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ABSTRACT

Convolutional Neural Networks have caused a revolution in the field of computer vision
in  recent  years  by  continually  breaking  many  state-of-the-art  records.  CNNs  are
mathematical models that consist of layers of convolutional operators followed by non-
linear  activation  functions.  The  non-linear  activation  functions  improve  the  model's
expressive ability, by allowing it to adapt to a wide range of data variations. Another
method  for  increasing  the  non-linearity  of  models  is  the  employment  of  numerous
convolutional layers and the formulation of a complex structure between them.

Throughout  these  years,  research  has  focused  on  improving  these  non-linear
techniques so  that  the  model  can generalize  with  increasing  flexibility  on  the  data.
However, there has been a minimal study on improving the nature of the convolution
process itself.  To tackle this issue, in this bachelor's thesis,  we seek to replace the
linear convolutional operators with non-linear ones, namely Volterra convolutions.

Volterra convolutions are polynomial approximation functions and are, in fact, the most
well-known models for analyzing complex dynamic systems found in nature. As a result,
they  are  deemed  appropriate  for  enhancing  the  expressive  capacity  of  the  linear
convolution operator, as well as introducing additional search spaces and dimensions
for our estimation functions that are more susceptible to data variations.

In this study, we implement and evaluate the non-linear Volterra convolutions by using
the CIFAR10 and CIFAR100 datasets. We demonstrate that they outperform their linear
counterparts with just minor changes to our model design. Moreover, we cast light on
how  the  information  is  interpreted  and  the  higher-order  relations  that  arise  in  the
receptive fields. Also, we identify a resemblance between the non-linear terms of this
method and the modern self-attention models that have contributed significantly to the
field of computer vision recently. Finally, we show relationships between the non-linear
convolutions  and  the  deeper  layers  of  our  network,  revealing  a  resemblance  to
polynomial functions.

The  implementations  of  the  non-linear  convolutions  are  provided  in  this  link:
https://github.com/AGiannoutsos/Volterra-Convolutions

SUBJECT AREA:   Machine Learning, Computer Vision

KEYWORDS:   Volterra Convolutions, Non-Linear Convolutions, Convolutional Neural

Networks, Quadratic Convolutions



ΠΕΡΙΛΗΨΗ

Τα  συνελικτικά  νευρωνικά  δίκτυα  έχουν  προκαλέσει  επανάσταση  στον  τομέα  της
υπολογιστικής  όρασης  τα  τελευταία  χρόνια  σπάζοντας  συνεχώς  πολλά  ρεκόρ  της
τελευταίας λέξης της τεχνολογίας. Τα CNN είναι μαθηματικά μοντέλα που αποτελούνται
από στρώματα συνελικτικών τελεστών, ακολουθούμενα από μη γραμμικές συναρτήσεις
ενεργοποίησης. Οι μη γραμμικές λειτουργίες ενεργοποίησης βελτιώνουν την εκφραστική
ικανότητα  του  μοντέλου,  επιτρέποντάς  του  να  προσαρμόζεται  σε  ένα  ευρύ  φάσμα
διασποράς δεδομένων. Μια άλλη μέθοδος για την αύξηση της μη γραμμικότητας των
μοντέλων είναι η χρήση πολυάριθμων συνελικτικών στρωμάτων και η διαμόρφωση μιας
πολύπλοκης δομής μεταξύ τους. 

Κατά τη διάρκεια των τελευταίων ετών, η έρευνα έχει επικεντρωθεί στη βελτίωση αυτών
των  μη  γραμμικών  τεχνικών,  έτσι  ώστε  το  μοντέλο  να  μπορεί  να  γενικεύει  με
αυξανόμενη ευελιξία στα δεδομένα. Ωστόσο, ελάχιστη μελέτη έχει πραγματοποιηθεί για
τη βελτίωση της φύσης της ίδιας της διαδικασίας συνέλιξης. Για να αντιμετωπίσουμε
αυτό το ζήτημα, σε αυτή τη πτυχιακή διατριβή, επιδιώκουμε να αντικαταστήσουμε τους
γραμμικούς  συνελικτικούς  τελεστές  με  μη  γραμμικούς,  τις  ονομαζόμενες  συνελίξεις
Volterra. 

Οι συνελίξεις Volterra είναι συναρτήσεις πολυωνυμικής προσέγγισης και καθιστούν ένα
από τα πιο γνωστά μοντέλα για την ανάλυση πολύπλοκων δυναμικών συστημάτων που
βρίσκονται  στη  φύση.  Ως  αποτέλεσμα,  κρίνονται  κατάλληλες  για  την  ενίσχυση  της
εκφραστικής ικανότητας του τελεστή γραμμικής συνέλιξης, καθώς και για την εισαγωγή
πρόσθετων χώρων αναζήτησης και διαστάσεων για τις συναρτήσεις εκτίμησης που είναι
πιο επιρρεπείς σε παραλλαγές δεδομένων.

Σε αυτή τη μελέτη,  υλοποιούμε και αξιολογούμε τις μη γραμμικές συνελίξεις Volterra
χρησιμοποιώντας τα σύνολα δεδομένων CIFAR10 και CIFAR100. Αποδεικνύουμε ότι
υπερτερούν των γραμμικών ομολόγων τους με μικρές μόνο αλλαγές στη σχεδίαση του
μοντέλου μας. Επιπλέον, ρίχνουμε φως στον τρόπο ερμηνείας των πληροφοριών και
στις  σχέσεις  υψηλότερου  επιπέδου  που  προκύπτουν  στα  δεκτικά  πεδία.  Επίσης,
εντοπίζουμε μια ομοιότητα μεταξύ των μη γραμμικών όρων αυτής της μεθόδου και των
σύγχρονων μοντέλων αυτοπροσοχής που έχουν συνεισφέρει σημαντικές ανακαλύψεις
στον τομέα της υπολογιστικής όρασης πρόσφατα. Τέλος, δείχνουμε σχέσεις μεταξύ των
μη  γραμμικών  συνελίξεων  και  των  βαθύτερων  στρωμάτων  του  δικτύου  μας,
αποκαλύπτοντας μια ομοιότητα με πολυωνυμικές συναρτήσεις.

Οι υλοποιήσεις των μη γραμμικών συνελίξεων παρέχονται στον παρακάτω σύνδεσμο:
https://github.com/AGiannoutsos/Volterra-Convolutions

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ:    Μηχανική Μάθηση, Μηχανική ‘Οραση

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ:     Συνελίξεις Βολτέρρα, Μη-γραμμικές Συνελίξεις, Συνελικτικά

Νευρωνικά Δίκτυα, Τετραγωνικές Συνελίξεις
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Non-linear convolutions for image classification

1 INTRODUCTION

Convolutional neural networks, CNNs, have been proved to produce cutting-edge re-
sults on a variety of computer vision applications, including image classification. Their
design was heavily influenced by biology and the models of primate visual systems,
such as the one given by Hubel and Wiesel [19]. Convolution is an essential compo-
nent because it allows the model to learn invariant representations.

Convolution is a linear process. As a result, since linear convolutions do not have
enough expressive capacity to explain the world, there have been developed ap-
proaches that modify its non-linear property. The introduction of activation functions
such as the ReLU function [29] is an excellent example. Also, the depth of the models
with several deep layers stacked on each other offers the model more expressive ca-
pability. Although much research has been conducted to improve the architecture of
the CNN model, little has been done to incorporate non-linearity [50] in convolutions
themselves.

