg).

The mass spectrum of metabolite **10** (Figure 54) exhibited fragment ion peaks at m/z 282 and 284 in a 1:1 intensity corresponding to [M-H₂O]⁺ and suggesting the presence of one bromine atom in the molecule.

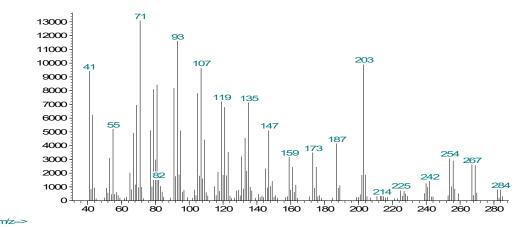


Figure 54. Mass spectrum (EIMS) of metabolite 10.

In the ¹H NMR spectrum of metabolite **10** (Figure 55) obvious were:

- Three aliphatic methyls on non-protonated carbons at δ 0.81, 1.15 and 1.27,
- One doublet of doublets at δ 4.11 attributed to a halogenated methine,
- Two broad singlets at δ 4.63 and 4.89 integrating for one proton each and attributed to the protons of an exomethylene group
- Three doublets of doublets at δ 5.05, 5.20 and 5.89 integrating for one proton each and attributed to the olefinic protons of a monosubstituted double bond.

Analysis of the NMR and MS data of 10 led to the molecular formula $C_{15}H_{25}BrO$. Taking into account the two carbon-carbon double bonds as two of the three degrees of unsaturation, the molecular structure of 10 was determined as monocyclic.

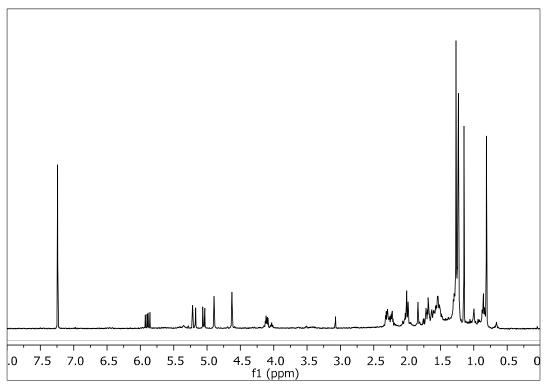


Figure 55. ¹H NMR spectrum of metabolite 10.

Comparison of the spectroscopic and physical characteristics of metabolite 10 with those reported in the literature led to its identification as β -snyderol, previously isolated from the red alga L. obtusa (Topcu et al., 2003). The ^{1}H NMR data of metabolite 10 are reported in Table 144.

Table 144. ¹H NMR data of metabolite **10** in CDCl₃ (δ in ppm, J in Hz).

Position	δ H,exp	δ H,lit
1	5.20 (dd, 17.4, 1.1), 5.05 (dd,	5.22 (dd, 17.5, 1.0), 5.07 (dd,
1	10.8, 1.1)	11.0, 1.0)
2	5.89 (dd, 17.4, 10.8)	5.91 (dd, 17.4, 10.7)
4	1.76 () 1.60 ()	1.78 (dd, 11.1, 4), 1.62 (dd,
4	1.76 (m), 1.60 (m)	11.5, 5.4)
5	1.51 (m), 1.30 (m)	1.51 (m), 1.30 (m)
6	1.71 (m)	1.71 (dd, 7.8, 7.8)
8	2.21 (m) 2.05 (m)	2.35 (dd, 7.6, 4.7), 2.08 (dd,
o	2.31 (m), 2.05 (m)	6.5, 5.9)
9	2.28 (m), 2.00 (m)	2.29 (dt, 5.8, 2.9), 2.03 (dt,
9	2.28 (III), 2.00 (III)	4.5, 2.9)
10	4.11 (dd, 11.6, 4.3)	4.12 (dd, 11.7, 4.5)
12	1.15 (s)	1.16 (s)
13	0.81 (s)	0.83 (s)
14	4.89 (brs), 4.63 (brs)	4.91 (brs), 4.65 (brs)
15	1.27 (s)	1.28 (s)

3.1.11 Metabolite 11

Metabolite 11 (LMH01) was isolated after a series of chromatographic separations as a colorless oil (76.6 mg).

The mass spectrum of metabolite 11 (Figure 56) exhibited a molecular ion peak $[M]^+$ at m/z 396 and isotopic ion peaks at m/z 398, 400 and 402 at a relative intensity suggestive of the presence of one chlorine and two bromine atoms.

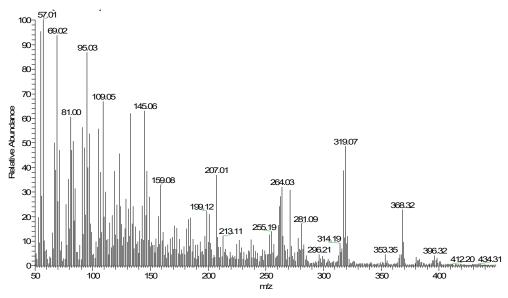


Figure 56. Mass spectrum (EIMS) of metabolite 11.

In the ¹H NMR spectrum of metabolite **11** (Figure 57) obvious were:

- Two aliphatic methyls on non-protonated carbons at δ 0.91 and 1.19,
- One olefinic methyl at δ 1.66,
- One methyl on a non-protonated halogenated carbon at δ 1.96,
- Two doublets of doublets at δ 4.45 and 4.80 integrating for one proton each and attributed to two halogenated methines, and
- One broad singlet δ 5.21 integrating for one proton and attributed to an olefinic methine.

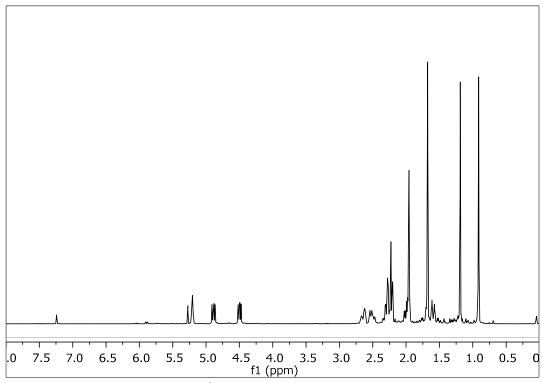


Figure 57. ¹H NMR spectrum of metabolite 11.

Analysis of the NMR and MS data of 11 led to the molecular formula $C_{15}H_{23}Br_2Cl$. Taking into account the one carbon-carbon double bond as one of the three degrees of unsaturation, the molecular structure of 11 was determined as bicyclic.

Comparison of the spectroscopic and physical characteristics of metabolite 11 with those reported in the literature led to its identification as 2,10-dibromo-3-chloro- α -chamigrene, previously isolated from an alga of the genus *Laurencia* (Howard & Fenical, 1975). The ¹H NMR data of metabolite 11 are reported in Table 145.

Table 145. ¹H NMR data of metabolite **11** in CDCl₃ (δ in ppm, J in Hz).

Position	δ H,exp	δ H,lit
2	4.80 (dd, 10.6, 7.8)	4.75 (m)
8	5.21 (brs)	5.16 (brs)
10	4.45 (dd, 10.7, 6.9)	4.39 (m)
12	1.19 (s)	1.16 (s)
13	0.91 (s)	0.89 (s)
14	1.66 (s)	1.61 (s)
15	1.96 (s)	1.95s)

3.1.12 Metabolite 12

Metabolite **12** (LMH15) was isolated after a series of chromatographic separations as a colorless oil (0.7 mg).

The mass spectrum of metabolite 12 (Figure 58) exhibited a molecular ion peak $[M]^+$ at m/z 360 with isotopic ion peaks at m/z 362 and 364 at a 1:2:1 intensity, characteristic for the presence of two bromine atoms, as well as fragment ion peaks at m/z 281 and 283 corresponding to $[M-Br]^+$.

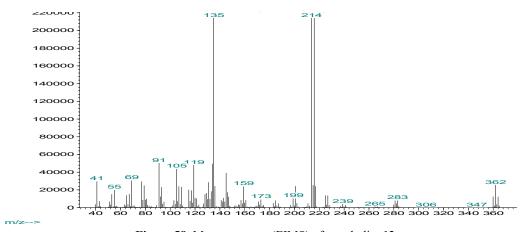


Figure 58. Mass spectrum (EIMS) of metabolite 12.

In the ¹H NMR spectrum of metabolite **12** (Figure 59) obvious were:

- Two aliphatic methyls on non-protonated carbons at δ 0.92 and 1.11,
- Two olefinic methyls at δ 1.65 and 1.78,
- One doublet of doublets at δ 4.64 integrating for one proton and attributed to a halogenated methine, and
- One broad singlet δ 5.22 integrating for one proton and attributed to an olefinic methine.

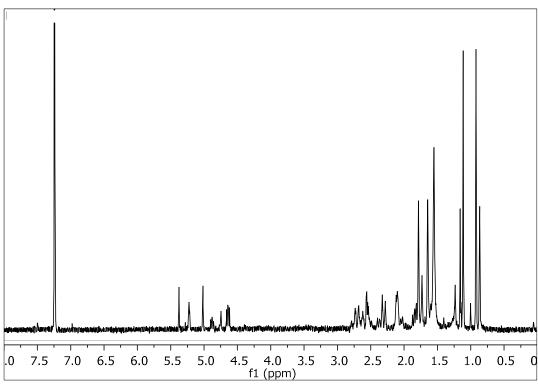


Figure 59. ¹H NMR spectrum of metabolite 12 in CDCl₃.

Figure 60. ¹H NMR spectrum of metabolite 12 in C₆D₆.

Analysis of the NMR and MS data of 12 led to the molecular formula $C_{15}H_{22}Br_2$. Taking into account the two carbon-carbon double bonds as two of the four degrees of unsaturation, the molecular structure of 12 was determined as bicyclic.

Comparison of the spectroscopic and physical characteristics of metabolite **12** with those reported in the literature led to its identification as laurecomin C, previously isolated from the alga *L. composita* (Li et al., 2012b). The ¹H NMR data of metabolite **12** are reported in Table 146.

Table 146. ¹H NMR data of metabolite **12** in CDCl₃ (δ in ppm, J in Hz).

Position	$\delta_{ m H,exp}$	δ H,lit
8	5.22 (brs)	5.25 (brs)
10	4.64 (dd, 10.7, 6.8)	4.66 (dd, 10.8, 6.8)
12	0.92 (s)	0.94 (s)
13	1.11 (s)	1.13 (s)
14	1.65 (brs)	1.67 (brs)
15	1.78 (brs)	1.81 (brs)

3.1.13 Metabolite 13

Metabolite **13** (LMH03) was isolated after a series of chromatographic separations as a colorless oil (2.0 mg).

The mass spectrum of metabolite 13 (Figure 61) exhibited fragment ion peaks at m/z 298 and 300 at an 1:1 intensity suggesting the presence of a bromine atom and corresponding to [M-Cl]⁺.

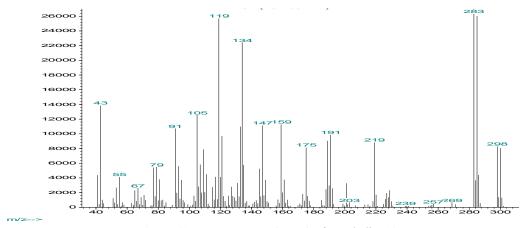


Figure 61. Mass spectrum (EIMS) of metabolite 13.

In the ¹H NMR spectrum of metabolite **13** (Figure 62) obvious were:

- One aliphatic methyl on a tertiary carbon at δ 0.90,
- One aliphatic methyl on a non-protonated carbon at δ 0.93,
- One methyl on a non-protonated halogenated carbon at δ 1.72,
- One olefinic methyl at δ 1.90,
- One doublet of doublets at δ 4.68 integrating for one proton and attributed to a halogenated methine, and
- One broad singlet δ 5.21 integrating for one proton and attributed to an olefinic methine.

Analysis of the NMR and MS data of 13 led to the molecular formula $C_{15}H_{24}BrClO$. Taking into account the one carbon-carbon double bond as one of the three degrees of unsaturation, the molecular structure of 13 was determined as bicyclic.

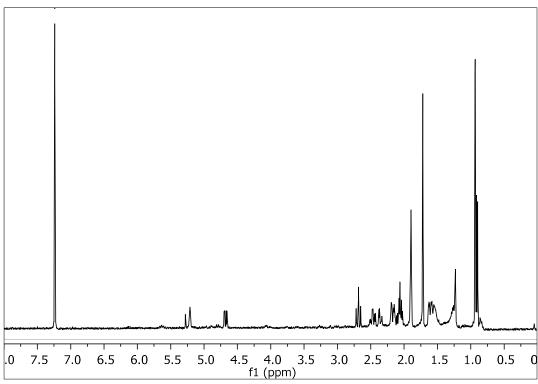


Figure 62. ¹H NMR spectrum of metabolite 13.

Comparison of the spectroscopic and physical characteristics of metabolite **13** with those reported in the literature led to its identification as compositacin A, previously isolated from the red alga *L. composita* (Yu et al., 2017). The ¹H NMR data of metabolite **13** are reported in Table 147.

Table 147. ¹H NMR data of metabolite **13** in CDCl₃ (δ in ppm, J in Hz).

Position	δ H,exp	δ H,lit
1	2.68 (t, 13.6), 2.17 (ddd, 13.6,	2.70 (dd, 13.8, 13.2), 2.19
	5.3, 1.9)	(ddd, 13.8, 5.4, 1.8)
2	4.68 (dd, 13.6, 5.3)	4.70 (dd, 13.2, 5.4)
4	2.49 (td, 14.3, 4.8), 2.38 (ddd,	2.49 (ddd, 14.4, 14.2, 4.8),
	14.3, 5.7, 2.4)	2.38 (ddd, 14.4, 5.4, 2.4)
5	2.07 (m), 1.62 (m)	2.08 (ddd, 15.0, 14.2, 5.4),
		1.63 (ddd, 15.0, 4.8, 2.4)
8	5.21 (brs)	5.23 (brs)
9	2.13 (m), 1.58 (m)	2.19 (m), 1.62 (m)
10	2.03 (m)	2.06 (m)
12	0.93 (s)	0.95 (s)
13	0.90 (d, 6.8)	0.93 (d, 6.6)
14	1.90 (brs)	1.92 (dd, 3.6, 1.8)
15	1.72 (s)	1.74 (s)

3.1.14 Metabolite 14

Metabolite **14** (LMH14) was isolated after a series of chromatographic separations as a colorless oil (2.1 mg).

The mass spectrum of metabolite **14** (Figure 63) exhibited a molecular ion peak $[M]^+$ at m/z 316 with isotopic ion peaks at m/z 318 and 320 at an intensity suggestive of the presence of one bromine and one chlorine atom.

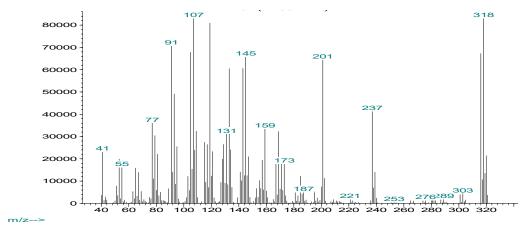


Figure 63. Mass spectrum (EIMS) of metabolite 14.

In the ¹H NMR spectrum of metabolite **14** (Figure 64) obvious were:

- One aliphatic methyl on a tertiary carbon at δ 1.12,
- One olefinic methyl at δ 1.62,
- One methyl on non-protonated halogenated carbon at δ 1.65,
- One doublet of doublets at δ 4.16 integrating for one proton and attributed to a halogenated methine,
- Two broad singlets at δ 4.90 and 4.96 integrating for one proton each and attributed to the protons of an exomethylene, and
- One broad singlet at δ 5.22 integrating for one proton and attributed to an olefinic methine.

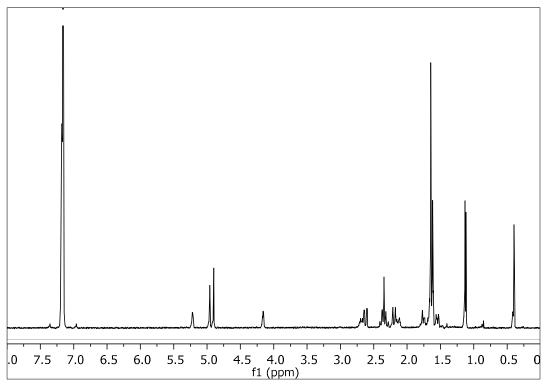


Figure 64. ¹H NMR spectrum of metabolite 14.

Analysis of the NMR and MS data of 14 led to the molecular formula $C_{15}H_{22}BrCl$. Taking into account the two carbon-carbon double bonds as two of the four degrees of unsaturation, the molecular structure of 14 was determined as bicyclic.

Comparison of the spectroscopic and physical characteristics of metabolite 14 with those reported in the literature led to its identification as laurokamin A, previously isolated from the alga L. okamurai (Li et al., 2012a). The 1H NMR data of metabolite 14 are reported in Table 148.

Table 148. ¹H NMR data of metabolite **14** in C₆D₆ and CDCl₃ (δ in ppm, J in Hz).

	-	
Position	$\delta_{\rm H,exp}$ (in C ₆ D ₆)	δ _{H,lit} (in CDCl ₃)
2	4.16 (dd, 5.9, 2.9)	4.40 (dd, 5.4, 3.8)
8	5.22 (brs)	5.35 (brd, 3.6)
12	4.96 (brs), 4.90 (brs)	4.94 (s), 4.89 (s)
13	1.12 (d, 6.5)	1.13 (d, 6.6)
14	1.62 (brs)	1.72 (brs)
15	1.65 (s)	1.78 (s)

3.1.15 Metabolite 15

Metabolite **15** (LMH05) was isolated after a series of chromatographic separations as a colorless oil (8.8 mg).

The mass spectrum of metabolite **15** (Figure 65) exhibited a molecular ion peak $[M]^+$ at m/z 220, as well as a fragment ion peak at m/z 205 corresponding to $[M-CH_3]^+$.

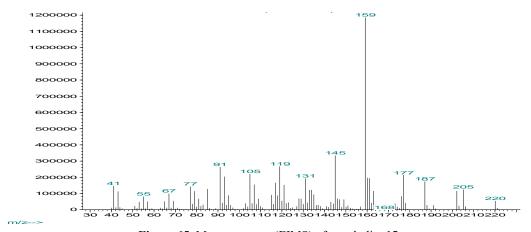


Figure 65. Mass spectrum (EIMS) of metabolite 15.

In the ¹H NMR spectrum of metabolite **15** (Figure 66) obvious were:

- One aliphatic methyl on a tertiary carbon at δ 0.95,
- Three aliphatic methyls on non-protonated carbons at δ 0.99, 0.99 and 1.21,
- One triplet at δ 4.18 integrating for one proton and attributed to an oxygenated methine, and
- One multiplet at δ 5.45 integrating for one proton and attributed to an olefinic methine.

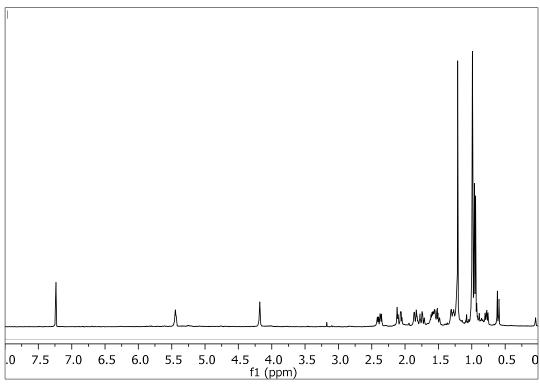


Figure 66. ¹H NMR spectrum of metabolite 15.

Analysis of the NMR and MS data of 15 led to the molecular formula $C_{15}H_{24}O$. Taking into account the one carbon-carbon double bond as one of the four degrees of unsaturation, the molecular structure of 15 was determined as tricyclic.

Comparison of the spectroscopic and physical characteristics of metabolite 15 with those reported in the literature led to its identification as aristol-9(10)-en-1 α -ol, previously isolated from the alga *L. similis* (Kamada & Vairappan, 2013) and synthetically prepared (Takeshita et al., 1980). The ¹H NMR data of metabolite 15 are reported in Table 149.

Table 149. ¹H NMR data of metabolite **15** in CDCl₃ and (CD₃)₂SO (δ in ppm, J in Hz).

Position	$\delta_{\mathrm{H,exp}}$ (in CDCl ₃)	$\boldsymbol{\delta}_{\text{H,lit}} (\text{in } (\text{CD}_3)_2 \text{SO})$
1	4.18 (t, 2.7)	4.17 (m)
6	0.61 (d, 9.5)	
7	0.78 (dd, 9.5, 7.2)	
9	5.45 (m)	5.42 (m)
12	0.99 (s)	1.02 (s)
13	0.99 (s)	1.02 (s)
14	0.95 (d, 6.8)	1.0 (d, 7.0)
15	1.21 (s)	1.23 (s)

3.1.16 Metabolite 16

Metabolite 16 (LMH11) was isolated after a series of chromatographic separations as a colorless oil (1.5 mg).

The mass spectrum of metabolite **16** (Figure 67) exhibited isotopic fragment ion peaks at m/z 428, 430 and 432 at an intensity suggestive of the presence of two bromine atoms in the molecule and corresponding to [M-H₂O]⁺.

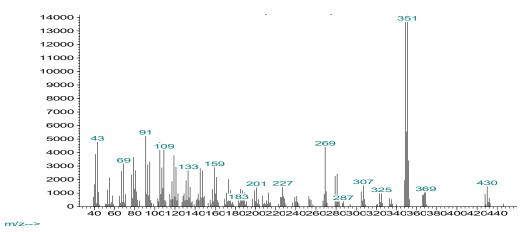


Figure 67. Mass spectrum (EIMS) of metabolite 16.

In the ¹H NMR spectrum of metabolite **16** (Figure 68) obvious were:

- Four aliphatic methyls on non-protonated carbons at δ 0.94, 1.12, 1.18 and 1.19,
- Two doublets of doublets at δ 3.87 and 4.60 integrating for one proton each and attributed to two halogenated methines, and
- Two broad singlets at δ 4.87 and 5.11 integrating for one proton each and attributed to the protons of an exomethylene.

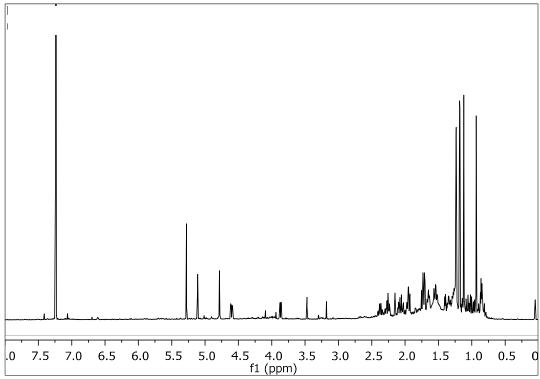
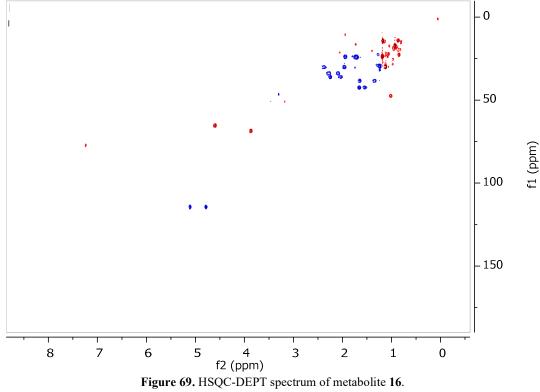



Figure 68. ¹H NMR spectrum of metabolite 16.

Analysis of the NMR and MS data of 16 led to the molecular formula $C_{20}H_{32}Br_2O$. Taking into account the one carbon-carbon double bond as one of the four degrees of unsaturation, the molecular structure of 16 was determined as tricyclic.

The planar structure of metabolite **16** was determined on the basis of the homonuclear and heteronuclear correlations observed in the HSQC-DEPT (Figure 69), HMBC (Figure 70) and COSY (Figure 71) spectra.

Comparison of the spectroscopic and physical characteristics of metabolite **16** with those reported in the literature led to its identification as kahukuene B, previously isolated from the alga *L. majuscula* (Brennan et al., 1993). The ¹H NMR data of metabolite **16** are reported in Table 150.

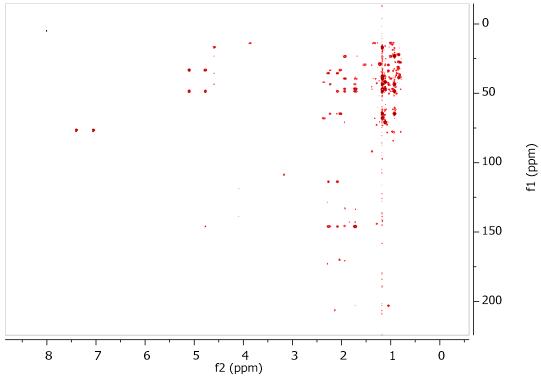
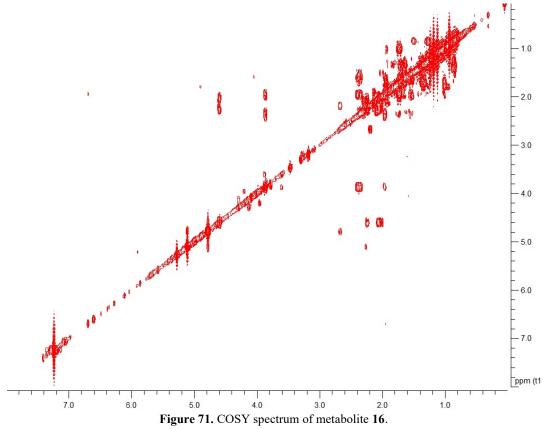



Figure 70. HMBC spectrum of metabolite 16.

Table 150. ¹H and ¹³C NMR data of metabolite **16** in CDCl₃ and C_6D_6 (δ in ppm, J in Hz).

Dogiđiou	δc,exp	δ H,exp	δc,lit	δH,lit
Position	'	in CDCl ₃		in C ₆ D ₆
1	44.1	-	44.2	-
2	65.2	4.60 (dd, 12.7, 4.5)	65.4	4.45 (dd, 14.7, 2.7)
3	35.8	2.24 (m), 2.03 (m)	36.5	2.04 (qd, 11.5, 6.8, 4.7, 2.7), 2.00
				(qd, 14.7, 13.5, 11.5, 6.8)
4	33.7	2.27 (m), 2.08 (m)	33.9	1.98 (ddd, 13.5, 12.8, 6.8) 1.73
	1467		1.47.1	(ddd, 12.8, 6.0, 4.7)
5	146.7	-	147.1	-
6	48.7	-	49.2	-
7	24.1	1.94 (m), 1.71 (m)	24.0	1.59 (dd, 10.2, 1.11), 1.56 (dd,
,	27.1	1.54 (m), 1.71 (m)	24.0	13.3, 10.2)
8	47.4	1.01 (m)	47.5	0.68 (dd, 13.3, 1.1)
9	71.7	-	70.8	-
10	42.2	1.66 () 1.55 ()	42.2	1.14 (ddd, 14.2, 4.3, 2.8), 0.91
10	42.3	1.66 (m), 1.55 (m)	42.3	(ddd, 14.2, 13.4, 4.5)
11	30.0	2.37 (m), 1.95 (m)	30.5	2.39 (qd, 13.4, 13.3, 12.7, 4.3),
11	30.0	2.37 (111), 1.93 (111)	30.3	1.80 (qd, 13.3, 4.5, 3.8, 2.8)
12	68.6	3.87 (dd, 12.7, 3.7)	68.8	3.63 (dd, 12.7, 3.8)
13	39.9	-	40.3	-
1.4	20.2	2 1.65 (m), 1.33 (m) 3	20.7	1.70 (ddd, 13.1, 4.2, 3.1) 1.23
14	38.2		36.2 1.03 (III), 1.33 (III) 36.	38.7
1.5	24.2	1.72 ()	24.4	1.46 (ddd, 14.6, 12.5, 4.2), 1.42
15	24.2	1.73 (m)	24.4	(ddd, 12.5, 3.5, 3.1)
16	23.5	1.19 (s)	23.7	1.09 (s)
17	17.5	0.94 (s)	17.7	0.96 (s)
18	114.2	5.11 (brs), 4.78 (brs)	114.1	4.89 (brs), 4.59 (brs)
19	29.6	1.12 (s)	29.7	0.64 (s)
20	14.4	1.18 (s)	14.5	1.29 (s)

3.1.17 Metabolite 17

Metabolite 17 (LMH04) was isolated after a series of chromatographic separations as a colorless oil (3.6 mg).

The mass spectrum of metabolite 17 (Figure 72) exhibited a molecular ion peak $[M]^+$ at m/z 356 with an isotopic ion peak at m/z 358 at an intensity of 1:1, suggesting the presence of a bromine atom in the molecule.

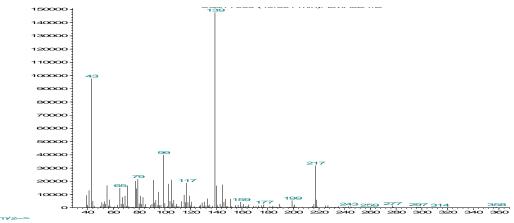


Figure 72. Mass spectrum (EIMS) of metabolite 17.

In the ¹H NMR spectrum of metabolite **17** (Figure 73) obvious were:

- One aliphatic methyl on a secondary carbon at δ 0.87,
- One acetoxy methyl at δ 1.70,
- One acetylenic methine at δ 2.75,
- One doublet of triplets at δ 3.38 and three doublets of doublets of doublets at δ 3.69, 3.85 and 5.08 integrating for one proton each and attributed to four oxygenated or halogenated methines, and
- Two doublets at δ 5.35 and 5.85 integrating for one proton each and attributed to two olefinic methines.

Analysis of the NMR and MS data of 17 led to the molecular formula $C_{17}H_{25}BrO_3$. Taking into account the one carbon-carbon triple bond, the one carbon-carbon double bond and the carbonyl moiety as four of the five degrees of unsaturation, the molecular structure of 17 was determined as monocyclic.

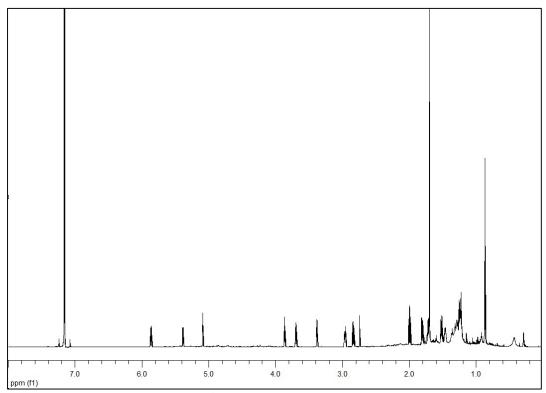


Figure 73. ¹H NMR spectrum of metabolite 17.

The planar structure of metabolite **17** was determined on the basis of the homonuclear and heteronuclear correlations (Figure 74) observed in the HSQC-DEPT (Figure 75), HMBC (Figure 76) and COSY (Figure 77) spectra. In particular, the HSQC spectrum revealed correlations for two methyls, six methylenes and seven methines, among which one was halogenated and three were oxygenated. The COSY cross-peaks indicated the presence of a single spin system extending from H-1 to H₃-15, revealing the position of the bromine atom at C-6 and confirming the presence of an enyne functionality. The HMBC correlation of H-7 ($\delta_{\rm H}$ 3.69) with C-10 ($\delta_{\rm C}$ 81.8) indicated the formation of an ether bridge between C-7 and C-10. Moreover, the acetoxy group was placed at C-9 on the basis of the HMBC correlation between H-9 ($\delta_{\rm H}$ 5.08) and the carbonyl carbon C-16 ($\delta_{\rm C}$ 169.2).

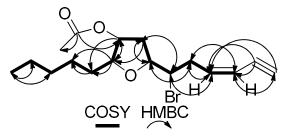
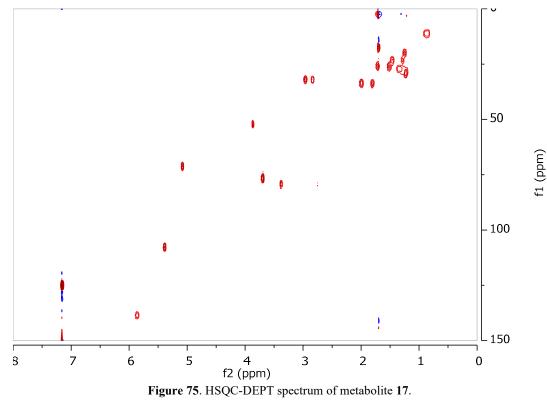



Figure 74. COSY and important HMBC correlations observed for metabolite 17.

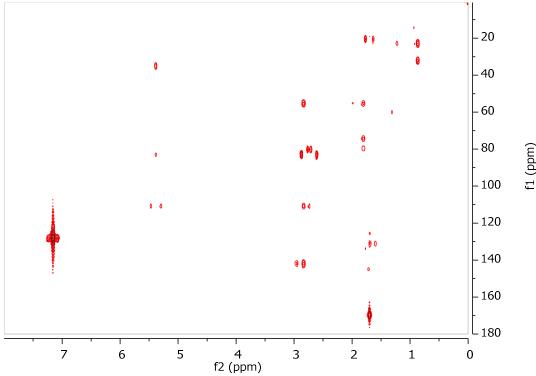


Figure 76. HMBC spectrum of metabolite 17.

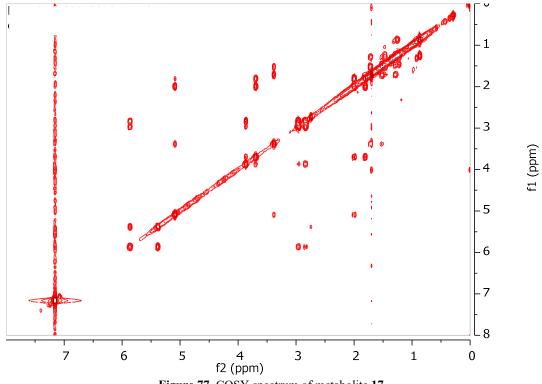


Figure 77. COSY spectrum of metabolite 17.

The relative configuration of the asymmetric centers of metabolite 17 was determined on the basis of the correlations observed in the NOESY spectrum (Figure 78). Specifically, the strong NOE enhancement between H-7 and H-10 indicated their *cis* orientation, while the lack of NOE correlation between H-7 and H-9 indicated their *trans* orientation. The geometry of the carbon-carbon double bond of the -enyne moiety was determined as Z on the basis of the measured coupling constant between H-3 and H-4 (J = 10.6 Hz), as already indicated by the chemical shift of the acetylenic proton resonating at δ 2.75.

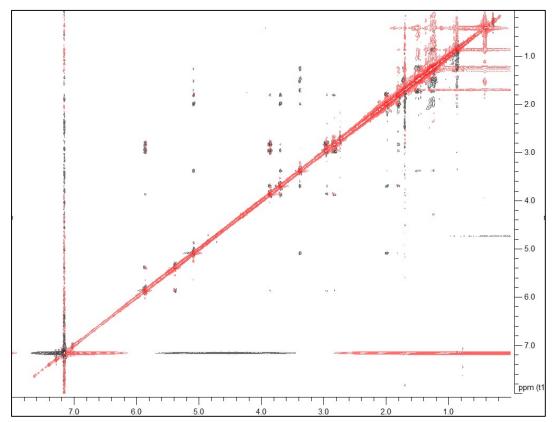


Figure 78. NOESY spectrum of metabolite 17.

Comparison of the spectroscopic and physical characteristics of metabolite 17 with those reported in the literature led to its identification as a new natural product. The NMR data of metabolite 17 are reported in Table 151.

Table 151. 1 H and 13 C NMR data of metabolite **17** in C_6D_6 (δ in ppm, J in Hz).

Position	δ_{C}	δ H
1	82.2	2.75 (d, 1.4)
2	79.7	-
3	110.3	5.38 (dd, 10.6, 1.4)
4	141.4	5.85 (dt, 10.6, 7.0)
5	34.7	2.95 (ddd, 15.7, 7.0, 4.5),
3	34.7	2.83 (ddd, 15.7, 9.2, 7.0)
6	54.5	3.85 (ddd, 9.2, 5.1, 4.5)
7	79.3	3.69 (ddd, 8.3, 7.0, 5.1)
8	36.3	1.99 (ddd, 14.5, 8.3, 6.5),
8	30.3	1.81 (ddd, 14.5, 7.0, 2.0)
9	73.4	5.08 (ddd, 6.5, 4.3, 2.0)
10	81.8	3.38 (dt, 8.7, 4.3)
11	28.7	1.72 (m), 1.52 (m)
12	25.7	1.47 (m), 1.29 (m)
13	31.8	1.25 (m)
14	22.2	1.26 (m)
15	13.6	0.87 (t, 7.1)
16	169.2	
17	19.9	1.70 (s)

3.1.18 Metabolite 18

Metabolite **18** (LMH02) was isolated after a series of chromatographic separations as a colorless oil (30.0 mg).

The mass spectrum of metabolite **18** (Figure 79) exhibited a molecular ion peak $[M]^+$ at m/z 342 with isotopic ion peaks at m/z 344 and 346 at a relative intensity characteristic for the presence of one bromine and one chlorine atom in the molecule.

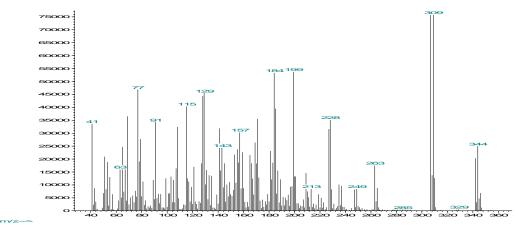


Figure 79. Mass spectrum (EIMS) of metabolite 18.

In the ¹H NMR spectrum of metabolite **18** (Figure 80) obvious were:

- One aliphatic methyl on a secondary carbon at δ 1.02,
- One acetylenic methine at δ 2.68,
- Four signals at δ 4.10, 4.43, 4.53 and 4.91 integrating for one proton each and attributed to four oxygenated or halogenated methines, and
- Two signals at δ 5.20 and 5.59 integrating for one proton each and attributed to two olefinic methines.

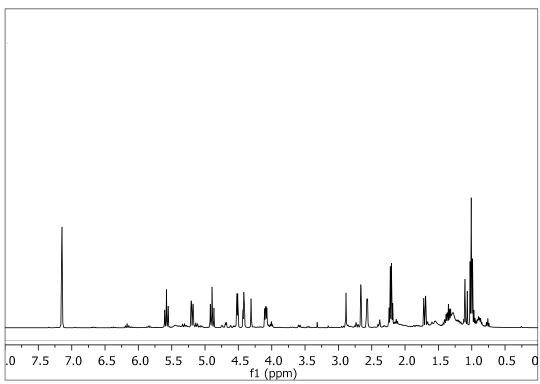


Figure 80. ¹H NMR spectrum of metabolite 18 in C₆D₆.

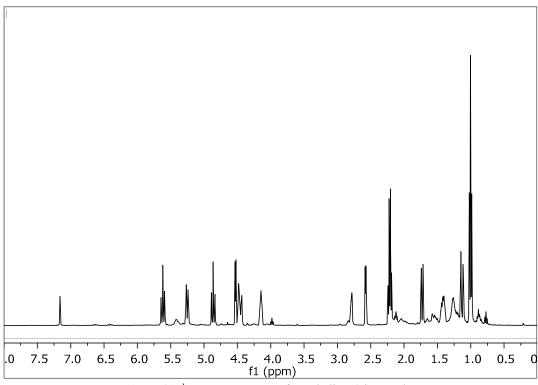


Figure 81. ¹H NMR spectrum of metabolite 18 in CDCl₃.

Analysis of the NMR and MS data of 18 led to the molecular formula $C_{15}H_{16}BrClO_2$. Taking into account the one carbon-carbon triple bond and the two carbon-carbon double bonds as four of the seven degrees of unsaturation, the molecular structure of 18 was determined as tricyclic.

