
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

BSc THESIS

Hierarchical Large Multi-Label Text Classification of Greek
Legal Documents by Utilizing Label Augmentation

Gregory G. Kallinikos

Supervisors: Manolis Koubarakis, Professor
Eleni Tsalapati, Supervisor

ATHENS

MARCH 2022



ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

 Κατηγοριοποίηση Ιεραρχικά Δομημένων Ελληνικών
Νομικών Εγγράφων πολλών Ετικετών με τη χρήση

Επαύξησης Ετικετών

Γρηγόρης Γ. Καλλίνικος

Επιβλέποντες: Μανόλης Κουμπαράκης, Καθηγητής
Ελένη Τσαλαπάτη, Επιβλέπουσα

ΑΘΗΝΑ

ΜΑΡΤΙΟΣ 2022



BSc THESIS

Hierarchical Large Multi-Label Text Classification of Greek Legal Documents by Utilizing
Label Augmentation

Gregory G. Kallinikos

S.N.: 1115201500056

Supervisors: Manolis Koubarakis, Professor
Eleni Tsalapati, Supervisor



ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Κατηγοριοποίηση Ιεραρχικά Δομημένων Ελληνικών Νομικών Εγγράφων πολλών
Ετικετών με τη χρήση Επαύξησης Ετικετών

Γρηγόρης Γ. Καλλίνικος

Α.Μ.: 1115201500056

Επιβλέποντες: Μανόλης Κουμπαράκης, Καθηγητής
Ελένη Τσαλαπάτη, Επιβλέπουσα



ABSTRACT

The aim of this thesis is the development of a hierarchical multi-label text classification
model that utilizes the label augmentation technique on a very large dataset with large
input sequences. The model will  also be handling a shallow hierarchy structure with a
very large amount of labels  and will be developed with layer-wise guided training  [1].
Then,  the comparison of that  model  with other models that do not utilize the same
technique will shed light on whether this technique is effective and how much it’s worth
implementing.

This  research  bases  its  roots  on  the  groundbreaking  BERT  model  [2],  and
consequentially the GreekBERT model  [3], as well as the Layer-wise Guided Training
for  BERT  paper  of  Chalkidis  et  al.,  which  also  introduces  the  label  augmentation
mechanism [1]. The use of the transformers library provided by Hugging Face elevates
the implementation process and makes the training and evaluation of three different
models faster. This library will be the pillar of the development and comparison of our
three models from where we will extract our conclusions [4].

The thesis starts with a thorough overview of the path that the NLP research community
followed and which lead to  the current  state-of-the-art  architectures, highlighting the
advantages  and  disadvantages  of  each  technique.  We believe this  is  necessary  in
understanding the key concepts and intricacies of our models and will justify the use of
the transformers library and the pre-trained model.

After the historical overview we follow with a detailed presentation of the dataset that
will  be  used.  The  dataset  is  called  Greek  Legal  Code  (GLC),  and  it’s  an  openly
distributed dataset with a hierarchical structure desirable for our task [5]. The intricacies
of the GLC dataset include, among others, the very large input size of the documents,
the really high amount of labels in lower hierarchy levels and a high variety of few-shot
and zero-shot labels. These prove the difficulty of tackling such a problem and make the
results much more concrete and justifiable. 

We also make sure to present the details behind the label augmentation technique, as
well as the label-wise guided training concept that will be utilized by our primary model.
Essentially,  our  primary  model  uses certain  layers  to  predict  certain  hierarchy level
labels.

Lastly comes the development and evaluation of our models, which are then compared
to each other based on the R-Precision metric. In conclusion, the label augmentation
technique,  paired  with  a layer-wise  trained model  leads to  a significant  increase of
performance without having heavy computational differences compared to our simpler
models.

SUBJECT AREA: Natural Language Processing

KEYWORDS:  Hierarchical Classification, Label Augmentation, Large Multi-Label Set,
Pre-trained Transformers, Greek Legal Code



ΠΕΡΙΛΗΨΗ

Ο  σκοπός  αυτής  της  πτυχιακής  είναι  η  υλοποίηση  ενός  μοντέλου,  για  ταξινόμηση
κειμένων με ιεραρχική δομή και με πολλαπλές ετικέτες. Το μοντέλο αξιοποιεί την τεχνική
της  επαύξησης  ετικετών  και  η  εκπαίδευση  γίνεται  σε  ένα  πολύ  μεγάλο  σύνολο
δεδομένων. Η ιεραρχική δομή περιέχει  μικρό αριθμό επιπέδων αλλά μεγάλο αριθμό
ετικετών και το μοντέλο βασίζεται στην τεχνική της εκπαίδευσης με οδηγό τα επίπεδα
του μοντέλου  [1]. Στη συνέχεια, η σύγκριση του μοντέλου με άλλα μοντέλα που δέν
αξιοποιούν την ίδια τεχνική θα μας αποδείξει την αποτελεσματικότητά της.

Η έρευνα βασίζεται στο μοντέλο BERT [2] και της ελληνικής του μορφής, το GreekBERT
[3] καθώς και στο κείμενο πάνω στην οδηγούμενη από τα επίπεδα εκπαίδευσης που
επίσης παρουσιάζει την τεχνική της επαύξησης ετικετών [1]. Πολύ βασική είναι η χρήση
της βιβλιοθήκης των  Transformers  μέσω των οποίων φτάνουμε στην εκπαίδευση και
σύγκριση των μοντέλων πολύ γρήγορα [4].

Η πτυχιακή ξεκινά με μια αναλυτική παρουσίαση των τεχνικών που χρησιμοποιήθηκαν
από  τους  ερευνητές  της  Επεξεργασίας  Φυσικής  Γλώσσας  μέχρι  τις  πλέον  πιο
διαδεδομένες αναφέροντας τα θετικά και τα αρνητικά τους. Πιστεύουμε πως αυτό είναι
απαραίτητο στην κατανόηση της λειτουργίας των μοντέλων που θα υλοποιήσουμε.

Μετά  από  την  ιστορική  αναδρομή,  συνεχίζουμε  με  μια  αναλυτική  παρουσίαση  του
συνόλου  δεδομένων  που  θα  χρησιμοποιήσουμε  [5].  Κάποια  χαρακτηριστικά  του
περιλαμβάνουν το μεγάλο μέγεθος των εγγράφων, τον μεγάλο αριθμό των ετικετών και
την ύπαρξη πολλών κλάσεων με λίγα έγγραφα ανά κλάση.

Στη συνέχεια, παρουσιάζουμε τις  λεπτομέρειες της τεχνικής της επαύξησης ετικετών,
καθώς  και  της  εκπαίδευσης  με  οδηγό  τα  επίπεδα  του  μοντέλου,  που  θα
χρησιμοποιηθούν από το βασικό μοντέλο μας.

Εν τέλει, παρουσιάζεται η υλοποίηση των μοντέλων και γίνεται σύγκρισή τους με βάση
την  μετρική  R-Precision.  Από  τα  αποτελέσματα  συμπεραίνουμε  ότι  η  τεχνικές  που
αξιοποιεί το βασικό μοντέλο μας οδηγούν σε αύξηση της απόδοσης, δίχως να έχουμε
σοβαρές χρονικές καθυστερήσεις σε σύγκριση με τα πιό απλά μοντέλα μας.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Επεξεργασία Φυσικής Γλώσσας

ΛΕΞΕΙΣ  ΚΛΕΙΔΙΑ:  Ιεραρχική  Ταξινόμηση,  Επαύξηση  Ετικετών,  Νομικά  Έγγραφα,
Pretrained Transformers, Greek Legal Code





ACKNOWLEDGMENTS

It is of a great pleasure and importance for me to be able to do research in the intriguing
and  upcoming  field  of  Natural  Language  Processing  as  well  as  that  of  Artificial
Intelligence and combine it with the real-world task in the Law domain, and therefore I
am deeply grateful to my professor and supervisor Manolis Koubarakis for providing me
with this opportunity. His guidance was absolutely critical in the making of this thesis.

I would also like to thank my research supervisor Eleni Tsalapati, for her patience and
constructive critiques during the development of this research work.



CONTENTS

PREFACE........................................................................................................................14

1. INTRODUCTION.........................................................................................................15

2. HISTORY OF TRANSFORMER BASED MODELS...................................................17

2.1 Word Embeddings............................................................................................................................. 17

2.2 Sequential Processing...................................................................................................................... 18

2.3 LSTM (Long Short-Term Memory) Models.......................................................................................19

2.4 GRU (Gated Recurrent Unit) Models................................................................................................20

2.5 Attention Mechanism......................................................................................................................... 21

2.6 Transformer Models.......................................................................................................................... 22

2.7 GreekBERT......................................................................................................................................... 24

2.8 GreekLegalBERT............................................................................................................................... 25

2.9 Summary............................................................................................................................................ 25

3. PRE-TRAINED TRANSFORMERS & BERT..............................................................26

4. GREEK LEGAL CODE DATASET.............................................................................29

5. LABEL AUGMENTATION..........................................................................................33

6. FINE TUNING THE MODELS.....................................................................................35

6.1 Pre-processing................................................................................................................................... 35

6.2 Data Loaders...................................................................................................................................... 36

6.3 Optimizer & Cost Function................................................................................................................37

6.4 Training and Evaluation.................................................................................................................... 38

6.5 Summary............................................................................................................................................ 39

7. MODELS & COMPARISON........................................................................................40

7.1 Vanilla Model...................................................................................................................................... 40

7.2 Fine-tuned model............................................................................................................................... 42

7.3 Label Augmented model...................................................................................................................43

7.4 Summary............................................................................................................................................ 46



8. CONCLUSIONS..........................................................................................................47

ABBREVIATIONS – ACRONYMS..................................................................................49

REFERENCES................................................................................................................50



LIST OF FIGURES

Figure 1: Steps for a pre-trained model...........................................................................26

Figure 2: GLC Label Hierarchy Levels............................................................................29

Figure 3: Examples from the GLC hierarchy...................................................................33

Figure 4: Comparison between Adam and other optimizers...........................................37



LIST OF IMAGES

Image 1: A Fully Recurrent Neural Network....................................................................18

Image 2: A common LSTM cell.......................................................................................19

Image 3: A common Gated Recurrent Unit.....................................................................20

Image 4: A brief illustration of the attention mechanism.................................................21

Image 5: A typical Transformer architecture...................................................................23

Image 6: The two stages of employing GreekBERT.......................................................24

Image 7: BERT encoders and embeddings architecture ...............................................27

Image 8: The two steps of how BERT is developed.......................................................28

Image 9: Loading the datasets for each level.................................................................30

Image 10: Extracting the text and label fields from the volume dataset.........................30

Image 11: Example of a legal document, text and label.................................................31

Image 12: Label names for the volume dataset..............................................................32

Image 13: Code that shows how we can access each label level and their names.......34

Image 14: Tokenizer initialization from the pretrained GreekBERT model.....................35

Image 15: Pre-processing function build upon the tokenizer..........................................36

Image 16: Mapping of the pre-processing function used on the volume dataset...........36

Image 17: DataLoader initialization for the train set........................................................37

Image 18: Base code for the training loop of our models...............................................38

Image 19: Continuation of the training loop code............................................................39

Image 20: Code for the vanilla volume case model........................................................40

Image 21: Initializer code for the pretrained GreekBERT model....................................44

Image 22: Hidden states that are utilized inside the model for predictions.....................44



LIST OF TABLES

Table 1: Distribution of labels in each hierarchy level.................................................p. 29

Table 2: Data splits for each set..................................................................................p. 30

Table 3: R-Precision ± std for each model, using the optimal saved weights.............p. 41

Table 4: Recall ± std for each model, using the optimal saved weights.....................p. 41

Table 5: F1-Score ± std for each model, using the optimal saved weights................p. 42

Table 6: R-Precision ± std for each model, using the optimal saved weights.............p. 42

Table 7: Recall ± std for each model, using the optimal saved weights.....................p. 43

Table 8: F1-Score ± std for each model, using the optimal saved weights................p. 43

Table 9: R-Precision ± std for each model, using the optimal saved weights.............p. 46

Table 10: Recall ± std for each model, using the optimal saved weights...................p. 46

Table 11: F1-Score ± std for each model, using the optimal saved weights..............p. 46

Table 12: Comparison table for each developed model.............................................p. 47



PREFACE

The present thesis is a necessary piece in my pursue for the acquisition of a Bachelor’s
Degree in the Department of Informatics and Telecommunication of the National and
Kapodistrian University of Athens.