For these reasons in this work we introduce non-linearity in our models by using the
Volterra Series [43] which form the Volterra convolutions. Volterra Series are well-
known systems that have been used to simulate the complex processes of nature
from frequency to time and space domains. The non-linearity is achieved by adding
to the convolutional operator, beyond the linear elements, the multiplication of all the
input element interactions from a small patch of the image. Non-linear convolutions
can provide a richer representation of the data by utilizing the higher order relations
between the input data, thus improving the selectivity in the translation invariance
property of the convolution.

Volterra convolutions and their quadratic and cubic forms, multiply the input data by
many times in order to capture meaningful information that belies within the inter-
actions of the data. Having numbers that better correlate with each other tends to
increase the similarity factor, thus the signal in that part of the model is magnified and
contributes more the the final resolution of the model. From the above features we
can also assume that exhibit similar characteristics with self-attention models, as they
follow an input adaptive weighting and the form correlation between pairs in the input
data.

Furthermore, the stacking of many convolutional layers in order to increase the non-
linear aspects of a models, is similar to the mathematical formulation of a deep multi-
linear polynomial network [7]. With the use of non-linear convolutions, which resemble
the synthesis of polynomials, we can verify the theory of the unification of the neural
networks under a mathematical framework of multi-linear polynomial networks.

Finally, in our efforts to increase image recognition performance, we obtain three
unambiguous results: we present an alternative convolutional operator as well as a
self-attention approach and we verify the occurrence of polynomials in deep CNNs.
For that reason our work can be interpreted as a contribution to the advancement of

A. Giannoutsos 13



Non-linear convolutions for image classification

the convolutional operator, while being also a variant of a self-attention method and a
verification of polynomial neural networks.

1.1 Related Work

1.1.1 CNNs

Convolutional Neural Networks are not a novel concept. In order to extract features
from an image Gabor filters were implemented at first [28]. Since these methods
lacked consistency, Fukushima established one of the initial versions of CNNs in
1988 [13]. Later in that decade, the back propagation mechanism for automatic op-
timization of model parameters was applied to the CNN models in [27]. It is in [26]
where gradient descent based back propagation was utilized which was meant to of-
fer countless possibilities in the way parameters are adapted to the data variations.
These models, while expressive enough, were not adequately employed due to a lack
of computational resources. Deep and large models, as well as deep learning, were
to usher in a revolution in computer vision at the beginnings of the previous decade.

The introduction of deep CNNs with the AlexNet model [24], which set a new record in
the ImageNet benchmark [35] with a vast improvement started a new era in computer
vision. Following that advancement the field has developed with an unprecedented
speed. Many networks later focused on various parts of the model’s structure. VG-
GNet [36] concentrated on the depth and frequency of convolutions, whereas Incep-
tion Network [40] focused on the representational capability of deep convolutions with
multiple interchangeable filters and channels. ResNet [16] pioneered the concept of
skip connections, which convey data and improve the training process. Efforts have
also been made in terms of efficiency, with MobileNet [17] investigating separable
convolutions and their capacity to reduce model parameters, and EffientNet [41] intro-
ducing a new class of sophisticatedly scaled convolutional models. Convolutions have
been utilized for many additional computer vision problems outside image classifica-
tion, such as object detection [33] and semantic segmentation [14], [34] Convolution’s
great translation equivariance and invariance properties made this operator appeal-
ing for usage in a wide range of image-related applications. Furthermore, the weigh
sharing feature meant that the models had a reduced number of parameters while still
being generalizable. Convolutions were the primary building block of computer vision
machine learning models across all of these breakthroughs. Convolutions, on the
other hand, are incapable of capturing long-range interactions due to their restricted
receptive fields. As a result, several approaches from sequence models, such as the
self-attention mechanism, have been introduced to mitigate this issue. Additionally, a
high association between these models and non-linear convolutions can be found.

A. Giannoutsos 14



Non-linear convolutions for image classification

1.1.2 Self-attention and transformers in vision

As we expect a resemblance to non-linear convolutions and self-attentions it is worth
noting similar methods that have been applied to computer vision problems. A plethora
of such models exist like [18] where the local relation layer dynamically calculates
weight aggregation based on the relation of the local pixel pairs with linear layers
and imputed structural information. In addition to that [32] makes use solely on self-
attention modules on convolutional kernels instead of the plain convolutions, while
achieving an decrease in computational cost. Following that approach, convolutional
operators can be completely replaced by attention layers.

There are also approaches that self-attention layers serve as augmentations on the
convolutional blocks in which they try to benefit from both of their properties like the
convolutions’ translation equivariance and the self-attentions’ input-adaptive weight-
ing and global receptive field. Such a method is incorporated by [9] in which they add
the convolutional weights to the self-attention weights, thus gaining an advantage of
the both methods at the same time. Another great example could be [2] where au-
thors support that the concatenation of features attained from attention heads and
convolutional filters yields the best performance. Moreover [37] uses attention layers
as a bottleneck layer between convolutions.

Apart from the self-attention heads, in the recent years, the introduction of transform-
ers [42] has caused a revolution in NLP world with language models like BERT [10].
Despite the gap in task of interest between computer vision and NLP, the two pro-
cesses converged once Vision Transformers [11] were introduced. ViT treats images
as a sequence of strings, therefore no image-specific logical bias is introduced. One
advantage of this is that ViT is an excellent model for scaling in huge datasets. How-
ever, because to a lack of worldwide understanding of image detection difficulties, ViT
face implementation hurdles as key building blocks of computer vision. The Hierar-
chical Transformers [12] have been one approach to resolving this issue, albeit they
are seen as a temporary solution. As a result, CNNs are an essential component of
computer vision, while non-linear convolutions may incorporate the characteristics of
both convolutions and self-attentions.

1.1.3 Non-linear and polynomial convolutions

Aside from study on the design of convolutional networks, there have also been at-
tempts to clarify the domains of non-linear convolutions and their introduction as poly-
nomials inside the neural network. To begin with, [50] have already introduced the
concept of non-linear Volterra convolutions. Our research on non-linear convolutions
is based mostly on [50] , as they had already implemented an version of Volterra con-
volutions and tested it on the CIFAR10 and CIFAR100 datasets. Although, this work
lacks the experimentation of the 3rd order Volterra convolutions and an insight about
the parameters of the model that contribute the most to the non-linear convolutions.

A. Giannoutsos 15
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In addition to that research, non-linear convolutions have been also treated as a form
of polynomials. In fact, the addition of a linear, a square and a cubic term multiplied by
coefficients - in our case filters - is the concept of a 3rd order polynomial expression.

P (x) = a0 + a1x+ a2x
2 + · · ·+ anx

n, n ≥ 0

By seizing that representational opportunity, [44] proposed the use of polynomial
equation in the convolutional operator, thus the use of non-linear convolutions. They
have proved this theory on GNNs with 2nd order polynomials on the GCNN model, a
variant of convolutional models on non-euclidean space.

Parallel to neural network and CNN research, efforts have been made to integrate
neural network mathematical operations into a sequence of polynomial functions.
Deep CNNs in [7] are represented by high-order multi-linear polynomials, while high-
order polynomials in [6] have been introduced in GANs.

It was important that we commented on the developments in the research Polynomial
networks because since as our research is largely unrelated to it, in the findings of
the experiments there are presented data that verify and reinforce the idea that neural
networks can be replaced by polynomial approximation functions.
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2 METHOD

In this section, we will go through the fundamentals of Volterra-based convolutions.
We will begin with an overview of linear convolutions and then go on to non-linear
Volterra-based convolutions. In addition to the explanation of the non-linear convolu-
tions, we will offer a short insight about the similarity with the self-attention models.
After we’ve established a mathematical foundation, we’ll move on to an explanation
of how they’re implemented in PyTorch. Finally, we will present not just the model in
which we will use Volterra-based convolutions, but also its architecture.