Comparison of the spectroscopic and physical characteristics of metabolite **18** with those reported in the literature led to its identification as *cis*-maneonene-D, previously isolated from the red alga *L. obtusa* (Ayyad et al., 2011). The ¹H NMR data of metabolite **18** are reported in Table 152.

Table 152. ¹H and ¹³C NMR data of metabolite **18** in C₆D₆ (δ in ppm, J in Hz).

Position	$\delta_{ m H,exp}$	δ H,lit
1	2.68 (d, 2.2)	2.63 (dd, 2.4, 1.2)
3	5.20 (dd, 10.5, 2.2)	5.19 (dd, 10.8, 2.4)
4	5.59 (t, 10.5)	5.59 (ddd, 10.8, 10.8, 1.2)
5	4.91 (t, 10.5)	4.92 (dd, 10.8, 10.8)
6	1.72 (d, 10.5)	1.72 (dd, 10.8, 1.8)
7	4.53 (d, 5.2)	4.53 (brd, 5.4)
8	1.34 (m), 1.10 (d, 13.2)	1.34 (ddd, 13.2, 7.8, 5.4),
o		1.08 (d, 13.2)
9	4.10 (dd, 7.6, 4.7)	4.08 (dd, 7.8, 4.8)
10	4.43 (m)	4.41 (dd, 4.8, 4.8)
11	2.58 (d, 5.0)	2.58 (brd, 4.8)
14	2.23 (q, 7.3)	2.23 (q, 7.2)
15	1.02 (t, 7.3)	1.03 (t, 7.2)

3.1.19 Metabolite 19

Metabolite **19** (LMH06) was isolated after a series of chromatographic separations as a colorless oil (7.6 mg).

The mass spectrum of metabolite **19** (Figure 82) exhibited a fragment ion peak at m/z 343 and isotopic ion peaks at m/z 345 and 347 at a relative intensity characteristic for the presence of one bromine and one chlorine atom in the molecule and corresponding to [M-OCH₃]⁺.

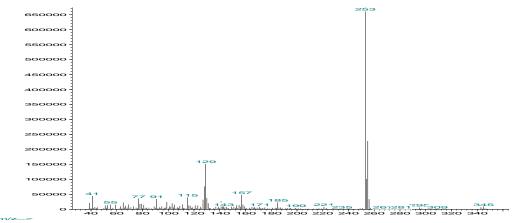


Figure 82. Mass spectrum (EIMS) of metabolite 19.

In the ¹H NMR spectrum of metabolite **19** (Figure 83) obvious were:

- One aliphatic methyl on a secondary carbon at δ 1.06,
- One acetylenic methine at δ 3.24,
- One oxygenated methyl at δ 3.27,
- Five signals at δ 4.04, 4.40, 4.72, 4.80 and 5.30 integrating for one proton each and attributed to five oxygenated or halogenated methines, and
- Two signals at δ 5.60 and 5.90 integrating for one proton each and attributed to two olefinic methines.

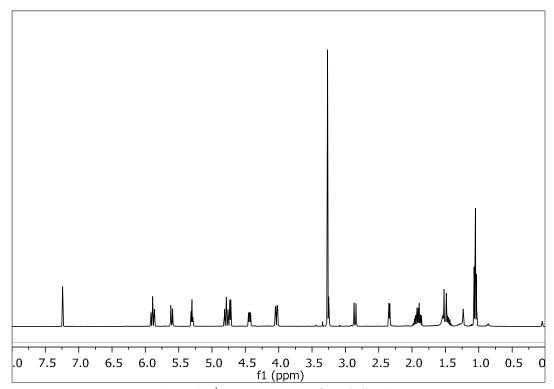


Figure 83. ¹H NMR spectrum of metabolite 19.

Analysis of the NMR and MS data of **19** led to the molecular formula C₁₆H₂₀BrClO₃. Taking into account the one carbon-carbon triple bond and the one carbon-carbon double bond as three of the six degrees of unsaturation, the molecular structure of **19** was determined as tricyclic.

The planar structure of metabolite **19** was determined on the basis of the homonuclear and heteronuclear correlations (Figure 84) observed in the HSQC-DEPT (Figure 85), HMBC (Figure 86) and COSY (Figure 87) spectra. In particular, the correlations observed in the HSQC-DEPT spectrum revealed the presence of two methyls, two methylenes and ten methines. The COSY cross-peaks indicated the presence of an extended spin system ranging from H-1 to H-11, as well as that of short one from H-13 to H₃-15. The HMBC correlations of H-10 (δ_H 5.30) with C-7 (δ_C 77.5), as well as of H-9 (δ_H 4.40) with C-12 (δ_C 108.2), identified the formation of two ether bridges between C-7 and C-10 and C-9 and C-10, while the correlations of C-12 with H-6 (δ_H 2.87) and H-13 (δ_H 4.04) connected the two spin systems and indicated the formation of the tricyclic skeleton. In addition, the HMBC correlations of C-2 (δ_C 78.3) with H-3 (δ_H 5.60) and H-4 (δ_H 5.90), as well as of C-4 (δ_C 141.6) with H-1 (δ_H 3.24) confirmed the presence of the terminal enyne moiety, which is frequently encountered in C₁₅ acetogenins (Takahashi et al., 1999). Moreover, the HMBC correlation of Me-16 (δ_H 3.27) with C-12 (δ_C 108.2) secured the position of the methoxy group at C-12.

Figure 84. COSY and important HMBC correlations observed for metabolite 19.

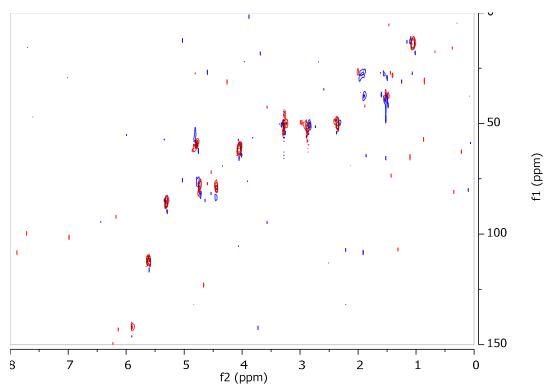
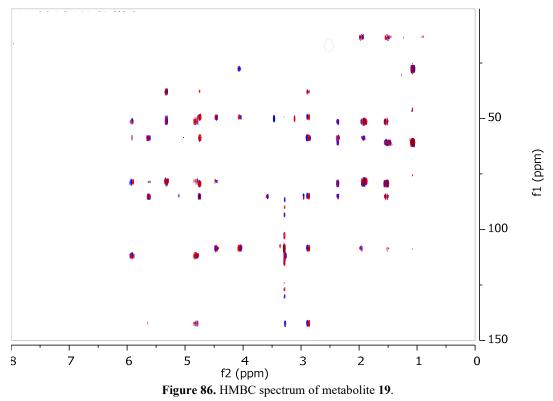
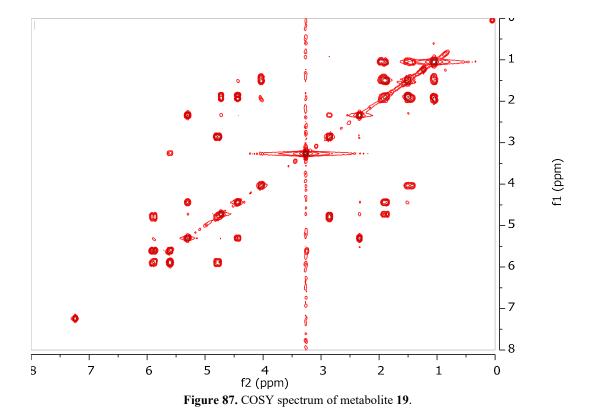




Figure 85. HSQC-DEPT spectrum of metabolite 19.

The relative configuration of the asymmetric centers of metabolite 19 was determined on the basis of the correlations observed in the NOESY spectrum (Figure

88). Specifically, the NOE enhancements of H_3 -16 with H-13 and of H-11 with H-14b (δ 1.48), as well as of H-11 with H-10 and of H-10 with H-9 secured the relative configuration at C-9, C-10, C-11, C-12 and C-13. Furthermore, the absence of coupling of H-6 with H-7 and/or H-11 in the COSY spectrum indicating an almost 90° dihedral angle between H-6–C-6–C-7–H-7, as well as between H-6–C-6–C-11–H-11, in conjunction with the NOE enhancement of H-5 with H-11 secured the relative configuration at C-6 (Figure 89).

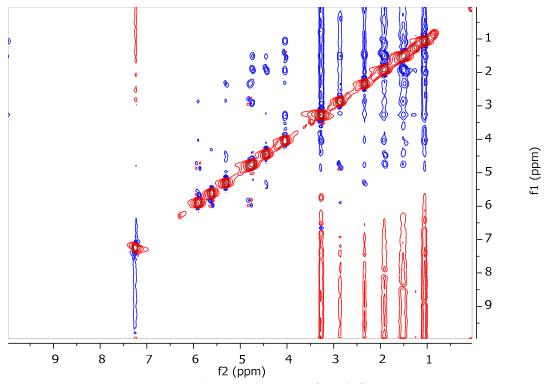


Figure 88. NOESY spectrum of metabolite 19.

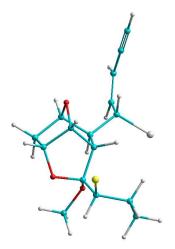


Figure 89. 3D structure of metabolite 19.

Comparison of the spectroscopic and physical characteristics of metabolite 19 with those reported in the literature led to its identification as a new natural product. The NMR data of metabolite 19 are reported in Table 153.

Table 153. ^{1}H and ^{13}C NMR data of metabolite **19** in CDCl₃ (δ in ppm, J in Hz).

	1	3(-11)-
Position	$oldsymbol{\delta}_{ ext{C}}$	δ н
1	78.0	3.24 (d, 2.3)
2	78.3	-
3	111.8	5.60 (dd, 10.6, 2.3)
4	141.6	5.90 (t, 10.6)
5	57.1	4.80 (t, 10.6)
6	52.3	2.87 (brd, 10.6)
7	77.5	4.72 (d, 5.2)
8	36.7	1.89-1.93 (m), 1.54 (m)
9	78.2	4.40 (dd, 8.2, 5.0)
10	84.9	5.30 (t, 5.0)
11	49.0	2.33 (d, 5.0)
12	108.2	-
13	60.7	4.04 (dd, 11.3, 2.1)
14	26.8	1.93 (m), 1.48 (m)
15	12.5	1.06 (t, 7.3)
16	48.7	3.27 (s)

3.1.20 Metabolite **20**

Metabolite **20** (LMH07) was isolated after a series of chromatographic separations as a colorless oil (8.2 mg).

The mass spectrum of metabolite **20** (Figure 90) exhibited a fragment ion peak at m/z 343 and isotopic ion peaks at m/z 345 and 347 at a relative intensity characteristic for the presence of one bromine and one chlorine atom in the molecule and corresponding to $[M-OCH_3]^+$.

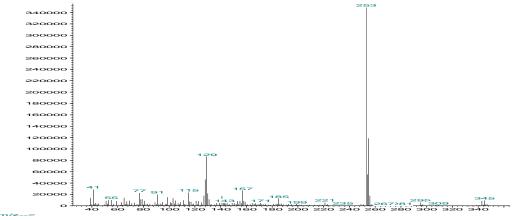


Figure 90. Mass spectrum (EIMS) of metabolite 20.

In the ¹H NMR spectrum of metabolite **20** (Figure 91) obvious were:

- One aliphatic methyl on a secondary carbon at δ 1.08,
- One acetylenic methine at δ 3.22,
- One oxygenated methyl at δ 3.31,
- Five signals at δ 3.96, 4.41, 4.75, 4.80 and 4.88 integrating for one proton each and attributed to five oxygenated or halogenated methines, and
- Two signals at δ 5.62 and 5.99 integrating for one proton each and attributed to two olefinic methines.

Analysis of the NMR and MS data of 20 led to the molecular formula $C_{16}H_{20}BrClO_3$. Taking into account the one carbon-carbon triple bond and the one carbon-carbon double bond as three of the six degrees of unsaturation, the molecular structure of 20 was determined as tricyclic.

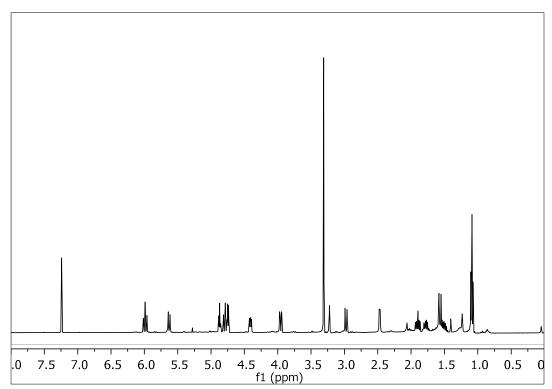


Figure 91. ¹H NMR spectrum of metabolite 20.

The spectroscopic data of **20** were rather similar to those of metabolite **19**. Indeed, the planar structure of metabolite **20** was determined to be the same as that of **19** on the basis of the homonuclear and heteronuclear correlations (Figure 92) observed in the HSQC-DEPT (Figure 93), HMBC (Figure 94) and COSY (Figure 95) spectra.

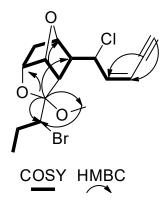
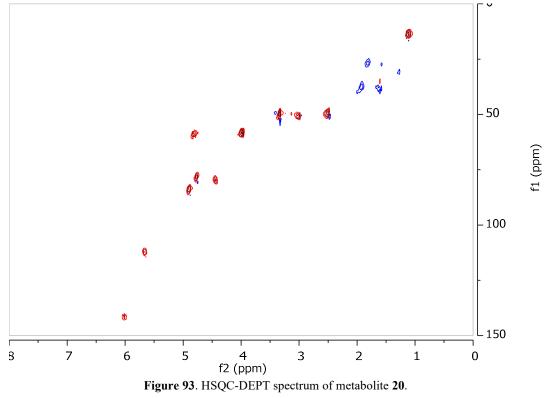



Figure 92. COSY and important HMBC correlations observed for metabolite 20.



Figure 94. HMBC spectrum of metabolite 20.

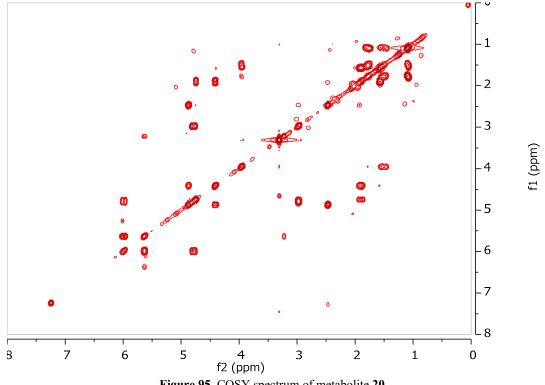


Figure 95. COSY spectrum of metabolite 20.

The relative configuration of the asymmetric centers of metabolite 20 was determined on the basis of the correlations observed in the NOESY spectrum (Figure 96). Specifically, as in the case of 19, the absence of coupling of H-6 with H-7 and/or H-11 in the COSY spectrum indicating an almost 90° dihedral angle between H-6-C-6-C-7-H-7, as well as between H-6-C-6-C-11-H-11, in conjunction with the NOE enhancement of H-5 with H-11 secured the relative configuration at C-6. The NOE enhancements of H₃-16 with H-13 and of H-11 with H-14b (δ 1.51), as well as of H-11 with H-10 and of H-10 with H-9 secured the relative configuration at C-9, C-10, C-11 and C-12. However, the fact that H-10 and H-13 were shielded (in comparison to compound 19) suggested a change in the relative configuration of C-13.

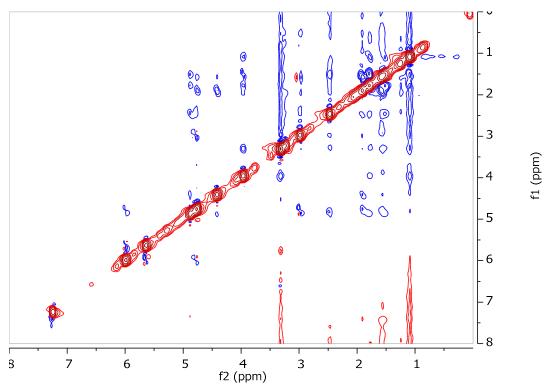


Figure 96. NOESY spectrum of metabolite 20.

Comparison of the spectroscopic and physical characteristics of metabolite 20 with those reported in the literature led to its identification as a new natural product. The NMR data of metabolite 20 are reported in Table 154.

Table 154. 1 H and 13 C NMR data of metabolite **20** in CDCl₃ (δ in ppm, J in Hz)

Position	δ_{C}	$\delta_{ m H}$
1	81.0	3.22 (d, 2.3)
2	79.0	-
3	111.8	5.62 (dd, 10.5, 2.3)
4	141.6	5.99 (t, 10.5)
5	58.5	4.80 (t, 10.5)
6	52.3	2.97 (brd, 10.5)
7	77.5	4.75 (d, 5.0)
8	37.4	1.89 (m), 1.58 (m)
9	78.2	4.41 (dd, 8.2, 5.0)
10	84.9	4.88 (t, 5.0)
11	49.0	2.44 (d, 5.0)
12	108.5	-
13	60.7	3.96 (dd, 11.5, 2.0)
14	26.7	1.79 (m), 1.51 (m)
15	13.1	1.08 (t, 7.2)
16	49.0	3.31 (s)

3.1.21 Metabolite 21

Metabolite **21** (LMH08) was isolated after a series of chromatographic separations as a colorless oil (19.5 mg).

The mass spectrum of metabolite **21** (Figure 97) exhibited a fragment ion peak at m/z 343 and isotopic ion peaks at m/z 345 and 347 at a relative intensity characteristic for the presence of one bromine and one chlorine atom in the molecule and corresponding to [M-OCH₃]⁺.

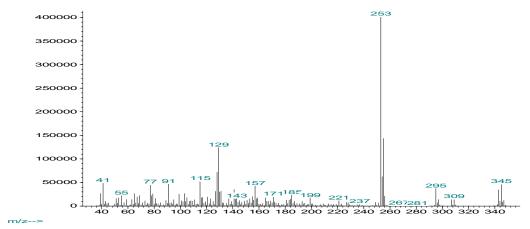


Figure 97. Mass spectrum (EIMS) of metabolite 21.

In the ¹H NMR spectrum of metabolite **21** (Figure 98) obvious were:

- One aliphatic methyl on a secondary carbon at δ 1.05,
- One acetylenic methine at δ 3.21,
- One oxygenated methyl at δ 3.24,
- Five signals at δ 3.76, 4.52, 4.76, 4.82 and 5.16 integrating for one proton each and attributed to five oxygenated or halogenated methines, and
- Two signals at δ 5.63 and 6.18 integrating for one proton each and attributed to two olefinic methines.

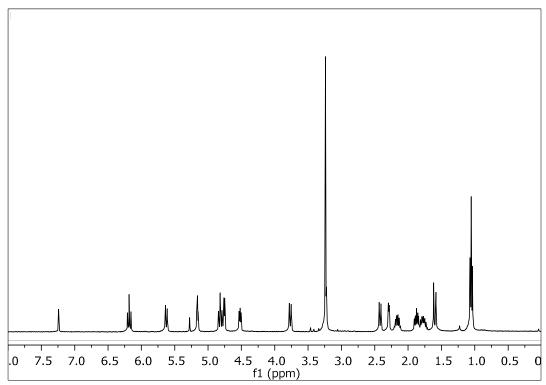
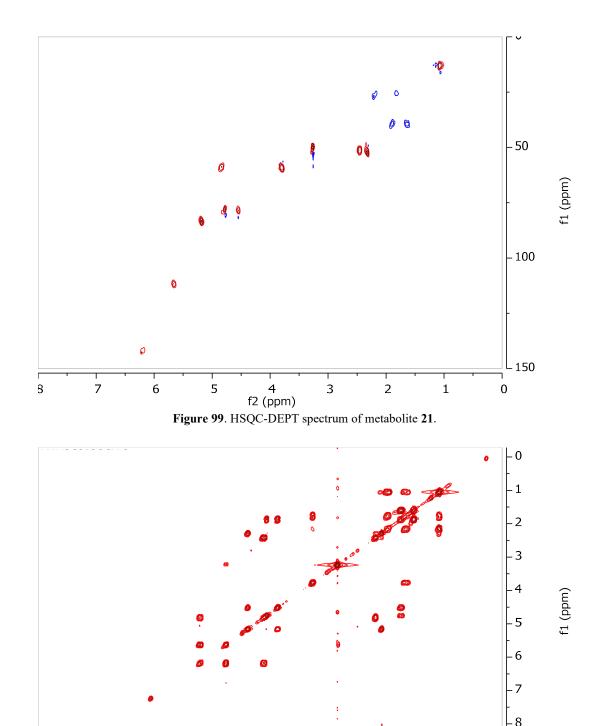



Figure 98. ¹H NMR spectrum of metabolite 21.

Analysis of the NMR and MS data of **21** led to the molecular formula C₁₆H₂₀BrClO₃. Taking into account the one carbon-carbon triple bond and the one carbon-carbon double bond as three of the six degrees of unsaturation, the molecular structure of **21** was determined as tricyclic.

The spectroscopic data of 21 were rather similar to those of metabolites 19 and 20. Indeed, the planar structure of metabolite 21 was determined to be the same as that of 19 and 20 on the basis of the homonuclear and heteronuclear correlations observed in the HSQC-DEPT (Figure 99) and COSY (Figure 100) spectra.

The relative configuration of the asymmetric centers of metabolite 21 was determined on the basis of the correlations observed in the NOESY spectrum (Figure

Figure 100. COSY spectrum of metabolite 21.

f2 (ppm)

101). Specifically, the absence of coupling of H-6 with H-7 and/or H-11 in the COSY spectrum indicating an almost 90° dihedral angle between H-6–C-6–C-7–H-7, as well as between H-6–C-6–C-11–H-11, in conjunction with the NOE enhancement of H-5 with H-11 secured the relative configuration at C-6. Furthermore, the NOE enhancements of H-11 with H-14b (δ 1.77), as well as of H-11 with H-10 and of H-10 with H-9, in combination with that of H-13 with H-6 secured the relative configuration at C-9, C-10 and C-11 and suggested the inversion of the relative configuration at C-12 (Figure 102).

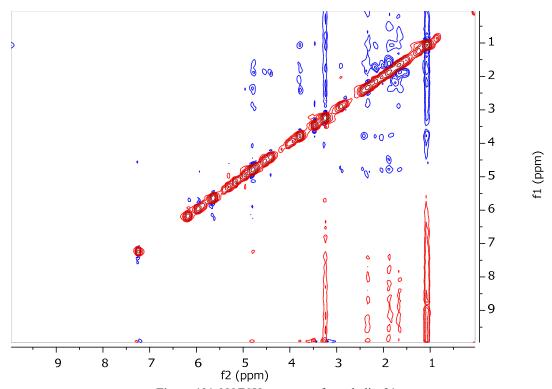


Figure 101. NOESY spectrum of metabolite 21.

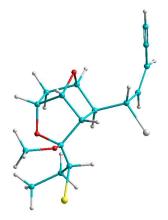


Figure 102. 3D structure of metabolite 21.

Comparison of the spectroscopic and physical characteristics of metabolite 21 with those reported in the literature led to its identification as a new natural product. The NMR data of metabolite 21 are reported in Table 155.

Table 155. $^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR data of metabolite **21** in CDCl₃ (δ in ppm, J in Hz).

Position	$\delta_{ m C}$	$\delta_{ m H}$
1	n.d.	3.21 (d, 2.2)
2	79.0	-
3	111.5	5.63 (dd, 10.6, 2.2)
4	141.6	6.18 (t, 10.6)
5	59.1	4.82 (t, 10.6)
6	51.6	2.43 (dd, 10.6, 1.0)
7	78.5	4.76 (dd, 5.0, 5.0)
8	39.7	1.88 (ddd, 12.8, 7.3, 5.0),
o	39.1	1.60 (d, 12.8)
9	78.8	4.52 (dd, 7.3, 4.7)
10	83.3	5.16 (t, 4.7)
11	52.3	2.31 (d, 4.7)
12	108.2	-
13	59.4	3.76 (dd, 11.1, 2.0)
14	26.1	2.16 (m), 1.77 (m)
15	13.8	1.05 (t, 7.2)
16	50.3	3.24 (s)

n.d.: not determined

3.1.22 Metabolite **22**

Metabolite **22** (LMH16) was isolated after a series of chromatographic separations as a colorless oil (3.8 mg).

OHC
$$\frac{CI}{2}$$
 $\frac{4}{3}$ $\frac{4}{5}$ $\frac{(CH_2)_9}{CH_3}$

The mass spectrum of metabolite **22** (Figure 103) exhibited a fragment ion peak at m/z 223 corresponding to [M-Cl]⁺.

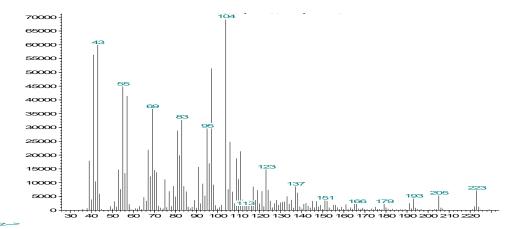


Figure 103. Mass spectrum (EIMS) of metabolite 22.

In the ¹H NMR spectrum of metabolite **22** (Figure 104) obvious were:

- One aliphatic methyl on a secondary carbon at δ 0.85,
- One olefinic methine at 6.87, and,
- One singlet at δ 9.35 integrating for one proton and attributed to the proton of an aldehyde group.

Analysis of the NMR and MS data of 22 led to the molecular formula $C_{15}H_{27}ClO$. Taking into account the one carbon-carbon double bond and the carbonyl moiety as two of the two degrees of unsaturation, the molecular structure of 22 was determined as linear.

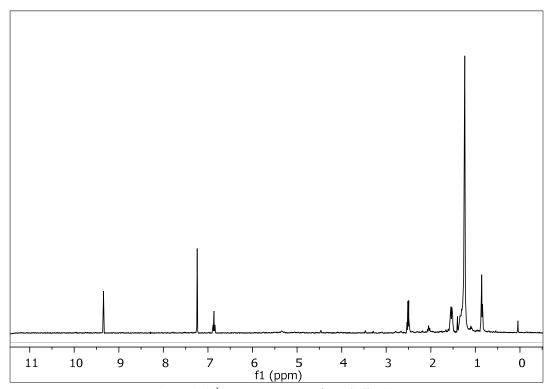


Figure 104. ¹H NMR spectrum of metabolite 22.

Comparison of the spectroscopic and physical characteristics of metabolite **22** with those reported in the literature led to its identification as (2*Z*)-2-chloro-pentadec-2enal, previously isolated from the *Laurencia flexilis* (de Nys et al., 1993). The ¹H NMR data of metabolite **22** are reported in Table 156.

Table 156. ¹H NMR data of metabolite **22** in CDCl₃ (δ in ppm, J in Hz).

Position	$\delta_{ m H,exp}$	δ H,lit
1	9.35 (s)	9.36 (s)
3	6.87 (t, 7.3)	6.89 dd (7.2, 7.2)
4	2.52 (m), 2.45 (m)	2.52 ddd (7.2, 7.3, 7.3)
5	1.52 (m)	1.55 (m)
6~14	1.24 (m)	1.26 (brs)
15	0.85 (t, 6.7)	0.88 (m)

3.2 Identification and structure elucidation of isolated metabolites from the sponge *Lamellodysidea* sp.

3.2.1 Metabolite 23

Metabolite **23** (KR649-13) was isolated after a series of chromatographic separations as colorless crystals (15.6 mg).

The mass spectrum of metabolite **23** (Figure 105) exhibited a molecular ion peak $[M]^+$ at m/z 216, as well as a fragment ion peak at m/z 201 corresponding to $[M-CH_3]^+$.

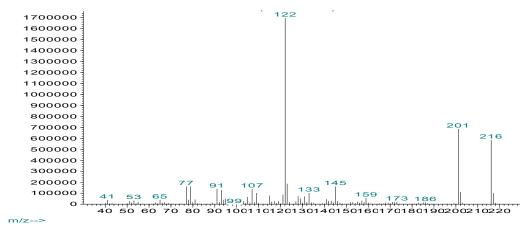


Figure 105. Mass spectrum (EIMS) of metabolite 23.

In the ¹H NMR spectrum of metabolite **23** (Figure 106) obvious were:

- Two aliphatic methyls on non-protonated carbons at δ 1.23 and 1.25,
- One olefinic methyl at δ 1.65,
- One signal at δ 5.58 integrating for one proton and attributed to one olefinic methine, and
- Two broad doublets at δ 6.08 and 7.21 integrating for one proton each and attributed to the olefinic protons of a furan ring.

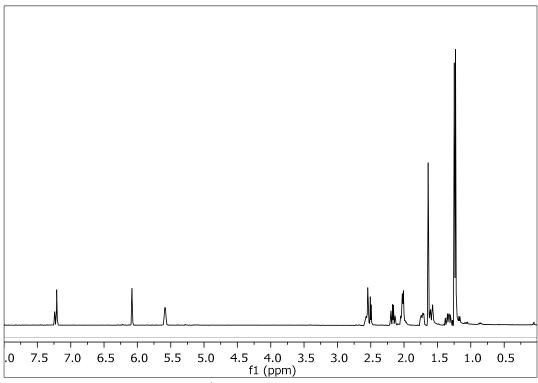


Figure 106. ¹H NMR spectrum of metabolite 23.

Analysis of the NMR and MS data of 23 led to the molecular formula $C_{15}H_{20}O$. Taking into account the three carbon-carbon double bonds as the three of the six degrees of unsaturation, the molecular structure of 23 was determined as tricyclic.

Comparison of the spectroscopic and physical characteristics of metabolite 23 with those reported in the literature led to its identification as furodysin, previously isolated from the marine sponge *Dysidea* sp. (Kazlauskas et al., 1978). The ¹H NMR data of metabolite 23 are reported in Table 157.

Table 157. ¹H NMR data of metabolite **23** in CDCl₃ and CCl₄ (δ in ppm, J in Hz)

Position	$\delta_{\mathrm{H,exp}}$ (in CDCl ₃)	$\boldsymbol{\delta}_{ ext{H,lit}} ext{(in CCl_4)}$
1	7.21 (brd, 1.8)	7.03 (d, 2)
2	6.08 (brd, 1.8)	5.90 (d, 2)
5	2.52 (m), 2.19 (m)	2.48 (dd, 17.0, 5.5), 2.1 (dd,
		17.0, 12.0)
7	5.58 (brd, 5.8)	5.50 (brd, 6)
13	1.23 (s)	1.23 (s)
14	1.25 (s)	1.23 (s)
15	1.65 (s)	1.61 (s)

3.2.2 Metabolite 24

Metabolite **24** (KR649-12) was isolated after a series of chromatographic separations as colorless crystals (76 mg).

The mass spectrum of metabolite **24** (Figure 107) exhibited a molecular ion peak $[M]^+$ at m/z 216, as well as a fragment ion peak at m/z 201 corresponding to $[M-CH_3]^+$.

Figure 107. Mass spectrum (EIMS) of metabolite 24.

In the ¹H NMR spectrum of metabolite **24** (Figure 108) obvious were:

- Two aliphatic methyls on non-protonated carbons at δ 1.17 and 1.19,
- One olefinic methyl at δ 1.65,
- One signal at δ 5.61 integrating for one proton and attributed to one olefinic methine, and
- Two broad singlets at δ 6.22 and 7.20 integrating for one proton each and attributed to the olefinic protons of a furan ring.

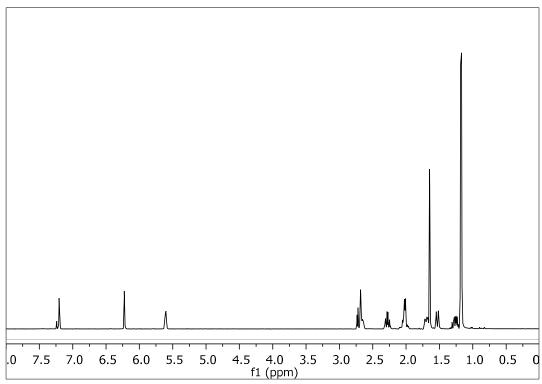


Figure 108. ¹H NMR spectrum of metabolite 24.

Analysis of the NMR and MS data of 24 led to the molecular formula $C_{15}H_{20}O$. Taking into account the three carbon-carbon double bonds as three of the six degrees of unsaturation, the molecular structure of 24 was determined as tricyclic.

Comparison of the spectroscopic and physical characteristics of metabolite **24** with those reported in the literature led to its identification as furodysinin, previously isolated from the marine sponge *Dysidea* sp. (Kazlauskas et al., 1978). The ¹H NMR data of metabolite **24** are reported in Table 158.

Table 158. ¹H NMR data of metabolite **24** in CDCl₃ and CCl₄ (δ in ppm, J in Hz).

		11 /- /
Position	$\delta_{H,exp}$ (in CDCl ₃)	δ _{H,lit} (in CCl ₄)
1	7.20 (brs)	6.98 (brs)
2	6.22 (brs)	6.01 (d, 2)
5	2.65 (m), 2.28 (m)	2.56 (m), 2.19 (dd, 17.5, 12.5)
6	2.70 (m)	2.64 (dd, 17.5, 5.5)
7	5.61 (brd, 3.6)	5.50 (brd, 6)
13	1.17 (s)	1.15 (s)
14	1.19 (s)	1.15 (s)
15	1.65 (s)	1.60 (s)

3.2.3 Metabolite 25

Metabolite **25** (KR649-23) was isolated after a series of chromatographic separations as a colorless oil (1.0 mg).

The mass spectrum of metabolite **25** (Figure 109) exhibited a molecular ion peak $[M]^+$ at m/z 274 and a fragment ion peak at m/z 214 corresponding to $[M-AcOH]^+$.

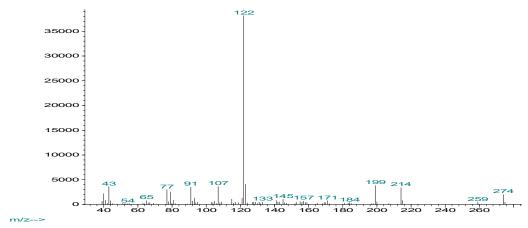


Figure 109. Mass spectrum (EIMS) of metabolite 25.

In the ¹H NMR spectrum of metabolite **25** (Figure 110) obvious were:

- Two aliphatic methyls on non-protonated carbons at δ 1.17 and 1.19,
- One acetoxy methyl at δ 2.07,
- One broad singlet at δ 4.45 integrating for two protons and attributed to the protons of an oxygenated methylene,
- One signal at δ 5.94 integrating for one proton and attributed to one olefinic methine, and
- Two broad doublets at δ 6.22 and 7.21 integrating for one proton each and attributed to the olefinic protons of a furan ring.

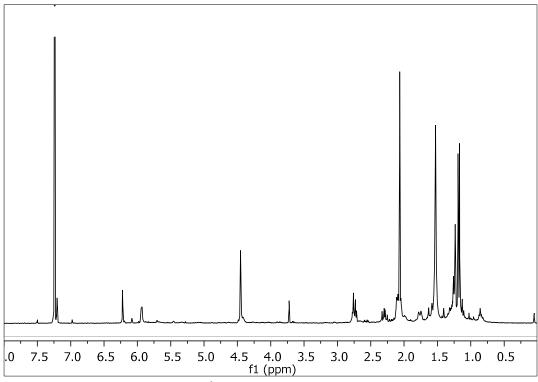


Figure 110. ¹H NMR spectrum of metabolite 25.

Analysis of the NMR and MS data of **25** led to the molecular formula C₁₇H₂₂O₃. Taking into account the three carbon-carbon double bonds and the carbonyl moiety as four of the seven degrees of unsaturation, the molecular structure of **25** was determined as tricyclic.

The spectroscopic data of metabolite **25** revealed close similarity to those of **24**, with the striking difference observed for Me-15 where oxidation and subsequent acetylation had taken place. Indeed, the planar structure of metabolite **25** was verified on the basis of the homonuclear and heteronuclear correlations (Figure 111) observed in the HSQC-DEPT (Figure 112), HMBC (Figure 113) and COSY (Figure 114) spectra.

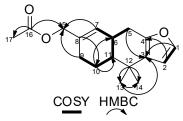
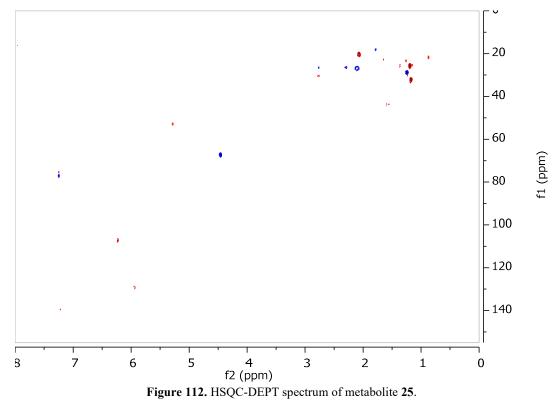
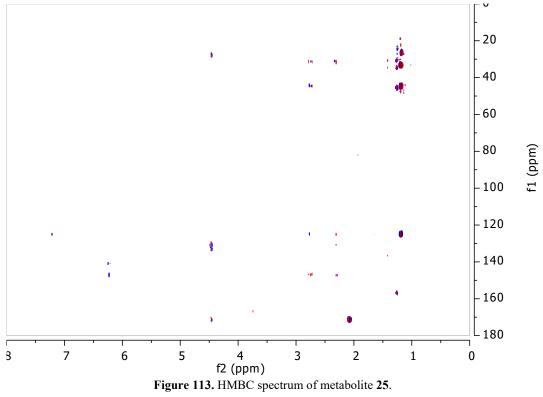




Figure 111. COSY and important HMBC correlations observed for metabolite 25.

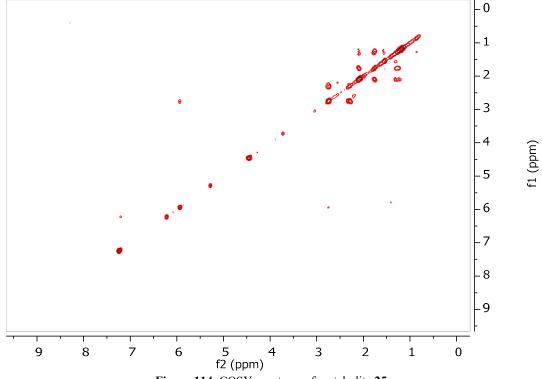
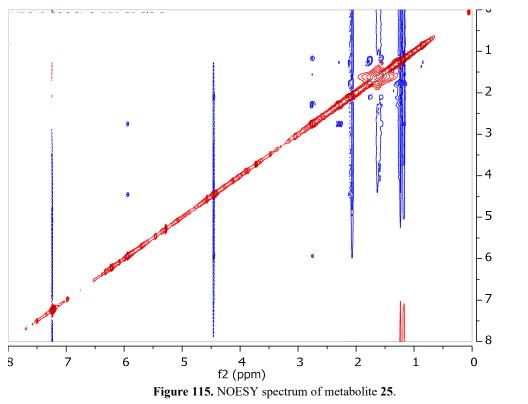



Figure 114. COSY spectrum of metabolite 25.

The relative configuration of the asymmetric centers of metabolite **25** was determined on the basis of the correlations observed in the NOESY spectrum (Figure 115). Specifically, the NOE enhancement of H-6 with H-11 confirmed the *cis* fusion of the two cyclohexane rings.

Comparison of the spectroscopic and physical characteristics of metabolite **25**with those reported in the literature led to its identification as a new natural product, which was designated as 15-acetoxy-furodysinin. The NMR data of metabolite **25** are reported in Table 159.

Table 159. $^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR data of metabolite **25** in CDCl₃ (δ in ppm, J in Hz).

