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 1   Introduction 
 

 

  In this work we present several results concerning mostly applications of Baire’s 

Category theorem in Complex Analysis in one and in several complex variables. An 

important problem in complex analysis is whether there exists a holomorphic function 

f , in a given open set   in nC , which is singular at every boundary point of   in 

the sense that whenever U  and V  are open subsets of nC , with U  being connected 

and UUV  , then there is no holomorphic function F  in U  which 

extends 
V

f , i.e., )()( zfzF =  for Vz . See for example [2], [7], [10], [11], [14], 

[16] and [20]. Also the problem of constructing singular functions with specific 

properties – for example satisfying certain growth conditions near the boundary or 

having certain smoothness upto the boundary – has been studied in various directions. 

See for example [7], [8], [10], and [11]. In this work we will show – under certain 

restrictions on the open set   – that the set of the pLO  (holomorphic and pL  with 

respect to Lebesgue measure) and  )(BpH (holomorphic and 
p

H  with respect to the 

Euclidean surface area measure on the sphere B ),  p1 , functions in   and 

}1:{ = zz nCB , which are totally unbounded, is dense and G  in the space 

)(pLO and )(BpH respectively. In fact we work mostly with the spaces 
qp

pL


)(O

-see chapter 3- and 
qp

pH



1

)( -see chapter 4-, ),1( +q  endowed with its natural 

topology. 

 The second chapter is an introduction for the chapters 3 and 4. Here we present the 

definitions of concepts which appear in this thesis, propositions and theorems which 

we apply in order to prove the theorems presented in the chapters 3 and 4.   

 In the third chapter we consider Bergman spaces )(pLO and variations of them on 

domains   in one or several complex variables. For certain domains   we show that 

the generic function in these spaces is totaly unbounded in   and hence non-

extendable. We also show that generically these functions do not belong – not even 

locally – in Bergman spaces of higher order. Finally, in certain domains  , we give 

examples of bounded non-extendable holomorphic functions – a generic result in the 

spaces )(s  of holomorphic functions in   whose derivatives of order s  extend 

continuously to   (  s0 ). 

  In the fourth chapter we study some Hardy type spaces 
qp

pH



1

)( and we prove that 

the set of the holomorphic functions which are totally unbounded in certain domains is 

dense and G  in these spaces. These totally unbounded functions are non-extendable, 

despite the fact that they have non-tangential limits at the boundary of the domain. 

Similarly we show that the set of the holomorphic functions in these spaces which are 

non-extendable is dense and G  in these spaces. Following a suggestion of Nestoridis, 

we also consider local Hardy spaces ),( GH p B , for open subsets G  of the sphere B
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(the precise definition is given in the subsection 4.3.) as another way of measuring 

how singular a holomorphic function is near a boundary point. In this chapter we show 

that the set of the functions in the space 
qp

pH
1

)(B  which do not belong to any local 

−qH space is dense and G  (Theorem 4.3.2.). We first work in the case of the unit 

ball of nC  where the calculations are easier and the results are somehow better, and 

then we extend them to the case of strictly pseudoconvex domains. In sections 4.4.and 

4.6., we will extend these results from the ball to the case of strictly pseudoconvex 

domains. In this more general case we have to modify the definition of local Hardy 

spaces which we give in the case of the ball. Thus if   is a strictly pseudoconvex 

domain in nC , we consider the space ),( UH p  , where U  is an open subset of nC  

so that  )(U (For the precise definition, see section 4.5.). In the last section of 

this chapter we extend the results for strictly pseudoconvex domains in nC to the case 

of harmonic functions in domains of  . 

Last it remains an open question if the results presented in chapters 3 and 4 could be 

extended in other spaces as Nevanlinna or in convex sets respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nR
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2   Preliminaries 

 

2.1. Basic Theorems and Definitions 

 

 

We will use the following theorems to prove the main results of this work.  

 

Definition 2.1.1. A function :f  → , defined on an open subset , 1n n   , is 

said to be holomorphic in   if ( )f C   and is holomorphic in each variable 

separately. The classes of all holomorphic functions in   will be denoted by ( )O . 

 

Definition 2.1.2. The hermitian inner product is defined by 

1

, , ,
n

n
jj

j

z w z w z w
=

  =   

and the associated norm is: 
1/2, , nz z z z=    . 

 

Definition 2.1.3. Let X  be a topological space. A G  set in X  is a countable 

intersection of open sets in X . Furthermore, a subset E of X  is called dense if 

intersects every nonempty open subset of X . 

 

Theorem 2.1.4. (Baire’s Theorem, [23, Theorem 5.6]) Any countable family of open 

and dense sets in a complete metric space has a non-empty and in fact dense 

intersection.  

 

Theorem 2.1.5. (Taylor’s Theorem, [7, Problem 25]) Let 
n   be an open set, and 

  a real valued Cm
– function in  . Then, for all ζ  and for →z ζ , 

( ) ( )
( )

( ) ( )( )
2

1=


= + − +


 j j

j

n

j

z x z x
x

 
     

( )
( ) ( )( ) ( ) ( )( )

22

, 1

1
...

2! =


+ − − + +

 
 j j k k

j k

n

j k

x z x x z x
x x

 
   

( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )

1 1 2 2

1 1 2
,

2

...,, =1

1
... ,

! ...


+ − − − + −

  
 m m

m m

m
m

j j j j j j

j j j

n

j j

x z x x z x x z x z
m x x x

 
     

 where ( )j jx x =  are the real coordinates of n   such that ( ) ( )j j j nx ix  += +

, 1,...,j n= . 

 

Theorem 2.1.6. (Hölder's inequality, [28, Proposition 3.3.2]) Let ( ), ,X μA  be a 

measure space and let , [1, )p q +   with 
1 1

1.
p q

+ =  If ( ), ,pf L X μ A
 

and 

( ), ,qg L X μ A  then f g  belongs to ( )1 , ,L X μA  and satisfies  

https://encyclopediaofmath.org/wiki/Complete_metric_space
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d .p q
f g f gμ   

 

Theorem 2.1.7. (Fatou’s Lemma, [6, Theorem 1.17]) Let : [0, ]→ 
k

f X be μ –

measurable functions for 1k = ,... . Then  

 

.lim liminf
→ →

 k kk k
f dμ f dμ  

 

Theorem 2.1.8. (Monotone convergence Theorem, [6, Theorem 1.18]) Let  

: [0, ]→ 
k

f X
 
be μ –measurable functions ( 1k = ,... ), with  

1 1
... ....   

k k+
f f f  

Then  

.lim lim
→ →

= k kk k
f dμ f dμ  

 

Theorem 2.1.9. (Fubini’s theorem, [6, Theorem 1.22]) Let μ  be a measure on X  and 

v  be a measure on Y. If f  is  ( )μ v - integrable and f  is σ - finite with respect to 

μ v  (in particular, if f  is ( )μ v - summable), then the mapping 

( ) ( )
X

y f x, y dμ x  is v - integrable, the mapping ( ) ( )
Y

x f x, y dv y  is μ - 

integrable, and  

( ) ( ) ( ) ( ) ( ) ( ) ( )


   
 = =   

   
    

X Y Y X X Y

f d μ v f x, y dμ x dv y f x, y dv y dμ x . 

 

Theorem 2.1.10. (Inverse Function Theorem, [18, Theorem 8.3], [10, Theorem 

1.1.18]) Let : → nF , where   is an open set in , be of class 
1C  and p  a 

point in   such that ( )JF p  is invertible. Then, there exist an open set X  containing

p , an open set Y containing ( )F p , and a function :G Y X→  of class 1C  that 

satisfies ( )FG y y= , for all y in Y , and ( )GF x x= , for x  in X . Moreover, 

( ) ( )
1

(y)JG y JF G
−

= , for all y in Y .  