2.1 Linear Convolution

Convolution is a mathematical operation that is executed on two functions to produce
a third function that reveals how the shape of one is modified by the other. Convolution
refers to both the outcome function and the method used to compute it. It is defined
as the integral of the product of two reversed and shifted functions. Let f and g be
these two functions and ∗ be the operator. Then the convolution will be calculated as:

(f ∗ g) (t) =
∫ ∞

−∞
f(τ)g(τ − t)dτ (1)

It can be viewed as a method of multiplying two arrays of numbers, often of different
sizes but the same dimensions, to generate a third array of numbers of the same
dimensionality. This can be expanded in images as convolutions may be used to
build operators whose output pixel values are simple linear combinations of particular
input pixel values. In other worlds it is the process of adding each feature of the image
to its nearby neighbors.

2.1.1 Convolutional Neural Networks

Deep Learning has powerful applications in many practical fields of science and tech-
nology. Deep Convolutional Neural Networks (deep CNNs) are an important family of
artificial deep neural networks. MLPs have been regularized to create CNNs. Fully
connected networks, or MLPs, are networks in which each neuron in one layer is
linked to all neurons in the following layer. Convolutional Neural Networks are a form
of neural network that uses convolution rather than standard matrix multiplication in
at least one layer. Theoretical [49] as well as empirical evidence [20] suggests that
convolutions help deep CNNs to efficiently learn locally shift-invariant features, allow-
ing them to demonstrate their capabilities in texts, images, and several other types of
data.
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CNNs consist of multiple 2D convolutions over the images where the kernels of the
filters are the trainable parameters. The expression of the 2D convolution is:

g(x, y) = conv (f(x, y)) ⇒

g(x, y) = ω ∗ f(x, y) =
a∑

dx=−a

b∑
dy=−b

ω(dx, dy)f(x+ dx, y + dy)

where g(x, y) is the product of the convolution and ω is the kernel.

The CNNs have multiple layers and sizes of kernels ωL. In addition every convolution
output is passed through a non-linear function. More preciously at the lth layer of the
CNN we have the following:

conv(x[l−1],Ω) = σ[l]

n
[l−1]
C∑
i=1

n
[l−1]
H∑
j=1

n
[l−1]
W∑
k=1

Ωijkx
[l−1]
i,h+j−1,w+k−1 + b[l]

 (2)

Ω are the kernels, x is the input of the layer, σl is the non-linear function or activation
function at the lth layer and b

[l]
n are the biases at that layer. After several convolutional

layers, the CNN model produces a predicted picture. The mean error between the
predicted and target images is then calculated using the loss function, and the loss is
propagated to the parameters using the back-propagation process.

These models are effective because they examine linear correlations between the
picture and its features. Correlations in nature, on the other hand, are extremely com-
plicated, as they nearly never form a linear function between physical quantities. That
is why we strive to simulate physical processes using linear equations. Nonetheless,
there are methods in convolutions that allow us to harness nature’s non-linear com-
ponents and extract their properties. These techniques can be found in the Volterra
Series.

2.2 Volterra Series

Volterra series are a type of nonlinear polynomial representation. They are possi-
bly the most well-known and commonly utilized non-linear system representations
in signal processing. A Volterra representation is a mathematical extension of the
conventional linear system representation.

A system may be described more precisely as a rule that assigns a value y to an input
x. This rule can also be expressed as in 3 using the T operator.

y(t) = Tx(t) (3)
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In classical system theory the systems assumed continuous and time-invariant. So
and we limit the T operator to the system response that can be expressed by signal
convolution as can be described in 4 by using the H operator.

y(t) = H1x(t) =

∫
R
h(1)(τ)x(t− τ)dτ (4)

Volterra [43] expanded this formula into non linear representations by adding a series
of non linear terms like:

y(t) = h0 +

∫
R
h(1)(τ1)x(t− τ1)dτ1

+

∫
R⊭

h(2)(τ1, τ2)x(t− τ1)x(t− τ2)dτ1dτ2

+

∫
R⊯

h(3)(τ1, τ2, τ3)x(t− τ1)x(t− τ2)x(t− τ3)dτ1dτ2dτ3

+ . . .

The Volterra Series then can be written as:

y(t) = H0x(t) +H1x(t) +H2x(t) + · · ·+Hnx(t) (5)

Where every term Hn is a non linear operator that filters the signal.

Hnx(t) =

∫
Rn

hn(τ1, . . . , τn)x(t− τ1)(t− τn)dτ1 . . . dτn (6)

The term H0 is a constant value and later this will be our bias for the representation.
In equation 6 every h(n) in the integral is a kernel which is called Volterra Kernel. This
must be causal because the features of the signal can not be calculated from the
future. For that reason every Volterra Kernel must maintain the following properties:

hn(τ1 . . . τn) = 0 for any τi < 0 where i = 1, 2, 3, . . . , n (7)

The Volterra series may be viewed of as a Taylor series with memory: while the con-
ventional Taylor series only reflect systems that transfer the inputs to outputs instantly,
the Volterra series describes systems in which the result is additionally influenced by
input information. Regardless of the type of problem, integrals can be computed in
finite and non-finite intervals. Nevertheless, for computer applications we have to use
finite completion intervals. The discrete data can enter the model in the form of matri-
ces and tensors of many dimensions. In this way Volterra Kernels can parse the data
with the sliding window technique. The discretized Volterra operator [1] is defined as:
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y(t) = h0 +
N∑

n=1

k∑
τ1=a

· · ·
k∑

τn=a

hn(τ1, . . . , τn)
n∏

i=1

x(t− τi) (8)

Where hn(τ1, . . . , τn) are the discrete Volterra Kernels in the form o matrices or multi-
dimensional tensors. and since the operation needs to be causal, the kernels may
form an upper triangular matrix or a super-diagonal tensor. In addition, the symmetri-
cal kernels, can be formulated as in 9 in order to avoid the unnecessary computations
of the triangular form. Although later in the implementation, due to software architec-
tural decisions, kernels are fully computed and a triangular mask is applied for the
causality.

y(t) = h0 +
N∑

n=1

k∑
τ1=0

k∑
τ2=τ1

k∑
τ3=τ2

· · ·
k∑

τn=τn−1

hn(τ1, . . . , τn)
n∏

i=1

x(t− τi) (9)

This discrete formula can be used for the practical problems of signal processing. Ac-
cording to the Stone–Weierstrass theorem theorem any continuous nonlinear system
can be approached by a discrete finite system where in our case we have the Volterra
Series.

The convergence of an infinite Volterra series cannot be guaranteed for any input
signals due to its power series nature, which have polynomial complexity. As a result,
both the input and output signals must be limited to a certain degree. In our approach
we will experiment with up to 3rd order non-linear degrees.

2.3 Volterra Convolution

The idea of non-linear convolutions can be extended to the 2D signals of the images
and as a consequence to the Deep Convolutional Neural Networks. But first of all, we
have to explain the technique with which non-linear convolutions can be applied with
the use of Volterra Series.

