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ABSTRACT

Generative Adversarial Networks (GANs) are currently an indispensable tool for semantic
image editing, being widely used in a plethora of computer vision applications. Although
these models are proven to encode rich semantic knowledge in their internal represent­
ations, they still lack an intuitive way to provide direct control to users, so that they can
consistently influence the output image content. Once this knowledge is extracted how­
ever, it can be converted to human­interpretable controls for altering synthesized images
in a predictable way.

In this thesis, we present MddGAN, an unsupervised technique for analyzing the GAN
latent space and extracting vector directions corresponding to meaningful image trans­
formations. In contrast to existing works, we perform a multilinear decomposition on the
weights of a pre­trained generator, and we argue that such an exploration scheme can be
more suitable in capturing the variability factors learnt with less entanglement. Further­
more, the proposed approach can mathematically divide the discovered semantics into
groups, according to their semantic content. This separation happens in a completely
unsupervised way, and essentially each dimension of the produced multilinear basis rep­
resents one such group.

By conducting several experiments on GANs trained on various datasets, we show how
varying the number of explanatory factors discovered in the generative representations
affects the semantic manipulations discovered. Moreover, we showcase several non­
trivial directions highlighting the editing potential of our method. Furthermore, we compare
MddGAN to the current supervised and unsupervised baselines both qualitatively and
quantitatively. The results indicate that our approach is at least on par with thesemethods.

SUBJECT AREA: Computer Vision

KEYWORDS: GAN, decomposition, interpretability, semantic editing, latent direc­
tions, unsupervised, deep learning



ΠΕΡΙΛΗΨΗ

Τα Παραγωγικά Αντιπαλικά Δίκτυα (ΠΑΔ) είναι επί του παρόντος ένα απαραίτητο εργαλείο
για σημασιολογική επεξεργασία εικόνας, που χρησιμοποιείται ευρέως σε μια πληθώρα
εφαρμογών υπολογιστικής όρασης. Αν και αυτά τα μοντέλα αποδεδειγμένα κωδικοποιούν
πλούσια σημασιολογική γνώση στις εσωτερικές τους αναπαραστάσεις, εξακολουθούν να
μην έχουν έναν διαισθητικό τρόπο παροχής άμεσου ελέγχου στους χρήστες, προκειμέ­
νου να μπορούν να ασκήσουν επιρροή με συνέπεια στο περιεχόμενο της εικόνας εξόδου.
Μόλις εξαχθεί αυτή η γνώση ωστόσο, μπορεί να μετατραπεί σε ερμηνεύσιμα από τον άν­
θρωπο στοιχεία ελέγχου για την αλλαγή των συνθετικών εικόνων με προβλέψιμο τρόπο.

Σε αυτήν την πτυχιακή εργασία, παρουσιάζουμε το MddGAN, μια τεχνική χωρίς επίβλεψη
για την ανάλυση του λανθάνοντος χώρου του GAN και εξαγωγή διανυσματικών κατευ­
θύνσεων που αντιστοιχούν σε σημαντικούς μετασχηματισμούς εικόνων. Σε αντίθεση με
τις υπάρχοντες επιστημονικές εργασίες, εκτελούμε πολυγραμμική αποσύνθεση στα βάρη
ενός προεκπαιδευμένου μοντέλου γεννήτριας και υποστηρίζουμε ότι ένα τέτοιο σχέδιο εξε­
ρεύνησης μπορεί να είναι περισσότερο κατάλληλο στην αποτύπωση των παραγόντων με­
ταβλητότητας που έμαθε το μοντέλο με λιγότερo μπέρδεμα. Περαιτέρω, η προτεινόμενη
προσέγγιση μπορεί να χωρίσει μαθηματικά την ανακαλυφθείσα σημασιολογία σε ομάδες,
ανάλογα με το σημασιολογικό τους περιεχόμενο. Αυτός ο διαχωρισμός γίνεται με εντε­
λώς ανεπιτήρητο τρόπο και ουσιαστικά κάθε διάσταση της παραγόμενης πολυγραμμικής
βάσης αντιπροσωπεύει μια τέτοια ομάδα.

Διεξάγοντας πολλά πειράματα σε GAN που έχουν εκπαιδευτεί σε διάφορα σύνολα δεδο­
μένων, δείχνουμε πως μεταβάλλοντας τον αριθμό των επεξηγηματικών παραγόντων που
ανακαλύπτονται στις γενετικές αναπαραστάσεις επηρεάζονται οι σημασιολογικοί χειρισμοί
που ανακαλύφθηκαν. Επιπλέον, παρουσιάζουμε πολλές μη τετριμμένες κατευθύνσεις που
επισημαίνουν τις δυνατότητες επεξεργασίας της μεθόδου μας. Επιπλέον, συγκρίνουμε το
MddGAN με τη τρέχουσα μέθοδο αναφοράς με επίβλεψη και τρέχουσα μέθοδο αναφο­
ράς χωρίς επίβλεψη τόσο ποιοτικά όσο και ποσοτικά. Τα αποτελέσματα δείχνουν ότι η
προσέγγισή μας είναι τουλάχιστον εφάμιλλη με αυτές τις μεθόδους.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Μηχανική Όραση

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: ΠΑΔ, αποσύνθεση, ερμηνευσιμότητα, σημασιολογική
επεξεργασία, λανθάνουσες κατευθύνσεις, χωρίς επίβλεψη,
βαθιά μάθηση
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MddGAN : Multilinear Analysis of the GAN Latent Space

1. INTRODUCTION

Generative Adversarial Networks (GANs) are powerful Deep Learning­based image syn­
thesis models, which have greatly impacted the computer vision community since their
initial appearance back in 2014 [4]. Since then, many breakthroughs in the field have
led to unprecedented high­resolution image generation. In fact, the current state­of­the­
art GAN architectures [1, 13, 14] are able to produce images that look stunningly real
and most of the time are indistinguishable from real ones. Today, due to their tremend­
ous success, GANs are used widely in practical applications, e.g data augmentation, im­
age super­resolution, image completion, image­to­image translation, video generation and
many others.

Unfortunately, there is still limited understanding when it comes to investigating the gen­
eration process of such models. A rational question to ask would be whether we can
somehow control the image synthesis to a point where we can completely determine how
its image output will look like. In other words, we would like to use existing general­purpose
image representations learnt from the model and discover techniques for controlling them.
Interpreting and extending the capabilities of existing GANs is therefore an important open
problem and as a result, it has justifiably received a lot of attention.

In particular, after [22] demonstrated that GANs can successfully support semantic arith­
metic in the latent space, a line of research works attempts to exploits GANs by manipulat­
ing their internal representations for visual editing purposes. In essence, these methods
attempt to discover meaningful directions in the GAN latent space and there is already
enough evidence that while learning to synthesize images, GANs can spontaneously rep­
resent multiple human­interpretable concepts present in the image dataset used to train
it [22, 25, 21, 27, 8, 26]. After identifying these directions, simple vector arithmetic in
the latent space is capable of adjusting synthesized image attributes in surprising ways.
Moreover, these directions also provide insight into how the GAN model operates. Ulti­
mately, this makes GANs the dominant paradigm for controllable generation.

In the context of this thesis, we will not emphasize on existing supervised methods, since
they usually require manual human labeling or additional pre­trained models. Instead, we
will focus on approaches that discover interpretable latent space directions in a purely
unsupervised fashion. In addition, we take inspiration from one such approach, [26], and
propose our own variant, MddGAN, which performs a multilinear analysis on the paramet­
ers of a pre­trained GAN generator with the results looking rather promising. Our method
doesn’t simply uncover non­trivial vector directions, but it is also capable of grouping them
according to the semantic concepts they encode.

L. Avgeridis 15
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2. RELATED WORK

2.1 Notation

Throughout this thesis, we will denote matrices with uppercase and vectors with lowercase
boldface letters, e.g,X denotes a matrix and x denotes a vector. We also denote the i­th
column of matrix X as xi. Tensors, which are the multidimensional versions of matrices
are denoted by boldface calligraphic letters, e.g, X .

2.2 Generative Adversarial Networks

Generative adversarial networks (GANs) is an unsupervised machine learning framework
simulating a minimax two­player game. In this framework, two players compete against
each other until no player can further improve their respective objectives [4]. In the funda­
mental case, both players are multilayer perceptrons: a generative model G, commonly
called the generator, that captures the data distribution, and a discriminative model D,
commonly called the discriminator or critic, that estimates the probability that a sample
came from the training data rather than G. Typically, the generator is of main interest ­ the
discriminator gets discarded once the generator has been trained.

Consequently, the objective ofG is to foolD by transforming some simple input distribution
to a complex high­dimensional distribution (e.g over natural images), and the objective
of D is to get better in distinguishing between real and generated data. Competition in
this game drives both sides to improve their methods until the generated samples are
practically indistinguishable from the genuine data samples and therefore D is unable to
differentiate between the two. In game theory, this state is called Nash­equilibrium.

Figure 2.1: Design of the adversarial framework (source : [9]).

More formally, to learn the generator’s distribution pg over data x, we define a random
variable Z (e.g Gaussian) with a fixed distribution pz(z) from which we sample our input
noise variables, then represent a mapping to data space as G (z; θg), where G is a dif­
ferentiable function represented by a multilayer perceptron with parameters θg. We also
define a second multilayer perceptron D (x; θd) that outputs a single scalar. D(x) repres­
ents the probability that x came from the data rather than pg. Both G and D are trained
together usually with stochastic gradient­based optimization methods, such as stochastic
gradient descent (SGD). In practice, each training step involves alternating between per­
forming one or more updates to D, while keeping G constant and performing one update
to G, while keeping D constant. After several steps of training, if G and D have enough
capacity, they will reach a point at which both cannot improve because pg = pdata , mean­

L. Avgeridis 16
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ing that the discriminator can no longer differentiate between the two distributions, i.e.
D(x) = 1

2
,∀x.

Accordingly, we train D to maximize the probability of assigning the correct label to ex­
amples from pdata(x), which is the actual data distribution, hence:

Ex∼pdata (x)[logD(x)]

where E denotes the expectation. Maximizing this term corresponds to D being able to
accurately predict D(x) = 1 when x ∼ pdata(x). The next term expresses the probability
of the generator G tricking the discriminator D:

Ez∼pz(z)[log(1−D(G(z)))]

Intuitively, D wants to maximize this term, since log(x) with 0 < x < 1 is negative, which
ideally means that D(G(z)) ≈ 0 and so G is not fooling D. The discriminator’s goal be­
comes to maximize these two terms, thus we can define the following value function for
D:

max
D

V (D,G) = Ex∼pdata (x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.1)

given G, which means that D properly classifies real and fake data samples.