Position	δ_{C}	$\delta_{ m H}$
1	140.6	7.21 (d, 1.2)
2	108.0	6.22 (d, 1.8)
3	124.5	-
4	146.2	-
5	27.2	2.74 (m), 2.30 (dd, 18.1, 12.0)
6	31.1	2.75 (m)
7	130.2	5.94 (d, 5.4)
8	156.9	-
9	27.7	2.10 (m)
10	18,6	1.80 (m), 1.28 (m)
11	44.8	1.59 (m)
12	33.3	-
13	33.0	1.17 (s)
14	26.3	1.19 (s)
15	68.1	4.45 (brs)
16	171.1	-
17	21.3	2.07 (s)

3.2.4 Metabolite **26**

Metabolite **26** (KR649-10) was isolated after a series of chromatographic separations as a colorless oil (24.0 mg).

The mass spectrum of metabolite **26** (Figure 116) exhibited a molecular ion peak $[M]^+$ at m/z 248.

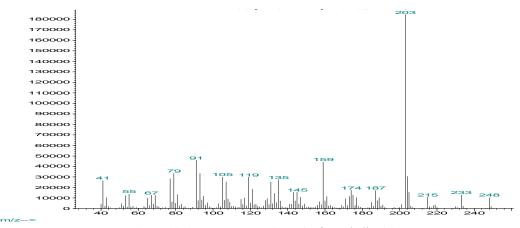


Figure 116. Mass spectrum (EIMS) of metabolite 26.

In the ¹H NMR spectrum of metabolite **26** (Figure 117) obvious were:

- Two aliphatic methyls on non-protonated carbons at δ 1.13 and 1.18,
- One olefinic methyl at δ 1.65, and
- Three signals at δ 3.53, 5.32 and 5.46 integrating for one proton each and attributed to either oxygenated or olefinic methines.

Analysis of the NMR and MS data of **26** led to the molecular formula $C_{15}H_{20}O_3$. Taking into account the one carbon-carbon double bond as one of the six degrees of unsaturation, the molecular structure of **26** was determined as pentacyclic.

Comparison of the spectroscopic and physical characteristics of metabolite **26** with those reported in the literature led to its identification as furodysinin lactone (bisepoxide), previously isolated from the marine nudibranch *Chromodoris funerea* (Carté et al., 1986). The ¹H NMR data of metabolite **26** are reported in Table 160.

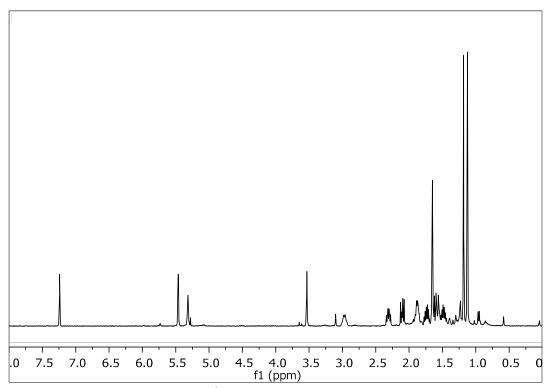


Figure 117. ¹H NMR spectrum of metabolite 26.

Table 160. 1 H NMR data of metabolite **26** in CDCl₃ (δ in ppm, J in Hz).

Position	$\delta_{ m H,exp}$	δ H,lit
1	5.46 (d, 2.3)	5.48 (d, 1.0)
2	3.53 (d, 2.3)	3.55 (d, 1.0)
5	2.10 (dd, 13.3, 8.4), 1.59 (dd,	2.12 (dd, 13.8, 8.0), 1.58 (m)
	13.3, 10.0)	
6	2.97 (m)	2.99 (m)
7	5.32 (brs)	5.34 (brs)
9	1.88 (m)	
10	1.74 (ddd, 13.2, 12.7, 6.2), 1.48	1.77 (m), 1.51 (m)
	(dt, 13.2, 6.5)	
11	2.31 (m)	
13	1.13 (s)	1.15 (s)
14	1.18 (s)	1.21 (s)
15	1.65 (s)	1.67 (brs)

3.2.5 Metabolite 27

Metabolite **27** (KR649-21) was isolated after a series of chromatographic separations as a colorless oil (1.6 mg).

The mass spectrum of metabolite **27** (Figure 118) exhibited a molecular ion peak $[M]^+$ at m/z 248.

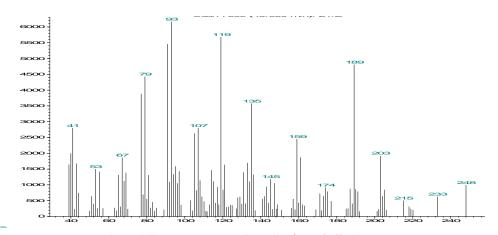


Figure 118. Mass spectrum (EIMS) of metabolite 27.

In the ¹H NMR spectrum of metabolite **27** (Figure 119) obvious were:

- Two aliphatic methyls on non-protonated carbons at δ 1.02 and 1.15,
- One olefinic methyl at δ 1.65, and
- Three signals at δ 3.78, 5.38 and 5.56 integrating for one proton each and attributed to either oxygenated or olefinic methines.

Analysis of the NMR and MS data of 27 led to the molecular formula $C_{15}H_{20}O_3$. Taking into account the one carbon-carbon double bond as one of the six degrees of unsaturation, the molecular structure of 27 was determined as pentacyclic.

Comparison of the spectroscopic and physical characteristics of metabolite 27 with those reported in the literature led to its identification as furodysinin lactone (bisepoxide), previously isolated from the marine nudibranch *Chromodoris funerea* (Carté et al., 1986). The ¹H NMR data of metabolite 27 are reported in Table 161.

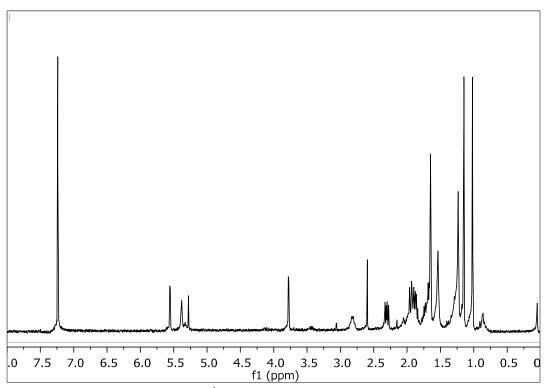


Figure 119. ¹H NMR spectrum of metabolite 27.

Table 161. $^{1}\mathrm{H}$ NMR data of metabolite **27** in CDCl₃ (δ in ppm, J in Hz).

Position	δ H,exp	δ H,lit
1	5.56 (d, 2.1)	5.58 (d, 1.0)
2	3.78 (d, 2.1)	3.80 (d, 1.0)
5	2.29 (m), 1.94 (m)	2.33 (m), 2.09 (m)
6	2.80 (m)	2.83 (m)
7	5.38 (brs)	5.41 (brs)
9	1.88 (m)	1.88 (m)
10	1.88 (m), 1.69 (m)	1.93 (m), 1.70 (m)
11	2.31 (m)	2.33 (m)
13	1.02 (s)	1.04 (s)
14	1.15 (s)	1.17 (s)
15	1.65 (s)	1.67 (brs)

3.2.6 Metabolite 28

Metabolite **28** (KR649-07) was isolated after a series of chromatographic separations as a colorless oil (9.2 mg).

The mass spectrum of metabolite **28** (Figure 120) exhibited a fragment ion peak at m/z 230, corresponding to $[M-H_2O]^+$.

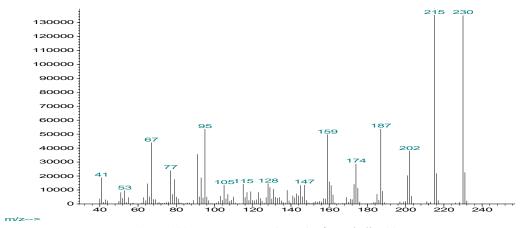


Figure 120. Mass spectrum (EIMS) of metabolite 28.

In the ¹H NMR spectrum of metabolite **28** (Figure 121) obvious were:

- Two aliphatic methyls on non-protonated carbons at δ 1.21 and 1.39,
- One olefinic methyl at δ 1.60, and
- Two olefinic methines at δ 5.35 and 5.67.

Analysis of the NMR and MS data of 28 led to the molecular formula $C_{15}H_{20}O_3$. Taking into account the two carbon-carbon double bonds and the carbonyl moiety as three of the six degrees of unsaturation, the molecular structure of 28 was determined as tricyclic.

Comparison of the spectroscopic and physical characteristics of metabolite **28** with those reported in the literature led to its identification as furodysinin lactone, previously isolated from the marine sponge *Dysidea etheria* (Grode & Cardellina, 1984). The ¹H NMR data of metabolite **28** are reported in Table 162.

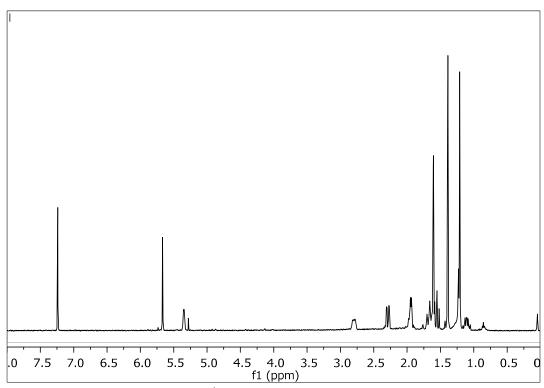


Figure 121. ¹H NMR spectrum of metabolite 28.

Table 162. 1 H NMR data of metabolite **28** in CDCl₃ (δ in ppm, J in Hz).

Position	$\delta_{ m H,exp}$	δ H,lit
2	5.67 (brs)	5.67 (s)
5	2.29 (dd, 13.5, 3.7), 1.55 (t,	2.28 (dd, 14.0, 3.8), 1.57 (dd,
3	13.5)	14.0, 13.0)
6	2.80 (m)	2.80 (m)
7	5.35 (brd, 4.2)	5.36 (brdd, 5.7, 1.4)
9	1.94 (m)	1.96 (m)
10	1.69 (m), 1.10 (m)	1.70 (brddd, 12.6, 3.7, 3.1),
10	1.09 (III), 1.10 (III)	1.12 (brddd, 12.6, 12.6)
11	1.63 (m)	1.63 (m)
13	1.39 (s)	1.38 (s)
14	1.21 (s)	1.21 (s)
15	1.60 (s)	1.60 (brs)

3.2.7 Metabolite 29

Metabolite **29** (KR649-02) was isolated after a series of chromatographic separations as a colorless oil (52.4 mg).

The mass spectrum of metabolite **29** (Figure 122) exhibited a molecular ion peak at m/z 262 and a fragment ion peak at m/z 230, corresponding to [M-MeOH]⁺.

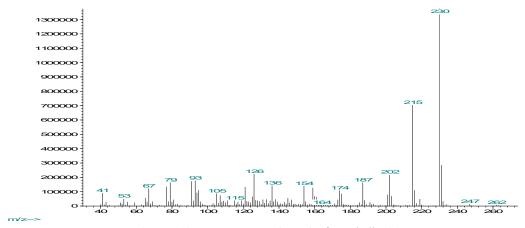


Figure 122. Mass spectrum (EIMS) of metabolite 29.

In the ¹H NMR spectrum of metabolite **29** (Figure 123) obvious were:

- Two aliphatic methyls on non-protonated carbons at δ 1.21 and 1.34,
- One olefinic methyl at δ 1.59,
- One methyl of a methoxy group at δ 3.15, and
- Two olefinic methines at δ 5.33 and 5.79.

Analysis of the NMR and MS data of 29 led to the molecular formula $C_{16}H_{22}O_3$. Taking into account the two carbon-carbon double bonds and the carbonyl moiety as three of the six degrees of unsaturation, the molecular structure of 29 was determined as tricyclic.

Comparison of the spectroscopic and physical characteristics of metabolite **29** with those reported in the literature led to its identification as *O*-methyl-furodysinin lactone, previously isolated from the marine sponge *Dysidea arenaria* (Grode & Cardellina, 1984). The ¹H NMR data of metabolite **29** are reported in Table 163.

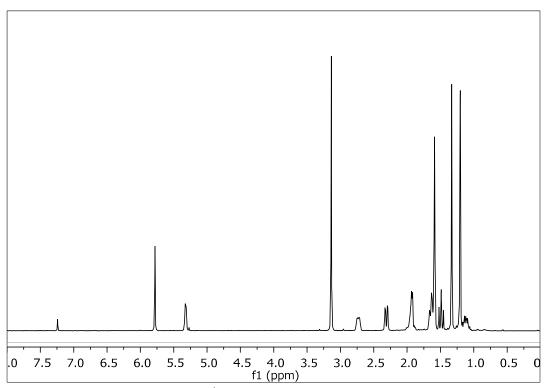


Figure 123. ¹H NMR spectrum of metabolite 29.

Table 163. 1 H NMR data of metabolite **29** in CDCl₃ (δ in ppm, J in Hz).

Position	δ H,exp	δ H,lit
2	5.79 (brs)	5.78 (s)
5	2.32 (dd, 13.5, 3.8), 1.50 (t,	2.30 (dd, 13.8, 4.0), 1.55 (dd,
3	13.5)	14, 14)
6	2.74 (m)	2.70 (m)
7	5.33 (brd, 4.3)	5.30 (brdd, 5.7, 1.5)
9	1.94 (m)	1.96 (m)
10	1.65 (m), 1.12 (m)	1.69 (brddd, 12.6, 3.7, 3.1),
10	1.03 (m), 1.12 (m)	1.10 (brddd, 12.9, 12, 5.9)
13	1.34 (s)	1.31 (s)
14	1.21 (s)	1.20 (s)
15	1.59 (s)	1.59 (brs)
16	3.15 (s)	3.12 (s)

3.2.8 Metabolite 30

Metabolite **30** (KR649-20) was isolated after a series of chromatographic separations as a colorless oil (1.3 mg).

The mass spectrum of metabolite **30** (Figure 124) exhibited a molecular ion peak $[M]^+$ at m/z 262 and a fragment ion peak at m/z 230 corresponding to $[M-MeOH]^+$.

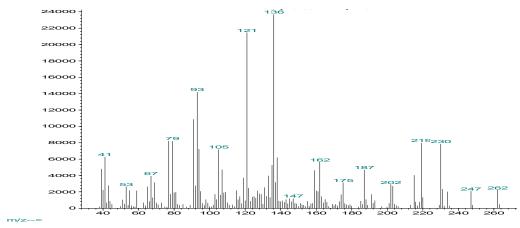


Figure 124. Mass spectrum (EIMS) of metabolite 30.

In the ¹H NMR spectrum of metabolite **30** (Figure 125) obvious were:

- Two aliphatic methyls on non-protonated carbons at δ 0.91 and 1.18,
- One olefinic methyl δ 1.64,
- One methyl of a methoxy group at δ 3.06, and
- Two olefinic methines at δ 5.32 and 5.85.

Analysis of the NMR and MS data of **30** led to the molecular formula C₁₆H₂₂O₃.

Taking into account the two carbon-carbon double bonds and the carbonyl moiety as three of the six degrees of unsaturation, the molecular structure of 30 was determined as tricyclic.

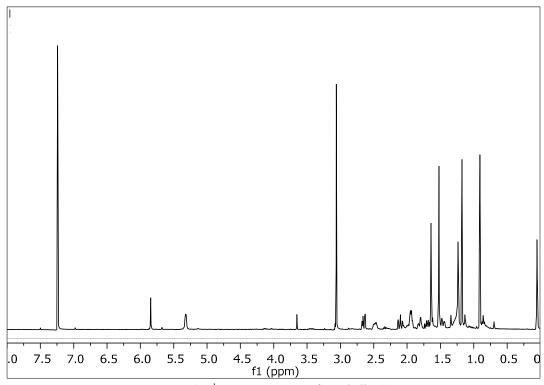


Figure 125. ¹H NMR spectrum of metabolite 30.

The spectroscopic data of metabolite **30** were rather similar to those of **29**, suggesting the close resemblance of the two chemical structures. The planar structure of metabolite **30** was determined on the basis of the homonuclear and heteronuclear correlations (Figure 126) observed in the HSQC-DEPT (Figure 127), HMBC (Figure 128) and COSY (Figure 129) spectra. In particular, the HMBC correlations of the doubly oxygenated C-3 ($\delta_{\rm C}$ 110.9) with H-1 ($\delta_{\rm H}$ 5.85), H₃-13 ($\delta_{\rm H}$ 1.18), H₃-14 ($\delta_{\rm H}$ 0.91) and H₃-16 ($\delta_{\rm H}$ 3.06) allowed for the identification of **30** as the oxygenated derivative of the rearranged furanosesquiterpene **23**.

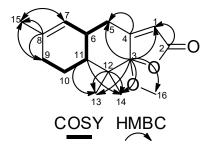


Figure 126. COSY and important HMBC correlations observed for metabolite 30.

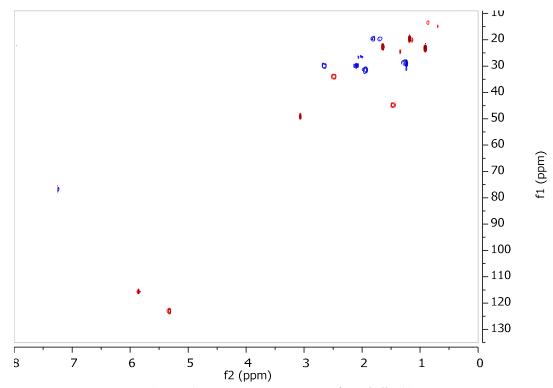


Figure 127. HSQC-DEPT spectrum of metabolite 30.

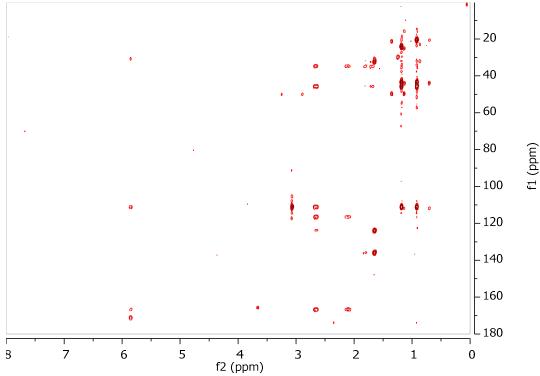


Figure 128. HMBC spectrum of metabolite 30.

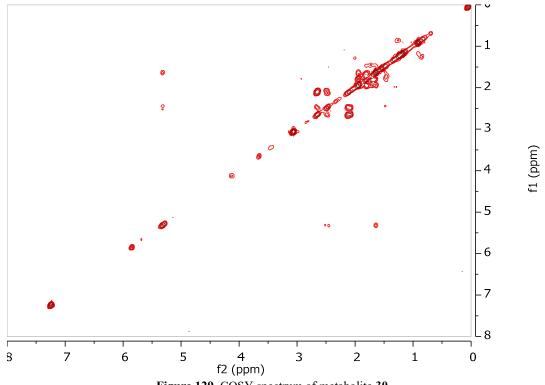
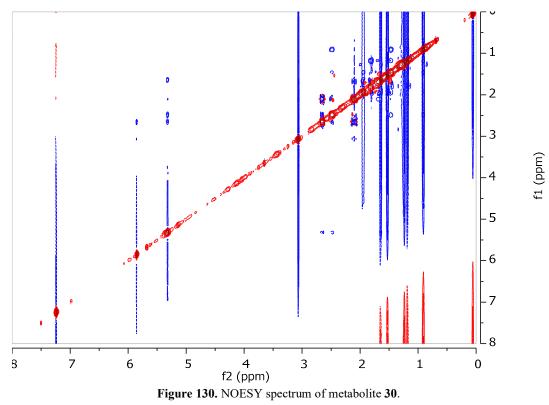



Figure 129. COSY spectrum of metabolite 30.

The relative configuration of the asymmetric centers of metabolite 30 was determined on the basis of the correlations observed in the NOESY spectrum (Figure 130). Specifically, the NOE enhancements of H3-14 with H-6, of H-6 with H-11 and of H-11 with H3-14 indicated their cofacial orientation, while the NOE correlation of H3-13 with H3-16 suggested their orientation on the opposite side of the plane.

Comparison of the spectroscopic and physical characteristics of metabolite 30 with those reported in the literature led to its identification as a new natural product, which was designated as O-methyl-furodysin lactone. The NMR data of metabolite 30 are reported in Table 164.

Table 164. 1 H and 13 C NMR data of metabolite **30** in CDCl₃ (δ in ppm, J in Hz).

		11)-)
Position	$oldsymbol{\delta}_{ ext{C}}$	δ н
1	116.6	5.85 (d, 2.4)
2	171.4	-
3	110.9	-
4	166.5	-
5	30.6	2.65 (dd, 13.4, 4.2), 2.11 (m)
6	34.7	2.48 (m)
7	123.7	5.32 (d, 4.6)
8	135.9	-
9	32.2	1.94 (m)
10	20.3	1.80 (m), 1.71 (m)
11	45.6	1.45 (m)
12	43.1	-
13	20.3	1.18 (s)
14	23.7	0.91 (s)
15	23.1	1.64 (brs)
16	49.7	3.06 (s)

3.2.9 Metabolite **31**

Metabolite **31** (KR649-19) was isolated after a series of chromatographic separations as a colorless oil (2.1 mg).

The mass spectrum of metabolite **31** (Figure 131) exhibited a molecular ion peak $[M]^+$ at m/z 262.

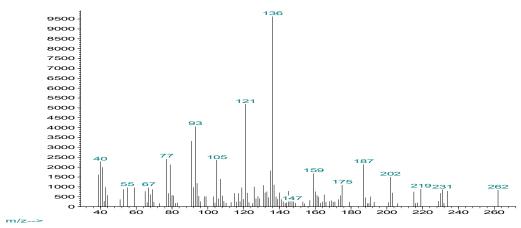


Figure 131. Mass spectrum (EIMS) of metabolite 31.

In the ¹H NMR spectrum of metabolite **31** (Figure 132) obvious were:

- Two aliphatic methyls on non-protonated carbons at δ 1.13 and 1.34,
- One olefinic methyl δ 1.60,
- One methyl of an ester group at δ 3.65, and
- Two olefinic methines at δ 5.34 and 5.67.

Analysis of the NMR and MS data of 31 led to the molecular formula C₁₆H₂₂O₃.

Taking into account the two carbon-carbon double bonds and the two carbonyl moieties as four of the six degrees of unsaturation, the molecular structure of 31 was determined as bicyclic.

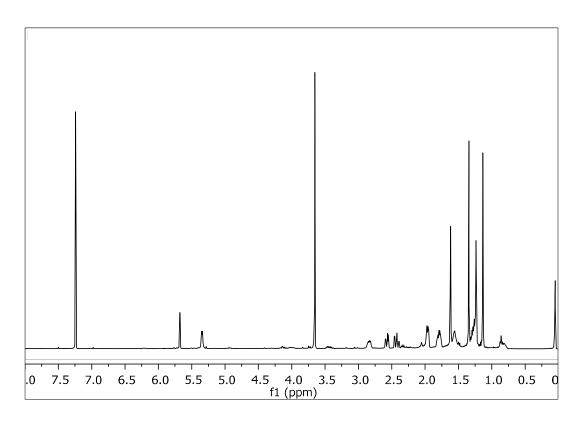


Figure 132. ¹H NMR spectrum of metabolite 31.

Even though the spectroscopic data of metabolite **31** resembled those of **29** and **30**, the bicyclic structure, as dictated from the above-mentioned data, suggested the ring opening of the lactone ring. The planar structure of metabolite **31** was determined on the basis of the homonuclear and heteronuclear correlations (Figure 133) observed in the HSQC-DEPT (Figure 134), HMBC (Figure 135) and COSY (Figure 136) spectra. In particular, the HMBC correlations of C-2 (δ_C 165.4), C-3 (δ_C 209.4), C-4 (δ_C 155.9) and C-5 (δ_C 41.3) with H-1 (δ_H 5.67), as well as of C-2 with H₃-16 (δ_H 3.65) and of C-3 with H-11 (δ_H 1.80), H₃-13 (δ_H 1.34) and H₃-14 (δ_H 1.13) secured the assignment of the planar structure of compound **31**.

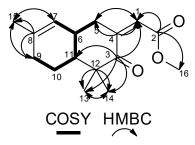


Figure 133. COSY and important HMBC correlations observed for metabolite 31.

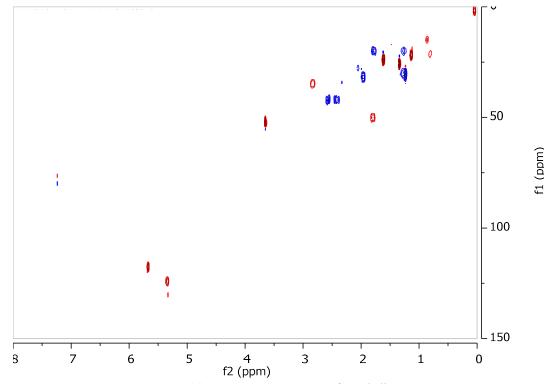


Figure 134. HSQC-DEPT spectrum of metabolite 31.

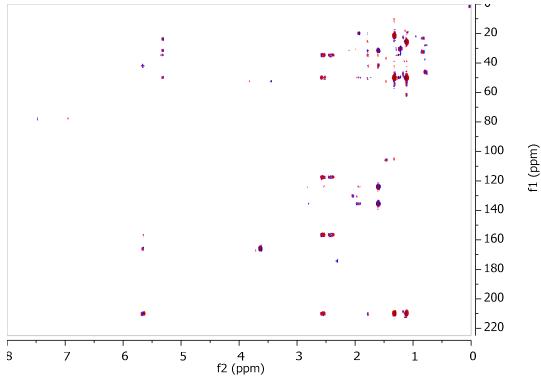
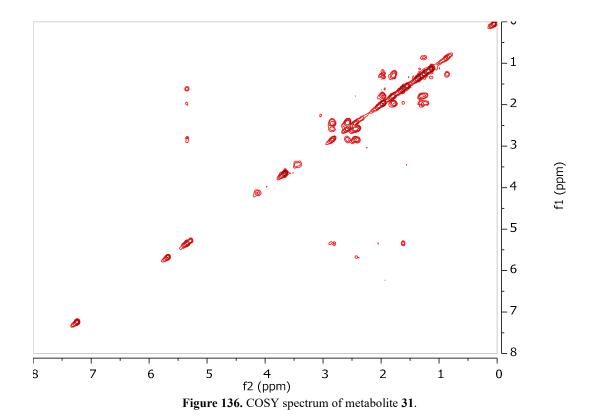



Figure 135. HMBC spectrum of metabolite 31.

The relative configuration of the asymmetric centers of metabolite 31 was suggested on the basis of biogenetic considerations, in comparison to the previously isolated compounds 22-30.

Comparison of the spectroscopic and physical characteristics of metabolite 31 with those reported in the literature led to its identification as a new natural product, which was designated as; The NMR data of metabolite 31 are reported in Table 165.

Table 165. ^{1}H and ^{13}C NMR data of metabolite **31** in CDCl₃ (δ in ppm, J in Hz)

Position	δ_{C}	δ H
1	117.0	5.67 (d, 2.3)
2	165.4	-
3	209.4	-
4	155.9	-
5	41.3	2.57 (dd, 14.5, 4.1), 2.42
J	41.5	(ddd, 14.5, 12.2, 2.3)
6	34.4	2.84 (m)
7	123.1	5.34 (d, 4.2)
8	134.7	-
9	31.4	1.99 (m)
10	19.2	1.79 (m), 1.28 (m)
11	49.1	1.80 (m)
12	50.0	-
13	25.2	1.34 (s)
14	20.9	1.13 (s)
15	23.9	1.60 (brs)
16	51.2	3.65 (s)

3.2.10 Metabolite **32**

Metabolite **32** (KR649-29) was isolated after a series of chromatographic separations as a colorless oil (3.3 mg).

The mass spectrum of metabolite **32** (Figure 137) exhibited a fragment ion peak at m/z 216 corresponding to [M-AcOH]⁺.

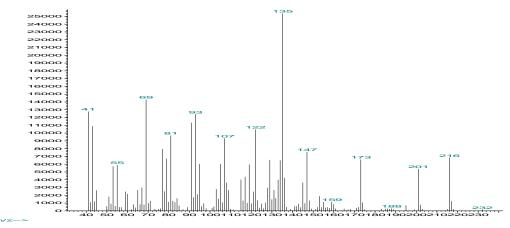


Figure 137. Mass spectrum (EIMS) of metabolite 32.

In the ¹H NMR spectrum of metabolite **32** (Figure 138) obvious were:

- Three olefinic methyls at δ 1.57, 1.65 and 1.70,
- One methyl of an acetoxy group at δ 1.99,
- Three signals at δ 5.05, 5.13 and 5.61 integrating for one proton each and attributed to three oxygenated or olefinic protons, and
- Three olefinic methines at 6.26, 7.21 and 7.31 integrating for one proton each and attributed to the olefinic protons of a monosubstituted furan ring.

Analysis of the NMR and MS data of 32 led to the molecular formula $C_{17}H_{24}O_3$. Taking into account the four carbon-carbon double bonds and the carbonyl moiety as five of the six degrees of unsaturation, the molecular structure of 32 was determined as monocyclic.

Comparison of the spectroscopic and physical characteristic of metabolite 32 with those reported in the literature led to its identification as (5R,6Z)-dendrolasin-5-acetate, previously isolated from the marine nudibranch *Hypselodoris jacksoni* (Mudianta et al., 2013). The ¹H NMR data of metabolite 32 are reported in Table 166.

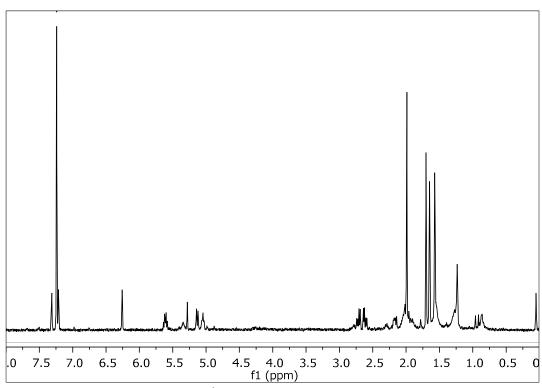


Figure 138. ¹H NMR spectrum of metabolite 32.

Table 166. 1 H NMR data of metabolite **32** in CDCl₃ (δ in ppm, J in Hz).

Position	δ H,exp	δ H,lit
1	7.31 (brs)	7.33 (brs)
2	6.26 (brs)	6.27 (brs)
4	2.72 (dd, 14.4, 6.7), 2.61 (dd,	2.73 (dd, 14.5,6.7), 2.63 (dd,
4	14.4, 5.9)	14.5, 6.0)
5	5.61 (ddd, 9.4, 6.7, 5.9)	5.64 (bdt, 9.3, 6.4)
6	5.13 (d, 9.4)	5.15 (d, 9.3)
8	2.16 (m), 1.99 (m)	2.15 (m)
9	2.06 (m), 1.95 (m)	1.95 (m)
10	5.05 (brt, 6.7)	5.07 (brt, 6.9)
12	1.65 (s)	1.67 (s)
13	1.57 (s)	1.59 (s)
14	1.70 (s)	1.72 (s)
15	7.21 (brs)	7.23 (s)
OAc	1.99 (s)	2.01 (s)

3.2.11 Metabolite **33**

Metabolite **33** (KR649-30) was isolated after a series of chromatographic separations as a colorless oil (2.4 mg).

The mass spectrum of metabolite **33** (Figure 139) exhibited a fragment ion peak at m/z 216 corresponding to [M-AcOH]⁺.

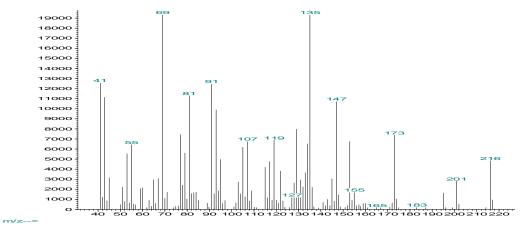


Figure 139. Mass spectrum (EIMS) of metabolite 33.

In the ¹H NMR spectrum of metabolite **33** (Figure 140) obvious were:

- Three olefinic methyls at δ 1.57, 1.62 and 1.66,
- One methyl of an acetoxy group at δ 2.00,
- Three signals at δ 55.02, 5.11 and 5.60 integrating for one proton each and attributed to three oxygenated or olefinic protons, and
- Three olefinic methines at 6.26, 7.21 and 7.31 integrating for one proton each and attributed to the olefinic protons of a monosubstituted furan ring.

Analysis of the NMR and MS data of 33 led to the molecular formula $C_{17}H_{24}O_3$. Taking into account the four carbon-carbon double bonds and the carbonyl moiety as five of the six degrees of unsaturation, the molecular structure of 33 was determined as monocyclic.

Comparison of the spectroscopic and physical characteristics of metabolite 33 with those reported in the literature led to its identification as (6E)-dendrolasin-5-acetate, previously reported only synthetically (Tsubuki et al., 2009). The ¹H NMR data of metabolite 33 are reported in Table 167.

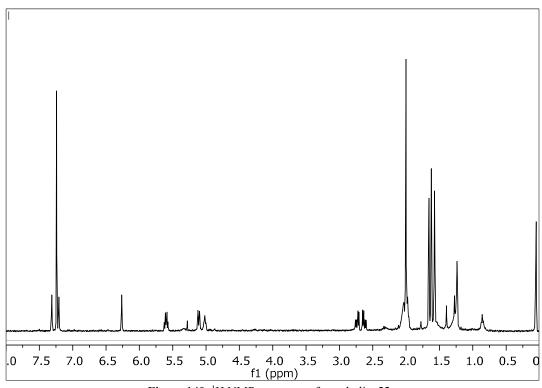


Figure 140. ¹H NMR spectrum of metabolite 33.

Table 167. 1 H NMR data of metabolite **33** in CDCl₃ (δ in ppm, J in Hz).

Position	δ H,exp	δ H,lit
1	7.31 (brs)	7.33 (t, 1.8)
2	6.26 (brs)	6.28 (d, 1.2)
4	2.73 (dd, 14.4, 6.5), 2.62 (dd,	2.76 (dd, 14.7,6.7), 2.62 (dd,
4	14.4, 6.5)	14.7, 6.7)
5	5.60 (dt, 8.6, 6.5)	5.62 (dt, 9.1, 6.7)
6	5.11 (dd, 8.6, 1.0)	5.13 (dd, 9.1, 1.2)
8	2.16 (m), 1.99 (m)	2.16 (m)
9	2.06 (m), 1.95 (m)	1.95 (m)
10	5.02 (t, 6.2)	5.04 (brt, 6.7)
12	1.66 (s)	1.68 (s)
13	1.57 (s)	1.59 (s)
14	1.62 (s)	1.64 (s)
15	7.21 (brs)	7.23 (s)
OAc	2.00 (s)	2.01 (s)

3.3 Identification and structure elucidation of isolated metabolites from the soft coral Sinularia polydactyla

3.3.1 Metabolite 34

Metabolite **34** (SP31) was isolated after a series of chromatographic separations as a white amorphous solid (0.7 mg).

The high-resolution mass spectrum of the metabolite **34** (Figure 141) showed a pseudomolecular ion peak at m/z 429.3724 corresponding to $[M+H]^+$ (calcd. for $C_{29}H_{49}O_2$, 429.3727).

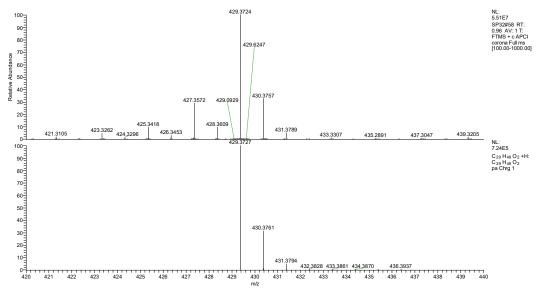


Figure 141. Mass spectrum (HR-APCIMS) of metabolite 34.

In the ¹H NMR spectrum of metabolite **34** (Figure 142) obvious were:

- Two aliphatic methyls on non-protonated carbons at δ 0.94 and 1.08,
- Five aliphatic methyls on tertiary carbons at δ 0.80, 0.81, 0.89, 0.99 and 1.04,
- One oxygenated methine at δ 3.09, and
- Four olefinic methines at δ 5.15, 5.20, 5.28 and 5.41.

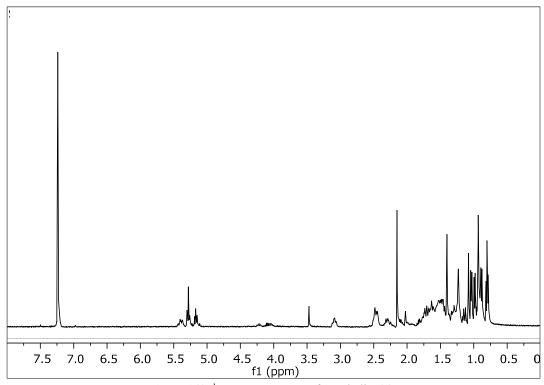


Figure 142. ¹H NMR spectrum of metabolite 34.

Analysis of the NMR and MS data of 34 led to the molecular formula $C_{29}H_{48}O_2$. Taking into account the two carbon-carbon double bonds and the carbonyl moiety as three of the six degrees of unsaturation, the molecular structure of 34 was determined as tricyclic.

The planar structure of metabolite 34 was determined on the basis of the homonuclear and heteronuclear correlations (Figure 143) observed in the HSQC-DEPT (Figure 144), HMBC (Figure 145) and COSY (Figure 146) spectra. In particular, the ¹³C NMR and HSOC-DEPT spectra revealed the presence of 29 carbon atoms, corresponding to seven methyls, seven methylenes, twelve methines, and three nonprotonated carbon atoms. Among them, evident were one carbonyl resonating at δ_C 213.1, four olefinic carbons resonating at δ_C 127.6, 132.6, 135.2, and 142.0 and an oxygenated carbon resonating at $\delta_{\rm C}$ 76.6. In the ¹H NMR spectrum evident were two methyls on non-protonated carbons ($\delta_{\rm H}$ 0.94 and 1.08), five methyls on tertiary carbons $(\delta_{\rm H} \ 0.80, \ 0.81, \ 0.89, \ 0.99, \ {\rm and} \ 1.04)$, one oxygenated methine $(\delta_{\rm H} \ 3.09)$, and four olefinic methines (δ_H 5.15, 5.20, 5.28, and 5.41). The spectroscopic features of metabolite 34, in conjunction with the homonuclear and heteronuclear correlations observed in its HSQC, HMBC, and COSY spectra suggested that compound 34 possessed a 8-oxo-3-hydroxy-4-methyl-8,9-seco steroidal nucleus with a $\Delta^{9,11}$ and a C₉H₁₇ unsaturated side chain with a 1,2-disubstituted double bond between C-22 and C-23. Specifically, the correlations observed in the COSY spectrum identified three distinct spin systems, namely (a) a spin system starting from H-1 to H₂-7, incorporating H₃-29 which was coupled to H-4, (b) a short spin system from H-9 to H₂-12 through H-11, and (c) an extended branched spin system from H-14 to H₃-26, including H₃-21, H₃-

27, and H₃-28 which were coupled to H-20, H-25, and H-24, respectively. The HMBC correlations of H₃-19 with C-1, C-5, C-9, and C-10 concluded the six-membered ring and positioned the first angular methyl on C-10, connecting at the same time spin systems (a) and (b). Additionally, the HMBC correlations of H₃-18 with C-12, C-13, C-14, and C-17 identified the five-membered ring and fixed the position of the second angular methyl on C-13, connecting spin systems (b) and (c). The HMBC correlations of H₂-6, H₂-7, and H-14 with the carbonyl carbon C-8 supported the cleavage of the C-8/C-9 bond, giving rise to the decalin ring and connecting spin systems (a) and (c).