The Volterra series is a set of approximations that attempts to simulate dynamic sys-
tems in the real world. Similarly, Volterra-based convolutions employ appropriate ker-
nels to filter the input data. Volterra kernels perform the same functions as linear
convolution kernels. The linear kernels are the first order kernels, and they are iden-
tical to conventional convolutions. Then the 2nd order kernel then takes into account
the interactions between the input data two times. These interactions are then filtered
by the 2nd degree kernel. This algorithm has a polynomial complexity since the input
data is multiplied by itself at each degree to capture higher-order interactions. For our
method we will incorporate 2nd and 3rd order Volterra convolutions. If we consider L
as a set of elements that the convolution kernel ω of shape (kh, kw) computes on its
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pass the these elements reshaped would form an array of size kh · kw. Per patch of
the sliding window these data would form an array x.

x =
[
x1, x2, . . . , xn

]
where n = kh · kw (10)

Then a simple calculation the 1st order of the Volterra convolution would result in the
following expression:

y(x) = b+
n∑

i=1

ωixi (11)

Where ωi are the parameters of the 1st order Volterra kernel and xi is the data in their
receptive field. When we apply this theory to higher-order Volterra convolutions, we
get the following forms:

y(x) = b+
n∑

i=1

ω
(1)
i xi +

n∑
i=1

n∑
j=1

ω
(2)
ij xixj (12)

y(x) = b+
n∑

i=1

ω
(1)
i xi +

n∑
i=1

n∑
j=1

ω
(2)
ij xixj +

n∑
i=1

n∑
j=1

n∑
k=1

ω
(3)
ijkxixjxk (13)

Equation 12 is responsible for the calculation of 2nd order Volterra convolutions while
equation 13 is for the 3rd order Volterra convolution. Regarding the kernels, ω

(2)
ij

consist the 2nd order kernel and it forms an upper triangular matrix because of the
causality concerns, while ω

(3)
ijk is the 3rd order kernel and can be reshaped in a sym-

metrical 3rd order tensor of size n3.

Finally, if we take combine equation 2 and the equations 12 and 13 from Volterra con-
volutions, we can get the following form that details integration of Volterra convolutions
in a CNN.

volterra conv(x[l−1],Ω) = σ[l]

n
[l−1]
C∑
c=1

(
b+

n∑
i=1

ω
(1)
ci x

[l−1]
i +

n∑
i=1

n∑
j=1

ω
(2)
cijx

[l−1]
i x

[l−1]
j

)
(14)

volterra conv(x[l−1],Ω) =

σ[l]

n
[l−1]
C∑
c=1

(
b+

n∑
i=1

ω
(1)
ci x

[l−1]
i +

n∑
i=1

n∑
j=1

ω
(2)
cijx

[l−1]
i x

[l−1]
j +

n∑
i=1

n∑
j=1

n∑
k=1

ω
(3)
cijkx

[l−1]
i x

[l−1]
j x

[l−1]
k

)
(15)
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2.3.1 Volterra convolution and matrix notation

In this section we will explain how equations 12 and 13 can be written more efficiently
by utilizing the matrix notation and products. But first we need to briefly define them.

As explained in [22] the Kronecker product of matrices A ∈ RI×J and A ∈ RK×L is
denoted as A⊗B and the result matrix will have a size of RIK×JL.

The product can be defined as:

A⊗B =


a11B a12B . . . a1JB
a21B a22B . . . a2JB

...
... . . . ...

aI1B aI2B . . . aIJB

 (16)

The Khatri − Rao product [21] is the collumnwise Kronecker product. If we have
matrices A ∈ RI×J and A ∈ RK×L then their Khatri-Rao product is denoted as A⊙ B
and the result matrix will be a matrix of size RIJ×K .

The product can be defined as:

A⊙B =
[
a1 ⊗ b1 a2 ⊗ b2 a1 ⊗ b1 . . . aK ⊗ bK

]
(17)

Given the already mentioned notations and products the Volterra convolution operator
of equations 12 and 13 can be rewritten more compactly as:

y(x) = b+ ωT
1 x+ ωT

2 (x⊙ x) (18)

y(x) = b+ ωT
1 x+ ωT

2 (x⊙ x) + ωT
3 (x⊙ x⊙ x) (19)

Where the coefficients ω1, ω3 and ω3 have dimensions of (n1, 1), (n2, 1) and (n3, 1)
correspondingly.

2.3.2 Volterra convolution and Self-attention mechanism

The Attention mechanism may be thought of as a mapping operation between three
vectors: K, Q, and V. These three must have originated from the linear transformation
of the same vector X at first. The vector V multiplied by the vector of similarities be-
tween K and Q will be the final outcome of the attention operation. The self-attention
mechanism removes the last multiplication and keeps the compatibility between K and
Q vectors. Consequently, either one is a spacial case of the other, although the con-
sideration of attention instead of the self-attention does not affect our assumptions.
To be more specific, self-attention is a sub-process of the attention procedure, yet it is
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the most integral piece since it captures the interaction between the input data. This
information is subsequently sent to the other attention mathematical processes, while
maintaining the core practice. As a result, self-attention elements may be recognized
using an attention model.

For our example will invoke to prove the similarity between Volterra convolution and
attention with the most common and popular type of self-attention the Scaled Dot
Product [42]. In 20

√
dk is a scaling factor, while Q, K and V are our given vectors.

Attention (Q,K, V ) = softmax

(
QKT

√
dk

)
V (20)

The similarities between the two techniques can be traced to the multiplication of
the K and Q terms. These two terms resulted from a linear transformation of the
image’s input data. As a result, removing this step makes this approach very similar
to the partial multiplication of the kernel patches of the picture to which the Volterra
convolution is applied.

Indisputably, there are several foundational differences. Initially, such a resemblance
may be considered for a Volterra convolution of the second order. The similarity with
3rd order convolution and multiplication V would be rather unstable because it is done
after the application of the softmax function, which is the other notable difference
between the two approaches. In the absence of softmax, the product’s values move
arbitrarily within their domain. Finally, the Volterra convolution is applied to patches of
the image and shares the same weights, but the self-attention has different weights
for every input values that are equally derived from the interactions of all the input
pixels.
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2.4 Volterra-Based Model

In this section, we will detail how we implemented the Volterra convolutional block and the model in which it is embedded.

2.4.1 Volterra Convolution Block

In this subsection, we will go through the approaches and methods utilized in PyTorch [31] to calculate the highest order interactions in a Volterra
convolutional block in greater depth.

Figure 1: This figure describes in detail all the steps by which we can calculate the 2nd order
Volterra convolution. The steps are consisted of reshaping and inner product operations, that

update the tensors A,B, C,D, E ,F ,G,H, I
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More precisely in Figure 1 tensor A ∈ Rin channels,height,width is our input image for
the 2nd order Volterra convolution block. This image is then reshaped, with the Py-
Torch function Unfold() which incorporates the im2col() algorithm, into columns of
the patches that were designated for the convolution operation by considering the
padding, dilation and strides. In the unfolded tensor B ∈ Rin channels,kernel size,tiles,
the kernel size originates from the height and width multiplication and the tiles are
the total convolution patches per channel of the image. After that the tensor is
again reshaped in the shape of (in channels · tiles, kernel size, 1) so that the broad-
cast operations of PyTorch’s Matmul() function favors the desired multiplication of
our vectors. Therefore, we permute the dimensions of tensor C into a new tensor
D ∈ Rin channels·tiles,1,kernel size. After that we calculate the inner product of tensor C and
D as follows.

Let tensors C, D and a new tensor E ∈ Rin channels·tiles,kernel size,kernel size. Tensor E will
be filed like:

Ecij =
∏

Cci1Dc1j for every i, j ∈ (1, kernel size) (21)

Following that operation we end p with a tensor E ∈ Rin channels·tiles,kernel size,kernel size

that stores all the interaction between the data of the kernels for every channel. How-
ever, since we know from form 7 that the kernels must be causal, in tensor E are stored
data interactions from the same elements in different positions. Furthermore, in our
previous from of the inner product 21 there is not any guarantee that i, j will overlap
between them. This is due to the fact that PyTorch does not provide an already build
and optimized function that computes the inner product in a given boundary of dimen-
sions. For that reason and to avoid the use of for loops inside our block, we apply an
upper triangular mask on tensor E that cancels that interactions between the already
computed elements, thus our operation maintains causal, as Volterra series need to
be.