 

Theorem 2.1.11. (Montel’s Theorem, [18, Theorem 5.2]) Let F  be a bounded family 

of holomorphic functions on an open set 
nC . Then, each sequence of functions in 

F  has a subsequence which converges uniformly on compact subsets.  

 

Theorem 2.1.12. ([25, Proposition 5.2]) Let V  be a topological vector space over C , 

X  a non-empty set, and let XC  denote the vector space of all complex-valued 

functions on X . Suppose 
XT C→V: is a linear (or sublinear) operator with the 

property that, for every Xx , the functional C→V:xT , defined by 

))(()( xfTfTx = , for Vf , is continuous. Let   

nR
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})(:{ XonunboundedisfTf VE = . 

Then either =E  or E  is dense and G  set in the space V . 

 

Proof. That E  is a G  
set follows from the fact that  

E = }))((:{
1

mxfTf
m Xx




= 

V 
 

and the continuity of  ))(( xfTf → . 

Next we show that E  is dense in the space V , if it is not empty. Let g E , i.e., g V  

and ( )T g  is unbounded on X , and let f  V − E . Then )( fT  is bounded on X , let 

us say by 2 . Also for fixed 1n , the function ( )1
n

T f + g  is unbounded on X . 

Indeed, suppose that it is bounded on X  by a positive number 1 . Then, if Xx  , by 

the linearity of T , we would have 

           
( )( )( ) ( )( ) ( ) ( )( )= = −1 1

n n
T g x n T g x n T f + g x T f x  

                                                  
( )( )( ) ( )( ) +1

n
n T f + g x T f x  n 1  + n 2 ,  

which contradicts the fact that ( )T g  is unbounded on X .  

In the more general case in which  T  is sublinear (not necessarily linear), i.e.,  

)()()( gTfTgfT ++  and )()( fTfT  = , for Vgf ,  and C , 

we would have 

( ) ( )( )( ) ( )( ) ( ) ( )( ) ( ) ( )( )1 1 1 1
n n n n
T g x  T g x T f + g x T f x T f + g x T f x=  + − = + , 

and this would give again the contradiction that ( )T g is bounded on X  by n( 1 + 2 ). 

Therefore ( )1
n

T f + g  is unbounded on X , i.e., 1
n

f + g  E  for every 1n , and  

gf
n
1+  converges to f , in V , as →n . Since f  was an arbitrary function in 

EV − , it follows that E is indeed dense inV . □ 

 

Remark 2.1.13. One can prove more general versions of the above theorem. For 

example the operator T may be assumed to satisfy the weaker condition:
  

( ( )) ( ) ( )T f g T f T g
   

  +  + , for some 0,  . 

 

    The following Theorem was proved by Nestoridis. (See [19, Theorem 3.3].) 

 

Theorem 2.1.14. Let 
nC  be an open set and let V  be a vector subspace of )(O . 

Suppose that in V  there is defined a complete metric whose topology makes V  a 

topological vector space and such that convergence in V  implies pointwise 

convergence in )(O . If for every pair of balls ),( bB  with BBb  , there 

exists V),( bBf  such that the restriction bbBf ),(  (of the function ),( bBf  to b ) does 

not have any bounded holomorphic extention to B , then the set of  the functions 

Vg  which are non-extendable  is dense and G  in V . 
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Proof. Let }:{ extendablenonisff −= VA . In order to prove that A  is dense and 

G  in V , it suffices to show that its complement AV −  is a countable union of closed 

subsets of V  with empty interior.  

For this purpose we consider the set Y  of the couples ( ),B b  of open Euclidean balls 

so that BBb   with the centers of B  and b  belonging to ni )( QQ +  and the 

radii of B , b  belonging to Q+),0( , where Q  denotes the set of rational numbers. 

It is clear that this set Y  is countable. Also it is easy to see that  

 
Y

AV
 

=−
),(

),,(
bB M

MbBT
N

 

where we have set  

},),(:{),,(
bb

fFthatsoMbyboundedBFfMbBT == OV . 

Since the set }),(:),,({ N MandbBMbBT Y  is countable, it remains to show 

that, for fixed Y),( bB  and NM ,  

),,( MbBT  is closed (in V ) and =)],,(int[ MbBT . 

Let us consider a sequence ( ), ,Mnf T B b  such that nf f→  in the topology of V
(with f  V ). For each ,...3,2,1=n , there exists a holomorphic function nF  on B , 

bounded by M , such that .n nF b f b=  By Montel’s theorem (see Theorem 2.1.11.), 

there exists a subsequence 
nkF  of nF  which converges uniformly on compact subsets 

of  B  towards a function F  which is holomorphic on B  and bounded by M . 

Since the convergence nf f→
 
in the topology of V implies pointwise convergence in 

  by our assumption, it follows that lim lim lim
n nn k k

n n n
f b f b f b F b F b= = = = . 

Since f  V  and F  is holomorphic on B  and bounded by M , ( ), ,M .f T B b  This 

proves that ( ), ,MT B b  is closed in V . 

Finally, to prove that the interior of ( ), ,MT B b  in V  is empty, let us assume, in order 

to reach a contradiction, that there exists an )],,(int[ MbBTf  .  By our assumption 

there exists a function V),( bBf
 
such that its restriction to b  does not have any 

bounded holomorphic extention to .B  Since 
( ),b

1
B

f f f
n

+ →
 
in the topology of  V  

and f  is in the interior of  ( ), ,MT B b , it follows that for some ,...}3,2,1{n  the 

function 
( ),b

1
B

f f
n

+ belongs to ( ), ,MT B b . The same holds also for the function f . 

Thus, both functions 
( ),b

1
B

f f
n

+  and f , restricted to b , admit holomorphic 

extensions to  B  which are bounded by M . Thus, their difference 
( ),b

1
B

f
n

, restricted 

to b , admits a holomorphic extension on B  bounded by M2 . It follows that the 

function ( ),bB
f  restricted to b  admits a holomorphic extension on B  bounded by 
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2 .nM  This contradicts the fact that bbBf ),( does not admit any bounded holomorphic 

extension on B . Thus =)],,(int[ MbBT  and the proof is complete.  □ 

 

 

2.2. Totally unbounded Holomorphic functions 

 

Let  be an open set. We will say that a holomorphic function  is 

totally unbounded in , if for every , every , and every connected 

component  of the set  

, 

the function  is unbounded, i.e., . Notice that such a function is 

singular at every point of .  

 

More precisely the following proposition holds. 

 

Proposition 2.2.1. Let nC  be an open set and let C→:f  be a totally unbounded 

holomorphic function. Then for every open sets 
nVU C, , with U  being connected and 

UUV  , there does not exist a holomorphic function F  on U  which extends 

Vf , i.e., VV fF = . 

 

Proof. Suppose – to reach a contradiction – that for some pair of sets U  and V , there exists 

a function F , which extends f  in the way described above. Let 1E  be the connected 

component of U  which contains V . Then 
11 EE fF =  and 1E , so that we 

may take a point  1Ew , and a ball ),( wB  with UwB ),(  . Then 

 1),( EwB  , and if 1),( EwBc    then for the connected component E  of the set 

),( wB , which contains the point c , we have =


)(sup zf
Ez

 (since f  is assumed to be 

totally unbounded). But this contradicts the equation EE fF = , which follows from the 

principle of unique analytic continuation, applied to the connected open set E  and the fact 

that open set  1EE . This completes the proof.□ 

 

Remark 2.2.2. In the above proof we used the fact that 1E . To justify this 

elementary topological fact, let us observe that, since U , − )(CU  and 

U  is connected, it follows that U . Let Va   and Ub , and let   be a 

curve which lies in U  and connects the points a  and b . If C  is the connected component 

of U  which contains a , then C  is open, Ca  and Cb . Since the set   is 

connected, we must have  C . Then for a point C , we will have   

nC C→:f

 w 0
E

}:{),(  −= wzzwB

Ef =


)(sup zf
Ez
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and C , and therefore C . Finally, since CE 1 , we obtain that, indeed, 

1E .  