On the contrary, we simultaneously train G to minimize log(1−D(G(z))). In other words,
G ideally wants to achieve D(G(z)) ≈ 1 and thus trick D into believing the generated data
are real. This intuition leads us to the following definition for the value function of G:

min
G

V (D,G) = Ez∼pz(z)[log(1−D(G(z)))] (2.2)

We can combine Eq. (2.1) and Eq. (2.2) into a single formula to obtain the loss function of
this adversarial framework:

min
G
max
D

V (D,G) = Ex∼pdata (x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.3)

For a more thorough explanation of why this framework works coupled with formal math­
ematical proofs, the reader should refer to the original work by Goodfellow et al. [4].

As an example, consider the common scenario where the synthesized data are images. In
this case, the generator G learns a mapping from the d­dimensional latent space Z ⊆ Rd

to a higher dimensional image space I ⊆ RH×W×C , as:

z ∼ p(z)

I = G(z)
(2.4)

where z ∈ Z and I ∈ I denote the input latent vector sampled from p(z) and the produced
output image respectively. On the other hand, the discriminator D receives as input an
image I ′, which can either be from the training dataset or generated by G, and outputs a
scalar value in [0, 1] which represents the probability of whether the input image is real or
fake.

2.3 GAN Architectures

This part of Chapter 2 discusses some of the most important milestones in the GANs
history.

L. Avgeridis 17
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2.3.1 Fully­Connected Architecture

GANs were initially introduced to the research community by Goodfellow et al. [4] (2014).
In their work, they proposed the novel framework for training a generative and a discrim­
inative model simultaneously via an adversarial process. When testing their method on
MNIST [16] and the Toronto Face Database (TFD) datasets, bothG andD were comprised
of fully­connected layers, while for CIFAR­10 [15] they used a convolutional architecture
for D and a ”deconvolutional” architecture for G. Across all their experiments, the gen­
erator network used a mixture of rectified linear [2, 10] and sigmoid activations and the
discriminator network used maxout [3] activations.

A crucial observation is that during training, Eq. (2.3) may not provide sufficient gradient
for G to learn well, since in the early training stages G is poor and D rejects the generated
samples with high confidence because they are clearly different from the training data. So,
rather than training G to minimize log(1−D(G(z))), they train G to maximize logD(G(z)).
This slightly modified objective function indeed provides much stronger gradients early in
learning.

Regarding its results, the original GAN framework produced images of poor quality, the
majority of them being noisy and incomprehensible and also lacked decent generalization
performance when the training process involved more complex image datasets.

2.3.2 Deep Convolutional Architecture

Radford et al. [22] (2016) proposed a family of Convolutional Neural Network (CNN) archi­
tectures that significantly stabilized GAN training across a range of datasets and allowed
for training higher resolution and deeper generative models. After extensive model ex­
ploration, they ended up in a family of architecture guidelines called Deep Convolutional
GANs (DCGANs).

Before proceeding to the significant contributions of this architecture­variant, we deem
necessary to first give a brief introduction of Convolutional Neural Networks (CNNs).

2.3.2.1 Convolutional Neural Networks

Convolutional neural networks are designed with the explicit assumption that their inputs
are 3­dimensional tensors, such as images. As a result, the layers of a CNN have neurons
arranged in 3 dimensions : Height, Width and Depth. Each layer in the stack transforms
an input 3D volume to an output 3D volume with some differentiable function and the final
(output) layer of the network produces a single vector of class scores (arranged along the
depth dimension).

CNN architectures are mainly built using three types of layers: convolutional layers, pool­
ing layers and fully­connected layers. The weights of convolutional layers are in essence
a set of learnable filters, also represented by 3­dimensional tensors H ×W × D, where
depth corresponds to the number of filters or feature maps used. The filters basically apply
a convolution operation over the input volume. Pooling layers are periodically inserted in­
between successive convolutional layers and their function is to progressively reduce the
spatial size of the representation aiming at reducing the amount of weight parameters and
computation in the network, and hence to also control overfitting. Lastly, fully­connected
layers are connected to all activations in the preceding layer and hence their activations
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can be computed with regular matrix multiplication. It is also common to apply an element­
wise activation function on the output of each convolutional layer, which does not modify
the dimensions of the produced volume. An example of such a function is max(0, x) or
Rectified Linear Unit (ReLU).

Most state­of­the­art CNN architectures stack a few convolutional­ReLU layers, followed
by pooling layers, and repeat this pattern until the image has been merged spatially to a
small size. At some point, it is common to transition to fully­connected layers. The last
fully­connected layer holds the output, such as the class scores.

2.3.2.2 DCGAN

The authors chose a ”deconvolutional” architecture for G, which consists of fractional­
strided convolutional layers, batch normalization layers and ReLU activations for all layers
except the output, which uses the Tanh activation. A regular CNN architecture was used
for D which is made up of strided convolutional layers, batch normalization layers and
LeakyReLU activations. DCGAN was trained and evaluated on more complex datasets
compared to the original GAN, such as Large­scale Scene Understanding (LSUN) [30],
Imagenet­1k and Faces. The DCGAN generator used for LSUN can be viewed in Fig. 2.2

The ”deconvolutional” design ofG can be viewed as the exact opposite of a standard CNN.
Because the generator learns to map a low­dimensional latent vector z to a much larger
image space, it tries to progressively upsample the input, done by the fractional­strided
convolutions, and ultimately convert it to an RGB image. This is in contrast to what a
regular CNN learns to produce, which is a vector of scalars given an image as input.

Another significant contribution of this paper was that it demonstrated that purely unsuper­
vised models, such as GANs, could support simple vector arithmetic operations in order
to produce meaningful image manipulations. In particular, the latent space Z of the gen­
erator can semantically evaluate expressions such as (”smiling woman” ­ ”neutral woman”
+ ”neutral man”) and will surprisingly produce images of a smiling man. Their experiments
showed that such generations were in fact possible and could semantically obey the arith­
metic.

DCGAN was proved to be a very important breakthrough for GAN literature managing to
establish the ”deconvolution” as the main architecture used in G. Nevertheless, it was
only successful on low­resolution (64x64 pixels) and less diverse images.

Figure 2.2: DCGAN generator used for LSUN scene modeling (source : [22]).
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2.3.3 Progressive Growing Architecture

A huge improvement in GAN performance regarding image quality, image variety and
stable training came from Karras et al. [12] (2017) by building upon DCGAN and incor­
porating the idea of progressive networks [24] into their approach. They key observation
of their work was that the complex mapping from latent vectors to high­resolution images
is easier to learn in steps.

In particular, in their training methodology both G and D start their training with low­
resolution (4x4 pixels) images and then gradually increase the resolution by adding new
layers to both networks, where each new layer basically doubles the resolution. The gen­
erator and the discriminator used are mirror images of each other and always grow in par­
allel. More specifically, both networks consist mainly of replicated 3­layer blocks, where
each block operates on a specific spatial resolutionN×N , and each block uses two convo­
lutional 3×3 layers together with an upsampling or downsampling layer. The authors also
experiment with both Least­Squares GAN (LSGAN) [18] and the improved Wassertstein
GAN (WGAN­GP) [5] loss functions instead of the original GAN loss of Eq. (2.3), and they
find that both produce high­quality results, even though LSGAN is generally less stable.
This process yields a novel progressive growing GAN (ProGAN) architecture that can re­
liably synthesize megapixel­scale sharp images (1024x1024 pixels).

Their contributions also include increased variation of the generated samples via an added
minibatch standard deviation layer towards the end of the discriminator network, runtime
scaling for the weights of each layer in both networks in order tomaintain the same learning
speed for all weights and pixel­wise normalization of the activation tensors after each
convolutional layer in the generator.

ProGAN was trained on CELEBA­HQ, LSUN and CIFAR­10, achieving impressive image
quality across all three datasets. To achieve these groundbreaking results, the authors
trained ProGAN for 4 days in a compute cluster with 8 GPUs. Their method showcased
that GANs can in fact approach convincing realism in image synthesis.

2.3.4 Style­Based Architecture

Although ProGAN generates high­quality images, its ability to control specific features
of the synthesized output is minimal. To resolve this issue, Karras et al. [13] (2018)
redesigned the architecture of the generator network to allow for scale­specific control of
the image synthesis without compromising quality but instead substantially increasing it.
This style­based generator borrowed ideas from style transfer literature and that’s why it
was called StyleGAN.

In reality, StyleGAN is an upgraded version of ProGAN, meaning that it still leverages the
progressive growing training schedule, but the crucial modifications are targeted only for
the generator, while the discriminator is left unchanged and the same exact architecture as
ProGAN is used. The new architecture for G leads to automatic unsupervised separation
of high­level attributes from stochastic variation in the generated images and it enables
scale­specific control of the synthesis.
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2.3.4.1 Generator Design

StyleGAN’s generator architecture consists of 2 components: a non­linear mapping net­
work f and a synthesis network g. The mapping network f is an 8­layer multilayer per­
ceptron (MLP) and the synthesis network g is a model whose structure closely resembles
that of the ProGAN generator, but with some important modifications.

Given a a latent code z in the input latent space Z, the mapping network f embeds this
latent code in an intermediate latent spaceW yielding a new latent code w with the same
dimensionality. The authors prove that W is less entangled, since it is not restricted to
following the probability density of the training data, such as Z. Learned affine transform­
ations then specialize w to produce styles Y = (Ys,Yb) that control adaptive instance
normalization (AdaIN) [7] operations after each convolution layer of the synthesis network
g. The AdaIN operation is defined as

AdaIN (X i,Y) = Y s,i
X i − µ (X i)

σ (X i)
+ Y b,i

where if X is a H × W × fmaps activation tensor, X i,Y s,i and Y b,i all denote H × W
matrices corresponding to the i­th feature map of X, its scale and its bias respectively.

After the addition of the mapping network and AdaIN operations, the authors surprisingly
observed that the synthesis network no longer benefits from feeding the latent code z into
the first convolutional layer, and that it can instead produce meaningful results with the
style vectors acting as an input only to intermediate layers. As a result, the traditional
input layer of the generator is removed and instead the image synthesis is started from
a learned 4 × 4 × 512 constant input tensor C. So, the synthesis process in Eq. (2.4) is
modified into:

z ∼ p(z)

w = f(z)

I = g (C,w)

(2.5)

A crucial detail is that during the generation process, w is broadcasted to all AdaIN layers
of the synthesis network g, meaning that the input latent features are preserved across the
entire network, but they control the strength of different image features at different scales.
This broadcast operation is visually depicted in Fig. 2.3.