Additionally to the zero mask we further divide our inner product results by a scaling
factor dk. For other attention like operations this step is avoided like in [3]. However,
we predict that for large values, the magnitude of the dot products increases, forcing
the Volterra activations into locations with exceptionally small gradients.To compen-
sate for this issue, just like authors do in [42] ,we multiply the dot products by 1√

dk
where dk is the size of the dot product dimension. To illustrate this phenomenon, lets
assume k and p as two independent random variables with mean 0 and variance 1.
Then their dot product would result in the following mean and variance:

matmul(k, p) =

dk∑
i=1

kiqii, with mean 0 and variance dk (22)

After the application of our zero causal mask and our scaling factor on tensor E , F
is reshaped into a tensor G ∈ Rtiles,in channels·kernel size·kernel size. We follow that process
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in order to accelerate the inner product between our input features and interaction
with our learning parameters H ∈ Rin channels·kernel size·kernel size,out channels. Finally, the
input image is multiplied with the learning parameters and then the end product is
reshaped with the use of the PyTorch function Fold() and the final convoluted image
I ∈ Rout channels,out height,out width is filled.

The process for the 3rd order Volterra convolution is mostly the same, whereas at
the step of the inner product between tensors C and D, another inner product be-
tween their output is calculated to capture 3rd order interactions. The 3rd order ten-
sor Q ∈ Rin channels·tiles,kernel size,kernel size,kernel size would have polynomially more terms
than the 2nd order convolution, which accounts for a large number of computations
and memory needed. Consequently, we have limited our search in only 3rd order
Volterra convolutions.

2.4.2 Model Architecture

The modern architecture of Wide-ResNets [47] will serve as the backbone of our
model. These models are build on Residual Networks of CNNs [16]. The basic
mathematical form of the models can be written as:

xl+1 = xl + F(xl,Wl) (23)

Where xl+1 and xl are the inputs of the layers, Wl are the parameters of that layer and
F are the residual connections.

It is proved [15] that these connections transfer the information and tackle the dimin-
ishing gradients problem. In other words the residual connection pass the information
from the deeper to the first layers of a NN and thus they accelerate the learning proce-
dure in the whole span of the model. Residual Networks are consisted of two types of
blocks, the basic and the bottleneck. Basic blocks stack two consecutive convolutions
with a kernel size of 3 × 3 following by Batch Normalization and ReLU layers. The
bottleneck layer is placed between the residual connections and in order to tackle the
dimensionality reduction and increment, it utilizes 1×1 convolutions, which can adapt
on the desired dimension.

The order of batch normalization, activation, and convolution in the residual block
was modified from conv-BN-ReLU to BN-ReLU-conv in comparison to the original
[16] ResNet models. It has been empirically demonstrated in [47] that it yields better
outcomes while being faster. In particular, [47] focuses on basic residual architecture
and presents various improvements that increase the performance of the base mod-
els. These advancements include the inclusion of additional convolutional layers as
well as the addition of more feature channels to the convolutional layers.

Table 1 depicts the overall structure of our networks: It is composed of an initial
Volterra convolutional block volterra conv, followed by three groups (each of size N) of
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Figure 2: The ResNet blocks are depicted in this diagram. The basic block is given in the first
column by the sequence of convolutional, batch normalization, and ReLU layers. The usage of

1× 1 convolutions on residual connections is presented in the second column.

residual blocks group1, group2 and group3, followed by average pooling, and finally
a classification head. The width of the remaining blocks of the in the three groups
conv2-4 is scaled by a set widening factor k = 10. Also the N depth factor of the
model is set to 4. We conduct and test many alterations to the number of feature
channels of Volterra convolutions in order to determine the impact of representational
power. These variations are explained in the following subsections.
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Table 1: This table covers the model’s design in depth. The model’s phases are listed in the
first column. The size of the picture as it outputs at each stage is indicated in the second
column. The third column goes into great depth on the parameters of each block. For the

Volterra convolution stage, we have two options. One is to use Linear convolutions in the first
layer of the model and the other is to replace them with Volterra convolutions on the first layer

of the model.

Model Block Output Block Parameters
Volterra convolution /

Linear convolution 32× 32
Volterra conv 3× 3 / 5× 5, 16 / 160

Linear convolution 3× 3, 16

Group1 32× 32 Conv
[
3× 3, 16 · k
3× 3, 16 · k

]
× 4 blocks

Group2 16× 16 Conv
[
3× 3, 32 · k
3× 3, 32 · k

]
× 4 blocks

Group3 8× 8 Conv
[
3× 3, 64 · k
3× 3, 64 · k

]
× 4 blocks

Pooling
8× 8
8× 8
1× 1

BN
ReLU

Average Pooling 8x8

Classification Head MLP 10 / 100
CrossEntropyLoss 10 / 100
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3 EXPERIMENTS

In this section, we’ll look at the many versions of the models that were tested, the
experiments and methodology that were used with the datasets, and eventually, we’ll
discuss the experiment findings.

3.1 Experiments Setup

Several experiments were performed. Initially, by keeping frozen the basic parameters
of the models, the potential of non-linear in relation to linear convolutions was tested.
Then, after we have detected the best non-linear convolutions, the quadratic one, we
test with grid search a specific parameter in the model in order to fine tune it. For that
reason, the selection of the model and training parameters needs to be explained in
depth.

3.1.1 Model Hyper-parameters

Table 1 shows the various settings that will be used to test the model. To evaluate the
performance of the model without the Volterra ones, we first use linear convolutions
with no non-linear components. We set the linear model to the test with 16 and 160
original channels. Then, at the position of the first convolutional layer, we alter the
linear ones and apply non-linear convolutions of the second and third orders in square
and cubic form. The non-linear convolutions are also tested with 160 and 16 different
channels to further comprehend their significance in the model’s operation.We do not
use skip connections between the first layer and the first group of the model when
the model contains 160 starting channels. This is done to understand the non-linear
contribution to the model and to transfer more easily the higher order features, to the
deeper layers of the model.

We experiment with the size of the kernels and their consistency with the dilations
in addition to the model’s channels. Table 5 details the particular adjustments made
to the parameters of the first layer of nonlinear convolutions. We experiment with
the kernel sizes of 3 × 3 pixels and 5 × 5 pixels in Volterra convolutions. We also
attempted 7x7, however due to the square and cubic memory requirements, this non-
linear convolution could not be calculated with our GPUs. The size of the kernels is
very essential since it allows us to acquire more information and detect interactions
between picture elements at greater distances. As a result, their testing is seen as
very crucial.

Also the next parameter which is considered to play a decisive role in the expressive
property and capacity of the model are the dilated convolutions [45]. The visuals of the
dilated convolutions can be found in figure 3. Dilated convolutions, as stated in [46],
enhance the receptive field of the top layers, accounting for the receptive field loss
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(a) (b) (c)

Figure 3: In these pictures the kernels are represented at different values of dilation. (a)
represents the kernel of dilation 1; (b) depicts the kernel of dilation 2; (c) depicts the kernel of

dilation 3.

caused by the reduction of convolutional patches. By incorporating these formulas we
can, in addition to these observations, especially in the case of Volterra convolutions,
take into account correlations in the data between unrelated points in the image.
These points may have some interesting property or interaction which is located very
far between the pixels of the image. As a consequence of this distance the simple
non-dilated kernels could not perceive it. For this reason we are experimenting with
the introduction of grade 2 and 3 dilatations in our non-linear convolutions to benefit
from that phenomenon.