 

 

 

 

2.3. Integrals over level sets 

 

 

Lemma 2.3.1. (Integration in polar coordinates, [28, Lemma 1.8]) Let dv  denote the 

volume measure on }1:{ = zz nCB , normalized so that ( ) 1=v B  and d  is the 

Euclidean surface area measure on the sphere  =B S , ( ) 1.=σ S Then the measures v  and 

σ  are related by the formula  

( ) ( )
1

2 1

0

( ) 2 ( ) .−=  
nf z dv z n r dr f r d  

B S
 

 

Proposition 2.3.2. ([22, Proposition 1.4.10]) For ,z B c  real, t > 1 define 

( )
( )

1 ,
c n c

d
I z

z

 


+=

−

S

 

and  

( )
( ) ( )

2

, 1

1

1 ,
+ + +

−
=

−
c t n t c

w dv w
J z

z wB
 

When 0,c  then cI  and ,c tJ  are bounded in .B  

When 0,c  then  

( ) ( ) ( )
2

,1 .
−

 − 
c

c c tI z z J z  

Finally,  

( ) ( )20 0,

1
log .

1
 

−
tI z J z

z
 

 

Theorem 2.3.3. (Integration over level sets, [6, Theorem 3.13]) Assume : →nf  

is Lipschitz continuous.  

(i) Then 

 ( )
+

−

= 
n-1

n

Df dx = f t dt,H  

where H
n
 is the n-dimensional Hausdorff  measure on 

n
 – 

n
=

n LH  on 
n
–. 

(ii) Assume also 0ess inf Df , and suppose : →ng  is 
nL –summable 

i.e., f   has a finite integral.  Then  
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=

 
 
 
 

  
n-1

t f sf t

g
g dx = d ds

Df
H , 

          where  ( ) : : 0 =essinf f = sup b μ x f <b . 

(iii) In particular,  

   

,−

=

 
 
 
 

 
n-1

f tf t

d g
g dx = d

dt Df
H   for 1L a.e.  t,  

where the expression a.e., means almost everywhere with respect the space 1L . 

 

 

2.4. Convex sets  

 

Definition 2.4.1.  A set nU R  is convex if the line segment between any two points 

in U lies in U , i.e. if for any , x y U  and any t  with 0 1 t , we have 

( )1− tx+ t y U .  

Definition 2.4.2.  A set  nC  is affine if the line through any distinct points in C

lies in C , i.e., if for any , x y C  and  t  , we have  ( )1− tx+ t y C . 

In other words, C  contains the linear combination of any two points in C , provided 

the coefficients in the linear combination sum to one.  

 

Definition 2.4.3.  A function : →n mf is affine if it is a sum of linear function and 

a constant, i.e., if it has the form ( )f x = Ax+b , where  n+mA  and  mb . 

 

Remark 2.4.4. Suppose  nS  is convex and : →n mf  is affine function. Then 

the image of S under f , ( ) ( ) : f S = f x x S  is convex.  

Definition 2.4.5. A hyperplane H  is a set of the form ( )  : ,=  =nH a,b x x,a b  

where , 0 na a  and b .  

 

Remarks 2.4.6.  

(i) Geometrically, the hyperplane can be interpreted as the set of points with a 

constant inner product to a given vector a . 
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The figure 2.4.6.1. illustrates the hyperplane in 2 with normal vector a and a point

0x  in the hyperplane. For any point x in the hyperplane, 0−x x  (shown as the darker 

arrow) is orthogonal to a. 

(ii) A hyperplane divides 
n

 into two half spaces. (see figure 2.4.6.2.) A (closed) 

halfspace is a set of the form  : , nx x,a b where 0a .  

 

.  

 

 

 

 

 

 

(iii) Halfspaces are convex but not affine. 

 

 

Theorem 2.4.7.  (Separating hyperplane Theorem, [3, Theorem 2.5.1]) Let C  and D  

are two convex sets that do not intersect, i.e.,   C D . Then there exist 0a  and 

b  such that x,a b  for all x C and x,a b  for all x D. In other words, the 

affine function −x,a b  is nonpositive on C  and nonnegative on D.  This is 

illustrated in figure 2.4.7.1.. 

 

 

 

 

 

 

 

 

 

 

 

 

 

figure 2.4.6.1. 

figure 2.4.6.2. 

figure 2.4.7.1. 
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Theorem 2.4.8. (Strong Separating Hyperplane Theorem ([3]) Let C  and D  are two 

disjoint nonempty convex subsets of  
n

. Suppose C  is compact and D  is closed. 

Then there exist a nonzero  na  that strongly separates C  and D , i.e., there exist 

b  such that x,a b  for all x C and x,a b  for all x D. 

Theorem 2.4.9. (Supporting Hyperplane Theorem, [3, Theorem 2.5.2]) Let  nC  

be a nonempty convex set and 0x  is a point in its boundary. Then there exist 

, 0 na a satisfies 0x,a x ,a for all x C.- see figure 2.4.9.1.- 

 

 

 

 

 

 

 

 

 

 

 

 

Definition 2.4.10. (Boundary of Ck
class) Let (0, ] k .  An open set   n

 has a 

Ck
–boundary, if for every y  there exists a neighborhood U of y and a 

function ( ) kρ C U such that ( ) 0dρ x  for every x U  and such that 

( ) : 0 .  =  U x U ρ x  

 

Remark 2.4.11. A function ρ  defined as in the above definition is called Ck
–local 

defining function for  .  

 

Theorem 2.4.12. Let   n
 be an open, convex and bounded set with Ck

–

boundary, and ρ 1C –defining function for  - see definition 2.7.1.-. Then for x  

and y  we have that:  

1

( )
( ) 0.

=


− 




n

j j

j j

ρ x
x y

x
 

 

Theorem 2.4.13. Let   n
 be an open, convex and bounded set with 2C –

boundary, and ρ 2C – defining function for  . Then for x  we have that:  

2

1

( )
0

 




 
 j k

j,k n j k

ρ x
t t

x x
 for every  nt  with 

2

1

( )
0.

=


=




n

j

j j

ρ x
t

x
 

 

figure 2.4.9.1. 



16 
 

Definition 2.4.14. A bounded domain   n
  is called strictly convex if there exist 

a 2C –defining function for  , ρ , such that for all x  we have that:  

2

1

( )
0

 




 
 j k

j,k n j k

ρ x
t t

x x
 for every , 0 nt t  with 

2

1

( )
0.

=


=




n

j

j j

ρ x
t

x
 

 

 

 

2.5. Harmonic, Subharmonic and Plurisubharmonic functions  

 

 

Let recall that the Laplace operator Δ in is defined by 
2 2 2

2 2
4

x y z z

  
 = + =

   
 , 

where z = x+iy . Then we have the following definition in one complex variable. 

Definition 2.5.1.  A  function u  on a region    is called harmonic if 

0 =u  on  .  

 

We state some of well- known elementary properties of harmonic functions. 

(2.5.1.1.) A real valued function u is harmonic if and only if  u  is locally the real part 

of a holomorphic function. In particular, harmonic functions are C .  

(2.5.1.2.) The mean value property. If  u  is harmonic on   , then 
2

0

1
( ) ( )d

2

iu a u a re


 


= +  , for every disk   ( , ) : .= −   D a r z z a r  

(2.5.1.3.) The maximum principle.  If  u  is a real valued and harmonic on   , 

then we have the following: 

 (i) (Strong version) If  u  has a local maximum at the point a , then u  is 

constant in a neighborhood of a  ( and hence on the connected component of   

which contains a ).   