Other important modifications to the generator include random noise inputs after each
convolution layer of the synthesis network, which helps the network to create stochastic
variation, and a style mixing regularizer that makes the spatial layers of the generator
more independent during training.

They evaluated their methods using CELEBA­HQ, FFHQ and LSUN. For CELEBA­HQ,
the authors rely on WGAN­GP loss while FFHQ uses non­saturating loss with R1 regu­
larization [19, 23] for almost all model configurations.The authors trained StyleGAN for
approximately 1 week on a compute cluster with 8 GPUs.

2.3.4.2 StyleGAN2

StyleGAN2 [14] comes with various improvements to image quality, efficiency, diversity,
and disentanglement, and the results are incredibly improved. StyleGAN2 simply re­
designs the normalization used in the generator of StyleGAN, which removes the arti­
facts such as blob­shaped artifacts that resemble water droplets. It also departs from the
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progressive growing training schedule and instead uses a skip generator and a residual
descriminator.

StyleGAN2 achieves even greater results in face image synthesis and quality compared to
StyleGAN, and makes distinguishing between real and generated images an impossible
task. One such example is shown in Fig. 2.4.

Figure 2.3: An overview of the style­based generator. The mapping network (left) embeds the
starting latent code into a more disentangled intermediate space. Then, the disentangled latent
code is broadcasted to all layers of the synthesis network (right) , which initiates the synthesis

from a learnt constant (source : [8]).

Table 2.1: Comparison of GAN architectures presented in Section 2.3.
*Only the CIFAR­10 model

**9 days for the FFHQ model and 13 days for the LSUN CAR model.

Architectures
GAN DCGAN ProGAN StyleGAN StyleGAN2

Latent Space Dim. 100 100 512 512 512
Max. Resolution 322 642 10242 10242 10242

Deconv. G, Conv. D Yes* Yes Yes Yes Yes

Fe
at
ur
es

Progressive Growing No No Yes Yes No
Loss Eq. (2.3) Eq. (2.3) WGAN­GP Eq. (2.3) Eq. (2.3)

Regularizer No No No R1 [19] PPL [14]
# GPUS 1 1 8 8 8

Training Time < 1day < 1 day 4 days 7 days 9/13 days**
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(a) Synthesized Image (b) Real Image from FFHQ dataset

Figure 2.4: Hand­picked examples that demonstrate the quality of generated images of StyleGAN2.

2.4 Exploring the GAN Latent Space

GAN models typically rely on a single relatively low­dimensional noise vector, also called
a latent variable (z), to parameterize their output. The latent space of these models is
essentially a compact input space, whose dimensionality is smaller than that of the output
and thus GANs are forced to be as efficient as possible with their internal representations
and the compression of all the required information leads them to learn dataset­specific
factors [27, 8, 21, 26, 20]. However, these implicit interpretable factors rarely lie on the
canonical basis vectors of the input latent space, such as zi, so additional training losses
or control discovery steps are required.

Disentangling the internal representations learnt by a GAN model is a research problem
that has gained considerable attention. A lot of scientific methods developed recently aim
to extract directions of meaningful variation from the latent space of a pre­trained GAN
generator and exploit them in a semantic editing procedure. The ultimate goal of these
methods is to consistently control the generation process after identifying all the different
factors of variation present on a specific training dataset that was used for training the
GAN model of interest.

Concisely, a factor of variation corresponds to an image attribute that can be discerned
consistently across a set of images, such as the pose or colour of objects. Ideally, we seek
disentangled representations that encode independent factors of variation, which means
that different factors correspond to distinct effects in the output. For instance, assuming
human faces image data, one will be able to adjust gender, age, skin tone or hairstyle and
even add accessories such as glasses or hats to the generated face images. The above
can be achieved with simple vector arithmetic in the latent space, for example by adding
or subtracting the semantic direction corresponding to glasses.

Given z,n ∈ Rd, where z is a random latent vector and n is a direction encoding a specific
semantic concept, the editing process used to produce the manipulated image can be
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formulated as:
z′ = z + εn

I ′ = G (z′)
(2.6)

where ε ∈ [−k, k] is a scalar and G : Rd → RH×W×C . What the above process does is
linearly shift the latent code z towards direction n with shift magnitude ε.

Broadly speaking, there are two types of approaches used to extract human­interpretable
directions from the latent space of a GANmodel and hence control the generation process:

1. Supervised Methods when used during model training, rely on labeled training
data, and are used to enforce a structure in the model. In other words, the GAN
model is told which aspects are considered important, often by providing explicit
conditioning information for each training example. Since these techniques are ap­
plied during training, they are very time and resource intensive.
When applied on a pre­trained model, they use supervision, such as conditioning
c produced manually or with existing attribute detectors, to try to find factors of in­
terest within the latent space Z. In other words, these techniques aim to verify the
hypothesis that the generator has learnt to model certain aspects on its own, thus
relying on implicit interpretability.

2. Unsupervised Methods when used during model training, typically introduce spe­
cial loss functions to enforce interpretable basis vectors zi in the latent space Z.
However, the specific features that are learnt cannot be predetermined.
When applied on a pre­trained model, these techniques directly analyze the most
important factors of variation that have been learnt, and try to extract meaningful con­
trols from these intrinsic factors. This is especially useful when working with highly
abstract or novel datasets, where it might be impossible to predetermine which, or
how many modes of variation are desirable or expected.

2.4.1 Supervised Methods

Even though supervised methods are not our primary focus in this thesis, we are going to
briefly mention two that operate on pre­trained generator models.

Many supervised techniques rely on existing attribute detectors for extracting meaningful
semantics from a an existing generative model. For instance, InterFaceGAN [25] employs
attribute prediction models for five key face attributes, as well as 5­point facial landmarks
used to accurately infer face pose. Their framework is based on the assumption that for
any attribute that can be described with binary values, e.g male or female, there exists a
hyperplane in the GAN latent space, which can accurately place all samples representing
the same attribute on the same side.

Yang et al. [29] examine scene synthesis generative models and they also use several
off­the­shelf classifiers to identify the emergent variation factors in the generative repres­
entations. In particular, these classifiers are treated as scoring functions, which basically
assign to a synthesized scene image semantic scores corresponding to each candidate
variation factor. Then, for a particular semantic concept, a decision boundary is learnt
in the latent space by considering it as a binary classification task. Finally, they use a
re­scoring technique to quantitatively verify the emergence of the semantic concepts of
interest.
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2.4.2 Unsupervised Methods

The methods presented in this Section are mainly applied to an existing pre­trained model
and aim to identify the most important factors of variation that have been learnt. Our
method MddGAN can be integrated in this family of techniques and in particular in those
of Section 2.4.2.2.

2.4.2.1 Additional Training

Both of the techniques presented next require additional training either of the extra com­
ponents (1) or of the generator network (2).

2.4.2.1.1 Extra Trainable Components Voynov and Babenko [27] were the first to
propose an unsupervised approach for the discovery of semantically meaningful directions
in the GAN latent space. Their method has two trainable components, the first being a
matrix A ∈ Rd×K , where d equals to the dimensionality of the latent space of G and K
is the number of columns that also determines the number of directions the method will
discover. Basically, the columns ofA correspond to the discovered directions. The second
trainable component is a reconstructor model R, which receives as input an image pair
(G(z), G (z +A (εek))), where the first image is generated from a latent code z ∼ N (0, I),
while the second one is generated from a shifted code z +A (εek). Here ek denotes the
standard basis of RK and acts as a column selector for the matrix A and ε is a scalar
representing the magnitude of the shift towards direction k.

Since the second image is a transformation of the first one, the reconstructor’s goal is to
reproduce the shift in the latent space. More specifically, R produces 2 outputsR (I1, I2) =

(k̂, ε̂), where k̂ is a prediction of a direction index k ∈ {1, . . . , K}, and ε̂ is a prediction of a
shift magnitude ε. The above can be expressed more formally as a mapping

R : (I1, I2) −→ ({1, . . . , K},R).

Learning is performed via minimizing the following loss function:

min
A,R

E
z,k,ε

L(A,R) = min
A,R

E
z,k,ε

[
Lcl(k, k̂) + λLr(ε, ε̂)

]
where the authors used the cross­entropy loss function for the classification term Lcl (·, ·)
and the mean absolute error loss function for the regression term Lr (·, ·). In their ex­
periments the weight coefficient λ was always set to 0.25. We should note that G is a
non­trainable component of their method, and its parameters do not change during learn­
ing.

In brief, this joint optimization process seeks to obtain such columns of A that the cor­
responding image transformations are easier to distinguish from each other, to make the
classification problem for the reconstructor simpler. Indeed, the discovered directions do
not interfere, meaning that each one affects only a single factor of variation and are easy­
to­interpret. The authors experiment with different datasets and generator architectures
and showcase several human­interpretable and practically important directions, such as
background removal, skin tone, presence of eyeglasses, luminance and so on.
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2.4.2.1.2 Derivative­Based Loss Function Latent space disentanglement can also
be enforced by introducing derivative­based regularizers in generative models as demon­
strated by Peebles et al. [21]. In their work they propose a regularization term that en­
courages the Hessian of a generative model with respect to its input to be diagonal.

To provide intuition for their method, they use the example of a scalar­valued function
G : Rd −→ R, where d denotes the dimensionality of the Z latent space. Mathematically, to
describe how each zi component changes the output image we can use the derivative ∂G

∂zi
.

To disentangle G with respect to z would mean that by varying zi , the produced change in
the output of G should be mostly independent of the other components zj ̸=i. To measure
this independency, we use another derivative, this time with respect to zj: ∂

∂zj

(
∂G
∂zi

)
. If this

value was large, the effect zi has on the output is strongly dictated by zj and if not, then
zj has no effect on how perturbing zi will change G ’s output. Thus, we would like this
value to be small. Now, all the pair­wise interdependencies between the z components
are contained in G ’s Hessian matrix of second derivatives, H ∈ Rd×d, and assuming
d = 3, the Hessian matrix is:

H =

 ∂2G
∂z0∂z0

∂2G
∂z0∂z1

∂2G
∂z0∂z2

∂2G
∂z1∂z0

∂2G
∂z1∂z1

∂2G
∂z1∂z2

∂2G
∂z2∂z0

∂2G
∂z2∂z1

∂2G
∂z2∂z2


By minimizing these pair­wise interdependencies, equivalently regularizing the Hessian
matrix to be diagonal we can achieve exactly what we wanted

Hij
j ̸=i

=
∂2G

∂zi∂zj
=

∂

∂zj

(
∂G

∂zi

)
= 0

In practice, this is done by simply minimizing the sum of squared off­diagonal terms

LH(G) =
d∑

i=1

d∑
j ̸=i

H2
ij (2.7)

Because generative models are clearly not scalar­valued functions, Equation 2.7 with a
slight modification can be extended to vector­valued functions such as GANs.