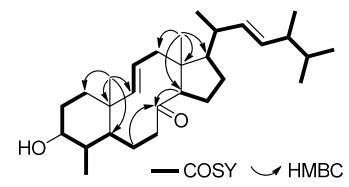


Figure 143. COSY and important HMBC correlations observed for metabolite 34.

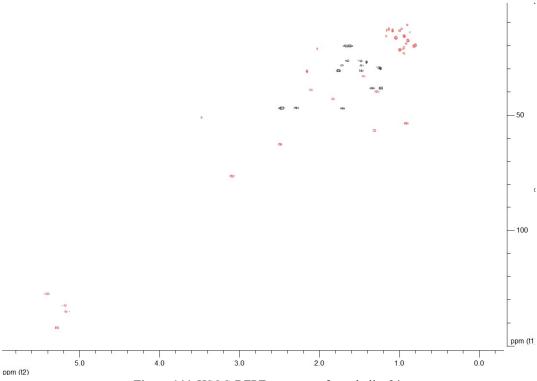


Figure 144. HSQC-DEPT spectrum of metabolite 34.

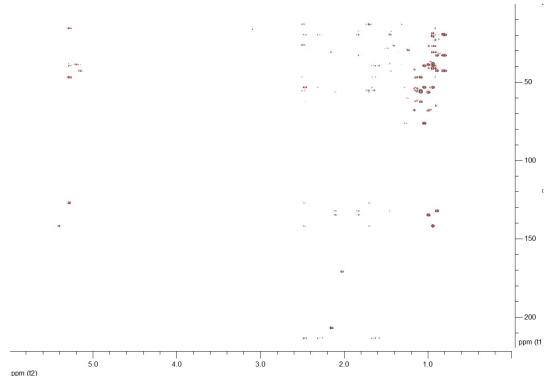


Figure 145. HMBC spectrum of metabolite 34.

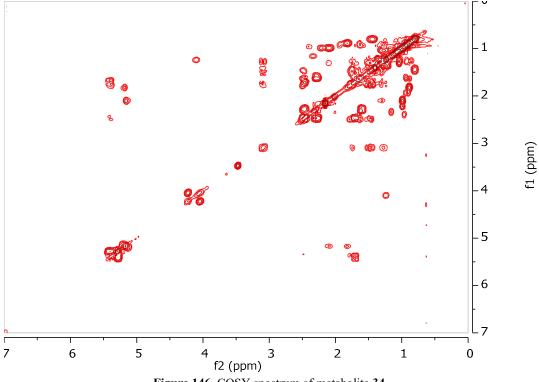


Figure 146. COSY spectrum of metabolite 34.

The geometry of the two double bonds was determined as E in both cases on the basis of the measured coupling constants ($J_{9,11} = 15.3$ Hz and $J_{22,23} = 15.2$ Hz). The

enhancements of H-3/H-5, H-3/H₃-29, H-4/H₃-19, H-5/H-9, H-9/H-12 α , H-9/H-14, H-11/H-12 β , H-11/H₃-18, H-11/H₃-19, H-14/H-17, and H₃-18/H-20 observed in the NOESY spectrum of metabolite **34** (Figure 147) verified the *trans* fusion of the six-membered and the ten-membered rings, as well as the *trans* fusion of the latter with the five-membered ring and determined the relative configuration of the stereogenic centers. The *R* configuration at C-24 was proposed on the basis of the 0.3 ppm difference in the chemical shifts of C-26 and C-27 and the chemical shift of C-28 resonating at 17.6 ppm (Zovko Končić et al., 2016).

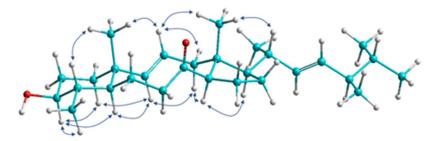


Figure 147. 3D structure and key NOESY cross-peaks for metabolite 34.

Comparison of the spectroscopic and physical characteristics of metabolite **34** with those reported in the literature led to its identification as a new natural product, which was designated as $(9E,22E,24R)-3\beta$ -hydroxy- 4α ,24-dimethyl-8,9-seco- 5α -cholesta-9(11),22-dien-8-one. The NMR data of metabolite **34** are reported in Table 168.

Table 168. ¹H and ¹³C NMR data of metabolite **34** in CDCl₃ (δ in ppm, J in Hz).

Position	$oldsymbol{\delta}_{ ext{C}}$	$\delta_{ m H}$
1	38.5	1.33 (m), 1.22 (m)
2	30.7	1.76 (m), 1.48 (m)
3	76.6	3.09 td (10.1, 4.8)
4	39.8	1.27 (m)
5	53.5	0.91 (m)
6	20.0	1.66 (m), 1.60 (m)
7	47.1	2.29 (m), 1.75 (m)
8	213.1	-
9	142.0	5.28 (d, 15.3)
10	39.1	-
11	127.6	5.41 (ddd, 15.3, 11.1, 3.8)
12	46.8	2.47 (m), 1.70 (m)
13	55.2	-
14	62.7	2.49 (m)
15	26.6	1.64 (m), 1.48 (m)
16	28.4	1.70 (m), 1.47 (m)
17	56.7	1.31 (m)
18	13.5	1.08 (s)
19	15.8	0.94 (s)
20	39.1	2.10 (m)
21	21.7	0.99 (d, 6.8)
22	135.2	5.15 (dd, 15.2, 8.1)
23	132.6	5.20 (dd, 15.2, 7.3)
24	43.0	1.83 (m)
25	33.2	1.44 (m)
26	19.8	0.81 (d, 6.8)
27	20.1	0.80 (d, 6.8)
28	17.6	0.89 (d, 6.8)
29	16.4	1.03 (d, 6.1)

3.3.2 Metabolite 35

Metabolite **35** (SP30) was isolated after a series of chromatographic separations as a white amorphous solid (0.3 mg).

The high-resolution mass spectrum of the metabolite **35** (Figure 148) showed a pseudomolecular ion peak at m/z 429.3725 corresponding to $[M+H]^+$ (calcd. for $C_{29}H_{49}O_2$, 429.3727).

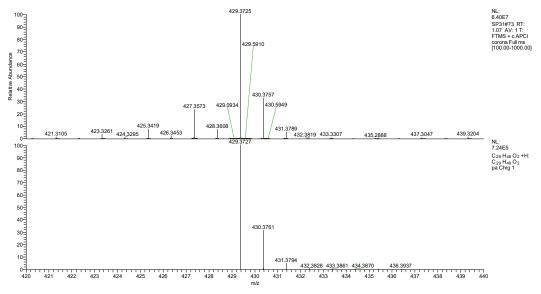


Figure 148. Mass spectrum (HR-APCIMS) of metabolite 35.

In the ¹H NMR spectrum of metabolite **35** (Figure 149) obvious were:

- Two aliphatic methyls on non-protonated carbon at δ 0.94 and 1.09,
- Four aliphatic methyls on tertiary carbons at δ 0.93, 1.00, 1.01 and 1.04,
- One oxygenated methine at δ 3.10,
- Two broad singlets at δ 4.63 and 4.70 integrating for one proton each and attributed to the protons of an exomethylene group, and
- Two olefinic methines at δ 5.27 and 5.41.

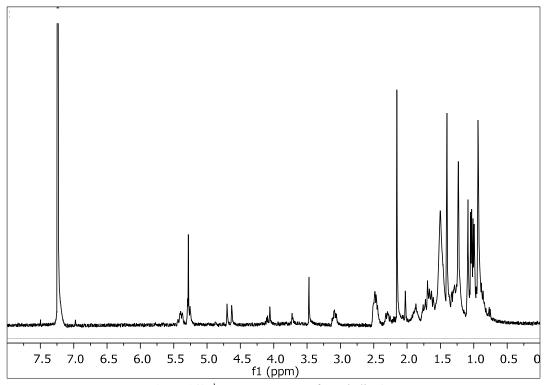
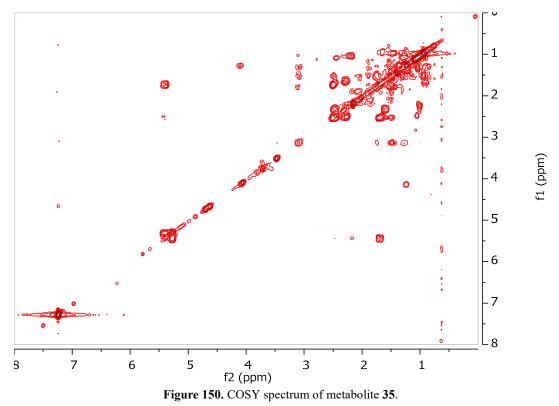



Figure 149. ¹H NMR spectrum of metabolite 35.

Analysis of the NMR and MS data of **35** led to the molecular formula C₂₉H₄₈O₂. Taking into account the two carbon-carbon double bonds and the carbonyl moieties as three of the six degrees of unsaturation, the molecular structure of **35** was determined as tricyclic.

Metabolite 35 shared quite similar spectroscopic features with metabolite 34. In particular, all signals attributed to the steroidal nucleus, with the most prominent being the signals of the two angular methyls H_3 -18 and H_3 -19 (δ_H 1.09 and 0.94, respectively), the methyl at C-4 ($\delta_{\rm H}$ 1.04), the oxymethine H-3 ($\delta_{\rm H}$ 3.10) and the two olefinic protons H-9 and H-11 ($\delta_{\rm H}$ 5.27 and 5.41, respectively), were also evident in the ¹H NMR spectrum of 35. The most significant difference observed was the replacement of the 1,2-disubstituted double bond in the side chain of metabolite 34 by a 1,1-disustituted double bond ($\delta_{\rm H}$ 4.63 and 4.70) in the side chain of metabolite 35. The correlations observed in the COSY spectrum of 35 (Figure 150) identified the relevant spin systems; however, metabolite 35 was proven unstable and degraded prior to the acquisition of heteronuclear NMR spectra. Nevertheless, the high structural similarity of metabolite 35 with metabolite 34 renders safe the proposed identification of metabolite 35 as (9E)-3 β hydroxy- 4α ,24-dimethyl-8,9-seco- 5α -cholesta-9(11),24(28)-dien-8-one. Comparison of the spectroscopic and physical characteristics of metabolite 35 with those reported in the literature led to its identification as a new natural product. The NMR data of metabolite **35** are reported in Table 169.

Table 169. ¹H NMR data of metabolite **35** in CDCl₃ (δ in ppm, J in Hz)

Position	δн
1	1.36 (m), 1.24 (m)
2	1.76 (m), 1.49 (m)
3	3.10 (m)
4	1.28 (m)
5	0.92 (m)
6	1.66 (m), 1.62 (m)
7	2.48 (m), 2.24 (m)
9	5.27 (m)
11	5.41 (m)
12	2.50 (m), 1.72 (m)
14	2.50 (m)
15	1.64 (m), 1.50 (m)
16	1.73 (m), 1.49 (m)
17	1.28 (m)
18	1.09 (s)
19	0.94 (s)
20	2.11 (m)
21	0.93 (d, 6.1)
22	1.53 (m), 1.14 (m)
23	2.08 (m), 1.88 (m)
25	2.21 (m)
26	1.00 (d, 6.8)
27	1.01 (d, 6.9)
28	4.70 (brs), 4.63 (brs)
29	1.04 (d, 6.1)

3.3.3 Metabolite 36

Metabolite **36** (SP16) was isolated after a series of chromatographic separations as a colorless oil (11.3 mg).

The mass spectrum of metabolite **36** (Figure 151) exhibited a molecular ion peak $[M]^+$ at m/z 414.

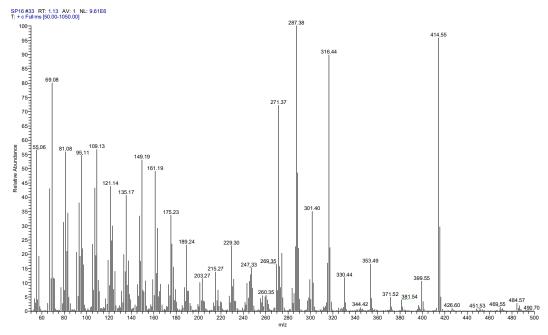


Figure 151. Mass spectrum (EIMS) of metabolite 36.

In the ¹H NMR spectrum of metabolite **36** (Figure 152) obvious were:

- Two aliphatic methyls on non-protonated carbons at δ 0.63 and 0.80,
- Four aliphatic methyls on tertiary carbons at δ 0.91, 0.93, 1.00 and 1.00,
- One oxygenated methine at δ 3.08, and,
- Two broad singlets at δ 4.63 and 4.69 integrating for one proton each and attributed to the protons of an exomethylene group.

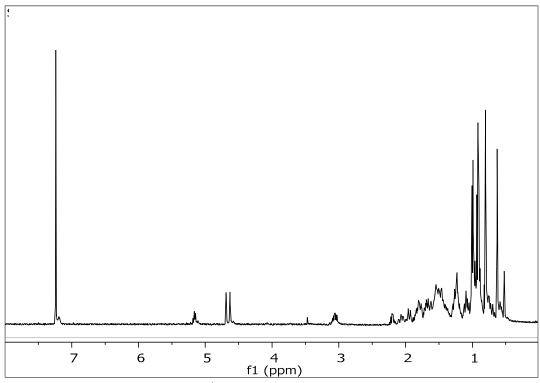


Figure 152. ¹H NMR spectrum of metabolite 36.

Analysis of the NMR and MS data of 36 led to the molecular formula $C_{29}H_{50}O$. Taking into account the one carbon-carbon double bond as one of the five degrees of unsaturation, the molecular structure of 36 was determined as tetracyclic.

Comparison of the spectroscopic and physical characteristics of metabolite 36 with those reported in the literature led to its identification as 4a,24-dimethyl-5a-cholest-24(28)-en- 3β -ol, previously isolated from the gorgonian *Briareum asbestinum* (Kokke et al., 1982). The ¹H NMR data of metabolite 36 are reported in Table 170.

Table 170. ¹H NMR data of metabolite **36** in CDCl₃ (δ in ppm, J in Hz)

Position	δ H,exp	δ _{H,lit}
3	3.08 (m)	3.1 (m)
18	0.63 (s)	0.65 (s)
19	0.80 (s)	0.82 (s)
21	0.91 (d, 6.5)	0.93 (d, 6.2)
26	1.00 (d, 6.8)	1.02 (d, 6.9)
27	1.00 (d, 6.8)	1.02 (d, 7.0)
28	4.69 (brs), 4.63 (brs)	4.71 (s), 4.65 (s)
29	0.93 (d, 6.5)	0.95 (d, 6.2)

3.3.4 Metabolite 37

Metabolite **37** (SP15) was isolated after a series of chromatographic separations as a colorless oil (8.8 mg).

The high-resolution mass spectrum of the metabolite **37** (Figure 153) showed a molecular ion peak $[M]^+$ at m/z 414.

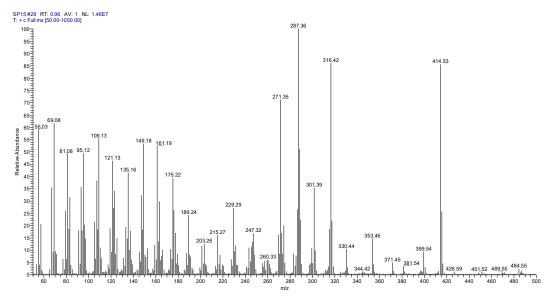


Figure 153. Mass spectrum (HR-ESIMS) of metabolite 37.

In the ¹H NMR spectrum of metabolite **37** (Figure 154) obvious were:

- Two aliphatic methyls on non-protonated carbons at δ 0.64 and 0.80,
- Five aliphatic methyls on tertiary carbons at δ 0.79, 0.81, 0.88, 0.92 and 0.97,
- One oxygenated methine at δ 3.06, and,
- Two olefinic methines at δ 5.12 and 5.17.

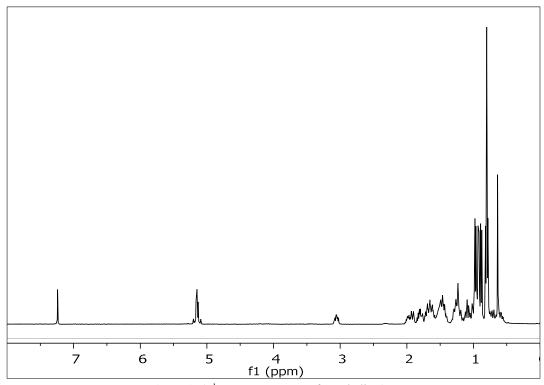


Figure 154. ¹H NMR spectrum of metabolite 37.

Analysis of the NMR and MS data of 37 led to the molecular formula $C_{29}H_{50}O$. Taking into account the one carbon-carbon double bond as one of the five degrees of unsaturation, the molecular structure of 37 was determined as tetracyclic.

Comparison of the spectroscopic and physical characteristics of metabolite 37 with those reported in the literature led to its identification as $(22E,24R)-4\alpha,24$ -dimethyl- 5α -cholest-22-en- 3β -ol, previously isolated from the soft coral *Sarcophyton glaucum* (Kobayashi et al., 1982). The ¹H NMR data of metabolite 37 are reported in Table 171.

Table 171. ¹H and ¹³C NMR data of metabolite **37** in CDCl₃ (δ in ppm, J in Hz).

Position	δ H,exp	δ H,lit
3	3.06 (td, 10.5, 4.9)	3.10 (m)
18	0.64 (s)	0.66 (s)
19	0.80 (s)	0.82 (s)
21	0.97 (d, 6.6)	0.99 (d, 6.6)
22	5.12 (dd, 15.1, 7.6)	5.15 (m)
23	5.17 (dd, 15.1, 7.0)	5.20 (m)
26	0.81 (d, 6.8)	0.83 (d, 6.6)
27	0.79 (d, 6.8)	0.82 (d, 6.4)
28	0.88 (d, 6.8)	0.91 (d, 6.8)
29	0.92 (d, 6.3)	0.94 (d, 6.8)

3.3.5 Metabolite 38

Metabolite **38** (SP13) was isolated after a series of chromatographic separations as a colorless oil (12.2 mg).

The mass spectrum of metabolite **38** (Figure 155) exhibited a fragment ion peak at m/z 412 corresponding to $[M-H₂O]^+$.

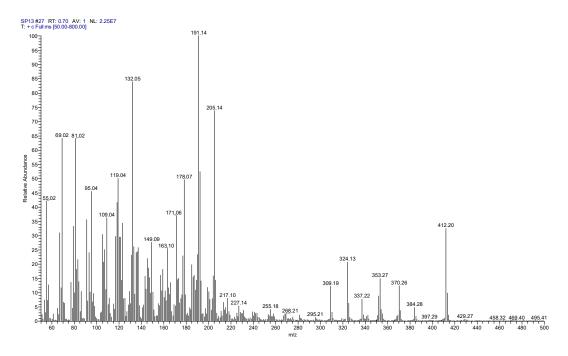


Figure 155. Mass spectrum (EIMS) of metabolite 38.

In the ¹H NMR spectrum of metabolite **38** (Figure 156) obvious were:

- Two aliphatic methyls on non-protonated carbons at δ 0.90 and 0.96,
- Four aliphatic methyls on tertiary carbons at δ 0.87, 0.94, 0.99 and 1.00,
- One oxygenated methine at δ 3.01, and,
- Two broad singlets at δ 4.63 and 4.69 integrating for one proton each and attributed to the protons of an exomethylene group.

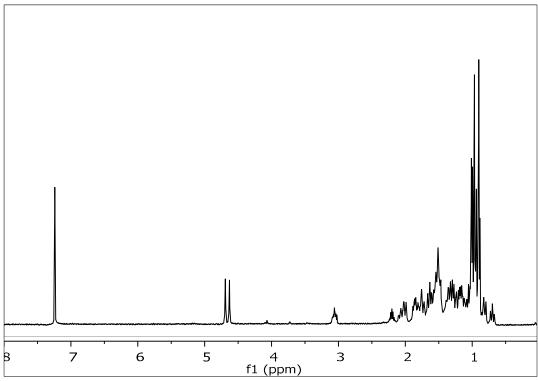


Figure 156. ¹H NMR spectrum of metabolite 38.

Analysis of the NMR and MS data of 38 led to the molecular formula $C_{29}H_{50}O_2$. Taking into account the one carbon-carbon double bond as one of the five degrees of unsaturation, the molecular structure of 38 was determined as tetracyclic.

Comparison of the spectroscopic and physical characteristics of metabolite **38** with those reported in the literature led to its identification as 4a,24-dimethyl-5a-cholest-24(28)-en- $3\beta,8\beta$ -diol, previously isolated from the soft coral *Nephthea chabroli* (Mehta et al., 1999). The ¹H NMR data of metabolite **38** are reported in Table 172.

Table 172. ¹H NMR data of metabolite **38** in CDCl₃ (δ in ppm, J in Hz).

Position	δ H,exp	δη,lit
3	3.01 (m)	3.05 (dt, 9.0,4.5)
18	0.90 (s)	0.95 (s)
19	0.96 (s)	1.00 (s)
21	0.94 (d, 6.3)	0.90 (d, 6.5)
26	0.99 (d, 6.8)	1.03 (d, 7.5)
27	1.00 (d, 6.8)	1.03 (d, 7.5)
28	4.69 (brs), 4.63 (brs)	4.70 (brs), 4.62 (brs)
29	0.87 (d, 6.3)	0.89 (d, 6.5)

3.3.6 Metabolite **39**

Metabolite **39** (SP14) was isolated after a series of chromatographic separations as a white amorphous solid (9.3 mg).

The high-resolution mass spectrum of the metabolite **39** (Figure 157) showed a pseudomolecular ion peak at m/z 413.3773 corresponding to [M-H₂O+H]⁺ (calcd. for C₂₉H₄₉O, 413.3778).

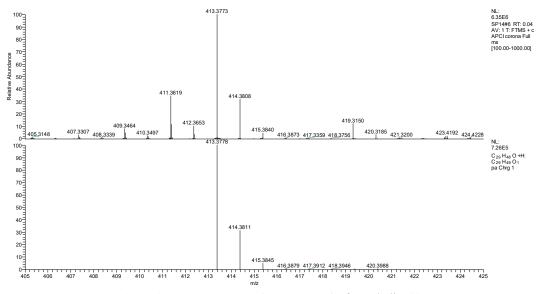


Figure 157. Mass spectrum (HR-APCIMS) of metabolite 39.

In the ¹H NMR spectrum of metabolite **39** (Figure 158) obvious were:

- Two aliphatic methyls on non-protonated carbons at δ 0.92 and 0.97,
- Five aliphatic methyls on tertiary carbons at δ 0.79, 0.81, 0.88, 0.94 and 0.95,
- One oxygenated methine at δ 3.04, and
- Two olefinic methines at δ 5.09 and 5.16.

Analysis of the NMR and MS data of **39** led to the molecular formula C₂₉H₅₀O₂.

Taking into account the one carbon-carbon double bond as one of the five degrees of unsaturation, the molecular structure of 39 was determined as tetracyclic.

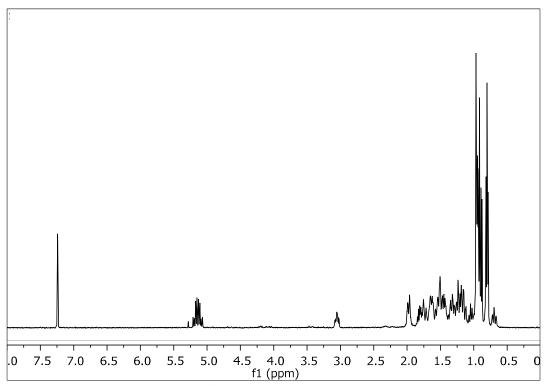


Figure 158. ¹H NMR spectrum of metabolite 39.

The planar structure of metabolite **39** was determined on the basis of the homonuclear and heteronuclear correlations (Figure 159) observed in the HSQC-DEPT (Figure 160), HMBC (Figure 161) and COSY (Figure 162) spectra. In particular, the presence of the two angular methyls at $\delta_{\rm H}$ 0.92 and 0.97, the doublet methyl at $\delta_{\rm H}$ 0.95, the oxygenated methine at $\delta_{\rm H}$ 3.04 and the quaternary oxygenated carbon at $\delta_{\rm C}$ 73.6, in conjunction with the correlations observed in the HMBC and COSY spectra, verified the 3,8-dihydroxy-4-methyl steroidal nucleus. The side chain of compound **6** included four doublet methyls ($\delta_{\rm H/C}$ 0.79/20.2, 0.81/19.9, 0.88/18.0, and 0.95/16.0) and two olefinic methines ($\delta_{\rm H/C}$ 5.09/135.7 and 5.16/131.8) that was assigned on the basis of the COSY and HMBC correlations.

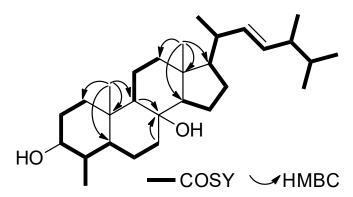
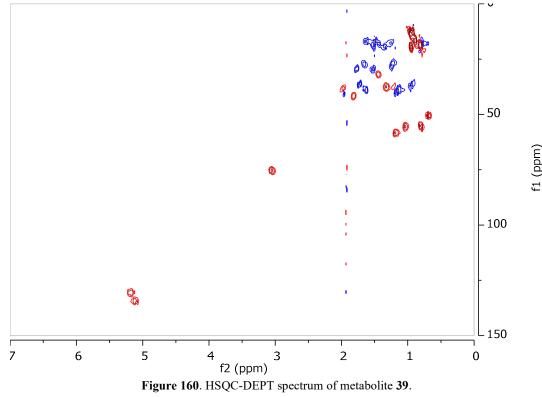



Figure 159. COSY and important HMBC correlations observed for metabolite 39.

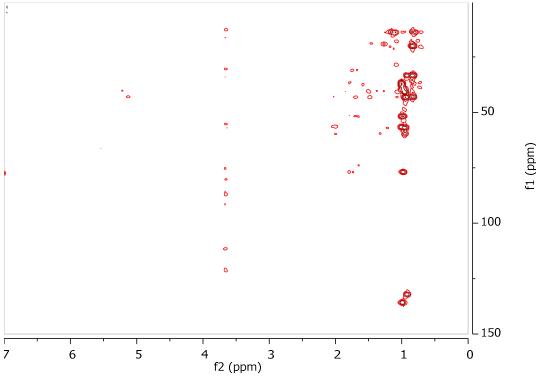


Figure 161. HMBC spectrum of metabolite 39.

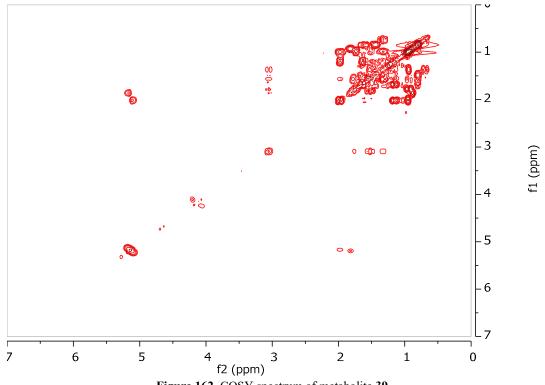
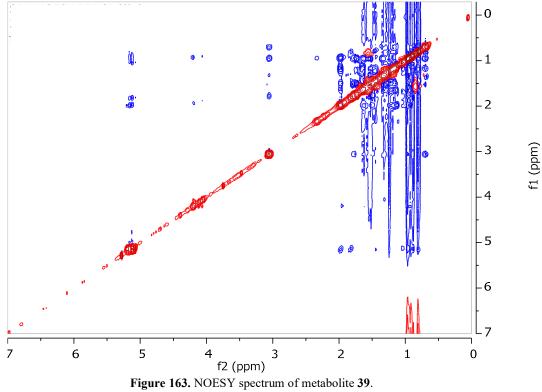



Figure 162. COSY spectrum of metabolite 39.

The E geometry of the Δ^{22} double bond was supported by the large coupling constant of H-22/H-23 (J = 15.3 Hz). The enhancements of H-3/H-5, H-3/H₃-29, H- $4/H_3-19$, H-5/H-9, $H-5/H_3-29$, $H-9/H-12\alpha$, H-9/H-14, $H-12\beta/H_3-18$, and $H_3-18/H-20$ observed in the NOESY spectrum (Figure 163) verified the trans fusion of rings A/B, B/C, and C/D and suggested the axial orientation of the hydroxy group at C-8. The configuration at C-24 was proposed as R due to the fact that the difference in the chemical shifts of C-26 and C-27 was 0.3 ppm and that C-28 resonated at 18.0 ppm (Zovko Končić et al., 2016).

Comparison of the spectroscopic and physical characteristics of metabolite 39 with those reported in the literature led to its identification as a new natural product, which was designated as $(22E,24R)-4\alpha,24$ -dimethyl- 5α -cholest-22-en- $3\beta,8\beta$ -diol. The NMR data of metabolite **39** are reported in Table 173.

Table 173. ^{1}H and ^{13}C NMR data of metabolite **39** in CDCl₃ (δ in ppm, J in Hz).

Position	δε	δ _H
1	37.7	1.72 (m), 0.93 (m)
2	30.9	1.77 (m), 1.52 (m)
3	76.8	3.04 (td, 10.2, 4.9)
4	39.0	1.31 (m)
5	51.9	0.68 (td, 12.4, 2.9)
6	20.5	1.50 (m), 1.33 (m)
7	40.1	1.63 (m), 1.13 (m)
8	73.6	-
9	56.6	0.80 (m)
10	36.9	-
11	18.3	1.62 (m), 1.49 (m)
12	41.6	1.95 (m), 1.16 (m)
13	43.0	-
14	59.7	1.18 (m)
15	19.0	1.45 (m), 1.23 (m)
16	28.3	1.64 (m), 1.23 (m)
17	57.1	1.03 (m)
18	14.0	0.92 (s)
19	13.8	0.97 (s)
20	39.6	1.96 (m)
21	21.3	0.94 (d, 6.4)
22	135.7	5.09 (dd, 15.2, 8.2)
23	131.8	5.16 (dd, 15.2, 7.4)
24	43.2	1.80 (m)
25	33.8	1.42 (m)
26	19.9	0.81 (d, 6.8)
27	20.2	0.79 (d, 6.8)
28	18.0	0.88 (d, 6.8)
29	16.0	0.95 (d, 6.8)

3.3.7 Metabolite 40

Metabolite **40** (SP21) was isolated after a series of chromatographic separations as a colorless oil (7.6 mg).

The mass spectrum of metabolite **40** (Figure 164) exhibited a molecular ion peak $[M]^+$ at m/z 444, as well as a fragment ion peak at m/z 426 corresponding to $[M-H_2O]^+$.

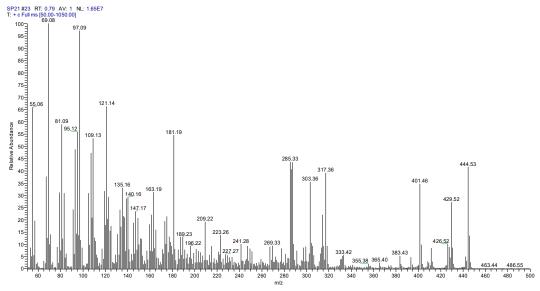


Figure 164. Mass spectrum (EIMS) of metabolite 40.

In the ¹H NMR spectrum of metabolite **40** (Figure 165) obvious were:

- Two aliphatic methyls on non-protonated carbons at δ 0.94 and 0.96,
- Four aliphatic methyls on tertiary carbons at δ 0.85, 0.94, 0.98 and 1.00,
- One oxygenated methine at δ 3.05, and,
- Two broad singlets at δ 5.63 and 5.88 integrating for one proton each and attributed to the protons of an exomethylene group.

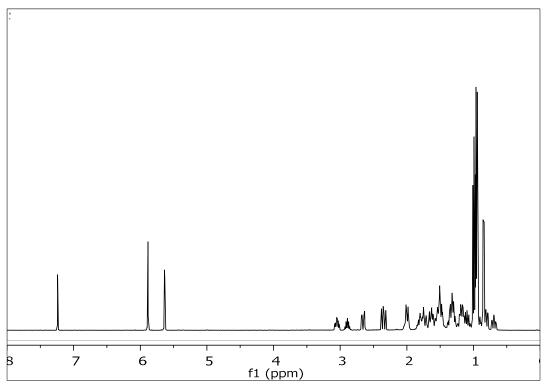


Figure 165. ¹H NMR spectrum of metabolite 40.

Analysis of the NMR and MS data of 40 led to the molecular formula $C_{29}H_{48}O_3$. Taking into account the one carbon-carbon double bond and the carbonyl moiety as two of the six degrees of unsaturation, the molecular structure of 40 was determined as tetracyclic.

Comparison of the spectroscopic and physical characteristics of metabolite **40** with those reported in the literature led to its identification as 23-oxo-4a,24-dimethyl-5a-cholest-24(28)-en-3 β ,8 β -diol, previously isolated from the soft coral *Litophyton viridis* (Bortolotto et al., 1977). The ¹H NMR data of metabolite **40** are reported in Table 174.

Table 174. $^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR data of metabolite **40** in CDCl₃ (δ in ppm, J in Hz).

Position	δc,exp	$\delta_{\mathrm{H,exp}}$
1	38.1	1.73 (m), 0.94 (m)
2	31.3	1.78 (m), 1.54 (m)
3	76.9	3.05 (m)
4	39.7	1.33 (m)
5	57.2	0.81 (m)
6	19.0	1.62 (m), 1.59 (m)
7	40.3	1.64 (m), 1.18 (m)
8	73.6	-
9	57.8	1.08 (m)
10	n.d.	-
11	18.7	1.51 (m), 1.31 (m)
12	41.6	2.0 (m), 1.98 (m)
13	n.d.	-
14	59.4	0.68 (m)
15	20.0	1.51 (m), 1.37 (m)
16	28.4	1.82 (m), 1.28 (m)
17	59.4	1.15 (dd, 4.9, 3.0)
18	13.8	0.94 (s)
19	14.8	0.96 (s)
20	33.5	2.00 (m)
21	20.0	0.85 (d, 6.5)
22	46.2	2.66 (dd, 15.5, 3.2), 2.34
22	40.2	(dd, 15.5, 10.0)
23	203.0	-
24	155.20	-
25	28.7	2.91 (m)
26	22.9	1.00 (d, 7.1)
27	22.9	0.98 (d, 7.1)
28	121.2	5.88 (brs), 5.63 (brs)
29	16.7	0.94 (d, 6.3)

3.3.8 Metabolite 41

Metabolite **41** (SP20) was isolated after a series of chromatographic separations as a white amorphous solid (0.5 mg).

The high-resolution mass spectrum of the metabolite **41** (Figure 166) showed a pseudomolecular ion peak at m/z 459.3475 corresponding to [M-H]⁻ (calcd. for C₂₉H₄₇O₄, 459.3480).

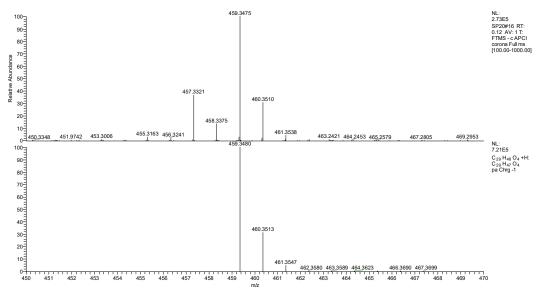
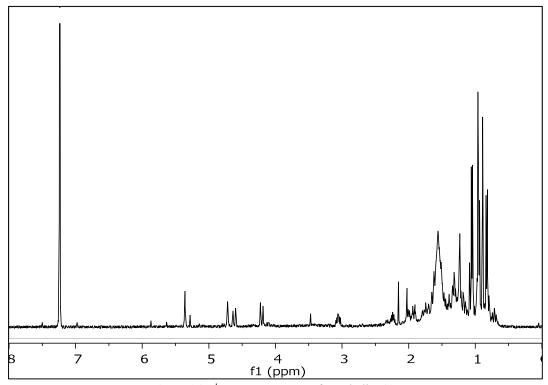
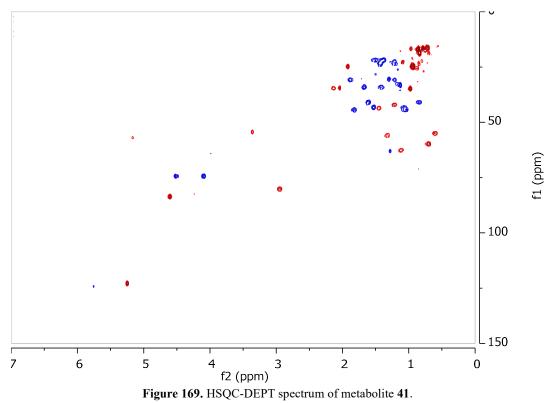
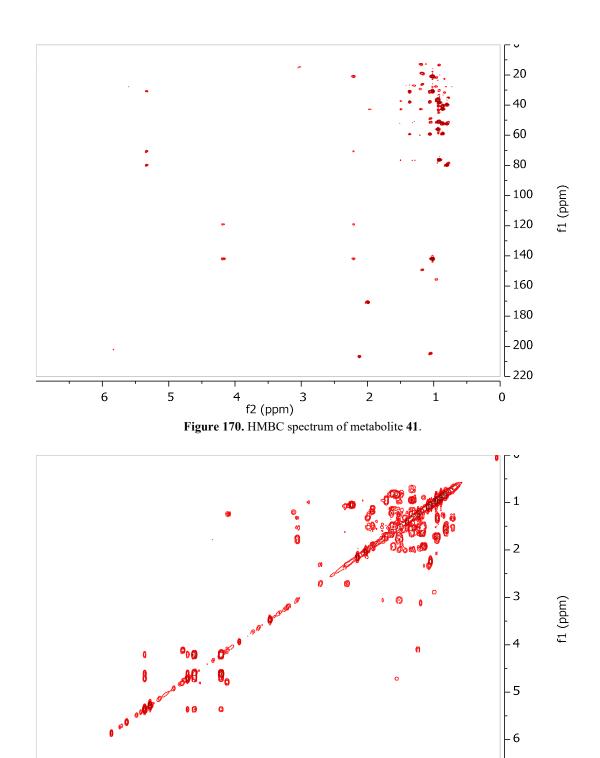


Figure 166. Mass spectrum (HR-APCIMS) of metabolite 41.

In the ¹H NMR spectrum of metabolite **41** (Figure 167) obvious were:

- Two aliphatic methyls on non-protonated carbons at δ 0.89 and 0.96,
- Four aliphatic methyls on tertiary carbons at δ 0.83, 0.95, 1.05 and 1.05,
- Two oxygenated methines at δ 3.06 and 4.72,
- Two doublets at δ 4.20 and 4.62 integrating for one proton each and attributed to the protons of an oxygenated methylene, and,
- One olefinic methine at δ 5.36.

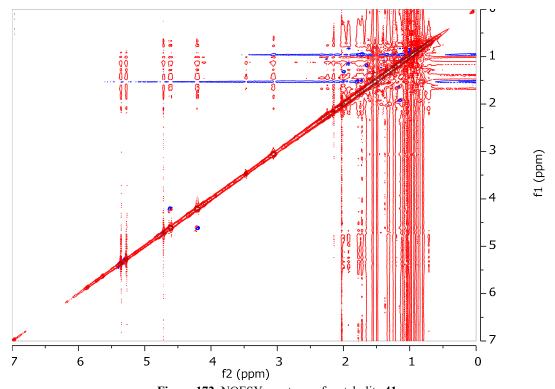




Figure 167. ¹H NMR spectrum of metabolite 41.

Analysis of the NMR and MS data of **41** led to the molecular formula C₂₉H₄₈O₄. Taking into account the one carbon-carbon double bond as one of the six degrees of unsaturation, the molecular structure of **41** was determined as pentacyclic.