 (ii) (Weak version) If    and u  extends continuously to  , then 

( ) max ( )



z

u z u z for .z   

(2.5.1.4.) The Dirichlet Problem. If   ( , ) := − D a r z z a r  and ( )( , ) g C D a r , 

then there is a unique continuous function u  on ( , )D a r  which is harmonic in ( , )D a r , 

such that ( ) ( )u z = g z  for ( , )z D a r . This harmonic extention u  is given explicitly 

by the Poisson integral of g, i.e., 

222

2

0

1
( ) ( )

2

i

i

r
u a g a re d

re







 

 

−
+ = +

−
 ,  for  r .  

−2C
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Definition 2.5.2.  Let   be an open set of C  a function  :  →  −u  is called 

subharmonic if u  is upper semicontinuous and if for every compact set  K  and 

for every function ( )Ch K  which is harmonic on the interior of K  and satisfies 

u h  on K  it follows that u h  on K .  

Recall that  u  is upper semicontinuous on   if ( ) ( )limsup
→


z a

u z u a  for a ,  

or equivalently, ( )  z u z < c  is open for every c . 

 

Remark 2.5.3.  From the weak version of maximum principle (2.5.1.3. (ii)) one can see that 

harmonic functions are subharmonic.  

 

Next we will mention some properties of the subharmonic functions.  

 

Lemma 2.5.4.  Let    be open.  

(i)  If  u  is subharmonic on  , so is cu  for 0c . 

(ii) If   : au a A  is a locally upper bounded family of subharmonic functions on   such 

that sup= au u   is upper semicontinuous, then u is subharmonic.  

(iii) If  : j 1, 2,...ju =  is a decreasing sequence of subharmonic functions on  , then 

lim
→

= jj
u u  is subharmonic.  

 

The following corollary is an application of the previous Lemma 

 

Corollary 2.5.5.  For every open set   in C  the function ( ) ( )log= − u z dist z,  is 

subharmonic on  . 

 

Proof.  If   = , then ( )  −u z , and there is nothing to prove. If   , then 

( )u z  is continuous. Indeed, fix  z  and 0  Suppose w   and z w ε−  . We 

have  

( ) ( )log inf inf
 

 = −  − + − − − 
z z

dist z, z ζ w ζ z ζ w ζ

( ) ( ) ( )inf inf inf
  

− + −  − +  − + =  +
ζ ζ ζ

w ζ z w w ζ w ζ dist w,    

The same argument shows that ( ) ( )w, ,   +dist dist z  . We have shown that 

z w ε−   implies that ( ) ( )w, ,dist dist z  −    , so  ( ).,dist  is continuous 

on  . Since for  z  one has ( )  ( ) log , sup log :u z dist z z  = −  = − −  . 

The function log− −z ζ isharmonic since is the real part of the holomorphic function 

log− −z ζ , and hence subharmonic (see Remark 2.5.3.). By lemma 2.5.4. (ii) the 

proof is complete.□ 
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Next we discuss some other characterizations of subharmonic functions which show 

that the subharmonicity is a local property.  

 

Theorem 2.5.6. (Submean value property) Let   be open in C .  A continuous 

function :u  →  is subharmonic if and only if for every disc ( , )  D a r ,  
2

0

1
( ) ( )d

2

iu a u a re


 


 + . 

Proof. Suppose u  is subharmonic and ( , )  D a r .  Since  
2

0

1
( )d

2

u i

DP u a re


 


= +  

is continuous on ( , )D a r  and harmonic on ( , )D a r  and since 
u

DP u=  on ( , )D a r , it 

follows form the definition of subharmonicity 
u

DD
u P .  

Conversely, let K  be a  compact set , ( , )  K D a r  and suppose 
u

DD
u P   then 

for every function ( )( , )h C D a r  which is harmonic on ( , )D a r and satisfies u h  on

( , )D a r  it suffices to show that u h  on  ( , )D a r .  Since 
u

DP u=  on ( , )D a r  then 

u

DP u h=   on ( , )D a r . By the maximum principle for harmonic functions, 
u

DP h  

on ( , )D a r   Hence, 
u

DD D
u P h   and so u h  on ( , )D a r .□ 

 

 

 

2.5.1. Examples of subharmonic functions 

 

Example 2.5.7. If  f  is holomorphic on an open set   of  , then , 0
a

u f a=   is 

subharmonic.  

 

Example 2.5.8.  Every convex function u  is subharmonic.  

Indeed, let u  be a convex function at a neighborhood of the closed unite disk 

(0,1)D  , then ( )1
(0) ( ) ( )

2

i iu u e u e  +  +  , for  0,2   and therefore we have  

2 2

( )

0 0

1 1 1
(0) ( ) ( ) ( )

2 2 2

i i iu u e u e d u e d

 
    

 

+  + =   . By theorem 2.5.6. u  is 

subharmonic.  

 

  The following proposition gives a simple computational test for subharmonicity.  

 

Proposition 2.5.9.  Let   be open in . A real valued function ( )2u C   is   

  subharmonic on   if and only if  
2

4 0u
z z


 = 

 
 on  .  

 

  The local equivalence between harmonic functions and real parts of holomorphic 

functions does not hold in more than one complex variable - see example 2.5.10. - . 



19 
 

Moreover, the class of subharmonic functions in 2n real variables on an open subset 

of   is not invariant under biholomorphic maps except for 1=n . A generalization 

of harmonic and subharmonic in several complex variables is pluriharmonic and 

plusrisubharmonic respectively and are those functions whose restrictions to complex 

lines are harmonic or subharmonic – see definitions 2.5.11. and 2.5.13.-. 

 

Example 2.5.10.   If , 1,2j j jz x iy j= + =  the function ( ) 2 2

1 1 2 2 1 2, y , , yu x x x x= +  is 

harmonic butisnot the real part of any holomorphic function- not even locally -.  

Indeed, suppose there were locally a holomorphic function ( )1 2,f z z  such that 

.f u iv= +  Then, for fixed 2z , the function ( ) ( )1 1 2,f z f z z=  would be holomorphic 

and hence the real part ( ) 2 2

1 1 1 1 2, yu x x x= −  would be  harmonic in ( )1 1, yx  which is 

not. 

 

A complex line in 
n
 is a set of the form  : ,z z a b = = +  , where anda b

are fixed points in 
n
, with 0.b   Let us say that is the complex line through a in 

the “direction” b . Let 1,..., ne e  be the standard basis of  
n
. Thus, the coordinates of 

je  are given by the Kronecker delta .jk  The complex line through a in the direction 

of  
je  is called the complex line through a in the direction of the j -th coordinate.  

 

Definition 2.5.11.  A real- valued function u  defined in an open set   of 
n
 is said 

to be pluriharmonicin   if  ( )2u C   and the restriction of u  to    is harmonic 

for each  complex line . 

 

Remark 2.5.12.  Unlike the holomorphic situation, this is not equivalent to being 

harmonic in each coordinate direction.  

 

Definition 2.5.13.  Let   be an open set in 
n
.  A function  :u  →  −  is said 

to be plurisubharmonic on   if u is upper semicontinuous, and if for every z    

and nw  the function ( )u z w +  is subharmonic on the region

 : z w  +  . The class of plurisubharmonic functions on   is denoted by 

( )psh  .  

 

 

  The following proposition gives a characterization for plurisubharmonic functions of  

( )2C  class.  

 

Proposition 2.5.14.  Let   be an open set in 
n
 and ( )2u C  is a real valued.  