Implementing and comparing different models is a great way for researchers to find the
best practices on the problem at hand and for me personally it has been both a learning
experience as well as an intriguing challenge. The fact that it was possible for me to do
research in the area of Artificial Intelligence and also pair it with a real life task is what
made everything even more exciting.

I was also astounded by the variety of different techniques and depth of knowledge I
came  across  while  making  this  thesis,  and  I  am forever  grateful  to  my  professor,
Manolis  Koubarakis,  for  providing  me  with  abundant  resources  as  well  as  a  good
starting point, and to every researcher in the NLP field that tackles these tasks and tries
to find better ways in doing so.



Hierarchical Large Multi-Label Text Classification of Greek Legal Documents by Utilizing Label Augmentation

1. INTRODUCTION

For quite a few years Artificial Intelligence has been used to face a numerous amount of
problems, among them Natural Language Processing (NLP) problems such as Named
Entity  Recognition  (NER),  Part-of-Speech  Tagging  (POS),  Dependency  Parsing,
Masked Language Modeling and even Text Classification, which is of major interest in
this thesis.  While a lot  of  techniques have been introduced, some have established
themselves as the state-of-the-art ways to produce not just better results, but also in a
faster and more manageable manner [4]. 

One  of  these  techniques  is  the  use  of  transformer  based  models  and  specifically
pretrained BERT models [6] that may be fine-tuned depending on the problem at hand.
This has helped many researchers quickly create their own models and reduced the
computing cost of training big models [7], and it’s essentially what we will be doing in
the creation of our models.

The task of Multi-Label Text Classification is essentially the problem of classifying a text
sequence  to  more  than  just  one  categories  at  the  same  time,  and  it’s  a  Natural
Language  Processing  task  [8].  A  bit  more  challenging  problem  is  the  Hierarchical
version of Multi-Label Classification [11] where the classes are hierarchically structured
and we attempt to predict both the subclass and the corresponding super-classes of the
input. 

This thesis is about investigating the approach of training and fine-tuning pre-trained
transformer  based  models  to  predict  classes  for  hierarchically  structured  legal
documents of the Greek Language, while also using an advanced technique called label
augmentation  [1] on a shallow hierarchy structure. The models that will be presented
are themselves based on a pre-trained transformer model called GreekBERT [3], which
is itself based on BERT [2] but not fine-tuned for Multi-Label Classification.

The dataset that is used is the Greek Legal Code (GLC) corpus which consists of legal
documents written in the Greek Language [5], it presents each legal document labeled
in  three  hierarchy  levels;  Volume,  Chapter,  Subject,  and  it’s  publicly  distributed.
Moreover, there will be a comparison of three different models of tackling this problem;
firstly with the plain, unmodified model, secondly with the slightly fine-tuned version of
the  model  and  lastly  with  the  augmented  labels  technique  which  uses  a  different
number of layers of the model to predict the classes. Re-training all of the three models
is  necessary  specifically  because  the  base  model  was  not  ever  trained  for  text
classification [10]. It is the first time the label augmentation technique is used on such a
large dataset, with a low amount of hierarchy levels and a large size of label-ancestors,
and researched in a scientific manner.

The results show that by using label augmentation, we can achieve better performance
than just the plain model or the slightly fine-tuned one even in the case of the shallow
hierarchy and the very large input size of legal documents. Additionally, the comparison
of  the  models  show  that  without  any  fine-tuning  on  the  specific  task,  the  models’
efficiency is way below acceptable and therefore further enhances the importance of
making adjustments to the way the model processes its data [12].

The thesis consists of eight chapters, each one of which is listed below with a small
introduction:

G. Kallinikos  15



Hierarchical Large Multi-Label Text Classification of Greek Legal Documents by Utilizing Label Augmentation

• In Chapter 2, we take a tour on the history of the transformer based models starting
from the very beginning, the Word2Vec model and sequence-to-sequence learning, and
ending up to the transformers architecture, the GreekBERT and the GreekLegalBERT
models.

• In Chapter 3, we present the mechanics of pretrained transformer models and BERT
as well as the advantages of using such models as a base for implementing new ones.

• In Chapter 4, the Greek Legal Code dataset is introduced and discussed in detail.

• In Chapter 5, we present the core techniques that will be utilized in the making of our
primary model: label augmentation and layer-wise guided training.

•  In Chapter 6, we see the development and evaluation processes of all of the three
models as well as the decisions made in the picking of our optimizer and loss function.

•  In  Chapter  7,  we  take  a  look  on  each  models’  inner  structure  along  with  their
evaluation process. In the end we gather the results into a single table for comparison.

Finally, we have Chapter 8, where we elaborate on our conclusions and final results.

G. Kallinikos  16



Hierarchical Large Multi-Label Text Classification of Greek Legal Documents by Utilizing Label Augmentation

2. HISTORY OF TRANSFORMER BASED MODELS

Natural Language Processing means enabling computers to make sense of the human
language and has been a primary concept of interest in the technological domain for a
long time. However, the last decade we have witnessed an unprecedented leap in the
way  NLP problems handle  tasks,  mainly  enabled  by  deep  learning.  The  way  NLP
advanced  is  of  high  importance  in  understanding  the  current  state-of-the-art
architecture; attention based models and transformers.

If we look at Machine Learning approaches closely, we see that many of them have
focused on Sequence-to-Sequence learning, or Seq2Seq [14]. Seq2Seq essentially is
turning one sequence into  another  sequence.  In  order for  that  to happen,  recurrent
neural networks (RNNs)  [15], or more often LSTMs  [17] (long short-term memory) or
GRUs  [18] (gated recurrent unit) has been utilized to avoid the problem of vanishing
gradients. 

The context for each item is the output from the previous step. The primary components
are  one  encoder  and  one  decoder  network.  The  encoder  turns  each  item  into  a
corresponding hidden vector containing the item and its context. The decoder reverses
the process, turning the vector into an output item using the previous output as the input
context.

Basically,  Seq2Seq learning is to teach a model  to map the first  sequence into the
second, for the example of translation, or the transformation of really long sequences
into really short ones, in the case of summarization. Two main branches have been
widely  used  to  perform  sequence-to-sequence  learning;  classic  Recurrent  Neural
Networks and Encoder-Decoder models. 

In the case of classic Recurrent Neural Networks, the goal is to train a model that can
process the sequence item by passing the representation as input, together with the
next item from the sequence. In that way, each sequence item is supposedly using
context for a word based on the words that have been processed previously. In the case
of Encoder-Decoder models, the goal is to train an encoder that can process the input
sequence item and turn it into a hidden representation. The decoder then maps that
hidden representation into an output sequence. 

Encoder-Decoder models have been the base ground for Transformers and they have
benefits over Recurrent Neural Networks when used for contextual learning  [20]. But
why did transformers get to be invented in the first place and how did they get to where
they are now?

2.1 Word Embeddings

A very important breakthrough in the field of NLP is the creation of continuous word
embeddings, which led to a much more accurate identification of the semantic meaning
and the similarity of words. This was presented with the publication of the Word2Vec
paper and changed the way word embeddings represented each word [42]. 

Before Word2Vec, word embeddings used either massive sparse vectors with one-hot
encoding, or TF-IDF approaches that ignored common, low-information words and other
tokens. These approaches lead to very low accuracy metrics since they do not encode
semantic information in their vectors.

G. Kallinikos  17



Hierarchical Large Multi-Label Text Classification of Greek Legal Documents by Utilizing Label Augmentation

With Word2Vec, the training of word embeddings was much more efficient since they
contained contextual information; the main concept was that common words should be
used together, which makes sense in any language. Based on this concept, the Skip-
Gram  and  Continuous  Bag-Of-Words  (CBOW)  neural  network  architectures  were
developed.

Expanding this approach, the sequence-to-sequence model was created, implementing
a  similar  concept  into  larger  sequences  of  text,  like  sentences.  This  was  called
sequential  processing  and  was  the  first  major  milestone  in  the  invention  of  the
transformer models.

2.2 Sequential Processing

Before transformers, most state-of-the-art NLP systems relied on gated RNNs, such as
LSTM and Gated Recurrent  Units (GRUs). Simple RNNs process tokens sequentially,
maintaining a state vector that contains a representation of the data seen after every
token  [43].  When  presented  with  a  new  token,  the  model  combines  the  state
representation with the previous tokens. The information of the new token is then added
to create a new state that represents the sentence up to the new token [44]. 

Image 1: A Fully Recurrent Neural Network

Theoretically,  the information from one token can propagate arbitrarily  far  down the
sequence, if at every point the state continues to encode contextual information about
the token.  In  practice,  the mechanism has its  flaw:  the vanishing gradient  problem,
which essentially leaves the model’s state at the end of a long sentence without much
precise, extractable information about preceding tokens.

The dependency of token computations on results of previous token computations also
makes it hard to parallelize computation on modern deep learning hardware. This can
make the training of RNNs inefficient. The vanishing gradients in the back-propagation
step of  computing the error  backwards when input  sequences are long causes this
problem.  While  they  show good  results  for  shorter  sequences,  in  longer  ones  the
distance between the relevant words can be too long for results to be acceptable. This
is where LSTM came into place.

G. Kallinikos  18



Hierarchical Large Multi-Label Text Classification of Greek Legal Documents by Utilizing Label Augmentation

2.3 LSTM (Long Short-Term Memory) Models

LSTM stands for Long Short-Term Memory and it’s a deep learning system that avoids
the  vanishing  gradients  problem  [21].  LSTM  models  are  normally  augmented  by
recurrent  gates  called  “forget  gates”.  LSTMs prevents  back-propagated  errors  from
vanishing  or  exploding  gradients.  Instead,  the  errors  can  flow  backwards  through
unlimited numbers of virtual layers unfolded in space. For that reason, LSTMs are better
in learning tasks when the distance between the relevant words is big [30].