The high degree of similarity of the spectroscopic data of metabolite **41** with those of **38–40** indicated the same 3,8-dihydroxy-4-methyl steroidal nucleus. Taking into account that the steroidal nucleus of **41** accounts for four of the six degrees of unsaturation and the presence of one double bond on the side chain, the latter should also contain an additional ring. The 1 H and 13 C NMR signals corresponding to the side chain of compound **41** included three doublet methyls ($\delta_{\text{H/C}}$ 0.95/14.9, 1.05/21.0, and 1.05/21.0), one oxygenated methine ($\delta_{\text{H/C}}$ 4.72/79.9), one oxygenated methylene ($\delta_{\text{H/C}}$ 4.20, 4.62/70.6), one olefinic methine ($\delta_{\text{H/C}}$ 5.36/119.4), and one non-protonated olefinic carbon (δ_{C} 142.0). The COSY cross-peaks of H-20/H₃-21, H-20/H-22, H-22/H-23, H-25/H₃-26, and H-25/H₃-27, in combination with the HMBC correlations of H₃-21 with C-17, C-20, and C-22, of H-23, H-25, H₃-26, and H₃-27 with C-24 and of H₂-28 with C-23, C-24, and C-25 verified the side chain. The planar structure of metabolite **41** was determined on the basis of the homonuclear and heteronuclear correlations (Figure 168) observed in the HSQC-DEPT (Figure 169), HMBC (Figure 170) and COSY (Figure 171) spectra.

Figure 168. COSY and important HMBC correlations observed for metabolite 41.



The relative configuration of the asymmetric centers of metabolite 41 was determined on the basis of the correlations observed in the NOESY spectrum (Figure

Figure 171. COSY spectrum of metabolite 41.

f2 (ppm)

172). In accordance with the literature, H-22 was assigned to be on the opposite side of H₃-21, as also suggested by the chemical shift of C-23 which resonated at 119.4 ppm. Instead, when H-22 and H₃-21 are co-planar, C-23 is shielded, resonating at 115-116 ppm (Yu et al., 2006).

 $Figure~172.~{\rm NOESY}~{\rm spectrum~of~metabolite}~41.$

Comparison of the spectroscopic and physical characteristics of metabolite 41 with those reported in the literature led to its identification as a new natural product, which was designated as (23E)- 22α ,28-Epidioxy- 4α ,24-dimethyl- 5α -cholest-23-en- 3β ,8 β -diol. The NMR data of metabolite 41 are reported in Table 175.

Table 175. ^{1}H and ^{13}C NMR data of metabolite **41** in CDCl₃ (δ in ppm, J in Hz)

Position	δc	δ H
1	37.2	1.72 (m), 0.96 (m)
2	30.3	1.78 (m), 1.52 (m)
3	76.4	3.06 (td, 10.5, 5.2)
4	38.5	1.33 (m)
5	51.2	0.71 (td, 12.2, 2.2)
6	19.8	1.53 (m), 1.33 (m)
7	39.6	1.64 (m), 1.19 (m)
8	73.5	-
9	56.0	0.81 (m)
10	36.3	-
11	18.1	1.62 (m), 1.48 (m)
12	40.5	1.93 (m), 1.17 (m)
13	42.7	-
14	59.0	1.23 (m)
15	18.7	1.53 (m), 1.33 (m)
16	27.0	1.99 (m), 1.31 (m)
17	52.4	1.43 (m)
18	12.8	0.89 (s)
19	13.2	0.96 (s)
20	39.8	1.56 (m)
21	12.8	0.83 (d, 6.9)
22	79.9	4.72 (brs)
23	119.4	5.36 (brs)
24	142.0	-
25	30.8	2.24 (septet, 6.9)
26	21.0	1.05 (d, 6.9)
27	21.0	1.05 (d, 6.9)
28	70.6	4.62 (d, 15.7), 4.20 (d, 15.7)
29	14.9	0.95 (d, 6.4)

3.3.9 Metabolite 42

Metabolite **42** (SP09) was isolated after a series of chromatographic separations as a colorless oil (8.7 mg).

The mass spectrum of metabolite **42** (Figure 173) exhibited a molecular ion peak $[M]^+$ at m/z 446.

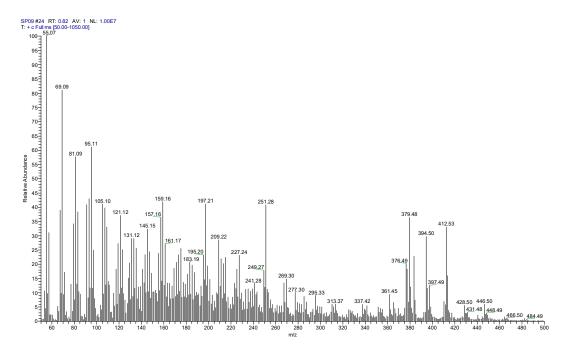


Figure 173. Mass spectrum (EIMS) of metabolite 42.

In the ¹H NMR spectrum of metabolite **42** (Figure 174) obvious were:

- Two aliphatic methyls on non-protonated carbons at δ 1.10 and 1.33,
- Four aliphatic methyls on tertiary carbons at δ 0.91, 0.96, 0.99 and 1.00,
- Two oxygenated methines at δ 3.04 and 4.43, and
- Two broad singlets at δ 4.63 and 4.69 integrating for one proton each and attributed to the protons of an exomethylene group.

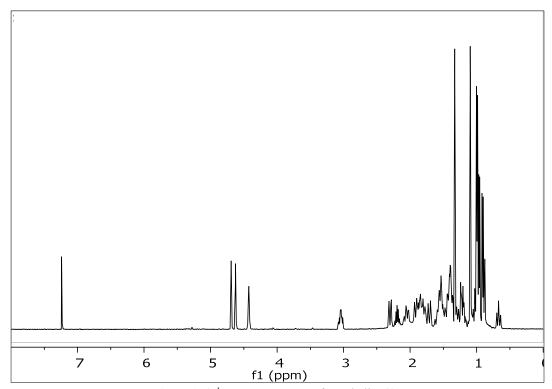


Figure 174. ¹H NMR spectrum of metabolite 42.

Analysis of the NMR and MS data of 42 led to the molecular formula $C_{29}H_{50}O_3$. Taking into account the one carbon-carbon double bond as one of the five degrees of unsaturation, the molecular structure of 42 was determined as tetracyclic.

Comparison of the spectroscopic and physical characteristics of metabolite 42 with those reported in the literature led to its identification as nebrosteroid M (4α ,24-dimethyl- 5α -cholest-24(28)-en- 3β , 8β , 11β -triol), previously isolated from the soft coral *N. chabroli* (Cheng et al., 2009). The ¹H NMR data of metabolite 42 are reported in Table 176.

Table 176. ¹H and ¹³C NMR data of metabolite **42** in CDCl₃ (δ in ppm, J in Hz).

Position	$\delta_{ m H,exp}$	δ H,lit
		· · · · · · · · · · · · · · · · · · ·
1	1.92 (m), 1.02 (m)	1.92 (m), 1.0 (m)
2	1.77 (m), 1.61 (m)	1.79 (m), 1.61 (m)
3	3.04 (td, 11.0, 4.0)	3.07 (td, 10.4, 5.2)
4	1.41 (m)	1.42 (m)
5	0.68 (m)	0.71 (m)
6	1.54 (m), 1.15 (m)	1.53 (m), 1.14 (m)
7	1.73 (m), 1.20 (m)	1.72 (m), 1.19 (m)
9	0.90 (m)	0.90 (m)
11	4.43 (brs)	4.45 (brs)
12	2.32 (m), 1.39 (m)	2.32 (m), 1.38 (m)
14	1.23 (m)	1.23 (m)
15	1.56 (m), 1.47 (m)	1.57 (m), 1.48 (m)
16	1.84 (m), 1.27 (m)	1.85 (m), 1.29 (m)
17	1.05 (m)	1.05 (m)
18	1.10 (s)	1.12 (s)
19	1.33 (s)	1.35 (s)
20	1.44 (m)	1.44 (m)
21	0.91 (d, 6.5)	0.93 (d, 6.4)
22	1.51 (m), 1.09 (m)	1.50 (m), 1.09 (m)
23	2.06 (m), 1.87 (m)	2.09 (m), 1.89 (m)
25	2.20 (m)	2.22 (heptet, 6.8)
26	0.99 (d, 6.8)	1.02 (d, 6.8)
27	1.00 (d, 6.8)	1.02 (d, 6.8)
28	4.69 (brs), 4.63 (brs)	4.72 (s), 4.65 (s)
29	0.96 (d, 6.3)	0.99 (d, 6.4)
11-OH	2.52 (s)	-

3.3.10 Metabolite 43

Metabolite **43** (SP23) was isolated after a series of chromatographic separations as a white amorphous solid (16.9 mg).

$$\begin{array}{c} 21, & 22 \\ 18 & 20 \\ 21 & 20 \\ 22 & 23 \\ 24 & 25 \\ 27 & 24 \\ 25 & 26 \\ 27 & 28$$

The mass spectrum of metabolite **43** (Figure 175) exhibited a molecular ion peak $[M]^+$ at m/z 446, as well as a fragment ion peak at m/z 428 corresponding to $[M-H_2O]^+$.

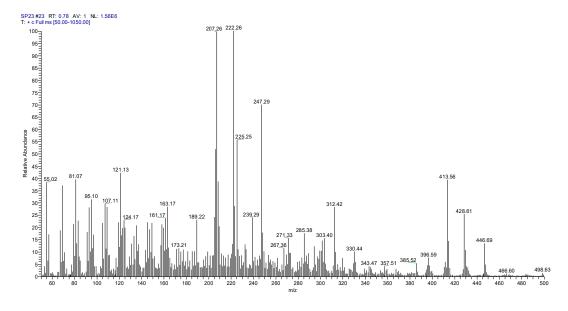


Figure 175. Mass spectrum (EIMS) of metabolite 43.

In the ¹H NMR spectrum of metabolite **43** (Figure 176) obvious were:

- Two aliphatic methyls on non-protonated carbons at δ 1.11 and 1.33,
- Five aliphatic methyls on tertiary carbons at δ 0.79, 0.80, 0.86, 0.96 and 0.98,
- Two oxygenated methines at δ 3.05 and 4.43, and,
- Two olefinic methines at δ 5.09 and 5.19.

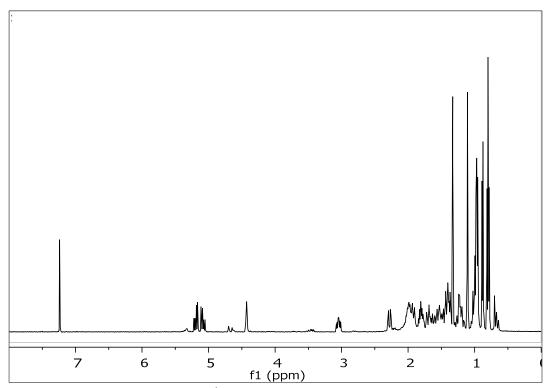


Figure 176. ¹H NMR spectrum of metabolite 43.

Analysis of the NMR and MS data of 43 led to the molecular formula $C_{29}H_{50}O_3$. Taking into account the one carbon-carbon double bond as one of the five degrees of unsaturation, the molecular structure of 43 was determined as tetracyclic.

Comparison of the spectroscopic and physical characteristics of metabolite 43 with those reported in the literature led to its identification as $(22E,24R)-4\alpha,24$ -dimethyl- 5α -cholest-22-en- $3\beta,8\beta,11\beta$ -triol, previously isolated from the soft coral *Litophyton mollis* (Zovko Končić et al., 2016). The ¹H NMR data of metabolite 43 are reported in Table 177.

Table 177. ¹H NMR data of metabolite **43** in CDCl₃ (δ in ppm, J in Hz).

Position	δ H,exp	δ H,lit
1	1.91 (m), 0.99 (m)	1.91 (m), 1.00 (m)
2	1.79 (m), 1.60 (m)	1.79 (m), 1.59 (m)
3	3.05 (dt, 11.1, 11.2,5.1)	3.04 (td, 107, 4.9)
4	1.42 (m)	1.40 (m)
5	0.68 (m)	0.68 (td, 11.6, 2.6)
6	1.51 (m), 1.42 (m)	1.50 (m), 1.41 (m)
7	1.72 (m), 1.20 (m)	1.70 (m), 1.22 (m)
9	0.88 (m)	0.88 (m)
11	4.43 (brs)	4.43 (brs)
12	2.28 (dd, 14.0, 2.8), 1.39	2.28 (dd, 13.9, 3.0), 1.39
	(m)	(m)
14	1.23 (m)	1.23 (m)
15	1.54 (m), 1.43 (m)	1.54 (m), 1.43 (m)
16	1.66 (m), 1.27 (m)	1.67 (m), 1.26 (m)
17	1.03 (m)	1.03 (m)
18	1.11 (s)	1.10 (s)
19	1.33 (s)	1.33 (s)
20	2.01 (m)	2.00 (m)
21	0.96 (d, 6.5)	0.97 (d, 6.5)
22	5.09 (dd, 15.3, 8.3)	5.08 (dd, 15.2, 8.3)
23	5.19 (dd, 15.3, 7.6)	5.19 (dd, 15.2, 7.7)
24	1.81 (m)	1.82 (m)
25	1.44 (m)	1.44 (m)
26	0.79 (d, 6.7)	0.79 (d, 6.6)
27	0.80 (d, 6.6)	0.81 (d, 6.6)
28	0.86 (d, 6.8)	0.88 (d, 6.8)
29	0.98 (d, 6.1)	0.96 (d, 6.1)
11-OH	-	2.46 (d, 6.1)

3.3.11 Metabolite 44

Metabolite 44 (SP26) was isolated after a series of chromatographic separations as a colorless oil (4 mg).

The mass spectrum of metabolite **44** (Figure 177) exhibited a molecular ion peak $[M]^+$ at m/z 460, as well as a fragment ion peak at m/z 442 corresponding to $[M-H_2O]^+$.

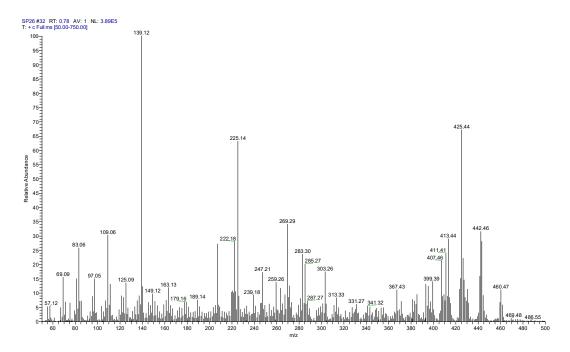


Figure 177. Mass spectrum (EIMS) of metabolite 44.

In the ¹H NMR spectrum of metabolite **44** (Figure 178) obvious were:

- Two aliphatic methyls on non-protonated carbons at δ 1.14 and 1.33,
- Four aliphatic methyls on tertiary carbons at δ 0.87, 0.96, 0.99 and 1.00,
- Two oxygenated methines at δ 3.05 and 4.44, and
- Two broad singlets at δ 5.64 and 5.87 integrating for one proton each and attributed to the protons of an exomethylene group.

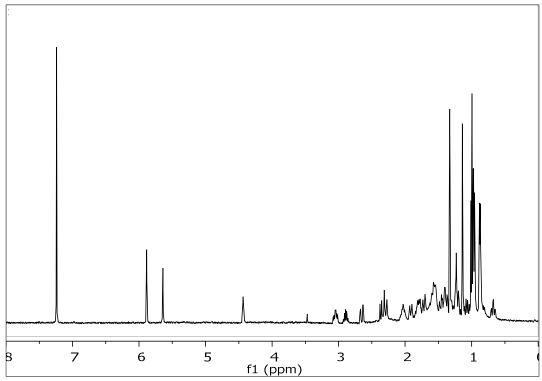


Figure 178. ¹H NMR spectrum of metabolite 44.

Analysis of the NMR and MS data of 44 led to the molecular formula $C_{29}H_{48}O_4$. Taking into account the one carbon-carbon double bond and the carbonyl moiety as two of the six degrees of unsaturation, the molecular structure of 44 was determined as tetracyclic.

Comparison of the spectroscopic and physical characteristics of metabolite **44** with those reported in the literature led to its identification as nebrosteroid A (23-oxo- 4α ,24-dimethyl- 5α -cholest-24(28)-en- 3β , 8β , 11β -triol), previously isolated from the soft coral *N. chabroli* (Huang et al., 2008). The ¹H NMR data of metabolite **44** are reported in Table 178.

Table 178. ¹H NMR data of metabolite **44** in CDCl₃ (δ in ppm, J in Hz)

Position	δ H,exp	δ H,lit
1	1.93 (m), 1.03 (m)	1.92 (m), 1.02 (m)
2	1.77 (m), 1.66 (ddd, 5.8, 3.1, 1.3)	1.77 (m), 1.66 (m)
3	3.05 (td, 11.0, 11.0, 5.8)	3.05 (td, 10.4, 5.6)
4	1.41 (m)	1.41 (m)
5	0.68 (td, 12.4, 12.1, 2.4)	0.68 (td, 11.1, 2.4)
6	1.57 (m), 1.47 (m)	1.57 (m), 1.47 (m)
7	1.72 (m), 1.21 (m)	1.71 (m), 1.21 (m)
9	0.88 (m)	0.88 (m)
11	4.44 (brs)	4.45 (brs)
12	2.29 (m), 1.38 (m)	2.29 (m), 1.39 (m)
14	1.25 (m)	1.24 (m)
15	1.57 (m), 0.88 (m)	1.57 (m), 0.88 (m)
16	1.81 (m), 1.32 (m)	1.81 (m), 1.32 (m)
17	1.07 (m)	1.08 (m)
18	1.14 (s)	1.15 (s)
19	1.33 (s)	1.34 (s)
20	2.04 (m)	2.04 (m)
21	0.87 (d, 6.2)	0.88 (d, 6.6)
22	2.65 (dd, 15.5, 3.1), 2.36 (m)	2.67 (dd, 16.6, 2.7), 2.35 (m)
25	2.88 (m)	2.89 (septet, 6.6)
26	0.99 (d, 7.2)	1.01 (d, 6.6)
27	1.00 (d, 7.2)	1.03 (d, 6.6)
28	5.87 (brs), 5.64 (brs)	5.91 (s), 5.67 (s)
29	0.96 (d, 6.4)	0.97 (d, 6.6)
11-OH	2.31 (s)	-

3.3.12 Metabolite 45

Metabolite **45** (SP27) was isolated after a series of chromatographic separations as a white amorphous solid (2.2 mg).

The mass spectrum of metabolite **45** (Figure 179) exhibited a fragment ion peak at m/z 444 corresponding to [M-AcOH]⁺.

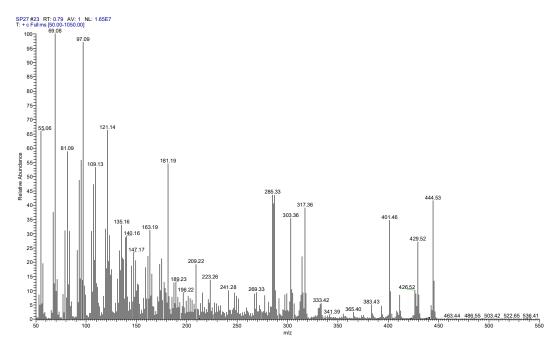


Figure 179. Mass spectrum (EIMS) of metabolite 45.

In the ¹H NMR spectrum of metabolite **45** (Figure 180) obvious were:

- Two aliphatic methyls on non-protonated carbons at δ 1.07 and 1.33,
- Four aliphatic methyls on tertiary carbons at δ 0.95, 0.96, 1.03 and 1.07,
- One methyl of an acetoxy group at δ 2.01,
- Three oxygenated methines at δ 3.05, 4.43 and 5.25, and
- Two broad singlets at δ 4.96 and 5.01 integrating for one proton each and attributed to the protons of an exomethylene group.

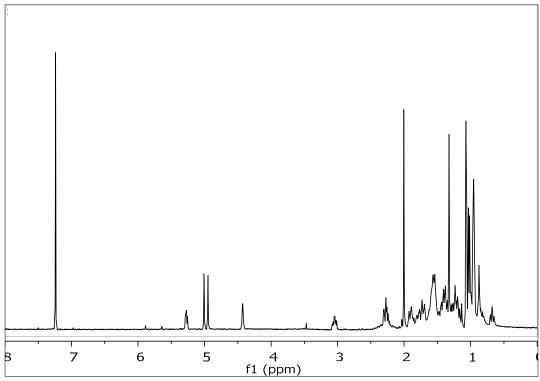


Figure 180. ¹H NMR spectrum of metabolite 45.

Analysis of the NMR and MS data of **45** led to the molecular formula $C_{31}H_{52}O_5$. Taking into account the one carbon-carbon double bond and the carbonyl moiety as two of the six degrees of unsaturation, the molecular structure of **45** was determined as tetracyclic.

Comparison of the spectroscopic and physical characteristics of metabolite **45** with those reported in the literature led to its identification as 23ξ -acetoxy- 4α ,24-dimethyl- 5α -cholest-24(28)-en- 3β ,8 β ,11 β -triol, previously isolated from the soft coral *L. mollis* (Zovko Končić et al., 2016). The ¹H NMR data of metabolite **45** are reported in Table 179.

Table 179. ¹H NMR data of metabolite **45** in CDCl₃ (δ in ppm, J in Hz).

Position	δ H,exp	δ H,lit
1	1.90 (m), 1.0 (m)	1.89 (m), 0.99 (m)
2	1.80 (m), 1.58 (m)	1.79 (m), 1.58 (m)
3	3.05 (ddd, 11.3, 10.8, 3.6)	3.05 (td, 10.9, 5.0)
4	1.41 (ddd, 5.8, 3.1, 2.2)	1.40 (m)
5	0.69 (td, 11.5, 2.3)	0.67 (td, 11.7, 2.7)
6	1.49 (m), 1.41 (ddd, 5.8, 3.1, 2.2)	1.49 (m), 1.40 (m)
7	1.7 (m), 1.21 (m)	1.71 (m), 1.20 (m)
9	0.85 (m)	0.86 (m)
11	4.43 (brs)	4.42 (brs)
12	2.26 (m), 1.38 (m)	2.29 (dd, 14.0, 3.0), 1.37 (m)
14	1.18 (m)	1.18 (m)
15	1.54 (m), 1.44 (m)	1.54 (m), 1.44 (m)
16	1.86 (m), 1.24 (m)	1.86 (m), 1.25 (m)
17	1.01 (m)	1.01 (m)
18	1.07 (s)	1.07 (s)
19	1.33 (s)	1.32 (s)
20	1.36 (m)	1.36 (m)
21	0.95 (d, 5.6)	0.95 (d, 6.2)
22	1.73 (m), 1.29 (m)	1.74 (m), 1.29 (m)
23	5.25 (m)	5.27 (dd, 7.5, 6.2)
25	2.24 (m)	2.24 (m)
26	1.03 (d, 6.8)	1.03 (d, 6.6)
27	1.07 (d, 5.5)	1.07 (d, 6.6)
28	5.01 (brs), 4.96 (brs)	5.01 (brs), 4.95 (brs)
29	0.96 (d, 6.0)	0.96 (d, 6.2)
OAc	2.01 (s)	2.01 (s)
11-OH	2.3 (d, 7.1)	2.39 (d, 5.9)

3.3.13 Metabolite 46

Metabolite **46** (SP25) was isolated after a series of chromatographic separations as a white amorphous solid (1.3 mg).

The high-resolution mass spectrum of the metabolite **46** (Figure 181) showed a pseudomolecular ion peak at m/z 475.3424 corresponding to [M-H]⁻ (calcd. for $C_{29}H_{47}O_5$, 475.3429).

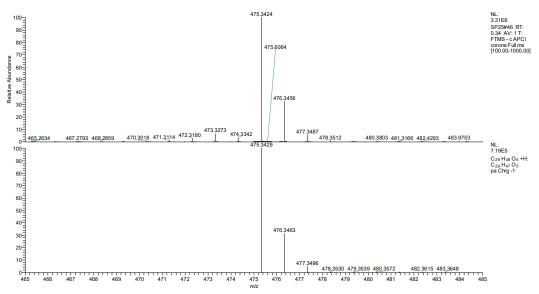


Figure 181. Mass spectrum (HR-APCIMS) of metabolite 46.

In the ¹H NMR spectrum of metabolite **46** (Figure 182) obvious were:

- Two aliphatic methyls on non-protonated carbons at δ 1.09 and 1.33,
- Four aliphatic methyls on tertiary carbons at δ 0.85, 0.96, 1.05 and 1.06,
- Three oxygenated methines at δ 3.05, 4.43 and 4.70,
- Two doublets at δ 4.21 and 4.59 integrating for one proton each and attributed to the protons of an oxygenated methylene, and,
- One olefinic methine at δ 5.36.

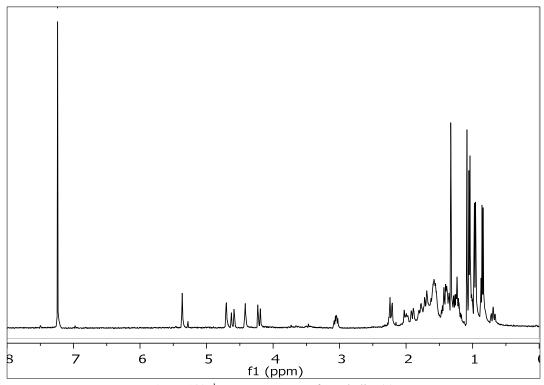


Figure 182. ¹H NMR spectrum of metabolite 46.

Analysis of the NMR and MS data of **46** led to the molecular formula C₂₉H₄₈O₅. Taking into account the one carbon-carbon double bond as one of the six degrees of unsaturation, the molecular structure of **46** was determined as pentacyclic.

The spectroscopic data of metabolite **46** related to the steroidal nucleus displayed high similarity with those of **42–45**, suggesting a 3,8,11-trihydroxy-4-methyl steroidal nucleus. Additionally, the NMR data concerning the side chain of compound **46** were rather similar to those of **41**. Indeed, the planar structure of metabolite **46** was determined on the basis of the homonuclear and heteronuclear correlations (Figure 183) observed in the HSQC-DEPT (Figure 184), HMBC (Figure 185) and COSY (Figure 186) spectra.

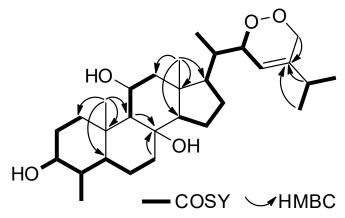


Figure 183. COSY and important HMBC correlations observed for metabolite 46.

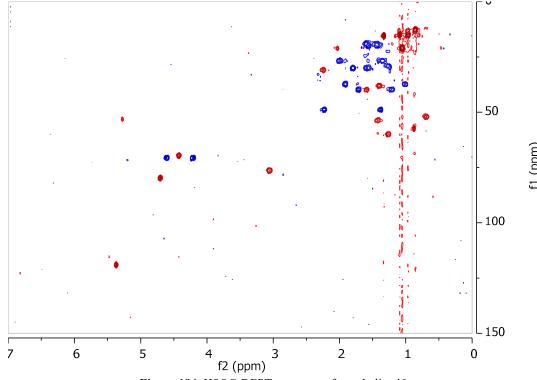


Figure 184. HSQC-DEPT spectrum of metabolite 46.

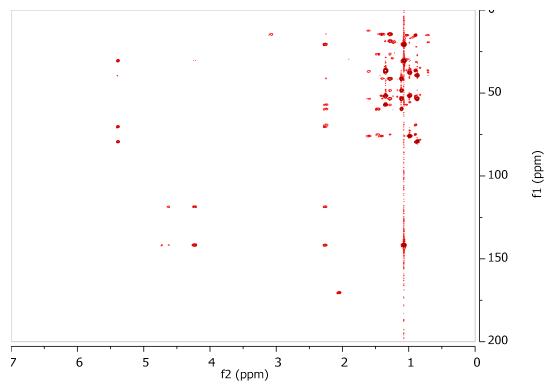
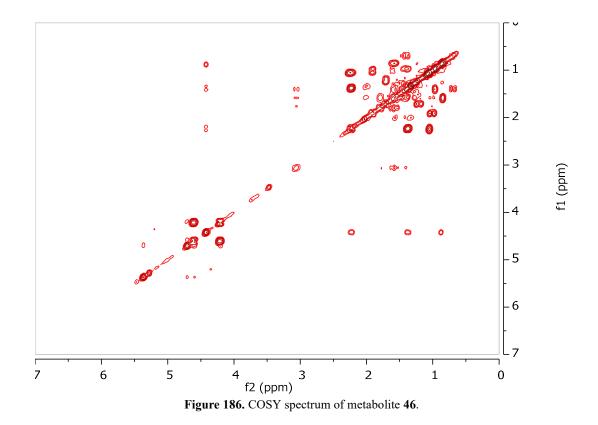



Figure 185. HMBC spectrum of metabolite 46.

The relative configuration of the asymmetric centers of metabolite **46** was determined on the basis of the correlations observed in the NOESY spectrum (Figure 187). As in the case of **41**, H-22 was assigned to be on the opposite side of H₃-21, as also suggested by the chemical shift of C-23 which resonated at 119.2 ppm. Instead, when H-22 and H₃-21 are co-planar, C-23 is shielded, resonating at 115-116 ppm (Yu et al., 2006).

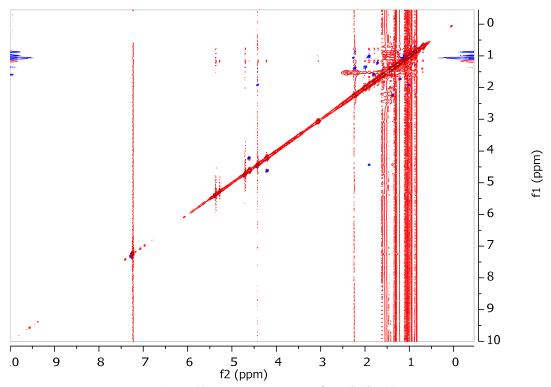


Figure 187. NOESY spectrum of metabolite 46.

Comparison of the spectroscopic and physical characteristics of metabolite **46** with those reported in the literature led to its identification as a new natural product, which was designated as (23E)- 22α ,28-epidioxy- 4α ,24-dimethyl- 5α -cholest-23-en- 3β ,8 β ,11 β -triol. The NMR data of metabolite **46** are reported in Table 180.

Table 180. $^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR data of metabolite **46** in CDCl₃ (δ in ppm, J in Hz).

Position	δ c	δ H
1	37.5	1.91 (m), 1.00 (m)
2	30.2	1.79 (m), 1.58 (m)
3	76.5	3.05 (td, 10.8, 5.0)
4	38.2	1.41 (m)
5	52.3	0.69 (td, 11.9, 2.2)
6	20.0	1.56 (m), 1.39 (m)
7	39.9	1.71 (m), 1.22 (m)
8	75.3	-
9	57.6	0.88 (m)
10	36.8	-
11	69.8	4.43 (brd, 1.9)
12	49.0	2.23 (m), 1.37 (m)
13	41.8	-
14	60.2	1.27 (m)
15	19.2	1.60 (m), 1.46 (m)
16	26.9	2.00 (m), 1.35 (m)
17	53.9	1.43 (m)
18	15.0	1.09 (s)
19	15.6	1.33 (s)
20	40.0	1.59 (m)
21	12.9	0.85 (d, 7.0)
22	79.7	4.70 (brs)
23	119.2	5.36 (brs)
24	142.0	
25	31.1	2.24 (septet, 6.9)
26	21.1	1.05 (d, 6.9)
27	21.1	1.06 (d, 6.9)
28	70.8	4.59 (d, 15.7), 4.21 (d, 15.7)
29	15.2	0.96 (d, 6.4)

3.3.14 Metabolite 47

Metabolite 47 (SP28) was isolated after a series of chromatographic separations as a white amorphous solid (1.1 mg).

The mass spectrum of metabolite 47 (Figure 188) exhibited a fragment ion peak at m/z 426 corresponding to $[M-2H_2O]^+$.

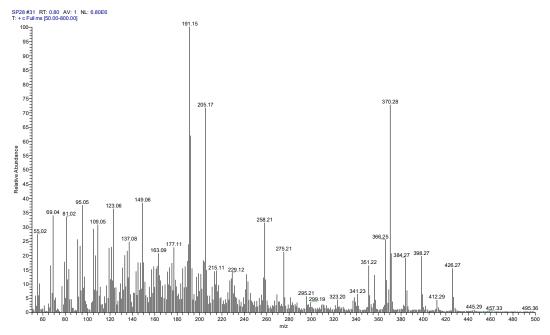


Figure 188. Mass spectrum (EIMS) of metabolite 47.

In the ¹H NMR spectrum of metabolite **47** (Figure 189) obvious were:

- Two aliphatic methyls on non-protonated carbons at δ 1.00 and 1.34,
- Five aliphatic methyls on tertiary carbons at δ 0.80, 0.81, 0.90, 0.97 and 1.12,
- Three oxygenated methines at δ 3.05, 3.22 and 4.21, and
- Two olefinic methines at δ 5.19 and 5.20.

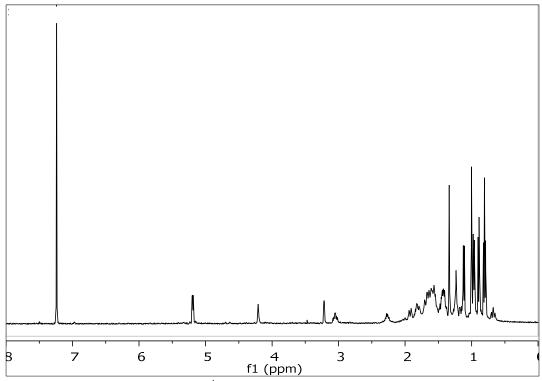


Figure 189. ¹H NMR spectrum of metabolite 47.

Analysis of the NMR and MS data of 47 led to the molecular formula $C_{29}H_{50}O_4$. Taking into account the one carbon-carbon double bond as one of the five degrees of unsaturation, the molecular structure of 47 was determined as tetracyclic.

Comparison of the spectroscopic and physical characteristics of metabolite 47 with those reported in the literature led to its identification as (22Z)-4a,24 ξ -dimethyl-5 α -cholest-22-en-3 β ,8 β ,11 β ,12 α -tetraol, previously isolated from the soft coral L. mollis (Zovko Končić et al., 2016). The ¹H NMR data of metabolite 47 are reported in Table 181.

Table 181. ¹H NMR data of metabolite **47** in CDCl₃ (δ in ppm, J in Hz)

Position	$\delta_{\rm H,exp}$	δ H,lit
1	1.93 (m), 1.04 (m)	1.95 (m), 1.00 (m)
2	1.80 (m), 1.59 (m)	1.82 (m), 1.60 (m)
3	3.05 (td, 10.7, 4.8)	3.05 (m)
4	1.40 (m)	1.40 (m)
5	0.66 (m)	0.67 (td, 11.5, 2.7)
6	1.42 (m), 1.37 (m)	1.43 (m), 1.39 (m)
7	1.70 (m), 1.19 (m)	1.70 (m), 1.17 (m)
9	0.86 (m)	0.88 (m)
11	4.21 (m)	4.21 (m)
12	3.22 (dd, 8.5, 3.8)	3.22 (dd, 8.4, 3.4)
14	1.15 (m)	1.14 (m)
15	1.57 (m), 1.44 (m)	1.57 (m), 1.44 (m)
16	1.62 (m), 1.41 (m)	1.62 (m), 1.41 (m)
17	1.23 (m)	1.23 (m)
18	1.00 (s)	1.00 (s)
19	1.34 (s)	1.34 (s)
20	2.27 (m)	2.28 (m)
21	1.12 (d, 6.7)	1.12 (d, 6.7)
22	5.19 (m)	5.18 (m)
23	5.20 (m)	5.20 (m)
24	1.85 (m)	1.84 (m)
25	1.45 (m)	1.45 (m)
26	0.80 (d, 6.5)	0.80 (d, 6.6)
27	0.81 (d, 6.5)	0.81 (d, 6.6)
28	0.90 (d, 6.9)	0.90 (d, 6.8)
29	0.97 (d, 6.3)	0.97 (d, 6.3)
11-OH	-	2.68 (d, 8.4)
12-OH	-	3.02 (d, 6.9)

3.3.15 Metabolite 48

Metabolite **48** (SP05) was isolated after a series of chromatographic separations as a white amorphous solid (9.4 mg).

The mass spectrum of metabolite **48** (Figure 190) exhibited a molecular ion peak $[M]^+$ at m/z 446.

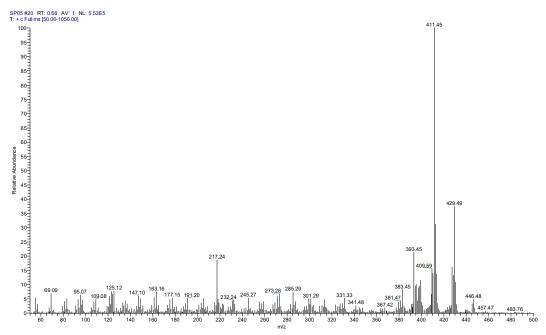


Figure 190. Mass spectrum (EIMS) of metabolite 48.

In the ¹H NMR spectrum of metabolite **48** (Figure 191) obvious were:

- One aliphatic methyl on a non-protonated carbon at δ 0.96,
- Four aliphatic methyls on tertiary carbons at δ 0.94, 0.95, 0.99 and 0.99,
- Two doublets at δ 3.62 and 3.70 integrating for one proton each and attributed to the protons of a hydroxy methylene,
- One oxygenated methine at δ 3.06, and
- Two broad singlets at δ 4.62 and 4.69 integrating for one proton each and attributed to the protons of an exomethylene group.

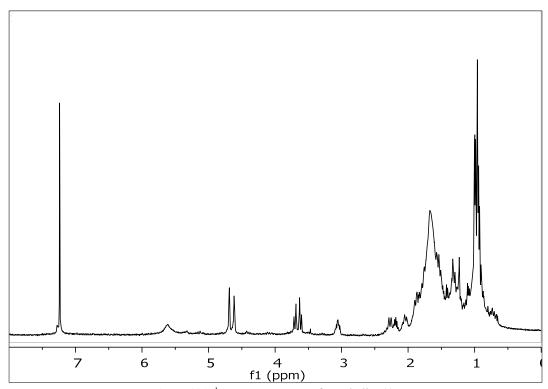


Figure 191. ¹H NMR spectrum of metabolite 48.

Analysis of the NMR and MS data of 48 led to the molecular formula $C_{29}H_{50}O_3$. Taking into account the one carbon-carbon double bond as one of the five degrees of unsaturation, the molecular structure of 48 was determined as tetracyclic.

Comparison of the spectroscopic and physical characteristics of metabolite 48 with those reported in the literature led to its identification as 4α ,24-dimethyl- 5α -cholest-24(28)-en- 3β ,8 β ,18-triol, previously isolated from the soft coral *L. mollis* (Zovko Končić et al., 2016). The ¹H NMR data of metabolite 48 are reported in Table 182.