  Then ( )u psh   if and only if the complex Hessian of  u ,  

nC
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( ) ( )
2

, 1

,
n

u j k

j k j k

u
L z t z t t

z z=


=

 
    is positive semi-definite on 

n
 at every point z    

   and .nt   

   In the case that  ( ),uL z t  is positive definite, i.e., ( ) ( )
2

, 1

, 0
n

u j k

j k j k

u
L z t z t t

z z=


= 

 
 ,   

  for every z    and  0nt  − u  is strictly plurisubharmonic. The class of strictly   

  plurisubharmonic functions on   is denoted by ( ).s psh  .  

 

 

 Remarks 2.5.15. 

 (i) The complex Hessian of u , ( ) ( )
2

, 1

,
n

u j k

j k j k

u
L z t z t t

z z=


=

 
  is called Levi form of    

u  at .z  

 

(ii) For u  strictly plurisubharmonic at p  we have that  ( ) min , : 1=uγ= L z t t is 

positive, and hence ( )
2

, uL z t t  for .nt  and all z U ,  where U  is some 

neighborhood of p , i.e., p  is strictly plurisubharmonic at all points near p as well.  

 

 

 

2.5.2. Examples of plurisubharmonic functions 

 

Example 2.5.16.  Every convex function is plurisubharmonic.  

 

Example 2.5.17.  If  f  is holomorphic on an open set   of  
n
, then , 1

a
f a   is 

plurisubharmonic, since as  is a convex function.  

 

Example 2.5.18.  If  f  is holomorphic on an open set   of  
n
, then log f  is 

plurisubharmonic. 

 

Example 2.5.19.  In  2 \ 0 = the function ( ) logu z z=  is not plurisubharmonic.  

To see this, we show that the restriction of  u to complex line ( ) 2 21, :z z=   is 

not subharmonic, because it does not satisfy the mean value inequality at the point 

( )1,0 .a =   Consider the disc ( ) 2 21, : 1D z z z= =  = .  

For z D , 
2 22

21 2.z z= + =  Thus, z a ,  since 1a =  and 

( ) log log ( )u a a z u z= −  = .  
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Therefore, ( )u a  is than its average on  the boundary of the disc D  and so does not 

satisfy the mean value inequality at .a  Thus, u  is not subharmonic and 

consequently u  is not plurisubharmonic in .  

 

 

 

2.5.3. Properties of plurisubharmonic functions 

 

 

The plurisubharmonicity is a local property of the function.  

 

Suppose n   and nD   are open. Then the following properties hold. 

(i)  If  ( ),u v psh   then the sum u v+  is also a plurisubharmonic function on  , 

and so is the  max ,u v .  

(ii) If  ( )u psh   and 0   then ( ).u psh    

(iii) Let U  be a locally upper bounded family of plurisubharmonic functions on  , 

then the function  * sup :u u u= U is also plurisubharmonic on  .  

(iv) ) If   j j J
u


 is a family of plurisubharmonic functions on   and sup j

j J

u


 is 

continuous in  , then ( )sup j
j J

u psh


  . 

(v) If  ju  is a sequence of plurisubharmonic functions on   and ju u→  converges 

uniformly to u  on the compact subsets of  , then ( )u psh  . 

(vi) Let :F D →   a holomorphic function then the composition ( )u F psh D , for 

every ( )u psh  . 

 

Theorem 2.5.20. (Submean value property ([21 Lemma 4.11.]) Let   be open in  

and :u  →  is plurisubharmonic then for every polydisc ( , )  P a r , 

( , )

1
( ) ( ) ( )

( ( , ))
 

P a r

u a u z dv z
vol P a r

.  

Proof.  By applying the submean value property-see Theorem 2.5.6.- in each 

coordinate separately, one obtains  

( )

2 2

1

0 0

1
( ) ... ( ) ...

2
 +  nn

iθu a u a e d d
 

  


, 

for all ( )1,...,= n    with 0   r , where ( )1
1 , ... .= n

n

iθiθiθe e e    After 

multiplying by 1 1... ...n nd d     and integrating in 
j  from 0 to , 1 , jr j n  it 

follows that  

( , )

1
( ) ( ) ( )

( ( , ))
 

P a r

u a u z dv z
vol P a r

. 

nC
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2.6. Domains of Holomorphy and Pseudoconvexity  

 

Definition 2.6.1.  An open set nC  is called a domain of holomorphy if there exists a 

holomorphic function C→:f  satisfying the following condition: For every two open 

sets 
nVU C,  such that UUV   and U  being connected, it is not possible to 

find a holomorphic function f : U → C  with  f  = f  in V.  

In figure 2.6.1.1, we illustrate the sets in the definition.  

 

 

 

 

 

 

 

 

 

Definition 2.6.2. Let nC   be open set and C→:f  a holomorphic function. Then f

is called extendable if there exist two open sets 
nVU C,  such that UUV  , 

and U connected and a holomorphic function f : U → C  with f  = f  in V. Otherwise f  is 

called non-extendable. 

 

Remark 2.6.3.  It easy to see that an open set nC is a domain of holomorphy if there 

exist C→:f  which is non-extendable.  

Definition 2.6.4. For a compact subset K of an open set nC  , its holomorphically 

convex hull ( )
ˆ

KO  
in   is defined by 

( )
ˆ : ( ) sup ( ) for all ( )

K

K z f z f f





 
=     

 
O O . 

( )K̂ O  is also called the ( )O - hull of  K and K    is called ( )O - convex if ( )
ˆ .K K =O  

 

The following theorem of Cartan-Thullen gives equivalent definitions of domains of 

holomorphy. 

Theorem 2.6.5. ([10, Theorem 1.3.7) For an open set 
nC , the following 

conditions are equivalent:  

 

(i)   is a domain of holomorphy. 

Figure 2.6.1.1 
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(ii) For every couple of open sets 
nVU C,  such that  UUV   and U

connected, there exist a holomorphic function C→:f  so that it is not possible 

to find a holomorphic function f : U → C  with  f  = f  in V. 

(iii) For every compact subset K   ,  dist ( ),K  = dist ( )( )
ˆ ,K  O ,  

where dist ( ),K  = inf  : ,w z w K z−   . 

(iv)  For every compact subset K   , ( )K̂   O .  

(v) For every infinite set X   , which is discrete in  , there exists a holomorphic 

function which is unbounded on X.  

 

Remark 2.6.6. An open set nC  is called a weak domain of holomorphy if it satisfies 

the condition (ii) of the above theorem.  

 

 

 

2.6.1.    Examples of domains of Holomorphy 

 

Example 2.6.7. In the case n =1, every open set is a domain of holomorphy. To see 

this, let U ,V  C  be  two open sets such that UUV   and U connected. 

Let   U  and define C→:f , )/(1)(  −= zzf , z . Then we see that 

f  is holomorphic on   and cannot be extended to a holomorphic function on U .  

 

For 2n , this is no longer true, as it follows from Hartogs's Theorem. 

 

Theorem 2.6.8. (Hartogs’s extension phenomenon, [16, Theorem 1.2.6]) Let  

nC , 1n > , be an open set and K  a compact subset of   such that  − K  is 

connected. Then each holomorphic function f :  − K → C  can be extended to a 

holomorphic function F:  → C .  

 

Example 2.6.9. The unit ball }1:{ = zz nC  is a domain of holomorphy. 

Indeed for  , we consider the holomorphic function  

jj
n
j zz

zf



11

1

,1

1
)(

=−
=

−
= , z .  

It is easy to see that f  
is singular at   so the assertion follows from condition (ii) of 

Theorem 2.6.5.  

Example 2.6.10. Every convex set 
nC  is a domain of holomorphy.   