Computing Hessianmatrices during training is slowwhen d is large but luckily, equation 2.7
can be rewritten to be the variance of the second directional derivatives using Hutchinson’s
estimator:

LH(G) = Varv
(
vTHv

)
where the v vectors are random Rademacher vectors

Pr (vi = 1) = Pr (vi = −1) = 1

2

meaning that each entry has equal probability of being −1 or +1, and vTHv is the second
directional derivative of G in the direction v times |v|. The second directional derivatives
can be quickly approximated with finite differences. Thus, we land on the following equal­
ity:

LH(G) =
d∑

i=1

d∑
j ̸=i

H2
ij ≈

1

2
Varv

[
G(z + ϵv)− 2G(z) +G(z − ϵv)

ϵ2

]
where ε > 0 is a hyperparameter that controls the granularity of the second directional
derivative estimate.
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During training, the discriminator’s loss function remained unchanged (see (2.1)) but the
generator’s loss, instead of (2.2), was modified to be:

LG = E
z∼pz(z)

[f(1−D(G(z)))]︸ ︷︷ ︸
Standard Adversarial Loss

+λ E
z∼pz(z)

[LH(G)]︸ ︷︷ ︸
The Hessian Penalty

where f denotes the GAN loss function used and weight λ balances the two terms. In­
terestingly, the authors point out that fine­tuning a pre­trained GAN with the above loss in
many cases tends to work as well as or better than training from scratch with the Hessian
Penalty.

In their experiments, they show that training with the Hessian Penalty causes axis­aligned
disentanglement to emerge in latent space when applied to ProGAN on several data­
sets. In addition, they observe that the Hessian Penalty ”turns­off” unneeded z compon­
ents when a generator’s latent space is overparameterized. Moreover, similar to [27],
the Hessian Penalty can be extended to identify interpretable directions in a pre­trained
generator’s latent space i.e BigGAN, but this time G ’s weights are kept fixed throughout
training.

2.4.2.2 Direct Analysis

The next two approaches do not involve additional neural network (model) training, yet
they exhibit results directly comparable to themethods described above. More specifically,
they directly perform statistical analysis (e.g through Principal Component Analysis ­ PCA)
of the input latent or feature space.

2.4.2.2.1 Data Sampling Analysis Harkonen et al. [8] hypothesize that the internal
activations within the generator form abstract spaces with informative shapes and the prin­
cipal components of these activation tensors on the early internal layers of GANs represent
important factors of variation. They verify their hypothesis on two models: StyleGAN and
BigGAN.

For StyleGAN, they analyze the intermediate latent space W directly by identifying the
principal axes of p(w). To do so, they sample N random latent vectors z1:N , and com­
pute the corresponding wi = M (zi) values in the intermediate latent space. They then
compute PCA of these w1:N values, which gives a low­rank basis V forW. Since thisW
space is proven to admit nicer disentanglement properties, the PCA basis can be used to
directly modify the output image by modifying its representation in W. Concretely, given
an image defined by w, we can edit this image by varying PCA coordinates x directly, as
in (2.5), (2.6):

w′ = w + V x

I ′ = G (C,w′)

where each entry xk of x is a separate control parameter. The entries xk are initially zero
until modified by a user. In this way, they are able to cause interesting modifications to the
output image, even though some entanglement can be observed in the produced effects.

In BigGAN, a learned intermediate latent space similar to StyleGAN’sW does not exist, so
PCA is now applied at an intermediate network layer i and then the discovered directions
are transferred back to Z latent space , as follows. Similar to before, N random latent
vectors z1:N are sampled, processed through the model and they produce N activation
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tensors y1:N at the i­th layer, where yj = Ĝi (zj). Next, PCA is applied on these N activ­
ation tensors, which produces a low­rank basis matrix V , and the data mean µ. The PCA
coordinates xj of each activation are then computed by projection: xj = V T (yj−µ). This
basis is then transferred to latent space by linear regression, as follows. They start with an
individual basis vector vk (i.e., a column of V ), and the corresponding PCA coordinates
xk
1:N , where xk

j is the scalar k­th coordinate of xj. They solve for the corresponding latent
basis vector uk as:

uk = argmin
∑
j

∥∥ukx
k
j − zj

∥∥2
to identify a latent direction corresponding to this principal component. Equivalently, the
whole basis is computed simultaneously with:

U = argmin
∑
j

∥Uxj − zj∥2

using a standard least­squares solver, without any additional orthogonality constraints.
Each column of U then aligns to the variation along the corresponding column of V . A
new set of N latent vectors is used for the regression task. The individual dimensions xk

each correspond to different edits, many of which are easily interpretable. Given a new
image with latent coordinates z, edits may then be made by varying the coordinates of x,
as in (2.6):

z′ = z +Ux

I ′ = G (z′)

where x is initially a zero vector.

Analyzing their findings, the authors offer some surprising insights into GAN and PCA
properties. For example, it is evident that dataset properties are reflected in the principal
directions, emphasizing, not suprisingly, the importance of the training data. They also
show that certain edits have an effect that is dependent on the starting image, for instance
a ”beard” edit only modifies male faces, whereas the ”lipstick” edit only modifies female
faces, indicating that the model is imitating biases learned from the training data. Further­
more, across all trained models they tested, large­scale changes to geometric shape and
viewpoint of an image are limited to the first 20 principal components; successive com­
ponents leave layout unchanged, and instead control object appearance or background
and details.

2.4.2.2.2 Trained Weights Analysis Perhaps, the most straight forward approach is
the one from Shen and Zhou [26]. In their work they propose a closed form factorization
algorithm for discovering latent semantics by directly decomposing the weights of a pre­
trained GAN generator, not requiring data sampling or model training. Given a latent
vector z ∈ Z ⊆ Rd, the first step of the generation process of GANs typically involves
passing z through a fully­connected layer, and yielding a projected vector of increased
dimensionality, which is then separately reshaped into a H ×W × fmaps tensor. More
specifically, the fully­connected layer applies the following (affine) transformation on z:

G1(z) = y = Az + b (2.8)

where y ∈ Rm is the m­dimensional projected code and d ≤ m. A ∈ Rm×d and b ∈ Rm

denote the weight and bias used in the first transformation step G1 (·) respectively.
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After identifying a semantically meaningful direction n ∈ Rd, and under the formulation of
the affine transformation in (2.8), the manipulation model in Equation 2.6 can be simplified
as

y′ = G1 (z
′) = G1(z + αn)

= Az + b+ αAn = y + αAn
(2.9)

From Equation 2.9 we observe that given any latent code z together with a certain lat­
ent direction n, the editing can be always achieved by adding the term αAn onto the
projected code after the first step. Assuming the weight parameter A contains all the es­
sential knowledge of the image variation, important latent directions can be extracted by
decomposing A. By solving the following optimization problem

n∗ = argmax
{n∈Rd:nTn=1}

∥An∥22 (2.10)

we can uncover directions that are capable of causing large variations after the projection
ofA. In a scenario where we seek the kmost important directions {n1,n2, . . . ,nk} instead
of just one, Equation 2.10 can be expanded into

N ∗ = argmax
{N∈Rd×k:nT

i ni=1∀i=1,··· ,k}

k∑
i=1

∥Ani∥22 (2.11)

where N = [n1,n2, . . . ,nk] correspond to the top­k semantics. Introducing the Lagrange
multipliers {λ}ki=1 into Equation 2.11 we get

N ∗ = argmax
N∈Rd×k

k∑
i=1

∥Ani∥22 −
k∑

i=1

λi

(
nT

i ni − 1
)

=argmax
N∈Rd×k

k∑
i=1

(
nT

i A
TAni − λin

T
i ni + λi

) (2.12)

and by taking the partial derivative on each ni, we have

2ATAni − 2λini = 0 (2.13)

All possible solutions to Eq. 2.13 should be eigenvectors of the matrix ATA. To get the
maximum objective value and make {ni}ki=1 distinguishable from each other, we choose
columns of N as the eigenvectors of ATA associated with the k largest eigenvalues.

They apply their method to the state­of­the­art GANmodels trained on a variety of datasets
and their technique manages to discover versatile semantics in each scenario. They also
compare it with existing supervised and unsupervised alternatives and the results clearly
highlight its potential on semantic image editing.
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3. METHOD

This section describes MddGAN, our new technique for analyzing the internal represent­
ations of an existing pre­trained GAN through an unsupervised edit discovery scheme.
The proposed method is a variant of [26] and thus does not require costly generator re­
training nor data sampling. Where our methods diverge is that we perform a multilinear
decomposition on the weights of the pre­trained generator in an attempt to uncover se­
mantically meaningful vector directions that can be further organized in categories. Such
a separation is currently not attainable by SeFa or any other unsupervised approach. For
the following sections, we will exclusively focus on the task of image synthesis. We will
also use the terms direction and semantic interchangeably when we want to refer to n
from Eq. (2.6).

3.1 Unsupervised Multilinear Matrix Decomposition

Principal Component Analysis (PCA) and the closely related Singular Value Decompos­
ition (SVD) are probably the most popular statistical methods to find a single mode of
variation that explains the data. However, visual data tend to have many different and
possibly independent modes of variation and hence dimensionality reduction techniques
such as PCA are not able to fully disentangle these factors. To tackle this problem, Wang
et al. [28] proposed a novel unsupervised multilinear decomposition of matrices which un­
covers the potential multilinear structure of incomplete sets of data and the corresponding
low­dimensional latent variables (coefficients) explaining different types of variation.

3.1.1 Preliminaries

This section requires the introduction of additional notation. The mode­m matricization
of a tensor X ∈ RI1×I2×···IM maps X to a matrix X(m) ∈ RIm×Īm with Īm =

∏M
k=1
k ̸=m

Ik

such that the tensor element xi1,i2,...,iM is mapped to the matrix element xim,j where j =

1 +
∑M

k=1
k ̸=m

(ik − 1) Jk with Jk =
∏k−1

n=1
n̸=m

In.