Table 182. ¹H NMR data of metabolite **48** in CDCl₃ (δ in ppm, J in Hz)

Position	δ H,exp	δH,lit
1	1.71 (m), 0.94 (m)	1.71 (m), 0.94 (m)
2	1.76 (m), 1.51 (m)	1.76 (m), 1.51 (m)
3	3.06 (td, 10.5, 10.5, 4.9)	3.06 (td, 10.2, 5.2)
4	1.35 (m)	1.35 (m)
5	0.73 (m)	0.74 (m)
6	1.49 (m), 1.30 (m)	1.49 (m), 1.31 (m)
7	1.73 (m), 1.24 (m)	1.73 (m), 1.24 (m)
9	0.87 (m)	0.88 (m)
11	1.91 (m), 1.30 (m)	1.89 (m), 1.31 (m)
12	2.27 (m), 1.20 (m)	2.27 (ddd, 13.1, 3.6, 2.5),
12	2.27 (III), 1.20 (III)	1.21 (m)
14	1.41 (m)	1.41 (m)
15	1.56 (m)	1.56 (m)
16	1.88 (m)	1.88 (m), 1.28 (m)
17	1.11 (m)	1.11 (m)
18	3.70 (d, 11.6), 3.62 (d,	3.71 (d, 11.8), 3.62 (d,
10	11.6)	11.8)
19	0.96 (s)	0.96 (s)
20	1.34 (m)	1.34 (m)
21	0.95 (d, 6.3)	0.96 (d, 6.5)
22	1.52 (m), 1.07 (m)	1.52 (m), 1.07 (m)
23	2.05 (m)	2.05 (m)
25	2.17 (m)	2.19 (m)
26	0.99 (d, 6.8)	0.99 (d, 6.8)
27	0.99 (d, 6.8)	1.00 (d, 6.8)
28	4.69 (brs), 4.62 (brs)	4.69 (brs), 4.62 (brs)
29	0.94 (d, 6.3)	0.94 (d, 6.5)

3.3.16 Metabolite 49

Metabolite **49** (SP24) was isolated after a series of chromatographic separations as a white amorphous solid (3.5 mg).

The mass spectrum of metabolite **49** (Figure 192) exhibited a molecular ion peak $[M]^+$ at m/z 446.

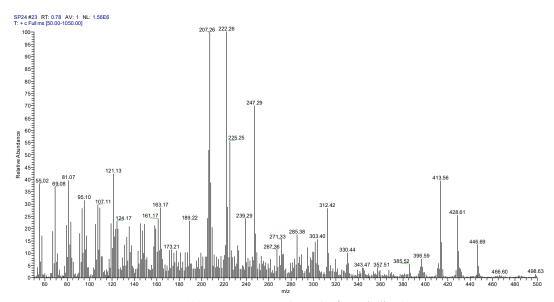


Figure 192. Mass spectrum (EIMS) of metabolite 49.

In the ¹H NMR spectrum of metabolite **49** (Figure 193) obvious were:

- One aliphatic methyl on a non-protonated carbon at δ 0.96,
- Five aliphatic methyls on tertiary carbons at δ 0.78, 0.80, 0.88, 0.95 and 0.99,
- Two doublets at δ 3.64 and 3.74 integrating for one proton each and attributed to the protons of a hydroxy methylene,
- One oxygenated methine at δ 3.06, and
- Two olefinic methines at δ 5.04 and 5.19.

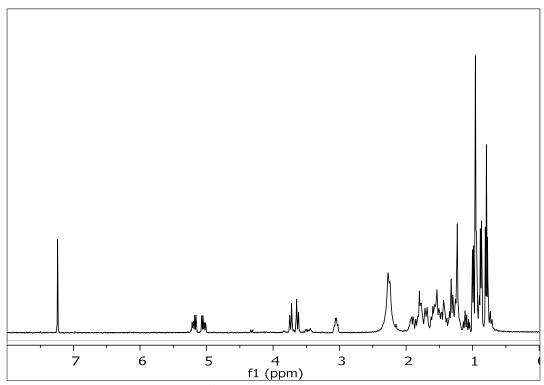


Figure 193. ¹H NMR spectrum of metabolite 49.

Analysis of the NMR and MS data of 49 led to the molecular formula $C_{29}H_{50}O_3$. Taking into account the one carbon-carbon double bond as one of the five degrees of unsaturation, the molecular structure of 49 was determined as tetracyclic.

Comparison of the spectroscopic and physical characteristics of metabolite **49** with those reported in the literature led to its identification as (22E,24R)-4a,24-dimethyl- 5α -cholest-22-en- $3\beta,8\beta,18$ -triol, previously isolated from the soft coral L. *mollis* (Zovko Končić et al., 2016). The ¹H NMR data of metabolite **49** are reported in Table 183.

Table 183. ¹H NMR data of metabolite **49** in CDCl₃ (δ in ppm, J in Hz).

Position	δ H,exp	δ H,lit
1	1.72 (m), 0.96 (m)	1.70 (m), 0.93 (m)
2	1.78 (m), 1.54 (m)	1.78 (m), 1.53 (m)
3	3.06 (td, 10.2, 10.2, 4.6)	3.06 (td, 10.7, 5.0)
4	1.34 (m)	1.34 (m)
5	0.74 (m)	0.74 (m)
6	1.48 (m), 1.32 (m)	1.48 (m), 1.32 (m)
7	1.74 (m), 1.30 (m)	1.74 (m), 1.30 (m)
9	0.90 (m)	0.88 (m)
11	1.88 (m), 1.33 (m)	1.88 (m), 1.31 (m)
12	2.25 (m), 1.25 (m)	2.25 (ddd, 12.7, 3.3, 2.5),
12	2.23 (III), 1.23 (III)	1.24 (m)
14	1.42 (m)	1.41 (m)
15	1.60 (m)	1.60 (m)
16	1.71 (m), 1.24 (m)	1.70 (m), 1.26 (m)
17	1.11 (m)	1.09 (m)
18	3.74 (d, 11.5), 3.64 (d,	3.72 (d, 11.6), 3.62 (d,
10	11.5)	11.6)
19	0.96 (s)	0.96 (s)
20	1.95 (m)	1.94 (m)
21	0.99 (d, 6.5)	0.99 (d, 6.6)
22	5.04 (dd, 15.3, 7.7)	5.05 (dd, 15.2, 7.7)
23	5.19 (dd, 15.3, 7.7)	5.19 (dd, 15.2, 7.7)
24	1.82 (m)	1.81 (m)
25	1.46 (m)	1.45 (m)
26	0.80 (d, 6.6)	0.80 (d, 6.7)
27	0.78 (d, 6.7)	0.78 (d, 6.7)
28	0.88 (d, 6.7)	0.88 (d, 6.8)
29	0.95 (d, 6.2)	0.94 (d, 6.2)

3.3.17 Metabolite **50**

Metabolite **50** (SP02) was isolated after a series of chromatographic separations as a colorless oil (232.9 mg).

The mass spectrum of metabolite **50** (Figure 194) exhibited a molecular ion peak $[M]^+$ at m/z 398.

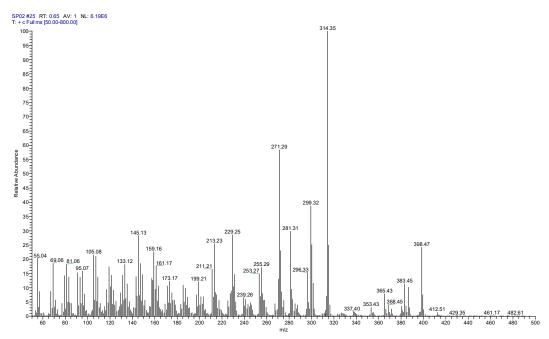


Figure 194. Mass spectrum (EIMS) of metabolite 50.

In the ¹H NMR spectrum of metabolite **50** (Figure 195) obvious were:

- Two aliphatic methyls on non-protonated carbons at δ 0.65 and 0.97,
- Three aliphatic methyls on tertiary carbons at δ 0.92, 0.99 and 1.00,
- One oxygenated methine at δ 3.50,
- Two broad singlets at δ 4.63 and 4.69 integrating for one proton each and attributed to the protons of an exomethylene group, and
- One olefinic methine at δ 5.32.

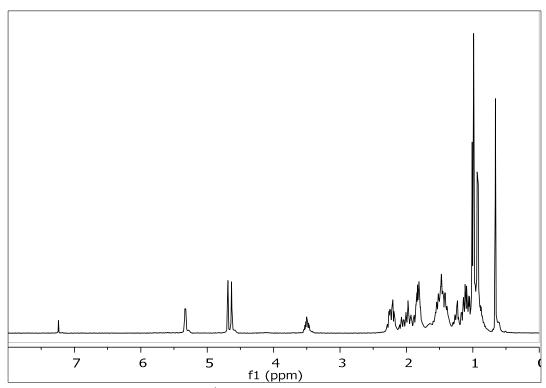


Figure 195. ¹H NMR spectrum of metabolite 50.

Analysis of the NMR and MS data of 50 led to the molecular formula $C_{28}H_{46}O$. Taking into account the two carbon-carbon double bonds as two of the six degrees of unsaturation, the molecular structure of 50 was determined as tetracyclic.

Comparison of the spectroscopic and physical characteristics of metabolite **50** with those reported in the literature led to its identification as 24-methyl-cholesta-5,24(28)-dien-3- β -ol, previously isolated from the sponge *Haliclona simulans* (Viegelmann et al., 2014). The ¹H NMR data of metabolite **50** are reported in Table 184.

Table 184. ¹H NMR data of metabolite **50** in CDCl₃ (δ in ppm, J in Hz).

Position	$\delta_{ m H,exp}$	δ H,lit
3	3.50 (m)	3.52 (td, 11.0, 5.3)
6	5.32 (m)	5.34 (d, 5.7)
7	1.97 (m)	1.95 (m)
18	0.65 (s)	0.67 (s)
19	0.97 (s)	0.99 (s)
21	0.92 (d, 6.5)	0.93 (d, 6.7)
26	0.99 (d, 6.8)	1.02 (d, 2.3)
27	1.00 (d, 6.8)	1.02 (d, 2.3)
28	4.69 (brs), 4.63 (brs)	4.70 (s), 4.64 (s)

3.3.18 Metabolite 51

Metabolite **51** (SP04) was isolated after a series of chromatographic separations as a colorless oil (11.9 mg).

The mass spectrum of metabolite **51** (Figure 196) exhibited a molecular ion peak $[M]^+$ at m/z 414.

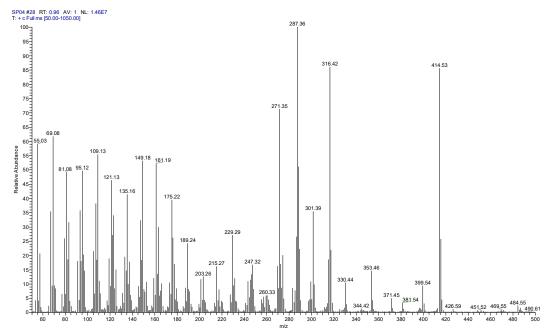


Figure 196. Mass spectrum (EIMS) of metabolite 51.

In the ¹H NMR spectrum of metabolite **51** (Figure 197) obvious were:

- Two aliphatic methyls on non-protonated carbons at δ 0.67 and 1.03,
- Three aliphatic methyls on tertiary carbons at δ 0.93, 1.01 and 1.03,
- Two oxygenated methines at δ 3.53 and 3.83,
- Two broad singlets at δ 4.63 and 4.69 integrating for one proton each and attributed to the protons of an exomethylene group, and
- One olefinic methine at δ 5.27.

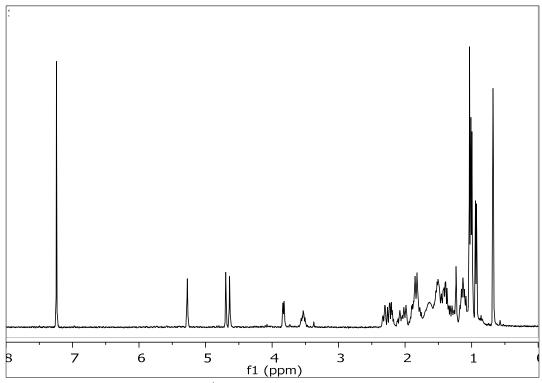


Figure 197. ¹H NMR spectrum of metabolite 51.

Analysis of the NMR and MS data of 51 led to the molecular formula $C_{28}H_{46}O_2$. Taking into account the two carbon-carbon double bonds as two of the six degrees of unsaturation, the molecular structure of 51 was determined as tetracyclic.

Comparison of the spectroscopic and physical characteristics of metabolite **51** with those reported in the literature led to its identification as 24-methyl-cholesta-5,24(28)-dien-3 β ,7 β -diol, previously isolated from the sponge *Stelodoryx chlorophylla* (de Riccardis et al., 1993). The ¹H NMR data of metabolite **51** are reported in Table 185.

Table 185. ¹H NMR data of metabolite **51** in CDCl₃ (δ in ppm, J in Hz).

Position	δ H,exp	δ H,lit
3	3.53 (m)	3.56 (m)
6	5.27 (t, 1.8)	5.30 (t, 1.5)
7	3.83 (m)	3.86 (td, 7.8)
18	0.67 (s)	0.70 (s)
19	1.03 (s)	1.06 (s)
21	0.93 (d, 6.6)	0.96 (d, 7.0)
26	1.01 (d, 6.8)	1.04 (d, 6.8)
27	1.03 (d, 6.8)	1.06 (d, 6.8)
28	4.69 (brs), 4.63 (brs)	4.71 (brs), 4.66 (brs)

3.3.19 Metabolite 52

Metabolite **52** (SP03) was isolated after a series of chromatographic separations as a colorless oil (42.3 mg).

The mass spectrum of metabolite **52** (Figure 198) exhibited a molecular ion peak $[M]^+$ at m/z 414.

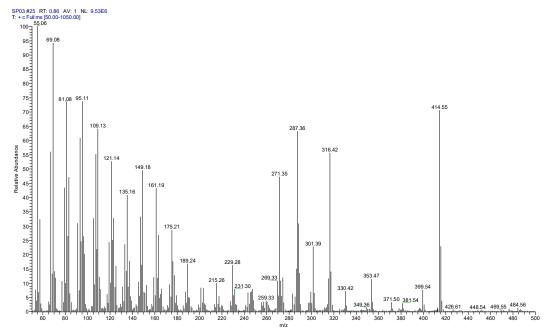


Figure 198. Mass spectrum (EIMS) of metabolite 52.

In the ¹H NMR spectrum of metabolite **52** (Figure 199) obvious were:

- One aliphatic methyl on a non-protonated carbon at δ 0.71,
- Three aliphatic methyls on tertiary carbons at δ 0.92, 0.99 and 1.01,
- Two doublets at δ 3.58 and 3.80 integrating for one proton each and attributed to the protons of a hydroxymethylene,
- One oxygenated methine at δ 3.57,
- Two broad singlets at δ 4.63 and 4.69 integrating for one proton each and attributed to the protons of an exomethylene group, and
- One olefinic methine at δ 5.73.

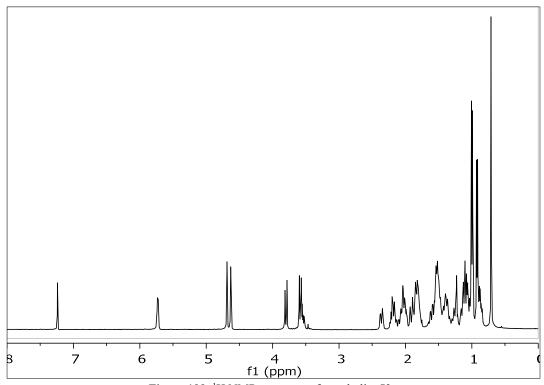


Figure 199. ¹H NMR spectrum of metabolite 52.

Analysis of the NMR and MS data of 52 led to the molecular formula $C_{28}H_{46}O_2$. Taking into account the two carbon-carbon double bonds as two of the six degrees of unsaturation, the molecular structure of 52 was determined as tetracyclic.

Comparison of the spectroscopic and physical characteristics of metabolite **52** with those reported in the literature led to its identification as 24-methyl-cholesta-5,24(28)-dien-3 β ,19-diol, previously isolated from the soft coral *L. viridis* (Iguchi et al., 1989). The ¹H NMR data of metabolite **52** are reported in Table 186.

Table 186. ¹H NMR data of metabolite **52** in CDCl₃ (δ in ppm, J in Hz).

Position	δ H,exp	$oldsymbol{\delta}_{ ext{H,lit}}$
3	3.57 (m)	3.59 (d, 11.2)
6	5.73 (m)	5.75 (brd, 4.0)
18	0.71 (s)	0.73 (s)
19	3.80 (d, 11.4), 3.58 (d, 11.4)	3.8 (d, 11.2), 3.56 (m)
21	0.92 (d, 6.5)	0.94 (d, 6.6)
26	1.01 (d, 6.8)	1.02 (d, 6.6)
27	0.99 (d, 6.8)	1.02 (d, 6.6)
28	4.69 (brs), 4.63 (brs)	4.70 (brs), 4.65 (brs)

3.3.20 Metabolite **53**

Metabolite **53** (SP29) was isolated after a series of chromatographic separations as a white amorphous solid (2.0 mg).

The high-resolution mass spectrum of the metabolite **53** (Figure 200) showed a pseudomolecular ion peak at m/z 411.3271 corresponding to [M-H]⁻ (calcd. for $C_{28}H_{43}O_2$, 411.3269).

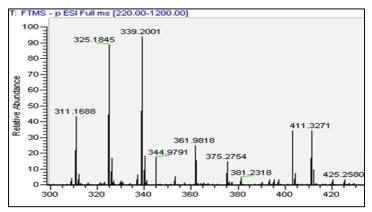


Figure 200. Mass spectrum (HR-ESIMS) of metabolite 53.

In the ¹H NMR spectrum of metabolite **53** (Figure 201) obvious were:

- One aliphatic methyl on a non-protonated carbon at δ 0.75,
- Three aliphatic methyls on tertiary carbons at δ 1.03, 1.04 and 1.06,
- Two doublets at δ 3.59 and 3.81 integrating for one proton each and attributed to the protons of a hydroxymethylene,
- One oxygenated methine at δ 3.56,
- Two broad singlets at δ 4.79 and 4.83 integrating for one proton each and attributed to the protons of an exomethylene group,
- Three olefinic methines at δ 5.56, 5.73 and 5.92.

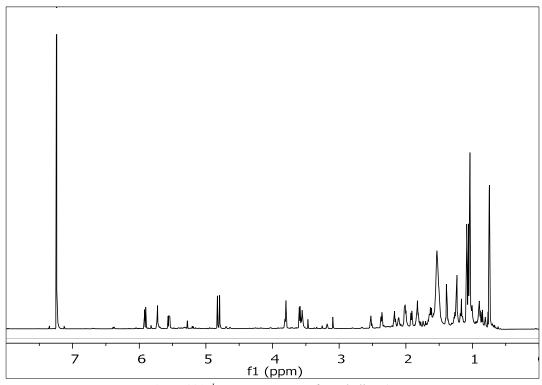


Figure 201. ¹H NMR spectrum of metabolite 53.

Analysis of the NMR and MS data of 53 led to the molecular formula $C_{28}H_{44}O_2$. Taking into account the three carbon-carbon double bonds as three of the seven degrees of unsaturation, the molecular structure of 53 was determined as tetracyclic.

The spectroscopic data of **53** closely resembled those of the co-occurring **52**, with the main difference being the presence of an additional 1,2-disubstituted double bond in the side chain of **53**. The planar structure of metabolite **53** was determined on the basis of the homonuclear and heteronuclear correlations (Figure 202) observed in the HSQC-DEPT (Figure 203), HMBC (Figure 204) and COSY (Figure 205) spectra.

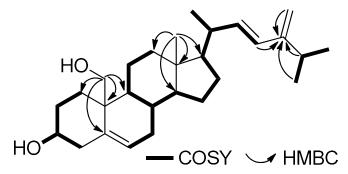
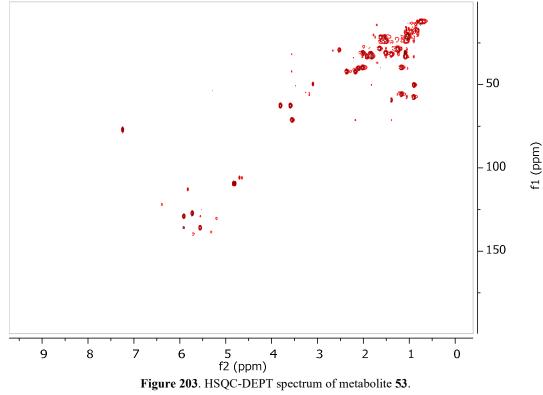



Figure 202. COSY and important HMBC correlations observed for metabolite 53.

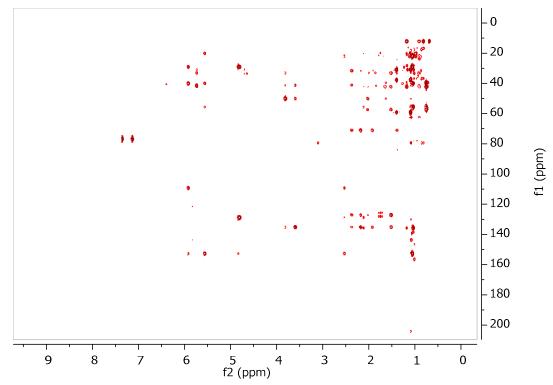


Figure 204. HMBC spectrum of metabolite 53.

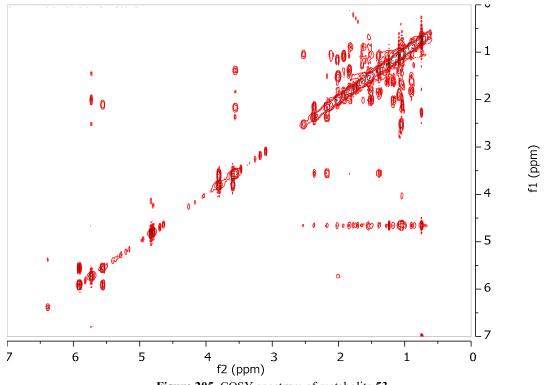
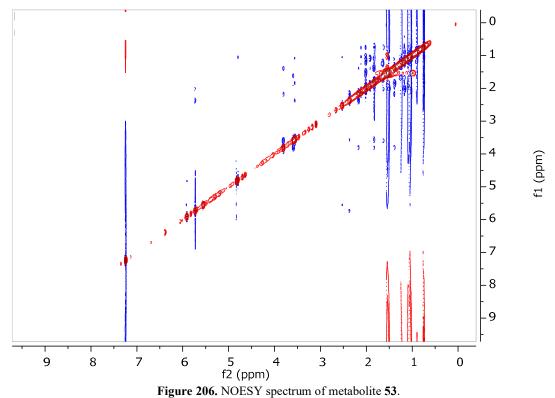



Figure 205. COSY spectrum of metabolite 53.

The relative configuration of the asymmetric centers of metabolite **53** was determined on the basis of the correlations observed in the NOESY spectrum (Figure 206), in accordance to that of metabolite **52**. The E geometry of the Δ^{22} double bond was assigned on the basis of the measured coupling constant between H-22 with H-23 (J = 15.7 Hz).

Comparison of the spectroscopic and physical characteristics of metabolite 53 with those reported in the literature led to its identification as a new natural product, which was designated as (22E)-24-methyl-cholesta-5,22,24(28)-trien-3 β ,19-diol. The NMR data of metabolite 53 are reported in Table 187.

Table 187. ¹H and ¹³C NMR data of metabolite **53** in CDCl₃ (δ in ppm, J in Hz).

Position	δ_C	δ_H
1	32.9	1.91 (m), 1.08 (m)
2	31.7	1.84 (m), 1.40 (m)
3	70.8	3.56 (m)
4	41.9	2.37 (m), 2.18 (m)
5	134.9	-
6	126.8	5.73 (m)
7	30.8	2.01 (m), 1.51 (m)
8	33.4	1.82 (m)
9	49.9	0.89 (m)
10	41.0	-
11	21.4	1.62 (m), 1.53 (m)
12	39.6	2.01 (m), 1.17 (m)
13	42.3	-
14	57.5	0.90 (m)
15	24.1	1.50 (m), 1.05 (m)
16	28.1	1.64 (m), 1.26 (m)
17	55.4	1.18 (m)
18	12.0	0.75 (s)
19	62.3	3.81 (d, 11.5), 3.59 (d, 11.5)
20	39.9	2.11 (m)
21	20.2	1.03 (d, 6.5)
22	135.4	5.56 (dd, 15.7, 8.7)
23	128.8	5.92 (d, 15.7)
24	153.0	-
25	28.8	2.53 (septet, 6.8)
26	21.7	1.06 (d, 6.8)
27	22.1	1.04 (d, 6.8)
28	109.0	4.83 (brs), 4.79 (brs)

3.3.21 Metabolite 54

Metabolite **54** (SP19) was isolated after a series of chromatographic separations as a colorless oil (2.3 mg).

The mass spectrum of metabolite **54** (Figure 207) exhibited a fragment ion peak at m/z 412 corresponding to $[M-H₂O]^+$.

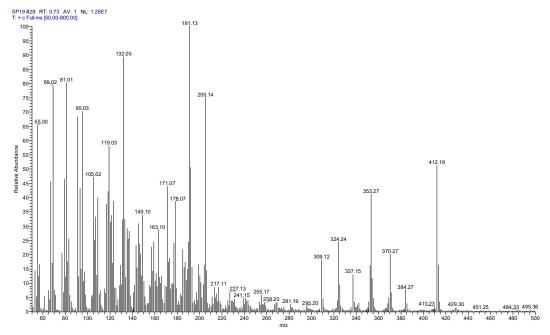


Figure 207. Mass spectrum (EIMS) of metabolite 54.

In the ¹H NMR spectrum of metabolite **54** (Figure 208) obvious were:

- One aliphatic methyl on a non-protonated carbon at δ 0.73,
- Three aliphatic methyls on tertiary carbons at δ 0.93, 0.99 and 1.01,
- Two doublets at δ 3.61 and 3.81 integrating for one proton each and attributed to the protons of a hydroxymethylene,
- Two oxygenated methines at δ 3.56 and 3.84,
- Two broad singlets at δ 4.63 and 4.69 integrating for one proton each and attributed to the protons of an exomethylene group, and
- One olefinic methine at δ 5.64.

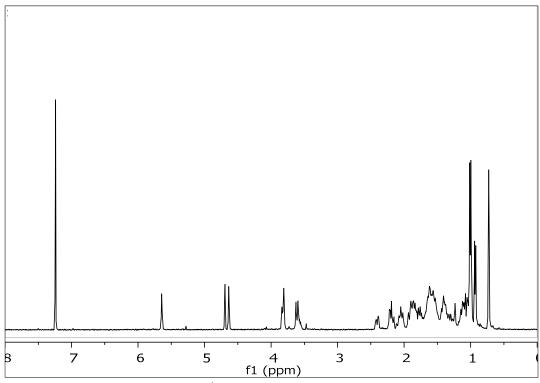


Figure 208. ¹H NMR spectrum of metabolite 54.

Analysis of the NMR and MS data of 54 led to the molecular formula $C_{28}H_{46}O_3$. Taking into account the two carbon-carbon double bonds as two of the six degrees of unsaturation, the molecular structure of 54 was determined as tetracyclic.

Comparison of the spectroscopic and physical characteristics of metabolite **54** with those reported in the literature led to its identification as 24-methyl-cholesta-5,24(28)-dien-3 β ,7 β ,19-triol, previously isolated from the soft coral *Nephthea erecta* (Cheng et al., 2007). The ¹H NMR data of metabolite **54** are reported in Table 188.

Table 188. ¹H NMR data of metabolite **54** in CDCl₃ and CD₃OD (δ in ppm, J in Hz).

Position	δ _{H,exp} (in CDCl ₃)	δ _{H,lit} (in CD ₃ OD)
3	3.56 (m)	3.53 (m)
6	5.64 (s)	5.79 (d, 4.5)
7	3.84 (m)	3.79 (t, 4.5)
18	0.73 (s)	0.77 (s)
19	3.81 (d, 11.5), 3.61 (d, 11.5)	3.87 (d, 11.5), 3.58 (d, 11.5)
21	0.93 (d, 6.5)	0.98 (d, 6.5)
26	1.01 (d, 6.8)	1.02 (d, 6.5)
27	0.99 (d, 6.8)	1.03 (d, 6.5)
28	4.69 (brs), 4.63 (brs)	4.69 (s), 4.65 (s)

3.3.22 Metabolite **55**

Metabolite **55** (SP01) was isolated after a series of chromatographic separations as a colorless oil (155.4 mg).

The mass spectrum of metabolite **55** (Figure 209) exhibited a fragment ion peak at m/z 412 corresponding to [M-AcOH]⁺.

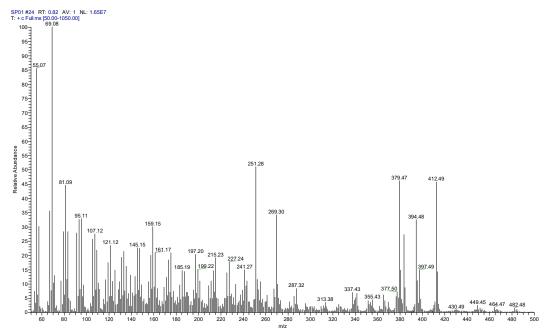


Figure 209. Mass spectrum (EIMS) of metabolite 55.

In the ¹H NMR spectrum of metabolite **55** (Figure 210) obvious were:

- One aliphatic methyl on a non-protonated carbon at δ 0.73,
- Three aliphatic methyls on tertiary carbons at δ 0.93, 0.99 and 1.00,
- One methyl of an acetoxy group at δ 2.01,
- Two doublets at δ 3.64 and 3.86 integrating for one proton each and attributed to the protons of a hydroxymethylene,
- Two oxygenated methines at δ 3.57 and 4.95,
- Two broad singlets at δ 4.63 and 4.69 integrating for one proton each and attributed to the protons of an exomethylene group, and
- One olefinic methine at δ 5.56.

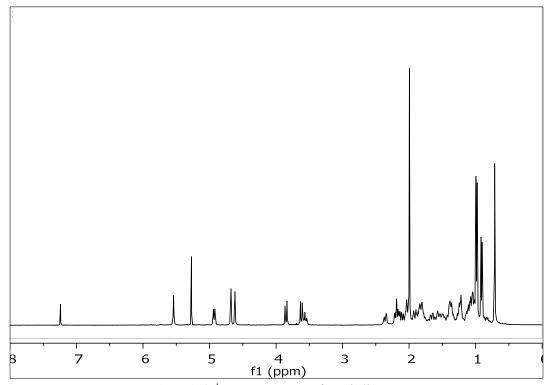


Figure 210. ¹H NMR spectrum of metabolite 55.

Analysis of the NMR and MS data of 55 led to the molecular formula $C_{30}H_{48}O_4$. Taking into account the two carbon-carbon double bonds and the carbonyl moiety as three of the seven degrees of unsaturation, the molecular structure of 55 was determined as tetracyclic.

Comparison of the spectroscopic and physical characteristics of metabolite 55 with those reported in the literature led to its identification as 7β -acetoxy-24-methyl-cholesta-5,24(28)-dien-3 β ,19-diol, previously isolated from the soft coral *Litophyton arboretum* (Ellithey et al., 2013). The ¹H NMR data of metabolite 55 are reported in Table 189.

Table 189. ¹H NMR data of metabolite **55** in CDCl₃ (δ in ppm, J in Hz).

Position	δ H,exp	δ H,lit
3	3.57 (m)	3.59 (tt, 11.2, 4.7)
6	5.56 (s)	5.56 (t, 2)
7	4.95 (d, 8.6)	4.95 (d, 8.6)
18	0.73 (s)	0.73 (s)
19	3.86 (d, 11.5), 3.64 (d, 11.5)	3.86 (d, 11.5), 3.64 (d, 11.5)
21	0.93 (d, 6.5)	0.93 (d, 6.8)
26	1.00 (d, 6.8)	1.01 (d, 6.8)
27	0.99 (d, 6.8)	1.00 (d, 6.8)
28	4.69 (brs), 4.63 (brs)	4.70 (t, 1.3), 4.64 (dd, 1.3,
	7, 1100 (-11)	1.7)
OAc	2.01 (s)	2.01 (s)

3.3.23 Metabolite **56**

Metabolite **56** (SP06) was isolated after a series of chromatographic separations as a colorless oil (1.6 mg).

The mass spectrum of metabolite **56** (Figure 211) exhibited a molecular ion peak $[M]^+$ at m/z 460.

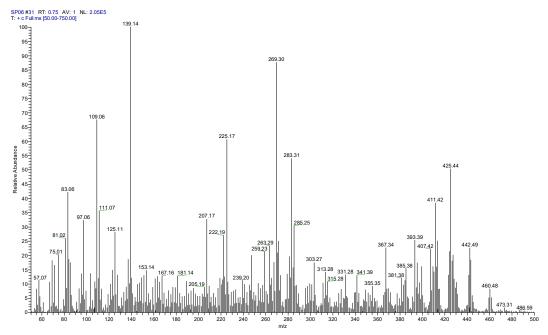


Figure 211. Mass spectrum (EIMS) of metabolite 56.

In the ¹H NMR spectrum of metabolite **56** (Figure 212) obvious were:

- One aliphatic methyl on a non-protonated carbon at δ 0.74,
- Three aliphatic methyls on tertiary carbons at δ 0.84, 0.84 and 0.89,
- One methyl of an acetoxy group at δ 2.01,
- Two doublets at δ 3.64 and 3.86 integrating for one proton each and attributed to the protons of a hydroxymethylene,
- Two oxygenated methines at δ 3.58 and 4.94, and
- One olefinic methine at δ 5.56.

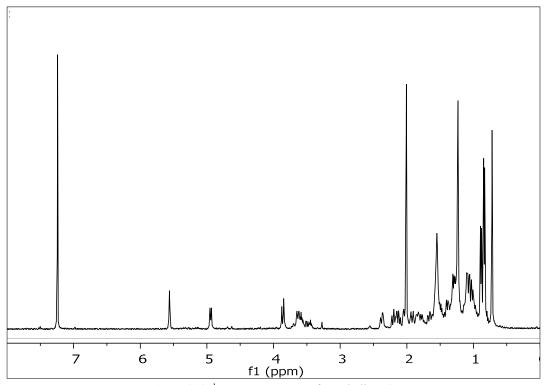


Figure 212. ¹H NMR spectrum of metabolite 56.

Analysis of the NMR and MS data of $\bf 56$ led to the molecular formula $C_{29}H_{48}O_4$. Taking into account the one carbon-carbon double bond and the carbonyl moiety as two of the six degrees of unsaturation, the molecular structure of $\bf 56$ was determined as tetracyclic.

Comparison of the spectroscopic and physical characteristics of metabolite **56** with those reported in the literature led to its identification as 7β -acetoxy-cholest-5-en- 3β ,19-diol, previously isolated from the soft coral *N. erecta* (Cheng et al., 2007). The 1 H NMR data of metabolite **56** are reported in Table 190.

Table 190. ¹H NMR data of metabolite **56** in CDCl₃ (δ in ppm, J in Hz).

Position	1 $\delta_{\text{H,exp}}$ $\delta_{\text{H,lit}}$		
1	1.06 (d, 4.1), 1.92 (m)	1.06 (m), 1.92 (m)	
2	1.84 (m), 1.38 (m)	1.84 (m), 1.38 (m)	
3	3.58 (m)	3.60 (m)	
4	2.38 (ddd, 13.4, 4.6, 2.1),	2.38 (m), 2.21 (m)	
	2.21 (m)		
6	5.56 (s)	5.58 (brs)	
7	4.94 (d, 8.6)	4.96 (brd, 8.6)	
8	2.15 (m)	2.14 (m)	
9	1.09 (m)	1.08 (m)	
11	1.67 (m), 1.58 (m)	1.66 (m), 1.58 (m)	
12	1.29 (m), 2.07 (m)	1.27 (m), 2.07 (m)	
14	1.02 (m)	1.02 (m)	
15	1.31 (m), 1.10 (m)	1.31 (m), 1.09 (m)	
16	1.41 (m), 1.26 (m)	1.40 (m), 1.26 (m)	
17	1.03 (m)	1.03 (m)	
18	0.74 (s)	0.72 (s)	
19	3.86 (d, 11.5), 3.64 (d, 11.5)	3.89 (d, 11.5), 3.66 (d, 11.5)	
20	1.34 (m)	1.34 (m)	
21	0.89 (d, 6.5)	0.91 (d, 6.4)	
22	1.03 (m)	1.03 (m)	
23	1.76 (m), 1.23 (m)	1.79 (m), 1.23 (m)	
24	1.14 (m)	1.13 (m)	
25	1.50 (m)	1.50 (m)	
26	0.84 (d, 6.6)	0.86 (d, 6.6)	
27	0.84 (d, 6.6)	0.86 (d, 6.6)	
OAc	2.01 (s)	2.01 (s)	

3.3.24 Metabolite **57**

Metabolite **57** (SP07) was isolated after a series of chromatographic separations as a colorless oil (6.9 mg).

The mass spectrum of metabolite **57** (Figure 213) exhibited a molecular ion peak $[M]^+$ at m/z 428.

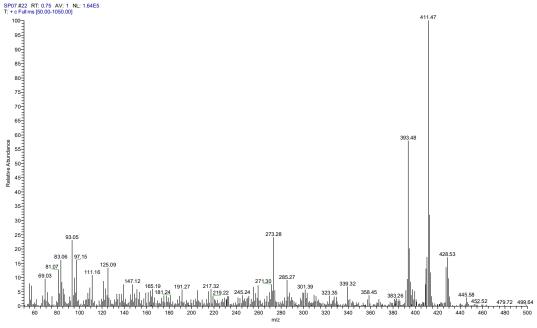


Figure 213. Mass spectrum (EIMS) of metabolite 57.

In the ¹H NMR spectrum of metabolite **57** (Figure 214) obvious were:

- One aliphatic methyl on a non-protonated carbon at δ 0.71,
- Three aliphatic methyls on tertiary carbons at δ 0.93, 1.00 and 1.00,
- Two doublets at δ 3.64 and 4.01 integrating for one proton each and attributed to the protons of a hydroxymethylene,
- One oxygenated methine at δ 3.70,
- Two broad singlets at δ 4.63 and 4.69 integrating for one proton each and attributed to the protons of an exomethylene group, and
- One olefinic methine at δ 5.90.

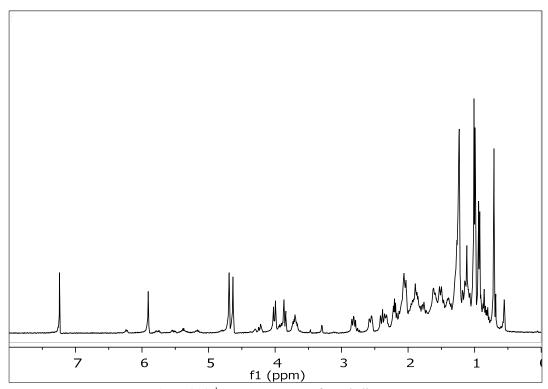


Figure 214. ¹H NMR spectrum of metabolite 57.

Analysis of the NMR and MS data of 57 led to the molecular formula $C_{28}H_{44}O_3$. Taking into account the two carbon-carbon double bonds and the carbonyl moiety as three of the seven degrees of unsaturation, the molecular structure of 57 was determined as tetracyclic.

Comparison of the spectroscopic and physical characteristics of metabolite 57 with those reported in the literature led to its identification as 7-oxo-24-methyl-cholesta-5,24(28)-diene-3 β ,19-diol, previously isolated from the soft coral *N. erecta* (Duh et al., 1998). The NMR data of metabolite 57 are reported in Table 191.

Table 191. ¹H and ¹³C NMR data of metabolite **57** in CDCl₃ and CD₃OD (δ in ppm, J in Hz)

Position	δc,exp	$\delta_{ m H,exp}$	δ C,lit	δH,lit
	(in CDCl ₃)	(in CDCl ₃)	(in CDCl ₃)	(in CD ₃ OD)
1	33.1		33.1	
2	31.6		31.6	
3	70.4	3.70 (m)	70.4	3.73 (m)
4	42.1		42.1	
5	160.0		160.0	
6	129.5	5.90 (s)	129.6	5.93 (s)
7	202.7	-	202.6	-
8	46.9		49.6	
9	50.3		50.3	
10	43.2	-	43.2	-
11	21.9		21.9	
12	39.2		39.2	
13	43.5	-	43.5	-
14	51.3		51.3	
15	26.2		26.1	
16	28.6		28.6	
17	54.7		54.7	
18	12.3	0.71 (s)	12.3	0.73 (s)
19	63.8	4.01 (d, 11.4), 3.64 (d, 11.4)	63.8	4.03 (d, 11.7), 4.03 (d, 11.7)
20	35.7		35.7	
21	18.9	0.93 (d, 6.4)	18.9	0.95 (d, 6.6)
22	34.7		34.7	
23	31.0		31.0	
24	156.8		156.8	
25	33.8		33.8	
26	21.9	1.00 (d, 6.8)	21.9	1.02 (d, 6.6)
27	22.0	1.00 (d, 6.8)	22.0	1.03 (d, 6.9)
28	106.0	4.69 (brs), 4.63 (brs)	106.0	4.71 (brs), 4.66 (brs)

3.3.25 Metabolite **58**

Metabolite **58** (SP17) was isolated after a series of chromatographic separations as a colorless oil (6.1 mg).