In practice, by utilizing LSTM units a model can partially solve the vanishing gradient
problem, because LSTM units allow gradients to also flow unchanged. Unlike standard
feed-forward neural networks, LSTM has feedback connections. A common LSTM unit
is composed of a cell, an input gate, an output gate, and a forget gate.

LSTM networks are good candidates for classifying, processing and making predictions
based on time series data [30]. They were developed to deal with the vanishing gradient
problem that traditional RNNs encounter. 

Image 2: A common LSTM cell

The ht−1  cell is essentially the forget gate and as presented in Image 2, its output is
passed through a Sigmoid function, together with the input X at t, X t . By doing so, the
network  can “forget”  certain  aspects  from the  cell  state  based on the current  input
values and the previous hidden state through this gate. In a sense, LSTM utilizes cell
outcomes of what must be kept and what must be forgotten to produce an output.

Many  applications  use  stacks  of  LSTM  RNNs  to  find  an  RNN  weight  matrix  that
maximized  the  probability  of  the  label  sequences  in  a  training  set,  given  the
corresponding  input  sentences.  Ultimately,  LSTM  models  can  learn  to  recognize
context-sensitive languages and similar concepts.

G. Kallinikos  19



Hierarchical Large Multi-Label Text Classification of Greek Legal Documents by Utilizing Label Augmentation

During training, LSTM units diminish the vanishing gradients problem by keeping the
error in the LSTM units’ cell as the error values are back-propagated from each output
layer [17]. This way, the error is continuously provided back to each of the LSTM units’
gates until they learn to cut off the value.

However successful  they might have been, LSTM networks can still  suffer from the
exploding  gradient  problem,  but  they  are  still  used  and  applied  in  many  real  life
problems.

2.4 GRU (Gated Recurrent Unit) Models

GRU stands for “Gated Recurrent Unit” and essentially is a simplification of Long Short-
Term Memory networks. The key components of a GRU is both an input gate and a
forget gate, essentially missing the output gate of the LSTM system.  Consequentially,
they are much faster in terms of training speed than an LSTM, due to having fewer
parameters  [18].  They  have  been  shown  to  exhibit  better  performance  on  certain
smaller and less frequent datasets.

There are several variations on the full gated unit, with gating done using the previous
hidden state and the bias in various combinations, and a simplified form called minimal
gated unit.

Image 3: A common Gated Recurrent Unit

By means of benefits in terms of backwards error computation, LSTMs and GRUs have
yielded better performance over classic, vanilla RNNs. However all these models face
the same problem produced when processing long sequences of data. This problem
arises because the memory is updated by means of a short-term change: in LSTMs, the
memory is adapted based on short-term interrelationships. This means that longer-term
ones, while they do pass through memory, they are forgotten over time. 

While both LSTM and GRU models were considered a big breakthrough at their time,
they still faced the problems of exploding gradients and of having to read a sequence
either left-to-right or right-to-left, making them difficult to use in NLP tasks where context
can be inferred in both ways.  For this reason, the attention mechanism was invented
[33].

G. Kallinikos  20



Hierarchical Large Multi-Label Text Classification of Greek Legal Documents by Utilizing Label Augmentation

2.5 Attention Mechanism

In neural networks, attention is a technique that mimics cognitive attention. The effect
enhances some parts of the input data while diminishing other parts. That means that
the network can shift its focus to what we think is important and it is particularly effective
in long sequences where a small part is of bigger significance. Learning which part of
the  data  is  more  important  than  others  depends  on  the  context  and  is  trained  by
gradient descent. Essentially, the attention mechanisms allow a model to draw from the
state of any preceding point along the sequence, however long [20]. The attention layer
can access all the previous states and weight them according to a taught measure of
relevancy, providing relevant information about far-away tokens.

Image 4: A brief illustration of the attention mechanism, translating English to Korean

For example,  in the case of language translation,  context is essential  to assign the
meaning of a word in a sentence. Many times a first word of one language can be the
last word in the translation to another. In a classic LSTM model, in order to produce that
last  word,  the  model  is  given only  the  state  vector  of  the  first  word  in  the  starting
language. An attention mechanism can be added to address this problem: the decoder
is given access to the state vectors of every input word, not just the last, and can learn
attention weights that dictate how much to attend to each starting input state vector [33].

The encoder-decoder architecture is interesting to take a look at, but essentially this still
was not  enough and LSTMs and GRUs all  faced the same same bottleneck:  even
though the memory itself was improved through attention, computation was not. The

G. Kallinikos  21



Hierarchical Large Multi-Label Text Classification of Greek Legal Documents by Utilizing Label Augmentation

process is still sequential, because each token has to be processed in left-to-right or
right-to-left order.

In  conclusion,  the  attention  mechanism has  been  utilized  to  increase  performance,
specifically accuracy and bleu score, which is basically evaluation score in language
translation  [34].  However,  it  is  time consuming and can be hard to  parallelize.  The
attention weights address the explainability problem that common neural networks had,
adjusting their focus according to text context.

2.6 Transformer Models

A transformer is a deep learning model that adopts the mechanism of self-attention,
differentially  weighting the significance of  each part  of  the input  data.  Transformers
involve an encoder  segment and a decoder  segment and they are increasingly  the
model of choice for NLP problems, replacing LSTMs and GRUs. The core attribute of
transformers  is  that  they do not  necessarily  process the  data  in  order.  Rather,  the
attention mechanism provides context for any position in the input sequence.

For example, if the input data is a natural language sentence, the transformer does not
need to process the beginning of the sentence before the end. Rather, it identifies the
context that confers meaning to each word in the sentence. 

This feature allows for more parallelization than RNNs and therefore reduces training
times. This allows training on larger datasets than what was possible with just LSTMs
and  the  transformer  models  became  state-of-the-art  when  the  groundbreaking
development  of  pretrained  systems  such  as  BERT  (Bidirectional  Encoder
Representations from Transformers) was introduced  [2]. These models, having been
trained on large language datasets, such as the Wikipedia Corpus and Common Crawl,
and can be fine-tuned for specific tasks.

The original Transformer model  uses an encoder-decoder architecture. The encoder
part,  which  can  be  identically  repeated,  each  time  increasing  the  precision  of  the
encoding.  It  consists  of  a  multi-head  attention  segment,  essentially  being  the  self-
attention mechanism, and a feed forward neural network. The self-attention mechanism
accepts input encodings from the previous encoder and weights their relevance to each
other  to  generate  output  encodings  [40].   The  multi-head  attention  blocks  are
subsequently being added together, and the layer is then normalized with the residual
input.  The  feed-forward  neural  network  further  processes  each  output  encoding
individually. These output encodings are then passed to the next encoder as its input,
as well as to the decoders eventually.

The first encoder takes positional information and embeddings of the input sequence as
its input, rather than encodings.

G. Kallinikos  22



Hierarchical Large Multi-Label Text Classification of Greek Legal Documents by Utilizing Label Augmentation

Image 5: A typical Transformer architecture

As presented in Image 5, each decoder consists of three major components: a masked
multi-head attention segment, which represents the self-attention mechanism, another
attention mechanism over the encodings, and lastly a feed-forward neural network. Like
the first encoder, the first decoder takes positional information and embeddings of the
output sequence as its input, rather than just the encodings. The output sequence is
partially  masked  to  prevent  a  reverse  information  flow  that  is  produced  when  the
transformer uses the current and future output to predict an output. The last encoder is
followed  by  a  last  linear  transformation  and  Softmax  layer,  to  produce  the  output
probabilities over the vocabulary.

This way of working has allowed Natural Language Processing practitioners to achieve
extremely impressive results in terms of text processing while also solving the issues
with long-term memory and computation speed. Transformers typically undergo semi-
supervised  learning  involving  unsupervised  pretraining  followed  by  supervised  fine-
tuning.  Pretraining is typically  done on a larger dataset  than fine-tuning,  duo to the
limited availability of labeled training data. While some systems still  use LSTMs and
GRUs,  Transformer  based  models  have  become  state-of-the-art,  starting  from  the
groundbreaking BERT development.

G. Kallinikos  23



Hierarchical Large Multi-Label Text Classification of Greek Legal Documents by Utilizing Label Augmentation

2.7 GreekBERT

The GreekBERT model is essentially a monolingual language model for Greek, that has
its core architecture based on the BERT model. What this means is that it utilizes the
pretrained BERT-BASE model structure and it is trained on Greek corpora so that a
monolingual version of BERT is available for researchers to experiment and apply it on
Greek data. The GreekBERT model is the base of all of our models in this thesis and is
described in exhaustive detail in the paper  ‘GreekBERT: The Greeks visiting Sesame
Street’ [3]. There are two stages in employing the GreekBERT model:

1. Pretraining  BERT  with  the  Masked-Language  Modeling  (MLM)  and  Next-
Sentence Prediction (NSP) objectives on Greek corpora.

2. Fine-tuning the pretrained BERT model for downstream Greek NLP tasks.

The  development  of  GreekBERT  follows  the  notion  that  monolingual  BERT-based
language  models  very  often  outperform  their  multilingual  counterparts,  and  as
presented in the paper, the GreekBERT model always yields better results when used
with Greek language as input.

The evaluation of the GreekBERT model was conducted on three NLP tasks; part-of-
speech tagging (POS), named entity recognition (NER) and natural language inference
(NLI).  The  performance  recorded  showed  the  significant  improvement  over  two
multilingual  Transformer-based  models,  namely  M-BERT  and  XLM-R,  as  well  as
shallower neural baselines of pretrained word embeddings, which accounted up to 5%-
10%.

Image 6: The two stages of employing GreekBERT

This massive improvement establishes the GreekBERT model as the state-of-the-art
model when dealing with text written in the Greek language.

At the moment the paper was being written, the publicly available resources for Greek
NLP were very limited and even more importantly, there has not been any Transformer-
based pretrained language model  research  for  Greek.  The GreekBERT model  was
trained on 29 GB of text from Greek corpora from (a) the Greek part of Wikipedia, (b)
the Greek part of the European Parliament Proceedings Parallel (Europarl) and (c) the
Greek part of OSCAR, a clean version of Common Crawl.

G. Kallinikos  24



Hierarchical Large Multi-Label Text Classification of Greek Legal Documents by Utilizing Label Augmentation

Later on, the detailed comparison of the GreekBERT model with other models prove
that  the  GreekBERT  model  achieves  the  aforementioned  5%-10%  increase  in
performance compared with other models. Overall, the development of the GreekBERT
model  really  boosts the NLP research and applications for  Greek and their  work is
essentially a core pillar in the making of this thesis.