The mode­m vector product of a tensor X ∈ RI1×I2×...×IM with a vector x ∈ RIm, denoted
byX ×nx ∈ RI1×I2×···×In−1×In+1×···×IN . The result is of orderM −1 and is defined element­
wise as

(X ×m x)i1,...,im−1,im+1,...,iM
=

Im∑
im=1

xi1,i2,...,iMxim .

In order to simplify the notation, we denoteX×1x
(1)×2x

(2)×3. . .×Mx(M) = X
∏M

m=1×mx
(m).

The Khatri­Rao (column­wise Kronecker product) product of matrices A ∈ RI×N and B ∈
RJ×N is denoted by A⊙B and yields a matrix of dimensions (IJ)×N . Furthermore, the
Khatri­Rao of a set of matrices

{
X(m) ∈ RIm×N

}N

m=1
is denoted by X(1) ⊙X(2) ⊙ · · · ⊙

X(M) .
=
⊙M

m=1 X
(m).

L. Avgeridis 30



MddGAN : Multilinear Analysis of the GAN Latent Space

3.1.2 Basic Model

Their method assumes a given input matrix of observations X = [x1,x2, . . . ,xN ] ∈ Rd×N

where each of the N columns represents a vectorized image xi of d pixels. In order
to discover M − 1 different modes of variation, the proposed decomposition for a single
sample is:

xi = B ×2 a
(2)
i ×3 a

(3)
i · · · ×m a

(M)
i = B

M∏
m=2

×ma(m)
i , (3.1)

where B ∈ Rd×K2×K3×...×KM represents the common multilinear basis of X and the set of
vectors {a(m)

i ∈ RKm}Mm=2 represents the variation coefficients in each mode specific to
the vectorized image xi. The value specified for each dimension Km, where m ∈ [2,M ],
indicates the number of different occurrences of this variability factor in the input data. For
example, if lighting is among the modes of variation our input data consists of and there
are 5 different lighting conditions, then the value of the corresponding dimension can be
set to 5, i.e Klighting = 5. Together the values K2, K3, . . . , KM specify the order of the
multilinear basis B.
Therefore, for the observation matrixX, the above decomposition can be written in matrix
form as:

X = B(1)

(
A(2) ⊙A(3) · · · ⊙A(M)

)
= B(1)

(
M⊙

m=2

A(m)

)
, (3.2)

where B(1) ∈ Rd×K2·K3·...·KM is the mode­1 matricization of B and {A(m) ∈ RKm×N}Mm=2

gathers the variation coefficients for all images across M − 1 modes of variation.

To find the unknown multilinear basis B and the variation coefficients {A(m)}Mm=2, the pro­
posed optimization problem to solve is:

argmin
B(1),{A(m)}Mm=2

∥X −B(1)(
M⊙

m=2

A(m))∥2F s.t. BT
(1)B(1) = I. (3.3)

The procedure of solving Eq. (3.3) is summarized in Algorithm 1.

3.1.3 Properties

In line 4, the i­th column of Q[t], qi[t], is used to construct tensor Qi ∈ RKM×KM−1×...×K2

and since Q[t] is a d×N matrix ∀t, qi[t] will be a d­dimensional vector ∀t and therefore

KM ·KM−1 · . . . ·K2 = d. (3.4)

In other words, the product of the input dimensions must be equal to the dimensionality d
of each input data sample xi.

Algorithm 1 terminates when the convergence condition in line 13 is satisfied, and pro­
duces a d× d matrix B(1) than can be optionally tensorized into B (line 16). If we seek a
sparser basis of X, Algorithm 1 in the general case can output a l × d matrix B(1) where
l ≤ d. This reduced representation can be obtained by replacing the full SVD by its trun­
cated version in lines 1 and 10. Truncated SVD basically calculates only the l column
vectors of U and the l row vectors of V corresponding to the l largest singular values of
Σ. Of course, using the truncated SVD no longer leads to the exact decomposition of the
input matrix. Instead we acquire the closest approximation to it that can be achieved by
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Algorithm 1: Multilinear Data Decomposition Algorithm
Input : Data matrix X ∈ Rd×N , dimensions K2, K3, . . . , KM

Output: B,A(2),A(3), . . . ,A(M)

1 Initialization: t← 0, [U ,Σ,V ]← SV D (X), B(1)[0] = U
√
Σ, Q[0] =

√
ΣV T

2 while not converged do
3 forall image i = 1 . . . N do
4 construct Qi ∈ RKM×KM−1×···×K2 from qi[t] ▷ KM ·KM−1 · . . . ·K2 = d
5 [Si,U i]→ HOSV D (Qi)
6 foreach mode m = 2, . . . ,M do
7 a

(m)
i [t+ 1] = (Si)

(M−m+1)
1

8 end
9 end

10 [U ,Σ,V ]← SV D

(
X
(⊙M

m=2 A
(m)[t]

)T)
11 B(1)[t+ 1] = UV T

12 Q[t+ 1] = B(1)[t+ 1]TX ▷ Q[t+ 1] ∈ Rd×N

13 Check convergence condition: ∥X−B(1)[t+1]Q[t+1]∥2F
∥X∥2F

< ϵ

14 t← t+ 1

15 end
16 Tensorize B(1) into B ∈ Rd×K2×···×KM

a rank l matrix. In this case, Q[t] calculated in lines 1 and 12 is a l ×N matrix ∀t, and as
such

KM ·KM−1 · . . . ·K2 = l, with l ≤ d (3.5)

Another important note is that the number of dimensions M − 1, or equivalently the num­
ber of different modes of variation in the data is assumed to be known in advance and by
varying this number we are basically exchanging reconstruction detail of the data with the
ability of the decomposition to sufficiently separate the variation factors. For instance, con­
sider an input data matrix X ∈ Rd×N where each column xi represents a ”flattened” face
image. We know in advance that the only factors of variation present in this dataset are
expression and identity and more specifically the dataset consists of 10 facial expressions
and 200 identities amounting to 2000 images. The decomposition in Eq. (3.2) becomes
in this case:

X = B(1)(A
(2) ⊙A(3))

where B(1) ∈ Rd×K2·K3 is the orthogonal mode­1 matricization of tensor B, A(2) ∈ RK2×N

is the matrix of expression coefficients and A(3) ∈ RK3×N is the matrix of identity coeffi­
cients. In order to sufficiently separate the two factors,K2 should be set to the approximate
number of differing expressions in the data and equivalently K3 should be set to the ap­
proximate number of differing identities in the data. By setting K2 = 10 and K3 = 50, we
apply the decomposition to discover B ∈ Rd×K2×K3 becomes a basis of expression and
identity and for example, ±B : i : are bases corresponding to expressions in the dataset.
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3.2 Constructing the Weight Matrix

Current state­of­the­art GAN models typically adopt convolutional neural networks with
multiple hidden layers as the generator architecture (Table 2.1). Consequently, the pro­
cess of generating images by a GAN generator described in Eq. (2.4) can be equivalently
viewed as a sequence of consecutive generation steps, each one performed by an inter­
mediate layer in the hierarchy structure. Consider the case where the generator model
consists of L intermediate layers G1 . . . GL. The first (input) layer takes the latent vector
as input and produces a set of activations Y1 = G1(z), known as activation tensor. The
remaining layers each produce activations as a function of the previous layer’s output

Y i = Ĝi(z) = Gi(Y i−1)

The output of the last layer I = GL(YL−1) is an RGB image.

In the first step of this generation process, the generator learns to project the input latent
spaceZ to an intermediate activation space, which is then used as the input to succeeding
convolutional layers that start the actual synthesis. In other words, it acts as the stepping
stone to shaping the uninformative latent space into a meaningful output distribution and
prior work has proven that it can represent important factors of variation. In particular, this
first generation step that we will focus on can be formulated as an affine transformation
(Eq. (2.8)) :

G1(z) = y = Az + b

As in [26], we first need to construct weight matrix A ∈ RN×d, which encodes important
factors of variation. Assembling the transformation matrix A is dependent on the GAN
model we wish to intepret, and below we describe this process for Progan [12] and both
StyleGAN [13] and StyleGAN2 [14]. These are themodels we used to evaluate our method
in Chapter 4 and Chapter 5.

ProGAN. ProGAN represents the traditional generator architecture where the latent code
z ∈ Rd is fed through the input layer only. In practice, the first transformation step in
ProGAN is implemented using a fully­connected layer, which first increases the dimen­
sionality of the input vector by performing the mapping: Rd → R8192, yielding an output
vector y. Then, this output vector is separately reshaped into a 4 × 4 × 512 activation
tensor Y , which is used as input to the subsequent convolution layers.

For the ProGANmodel, we are interested in decomposing theweights of the fully­connected
layer that performs the above mapping and following notation in Eq. (2.8), we construct
the weight matrix A ∈ R8192×d.

StyleGAN. As outlined in Section 2.3.4, StyleGAN’s generator architecture includes a
mapping network f that transforms the input latent space Z into an intermediate latent
spaceW that leads to better disentanglement of the latent factors of variation as described
by Eq. (2.5). The output vector w produced by the mapping network f is then replicated
once for each AdaIN layer present on the synthesis network g. Each such replicawi is then
specialized to a style tensor Y i through an affine transformation, which is implemented
once again using a fully­connected layer and if wi ∈ Rd and fmaps denotes the number
of feature maps produced by the convolution layer before the AdaIN operation, the fully­
connected layer performs the mapping: Rd → Rfmaps×2.

We are interested in this particular transformation since it is the main way for the synthesis
network g to control the strength of different image features on different scales. As in SeFa,
our method can decompose all or any subset of the fully­connected layers’ weights and
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this is achieved by concatenating them along the first axis. Following notation in Eq. (2.8),
the above procedure yields a weight matrixA ∈ RN×d , whereN is the resulting dimension
from the concatenation.

3.3 Applying the Multilinear Decomposition on the Weights

At this point the weight parameter A has been constructed and it should contain some
informative but entangled shapes that encode important semantic attributes. The hypo­
thesis is that by applying the decomposition in Algorithm 1 and computing the common
multilinear basis B, we will be able to extract these attributes and exploit them in order to
reliably control the image synthesis.

In practice, we simply treat the weights of the pre­trained model in question as the ob­
servations matrix X ∈ Rd×N , and we apply the multilinear decomposition on this weight
matrix. Naturally, when analyzing generators trained on novel or complex datasets, the
number of different factors of variation present is usually uknown and hard to determine.
As a result, both the number of input dimensions K2, . . . , KM given as input as well as the
values selected for each Km require some experimentation, since different choices here
lead to different types of image manipulations. These issues are explored in more detail
in Chapter 4.