The mass spectrum of metabolite **58** (Figure 215) exhibited fragment ion peaks at m/z 412 and 394 corresponding to $[M-H_2O]^+$ and $[M-2H_2O]^+$, respectively.

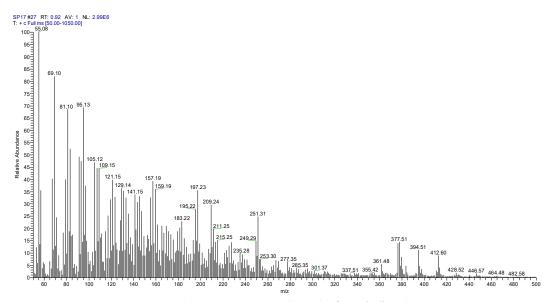


Figure 215. Mass spectrum (EIMS) of metabolite 58.

In the ¹H NMR spectrum of metabolite **58** (Figure 216) obvious were:

- Two aliphatic methyls on non-protonated carbons at δ 0.64 and 1.07,
- Three aliphatic methyls on tertiary carbons at δ 0.99, 1.04 and 1.05,
- Two oxygenated methines at δ 3.55 and 3.97,
- Two broad singlets at δ 4.66 and 4.72 integrating for one proton each and attributed to the protons of an exomethylene group, and
- One olefinic methine at δ 5.27.

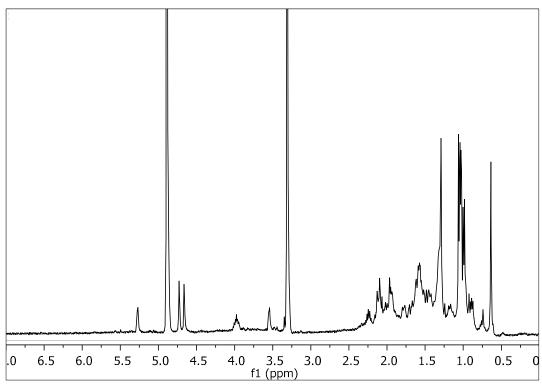


Figure 216. ¹H NMR spectrum of metabolite 58 in CD₃OD.

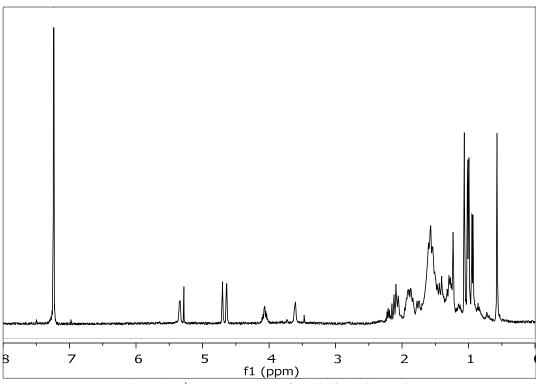


Figure 217. ¹H NMR spectrum of metabolite 58 in CDCl₃.

Analysis of the NMR and MS data of 58 led to the molecular formula $C_{28}H_{46}O_3$. Taking into account the two carbon-carbon double bonds as two of the six degrees of unsaturation, the molecular structure of 58 was determined as tetracyclic.

Comparison of the spectroscopic and physical characteristics of metabolite **58** with those reported in the literature led to its identification as 24-methyl-cholesta-7,24(28)-dien-3 β ,5 α ,6 β -triol, previously isolated from the marine scallop *Patinopecten yessoensis* (Iorizzi et al., 1988). The ¹H NMR data of metabolite **58** are reported in Table 192.

Table 192. ¹H NMR data of metabolite **58** in CD₃OD (δ in ppm, J in Hz)

Position	δ H,exp	δ H,lit
3	3.97 (m)	4.01 (m)
6	3.55 (d, 4.0)	3.57 (brd, 4.0)
7	5.27 (d, 4.8)	5.30 (m)
18	0.64 (s)	0.67 (s)
19	1.07 (s)	1.09 (s)
21	0.99 (d, 6.5)	1.02 (d, 6.8)
26	1.04 (d, 6.8)	1.06 (d, 6.8)
27	1.05 (d, 6.8)	1.07 (d, 6.8)
28	4.72 (brs), 4.66 (brs)	4.76 (brs), 4.68 (brs)

3.3.26 Metabolite 59

Metabolite **59** (SP08) was isolated after a series of chromatographic separations as a colorless oil (2.0 mg).

The mass spectrum of metabolite **59** (Figure 218) exhibited fragment ion peaks at m/z 412 and 394 corresponding to $[M-H_2O]^+$ and $[M-2H_2O]^+$, respectively.

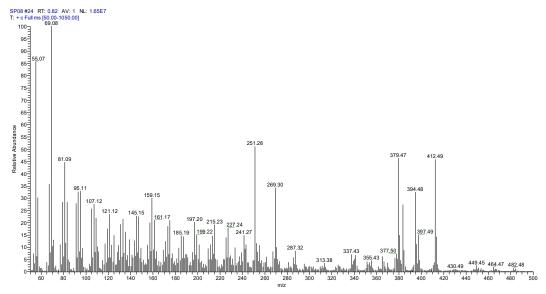


Figure 218. Mass spectrum (EIMS) of metabolite 59.

In the ¹H NMR spectrum of metabolite **59** (Figure 219) obvious were:

- Two aliphatic methyls on non-protonated carbons at δ 0.65 and 1.06,
- Four aliphatic methyls on tertiary carbons at δ 0.84, 0.87, 0.95 and 1.01,
- Two oxygenated methines at δ 3.55 and 4.06,
- One multiplet at δ 5.25-5.30 integrating for three protons and attributed to three olefinic methines.

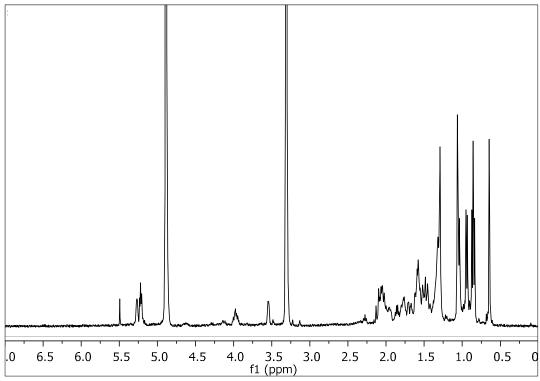


Figure 219. ¹H NMR spectrum of metabolite 59 in CD₃OD.

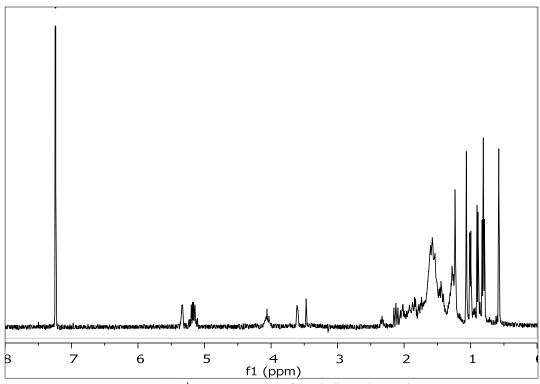


Figure 220. ¹H NMR spectrum of metabolite 59 in CDCl₃.

Analysis of the NMR and MS data of **59** led to the molecular formula $C_{28}H_{46}O_3$. Taking into account the two carbon-carbon double bonds as two of the six degrees of unsaturation, the molecular structure of **59** was determined as tetracyclic.

Comparison of the spectroscopic and physical characteristics of metabolite **59** with those reported in the literature led to its identification as (22E,24R)-24-methylcholesta-7,22-dien-3 β ,5 α ,6 β -triol, previously isolated from the marine scallop *P. yessoensis* (Iorizzi et al., 1988). The ¹H NMR data of metabolite **59** are reported in Table 193.

Table 193. ¹H NMR data of metabolite **59** in CD₃OD (δ in ppm, J in Hz).

Position	δ H,exp	δ H,lit
3	4.06 (m)	4.01 (m)
6	3.55 (d, 4.1)	3.57 (brd, 4.0)
7	5.25-5.30 (m)	5.30 (m)
18	0.65 (s)	0.68 (s)
19	1.06 (s)	1.09 (s)
21	1.01 (d, 6.7)	1.07 (d, 7.0)
22	5.25-5.30 (m)	5.23 (m)
23	5.25-5.30 (m)	5.23 (m)
26	0.84 (d, 6.5)	0.86 (d, 7.0)
27	0.87 (d, 6.5)	0.90 (d, 6.5)
28	0.95 (d, 6.8)	0.96 (d, 7.0)

3.4 Evaluation of the biological activity of isolated compounds

Compounds 36–40, 42–45, 47–53 and 55–59, which were isolated in sufficient amounts, were evaluated *in vitro* in human tumor and non-cancerous cell lines for a number of biological activities, including cytotoxicity, anti-inflammatory, anti-angiogenic, and neuroprotective activity, as well as for their effect on androgen receptor (AR)-regulated transcription.

Initially, the cytotoxic activity of metabolites 36–40, 42–45, 47–53 and 55–59 was evaluated in human cancer and normal cells after 72 h of treatment. Human cervical cancer (HeLa), human breast adenocarcinoma (MCF7) cell lines and human normal fibroblasts (BJ) were used for the screening. Among the tested compounds, 55 and 56 strongly reduced the viability of cancer cells in the low micromolar range (Table 194), compounds 42-45, 49-49, 51 and 57 showed moderate cytotoxic activity, while the remaining ten steroids were proven inactive. Most of the compounds with activity against cancer cells also showed cytotoxicity towards normal cells (BJ), except for compounds 44, 45, 47, 48 and 51. Compared to cisplatin, these compounds exhibit a wide therapeutic window because of the absence of cytotoxicity on normal human fibroblasts. Moreover, metabolite 55 was proven more active against the HeLa cell line than the reference standard cisplatin.

Table 194. Cytotoxicity (IC₅₀; µM) of compounds **36–40**, **42–45**, **47–53** and **55–59** against human cancer cell lines and fibroblasts after 72 h of treatment.

Cisplatin was used as a positive control.

Compound	HeLa	MCF7	BJ
36	>50	>50	>50
37	>50	>50	>50
38	>50	>50	>50
39	>50	>50	>50
40	>50	>50	>50
42	25.9 ± 4.9	36.4 ± 5.7	18.3 ± 4.0
43	32.9 ± 6.8	32.7 ± 1.3	4.1 ± 1.9
44	18.8 ± 6.4	21.7 ± 1.4	>50
45	15.7 ± 2.0	25.3 ± 6.5	>50
47	>50	29.1 ± 5.0	>50
48	19.0 ± 4.3	18.9 ± 0.1	>50
49	32.9 ± 5.2	33.8 ± 1.0	23.2 ± 1.4
50	>50	>50	>50
51	22.6 ± 0.4	28.6 ± 5.3	>50
52	>50	>50	>50
53	>50	>50	>50
55	7.5 ± 0.1	8.9 ± 0.0	14.8 ± 5.8
56	12.0 ± 1.7	11.2 ± 0.5	14.5 ± 3.9
57	21.4 ± 2.0	31.7 ± 0.3	45.9 ± 2.8
58	>50	>50	>50
59	>50	>50	>50
cisplatin	11.4 ± 3.8	7.7 ± 1.7	6.9 ± 0.9

Subsequently, we examined whether the isolated steroids could influence angiogenesis or inflammation *in vitro*. Compounds 36–40, 42–45, 47–53 and 55–59 and 2-methoxy-estradiol, which is known as an anti-angiogenic drug for the treatment of tumors and was used herein as positive control (Sattler et al., 2003) were tested in the migration scratch and the tube formation assays using human umbilical vein endothelial cells (HUVEC). Only non-cytotoxic concentrations in HUVECs were used for the scratch assay. Metabolites 44, 45, 55 and 56 partially inhibited HUVEC migration at 20 µM after 20 h of treatment (Figure 221), while in the tube formation assay, where HUVECs may form tube-like structures, no activity was observed for the tested compounds (data not shown). Thus, all tested steroids showed either little or no antiangiogenic activity.

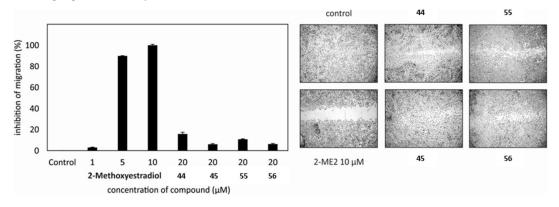


Figure 221. Compounds 44, 45, 55 and 56 inhibited migration of HUVECs after 20 h of treatment at 20 μ M.

2-Methoxy-estradiol was used as a positive control. The experiment was repeated three times in triplicates.

The anti-inflammatory properties of metabolites 36–40, 42–45, 47–53 and 55–59 were determined by measuring the levels of endothelial leukocyte adhesion molecule-1 (ELAM/E-selectin), which is a key molecular marker in the initiation of inflammation, expressed on the cell surface. Cell adhesion molecules (ICAM-1, VCAM-1, E-selectin) are significantly increased on the vascular endothelium activated by pro-inflammatory mediators (tumor necrosis factor α , TNF α) as a crucial step for the extravasation of leukocytes into inflamed tissue (Trepels et al., 2006). TNF α stimulates NFkB (nuclear factor kappa-light-chain-enhancer of activated B cells) and thus E-selectin (CD62E, ELAM). Endothelial cells were pre-treated for 30 min with the tested compounds and then activated with TNF α for 4 h. Curcumin, which inhibits activation of NF-kB and thus inhibits expression and activity of the COX-2 gene induced by TNF α (F. Zhang et al., 1999), was used as a positive control, decreasing ELAM production to 25% at 10 μ M. None of the tested compounds decreased the levels of ELAM (Figure 222).

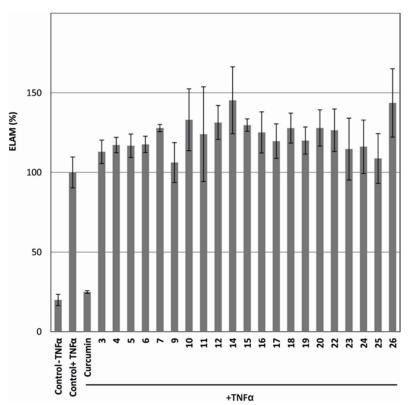
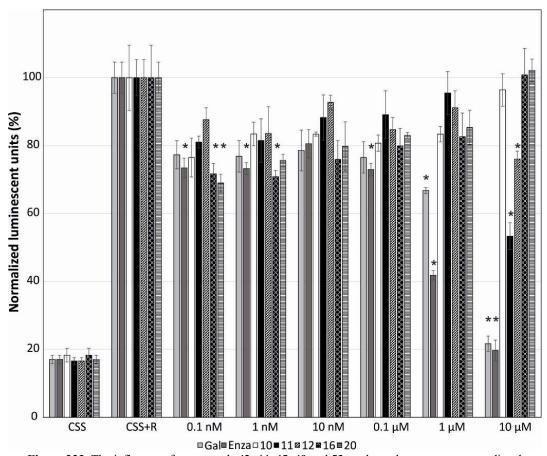



Figure 222. Compounds 36–40, 42–45, 47–53 and 55–59 did not affect the relative amount of E-selectin on the cell surface of endothelial cells.

Cells were pretreated with 10 μ M compounds for 30 min and subsequently stimulated with 10 μ m TNF α for 4 h. Data are means \pm SDs (n = 3).

It has been previously observed that several steroids with bulky or long side chains, such as galeterone derivatives or cholestanes, can also inhibit AR (Jorda et al., 2019; Rárová et al., 2018). Therefore, we further analyzed the influence of the isolated steroids on AR-mediated transcription. Compounds 36–40, 42–45, 47–53 and 55–59 in six different concentrations were evaluated on the reporter cell line 22Rv1-ARE14 for 24 h. Galeterone and enzalutamide, which were used as positive controls, showed a strong dose-dependent reduction of AR-regulated transcription (22 % and 20% inhibition at 10 μM, respectively). Compounds 44, 45, 49 and 53 showed clearly reduced luciferase activity in a dose-dependent manner, already at submicromolar concentrations (Figure 223). The strongest inhibition of AR was displayed by compound 44 at 10 μM. Surprisingly, steroids 43, 49 and 53 showed increased inhibition of AR (or decreased the luciferase activity) with decreasing concentrations. All other steroids tested inhibited AR by no more than 20% (data not shown).

Figure 223. The influence of compounds **43**, **44**, **45**, **49** and **53** on the androgen receptor-mediated transcription in the 22Rv1-ARE14 reporter cell line.

Control cells were grown in charcoal-stripped serum medium (CSS). Cells were stimulated with either 1 nM methyltrienolone R1881 (R) or with the tested compounds in six different concentrations for 24 h in CSS. The luciferase activity was measured in the cell lysate. Enzalutamide (Enza) and galeterone (Gal) were used as positive controls. The experiment was repeated three times in triplicates. Bars with asterisk (*) are significantly different from the control (CSS+R) based on Tukey's multiple comparison test ($P \le 0.05$).

Since anti-androgens have shown neuroprotective effects in the *in vivo* model of Huntington's disease (Guzman et al., 2014), selected compounds that showed cytotoxic activity and moderate activity in the migration scratch assay were tested for their cytotoxicity on differentiated human SH-SY5Y cells (neuron-like cells). Specifically, based on the combined results obtained for compounds 36–40, 42–45, 47–53 and 55–59 in the cytotoxicity assay, the anti-inflammatory activity assay, the migration scratch assay, and the tube formation assay in HUVECs, as well as in the reporter assay with AR, compounds 44 and 56 were selected as the two most active compounds that were subsequently evaluated for their neuroprotective activity. As shown in Figure 224 (A), compounds 44 and 56, as well as *N*-acetylcystein (NAC) that was used as a positive control, did not show cytotoxic, but rather stimulatory activity. In order to evaluate the potential neuroprotective effect of the compounds, neuroblastoma cell line SH-SY5Y was differentiated for 48 h and further exposed to 20 mM 3-nitropropionic acid (3-NPA) as an agent mimicking Huntington's disease *in vitro* (Colle et al., 2016). 3-NPA

was used alone or in co-treatment with the tested compounds at concentrations of 0.1-10 μM. As shown in Figure 224 (B), 3-NPA caused dramatic (approx. 70%) decrease in cell viability determined by the Calcein AM assay. The positive control (NAC) showed partial (cell viability 77.9 ± 8.99 % at 100 µM) or almost complete (cell viability $90.2 \pm$ 5.28 % at 1000 µM) protection of cells from the negative effect of 3-NPA. Compounds 44 and 56 showed significant protective effects at 10 μ M (cell viability 64.4 \pm 6.02% for 44 and $62.5 \pm 3.95\%$ for 56), comparable to 100 μ M of the positive control NAC. Being encouraged by the promising results, we further analysed the protective effects of 44 and 56 using an orthogonal method (propidium iodide (PI) assay) to verify their activity. In general, PI as a positively charged dye is associated with an increase of cell damage or death, since it penetrates cells with cell disrupted membranes (Dengler et al., 1995). Within the 3-NPA model, its toxic effect was considered as 100% of the PI signal and thus reduction of cell death was determined. As shown in Figure 224 (C), compounds 44 and 56 significantly reduced cell death (maximal effect at 10 µM) in a manner similar to NAC (100 μ M, 77.2 \pm 9.53%; 1000 μ M, 62.1 \pm 4.19%), thus confirming the protective effects of 44 and 56 observed in the viability assay.

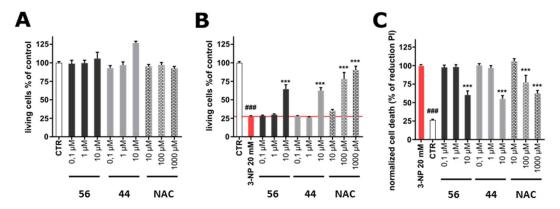


Figure 224. (A) Cytotoxicity of compounds 44 and 56 in human neuron-like SH-SY5Y cells after 48 h of treatment. (B) Neuroprotective activity of compounds 44 and 56 in the 3-nitropropionic acid (3-NPA)-induced model of Huntington's disease on human neuron-like SH-S. (C) Cell death of neuron-like SH-SY5Y induced by 3-NPA and the protective effect of compounds 44 and 56 after 48 h.

All results are presented as mean ± standard error of the mean (SEM) from at least three independent experiments in triplicates. *N*-acetylcysteine (NAC) was used as a positive control. *** *P* compared with vehicle with 20 mM 3-NPA, ### *P* compared with vehicle without 20 mM 3-NPA.

CONCLUSIONS

The aim of the present PhD thesis was the chemical investigation of marine organisms collected from the Red Sea towards the isolation of new secondary metabolites with bioactivity. After a preliminary screening of the chemical profiles of the organic extracts of a number of marine organisms from the Red Sea, the organic extracts of the red alga *Laurencia majuscula*, the marine sponge *Lamellodysidea* sp. and the soft coral *Sinularia polydactyla* were selected for in depth phytochemical study.

The organic extracts of these three marine organisms were subjected to a long series of chromatographic separations to allow for the isolation of 64 secondary metabolites, among which 59 (1–59) have been structurally characterized using extensive spectroscopic analyses and comparison with literature data, when available. In total, 18 new natural products have been isolated and characterized. In particular:

Twenty-two secondary metabolites (1-22) were isolated and identified on the basis of their spectroscopic characteristics from the red alga *L. majuscula* collected from Hurghada, Egypt. These included seven laurane sesquiterpenes (1-7), one cuparane sesquiterpene (8), one seco-laurane derivative (9), one snyderane derivative (10), two chamigranes (11 and 12) and two rearranged chamigranes (13 and 14), one aristolane sesquiterpene (15), one tricyclic diterpene (16), one five-membered C₁₅ acetogenin (17), four tricyclic C₁₅ acetogenins of the maneonene type (18-21) and a chlorinated fatty acid derivative (22). Compounds 2, 3, 5, 6, 9, 17 and 19-21 are new natural products.

From the marine sponge *Lamellodysidea* sp. collected from KAEC lagoon near Thuwal in Saudi Arabia, 11 sesquiterpenes (23-31), mostly containing furan or γ-lactone in their structures, were isolated, three of which are new natural products (25, 30 and 31) and one (33) is reported for the first time from a natural source.

Fixenty six steroids (34-59) have been isolated and structurally characterized from the soft coral *S. polydactyla* collected from Hurghada, Egypt, including 15 4α-methylated derivatives. Compounds 34, 35, 39, 41, 46 and 53 are new natural products. Among them, metabolites 34 and 35 feature the rare 4-methyl-8,9-seco-cholastane steroidal nucleus.

Evaluation of cytotoxic, anti-inflammatory, anti-angiogenic, and neuroprotective activity of metabolites 36–40, 42–45, 47–53 and 55–59 that were isolated in adequate quantities revealed significant cytotoxicity in the low micromolar range against the HeLa and MCF7 cancer cell lines for compounds 55 and 56, while compounds 44, 45,

55, and 56 inhibited the migration of endothelial cells at 20 μ M. Most of the compounds with activity against cancer cells also showed cytotoxicity toward normal cells (BJ), except for compounds 44, 45, 47, 48, and 51. Compared to cisplatin, these compounds have therefore a broad therapeutic window due to low or zero cytotoxicity on normal human fibroblasts. Moreover, metabolite 55 was more active against HeLa cells than cisplatin used as positive control. Furthermore, the effect of the isolated metabolites on AR-regulated transcription was evaluated in vitro in human tumor and non-cancerous cells, with compound 44 exhibiting the strongest inhibition of AR at 10 μ M. It is worthnoting that metabolites 43, 49, and 53 displayed increased inhibition of AR with decreasing concentrations. In addition, compounds 44 and 56 showed neuroprotective activity on neuron-like SH-SY5Y cells.

REFERENCES

- Abdel-Mageed, W. M., Ebel, R., Valeriote, F. A., & Jaspars, M. (2010). Laurefurenynes A-F, new cyclic ether acetogenins from a marine red alga, *Laurencia* sp. *Tetrahedron*, 66(15), 2855–2862. https://doi.org/10.1016/j.tet.2010.02.041
- Ahmed, A. F., Kuo, Y. H., Dai, C. F., & Sheu, J. H. (2005). Oxygenated terpenoids from a formosan soft coral *Sinularia gibberosa*. *Journal of Natural Products*, 68(8), 1208–1212. https://doi.org/10.1021/np050114u
- Ahmed, A. F., Tai, S. H., Wen, Z. H., Su, J. H., Wu, Y. C., Hu, W. P., & Sheu, J. H. (2008). A C-3 methylated isocembranoid and 10-oxocembranoids from a formosan soft coral, *Sinularia grandilobata*. *Journal of Natural Products*, 71(6), 946–951. https://doi.org/10.1021/np7007335
- Ahmed, A. F., Tai, S. H., Wu, Y. C., & Sheu, J. H. (2007). Sinugrandisterols A-D, trihydroxysteroids from the soft coral *Sinularia grandilobata*. *Steroids*, 72(4), 368–374. https://doi.org/10.1016/j.steroids.2007.01.001
- Ahmed, S., Ibrahim, A., & Arafa, A. S. (2013). Anti-H5N1 virus metabolites from the Red Sea soft coral, *Sinularia candidula*. *Tetrahedron Letters*, *54*(19), 2377–2381. https://doi.org/10.1016/j.tetlet.2013.02.088
- Alarif, W. M, Al-Lihaibi, S. S., Ayyad, S. E. N., Abdel-Rhaman, M. H., & Badria, F. A. (2012). Laurene-type sesquiterpenes from the Red Sea red alga *Laurencia obtusa* as potential antitumor-antimicrobial agents. *European Journal of Medicinal Chemistry*, 55, 462–466. https://doi.org/10.1016/j.ejmech.2012.06.060
- Alarif, W. M., Al-Lihaibi, S. S., Bawakid, N. O., Abdel-Lateff, A., & Al-malky, H. S. (2019). Rare acetogenins with anti-inflammatory effect from the red alga *Laurencia obtusa*. *Molecules*, 24(3). https://doi.org/10.3390/molecules24030476
- Amico, V., Caccamese, S., Neri, P., Russo, G., & Foti, M. (1991). Brasilane-type sesquiterpenoids from the mediterranean red alga *Laurencia obtusa*. *Phytochemistry*, 30(6), 1921–1927. https://doi.org/10.1016/0031-9422(91)85041-W
- Angawi, R. F., Alarif, W. M., Hamza, R. I., Badria, F. A., & Ayyad, S.-E. N. (2014). New cytotoxic laurene-, cuparene-, and laurokamurene-type sesquiterpenes from the red alga *Laurencia obtusa*. *Helvetica Chimica Acta*, *97*(10), 1388–1395. https://doi.org/10.1002/hlca.201300464
- Anjaneyulu, A. S. R., & Sagar, K. S. (1996). Flexibilolide and dihydroflexibilolide, the first trihydroxy-cembranolide lactones from the soft coral *Sinularia flexibilis* of the Indian Ocean. *Natural Product Letters*, *9*(2), 127–135. https://doi.org/10.1080/10575639608044936
- Arepalli, S. K., Sridhar, V., Rao, J. V., Kennady, P. K., & Venkateswarlu, Y. (2009). Furano-sesquiterpene from soft coral, *Sinularia kavarittiensis*: Induces apoptosis via the mitochondrial-mediated caspase-dependent pathway in THP-1, leukemia cell line. *Apoptosis*, 14(5), 729–740. https://doi.org/10.1007/s10495-009-0332-z
- Aydoğmuş, Z., Imre, S., Ersoy, L., & Wray, V. (2004). Halogenated secondary metabolites from *Laurencia obtusa*. *Natural Product Research*, 18(1), 43–49.

- https://doi.org/10.1080/1057563031000122086
- Ayyad, S. E. N., Al-Footy, K. O., Alarif, W. M., Sobahi, T. R., Bassaif, S. A., Makki, M. S., Asiri, A. M., Al Halawani, A. Y., Badria, A. F., & Badria, F. A. A. R. (2011). Bioactive C15 acetogenins from the red alga *Laurencia obtusa*. *Chemical and Pharmaceutical Bulletin*, 59(10), 1294–1298. https://doi.org/10.1248/cpb.59.1294
- Bartonkova, I., Novotna, A., & Dvorak, Z. (2015). Novel stably transfected human reporter cell line AIZ-AR as a tool for an assessment of human androgen receptor transcriptional activity. *PLoS ONE*, *10*(3). https://doi.org/10.1371/journal.pone.0121316
- Blunt, J. W., Copp, B. R., Keyzers, R. A., Munro, M. H. G., & Prinsep, M. R. (2015). Marine natural products. *Natural Product Reports*, 32(2), 116–211. https://doi.org/10.1039/c4np00144c
- Bortolotto, M., Braekman, J. C., Daloze, D., Tursch, B., & Karlsson, R. (1977). Chemical studies of marine invertebrates. XXIX (1) (1) For part XXVIII see J.C. Braekhan, D. Daloze, R. Schubert, M. Albericci, B. Tursch, Tetrahedron, in press. 4α-methyl-3β,8β-dihydroxy-5α-ergost-24(28)-en-23-one, a novel polyoxygenated sterol from the . *Steroids*, 30(2), 159–164. https://doi.org/10.1016/0039-128X(77)90077-0
- Bowden, B. F., Coll, J. C., Mitchell, S. J., & Kazlauskas, R. (1981). Studies of australian soft corals. XXIV Two cembranoid diterpenes from the soft coral *Sinularia facile*. *Australian Journal of Chemistry*, 34(7), 1551–1556. https://doi.org/10.1071/CH9811551
- Braekman, J. C., Daloze, D., Tursch, B., Hull, S. E., Declercq, J. P., Germain, G., & Van Meerssche, M. (1980). Chemical studies of marine invertebrates. XXXVIII. Δ9(15)-africanene, a new sesquiterpene hydrocarbon from *Sinularia polydactyla* (Coelenterata, Octocorallia, Alcyonaceae). *Experientia*, 36(8), 893. https://doi.org/10.1007/BF01953776
- Brennan, M. R., Kim, I. K., & Erickson, K. L. (1993). Kahukuenes, new diterpenoids from the marine alga *Laurencia majuscula*. *Journal of Natural Products*, *56*(1), 76–84. https://doi.org/10.1021/np50091a011
- Brouwer, N., Liu, Q., Harrington, D., Kohen, J., Vemulpad, S., Jamie, J., Randall, M., & Randall, D. (2005). An ethnopharmacological study of medicinal plants in New South Wales. *Molecules*, 10(10), 1252–1262. https://doi.org/10.3390/10101252
- Carroll, A. R., Buchanan, M. S., Edser, A., Hyde, E., Simpson, M., & Quinn, R. J. (2004). Dysinosins B-D, inhibitors of factor VIIa and thrombin from the Australian sponge *Lamellodysidea chlorea*. *Journal of Natural Products*, 67(8), 1291–1294. https://doi.org/10.1021/np049968p
- Carté, B., Kernan, M. R., Barrabee, E. B., Faulkner, D. J., Matsumoto, G. K., & Clardy, J. (1986). Metabolites of the nudibranch chromodoris funerea and the singlet oxygen oxidation products of furodysin and furodysinin. *Journal of Organic Chemistry*, 51(18), 3528–3532. https://doi.org/10.1021/jo00368a025
- Cassano, V., De Paula, J., Fujii, M., Da Gama, B., & Teixeira, V. (2008). Sesquiterpenes from the introduced red seaweed *Laurencia caduciramulosa*

- (Rhodomelaceae, Ceramiales). *Biochemical Systematics and Ecology*, *36*, 223–226. https://doi.org/10.1016/j.bse.2007.07.005
- Chao, C. H., Wu, C. Y., Huang, C. Y., Wang, H. C., Dai, C. F., Wu, Y. C., & Sheu, J. H. (2016). Cubitanoids and cembranoids from the soft coral *Sinularia nanolobata*. *Marine Drugs*, *14*(8). https://doi.org/10.3390/md14080150
- Chen, J. Y., Huang, C. Y., Lin, Y. S., Hwang, T. L., Wang, W. L., Chiou, S. F., & Sheu, J. H. (2016). Halogenated sesquiterpenoids from the Red Alga *Laurencia tristicha* collected in Taiwan. *Journal of Natural Products*, 79(9), 2315–2323. https://doi.org/10.1021/acs.jnatprod.6b00452
- Chen, W., Li, Y., & Guo, Y. (2012). Terpenoids of *Sinularia* soft corals: chemistry and bioactivity. *Acta Pharmaceutica Sinica B*, 2(3), 227–237. https://doi.org/10.1016/j.apsb.2012.04.004
- Chen, W. T., Li, J., Wang, J. R., Li, X. W., & Guo, Y. W. (2015). Structural diversity of terpenoids in the soft coral *Sinularia flexibilis*, evidenced by a collection from the South China Sea. *RSC Advances*, 5(30), 23973–23980. https://doi.org/10.1039/c5ra01151e
- Cheng, S. Y., Dai, C. F., & Duh, C. Y. (2007). New 4-methylated and 19-oxygenated steroids from the formosan soft coral *Nephthea erecta*. *Steroids*, 72(8), 653–659. https://doi.org/10.1016/j.steroids.2007.05.001
- Cheng, S. Y., Huang, K. J., Wang, S. K., Wen, Z. H., Chen, P. W., & Duh, C. Y. (2010). Antiviral and anti-inflammatory metabolites from the soft coral *Sinularia capillosa*. *Journal of Natural Products*, 73(4), 771–775. https://doi.org/10.1021/np9008078
- Cheng, S. Y., Huang, Y. C., Wen, Z. H., Hsu, C. H., Wang, S. K., Dai, C. F., & Duh, C. Y. (2009). New 19-oxygenated and 4-methylated steroids from the Formosan soft coral *Nephthea chabroli*. *Steroids*, 74(6), 543–547. https://doi.org/10.1016/j.steroids.2009.02.004
- Cheung, Y. T., Lau, W. K. W., Yu, M. S., Lai, C. S. W., Yeung, S. C., So, K. F., & Chang, R. C. C. (2009). Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research. *NeuroToxicology*, 30(1), 127–135. https://doi.org/10.1016/j.neuro.2008.11.001
- Chu, M. J., Tang, X. L., Han, X., Li, T., Luo, X. C., Jiang, M. M., Van Ofwegen, L., Luo, L. Z., Zhang, G., Li, P. L., & Li, G. Q. (2018). Metabolites from the Paracel Islands soft coral *Sinularia cf. molesta*. *Marine Drugs*, *16*(12). https://doi.org/10.3390/md16120517
- Coll, J. C., Mitchell, S. J., & Stokie, G. J. (1977). Studies of Australian soft corals. v a novel furano-sesquiterpene acid from the soft coral *Sinularia gonatodes* (Kolonko). *Tetrahedron Letters*, *18*(18), 1539–1542. https://doi.org/10.1016/S0040-4039(01)93097-7
- Coll, J. C., & Wright, A. D. (1989). Tropical marine algae. IV: Novel metabolites from the red alga *Laurencia implicate* (rhodophyta, rhodophyceae, ceramiales, rhodomelaceae). *Australian Journal of Chemistry*, 42(10), 1685–1693. https://doi.org/10.1071/CH9891685
- Colle, D., Santos, D. B., Hartwig, J. M., Godoi, M., Engel, D. F., de Bem, A. F., Braga,

- A. L., & Farina, M. (2016). Succinobucol, a lipid-lowering drug, protects against 3-nitropropionic acid-induced mitochondrial dysfunction and oxidative stress in SH-SY5Y cells via upregulation of glutathione levels and glutamate cysteine ligase activity. *Molecular Neurobiology*, 53(2), 1280–1295. https://doi.org/10.1007/s12035-014-9086-x
- da Silva Machado, F. L., Pacienza-Lima, W., Rossi-Bergmann, B., De Souza Gestinari, L. M., Fujii, M. T., Campos De Paula, J., Costa, S. S., Lopes, N. P., Kaiser, C. R., & Soares, A. R. (2011). Antileishmanial sesquiterpenes from the Brazilian red alga *Laurencia dendroidea*. *Planta Medica*, 77(7), 733–735. https://doi.org/10.1055/s-0030-1250526
- da Silva Machado, F. L., Ventura, T. L. B., De Souza Gestinari, L. M., Cassano, V., Resende, J. A. L. C., Kaiser, C. R., Lasunskaia, E. B., Muzitano, M. F., & Soares, A. R. (2014). Sesquiterpenes from the Brazilian red alga *Laurencia dendroidea* J. Agardh. *Molecules*, 19(3), 3181–3192. https://doi.org/10.3390/molecules19033181
- Darley, M. (1982). Algal Biology: A Physiological Approach (Basic microbiology). In Wilkinson JF (ser ed) Basic microbiology (p. 168). Blackwell Science Inc.
- de Nys, R., König, G. M., Wright, A. D., & Sticher, O. (1993). Two metabolites from the red alga *Laurencia flexilis*. *Phytochemistry*, 34(3), 725–728. https://doi.org/10.1016/0031-9422(93)85347-T
- de Riccardis, F., Minale, L., Iorizzi, M., Debitus, C., & Lévi, C. (1993). Marine sterols. side-chain-oxygenated sterols, possibly of abiotic origin, from the new caledonian sponge *Stelodoryx chlorophylla*. *Journal of Natural Products*, *56*(2), 282–287. https://doi.org/10.1021/np50092a016
- Dengler, W. A., Schulte, J., Berger, D. P., Mertelsmann, R., & Fiebig, H. H. (1995). Development of a propidium iodide fluorescence assay for proliferation and cytotoxicity assays. *Anti-Cancer Drugs*, 6(4), 522–532. https://doi.org/10.1097/00001813-199508000-00005
- Duh, C. Y., Wang, S. K., Chu, M. J., & Sheu, J. H. (1998). Cytotoxic sterols from the soft coral *Nephthea erecta*. *Journal of Natural Products*, 61(8), 1022–1024. https://doi.org/10.1021/np9800497
- Dwane, S., Durack, E., & Kiely, P. A. (2013). Optimising parameters for the differentiation of SH-SY5Y cells to study cell adhesion and cell migration. *BMC Research Notes*, 6(1). https://doi.org/10.1186/1756-0500-6-366
- Dziwornu, G. A., Caira, M. R., De La Mare, J. A., Edkins, A. L., Bolton, J. J., Beukes, D. R., Sunassee, S. N., & Newman, D. J. (2017). Isolation, characterization and antiproliferative activity of new metabolites from the South African endemic red algal species *Laurencia alfredensis*. *Molecules*, 22(4). https://doi.org/10.3390/molecules22040513
- El-Demerdash, A., Atanasov, A. G., Horbanczuk, O. K., Tammam, M. A., Abdel-Mogib, M., Hooper, J. N. A., Sekeroglu, N., Al-Mourabit, A., & Kijjoa, A. (2019). Chemical diversity and biological activities of marine sponges of the genus *Suberea*: A systematic review. *Marine Drugs*, 17(2). https://doi.org/10.3390/md17020115
- El-Demerdash, A., Tammam, M. A., Atanasov, A. G., Hooper, J. N. A. A., Al-