2.8 GreekLegalBERT

The GreekLegalBERT model was another significant breakthrough in the Greek NLP
research domain. Its development is thoroughly presented in the thesis of Konstantinos
I. Athinaios, ‘Named Entity Recognition using a Novel Linguistic Model for Greek Legal
Corpora based on BERT model’  [38]. The GreekLegalBERT model essentially utilizes
the pretrained GreekBERT model and further enhances it so that it can perform better
when presented specifically with Greek legal documents.

There have been three main pillars in the development of the GreekLegalBERT model:

1. The  innovative  BERT  model  of  Google,  which  has  been  the  core  in  the
development of many pretrained models.

2. The Hellenized version of BERT, namely GreekBERT which was presented in
the previous part.

3. The master’s dissertation of Iosif Angelidis, which also concerns the recognition
of named entities on legal data.

The GreekLegalBERT model is trained on Legal corpora and then compared with other
models,  as  well  as  the  GreekBERT  model.  The  exact  corpora  used  is  the  Greek
Legislation available in the Nomothesi@ platform which was then pre-processed to be
appropriate input for the BERT model.

After  the  necessary  pre-processing,  the  GreekLegalBERT model  was developed by
continuous training and evaluation on the aforementioned corpora. Lastly, the model
was further tested on the Masked Language Modeling task and then compared with the
GreekBERT model on the Named Entity Recognition task.

In  the  results  presented,  both  models  perform similarly,  with  marginal  variations  in
performance, where sometimes the GreekLegalBERT model prevails, and some other
times  the  GreekBERT model  prevails.  Nevertheless,  this  shows that  fine-tuning  on
Greek corpora increases overall performance and is a significant finding for the Greek
NLP research community.

The important thing to note here, is that the creation of GreekLegalBERT was based on
the pretrained BERT model, which shows just how much can be achieved by the correct
planning and utilization of pretrained transformer models and BERT.

2.9 Summary

In  this  chapter  we  presented  the  main  path  the  NLP  researchers  took  in  the
development  of  the  current  state-of-the-art  NLP  models.  We  started  from the  very
beginning, the Word2Vec embeddings, and ended all the way up to the transformers,
and the creation of the GreekBERT and GreekLegalBERT models. In the next chapter,
we  will  describe  in  detail  the  procedures  and  inner  mechanisms of  the  pre-trained
transformer models and BERT.

G. Kallinikos  25



Hierarchical Large Multi-Label Text Classification of Greek Legal Documents by Utilizing Label Augmentation

3. PRE-TRAINED TRANSFORMERS & BERT

Pre-trained transformer models, like BERT (Bidirectional Encoder Representations from
Transformers) [2] and GreekBERT [3] which will be used later on, are pre-trained state-
of-the-art models that are provided to be used on numerous tasks, and especially NLP
tasks. The models are trained on large datasets and then their weights are saved to be
used by any other interested researcher, which introduces an easy-to-use entry access
point. Additionally, they are easy to train and evaluate and the computational costs are
generally low.

These models use a very similar practice that has been utilized in image recognition,
called Transfer Learning where essentially a model is trained on a massive dataset of
labeled images and then this model could be downloaded to be used and trained in
other,  usually smaller datasets.  This  way,  researchers would not  have to  start  from
scratch to get their model to deal with image recognition tasks like face recognition.

By using an existing solution and restructuring it can help into getting better results at a
faster  rate  and  reduce  training  time  significantly.  For  this  thesis,  we  will  be  using
Hugging Face transformers which provide a wide variety of NLP libraries and tools that
make the development much simpler. The steps when using a pre-trained transformer
are quite simple in theory when compared with having to build the complex architecture
of the Transformer models from scratch. 

A typical pipeline for a pre-trained transformer model is shown in the following figure.

Figure 1: Steps for a pre-trained model

The development starts with the data pre-processing part  where the data is usually
modified so that only the important parts are kept.  Then, the input is passed into a

G. Kallinikos  26



Hierarchical Large Multi-Label Text Classification of Greek Legal Documents by Utilizing Label Augmentation

predefined  Tokenizer,  and  notably  our  model  will  be  using  the  same  tokenizer  of
GreekBERT, extracted directly from the Hugging Face library. Then the actual model is
loaded and it may be used as is or fine-tuned as we may want. The fine-tuned model
can be further trained into new datasets keeping the initial parameter weights.

BERT  was  introduced  as  a  deep  language  representation  model  based  on
Transformers and is designed by pre-training deep bidirectional representations from
unlabeled text  using  self  attention.  Since the  release of  BERT,  many BERT based
models have become state-of-the-art, essentially because of the powerful concept of
attention which can be parallelized and therefore the model can instantly read the input
sequence and infer the meaning of a token, based both on left and right context.

At its core BERT is a transformer language model with a variable number of encoder
layers and self-attention heads.  The architecture is  “almost  identical”  to  the original
transformer implementation. BERT was pretrained on two tasks: language modeling,
using masked tokens and predicting them from context, and next sentence prediction, if
a chosen next sentence was probable or not given the first sentence. BERT can be fine-
tuned with less resources on smaller datasets to optimize its performance on specific
tasks.

Image 7: BERT encoders and embeddings architecture 

Generally,  BERT is  very similar  to the transformer model,  but  it  has some few key
differences. Basically, BERT uses the typical encoder part of a Transformer model to
encode semantic and syntactic information in the embedding, which is needed for many
tasks, but on the other hand it does not use the decoder part, so the output part is
actually an embedding and not text. This enables a lot of functionality for each specific
task, for example embeddings can be compared with cosine similarity. Finally, BERT
uses two training techniques, namely Masking and Next Sentence Prediction.

When BERT was published, it achieved state-of-the-art performance on a number of
natural  language  understanding  tasks  and  has  been  used  as  base  for  many  other

G. Kallinikos  27



Hierarchical Large Multi-Label Text Classification of Greek Legal Documents by Utilizing Label Augmentation

models. One of these is the GreekBERT model which will be the base for the models
constructed in this thesis. The advantage of such models is two-fold: firstly they have
already been trained on a very large dataset, which is by itself a very slow and tedious
process that can take many days. Secondly, these models can be fine-tuned and further
enhanced depending on the specific task at hand. For BERT specifically we need just a
few thousand examples on our data for our fine-tuning to produce really good results.

Image 8: The two steps of how BERT is developed. You can download the model pre-trained in
step 1 (trained on un-annotated data), and only worry about fine-tuning it for step 2

The GreekBERT model  essentially  is  a pre-trained and fine-tuned version of  BERT
designed  specifically  for  the  Greek  language  and,  as  expected  from  monolingual
models,  achieves  state-of-the-art  performance  in  the  NLP  tasks  of  Named  Entity
Recognition, Part-of-Speech Tagging and Natural Language Inference when used on
Greek  datasets.  Since  this  model  has  not  been  directly  fine-tuned  for  Text
Classification,  the re-training of  the model  is absolutely needed in  order to  produce
considerate performance results. Since the dataset being used is a collection if Greek
Legal documents, GreekBERT is a better starting point than BERT.

BERT-like models essentially use a similar concept as transfer learning, where they
allow us to build on already acquired knowledge and more importantly we can add our
own layers on top of these models while freezing the parameters of the last layer or we
can fine-tune our BERT-like model by letting specific higher layers as unfrozen. Even
though we do not need a very large dataset size, we will be using the whole training set
of the Greek Legal Code corpus, which is thoroughly presented in our following chapter.

G. Kallinikos  28



Hierarchical Large Multi-Label Text Classification of Greek Legal Documents by Utilizing Label Augmentation

4. GREEK LEGAL CODE DATASET

The Greek Legal Code (GLC) corpus is an openly distributed dataset on Hugging Face
consisting of legal resources from Greek legislation and it’s classified into three multi-
level categories, starting from broader to narrower fields [37]. This catalog is a thorough
representation of the Greek Legislation, with resources since the creation of the Greek
state.

Figure 2: GLC Label Hierarchy Levels

The GLC consists of 47 legislative volumes and each volume corresponds to a main
thematic topic. Each volume is divided into thematic sub categories which are called
chapters and are in total 389, and subsequently, each chapter breaks down to subjects
which contain  the  legal  resources,  counting up to  2285 subjects.  This  introduces a
shallow hierarchy structure consisting of three levels.

The dataset  is  conveniently  split  into  training,  development  and test  sets  where  all
documents are distributed equally for all levels of the class hierarchy so that a much
more fair split is introduced.  As for the label frequency, only some classes are under-
represented, but increasing in number as we go down in the hierarchy levels. For the
volume level for example, all classes belong are frequently represented and there are
not any few-shot or zero-shot classes, while for the subject level the data contains more
few-shot classes.

Table 1: Distribution of labels in each hierarchy level

Level Total Frequent Few-Shot (<10) Zero-Shot

Volume 47 47 0 0

Chapter 389 333 53 3

Subject 2285 712 1431 142

The shallow hierarchical structure of the dataset creates the opportunity of testing the
label  augmentation  technique  when  presented  with  just  a  few  hierarchical  levels.
Moreover, we do not have to truncate our hierarchy levels which is convenient, but we
have to make sure we handle the few-shot and zero-shot labels correctly. This means

G. Kallinikos  29



Hierarchical Large Multi-Label Text Classification of Greek Legal Documents by Utilizing Label Augmentation

that we will be doing predictions for all of the labels in each level and we can expect
really low performance scores in our early models.

The documents are provided in a very simple and useful manner of two fields:

1. The  text field which contains the full  content  of  each document.  This content
needs to be pre-processed correctly if  we want to make accurate predictions
since it comes with the full header of the legal document, meaning it has a lot of
categorical arithmetic values that do not provide anything to our predictions.

2. The actual  label that denotes the class in which the document belongs for the
corresponding volume, chapter or subject level.

Table 2: Data splits for each set

Split No of Documents Avg. words

Train 28536 600

Development 9511 574

Test 9516 595

We can also take a look into the number of documents per each set and appreciate how
much work has been done for the creation of the dataset. Later on, we will see that we
have to truncate the documents to 512 tokens, since that is the maximum size of the
input that can be provided to a BERT-like model, and consequentially the GreekBERT
model that will be used as a base for all of our models.

Loading and using the Greek Legal Code dataset is very simple and we have to make
sure to load each hierarchy level separately and eventually concatenate the labels in
order for each document to be assigned with all three labels from all the three hierarchy
levels.

Image 9: Loading the datasets for each level

Image 10: Extracting the text and label fields from the volume dataset, for each of its subsets

G. Kallinikos  30



Hierarchical Large Multi-Label Text Classification of Greek Legal Documents by Utilizing Label Augmentation

Image 11: Example of a legal document, text and label

By inspecting the datasets, we can see their structure in code. On the upper level, each
dataset (volume, chapter, subject) is split into train, validation and test sets. Then, each
of these aforementioned sets are further split into the text and label fields, making it
simple  to  extract  this  information  and  process  it  in  our  own  environment.  So,  as
presented above, we can see the actual  text part of our legal documents, as well as
access their corresponding label. In this example, the document with the presented text
is given the label 35.