In parallel to exploring with the structure of our model, we also attempt different mask-
ing and scaling techniques. With the method of masking we essentially exclude the
interactions that have been calculated twice due to the multiplication of the matrices.
These interactions are unnecessary and will theoretically be the same values and will
only add noise to the model parameters. Nevertheless we do experiments with and
without this stage in our non-linear convolutions.

Lastly, we try to remove the scaling factor. This is vital as it regulates the number of
parameters and gradients from the large numbers resulting from the quadratic and
cubic forms. With these large values, problems such as vanishing and exploding gra-
dients [30] could occur, however, it is worth trying the models without this parameter
and observing the non-linear behavior in conditions of large factors.

3.1.2 Training Hyper-parameters

To train the model, many current approaches were applied. Table 2 specifies the
parameters. For the initial learning rate, we employed a scheduled learning rate plan
beginning with 0.1 while having a degree of shrinkage of γ = 0.2 for every 60 epochs
at the start and every 20 epochs at the end of the training. For the optimizer we used
the SGD optimizer with momentum set to 0.9 [39]. This is an excellent parameter
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that has been found to adequately and successfully converge models in a number of
circumstances. The training takes place for 220 epochs and the batch size is set to
128.

For the loss function we have used the Cross Entropy loss. When the model need to
decide amongst a large number of classes, this is an essential technique.The Soft-
max and Negative Likelihood functions are combined in this loss function. The first
normalizes the values from 0 to 1 so that we can see the model’s result clearly, and
the second adjusts the error based on how near or distant the forecast is in the result
vectors.

The parameters were generated via Xavier initialization. This has been demonstrated
to improve model convergence by avoiding the issues of exploding and diminishing
gradients. As a result, we put our trust in it for the special task of initializing the non-
linear parameters. Xavier initialization can be found in 24 where W are the weights
and n is the size of the input dimension.

W = U

(
− 1√

n
,

1√
n

)
(24)

For the regularization of the model’s parameters L2 regularization [25] has been em-
ployed, set to 0.0005. Weight decay has been shown to improve model generalization
by lowering the number of weights and so minimizing noise and biases that may have
built up in them.

Moreover, another regularization approach was used in Dropout. Dropout [38] is a
regularization technique that zeroes randomly the activation values. This limitation
drives the network to learn more robust properties rather than depending on a small
selection of neurons in the network’s predictive capabilities. We set the probability of
dropout to 0.3.

Regarding the training data, there has been a reprocessing step before the train-
ing. More specifically, the CIFAR10 images have been normalized by subtracting
their means and dividing by their variance. As result the input data has a mean of 0
and variance of 1, which ameliorates the training. Finally, on the training data there
have been applied mild data augmentations. These lend themselves positively to the
training process as on the one hand they produce new data from the existing ones
and secondly they have a regularisation role as the parameters are exposed to new
altered data. The data augmentations that we apply like [47], are:

• Horizontal flipping with a probability of 0.5

• Reflection padding of 4 pixels

• Random crop of 32× 32 pixels
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Table 2: This table explains the settings of the learning rate, weight decay, optimizer, and
momentum per epoch period.

Epoch Learning rate L2 regularization Optimizer Momentum
0-60 0.1 0.0005 SGD 0.9

61-120 0.02 0.0005 SGD 0.9
121-160 0.004 0.0005 SGD 0.9
161-200 0.008 0.0005 SGD 0.9
201-220 0.00016 0 SGD 0.9

3.1.3 Training Process

The model and non-linear convolutions are implemented in PyTorch [31]. The exper-
iments have been carried out in the Google Colab Pro environment and the Nvidia
Tesla P100 and K80 GPUs have been used. A total of 30 computational days were
spent for the early and final experimentation of these models. The most detailed
results, the graphs for each metric, comparative graphs as well as the trained param-
eters of the best models can be found in the online platform of Weights and Biases in
this link https://wandb.ai/andreas giannoutsos/Volterra-Convolutions.

3.2 Datasets

For the experiments we use the CIFAR10 and CIFAR100 datasets [23]. This datasets
consists of 60000 images of size 32× 32 and there are two versions either with 10 or
with 100 classes. Of the 60000 images, 50000 are indented for training and 10000 for
model testing. The classes are evenly distributed as in CIFAR10 for each class it has
6000 different images and CIFAR100 has 600 images for every class. In CIFAR100
the 100 classes form 20 large categories from which smaller sub-classes. The ob-
jects in these 10 classes represent airplanes, dogs, cats, cars, horses, frogs, trucks,
deer, ships and birds. CIFAR100 as with the huge number in classes and the limited
number of examples that represent them is a very demanding dataset and requires
from the models capable generalization properties quickly without much data.

3.3 Results and Discussions

First, we examine the findings of tests on different non convolutions, such as quadratic
and cubic forms, and compare them to linear ones. They were tested in the datasets
CIFAR10 and CIFAR100, as shown in graphs 4 and 5, respectively. In all datasets, we
employed 160 channels for the initial convolutions and kept them frozen throughout
the tests. For each model, we tried three distinct training approaches, each time
randomizing its parameters from the start. We repeated the process twice for the
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CIFAR100 dataset. Tables 3 and 4 show the results for the CIFAR10 and CIFAR100
datasets, respectively.

Table 3: This table lists the accuracy and mean accuracy on CIFAR10 for each model
evaluated between Linear, Volterra 2nd, and Volterra 3rd order, together with the number of
parameters for each model in millions. Volterra 2nd order had the greatest single and mean

accuracy, indicating that Volterra convolutions enhance the model’s performance.

Model CIFAR10 Accuracy Mean Accuracy Parameters
Linear 95.39 95.21 95.20 95.26 36.6M

Volterra 2nd order 95.22 95.50 95.44 95.38 36.7M
Volterra 3rd order 95.31 95.20 95.39 95.30 36.8M

(a) (b)

Figure 4: These plots show the Validation Cross Entropy Loss of our three top performing
models on the CIFAR10 dataset per epoch of our training process; (a) represents the total loss

from the beginning of the training to the end; (b) depicts a portion of the training process
between 100 and 150 epochs in which a decrease in learning rate is observed. This diagram’s

values are also normalized and averaged using exponential moving averaging.

As can be seen from the findings, using nonlinear convolutions rather of linear ones
led to a considerable increase over the accuracy of the CIFAR10 dataset. This en-
hancement is accomplished by the use of 2nd order Volterra convolutions. Simul-
taneously, the cubic ones outperform the linear ones in terms of average accuracy
performance. However, despite having more parameters and a more robust capacity
to collect information from pictures, they perform no better than quadratic.

In contrast to CIFAR100, there is no gain in performance, but rather a decline. This
phenomena can be explained by a variety of factors. Initially, the CIFAR100 dataset is
significantly more complex. This is demonstrated by graph 6, which depicts the loss
difference between CIFAR10 and CIFAR100. We may deduce from this that the linear
and non-linear models have a tough time adjusting to so many distinct classes with
so little data.

Furthermore, the potential of Volterra convolutions to record the interactions between
data is clear. To do so, we’ll need enough data for each class, as the CIFAR100
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Table 4: This table shows the accuracy and mean accuracy on CIFAR100 for each model
evaluated between Linear, Volterra 2nd, and Volterra 3rd order together with the number of
parameters for each model in millions. The Linear model obtained the highest single and

mean accuracy.