After these values have been selected, the algorithm produces the multilinear basis B ∈
Rd×K2×K3...×KM of the weight matrix, which will be used in the semantic editing process, as
it hopefully contains important semantic attributes that are sufficiently disentangled to be
human­interpretable. Along with tensor B, the algorithm also yields variation coefficients
A(2), A(3), . . . ,A(M), which do not contain any meaningful information for our use case
and are thus discarded.

3.4 Semantic Editing with the Multilinear Basis

As explained in Eq. (2.9), the editing process is not dependent on the latent vector z being
used, and so a manipulated image can always be produced by adding the term αAn onto
y = G1(z) from Eq. (2.8), which is the projected code after the first transformation step.

In the general case the number of input dimensions is M − 1 and thus the produced mul­
tilinear basis is B ∈ RK2×···×KM . Basis vectors arranged along the same dimension of the
tensor express the same variability factor. Intuitively, the decomposition has divided the
discovered semantics in categories and semantics within the same category are expected
to yield similar image transformations. To access all basis vectors belonging to the same
category, we simply slice tensor B across the corresponding dimension.

For example, consider again the decomposition scenario in Section 3.1 where tensor
B ∈ Rd×K2×K3 was a basis of 2 modes of variation, K2 being expression and K3 being
identity. Basis vectors corresponding to expression can be accessed with B : ,i, : , while
bases corresponding to identity can be accessed with B : , : ,i. All the expression bases
can be collected in a matrix by keeping an identity base fixed, e.g the first one, by slicing
tensor B as B : , : ,0, which results in a matrix E = [e1, e2, . . . , e|K2|] ∈ Rd×K2. Therefore, to
semantically alter the expression of an image produced by the given generator, the editing
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operation in Eq. (2.6) can be written as:

z′ = z + εei

I ′ = G (z′) ,

where z, ei ∈ Rd denote the input latent code and a latent direction encoding a face ex­
pression respectively and i ∈ [1, K2].

A special case of the above decomposition is when we select only one input dimensionK2.
In this case, the algorithm produces a matrix B(1) ∈ Rd×K2 and the ability of grouping the
discovered basis vectors according to the variability factor they control no longer exists.
Consequently, the latent semantics identified are all contained in the columns of the matrix
B(1) = [n1,n2, . . . ,n|K2|]. An interesting observation is that the decomposition orders the
semantics by the magnitude of change they cause in the internal representations of the
generator model. For most datasets, these directions of largest change usually affect the
geometric configuration and the overall layout of the image. This is consistent to what [8]
have already demonstrated.
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4. EXPERIMENTS

In this Chapter we conduct several experiments on state­of­the­art models and discuss
important details of our method that can potentially affect the discovered image trans­
formations and how these are organized. Our goal is to demonstrate that the multilinear
decomposition presented in Chapter 3 is completely model­agnostic and capable of un­
covering surprising vector directions that can be exploited for high­fidelity image editing.

4.1 Models and Datasets

We apply the proposed technique on 3 of the most prominent GAN architectures, ProGAN
(see Section 2.3.3), StyleGAN and StyleGAN2 (see Section 2.3.4). The ProGAN model
is pre­trained on the synthetic dataset CLEVR­Simple [21], which will be discussed in the
next Section, the StyleGAN models are pre­trained on FFHQ [13] and CelebaHQ [17, 12],
and the StyleGAN2 models are pre­trained on FFHQ and a variety of LSUN categories
[30] (Car, Horse, Cat, Church).

4.2 Disentanglement Study on ProGAN

It is difficult to determine if a disentanglement algorithm “works” by only testing on real
data since the ground truth factors of variation in such datasets are usually unknown and
sometimes subjective. The most principled way to measure disentanglement is to train a
generative model on a synthetic dataset with known factors of variation, and assessing
whether or not the true factors emerge in the latent space. Peebles et al. [21] followed this
exact path when testing their approach, and created some synthetic datasets based on
CLEVR [11]. Among them is CLEVR­Simple, a dataset which has four factors of variation:
object color, shape, and location (both horizontal and vertical) and consists of approxim­
ately 10,000 images. They trained a baseline ProGAN model on CLEVR­Simple, which is
the model on which we test our method here. Synthesized images are 128×128 resolution.

The fact that the dataset consists of 4 different modes of variation should reasonably
guide us to use the multilinear decomposition in Algorithm 1 with 4 input dimensions as
input, i.eK2, K3, K4, K5 and expect to acquire disentangled representations corresponding
to each variability factor. Nevertheless, Eq. (3.4) prohibits this scenario, since there is
not a possible variable assignment such that K2 · K3 · K4 · K5 = d, where d denotes
the dimensionality of the pre­trained model’s latent space, Z ∈ Rd, which is equal to
12. This forces us to use 3 modes of variation instead of 4, i.e K2, K3, K4 and thus the
decomposition becomes:

A = B(1)(A
(2) ⊙A(3) ⊙A(4)),

where A ∈ Rd×N , is the weight matrix constructed following the procedure described in
Section 3.2 for ProGAN,B(1) ∈ Rd×K2·K3·K4 is a basis of 3 different factors of variation and
{A(m)}4m=2 ∈ RKm×N are the variation coefficients.

Figure 4.1 shows all of the 12 vector directions discovered by Algorithm 1. More specific­
ally, the i­th row of this figure depicts a linear interpolation of direction ni,∀i ∈ [1, 12], and
additionally, across the same row, each image is produced by a semantic editing opera­
tion, Iedited = G(z + εni). Recall that ε is the intensity of the semantic manipulation, and
so the rightmost image of a row is generated using ε = +k, whereas the leftmost image
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Figure 4.1: Latent semantics discovered by MddGAN applied on the pre­trained ProGAN model.
The starting image is always in the middle column.

of a row is generated using ε = −k. Three different generated samples are provided, in
order to better assess how each direction affects the original image (top row).

Ideally, we seek meaningful directions that encode independent factors of variation. This
means that if one direction modifies a single image attribute, e.g color, then the remaining
aspects of the image should remain largely unaffected. For instance, the row with index 1
of the third sample, successfully controls only the horizontal position of the object without
influencing the other variability factors. However, when we examine the first sample and
the same row (index 1) we observe that the same direction controls not only the horizontal
position but the color and the shape of the object simultaneously.

4.3 Decomposing Specific Layer Ranges

Despite the fact that applying our method on all layers of a StyleGAN model discovers
human­interpretable directions, they often entail some entanglement. For instance, in the
first 4 rows of Fig. 4.2, we linearly interpolate along some of the directions that cause
large­scale changes to the source image, and it is evident that they alter several semantic
attributes at once ­ age, hair colour, expression, race and background to name a few.
The desired goal of our method however, would be to restrict the global effects of these
directions and instead to manipulate the starting image in a more controlled way.

To address this problem, we target certain layer ranges within the generator that are
proven to control specific aspects of the generated output [29]. More precisely, for a given
StyleGAN generator, we can divide the hierarchical content creation that takes place into
three abstraction levels. In the first level, which includes the early layers of the generator,
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the network learns how to construct the spatial layout of the output image, and as such
controls semantic concepts like camera angle or shape (overall geometry of the image).
In the second level, which includes the middle layers, the network synthesizes smaller­
scale features related to the category of the generated image data, which for face images
can refer to eyes, hair or mouth. The third level includes layers close to the output of the
network, which tend to control colors and lighting.

In practice, after selecting the subset of layers about which we wish to extract semantic
information, we apply the decomposition only on this subset of AdaIN layers ofG, and then
through the editing process, we modify only the w inputs to this subset of layers, leaving
the other layers’ inputs unchanged. For the StyleGAN2 FFHQ model (1024 × 1024), we
label the first four AdaIN layers of the generator as Bottom layers, the last ten AdaIN layers
as Top layers and the remaining ones as Middle layers.

Figure 4.2: A selection of latent semantics discovered by our method applied on StyleGAN2 FFHQ.
Rows 1­4 illustrate some of the effects that can be produced by decomposing the weights of all
AdaIN layers. Rows 5­7 showcase the effect of layerwise edits. The starting face is always in the

middle column. For the interpolation, a shift magnitude ε ∈ [−5, 5] was used.

The last three rows of Fig. 4.2 showcase how decomposing the three subsets of layers
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previously mentioned can surprisingly restrict the extracted semantics to have a more tar­
geted effect, as opposed to the first four rows. For example, row 5 depicts a discovered
semantic that progressively adds a beanie­like accessory to the starting face, leaving the
remaining image content largely unchanged. Row 6 demonstrates a semantic which con­
trols expression and hair density and row 7 shows a semantic that modifies lighting and
the overall color scheme of the image.

Essentially, the last 3 rows highlight that the key for a more controlled semantic editing
lies in separating the generation process into 3 stages and based on the types of image
manipulations we wish to perform, analyze the corresponding range of layers.

4.4 Separating the Extracted Semantics into Categories

In the previous sections we simply exhibited a small set of interesting effects that were
caused by semantically editing the given generated images using basis vectors discovered
by our method. In particular, we didn’t attempt to somehow group directions that their
corresponding semantic edits transformed the source image in a similar way. For instance,
if one of the variation factors among the synthesized data is face expression, it would
be more meaningful to be able to gather all basis vectors encoding any type of facial
expression and put them in the same category.

Algorithm 1 provides such capabilities, since it attempts to separate the input factors of
variation into M − 1 groups and afterwards by tensorizing matrix B(1) (line 16) we can
gather all basis vectors encoding the same variability factor simply by slicing tensor B.
At this point, two matters for consideration arise regarding the decomposition. Firstly,
as we have already indicated, the true number of variation factors a well trained GAN
generator has learnt to model is unknown, and thus we are (mostly) inclined to follow a
trial and error approach in our attempt to decide on the optimal value forM−1 used in the
algorithm. Secondly, the decomposition is a completely unsupervised process and divides
the semantic knowledge encoded in the weights of the generator purely mathematically.
Thus, in order to assess whether the separation of the discovered image transformations
agrees with human logic, we need to visually inspect the results.