We can now also see the abundant amount of arithmetic values and punctuation that
need  to  be  truncated  since  they  do  not  offer  any  valuable  information  about  the
meaning of the document. Some documents have much longer text field, but with the
truncation of meaningless tokens we will keep all the necessary information and then
our tokenizer will keep 512 actually meaningful tokens. This will lead to a much better
and correct training and evaluation process and eventually yield much better results
compared to a technique that would keep these random numeric tokens.

We  can  get  the  actual  name  of  the  labels  from  the  HuggingFace  GLC  dataset
repository, as given in the greek_legal_code.py file. For example, some label names for
the volume dataset is presented below, noting that the total amount of labels would take
a lot of pages to present. However, we can now link each label number with the actual
label title.

G. Kallinikos  31



Hierarchical Large Multi-Label Text Classification of Greek Legal Documents by Utilizing Label Augmentation

Image 12: Label names for the volume dataset

 

G. Kallinikos  32



Hierarchical Large Multi-Label Text Classification of Greek Legal Documents by Utilizing Label Augmentation

5. LABEL AUGMENTATION

In this chapter we discuss the label augmentation technique that we will be using when
creating our  last,  primary model.  This technique has initially  been introduced in the
paper of Chalkidis et al 2020 [1]. The label augmentation technique bases its concept
on  the  assumption  that  when  a  label  L  is  assigned  to  a  document,  then  all  of  its
ancestors  should  also  be  assigned  to  the  document.  This  is  intuitively  a  more  fair
representation of a hierarchical classification task, but can be quite hard to implement
on practice. The key is that in the augmented case, assuming that the ancestors are
correctly identified the overall score that will be received would be higher than in the
case of having wrongly assigned the ancestors. 

Figure 3: Examples from the GLC hierarchy

For instance, in our case of the GLC dataset, if a document is annotated at the subject
level  with  the  label  “ΠΛΗΡΩΜΗ  ΜΙΣΘΩΝ  ΚΑΙ  ΗΜΕΡΟΜΙΣΘΙΩΝ”  it  will  also  be
annotated  with  its  ancestors  in  both  chapter  and  subject  level,  that  is  “ΠΛΗΡΩΜΗ
ΕΡΓΑΣΙΑΣ” and “ΕΡΓΑΤΙΚΗ ΝΟΜΟΘΕΣΙΑ” respectively. This assumption is perfectly
valid,  while also making the computation of  predicting the higher  levels  much more
accurate. 

G. Kallinikos  33



Hierarchical Large Multi-Label Text Classification of Greek Legal Documents by Utilizing Label Augmentation

A correct assignment of all 3 labels will sum up to a higher score for our model and
therefore that will ultimately lead to better predictions. The shallow level of hierarchies,
as well as the instance of a lot of few-shot and zero-shot classes in the subject levels
make this problem unique and worthwhile to investigate and experiment upon.

The actual  way label  augmentation  works  is  described as  follows:  We are  given a
structured label hierarchy, namely H, of a known depth, namely  d.  Hn  is used to
denote the set of labels in the nth level. Then, we change our initial labels sets so that a
label in a lower hierarchy level, for example the subject level, will also contain the upper
levels’ ancestors for that label, namely the chapter level and the volume level in this
example. Intuitively, this technique will lead to better results for our model, since it will
narrow down the possible label candidates in a much more cohesive manner by doing a
sort of grouping of the lower level labels with their ancestors.

We  can  easily  find  which  labels  a  specific  document  is  assigned  with,  just  by
referencing its position on each of our datasets. Then, we can also inspect the actual
label names from the pre-loaded variable the GLC provides.

Image 13: Code that shows how we can access each label level and their names

This label augmentation technique also comes with a modification of the BERT model.
For the prediction, the corresponding [CLS] token of a chosen BERT layer is used. This
means that different layers can be used to predict different hierarchy levels. Since we
have  just  3  hierarchy  levels,  our  model  will  be  using  the  LAST-THREE method  of
predicting. This method essentially uses the classifiers of the 3 last layers of the model
to make predictions. This is called layer-wise guided training and it provides the benefit
of having increased accuracy when paired with the label augmentation mechanism.

G. Kallinikos  34



Hierarchical Large Multi-Label Text Classification of Greek Legal Documents by Utilizing Label Augmentation

6. FINE TUNING THE MODELS

In  this  section  we will  describe  in  detail  the  methods that  outline  the  development
processes, not only mentioning the pre-processing, training and evaluation decisions
but also presenting the inner workings of each model, as well as the evaluation results
that derived from the evaluation. We make sure to take advantage of the best practices
and state-of-the-art  methods in our development processes. The way this section is
presented aims to make the understanding of those development processes as simple
as possible while making sure to not miss out on any details that lead to the end results.

In accordance, we start by introducing the pre-processing techniques that were used for
the  dataset  and  then  following  up  with  the  batch  definition,  the  hyper-parameters
selection, the optimizer, the cost function and the weight balancing methods that were
used. We finish up with the training and evaluation loops.

After  having  presented  the  outline  of  the  development  processes,  we are  ready  to
scrutinize our three models’ details, starting from our simpler model and ending up to
the  final  model,  which  is  the  primary  model  of  this  thesis.  At  each  of  the  models’
sections, the evaluation results are also presented with some light comments comparing
it with the previous ones.

6.1 Pre-processing

The pre-processing part is the same for all the models, and it focuses mostly on the
dataset. Firstly, we have to look into how the tokenizing will be implemented. For that
purpose, we take advantage of the transformers library tokenizer: BertTokenizerFast.

A  tokenizer  is  essentially  in  charge  of  preparing  the  inputs  for  a  model.  The
Huggingface  tokenizers library  provide  base  classes  for  both  a  full  implementation
namely PreTrainedTokenizer and a fast one, PreTrainedTokenizerFast which we will be
using. The fast one is known to achieve significant speed-up improvements and also
provide some additional mapping methods. BertTokenizerFast is based on WordPiece
tokenizer and essentially inherits from PreTrainedTokenizerFast which contains most of
the main methods.

We can easily load the BertTokenizerFast like so:

Image 14: Tokenizer initialization from the pretrained GreekBERT model

taking advantage of the predefined tokenizer of the GreekBERT model.

With this tokenizer as a base, we can define our pre-processing function which will take
the ‘text’ part of each dataset and it will tokenize it with padding and truncation up to a
maximum length of 512 tokens. When this function is called, the tokenizer is defined so
that it automatically returns the ‘input_ids’, the ‘token_type_ids’ and the ‘attention_mask’

G. Kallinikos  35



Hierarchical Large Multi-Label Text Classification of Greek Legal Documents by Utilizing Label Augmentation

which are required as input while training the models. The best part is that the tokenizer
can also be used for batches without any change. 

Keeping a total of 512 tokens is not actually making our predictions worse, because of
the actual number of words per set. As shown at Chapter 4 where we describe the
dataset, the average number of words for the train set is 600, for the development set
574 and for the test set 595, so very little information is cast away each time.

An  important  note  is  that  our  Greek  Legal  Code  (GLC)  dataset  consists  of  legal
documents which in most cases contain categorical  numbers and unneeded values,
especially at the start. We make sure to pre-process each text, essentially truncating
arithmetical values and two letter tokens. The tokenizer will then take care of the rest,
keeping the most valuable information.

Image 15: Pre-processing function build upon the tokenizer

Therefore, we apply the pre-processing function to each dataset, making sure to give
the parameter batched the value ‘True’ in the map function. We now have the tokenized
version of each dataset.

Image 16: Mapping of the pre-processing function used on the volume dataset

6.2 Data Loaders

In  this  part  we  describe  the  DataLoaders,  which  are  used  to  split  the  dataset  into
batches, as well as providing a single interface for all the three necessary inputs: the
sequence  input_ids,  the  attention_mask and  the  labels.  They  are  provided  by  the
Pytorch utils library and are of great help when developing models like BERT because
they keep everything into one place.

First of all we define the a batch size of 8. We chose this low number for speed up and
memory  management  purposes  while  testing  showed  that  bigger  numbers  made
training almost impossible to handle. To initialize a  DataLoader, we need to wrap the
three inputs into a  TensorDataset and initializing a sampler with that. Afterwards, the
DataLoader can be defined given the above mentioned batch size.

The DataLoader is essentially a way to store both the samples and the corresponding
labels into a single Dataset that enables easy access to the samples. All the above can
be summarized in the following lines of code:

G. Kallinikos  36



Hierarchical Large Multi-Label Text Classification of Greek Legal Documents by Utilizing Label Augmentation

Image 17: DataLoader initialization for the train set

Of course, we use the same processing for the validation and test  data from each
hierarchy level; volume, chapter and subject datasets. These DataLoaders will be used
later on inside the training and evaluation loops.

6.3 Optimizer & Cost Function

A very important decision is the choice of both the optimizer and the cost function. For
the former, AdamW seems the most logical choice [35], for the later, we decide to use
the classic Cross Entropy Loss function [36]. We will take a small look into those before
moving on with the actual training part. 

Figure 4: Comparison between Adam and other optimizers

As far as the AdamW optimizer is concerned, it has been shown to not only yield super
fast training speeds like Adam, but also to improve it by decoupling the weight decay
from the optimization step. This means that the optimal weight decay is not affected by

G. Kallinikos  37



Hierarchical Large Multi-Label Text Classification of Greek Legal Documents by Utilizing Label Augmentation

changes to the learning rate, and has been proven to be the state-of-the-art option in
many models. It’s the best adaptive optimizer in most of the cases and it is good with
sparse data.  Essentially,  by  using  AdamW there  is  no  much need to  focus on the
learning rate value and we will not be needing heavy fine-tuning.

The decision to use Cross Entropy Loss is pretty self explanatory; it is the go-to option
when dealing with multi-label classification tasks. In actuality, we will be using the so-
called Sigmoid Cross-Entropy loss, which basically is a Sigmoid activation function, plus
a  Cross  Entropy  Loss  function.  To  handle  cases  of  class  imbalance,  we  use  the
weighted version, by first  computing the class weights using a function provided by
sklearn  namely  compute_class_weight.  We then  convert  the  weights  into  a  tensor,
which may be passed as argument to the corresponding PyTorch CrossEntropyLoss
function.

6.4 Training and Evaluation

Before going into the models, we will be presenting the training and evaluation loops,
and by doing so we will have completed the outline of our development process. It may
seem simple at first, but the actual details are crucial to the making of a robust model.
For training,  we have to make sure of  clearing and calculating the gradients at  the
correct time in each pass while also being wary of the exploding gradients problem that
may occur. The evaluation loop is a simpler version of the training counterpart.

First  of  all,  we will  be  using  Huggingface Transformers  along with  PyTorch for  our
training  and  fine-tuning  later  on.  They  have  been  designed  to  be  compatible  and
abstract a lot of the complexity of the training part specifically. 

Image 18: Base code for the training loop of our models

G. Kallinikos  38



Hierarchical Large Multi-Label Text Classification of Greek Legal Documents by Utilizing Label Augmentation

We start by calling the method model.train()  to put the model in train mode. Then we
define the iteration over the batches with the help of our DataLoader, at each iteration
start we have to clear the previously calculated gradients with model.zero_grad(). After
that  we  get  our  model  predictions  for  our  current  batch  and  we  compute  the  loss
between the actual and the predicted values, summing it to the total loss.