- Mourabit, A., & Kijjoa, A. (2018). Chemistry and biological activities of the marine sponges of the genera *Mycale* (Arenochalina), *Biemna* and *Clathria*. *Marine Drugs*, 16(6). https://doi.org/10.3390/md16060214
- Ellithey, M. S., Lall, N., Hussein, A. A., & Meyer, D. (2013). Cytotoxic, cytostatic and HIV-1 PR inhibitory activities of the soft coral *Litophyton arboreum*. *Marine Drugs*, 11(12), 4917–4936. https://doi.org/10.3390/md11124917
- Esselin, H., Tomi, F., Bighelli, A., & Sutour, S. (2018). New metabolites isolated from a *laurencia obtusa* population collected in corsica. *Molecules*, 23(4). https://doi.org/10.3390/molecules23040720
- Fernández, J. J., Souto, M. L., Gil, L. V, & Norte, M. (2005). Isolation of naturally occurring dactylomelane metabolites as *Laurencia constituents*. *Tetrahedron*, 61(37), 8910–8915. https://doi.org/10.1016/j.tet.2005.07.024
- Ghandourah, M., Alarif, W., & Bawakid, N. (2019). New bioactive C ₁₅ acetogenins from the red alga *Laurencia obtusa*. *Pharmacognosy Magazine*, 15(61), 199. https://doi.org/10.4103/pm.pm 298 18
- Goud, T., Reddy, N., Krishnaiah, P., & Venkateswarlu, Y. (2002). Spathulenol: A rare sesquiterpene from soft coral *Sinularia kavarattiensis*. *Biochemical Systematics and Ecology*, 30, 493–495. https://doi.org/10.1016/S0305-1978(01)00094-1
- Grace, K. J. S., Zavortink, D., & Jacobs, R. S. (1994). Inactivation of bee venom phospholipase A2 by a sesquiterpene furanoic acid marine natural product. *Biochemical Pharmacology*, 47(8), 1427–1434. https://doi.org/10.1016/0006-2952(94)90343-3
- Grode, S. H., & Cardellina, J. H. (1984). Sesquiterpenes from the sponge *Dysidea etheria* and the nudibranch *Hypselodoris zebra*. *Journal of Natural Products*, 47(1), 76–83. https://doi.org/10.1021/np50031a009
- Guella, G., & Pietra, F. (1991). Rogiolenyne A, B, and C: The first branched marine C15 acetogenins. Isolation from the red seaweed *Laurencia microcladia* or the *sponge Spongia zimocca* of II Rogiolo. *Helvetica Chimica Acta*, 74(1), 47–54. https://doi.org/10.1002/hlca.19910740107
- Guella, G., Pietra, F., & Marchetti, F. (1997). Rogioldiol A, a new obtusane diterpene, and rogiolal, a degraded derivative, of the red seaweed *Laurencia microcladia* from II rogiolo along the coast of tuscany: A synergism in structural elucidation. *Helvetica Chimica Acta*, 80(3), 684–694. https://doi.org/10.1002/hlca.19970800306
- Guiry, M. D., & Guiry, G. M. (2015). *AlgaeBase*. World-wide electronic publication. National University of Ireland, Galway. https://www.algaebase.org
- Gutiérrez-Cepeda, A., Fernández, J. J., Norte, M., López-Rodríguez, M., Brito, I., Muller, C. D., & Souto, M. L. (2016). Additional insights into the obtusallene family: components of *Laurencia marilzae*. *Journal of Natural Products*, 79(4), 1184–1188. https://doi.org/10.1021/acs.jnatprod.5b01080
- Guzman, D., Bratoeff, E., Riveros, A., Brizuela, N., Mejia, G., Garcia, E., Olguin, H., & Cruz, E. (2014). Effect of two antiandrogens as protectors of prostate and brain in a huntington's animal model. *Anti-Cancer Agents in Medicinal Chemistry*, *14*(9), 1293–1301. https://doi.org/10.2174/1871520614666141010094847

- Hall, J. G., & Reiss, J. A. (1986). Elatenyne—a pyrano[3,2-b]pyranyl vinyl acetylene from the red alga *Laurencia elata*. *Australian Journal of Chemistry*, 39, 1401–1409. https://doi.org/10.1071/CH9861401
- Hammer, D. A. T., Ryan, P. D., Hammer, Ø., & Harper, D. A. T. (2001). Past: paleontological statistics software package for education and data analysis. *Palaeontologia Electronica*, 4(1), 178. http://palaeo-electronica.org/tp/palaeo-electronica.org/2001 1/past/issue1 01.htm.
- Hanif, N., Tanaka, J., Setiawan, A., Trianto, A., de Voogd, N., Murni, A., Tanaka, C., & Higa, T. (2007). Polybrominated diphenyl ethers from the indonesian sponge *Lamellodysidea herbacea*. *Journal of Natural Products*, 70, 432–435. https://doi.org/10.1021/np0605081
- Harizani, M., Ioannou, E., & Roussis, V. (2016). The *Laurencia* Paradox: an endless source of chemodiversity. *Progress in the Chemistry of Organic Natural Products*, 102, 91–252. https://doi.org/10.1007/978-3-319-33172-0 2
- Harper, J. T., & Garbary, D. J. (1997). Marine algae of northern senegal: The flora and its biogeography. *Botanica Marina*, 40(2), 129–138. https://doi.org/10.1515/botm.1997.40.1-6.129
- Hegazy, M.-E., Mohamed, T., Elshamy, A., Al-Hammady, M., Ohta, S., & Paré, P. (2016). Casbane diterpenes from Red Sea coral *Sinularia polydactyla*. *Molecules*, 21(3), 308. https://doi.org/10.3390/molecules21030308
- Howard, B. M., & Fenical, W. (1975). Structures and chemistry of two new halogen-containing chamigrene derivatives from *Laurencia*. *Tetrahedron Letters*, 16(21), 1687–1690. https://doi.org/10.1016/S0040-4039(00)72233-7
- Huang, Y. C., Wen, Z. H., Wang, S. K., Hsu, C. H., & Duh, C. Y. (2008). New anti-inflammatory 4-methylated steroids from the Formosan soft coral *Nephthea chabroli*. *Steroids*, 73(11), 1181–1186. https://doi.org/10.1016/j.steroids.2008.05.007
- Huong, N. T., Ngoc, N. T., Thanh, N. Van, Dang, N. H., Cuong, N. X., Nam, N. H., Thung, D. C., The, H. Van, Tuan, V. S., Kiem, P. Van, & Minh, C. Van. (2018). Eudesmane and aromadendrane sesquiterpenoids from the Vietnamese soft coral *Sinularia erecta*. *Natural Product Research*, 32(15), 1798–1802. https://doi.org/10.1080/14786419.2017.1402326
- Iguchi, K., Saitoh, S., & Yamada, Y. (1989). Novel 19-oxygenated sterols from the Okinawan soft coral *Litophyton viridis*. *Chemical & pharmaceutical bulletin*, 37(9), 2553–2554. https://doi.org/10.1248/cpb.37.2553
- Iliopoulou, D., Mihopoulos, N., Vagias, C., Papazafiri, P., & Roussis, V. (2003). Novel cytotoxic brominated diterpenes from the red alga *Laurencia obtusa*. *Journal of Organic Chemistry*, 68(20), 7667–7674. https://doi.org/10.1021/jo0342323
- Iorizzi, M., Minale, L., Riccio, R., Lee, J. S., & Yasumoto, T. (1988). Polar steroids from the marine scallop *Patinopecten yessoensis*. *Journal of Natural Products*, 51(6), 1098–1103. https://doi.org/10.1021/np50060a008
- Ji, N.-Y., Li, X.-M., Cui, C.-M., & Wang, B.-G. (2007a). Terpenes and Polybromoindoles from the Marine Red Alga *Laurencia decumbens* (Rhodomelaceae). *Helvetica Chimica Acta*, 90(9), 1731–1736.

- https://doi.org/10.1002/hlca.200790181
- Ji, N. Y., Li, X. M., Ding, L. P., & Wang, B. G. (2016). Halogenated eudesmane derivatives and other terpenes from the marine red alga *Laurencia pinnata* and their chemotaxonomic significance. *Biochemical Systematics and Ecology*, 64, 1– 5. https://doi.org/10.1016/j.bse.2015.11.010
- Ji, N. Y., Li, X. M., Li, K., & Wang, B. G. (2007b). Laurendecumallenes A-B and laurendecumenynes A-B, halogenated nonterpenoid C15-acetogenins from the marine red alga *Laurencia decumbens*. *Journal of Natural Products*, 70(9), 1499–1502. https://doi.org/10.1021/np0701172
- Ji, N. Y., Li, X. M., & Wang, B. G. (2008). Halogenated terpenes and a C(15)-acetogenin from the marine red alga *Laurencia saitoi*. *Molecules (Basel, Switzerland)*, 13(11), 2894–2899. https://doi.org/10.3390/molecules13112894
- Jorda, R., Řezníčková, E., Kiełczewska, U., Maj, J., Morzycki, J. W., Siergiejczyk, L., Bazgier, V., Berka, K., Rárová, L., & Wojtkielewicz, A. (2019). Synthesis of novel galeterone derivatives and evaluation of their in vitro activity against prostate cancer cell lines. *European Journal of Medicinal Chemistry*, 179, 483–492. https://doi.org/10.1016/j.ejmech.2019.06.040
- Kamada, T., & Vairappan, C. (2013). New Bioactive Secondary Metabolites from Bornean Red Alga, *Laurencia similis* (Ceramiales). *Natural Product Communications*, 8, 287–288. https://doi.org/10.1177/1934578X1300800302
- Kamel, H., & Slattery, M. (2005). Terpenoids of *Sinularia*.: Chemistry and Biomedical Applications. *Pharmaceutical Biology*, 43. https://doi.org/10.1080/13880200590928852
- Kapojos, M. M., Abdjul, D. B., Yamazaki, H., Kirikoshi, R., Takahashi, O., Rotinsulu, H., Wewengkang, D. S., Sumilat, D. A., Ukai, K., & Namikoshi, M. (2018).
 Protein tyrosine phosphatase 1B inhibitory polybromobiphenyl ethers and monocyclofarnesol-type sesquiterpenes from the Indonesian marine sponge Lamellodysidea cf. herbacea. Phytochemistry Letters, 24, 10–14. https://doi.org/10.1016/j.phytol.2017.11.016
- Kazlauskas, R., Murphy, P., & Wells, R. (1978). Two sesquiterpene furans with new carboxylic ring systems and related thiol acetates from a species of the sponge genus *Dysidea*. *Tetrahedron Letters*, 19(49), 4951–4954.
- Kennedy, D. J., Selby, I. A., Cowe, H. J., Cox, P. J., & Thomson, R. H. (1984). Bromoallenes from the alga *Laurencia microcladia. Journal of the Chemical Society, Chemical Communications*, 3, 153–155. https://doi.org/10.1039/C39840000153
- Kimura, J., Kamada, N., & Tsujimoto, Y. (1999). Fourteen chamigrane derivatives from a red alga, *Laurencia nidifica*. *Bulletin of the Chemical Society of Japan*, 72(2), 289–292. https://doi.org/10.1246/bcsj.72.289
- Kladi, M., Vagias, C., Papazafiri, P., Brogi, S., Tafi, A., & Roussis, V. (2009). Tetrahydrofuran acetogenins from *Laurencia glandulifera*. *Journal of Natural Products*, 72(2), 190–193. https://doi.org/10.1021/np800481w
- Kladi, M., Xenaki, H., Vagias, C., Papazafiri, P., & Roussis, V. (2006). New cytotoxic sesquiterpenes from the red algae *Laurencia obtusa* and Laurencia microcladia.

- Tetrahedron, 62(1), 182–189. https://doi.org/10.1016/j.tet.2005.09.113
- Kobayashi, M., Ishizaka, T., & Mitsuhashi, H. (1982). Marine Sterols X. minor constituents of the sterols of the soft coral *Sarcophyton glaucum*. *Steroids*, 40(2), 209–221. https://doi.org/10.1016/0039-128X(82)90034-4
- Kokke, W. C. M. C., Bohlin, L., Fenical, W., & Djerassi, C. (1982). Novel dinoflagellate 4α-methylated sterols from four caribbean gorgonians. *Phytochemistry*, 21(4), 881–887. https://doi.org/10.1016/0031-9422(82)80085-X
- Kokkotou, K., Ioannou, E., Nomikou, M., Pitterl, F., Vonaparti, A., Siapi, E., Zervou, M., & Roussis, V. (2014). An integrated approach using UHPLC-PDA-HRMS and 2D HSQC NMR for the metabolic profiling of the red alga *Laurencia*: Dereplication and tracing of natural products dedicated to the memory of Professor Constantinos Vagias. *Phytochemistry*, 108, 208–219. https://doi.org/10.1016/j.phytochem.2014.10.007
- Kong, D. X., Jiang, Y. Y., & Zhang, H. Y. (2010). Marine natural products as sources of novel scaffolds: Achievement and concern. *Drug Discovery Today*, 15(21–22), 884–886. https://doi.org/10.1016/j.drudis.2010.09.002
- Kuniyoshi, M., Marma, M. S., Higa, T., Bernardinelli, G., & Jefford, C. W. (2000). 3-bromobarekoxide, an unusual diterpene from *Laurencia luzonensis*. *Chemical Communications*, 13, 1155–1156. https://doi.org/10.1039/b002530p
- Lei, L. F., Chen, M. F., Wang, T., He, X. X., Liu, B. X., Deng, Y., Chen, X. J., Li, Y. T., Guan, S. Y., Yao, J. H., Li, W., Ye, W. C., Zhang, D. M., & Zhang, C. X. (2014). Novel cytotoxic nine-membered macrocyclic polysulfur cembranoid lactones from the soft coral *Sinularia* sp. *Tetrahedron*, 70(38), 6851–6858. https://doi.org/10.1016/j.tet.2014.07.042
- Lhullier, C., Falkenberg, M., Ioannou, E., Quesada, A., Papazafiri, P., Horta, P. A., Schenkel, E. P., Vagias, C., & Roussis, V. (2010). Cytotoxic halogenated metabolites from the Brazilian red alga *Laurencia catarinensis*. *Journal of Natural Products*, 73(1), 27–32. https://doi.org/10.1021/np900627r
- Li, C. S., Li, X. M., Cui, C. M., & Wang, B. G. (2010). Brominated metabolites from the marine red alga *Laurencia similis*. *Zeitschrift Fur Naturforschung Section B Journal of Chemical Sciences*, 65(1), 87–89. https://doi.org/10.1515/znb-2010-0115
- Li, M. C., Sun, W. S., Cheng, W., Liu, D., Liang, H., Zhang, Q. Y., & Lin, W. H. (2016). Four new minor brominated indole related alkaloids with antibacterial activities from *Laurencia similis*. *Bioorganic and Medicinal Chemistry Letters*, 26(15), 3590–3593. https://doi.org/10.1016/j.bmcl.2016.06.015
- Li, S. W., Chen, W. T., Yao, L. G., & Guo, Y. W. (2018). Two new cytotoxic steroids from the Chinese soft coral *Sinularia* sp. *Steroids*, *136*, 17–21. https://doi.org/10.1016/j.steroids.2018.05.009
- Li, X.-D., Ding, W., Miao, F.-P., & Ji, N.-Y. (2012a). Halogenated chamigrane sesquiterpenes from *Laurencia okamurae*. *Magnetic Resonance in Chemistry*, 50(2), 174–177. https://doi.org/10.1002/mrc.2870
- Li, X. D., Miao, F. P., Li, K., & Ji, N. Y. (2012c). Sesquiterpenes and acetogenins from the marine red alga *Laurencia okamurai*. *Fitoterapia*, 83(3), 518–522.

- https://doi.org/10.1016/j.fitote.2011.12.018
- Li, X. D., Miao, F. P., Yin, X. L., Liu, J. L., & Ji, N. Y. (2012b). Sesquiterpenes from the marine red alga *Laurencia composita*. *Fitoterapia*, 83(7), 1191–1195. https://doi.org/10.1016/j.fitote.2012.07.001
- Li, X. L., He, W. F., Li, J., Lan, L. F., Li, X. W., & Guo, Y. W. (2015). New laurane-type sesquiterpenoids from the Chinese red alga *Laurencia okamurai* Yamada. *Journal of Asian Natural Products Research*, 17(12), 1146–1152. https://doi.org/10.1080/10286020.2015.1102135
- Liang, Y., Li, X. M., Cui, C. M., Li, C. S., Sun, H., & Wang, B. G. (2012). Sesquiterpene and acetogenin derivatives from the marine red alga *Laurencia okamurai*. *Marine Drugs*, 10(12), 2817–2825. https://doi.org/10.3390/md10122817
- Lyakhova, E. G., Kalinovsky, A. I., Dmitrenok, A. S., Kolesnikova, S. A., Fedorov, S. N., Vaskovsky, V. E., & Stonik, V. A. (2006). Structures and absolute stereochemistry of nipponallene and neonipponallene, new brominated allenes from the red alga *Laurencia nipponica*. *Tetrahedron Letters*, 47(37), 6549–6552. https://doi.org/10.1016/j.tetlet.2006.07.015
- Lyakhova, E. G., Kalinovsky, A. I., Kolesnikova, S. A., Vaskovsky, V. E., & Stonik, V. A. (2004). Halogenated diterpenoids from the red alga *Laurencia nipponica*. *Phytochemistry*, 65(18), 2527–2532. https://doi.org/10.1016/j.phytochem.2004.07.005
- Makhanu, D.S., Yokoyama, M., Miono, T., Maesato, T., Maedomari, M., Wisespongpand, P., Kuniyoshi, M. (2006). New sesquiterpenes from the Okinawan red alga *Laurencia luzonensis*. *Bull Fac Sci Univ Ryukuyus*, *81*, 115.
- Majeed, A., Chaudhry, Z., & Muhammad, Z. (2012). Allelopathic assessment of fresh aqueous extracts of *Chenopodium Album* L. for growth and yield of wheat (*Triticum aestivum* L.). *Pakistan Journal of Botany*, 44, 165–167.
- Manríquez, C. P., Souto, M. L., Gavín, J. A., Norte, M., & Fernández, J. J. (2001). Several new squalene-derived triterpenes from *Laurencia*. *Tetrahedron*, *57*(15), 3117–3123. https://doi.org/10.1016/S0040-4020(01)00169-7
- Mao, S.-C., & Guo, Y.-W. (2005). Cuparene-derived sesquiterpenes from the Chinese red alga *Laurencia okamurai* Yamada. *Helvetica Chimica Acta*, 88, 1034–1039. https://doi.org/10.1002/hlca.200590074
- MarinLit. A database of the marine natural products literature. Available online: http://pubs.rsc.org/marinlit/ (accessed on 30 September 2020).
- Masuda, M., Kawaguchi, S., & Abe, T. (2002). Additional analysis of chemical diversity of the red algal genus *Laurencia* (Rhodomelaceae) from Japan. *Phycological Research*, 50(2), 135–144. https://doi.org/10.1046/j.1440-1835.2002.00267.x
- McDermid, J. (1988). *Laurencia* (Rhodophyta, Rhodomelaceae). In I. A. Abbott, J. N. Norris, & L. A. Abbott (Eds.), *Taxonomy of economic seaweeds: with reference to some Pacific and Caribbean species*. California Sea Grant College Program, La Jolla, CA. https://escholarship.org/uc/item/6xm1n104
- Medina-Franco, J. L. (2019). New approaches for the discovery of pharmacologically-active natural compounds. *Biomolecules*, 9(3), 115.

- https://doi.org/10.3390/biom9030115
- Mehta, G., Venkateswarlu, Y., Rao, M. R., & Uma, R. (1999). A novel 4α-methyl sterol from the soft coral *Nephthea chabroli*. *Journal of Chemical Research Part S*, 10, 628–629. https://doi.org/10.1039/a904057i
- Mohammed, K. A., Hossain, C. F., Zhang, L., Bruick, R. K., Zhou, Y. D., & Nagle, D. G. (2004). Laurenditerpenol, A New diterpene from the tropical marine alga *Laurencia intricata* that potently inhibits HIF-1 mediated hypoxic signaling in breast tumor cells. *Journal of Natural Products*, 67(12), 2002–2007. https://doi.org/10.1021/np049753f
- Montaser, R., & Luesch, H. (2011). Marine natural products: A New wave of drugs? Future Medicinal Chemistry, 3(12), 1475–1489. https://doi.org/10.4155/fmc.11.118
- Morrogh-Bernard, H. C., Foitová, I., Yeen, Z., Wilkin, P., De Martin, R., Rárová, L., Doležal, K., Nurcahyo, W., & Olšanský, M. (2017). Self-medication by orangutans (*Pongo pygmaeus*) using bioactive properties of *Dracaena Cantleyi*. *Scientific Reports*, 7(1). https://doi.org/10.1038/s41598-017-16621-w
- Mudianta, W., Challinor, V., Winters, A., Cheney, K., Voss, J., & Garson, M. (2013). Synthesis and determination of the absolute configuration of (-)-(5*R*,6*Z*)-dendrolasin-5-acetate from the nudibranch *Hypselodoris jacksoni*. *Beilstein Journal of Organic Chemistry*, 9, 2925–2933. https://doi.org/10.3762/bjoc.9.329
- Nam, K., & Choi, H. (2000). A detailed morphological study of the type species of *Osmundea* (Rhodomelaceae, Rhodophyta). *Botanica Marina BOT MAR*, 43, 291–297. https://doi.org/10.1515/BOT.2000.031
- Newman, D. J., & Cragg, G. M. (2016). Natural products as sources of new drugs from 1981 to 2014. *Journal of Natural Products*, 79(3), 629–661. https://doi.org/10.1021/acs.jnatprod.5b01055
- Ngoc, N. T., Huong, P. T. M., Thanh, N. Van, Cuong, N. X., Nam, N. H., Thung, D. C., Kiem, P. Van, & Minh, C. Van. (2017). Sesquiterpene constituents from the soft coral *Sinularia nanolobata*. *Natural Product Research*, *31*(15), 1799–1804. https://doi.org/10.1080/14786419.2017.1292508
- Oguri, Y., Watanabe, M., Ishikawa, T., Kamada, T., Vairappan, C. S., Matsuura, H., Kaneko, K., Ishii, T., Suzuki, M., Yoshimura, E., Nogata, Y., & Okino, T. (2017). New marine antifouling compounds from the red alga *Laurencia* sp. *Marine Drugs*, *15*(9). https://doi.org/10.3390/md15090267
- Ojika, M., Islam, M. K., Shintani, T., Zhang, Y., Okamoto, T., & Sakagami, Y. (2003). Three new cytotoxic acylspermidines from the soft coral, *Sinularia* sp. *Bioscience, Biotechnology and Biochemistry*, 67(6), 1410–1412. https://doi.org/10.1271/bbb.67.1410
- Patridge, E., Gareiss, P., Kinch, M. S., & Hoyer, D. (2016). An analysis of FDA-approved drugs: Natural products and their derivatives. *Drug Discovery Today*, 21(2), 204–207. https://doi.org/10.1016/j.drudis.2015.01.009
- Perdikaris, S., Mangoni, A., Grauso, L., Papazafiri, P., Roussis, V., & Ioannou, E. (2019). Vagiallene, a rearranged C 15 acetogenin from *Laurencia obtusa*. *Organic Letters*, 21(9), 3183–3186. https://doi.org/10.1021/acs.orglett.9b00897

- Putra, M. Y., Bavestrello, G., Cerrano, C., Renga, B., D'Amore, C., Fiorucci, S., Fattorusso, E., & Taglialatela-Scafati, O. (2012). Polyhydroxylated sterols from the Indonesian soft coral *Sinularia* sp. and their effect on farnesoid X-activated receptor. *Steroids*, 77(5), 433–440. https://doi.org/10.1016/j.steroids.2011.12.026
- Qin, J., Su, H., Zhang, Y., Gao, J., Zhu, L., Wu, X., Pan, H., & Li, X. (2010). Highly brominated metabolites from marine red alga *Laurencia similis* inhibit protein tyrosine phosphatase 1B. *Bioorganic and Medicinal Chemistry Letters*, 20(23), 7152–7154. https://doi.org/10.1016/j.bmcl.2010.08.144
- Rahelivao, M. P., Gruner, M., Andriamanantoanina, H., Andriamihaja, B., Bauer, I., & Knölker, H. J. (2015). Red algae (Rhodophyta) from the coast of Madagascar: Preliminary bioactivity studies and isolation of natural products. *Marine Drugs*, 13(7), 4197–4216. https://doi.org/10.3390/md13074197
- Ramesh, P., & Venkateswarlu, Y. (1999). Novel steroid constituents of the soft coral *Sinularia dissecta*. *Steroids*, 64(11), 785–789. https://doi.org/10.1016/S0039-128X(99)00069-0
- Rárová, L., Sedlák, D., Oklestkova, J., Steigerová, J., Liebl, J., Zahler, S., Bartůněk, P., Kolář, Z., Kohout, L., Kvasnica, M., & Strnad, M. (2018). The novel brassinosteroid analog BR4848 inhibits angiogenesis in human endothelial cells and induces apoptosis in human cancer cells in vitro. *Journal of Steroid Biochemistry and Molecular Biology*, 178, 263–271. https://doi.org/10.1016/j.jsbmb.2018.01.005
- Rárová, L., Steigerová, J., Kvasnica, M., Bartůněk, P., Křížová, K., Chodounská, H., Kolář, Z., Sedlák, D., Oklestkova, J., & Strnad, M. (2016). Structure activity relationship studies on cytotoxicity and the effects on steroid receptors of ABfunctionalized cholestanes. *Journal of Steroid Biochemistry and Molecular Biology*, 159, 154–169. https://doi.org/10.1016/j.jsbmb.2016.03.017
- Reddy, B. S. G., Rao, V. D., Rao, B. C., Dhananjaya, N., Kuttan, R., & Babu, T. D. (1999). Isolation and structural determination of new sphingolipids and pharmacological activity of Africanene and other metabolites from *Sinularia leptoclados*. *Chemical and Pharmaceutical Bulletin*, 47(9), 1214–1220. https://doi.org/10.1248/cpb.47.1214
- Sattler, M., Quinnan, L. R., Pride, Y. B., Gramlich, J. L., Chu, S. C., Even, G. C., Kraeft, S. K., Chen, L. B., & Salgia, R. (2003). 2-Methoxyestradiol alters cell motility, migration, and adhesion. *Blood*, *102*(1), 289–296. https://doi.org/10.1182/blood-2002-03-0729
- Sauleau, P., & Bourguet-Kondracki, M.-L. L. (2005). Novel polyhydroxysterols from the Red Sea marine sponge *Lamellodysidea herbacea*. *Steroids*, 70(14), 954–959. https://doi.org/10.1016/j.steroids.2005.07.004
- Sauleau, P., Retailleau, P., Vacelet, J., & Bourguet-Kondracki, M.-L. (2005). New polychlorinated pyrrolidinones from the Red Sea marine sponge *Lamellodysidea herbacea*. *Tetrahedron*, *61*(4), 955–963. https://doi.org/https://doi.org/10.1016/j.tet.2004.11.011
- Serio, D., Cormaci, M., & Furnari, G. (1999). *Osmundea maggsiana* sp. nov. (Ceramiales, Rhodophyta) from the Mediterranean Sea. *Phycologia*, 38(4), 277–

- 282. https://doi.org/10.2216/i0031-8884-38-4-277.1
- Shen, S., Zhu, H., Chen, D., Liu, D., Ofwegen, L. Van, Proksch, P., & Lin, W. (2012). Pavidolides A-E, new cembranoids from the soft coral *Sinularia pavida*. *Tetrahedron Letters*, 53(43), 5759–5762. https://doi.org/10.1016/j.tetlet.2012.08.049
- Stone, W. L., Qui, M., & Smith, M. (2003). Lipopolysaccharide enhances the cytotoxicity of 2-chloroethyl ethyl sulfide. *BMC Cell Biology*, 4. https://doi.org/10.1186/1471-2121-4-1
- Su, H., Yuan, Z.-H., Li, J., Guo, S.-J., Deng, L.-P., Han, L.-J., Zhu, X.-B., & Shi, D.-Y. (2009a). Sesquiterpenes from the Marine Red Alga *Laurencia saitoi*. *Helvetica Chimica Acta*, 92(7), 1291–1297. https://doi.org/10.1002/hlca.200800437
- Su, H., Yuan, Z. H., Li, J., Guo, S. J., Deng, L. P., Han, L. J., Zhu, X. Bin, & Shi, D. Y. (2009b). Two new bromoindoles from red alga *Laurencia similis*. *Chinese Chemical Letters*, 20(4), 456–458. https://doi.org/10.1016/j.cclet.2008.12.016
- Su, J., Yang, R., Kuang, Y., & Zeng, L. (2000). A new cembranolide from the soft coral *Sinularia capillosa*. *Journal of Natural Products*, 63(11), 1543–1545. https://doi.org/10.1021/np0000264
- Sun, H., Liu, F., Feng, M. R., Peng, Q., Liao, X. J., Liu, T. T., Zhang, J., & Xu, S. H. (2016). Isolation of a new cytotoxic polyhydroxysterol from the South China Sea soft coral *Sinularia* sp. *Natural Product Research*, 30(24), 2819–2824. https://doi.org/10.1080/14786419.2016.1166495
- Sun, J., Shi, D., Ma, M., Li, S., Wang, S., Han, L., Yang, Y., Fan, X., Shi, J., & He, L. (2005). Sesquiterpenes from the red alga *Laurencia tristicha*. *Journal of Natural Products*, 68(6), 915–919. https://doi.org/10.1021/np050096g
- Sun, W.-S., Su, S., Zhu, R.-X., Tu, G.-Z., Cheng, W., Liang, H., Guo, X.-Y., Zhao, Y.-Y., & Zhang, Q.-Y. (2013). A pair of unprecedented spiro-trisindole enantiomers fused through a five-member ring from *Laurencia similis*. *Tetrahedron Letters*, *54*, 3617–3620. https://doi.org/10.1016/j.tetlet.2013.04.111
- Suzuki, M, Segawa, M., Kikuchi, H., Suzuki, T., & Kurosawa, E. (1985). (5S,7R,10R)-Selin-4(14)-en5α-ol, a sesquiterpene alcohol from the red alga *Laurencia nipponica*. *Phytochemistry*, 24(2011).
- Suzuki, M., & Kurosawa, E. (1979). Halogenated and Non-halogenated Aromatic Sesquiterpenes from the Red Algae *Laurencia okamurai* Yamada. *Bulletin of the Chemical Society of Japan*, 52(11), 3352–3354. https://doi.org/10.1246/bcsj.52.3352
- Takahashi, H., Takahashi, Y., Suzuki, M., Abe, T., & Masuda, M. (2010). Neoirietriol. *Acta Crystallographica Section E*, *E66*(o1795). https://doi.org/10.1107/S1600536810022336
- Takahashi, Y., Suzuki, M., Abe, T., & Masuda, M. (1999). Japonenynes, halogenated C15 acetogenins from *Laurencia japonensis*. *Phytochemistry*, *50*(5), 799–803. https://doi.org/10.1016/S0031-9422(98)00616-5
- Takeshita, H., Mori, A., & Nakamura, S. (1984). Synthetic Photochemistry. Xxviii. A Photochemical C5-Homologation Of 4-Isopropenyltoluene with methyl 2,4-dioxopentanoate to isolaurene and a formal synthesis of cuparene. *Bulletin of the*

- Chemical Society of Japan, 57(11), 3152–3155. https://doi.org/10.1246/bcsj.57.3152
- Takeshita, H., Shimooda, I., & Hatsui, T. (1980). Synthetic Photochemistry. XXL. The Sensitized Photooxygenation of Calarene. A facile hock cleavage of an allylhydroperoxide and structure revision for aristolenols. *Bulletin of the Chemical Society of Japan*, 53(12), 3721–3722. https://doi.org/10.1246/bcsj.53.3721
- Topcu, G., Aydogmus, Z., Imre, S., Gören, A. C., Pezzuto, J. M., Clement, J. A., & Kingston, D. G. I. (2003). Brominated sesquiterpenes from the red alga *Laurencia obtusa*. *Journal of Natural Products*, 66(11), 1505–1508. https://doi.org/10.1021/np030176p
- Torii, M., Kato, H., Hitora, Y., Angkouw, E. D., Mangindaan, R. E. P., De Voogd, N. J., & Tsukamoto, S. (2017). Lamellodysidines A and B, sesquiterpenes isolated from the marine sponge *Lamellodysidea herbacea*. *Journal of Natural Products*, 80(9), 2536–2541. https://doi.org/10.1021/acs.jnatprod.7b00610
- Tran, H. H. T., Nguyen Viet, P., Nguyen Van, T., Tran, H. T., Nguyen Xuan, C., Nguyen Hoai, N., Do Cong, T., Phan Van, K., & Chau Van, M. (2017). Cytotoxic steroid derivatives from the Vietnamese soft coral *Sinularia brassica*. *Journal of Asian Natural Products Research*, 19(12), 1183–1190. https://doi.org/10.1080/10286020.2017.1307192
- Trepels, T., Zeiher, A. M., & Fichtlscherer, S. (2006). The endothelium and inflammation. *Endothelium: Journal of Endothelial Cell Research*, 13(6), 423–429. https://doi.org/10.1080/10623320601061862
- Tsubuki, M., Honda, T., Okita, H., Kaneko, K., & Shigihara, A. (2009). Wittig rearrangement of 3-furylmethyl ethers: facile synthesis of 3-methyl-2-furylmethanols and 3-furylethanols. *Heterocycles*, 77. https://doi.org/10.3987/COM-08-S(F)40
- Umezawa, T., Oguri, Y., Matsuura, H., Yamazaki, S., Suzuki, M., Yoshimura, E., Furuta, T., Nogata, Y., Serisawa, Y., Matsuyama-Serisawa, K., Abe, T., Matsuda, F., Suzuki, M., & Okino, T. (2014). Omaezallene from red alga *Laurencia* sp.: Structure elucidation, total synthesis, and antifouling activity. *Angewandte Chemie International Edition*, 53(15), 3909–3912. https://doi.org/10.1002/anie.201311175
- Vairappan, C. S., Zanil, I. I., & Kamada, T. (2014). Structural diversity and geographical distribution of halogenated secondary metabolites in red algae, *Laurencia nangii* Masuda (Rhodomelaceae, Ceramiales), in the coastal waters of North Borneo Island. *Journal of Applied Phycology*, 26(2), 1189–1198. https://doi.org/10.1007/s10811-013-0161-x
- Veeresham, C. (2012). Natural products derived from plants as a source of drugs. Journal of Advanced Pharmaceutical Technology and Research, 3(4), 200–201. https://doi.org/10.4103/2231-4040.104709
- Verseveldt, J. (1980). A revision of the genus *Sinularia* May (Octocorallia, Alcyonacea). *Zoologische Verhandelingen*, 179(1), 1–128.
- Viegelmann, C., Parker, J., Ooi, T., Clements, C., Abbott, G., Young, L., Kennedy, J., Dobson, A. D. W., & Edrada-Ebel, R. A. (2014). Isolation and identification of

- antitrypanosomal and antimycobacterial active steroids from the sponge *Haliclona* simulans. Marine Drugs, 12(5), 2937–2952. https://doi.org/10.3390/md12052937
- Wright, A. D., Goclik, E., & König, G. M. (2003). Three new sesquiterpenes from the red alga *Laurencia perforata*. *Journal of Natural Products*, 66(3), 435–437. https://doi.org/10.1021/np020274v
- Wu, Q., Li, X. W., Li, H., Yao, L. G., Tang, W., Miao, Z. H., Wang, H., & Guo, Y. W. (2019). Bioactive polyoxygenated cembranoids from a novel Hainan chemotype of the soft coral *Sinularia flexibilis*. *Bioorganic and Medicinal Chemistry Letters*, 29(2), 185–188. https://doi.org/10.1016/j.bmcl.2018.12.004
- Yang, X.-X., Su, Y.-Z., Tan, J., Cai, C.-E., & Jia, R. (2018). A new dimeric sesquiterpene and other related derivatives from the marine red alga *Laurencia okamurai*. *Biochemical Systematics and Ecology*, 79, 57–59. https://doi.org/10.1016/j.bse.2018.05.003
- Ye, F., Zhu, Z. D., Chen, J. S., Li, J., Gu, Y. C., Zhu, W. L., Li, X. W., & Guo, Y. W. (2017). Xishacorenes A-C, diterpenes with bicyclo[3.3.1]nonane nucleus from the Xisha soft coral *Sinularia polydactyla*. *Organic Letters*, *19*(16), 4183–4186. https://doi.org/10.1021/acs.orglett.7b01716
- Yoneshigue-Valentin, Y., Fujii, M. T., & Gurgel, C. F. D. (2003). Osmundea lata (M. Howe & W.R. Taylor) comb. nov. (Ceramiales, Rhodophyta) from the Brazilian south-eastern continental shelf. *Phycologia*, *42*(3), 301–307. https://doi.org/10.2216/i0031-8884-42-3-301.1
- Yu, S., Deng, Z., van Ofwegen, L., Proksch, P., & Lin, W. (2006). 5,8-Epidioxysterols and related derivatives from a Chinese Soft Coral *Sinularia flexibilis*. *Steroids*, 71(11–12), 955–959. https://doi.org/10.1016/j.steroids.2006.07.002
- Yu, X. Q., He, W. F., Liu, D. Q., Feng, M. T., Fang, Y., Wang, B., Feng, L. H., Guo, Y. W., & Mao, S. C. (2014). A seco-laurane sesquiterpene and related laurane derivatives from the red alga *Laurencia okamurai* Yamada. *Phytochemistry*, 103, 162–170. https://doi.org/10.1016/j.phytochem.2014.03.021
- Yu, X. Q., Jiang, C. S., Zhang, Y., Sun, P., Kurtán, T., Mándi, A., Li, X. L., Yao, L. G., Liu, A. H., Wang, B., Guo, Y. W., & Mao, S. C. (2017). Compositacins A–K: Bioactive chamigrane-type halosesquiterpenoids from the red alga *Laurencia composita* Yamada. *Phytochemistry*, 136, 81–93. https://doi.org/10.1016/j.phytochem.2017.01.007
- Zhang, C.-X., Zhu, C.-C., Yan, S.-J., Li, J., Su, J.-Y., Liang, Y.-J., Yang, X.-P., Zheng, K.-C., & Zeng, L.-M. (2008). Two new sesquiterpenoids from the soft coral *Sinularia polydactyla* (Ehreberg). *Journal of Asian Natural Products Research*, 10(3–4), 307–311. https://doi.org/10.1080/10286020701833503
- Zhang, C. X., Yan, S. J., Zhang, G. W., Lu, W. G., Su, J. Y., Zeng, L. M., Gu, L. Q., Yang, X. P., & Lian, Y. J. (2005). Cytotoxic diterpenoids from the soft coral Sinularia microclavata. Journal of Natural Products, 68(7), 1087–1089. https://doi.org/10.1021/np058006v
- Zhang, F., Altorki, N. K., Mestre, J. R., Subbaramaiah, K., & Dannenberg, A. J. (1999). Curcumin inhibits cyclooxygenase-2 transcription in bile acid- and phorbol estertreated human gastrointestinal epithelial cells. *Carcinogenesis*, 20(3), 445–451.

- https://doi.org/10.1093/carcin/20.3.445
- Zhang, N. X., Tang, X. L., Van Ofwegen, L., Xue, L., Song, W. J., Li, P. L., & Li, G. Q. (2015). Cyclopentenone derivatives and polyhydroxylated steroids from the soft coral *Sinularia acuta*. *Chemistry and Biodiversity*, 12(2), 273–283. https://doi.org/10.1002/cbdv.201400044
- Zhao, C., Xu, J. J., Wang, J., Li, S. Y., Qiao, W., & Tang, S. A. (2018). Five new cembrane diterpenoids from the South China Sea soft coral *Sinularia flexibilis*. *Phytochemistry Letters*, 25, 180–183. https://doi.org/10.1016/j.phytol.2018.04.012
- Zovko Končić, M., Ioannou, E., Sawadogo, W. R., Abdel-Razik, A. F., Vagias, C., Diederich, M., & Roussis, V. (2016). 4α-Methylated steroids with cytotoxic activity from the soft coral *Litophyton mollis*. *Steroids*, *115*, 130–135. https://doi.org/10.1016/j.steroids.2016.08.017