Indeed, let 
nVU C,  be two open sets such that UUV   and U

connected. For   U  by the separation theorem of convex sets and points 

there exist a bj j, , R , j n= 1 2, ,..., ,  so that  + [ ( ) ( )]a x z b y zj j j j   for every 

https://en.wikipedia.org/wiki/Hartogs%27_lemma
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z  while  + =[ ( ) ( )]a x b yj j j j   . (Here we are using the notation 

x z zj j( ) Re=  and y z zj j( ) Im= .) But 

 + = [ ( ) ( )] Re( )a x z b y z c zj j j j j j  where c a ibj j j= − .  

Therefore the function 

f z
c z c zj j j j j

  
( )

( )
=

 −
=

 −

1 1
 

is holomorphic for z  and cannot be extended as a holomorphic function to any 

neighborhood of the point  . 

 

Example 2.6.11. Let nC  be a domain of holomorphy and ( )h O . Then the set 

hG Z=  − , where hZ  is the zero set of h  in  , is also a domain of holomorphy.  

Indeed, this can be proved by Theorem 2.6.5 (ii). It is easy to see that if G  −    

then ( ) 0h  =  and the function 1/ (G)hO  is singular at  .  

 

Example 2.6.12. Let nC  be an open set, mF C→:  a holomorphic mapping 

and G m C  a domain of holomorphy. Then the set 1(G)F −  is a domain of 

holomorphy if at least one of the following conditions holds:  

(1)   is a domain of holomorphy.  

(2) − )(1 GF . 

Indeed, let   be a point of the boundary of F G−1( ) . If − )(1 GF  then   

and therefore there is defined the point .)( GF    Since G  is domain of 

holomorphy, there is a function )(Gh O  which is singular at the point F( ).  But 

then the function h F F G  −O( ( ))1  and is singular at  .  

Now in the case (2) does not hold, a point   of the boundary F G−1( )  may not belong 

to   in which case  . But since   is a domain of holomorphy, there exists a 

function )(Of  which is singular at  ,  and clearly ))(( 1 GFf −O . 

Example 2.6.13. Each analytic polyhedron is a domain of holomorphy. Firstly, a 

bounded open set A n C  is called an analytic polyhedron if there is an open 

neighborhood U  of A  and functions )(,...,1 Uff N O  such that   

}.1)(...,,1)(:{ 1 = zfzfUzA N  

That an analytic polyhedron is domain of holomorphy follows from the previous 

example since A F G= −1( )  where  

F f f N= ( ,..., )1  and }.1...,,1:{ 1 = N
m wwwG C  

(It is clear of course that A U .)  

Example 2.6.14. Let 
nC  be a domain of holomorphy and 

→= :),...,,( 21 mfffF Cm
 be a holomorphic mapping. Then the set  

}1)()()(:{
22

2
2

1 +++= zfzfzfzD m  
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is a domain of holomorphy. This follows from the example 2.6.12, case (1). Indeed, it 

suffices to notice that )(1 GFD −=  where G  is the open unit ball of Cm
. 

Example 2.6.15. Let 2n  . In this example we consider a region   in 
1n n−  

defined as follows. Let  H H  be open sets in 
1n−
 with H connected and let 

0r   and 0R   satisfy .r R  Define 

( ) ( ) ( ) 1 1 1

0 1 0 1, : 0,R \ D 0, r ,nz z z D z− =    H  

( ) ( ) 1 1

0 1 0 1, : 0,R ,nz z z D z−     H  

A set defined in this manner is called a Hartogs figure. -see figure 2.6.15.1.- 

 
1n−  

 

 

 

 

 

 

 

 

 

 

 

                                                                                                              

 

 

 

The shaded region is how one can think of  . We will now show that   is not a 

domain of holomorphy. To do this, we consider.  

In figure 2.6.15.1 the hatched region depicts V . Let  

( ) ( ) 1 1

0 1 0 1, : 0,R ,nz z z D z− =    W H , 

( )f  O , ( )0 1,z z  V  and 0   be such that max 0 , .z r R   

We consider the holomorphic function ˆ :f V →  defined as follows 

( )
( )1

0 1

0

,1ˆ ,
2

f z
f z z d

i z 




 =
=

− . 

By Cauchy Integral Formula, ˆ | |f f=W W . Therefore, since   is connected, 

ˆ |f f = . Thus f̂  is an extension of f  to V  and this prohibits   from being a 

domain of holomorphy.  

 

Theorem 2.6.16. Let 
nC  be a domain of holomorphy. Then the set 

 ( ) :f f is non - extendable=  A O  

Figure 2.6.15.1. A depiction of a set that is not a domain of holomorphy 
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is a dense and G  subset of the space ( )O . 

  

Proof.  We will apply theorem 2.1.14 with V = ( )O .  For this purpose, let us 

consider a pair of balls ),( bB  with BBb  . Then B    , 

− )( nB C , and, since B  is connected, B    . Let us consider a point 

B       and a sequence kz  in B    which converges to  . Since   is a 

domain of holomorphy, there exists a function f , holomorphic in  , such that 

=)(sup k
k

zf . Then f  V = ( )O  and the restriction bf , of f  to b , has no 

bounded holomorphic extension to B . Therefore, from Theorem 2.1.14, the set  A  is 

dense and G  in the space V = ( )O .□ 

 

 

 

2.6.2.  Pseudoconvex sets 

 

If     is an open set of  nC  then it is clear that the function ),( → zdistz  is 

continuous and positive in  . Consequently the function ( )log ,dist z−   is a 

continuous real-valued function in  . Sometimes the function  ( )log ,dist z−   is 

not plurisubharmonic, even though in one dimension it always is, as we saw in 

Corollary 2.5.5.  Let us consider an example of this. We let }0{−= nC , with 2n , 

and let us take 1z e=  and  2w e= , with ( )1 2, ,..., ne e e  denoting the standard basis. We 

then have 

( ) ( )
2

1 2log , log , log 1dist z w dist e e  − +  = − +  = − + . 

Note that the function  
2

log 1 − +    has a strict maximum at ζ = 0 and 

therefore it is not subharmonic.  

 

In order to give the definition of pseudoconvex sets we need to introduce the notion of 

exhaustion functions. 

 

Definition 2.6.17. Let 
nC  be an open set. A function R→:u  is called an 

exhaustion function of   if })(:{ azuz   is relatively compact in   for all Ra .  

 

Definition 2.6.18. An open set   of nC  is said to be pseudoconvex if and only if    

has a continuous plurisubharmonic exhaustion function.  

 

Example 2.6.19. 
nC  is pseudoconvex set. Indeed, the function u  defined by 

1

( )
n

j j

j

u z z z
=

=    is a plurisubharmonic function, since  

javascript:void(0)
http://planetmath.org/plurisubharmonicfunction
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( ) ( )
2

, 1 1

, 0
n n

ku j j j

j k jj k

u
L z w z w w w w

z z= =


= = 

 
  . 

Also it is clear that u  is an exhaustion function for nC .  

 

Example 2.6.20. Let 
n   bounded and define the boundary distance function as 

in the single variable case 0:  → ,  ( )( ) , \nz dist z =  . We have that   

is continuous –see Corollary 2.5.5. – . Since   is bounded, then log−  is an 

exhaustion function since ( ) ( )( )
1

log ,a
−

− −  has bounded closure. 

 

Remark 2.6.21. For general  , log−  may not be an exhaustion function. For 

example, if   : Im( ) 0z z =    is the upper half-plane, then, for 0 ,a 

( ) ( )  
1

log , : Im( ) aa z z e
− −

− − =    which is not relatively compact.  

As we showed, log−  is not an exhaustion function when   is unbounded, it is 

easy to modify it so as to produce an exhaustion function. Indeed, the function  

: Uu →  defined by is easy to verify that ( )  2
max , logu z z = − , where 

2

1

n

j j

j

z z z
=

=    is a continuous exhaustion function. 