We then use our loss function’s backward() function call to make a backward pass and
calculate the gradients. A very important thing to note here is that we have to prevent
the problem of exploding gradients. We can do so by a simple call to clip_grad_norm_()
function  provided  by  PyTorch.  Without  this  call,  we  risk  losing  a  lot  in  prediction
accuracy.

Image 19: Continuation of the training loop code

Lastly, we update our optimizer parameters by using the  step() function. Our function
returns the training loss of the epoch as well as the total predictions. These values will
be used after the training loop to compare the losses.

Now, for the evaluation loop we have to change some things. First and foremost, we
deactivate the dropout layers by calling model.eval(), which puts the model in evaluation
mode. This time, we do not have to make any changes to our optimizer or loss function,
however  we have to  make sure that  the predictions  are  made with  torch.no_grad()
which deactivates the autograd of our model. This is important because we are doing
evaluation and not training; we do not want our model’s parameters to be updated.

After that, along with the loss, we compute our metrics: R-Precision, Recall and F1-
Score and return them. These will be used later on for our models comparison.

6.5 Summary

In this chapter we presented the outline of the development process that will be the
main core of our models. Both the training and evaluation loops were described in detail
as well as the decision making in our hyper-parameters, cost function, optimizer and
DataLoaders. We are now in position to present our models architecture and evaluate
them in the next chapter.

G. Kallinikos  39



Hierarchical Large Multi-Label Text Classification of Greek Legal Documents by Utilizing Label Augmentation

7. MODELS & COMPARISON

Having defined the outline of our training and evaluation methods, we can now proceed
unto the actual model development. What we aim to create is a model that utilizes the
label  augmentation  technique,  on  our  legal  documents  dataset  and classifies  those
documents as accurately as possible, given our resources.

This model has its perks against other mainstream models that can be used since it will
be  different  in  the  way  it  handles  the  output  predictions  and  calculates  the  loss.
Nevertheless, the core processes remain the same and little has to be changed outside
the models’ structure.

That being said, we have to have models that may be used for comparison purposes
and these are presented firstly, from the simplest model up to the more complex one. All
of the models used follow the training and evaluation methods described above and
base their architecture to GreekBERT and essentially BERT. That means that we can
utilize predefined functions from HuggingFace and PyTorch that are build for BERT-like
models which will help speed-up development time.

Ultimately, we gather each models’  metrics into a corresponding table and compare
them. The datasets’ zero-shot and few-shot labels prove to be a significant obstacle in
our  models’  performance  but  since  each  model  is  trained  for  the  same amount  of
epochs, 10 in total, the comparison can prove which model is the best.

7.1 Vanilla Model

The vanilla model is our simplest of the three models. It uses the GreekBERT model as
its  base  with  the  only  change  of having  an  increased number  of  labels  in  the
configuration  depending  on  the  hierarchy  level.  Afterwards,  we  pass  that  new
configuration to  a  predefined  class  provided  by  HuggingFace,  called
AutoModelForSequenceClassification.

What this does is essentially taking advantage of the AutoModel interface which directly
chooses the architecture that we want, namely a  BertModel  but this simplifies things
since we only want to change the configuration so that we predict more labels. The
code for this model is provided below.

Image 20: Code for the vanilla volume case model

Here we can directly appreciate the simplicity and easiness of use that the pretrained
transformer models have; in just 4 lines of code we have loaded the model and have
created a base model that will be used for sequence classification for the exact number

G. Kallinikos  40



Hierarchical Large Multi-Label Text Classification of Greek Legal Documents by Utilizing Label Augmentation

of labels we want. The code for the chapter and volume cases is the same, except of
the number of labels. 

However, we must also consider the need of further fine-tuning this model, which will be
done in the next model. Without our specialized fine-tuning, the model might incorrectly
use a sub-optimal layer in predicting the output label.

Essentially, we will be training three vanilla models, each with different number of labels
and on the corresponding labels’ dataset.  So for our fist vanilla model we predict 47
labels, for our second vanilla model 389 labels and for the third vanilla model 2285.

The  optimizer  that  we  will  be  using  is  the  AdamW  provided  as  well  from  the
transformers library. For the loss function, the cross entropy loss function is used, which
is popular for multi-classification problems as mentioned previously.

The models are trained in 10 epochs in total, and evaluated after each pass on the
development dataset. The weights of the best model over all epochs are saved in a file,
for  each  model  correspondingly.  Basically,  they  follow  the  training  and  evaluation
processes that were described in Chapter 6.

A very important thing to note is that the models do not really change the inner structure
of our base model, which means that in the case of our classification task we essentially
are  not  using  any  fine-tuning  for  classification.  For  that  reason  we  can  expect  a
somewhat low level of overall performance.

Table 3: R-Precision ± std for each model, using the optimal saved weights

R-Precision Training Set Evaluation Set Test Set

Volume Level Model 69.5 ± 0.2 68.4 ± 0.1 67.7 ± 0.3

Chapter Level Model 67.5 ± 0.3 68.2 ± 0.3 65.8 ± 0.2

Subject Level Model 66.7 ± 0.2 66.3 ± 0.1 65.3 ± 0.3

As we can see, the models decrease in performance as we go down the hierarchy
levels. This is to be expected since the amount of few-shot and zero-shot classes when
going down in the hierarchy also increases, and as a result the models learn much
slower and less accurately. The Recall and F1-Score metrics results are quite similar to
R-Precision.

Table 4: Recall ± std for each model, using the optimal saved weights

Recall Training Set Evaluation Set Test Set

Volume Level Model 69.3 ± 0.4 68.2 ± 0.2 67.5 ± 0.1

Chapter Level Model 67.2 ± 0.3 68.4 ± 0.1 65.6 ± 0.2

Subject Level Model 66.5 ± 0.3 66.5 ± 0.0 65.7 ± 0.4

G. Kallinikos  41



Hierarchical Large Multi-Label Text Classification of Greek Legal Documents by Utilizing Label Augmentation

Table 5: F1-Score ± std for each model, using the optimal saved weights

F1 Score Training Set Evaluation Set Test Set

Volume Level Model 69.4 ± 0.3 68.3 ± 0.2 67.6 ± 0.2

Chapter Level Model 67.3 ± 0.3 68.3 ± 0.2 65.7 ± 0.2

Subject Level Model 66.6 ± 0.3 66.4 ± 0.1 65.5 ± 0.4

Now that we have finished our vanilla model that we can use to compare to our primary
model, we need a more advanced version of it. The reason we build this vanilla model is
to have an idea of what the lowest possible performance for our models should look
like.  This  way,  we  may  experiment  with  different  hyper-parameters  and  fine-tuning
approaches and easily dismiss those that yield lower or exact same performance. We
can now move on with the presentation of our fine-tuned model.

7.2 Fine-tuned model

The second,  fine-tuned  model is essentially the vanilla model with an extra layer that
fine-tunes the output  so that the performance is better. To reduce implementation time,
the model is predicting labels from all 3 hierarchy levels at the same time,  instead of
having three separate models for each level.

What  that  extra  layer  does  is  essentially  ignoring  the  pooler  output  layer  of  the
GreekBERT model,  which  is  known  for  having  decreased  performance  in  text
classification tasks.  We must  also note that  the BERT models used have not  been
directly designed to tackle the task of text classification, making this small adjustment
necessary.

After experimenting with the hyper-parameters, we found that by starting with an even
lower learning rate yields better results compared to our previous models while other
changes do not seem to offer an advantage and a lot of the times its actually a loss in
performance. Therefore, the extra layer is our only essential difference to the vanilla
model.

Table 6: R-Precision ± std for each hierarchy level, using the optimal saved weights

R-Precision Training Set Evaluation Set Test Set

Volume 73.4 ± 0.3 72.6 ± 0.2 72.7 ± 0.1

Chapter  72.1 ± 0.1 75.0 ± 0.2 73.4 ± 0.3

Subject  69.8 ± 0.3 70.3 ± 0.1 68.2 ± 0.3

G. Kallinikos  42



Hierarchical Large Multi-Label Text Classification of Greek Legal Documents by Utilizing Label Augmentation

By looking at the R-Precision of our fine-tuned model we observe a 5% improvement in
predictions,  which  is  very  important.  The  pooler  output  layer  essentially  made
predictions more obscure in our vanilla model. The smaller learning rate should also be
noted  since  our  experiments  show  an  increase  of  1-2%  in  performance  which  is
definitely notable.

Table 7: Recall ± std for each hierarchy level, using the optimal saved weights

Recall Training Set Evaluation Set Test Set

Volume 71.3 ±  0.1 70.5 ± 0.2 70.8 ± 0.3

Chapter  72.8 ± 0.2 75.3 ± 0.1 74.4 ± 0.1

Subject  69.4 ± 0.2 69.3 ± 0.3 67.5 ± 0.2

Table 8: F1-Score ± std for each hierarchy level, using the optimal saved weights

F1 Score Training Set Evaluation Set Test Set

Volume 72.3 ± 0.2 71.5 ± 0.2 71.7 ± 0.2

Chapter  72.4 ± 0.2 75.1 ± 0.2 73.9 ± 0.2

Subject  69.6 ± 0.3 69.8 ± 0.2 67.8 ± 0.3

The Recall and F1-Score metrics follow the trends of R-Precision. We expect training
for more than just 10 epochs to further enhance these results but our computation time
and  overall  cost  would  be  much  higher.  Our  goal  basically  is  to  compare  different
techniques so the improvement percentage is what we want to be paying attention to.
The fine-tuned model will be a more powerful comparator.

A small note can be made here about how the performance of the model for the chapter
level increases in the evaluation set, but we believe that is because of the number of
more predictable documents rather than overfitting. Moreover, the predictions on the
test set are a bit better than our training set but this can be attributed to the randomness
of document allocation in each set.

To sum up, compared with our previous vanilla model, we notice a small but significant
improvement  in all of our metrics. Of course, the decreasing performance while going
down in the hierarchy levels still persists, just like in the case of the vanilla model, which
is to be expected due to the increasing amount of few-shot and zero-shot labels of the
dataset. We are now ready to move to our primary model.

7.3 Label Augmented model

Our last model is designed to utilize the label augmentation technique. On top of that it’s
designed so that specific layers are used to predict labels from specific hierarchy levels.

G. Kallinikos  43



Hierarchical Large Multi-Label Text Classification of Greek Legal Documents by Utilizing Label Augmentation

This model is also based on GreekBERT, similarly to our two previous models but it
consists of a much more complex architecture.

In order to enable our model to output hidden states, we set the output_hidden_states
variable in the configuration to True. This also helps with accuracy, since more hidden
states can give better accuracy than just one last hidden state which is the default.
There  are  12 hidden states  ion  total,  corresponding to  all  the  models’  layers,  from
beginning to the last. Each hidden state is essentially an array of shape  (batch_size,
sequence_length,  hidden_size) and with  this,  we can access any of  the  12 hidden
states.