As an example, consider a StyleGAN2 generator trained on FFHQ. We choose to analyze
the Bottom layers of G using Algorithm 1 with two dimensions as input, K2 and K3, where
K2 = 16 and K3 = 32. By selecting two dimensions, we are intuitively instructing the
algorithm to decompose the input weight matrix assuming there are only two explanatory
factors in the data. Furthermore, we also imply that mode of variation 1 (K2) appears in 16
and mode of variation 2 (K3) in 32 different interpretations. Note that K2 ·K3 = d = 512,
where d is the dimensionality of the StyleGAN latent space, so Eq. (3.4) is satisfied. Thus,
the algorithm produces the multilinear basis B ∈ Rd×16×32 of order 3. If for example we
wish to collect all 16 bases corresponding to mode 1, we can simply slice tensor B in its
second dimension while keeping mode 2 fixed, e.g B:,:,0. The first 5 bases of each mode
discovered by the decomposition are plotted in Fig. 4.3.

Examining the results, we can see that bases corresponding to variation mode 1 seem to
subtly ”stretch” the face either horizontally or vertically when used to semantically manip­
ulate the starting image, while the other image attributes remain largely unaffected (only
exception is row 1, with ε = −5 where the hairstyle changes). On the other hand, bases
corresponding to variation mode 2 consistently change the hairstyle of the face. In addi­
tion, in the 4th row of mode 2 we can also detect a change in the pose.
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Figure 4.3: Decomposition with two modes of variation, K2 = 16 and K3 = 32, on the bottom layers
of the StyleGAN2 FFHQ model. A shift magnitude ε ∈ [−5, 5] was used.

The fact that the produced image transformations of mode 2 alter not only the hairstyle,
but also the pose, makes us assume that two input dimensions in Algorithm 1 were prob­
ably insufficient, because clearly bottom layers have learnt more than two semantic con­
cepts. This naturally raises the question of how to optimally choose the number of variation
modes the decomposition will separate the input data into, which is discussed next.

4.4.1 How Many Modes of Variation?

A significant decision/choice to be made when decomposing the weights of the generator,
is how many modes of variationM −1, Algorithm 1 will discover in the input data. In other
words, the number of input dimensions K2, K3, . . . , KM along with the values chosen for
each dimension Km,∀m ∈ [2,M ] can affect the types of image manipulations the decom­
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position will uncover. Ideally, we would like to set M − 1 equal to the true number of
variation factors learnt by the model and consequently encoded in its weights. Unfortu­
nately, this number is not known in advance.

Returning to the example of Fig. 4.3, recall that that 2 modes of variation or equivalently
2 input dimensions K2 and K3 as input to the decomposition algorithm proved to be inad­
equate. So, we proceed by repeating the experiment using three modes of variation this
time, K2, K3 and K4, with equal values K2 = K3 = K4 = 8 and hopefully, this will be a
better approximation of the true number of variation modes. Note that in this experiment,
the decomposition yields a basis tensor B ∈ Rd×8×8×8 of order 4 and the equality con­
straint in Eq. (3.4), K4 · K3 · K2 = d = 512 still holds. Figure 4.4 shows the first 5 bases
corresponding to each mode of variation.

Figure 4.4: Decomposition with three modes of variation, K2,K3 and K4 with K2 = K3 = K4, on the
bottom layers of the StyleGAN2 FFHQ model. A shift magnitude ε ∈ [−5, 5] was used.

Interestingly, Mode 1 once again includes bases that appear to stretch the starting face
either horizontally or vertically while mostly preserving the hairstyle of the face. On the
other hand, it is not quite clear how Mode 2 bases affect the original image, since they
do not produce any substantial changes after the semantic editing procedure (undefined).
Lastly, bases corresponding to variation mode 3, edit the synthesized image in a way very
similar to Mode 2 bases from Fig. 4.3. More specifically, they manage to consistently
control the hairstyle and also change the pose of the subject (e.g Row 5).

So, increasing the number of input dimensions to 3, didn’t improve the separation any fur­
ther. On the contrary, we created an extra category of image transformations (Mode 2) that
appears to cause incredibly subtle, almost non­existent changes to the synthesized im­
age. Randomly trying every allowed / possible number of input dimensions in Algorithm 1
clearly isn’t a viable approach, and instead we should try and define an estimate of the
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optimal decomposition in terms of the number of input dimensions. Basically, we want
this estimate to assist us on determining the true number of variation factors a well trained
generator has learnt to model.

In fact, the convergence condition (line 13) of Algorithm 1 could act as such an estim­
ate, since it calculates the absolute relative error of the decomposition and can therefore
provide a measurement of how accurate is the reconstruction of the input data. So, by
keeping the number of discovered directions fixed, we progressively increase the number
of variation modes discovered by the decomposition. Although model­dependent, Fig. 4.5
on the top­left depicts that by increasing the input modes of variation, we can expect to
obtain a data reconstruction of superior quality and this is observed across all layer ranges.

Figure 4.5: How increasing the number of variation modes impacts the decomposition in terms of
reconstruction error on StyleGAN2 FFHQ

Comparing Fig. 4.3 to Fig. 4.4 we can hypothesize that a lower reconstruction error does
not necessarily imply a better separation of the input modes of variation, at least visually.
For example, in Fig. 4.4 the decomposition might intentionally put all basis vectors that
do not produce any substantial effects in Mode 2, because it cannot identify any other
common patterns in the weights of the model.

4.5 Reducing the Number of Discovered Directions

So far, all of our experiments involved applying the unsupervisedmultilinear matrix decom­
position on the weights of a well trained GAN generator and producing a full­rank matrix
B(1) (d× d), that contains all the necessary information required by the model to generate
images. Nonetheless, the d × d full­rank matrix captures 100% of the variance of the in­
put data, which is something we want to avoid. In particular, the number of interpretable
directions d might be too many to lead to a fully­comprehensible result.

For example, StyleGAN models use d = 512 as their latent space dimensionality and as
a result, Algorithm 1 by default attempts to discover 512 basis bectors, each one encod­
ing some semantic concept. However, we have found that across all trained (StyleGAN)
models we have explored, when analyzing all layers, distinctive changes to generated im­
age content make up only about 150­200 of the total basis vectors discovered, while for
the three previously mentioned subsets of layers (Bottom­Middle­Top), the corresponding
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number is even smaller, around 100 of the total basis vectors discovered. The rest do not
impact the synthesized image in any significant way.

As mentioned in Section 3.1.3, opting for the Truncated SVD instead of the original SVD,
is capable of producing a matrix B(1) ∈ Rl×d or equivalently extracting a reduced number
of latent semantics l < d. The observation of the previous paragraph provides the main
intuition behind the values of l we chose to experiment with in this Section. More specific­
ally, we tested four different values for l: 512 (= d), 200, 100 and 50. Of course, as we
outlined also in Section 3.1.3, applying the decomposition seeking a sparser basis of the
input weights leads to significantly higher reconstruction error, also confirmed by Fig. 4.5.

Figure 4.6 and Fig. 4.7 demonstrate how a reduced number of discovered semantics can
affect the corresponding image transformations. In these examples we used three input
dimensions, similar to Fig. 4.4, but instead of d = 512, we instruct the algorithm to identify
l = 100 directions with K2 = 4, K3 = 4 and K4 = 5 in Fig. 4.6 and l = 50 directions with
K2 = 2, K3 = 5 and K4 = 5 in Fig. 4.7. In each case, Eq. (3.5) is satisfied. Evidently,
the image transformations produced in these 2 scenarios are different compared to what
the full­rank matrix decomposition generated. For instance, in Fig. 4.7 we can discern a
discovered semantic that adds eyeglasses to the starting face (Mode 3 ­ row 3), which
was not uncovered in our previous experiments. Additionally, Figs. 4.8 to 4.11 explore
how the discovered basis vectors are organized in the multilinear basis’s B dimensions in
the case of StyleGAN2 generators pre­trained on LSUN categories.

Figure 4.6: Decomposition with three modes of variation, K2,K3 and K4 with K2 = 4,K3 = 4 and
K4 = 5, on the bottom layers of the StyleGAN2 FFHQ model. Here, the number of discovered

directions is l = 100 < d. A shift magnitude ε ∈ [−5, 5] was used.
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Figure 4.7: Decomposition with three modes of variation, K2,K3 and K4 with K2 = 2,K3 = 5 and
K4 = 5, on the bottom layers of the StyleGAN2 FFHQ model. Here, the number of discovered

directions is l = 50 < d. A shift magnitude ε ∈ [−5, 5] was used.

Figure 4.8: Decomposition with three modes of variation, K2,K3 and K4 with K2 = 4,K3 = 5 and
K4 = 5, on the middle layers of the StyleGAN2 LSUN­Car model. Here, the number of discovered

directions is l = 100 < d. A shift magnitude ε ∈ [−5, 5] was used.
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Figure 4.9: Decomposition with three modes of variation, K2,K3 and K4 with K2 = 4,K3 = 5 and
K4 = 5, on the top layers of the StyleGAN2 LSUN­Cat model. Here, the number of discovered

directions is l = 100 < d. A shift magnitude ε ∈ [−5, 5] was used.
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Figure 4.10: Decomposition with two modes of variation, K2 and K3 with K2 = K3 = 10, on the
bottom layers of the StyleGAN2 LSUN­Church model. Here, the number of discovered directions is

l = 100 < d. A shift magnitude ε ∈ [−5, 5] was used.
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Figure 4.11: Decomposition with two modes of variation, K2 and K3 with K2 = 10 and K3 = 5, on
the middle layers of the StyleGAN2 LSUN­Horse model. Here, the number of discovered directions

is l = 50 < d. A shift magnitude ε ∈ [−5, 5] was used.
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5. EVALUATION

In this chapter we provide comparisons to the more powerful class of techniques that
similarly to our method MddGAN, attempt to analyze and interpret the latent space of
GANs. In particular, we compare MddGAN to the current supervised and unsupervised
baselines, InterFaceGAN [25] and SeFa [26] respectively.

5.1 Supervised Method Comparison

InterFaceGAN [25] is a prominent supervised control method, which uses existing detect­
ors for face attributes and keypoints to find directions for face editing.

5.1.1 Qualitative Results

To perform an extended visual comparison between the 2 methods, we chose a set of in­
terpretable vector directions corresponding to the following facial attributes: pose, gender,
age, smile and eyeglasses. For InterFaceGAN, we use the above vector directions found
in the authors’ official implementation. Note that all semantic editing operations take place
in the W space of StyleGAN. For the comparisons presented in Fig. 5.1 and Fig. 5.2 we
used the StyleGAN model trained on the CelebaHQ and FFHQ datasets.