 

In order to give a characterization of pseudoconvex sets we need the following 

definitions.  

 

Definition 2.6.22. Let 
nC  be an open set and K   a compact subset K  of  . 

Then the plurisubharmonic convex hull ( )
ˆ



pKO in   is defined to be the set  

( )
ˆ : ( ) sup ( ) for all ( )




 
=     

 K
K z u z u u psh


O . 

( )
ˆ pK O  is also called the ( )P - hull of K. If ( )

ˆ pK K =O  then K    is called ( )P - 

convex. 

 

 It is clear that that the ( )P - hull of K is contained in the ( )O - hull of K. 

 

Definition 2.6.23. An analytic disc   in   is a continuous function  : 1   → 

which is holomorphic in  1  . Then we may write  ( )1  =   and 

 ( )1  = = .  

 

Theorem 2.6.24. (Characterizations of pseudoconvex sets ([18, Proposition 14.1], 

[24]) If 
nC  is an open set then the following conditions are equivalent: 
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(i)   is pseudoconvex. 

(ii) ( )log ,dist z−   is plurisubharmonic in  . 

(iii) ( )
ˆ pK   O  if K   . 

(iv)  For every analytic disc ( ) ( ), , ,dist dist     =   . 

(v) For every family of analytic disc  j j J
  in  , j

j J

    we have  

j

j J

   .  

 

Proposition 2.6.25. (Basic properties of pseudoconvex sets ([11, Theorem 2.6.9])  

The following statements hold: 

(i) If  nD   and mG   are pseudoconvex open sets, then n mD G +   is 

pseudoconvex. 

(ii) If  j j J
  is a family of pseudoconvex open sets in n , then the interior of 

j

j J

  is pseudoconvex. 

(iii) If 
j  is a sequence of pseudoconvex open sets in n  for which 

1,j j j+     

then j

j J

  is also pseudoconvex.  

Proof. (i) Let ( ) ( )u psh D C D  , ( ) ( )v psh G C G   be exhaustion functions. Let 

ˆ :u D G →  and ˆ :v D G →  be defined by  

( ) ( )ˆ ,u z w u z= , ( ) ( )ˆ ,v z w v w= . 

Both û , v̂  are plurisubharmonic -see 2.5.3. (vi)-, since ˆ zu u = , and ˆ wv v = , 

where :z D G D  → , :w D G G  →  are the projection maps, which are 

holomorphic.  

We define  

( ) ( ) ( ) ˆ ˆ, max , , ,z w u z w v z w = . 

The function   is obviously continuous and plurisubharmonic -see 2.5.3. (iv)-.   

Since ( )( ) ( )( ) ( )( )1 1 1, , ,a u a v a − − −−  −  −  it follows that   is also an 

exhaustion function, and that completes the proof.  

(ii) Let   be an analytic disc in int j

j J

 
 =  

 
 then ( ) ( ), ,j jdist dist  =   .   

Hence ( ) ( ) ( ) ( ), inf , inf , ,j j
j j

dist dist dist dist  =   =   =   . 

(iii) This follows from the theorem 2.6.24.(v).   □ 

 

Remark 2.6.26. If 
nC  is a domain of holomorphy, then it is also pseudoconvex.  

Indeed, it is easy to see that ( ) ( )
ˆ ˆpK K O O , since if ( )f  O  then ( ).u f psh=    
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The following theorem shows that pseudoconvexity is a local property of the 

boundary. The condition in this theorem is only a restriction on the boundary. 

 

Theorem 2.6.27. ([11, Theorem 2.6.10]) Let nC  be an open set, then   is 

pseudoconvex if and only if for every point    there exists an open 

neighborhood U
 of    such that U  is pseudoconvex.  

Proof. One direction is trivial, since if   is pseudoconvex and consider U
 a convex 

set then U  is pseudoconvex.-see Proposition 2.6.25.(ii) and Remark 2.6.26.-  

For the converse we will first prove it for bounded sets and after for unbounded. Let 

  be bounded pseudoconvex set. Since plurisubharmonicity is a local property then 

if ( )( )log ,dist z U−    are plurisubharmonic in each U ,   , the 

function ( )log ,dist z−   will be plurisubharmonic in a set of the form W , 

where W is a neighborhood of the boundary of  . 

Since  −  W  -   is bounded- then we have that  

( ) sup log , : .A dist z z W= −   −    

Now we consider the function ( ) ( ) 2
max log , , 1u z dist z z A= −  + +  which is a 

continuous plurisubharmonic exhaustion function for  , and hence   is 

pseudoconvex.  

For the case where   is undounded we have that if the boundary of    is locally 

pseudoconvex then the same applies for the sets ( )0,j B j =   , j  . Since the 

sets 
j  are bounded, by the previous case, they are pseudoconvex. Hence the set 

j

j

 =   is pseudoconvex -see Proposition 2.6.25.(iii)-.     □ 

 

 

2.7. Stein Lemma   

 

Definition 2.7.1. Let 
nC  be a bounded open set with 

2C  boundary. Let   be a  

real valued function defined in a neighborhood  of     so that RC →n:  is a 2C

function, }0{ =  , }0{ ==  , }0{ =− nC  and 0  at the points of 

 . A function   of the above type will be called defining function for  .  

 

Remark 2.7.2. There are infinitely many such characterizing functions. Each 

characterizing function determines a family of approximating subdomains 
εD  as 

follows:  ε ε=  −D ρ . Their boundaries 
εD  are then the level surfaces { ε}= −ρ , 

and for ε sufficiently small and positive  + ε is a defining function for 
εD .  
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Proposition 2.7.3.  Let   be an open subset of 
n

 with smooth boundary. Let W be 

a neighbourhood of   and : →ρ W  a C  function so that { 0}  = W ρ ,

{ 0} = =W ρ , ( ) { 0}−  =n W ρ>  and 0  at the points of  . If 1 2,ρ ρ  

two defining functions for   then there exist h  a C  function in a neighbourhood of 

 , ( ) 0h x ( )x  so that. 2 1=ρ h ρ  

Proof.  Let ( )1{ 0}=  E x W : ρ x , ( )1 0 ρ x Ex  then ( )2 0=ρ x  for Ex  

( ( )2 0,   ρ x x ) and therefore, there exist a function h , : , h 0→ h W  

so that 2 1=ρ h ρ . Also, it is obvious that ( ) ( ) ( )2 1=dρ x h x dρ x , x , thus the 

proof is complete.     □ 

 

Lemma Stein 2.7.4. ([26, Lemma 3]) Let D  be a bounded smooth domain in 
n

. Let 

1 2,ρ ρ  two defining functions for D , and  , 1,2= = − =D i

ε iρ ε i . Then for each p , 

1p and each harmonic function u in D  the two conditions  

( ) ( )
0

dσ x , 1,2 ,sup




  =
p i

ε
ε i

ε

u x i

D

                  (2.7.4.1) 

are equivalent.  

 

Proof.  It suffices to show that the condition (2.7.4.1.) for 1=i implies the same 

condition for 2=i .  

Now there exist positive constants  , 1  and 2 (independent of  ) so that if 

( )  = −2x ρ x ε  (i.e. ( ) = −2ρ x ε ) then  

n

ε( , ) Λ : { : ( ) } =  −   −1 1 2B x κε x κ ε ρ x κ ε . 

(The positive parameter   is assumed to be sufficiently small so that the various 

assertions in this proof hold true.) By the mean value property,  

p p
( ) ( , ) ( )



 
3

εn
nw

κ
u x χ x y u y dy

ε
 for ( )  = −2x ρ x ε , 

where ( , ) 1=εχ x y  for ( , )y B x κε  and ( , ) 0=εχ x y  for ( , ) −ny B x κε .  