Basically, for the actual technique used we take advantage of the last three layers of the
model for our predictions. We call this technique LAST-THREE, because the classifiers
f9-f12 are used to predict the labels in L1 through L3.

Image 21: Initializer code for the pretrained GreekBERT model

The LAST-THREE technique works better in our case compared to other techniques
available for label augmented models, since the hierarchy is shallow. This means that
while layers 1-8 retain and enhance their pre-trained representations, the last layers, 9-
12 will leverage all this previously acquired knowledge to make even better predictions,
and it’s intuitively the highest level of contextualization possible. 

These last layers are by design better at  classifying our sequences, since they are
forced to handle the classification of gradually more refined classification tasks.

Image 22: Code showing how the hidden states are utilized inside the model for predictions

G. Kallinikos  44



Hierarchical Large Multi-Label Text Classification of Greek Legal Documents by Utilizing Label Augmentation

From our  preliminary  experiments  we  found  that  using  a  drop-out  layer  is  actually
detrimental for our predictions and therefore we will not be using one. As for the hyper-
parameters  of  our  model,  we  leverage  the  grid-search  function  to  find  the  optimal
learning rate. 

As mentioned in our optimizer selection segment of Chapter 6, by using the AdamW
optimizer we can be less worried about the learning rate values we try, so we can speed
up searching time by looking at just a few learning rates, namely [2e-5, 4e-5, 2e-6].

The training method is very similar to our previous models, but this time we have to
make adjustments in both the cost function and the weight balancing. 

For the weight balancing, we use the same functionality presented in the models of
Chalkidis et al., 2020 [1] where each loss is essentially weighted by the percentage of
labels at the corresponding level. This fine-tuning is intuitively correct since different
levels have different total amount of labels to predict each time and the weights must be
changed according to their number. To put it in mathematical terms, if  |Ln|  is the
number of layers in the nth level of the hierarchy and |L|  denotes the total number of

labels across all  levels, then the weight balancing is  wn=
|Ln|
|L|

for the nth  level. This

adjustment  is  necessary  and  without  it  our  model  will  have  very  low  performance
scores.

As far as the loss function is concerned, we use the already described loss function for
the label augmented model. In detail, since we are using the LAST-THREE technique
and our hierarchy is of 3 levels, we need to only adjust the scoring for these last three
levels. Our model is graded with a higher value for each correct prediction in each level.
This way, our model is fairly evaluated with respect to the augmented labels case. This
adjustment is also necessary for our model.

Lastly, we define our classification function  f i=σ (W i⋅c i+b i) which is also in-line with
the corresponding classification function used in the model of Chalkidis et al. 2020. [1]
Here is a brief description of the parameters:

• Ln is the set of labels in the nth level of our hierarchy, just like in the weight
balancing formula.

• W i is a label vector of the ith layer of our model, and W i∈ℝ|Ln|×768 . Here, Ln
is changed according to the exact number of labels our layer will predict. This is a
trainable parameter for our model.

• bi is another trainable vector of the ith layer in our model, and bi∈ℝ|L|×1 .

• c i is the classification, [CLS] token of our model. Just like in the case of our
fine-tuned model, we make sure to ignore the pooler output layer which obscured
our prediction results.

• σ is a Sigmoid activation function, provided by PyTorch.

By using this classification function for training we can be better at training our model.
Of course, our pre-trained parameters will have to be utilized as well, so we use these
as a starting ground for our classification function parameters by directly extracting them
with the model.parameters() method.

G. Kallinikos  45



Hierarchical Large Multi-Label Text Classification of Greek Legal Documents by Utilizing Label Augmentation

The label augmented model takes longer to train, due to the redefined cost function, the
modified per-layer weight balancing as well as our new classification function, however
the predictions should intuitively be more accurate. We present the results below.

Table 9: R-Precision ± std for each hierarchy level, using the optimal saved weights

R-Precision Training Set Evaluation Set Test Set

Volume Level 88.9 ± 0.2 88.9 ± 0.2 88.7 ± 0.1

Chapter Level 87.5 ± 0.3 87.2 ± 0.1 87.4 ± 0.2

Subject Level 86.6 ± 0.2 86.8 ± 0.3 86.7 ± 0.2

Table 10: Recall ± std for each hierarchy level, using the optimal saved weights

Recall Training Set Evaluation Set Test Set

Volume Level 87.9 ± 0.3 87.9 ± 0.3 87.6 ± 0.3

Chapter Level 86.5 ± 0.1 87.1 ± 0.2 86.2 ± 0.3

Subject Level 83.2 ± 0.3 83.4 ± 0.2 83.1 ± 0.1

Table 11: F1 Score ± std for each hierarchy level, using the optimal saved weights

F1 Score Training Set Evaluation Set Test Set

Volume Level 88.4 ± 0.3 88.4 ± 0.3 88.1 ± 0.2

Chapter Level 87.0 ± 0.2 86.6 ± 0.2 86.8 ± 0.3

Subject Level 84.9 ± 0.3 85.1 ± 0.3 84.9 ± 0.2

The results show that our technique really worked in increasing the prediction accuracy.
An important thing to note here is that the decrease of the performance going down in
hierarchy levels is much more smoother, which shows that our scoring function helped a
lot to group together the correct different labels from each level.

7.4 Summary

In this chapter we made a detailed presentation of our three developed models with
increased  focus  on  our  last  and  primary  model.  The  evaluation  metrics  were  also
presented and a comparison of the aforementioned models was conducted. In our next
chapter, we make a more detailed comparison of our models and discuss our findings
and final remarks.

G. Kallinikos  46



Hierarchical Large Multi-Label Text Classification of Greek Legal Documents by Utilizing Label Augmentation

8. CONCLUSIONS 

In this chapter we will compare in more detail our three models and discuss how our
different techniques led to a better performance. The metric of our comparison will be
F1 Score. Furthermore, we will present our predictions only on the test set but for each
hierarchy  level.  We  can  see  a  very  big  gap  of  performance  when  using  the  label
augmented model in comparison to the previous ones. This improvement is about 21%
when compared to the vanilla model and almost 17% compared to the fine-tuned model
for the volume level. 

Table 12: Comparison table for each developed model

F1 Scores on Test Set Vanilla Model Fine-Tuned Model Label Augmented
Model

Volume Labels

47

67.6 ± 0.2 71.7 ± 0.2 88.1 ± 0.2

Chapter Labels

389

65.7 ± 0.2 73.9 ± 0.2 86.8 ± 0.3

Subject Labels

2285

65.5 ± 0.4 67.8 ± 0.3 84.9 ± 0.2

Going down in the hierarchy, we observe a 19% improvement compared to the vanilla
model and a 13% for the fine-tuned model for the chapter level. Lastly, for the subject
level we see a 19% improvement compared to the vanilla model and a 17% for the fine-
tuned model. This constant enhance in performance shows how much important is to
group as much as possible  the labels from different  hierarchy levels  in  hierarchical
classification and further enhances the point of using label augmentation when dealing
with hierarchical content while also showing that the better design of the task leads to
better results.

We  also  believe  that  the  layer-wise  guided  training  is  essential  to  our  models
performance and that without it the prediction accuracy would be much lower. This is
again accounted to our different way of dealing with the classification task. Training the
last  three layers for predictions while making lower layers deal  with lower hierarchy
levels is intuitively a better training approach to using only one instance of the last layer
to predict all three labels.

We must also take into consideration that the label set for both chapter and subject
levels is quite large, which would intuitively introduce a high level of difficulty and loss in
performance  when  using  label  augmentation.  In  practice,  the  computational  time  is
approximately  the  same  in  all  of  our  models  which  is  of  course  supported  by
parallelization techniques. That being said, our computational cost is higher in our last
case, essentially because we increase the amount of predicted labels and make the
cost function a bit more complex.

G. Kallinikos  47



Hierarchical Large Multi-Label Text Classification of Greek Legal Documents by Utilizing Label Augmentation

Consequentially,  we  have  produced  three  different  models  for  handling  the  task  of
hierarchical multi-label text classification, one of which utilizes the label augmentation
mechanism. This model produces significantly better results and further enhances the
argument  of  using  label  augmentation  in  any  kind  of  hierarchical  text  classification
problem.

Despite its increased performance, models that use the technique should always be
aware of what layers will be utilized in the prediction. In our case, LAST-THREE was the
best option due to the shallow depth of the hierarchy structure and was our direct choice
given the experiments presented in  the  paper  of  Chalkidis  et  al.  2020.  [1] In  other
problems,  different  amount  and  kind  of  layers  will  probably  have  to  be  used  and
experimenting with the possible combinations will be needed.

A  final  note  should  be  made  on  the  intricacies  of  the  GLC  dataset.  The  last  two
hierarchy levels contain a lot of few-shot and zero-shot classes, making it more difficult
for the label augmentation technique. Nevertheless, the model has no problem correctly
classifying the sequences into every hierarchy level since it takes advantage of basically
grouping together the correct labels by giving them higher scores. Having such a large
dataset of legal documents can really obscure the predictions and make the training
part really difficult, so correct handing of our input is absolutely necessary, as presented
in the pre-processing section.

To  summarize,  label  augmenting  paired  with  label-wise  guided  training  leads  to
enhanced  results  even  in  the  case  of  a  large  set  of  label-ancestors  in  a  shallow
hierarchical structure and it should be a considerable choice in multi-label classification
models. Of course, different datasets would need different handling and result may vary.