Model CIFAR100 Accuracy Mean Accuracy Parameters
Linear 77.91 77.74 77.50 36.8

Volterra 2nd order 77.57 77.19 77.38 36.8
Volterra 3rd order 77.64 76.93 77.28 37.1

(a) (b)

Figure 5: These charts depict the Validation Cross Entropy Loss of our three best performing
models on the CIFAR100 dataset each training epoch; (a) indicates the overall loss from the

start of the training to the finish. A section of the training process between 100 and 150
epochs is illustrated in (b), where a reduction in learning rate is visible. The numbers in this

chart are also adjusted and averaged using exponential moving averaging.

limit only allows for a few hundred images per class. This concept of convolutional
generalization will be investigated further in the activations discussion section 3.3.2.

We can also see a drop in loss from the graphs 4 and 5 when the scheduler re-
duces the learning rate. As a result, the optimizer falls into smaller curves of the loss
plain that were relatively unexplored because to the higher learning rate. The graphs
demonstrate that the training curve converges for every model, thus we can be more
certain that we will not stick to local minimums using this strategy.
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(a)

(b)

Figure 6: The Validation Cross Entropy Loss of all of our best performing models on both the
CIFAR10 and CIFAR100 datasets is shown in these figures; (a) displays the total loss curve
from the beginning to the completion of the training; (b) represents a section of the training
process between 100 and 150 epochs, during which a reduction in learning rate is evident,

along with the loss.The data in this diagram are also scaled and averaged using exponential
moving averaging.
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3.3.1 Grid Search

We attempted to fine tune our models with two extensive grid searches in order to
maximize model experimentation while also clarifying the function of non-linear con-
volutions better. In the first, we look at the structure of the initial convolution, and
in the second, we look at the structure of the Volterra block’s usage of masking and
scaling.

Table 5: This table shows the grid search parameter values used to identify improved channel,
kernel size, and dilation parameters in Volterra convolutions.

Parameter Values
Volterra Channels 16, 160

Kernel size 3× 3, 5× 5
Dilation 1, 2, 3

Table 6: This table describes the parameter values for grid search in order to find better
parameters of scaling and masking in Volterra convolutions.

Parameter Values
Scaling True, False
Masking True, False

Tables 5 and 6 show the hyper-parameters that were examined at each grid search.
From the examinations of the results and the corresponding hyper-parameters we can
calculate their correlation. The correlation can be found at figure 7. The calculation
of the correlation together with an importance factor determined by the importance of
every hyper-parameter with the use of random forests is performed using the WandB
platform 1.

Regarding the first general grid search of the convolution’s hyper-parameters, we can
clearly see a strong negative connection between the number of channels, with the
model performing better as the number of channels is reduced. It is worth noting
that the model performs best in non-linear convolutions with 16 channels rather than
160. There is also a minimal association between the number of dilations and the
size of the kernel, which renders them ineffective for the ultimate performance and
capabilities of the model.

The determination of the number of channels is a difficult task. As explained in [41],
the number of channels must be determined by maintaining a balance between the
depth of the model, the size, and the number of channels. Furthermore, in [47],
the optimal number for the channels that prompt is 16, therefore the non-linear co

1https://wandb.ai/andreas giannoutsos/Volterra-Convolutions/sweeps
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Table 7: The optimal parameter settings for the Volterra convolution are described in this
table, for the 12 best performing models.

Best Volterra Order Channels Kernel size Dilation CIFAR10 Accuracy
Volterra 2nd order 16 3 2 95.53
Volterra 2nd order 16 5 2 95.51
Volterra 2nd order 16 5 2 95.48
Volterra 2nd order 16 3 2 95.46
Volterra 2nd order 16 5 3 95.42
Volterra 2nd order 16 3 3 95.40
Volterra 2nd order 160 3 3 95.29
Volterra 2nd order 160 3 2 95.29
Volterra 2nd order 160 5 2 95.29
Volterra 2nd order 160 5 3 95.18
Volterra 2nd order 160 5 1 95.14
Volterra 2nd order 160 3 1 95.13

Table 8: This table describes the optimal scaling and masking settings, resulting in the best 4
models of our experimentation.

Best Volterra Order Scaling Masking CIFAR10 Accuracy
Volterra 2nd order True False 95.60
Volterra 2nd order True True 95.45
Volterra 2nd order False True 85.12
Volterra 2nd order False False 84.67

could not escape using this strategy. Furthermore, the physics of the nonlinear co is
challenging since multiplication with big numbers can introduce numerical instability
into the model. As a result, fewer channels can be preferable. This phenomena is
studied in greater depth in the second grid search. Although dilatation was significant,
the size of the kernels did not play a major influence. This is due to the fact that
there are numerous interactions in a huge 5× 5 kernel, and a lot of information might
be lost during the process of adding the elements. However, dilatation can convey
information to distant locations in the image since the objects of interest may be far
away and may not be perceived with a tight kernel.

Scaling is clearly important to the performance of the non-linear models in the second
grid search. The mask and upper triangular panels, on the other hand, aren’t really
useful in the model. The decision to impose scaling on our model proved to be correct,
since high values of the inner product cause instability in our computations and the
gradients become exceedingly tiny or huge, posing a challenge in training our model.
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(a) (b)

Figure 7: These graphs show the correlation between the parameters of the grid searches. (a)
describes the values for the first general grid search while (b) describes the correlation in the

parameters of the 2nd grid search with scaling and masking factors.
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3.3.2 Linear and Volterra Activations

The observation and visualization of Volterra convolutions’ activations is an intriguing
feature. We acquired pictures from the activations of the 2nd and 3rd order Volterra
convolutions in the following experiment. We took samples from the beginning and
completion of the training for these images. The visuals are generated by the model’s
initial activation channel for each layer. Figures 9 and 10 depict activations of 2nd or-
der non-linear convolutions at the start and end of training, respectively, while Figures
11 and 12 illustrate activations of 3rd order non-linear convolutions.

On our figures of activation visualizations we can identify at the competition of the
training process an interesting pattern at the Volterra activations. The points that defy
an object in an image are most of the time highlighted with grater values. This pattern
continues on both the 2nd and 3rd order Volterra convolutions, while in the 3rd order
there is an additional layer which follows that pattern more clearly. By analyzing these
samples, we can detect many similarities with transformer visualization techniques.
In these papers, the attention activations of the compatibility between the input vec-
tors are illustrated. It is crucial to note in this case that some of the examples we will
examine at below primarily employ attention layers rather than self-attentions. Self-
attention, on the other hand, is a sub-procedure of the attention process. Attention,
on the other hand, has additional processes that boost its expressive ability, as we
already discussed in the section 2.3.2. As a result, the comparison of attention ac-
tivations is nearly comparable to the comparison of self-attestation activations. To
begin with, similarities between the activations of the non-linear Volterra layers and
the attention maps of [8] can be identified. The latter incorporates self-attention to the
visual problems and in its images it depicts the attention probabilities per input image.
Furthermore, many resemblances can be detected with [5]. In this work, many illus-
tration of the attention maps of images presented. The points of interest in an image
are notated with higher values. Finally, these patterns can be also found in [4] which
is a notable research work that exploits the vastness of unsupervised learning on a
Vision Transformer model and emphasizes the visualization of the attention maps.

We may deduce the partial resemblance between Volterra convolutions and self-
attention layers theoretically and optically by studying the previous facts. The self-
attention approach highlighted the points of interest in each of the cases we exam-
ined. This is a common characteristic of attention models since it assesses the corre-
lation between visual elements. If there is importance, this aspect of the image may
contribute more to its classification. The presence of this property, as well as the sim-
ilarities in the mathematical formula, demonstrate the non-linear convolutions’ overall
resemblance to self-attention layers.
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Table 9: This table depicts the early initial activations of our Volterra 2nd order network for
distinct CIFAR10 classes at the commencement of our training procedure. The first column
displays the original input image; the second column demonstrates the output of the linear

convolution layer; the third column exhibits the activations of the 2nd order Volterra layer; and
the fourth, fifth, and sixth columns display the activations of the group1, group2, and group3

convolutional blocks, respectively.