We find that all of the above edits can be very accurately recreated with our technique,
despite it being unsupervised and not having access to the target transformations. In fact,
MddGAN manages to even surpass InterfaceGAN by better preserving the starting face
identity and the overall image content in general. For instance, in Fig. 5.1, in the case of
the gender attribute comparison, the effect produced by MddGAN alters the image in a
more controllable manner leaving the remaining aspects of the image such as hair and
age largely unchanged, whereas [25] also affects age, hair and skin tone. Similarly, in the
case of the age semantic, [25] captures the ”old” aspect of the transformation better, but
it fails to preserve the starting expression (sample 2) and it also changes the skin color to
a yellow tone.

However, it is evident that both methods are unable to uncover a sufficiently disentangled
eyeglasses vector direction, at least in the case of the Stylegan CelebaHQ model. In
particular, Fig. 5.1 shows that the eyeglasses direction discovered seems to also control
age and gender. As explained in [25], this may be due to the biases inherited from the
training set, the CelebaHQ in this case, where people wearing eyeglasses appear to be
mostly older males.

5.1.2 Quantitative Results

5.1.2.1 Correlation between Attributes

In this Section we will focus on the relationships between different hidden semantics and
study how they are coupled with each other. In particular, we compute the cosine similarity
between two given attribute vectors as cos (n1,n2) = nT

1n2, where n1 and n2 stand for
unit vectors.
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(a) CelebaHQ Pose (b) CelebaHQ Gender

(c) CelebaHQ Age (d) CelebaHQ Smile

(e) CelebaHQ Eyeglasses

Figure 5.1: Comparison to InterfaceGAN [25] for the StyleGAN CelebaHQ model.

Table 5.1 and Table 5.2 report the results. We observe that in MddGAN’s correlation mat­
rix, gender, age and eyeglasses are highly correlated with each other. This is also evident
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(a) FFHQ Pose (b) FFHQ Gender

(c) FFHQ Age (d) FFHQ Smile

(e) FFHQ Eyeglasses

Figure 5.2: Comparison to InterfaceGAN [25] for the StyleGAN FFHQ model.

in Fig. 5.2 (e), where linearly interpolating towards the negative side of the MddGAN at­
tribute vector, causes a change to the gender of the face. The eyeglasses­age attribute
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relationship, as mentioned earlier, is inherited from the training dataset. The same at­
tribute pair also seems to yield the highest correlation score in the correlation matrix of
InterFaceGAN.

In general though, we can see that InterFaceGAN benefits from its supervised training
scheme, since the 5 attributes are mostly decoupled, which is not the case for MddGAN.
The interpretable semantics were extracted from the StyleGAN FFHQ model.

Table 5.1: Correlation matrix of attribute vectors for MddGAN. The attribute vectors were extracted
from the StyleGAN FFHQ model.

Pose Gender Age Eyeglasses Smile
Pose 1.00 ­0.12 ­0.17 ­0.05 0.04
Gender ­ 1.00 0.04 0.71 ­0.01
Age ­ ­ 1.00 0.45 0.04

Eyeglasses ­ ­ ­ 1.00 0.18
Smile ­ ­ ­ ­ 1.00

Table 5.2: Correlation matrix of attribute vectors for InterFaceGAN [25]. The attribute vectors were
extracted from the StyleGAN FFHQ model.

Pose Gender Age Eyeglasses Smile
Pose 1.00 0.03 0.02 ­0.02 0.00
Gender ­ 1.00 0.07 0.00 ­0.11
Age ­ ­ 1.00 0.10 0.03

Eyeglasses ­ ­ ­ 1.00 0.01
Smile ­ ­ ­ ­ 1.00

5.1.2.2 Diversity Comparison

InterFaceGAN is able to discover latent space directions corresponding to interpretable
semantic attributes only when there are available classifiers for these attributes. Con­
sequently, for attributes that cannot be effectively described with only 2 values e.g race
or hairstyle, there exists no straight­forward way to acquire semantic predictors. This lim­
itation makes InterFaceGAN and similar supervised techniques impossible to rely on for
general­purpose semantic image editing, since the number of meaningful directions that
can be discovered is significantly reduced.

In contrast, our method MddGAN does not contain any form of supervision, yet it is vastly
more flexible when it comes to discovering diverse image manipulations. For example,
the weight decompositionmanages to successfully extract vector directions related to geo­
metric properties (face shape, zoom) and hairstyle for the case of StyleGAN CelebaHQ,
as well as race (skin tone, eyes shape) and light exposure in the case of StyleGAN FFHQ.
The above edits are demonstrated in Fig. 5.3.

5.2 Unsupervised Method Comparison

In this Section, we compare our method to the current state­of­the­art unsupervised ap­
proach, SeFa [26]. Our proposed method MddGAN can be viewed as a variant of SeFa,
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(a) Semantics extracted by MddGAN from the StyleGAN CelebaHQ model

(b) Semantics extracted by MddGAN from the StyleGAN FFHQ model

Figure 5.3: Evidence of diverse semantics that cannot be explicitly modeled with binary values,
and hence cannot be identified by InterFaceGAN [25].

since it similarly inspects the parameters of a pre­trained generator directly and extracts
meaningful vector directions that can be later used for semantic image editing.

5.2.1 Qualitative Results

As in Section 5.1.1, we will compare the 2 methods by visualizing vector directions corres­
ponding to the 5 semantic attributes: pose, gender, age, smile and eyeglasses. Because
the authors of SeFa don’t specify the individual attribute vectors used in their experiments,
we manually seek the most relevant ones that can be directly compared to those identified
by our method. In other words, when analyzing the generator model of interest, we apply
SeFa on exactly the same subset of layers that we applied MddGAN in order to find the
best matching basis vector.

Surprisingly, the identified semantics depicted in Fig. 5.4 are almost identical in terms of
produced semantic manipulations. The only differences we can detect, are in (a), where
the MddGAN attribute vector alters the image in a more realistic manner, whereas the
SeFa attribute seems to introduce inconsistencies in the output image. Moreover, in (d)
SeFa fails to completely close the mouth of the face on the negative side of the direction.

5.2.2 Quantitative Results

5.2.2.1 Correlation between Attributes

Similar to the InterFaceGAN comparison, we will once again investigate the relationships
between the different hidden semantics found by MddGAN and SeFa.

Table 5.3 and Table 5.4 report the results. We observe that MddGAN in general pro­
duces higher correlation scores than SeFa, even though the attribute vectors visualized
in Fig. 5.4 cause almost identical effects. The highest correlation values however emerge
in the gender­age attribute relationship, which basically implies that they both have a high
influence on one another. The interpretable semantics were extracted from the StyleGAN
CelebaHQ model.
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(a) CelebaHQ Pose (b) CelebaHQ Gender

(c) CelebaHQ Age (d) CelebaHQ Smile

(e) CelebaHQ Eyeglasses

Figure 5.4: Comparison to SeFa [26] for the StyleGAN CelebaHQ model.
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Table 5.3: Correlation matrix of attribute vectors for MddGAN. The attribute vectors were extracted
from the StyleGAN CelebaHQ model.

Pose Gender Age Eyeglasses Smile
Pose 1.00 0.11 0.19 0.16 ­0.05
Gender ­ 1.00 0.53 0.00 0.11
Age ­ ­ 1.00 ­0.08 ­0.03

Eyeglasses ­ ­ ­ 1.00 0.04
Smile ­ ­ ­ ­ 1.00

Table 5.4: Correlation matrix of attribute vectors for SeFa [26]. The attribute vectors were extracted
from the StyleGAN CelebaHQ model.

Pose Gender Age Eyeglasses Smile
Pose 1.00 ­0.22 ­0.09 0.12 ­0.05
Gender ­ 1.00 0.29 ­0.01 ­0.03
Age ­ ­ 1.00 0.08 0.08

Eyeglasses ­ ­ ­ 1.00 ­0.06
Smile ­ ­ ­ ­ 1.00

5.2.2.2 Fréchet Inception Distance Comparison

The Fréchet Inception Distance (FID) [6] has become the standard metric for evaluating
GAN performance. In practice, the FID compares the generated data distribution pg with
the distribution of the real data used to train the model pdata. In the case of image data,
lower FID scores have been shown to correlate well with higher quality images, proving
that the FID is consistent with human judgement.

In order to calculate the FID of each approach, we first need a sample size of 50,000
images drawn randomly from the training set. This dataset resembles the real data distri­
bution pdata. We then generate 50,000 fake images in minibatches and across a minibatch
we use the same attribute vector n to edit along with the same magnitude ε. In particular,
for each minibatch we randomly select one of the 5 attribute vectors discussed previously
and we also pick the magnitude value to be either −k or +k. This process yields a syn­
thetic dataset of images that were also semantically edited, which resembles the generator
distribution pg. Finally, the FID score between the two distributions can be computed. For
this comparison, we used the StyleGAN model trained on CelebaHQ. The FID scores,
which are remarkably close are presented in Table 5.5.

Table 5.5: Comparison results in terms of edited image quality. Lower is better.

Methods FID↓
SeFa [26] 25.0

MddGAN (Ours) 25.1
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6. CONCLUSIONS

GANs are powerful deep­learning basedmodels that keep pushing the boundaries of high­
fidelity image synthesis. But whereas the image quality of these models has improved and
will probably continue to improve, their controllability has lagged behind. This thesis pro­
poses MddGAN, an unsupervised method for discovering human­interpretable directions
by performing multilinear analysis on the parameters of a pre­trained generator model. As
a result, this method does not require repeating the training process nor sampling numer­
ous data. Instead it can be applied directly on the model we are interested in interpreting.
Furthermore, our method does not simply identify meaningful image transformations, but
it is also capable of separating them into different categories and the experimental results
indicate that this separation is generally aligned with human perception.

When comparing MddGANwith the supervised baseline, we observe that even though our
method does not have access to the specific attribute classifiers, it can successfully identify
the corresponding directions and in fact, during editing, it manages to better preserve the
starting identity and the overall image content in general. The comparison results with
the unsupervised baseline are remarkably close, as evidenced by both the qualitative and
quantitative results. These findings highlight the effectiveness of the proposed method,
which can clearly challenge the current state­of­the­art ones.
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ABBREVIATIONS ­ ACRONYMS

GAN Generative Adversarial Network

SGD Stochastic Gradient Descent

CNN Convolutional Neural Network

ReLU Rectified Linear Unit

MLP Multilayer Perceptron

PCA Principal Component Analysis

SVD Singular Value Decomposition

AdaIN Adaptive Instance Normalization

FFHQ Flickr­Faces­HQ

FID Fréchet Inception Distance

MDD Multilinear Data Decomposition
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