G. Kallinikos  48



Hierarchical Large Multi-Label Text Classification of Greek Legal Documents by Utilizing Label Augmentation

ABBREVIATIONS – ACRONYMS

NLP Natural Language Processing

NER Named Entity Recognition

POS Part Of Speech Tagging

GLC Greek Legal Code

Seq2Seq Sequence-To-Sequence

RNN Recurrent Neural Network

LSTM Long Shot Term Memory

GRU Gated Recurrent Unit

BERT Bidirectional Encoder Representations from Transformers

CBOW Continuous Bag Of Words

G. Kallinikos  49



Hierarchical Large Multi-Label Text Classification of Greek Legal Documents by Utilizing Label Augmentation

REFERENCES

[1] Nikolaos  Manginas,  Ilias  Chalkidis  and  Prodromos  Malakasiotis.  Layer-wise  Guided  Training  for
BERT: Learning Incrementally Refined Document Representations. arXiv:2010.05763 [cs.CL]

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. arXiv:1810.04805 [cs.CL]

[3] John Koutsikakis,  Ilias  Chalkidis,  Prodromos Malakasiotis  and Ion Androutsopoulos.  GreekBERT:
The Greeks visiting Sesame Street. arXiv:2008.12014 [cs.CL]

[4] Thomas Wolf,  Lysandre Debut,  Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric  Cistac,  Tim Rault,  Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,  Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame,  Quentin  Lhoest  and  Alexander  M.  Rush.  HuggingFace's  Transformers:  State-of-the-art
Natural Language Processing. arXiv:1910.03771 [cs.CL]

[5] Christos Papaloukas, Ilias Chalkidis, Konstantinos Athinaios, Despina-Athanasia Pantazi and Manolis
Koubarakis. Multi-granular Legal Topic Classification on Greek Legislation. arXiv:2109.15298 [cs.CL]

[6] Iulia Turc, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. Well-Read Students Learn Better:
On the Importance of Pre-training Compact Models. arXiv:1908.08962 [cs.CL]

[7] Jacob Devlin and Ming-Wei Chang. Research Scientists, Google AI Language. Open Sourcing BERT:
State-of-the-Art Pre-training for Natural Language Processing. Google AI Blog

[8] Marwan Omar,  Soohyeon Choi,  DaeHun Nyang and David  Mohaisen.  Robust  Natural  Language
Processing: Recent Advances, Challenges, and Future Directions. arXiv:2201.00768 [cs.CL]

[9] Daniel W. Otter, Julian R. Medina and Jugal K. Kalita. A Survey of the Usages of Deep Learning in
Natural Language Processing. arXiv:1807.10854 [cs.CL]

[10] Dan Hendrycks, Kimin Lee and Mantas Mazeika. Using Pre-Training Can Improve Model Robustness
and Uncertainty. arXiv:1901.09960v5 [cs.LG]

[11] Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao Liu, Yuqi Huo, Jiezhong Qiu, Yuan Yao, Ao
Zhang, Liang Zhang, Wentao Han, Minlie Huang, Qin Jin, Yanyan Lan, Yang Liu, Zhiyuan Liu, Zhiwu
Lu, Xipeng Qiu, Ruihua Song, Jie Tang, Ji-Rong Wen, Jinhui Yuan, Wayne Xin Zhao and Jun Zhu.
Pre-Trained Models: Past, Present and Future.  arXiv:2106.07139v3 [cs.AI]

[12] John P. Lalor, Hao Wu and Hong Yu. Improving Machine Learning Ability with Fine-Tuning. ArXiv
[13] John P. Lalor, Hao Wu and Hong Yu. Soft Label Memorization-Generalization for Natural Language

Inference.  arXiv:1702.08563v3 [cs.CL]
[14] Ilya Sutskever, Oriol Vinyals and Quoc V. Le. Sequence to Sequence Learning with Neural Networks.

arXiv:1409.3215v3 [cs.CL] 
[15] Rumelhart, David E. Hinton, Geoffrey E. Williams and Ronald J.  Learning internal representations by

error  propagation.  Tech.  rep.  ICS  8504.  San  Diego,  California:  Institute  for  Cognitive  Science,
University of California.

[16] Jordan and Michael I.. Serial order: a parallel distributed processing approach. Tech. rep. ICS 8604.
San Diego, California: Institute for Cognitive Science, University of California.

[17] Ralf C. Staudemeyer and Eric Rothstein Morris. Understanding LSTM -- a tutorial into Long Short-
Term Memory Recurrent Neural Networks. arXiv:1909.09586 [cs.NE] 

[18] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho and Yoshua Bengio. Empirical  Evaluation of
Gated Recurrent Neural Networks on Sequence Modeling. arXiv:1412.3555 [cs.NE]

[19] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk and Yoshua Bengio. Learning Phrase Representations using RNN Encoder-Decoder for
Statistical Machine Translation. arXiv:1406.1078v3 [cs.CL] 

[20] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser and Illia Polosukhin. Attention Is All You Need. arXiv:1706.03762v5 [cs.CL] 

[21] Alex Sherstinsky. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory
(LSTM) Network.  arXiv:1808.03314v9 [cs.LG] 

[22] Lulu  Wan,  George  Papageorgiou,  Michael  Seddon  and  Mirko  Bernardoni.  Long-length  Legal
Document Classification. arXiv:1912.06905v1 [cs.CL] 

[23] Kamran Kowsari, Kiana Jafari Meimandi, Mojtaba Heidarysafa, Sanjana Mendu, Laura E. Barnes and
Donald E. Brown. Text Classification Algorithms: A Survey. arXiv:1904.08067v5 [cs.LG] 

[24] Rie  Johnson  and  Tong  Zhang.  Effective  Use  of  Word  Order  for  Text  Categorization  with
Convolutional Neural Networks. arXiv:1412.1058v2 [cs.CL] 

[25] Takeru  Miyato,  Andrew  M.  Dai  and  Ian  Goodfellow.  Adversarial  Training  Methods  for  Semi-
Supervised Text Classification. arXiv:1605.07725v4 [stat.ML] 

[26] Zichao  Yang,  Diyi  Yang,  Chris  Dyer,  Xiaodong  He,  Alex  Smola  and  Eduard  Hovy.  Hierarchical
Attention Networks for Document Classification. https://aclanthology.org/N16-1174 

[27] Himanshu S. Bhatt, Manjira Sinha and Shourya Roy. Cross-domain Text Classification with Multiple
Domains and Disparate Label Sets. https://aclanthology.org/P16-1155

G. Kallinikos  50

https://arxiv.org/abs/2010.05763
https://aclanthology.org/P16-1155
https://aclanthology.org/N16-1174
https://arxiv.org/abs/1605.07725v4
https://arxiv.org/abs/1412.1058v2
https://arxiv.org/abs/1904.08067v5
https://arxiv.org/abs/1912.06905v1
https://arxiv.org/abs/1808.03314v9
https://arxiv.org/abs/1706.03762v5
https://arxiv.org/abs/1406.1078v3
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1909.09586
https://www.osti.gov/biblio/6910294
https://apps.dtic.mil/dtic/tr/fulltext/u2/a164453.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/a164453.pdf
https://arxiv.org/abs/1409.3215v3
https://arxiv.org/abs/1702.08563
https://www.semanticscholar.org/paper/Improving-Machine-Learning-Ability-with-Fine-Tuning-Lalor-Wu/2844495557b5eba17227d83324cfe614d52e7afd
https://arxiv.org/abs/2106.07139
https://arxiv.org/abs/1901.09960
https://arxiv.org/abs/1807.10854
https://arxiv.org/abs/2201.00768
https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html
https://arxiv.org/abs/1908.08962
https://arxiv.org/abs/2109.15298
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/2008.12014
https://arxiv.org/abs/1810.04805


Hierarchical Large Multi-Label Text Classification of Greek Legal Documents by Utilizing Label Augmentation

[28] Ronan Collobert, Jason Weston, Leon Bottou, Michael Karlen, Koray Kavukcuoglu and Pavel Kuksa.
Natural Language Processing (almost) from Scratch. arXiv:1103.0398v1 [cs.LG] 

[29] Yoon Kim. Convolutional Neural Networks for Sentence Classification. arXiv:1408.5882v2 [cs.CL]
[30] Christopher  Olah.  Understanding  LSTM  Networks.  https://colah.github.io/posts/2015-08-

Understanding-LSTMs/
[31] Collins and Singer. Unsupervised Models for Named Entity Classification. EMNLP 1999
[32] Jonas Gehring,  Michael  Auli,  David Grangier,  Denis  Yarats  and Yann N. Dauphin.  Convolutional

Sequence to Sequence Learning. arXiv:1705.03122v3 [cs.CL] 
[33] Andrea  Galassi,  Marco  Lippi  and  Paolo  Torroni.  Attention  in  Natural  Language  Processing.

arXiv:1902.02181v4 [cs.CL] 
[34] Sneha Chaudhari,  Varun Mithal,  Gungor Polatkan and Rohan Ramanath.  An Attentive Survey of

Attention Models. arXiv:1904.02874v3 [cs.LG] 
[35] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv:1412.6980v9

[cs.LG]
[36] Aditya K. Menon, Ankit Singh Rawat, Sashank Reddi and Sanjiv Kumar. Multilabel reductions: what is

my loss optimising?, Advances in Neural Information Processing Systems 32 (NeurIPS 2019) 
[37] Jesse  Read  and  Fernando  Perez-Cruz.  Deep  Learning  for  Multi-label  Classification.

arXiv:1502.05988v1 [cs.LG] 
[38] Konstantinos I. Athinaios. Named Entity Recognition using a Novel Linguistic Model for Greek Legal

Corpora based on BERT model, BSc THESIS
[39] Yi Tay, Mostafa Dehghani, Jai Gupta, Dara Bahri, Vamsi Aribandi, Zhen Qin and Donald Metzler. Are

Pre-trained Convolutions Better than Pre-trained Transformers?. arXiv:2105.03322v2 [cs.CL] 
[40] Kevin Clark, Urvashi Khandelwal, Omer Levy and Christopher D. Manning. What Does BERT Look

at? An Analysis of BERT’s Attention. https://aclanthology.org/W19-4828/
[41] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong and

Qing He. A Comprehensive Survey on Transfer Learning. arXiv:1911.02685v3 [cs.LG] 
[42] Tomas  Mikolov,  Kai  Chen,  Greg  Corrado  and  Jeffrey  Dean.  Efficient  Estimation  of  Word

Representations in Vector Space. arXiv:1301.3781v3 [cs.CL] 
[43] Oriol Vinyals and Quoc Le. A Neural Conversational Model. arXiv:1506.05869v3 [cs.CL] 
[44] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee and

Luke Zettlemoyer. Deep contextualized word representations. arXiv:1802.05365v2 [cs.CL] 

G. Kallinikos  51

https://arxiv.org/abs/1802.05365v2
https://arxiv.org/abs/1506.05869v3
https://arxiv.org/abs/1301.3781v3
https://arxiv.org/abs/1911.02685v3
https://aclanthology.org/W19-4828/
https://arxiv.org/abs/2105.03322v2
https://arxiv.org/abs/1502.05988v1
https://papers.nips.cc/paper/2019/hash/da647c549dde572c2c5edc4f5bef039c-Abstract.html
https://arxiv.org/abs/1412.6980v9
https://arxiv.org/abs/1904.02874v3
https://arxiv.org/abs/1902.02181v4
https://arxiv.org/abs/1705.03122v3
https://aclanthology.org/W99-0613.pdf
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://arxiv.org/abs/1408.5882v2
https://arxiv.org/abs/1103.0398v1

	PREFACE
	1. INTRODUCTION
	2. HISTORY OF TRANSFORMER BASED MODELS
	2.1 Word Embeddings
	2.2 Sequential Processing
	2.3 LSTM (Long Short-Term Memory) Models
	2.4 GRU (Gated Recurrent Unit) Models
	2.5 Attention Mechanism
	2.6 Transformer Models
	2.7 GreekBERT
	2.8 GreekLegalBERT
	2.9 Summary

	3. PRE-TRAINED TRANSFORMERS & BERT
	4. GREEK LEGAL CODE DATASET
	5. LABEL AUGMENTATION
	6. FINE TUNING THE MODELS
	6.1 Pre-processing
	6.2 Data Loaders
	6.3 Optimizer & Cost Function
	6.4 Training and Evaluation
	6.5 Summary

	7. MODELS & COMPARISON
	7.1 Vanilla Model
	7.2 Fine-tuned model
	7.3 Label Augmented model
	7.4 Summary

	8. CONCLUSIONS
	ABBREVIATIONS – ACRONYMS
	REFERENCES