Input Linear 2nd order Group1 Group2 Group3

Cat

Ship

Ship

Airplane

Frog

Frog

Car
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Table 10: This table illustrates the later intermediary activations of our Volterra 2nd order net
for different CIFAR10 classes at the completion of our training phase. The first column

displays the original input image; the second column shows the output of the linear
convolution layer; the third column showcases the activations of the 2nd order Volterra layer;

and the fourth, fifth, and sixth columns demonstrate the activations of the group1, group2, and
group3 convolutional blocks, accordingly.

Input Linear 2nd order Group1 Group2 Group3

Cat

Ship

Ship

Airplane

Frog

Frog

Car
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Table 11: This table illustrates the early intermediate activations of our Volterra 3rd order
network at the beginning of our training process for various CIFAR10 pictures. The original

input image is shown in the first column; the output of the linear convolution layer can be seen
in the second column; the activations of the 2nd order Volterra layer are included in the third
column; the activations of the 3rd order Volterra layer are shown in the forth column; and the
activations of the group1, group2, and group3 convolutional blocks are depicted in the fourth,

fifth, and sixth columns correspondingly.

Input Linear 2nd order 3rd order Group1 Group2 Group3

Cat

Ship

Ship

Airplane

Frog

Frog

Car
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Table 12: This table illustrates the late intermediate activations of our Volterra 3rd order
network at the end of our training process for various CIFAR10 classes. The original input

image is shown in the first column; the output of the linear convolution layer can be seen in
the second column; the activations of the 2nd order Volterra layer are included in the third

column; the activations of the 3rd order Volterra layer are shown in the forth column; and the
activations of the group1, group2, and group3 convolutional blocks are displayed in the fourth,

fifth, and sixth columns accordingly.

Input Linear 2nd order 3rd order Group1 Group2 Group3

Cat

Ship

Ship

Airplane

Frog

Frog

Car
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3.3.3 Linear and Volterra Parameter Distributions

In this sub-section we will explain the confirmation of the theory of the existence of
polynomial approximation functions which can simulate neural network models with
the observation of the parameter distributions at various layers and depths of our
models. In respect of sampling, we collected data at the end of training from the top
models in each type of non-linear convolutions. The weights are obtained from many
different layers of the models and are shown as histograms, with the horizontal axis
displaying their values and the vertical axis indicating the probability density of each
value’s occurrence. The horizontal axis is very essential since it displays the variance
of the weights.

(a) (b) (c)

Figure 8: The probability density of the weights in three distinct convolution layers of the
Linear model is shown in these histograms; The weights of the first Linear convolutional layer
are represented by (a); the weights of the second group layer of convolutions are represented

by (b); the weights of the third group layer are represented by (c).

In figure 8 the distributions of the linear model’s weights are illustrated. As the distri-
butions of the CNN model’s first, second, and third layers are collected, the weights
follow similar distributions, with the main mass having values close to zero. The vari-
ance, on the other hand, has reduced by ten times from the first to the second layer,
while it has fallen by two times from the second to the third layer. This is to be
expected because deep models are multi-layered and include multiple non-linear pro-
cesses that vary and reduce values to keep the models stable. As we move further
into the model, the contributions of the layers to the final output get reduced as the
filters capture less important characteristics [48].

In the weight distributions of non-linear convolutions in figures 9 and 10, we see a
similar trend. In figure 9 the linear, the 2nd order Volterra convolution and the group3
weights distributions are depicted. In figure 10 the linear, the 2nd order Volterra con-
volution and the the 3rd order Volterra convolution weights distributions are presented.
Of course, there is a significant increase in the values of 0 in the weights of the 2nd
and 3rd order non-linear convolutions. This is due to the zero mask applied to the
weights, which prevents the provided data interactions from multiplying again. This,
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(a) (b) (c)

Figure 9: In these histograms, the probability density of the weights in 3 different convolution
layers of the Volterra 2nd order model are presented; (a) includes the weights of the Linear

Volterra convolutional layer; (b) shows the weights of the non-linear weights of the 2nd order
Volterra convolution; (c) presents the weights of the third convolutional group layer.

however, does not preclude us from investigating the variations in these models. In
these histograms we notice something very crucial. The weights between the 2nd
and 3rd order non-linear convolutions have a decrease in their variance similar to
that when we go from the first to the second and the third layer of the CNN model.
This reduction in the order of 10 can be seen throughout the non-linear convolutions.
Nonetheless, this behaviour is also normal, since the higher order convolutions have
quadratic and cubic terms which need to be multiplied by smaller parameters in order
to maintain the numerical stability that the network needs. Simultaneously, non-linear
Volterra convolutions are a series of additions of terms multiplied by each other on
the first, second, and third order. This structure is identical to that of the polynomial,
as we mentioned in the introduction. Meanwhile, in the introduction, we detailed the
attempts to compare neural network models with polynomial functions. Assuming that
the non-linear model is a polynomial with the degree of the parameters decreased by
ten times in each term, the linear CNN model is similarly a polynomial. Its terms are
the many layers that it incorporates since their parameters have the same variance
reduction rate as non-linear ones. Volterra convolutions, as a polynomial form, be-
have similarly to the several distinct layers of a linear CNN model. As a result, linear
CNN models behave similarly to polynomials. This is a simple observation, based on
the parameter distributions of these models.
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(a) (b) (c)

Figure 10: The probability density of the weights in three distinct convolution layers of the
Volterra 3rd order model is shown in these histograms; (a) includes the weights of the Linear

Volterra convolutional layer; (b) explains the weights of the non-linear weights of the 2nd order
convolution of the 3rd order Volterra model; The weights of the non-linear weights of the 3rd

order Volterra convolution can be seen in (c).
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4 CONCLUSION

Non-linear convolutions were developed in response to the desire to create models of
greater capacity that are more susceptible to data variations. Initially, we presented a
PyTorch implementation of the non-linear Volterra convolutions, which was supplied
with thorough mathematical notes and techniques for the model’s architecture. Then
we trained the non-linear models, which outperformed the linear ones in image clas-
sification. Following that, we attempted to optimize the model by running several grid
searches, and we arrived at the optimal configuration of the model’s hyper-parameter.
Finally, we demonstrated the resemblance of non-linear Volterra convolutions to the
self-attention mechanism, as well as the link of high order multi-linear polynomial ap-
proximation functions with deep CNNs.

Non-linear convolutions have the potential to make significant contributions to the field
of computer vision. Initially, an interesting question would be the degree of their con-
tribution to the recognition process with appropriate coefficients. Then, as we referred
to their similarity to self-attentions, further investigation of this direction is of partic-
ular importance. For example, we could introduce new hybrid architectures where
self-attentions and co exist under the same mathematical framework. Finally, these
hybrid models could be part of a polynomial approximation function by integrating all
these ideas into a mathematical model with known properties which can be extended
to other machine learning problems and modalities. This is an intriguing future path,
the unification of neural network components under a mathematical framework that
might yield great achievements in the future.
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ABBREVIATIONS-ACRONYMS

BN Batch Normalization

CIFAR Canadian Institute for Advanced Research

CNN Convolutional Neural Network

GAN Generative Adversarial Network

GCNN Graph Convolutional Neural Network

GNN Graph Neural Network

GPU Graphics Processing Unit

matmul Matrix Multiplication

MLP Multi Layer Perceptron

NLP Natural Language Processing

NN Neural Network

ReLU Rectified Linear Unit

ResNets Residual Networks

SGD Stochastic Gradient Descent

ViT Vision Transformer
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