In what follows, j , 6,5,4,3=j , are appropriate constants independent of  . Then  

p
( ) ( ) ( , ) ( ) ( )

 

 
 
 
 

  
p 2 23

ε ε εn
n2 2yε ε

κ
u x dσ x χ x y dσ x u y dy

ε
D D∈

, 

where we used Fubini’s theorem (see Theorem 2.1.9.) and the measurability of the 

function ( , )εχ x y for ( , )  2 n

εx y D  with respect to the product measure ( )2

εdσ x dy

.  

Since ε( , ) ΛB x κε  for  2

εx D . 

Then  

( , ) ( ) 0



=
2

ε ε

2
ε

χ x y dσ x

D

 if 
εΛ −ny   and 
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( , ) ( )




2 2n-1

ε ε 4

2
ε

χ x y dσ x κ ε

D

 for εΛy . 

It follows that  

Λε

( ) ( ) ( ) ( ) ( ) ( )

 

 
  
  
 

   
1

2

κ ε
p p p2 2 15 6

ε ε η

κ ε2 1
ε η

κ κ
u x dσ x u y dσ y u y dσ y dη

ε ε
D D

. 

(The existence of the constant 6  follows from the coarea formula (see Theorem 

2.3.3.) Thus 

sup ( ) ( ) ( )sup ( ) ( )

 

 − 
p p2 1

ε 6 1 2 η
ε>0 η>02 1

ε ε

u x dσ x κ κ κ u x dσ x

D D

, 

and this implies sup ( ) ( )



 
p 2

ε
ε>0 2

ε

u x dσ x

D

, since the condition (2.7.4.1.) holds for 

1=i .      □ 

 

Definition 2.7.5. Let  : 1=  nB x x  be the unit ball of 
n

. The Poisson kernel 

for the unit ball has the following form 

( )
2

1

11

ω −

−
=

−
n

n

x
P x, y

x y
 ,  ( )1, 1 =x y , 

1ω −n
  is the surface area of the unit ( )1n - -sphere.  

 

 

Definition 2.7.6. Let }1:{ = zz nCB  be the unit ball of 
n

, 1n > . The 

(invariant) Poisson kernel for the ball has the following form  

( )
( )2
1

1

−
=

−

n

2n

z
P z,ζ

z,ζ
( ), . z ζB S  

For 1n=  the Poisson kernel for the unit ball of the complex plane  2
 has the 

following form  

( )
2

1

11

ω 2n

2n

z
P z,ζ

z ζ−

−
=

−
( )1, 1 ,z,ζ , z ζ  =  

 

1ω2n−
 is the surface area of the unit ( )2 1n - -sphere.  

 

Definition 2.7.7. (The Green’s Function) Let   n
 be a bounded domain with 2C  

boundary. A function ( )  : \ diagonal →G  is the Green’s function on   if: 

1. G  is 
2C on ( )  \ diagonal  and, for any small 0ε , is  

2−εC  up to         

( )  \ diagonal ;  

2. ( )Δ , 0=yG x y   for ;  x y, y  

https://en.wikipedia.org/wiki/Unit_sphere#General_area_and_volume_formulas
https://en.wikipedia.org/wiki/Unit_sphere#General_area_and_volume_formulas


32 
 

3. For each fixed x the function ( ) ( ), Γ+ nG x y y - x ,  

( ) ( )
( )

( )
1

1 21
1

2π log if 2,

2 ω if 2.
Γ Γ

−

− − +−
−

=

−


= = 


n n

n

x n 

n x n >
x x   is harmonic as a function of 

y ( even at the point x ), 1ω −n  denotes the σ  measure of the ( )1−n

dimensional unit sphere in 
n

;  

4. ( ), 0


=
y

G x y  for each fixed x  

 

 

Proposition 2.7.8.  Let   n
 be a bounded domain with 2C  boundary. Then  has 

a Green’s function.  

 

Theorem 2.7.9. (Poisson Integral Formula ([16, Theorem 1.3.12]) Let   n
 be a 

bounded domain with 2C  boundary. Let ν represent the unit outward normal vector 

field on   Let the Poisson kernel on   be the function  

( ) ( ).= − yP x, y v G x, y  

If ( ) u C  is harmonic on  , then  

 

( ) ( ) ( ) ( )
Ω

d

u x = P x, y u y σ y  for all x  

 

Corollary 2.7.10.  For each fixed Ωy , ( )P x, y  is harmonic in x .  

 

Proposition 2.7.11.  The Poisson Kernel for  : 1=   n nB x x  has the 

following properties:  

1. ( ) 0.P x, y  

2. ( ) ( )d 1,


=
B

P x, y σ y all  x   

3. For any 0δ  , any fixed 0 ζ Β, 

( ) ( )
00

lim d 0.
− →



= ζ y δx ζ
x B

P x, y σ y  

Remark 2.7.12. Let   n
 be a bounded domain with 

2C  boundary. It follows 

from the maximum principle that ( ), 0G x y . Hence by the Hopf lemma- see 

Lemma 2.7.14. -, we conclude that ( ) 0.P x, y Therefore, for each x  the 

argument in the previous proposition shows that ( )
( )1L ,d

1.


=
σ

P x, y Thus for 

( ) , C the functional  

( ) ( ) ( )
Ω

d

 P x, y y σ y   

is bounded. 
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From this, Theorem (Poisson Integral Formula), and the maximum principle, we have 

the next result.  

 

Proposition 2.7.13. The Poisson kernel for a 2C domain   is uniquely determined 

by the property that it is positive and solves the Dirichlet problem.  

 

 

Lemma 2.7.14. (Hopf ([16, Exc. 1.6.22) Let   n
 be a bounded domain with 2C  

boundary. Let f :  →  be harmonic and nonconstant on  , 1C  on  . Suppose 

that f  assumes a (not necessarily strict) maximum at P . If 
pv= v  is the unit 

outward normal to   at P , then ( )( ) 0.





f
P

ν
 

 

Proposition 2.7.15. ([16], Proposition 8.2.1. and [25]) Let   n  be a domain with 
2C  boundary. Let =  →P P :  be its Poisson Kernel. Then for each x , 

there is a positive constant xC  such that 

( )
( )

n n
y

y
  


x

C C
0 < C P x,

dist x,x -
 

 

 

2.8.  Strictly Pseudoconvex sets and the Levi polynomial 

 

Definition 2.8.1. Let   be a bounded open set.   is called strictly pseudoconvex if there 

exists a strictly plurisubharmonic 2C − function   in some neighborhood U  of the 

boundary of   such that ( ) : 0U z U z  =   . If moreover   is smooth of class 

( )2,3,...kC k =  , then   is said to be a kC  strictly pseudoconvex open set.  

 

 

Remark 2.8.2. The boundary of a strictly pseudoconvex open set n   need not be 

smooth. For example,  2 2 4: 2 0z x iy x y y = = +  − +   - see figure 2.8.2.1.- is a strictly 

pseudoconvex open set with no smooth boundary.  

 

 

 

 

 

 

 

 

 

 

 Figure 2.8.2.1. 
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Indeed, if the boundary of   is 2C , then 0d   at the boundary of  , where 

( ) 2 2 42 , , , yz x y y z x iy x = − + = +   is the strictly plurisubharmonic  2C −

function for  , and hence is a defining function for  . Since the boundary of   is 
2C  then there exists   a 2C − function in a neighborhood V U of the boundary of 

  such that  0V   =  ,  0 = =  and 0d   at the boundary of  . We 

have that 





=  is 1C  in  V  and ( ) ( ) ( )d d     = , for   . So, we need to 

show that 0   at every boundary point of  . Suppose ( )1 0  =  for some 1    

then since 0   we have that 0d = . Hence all the second degree derivatives at the 

point 1  will equal to zero, which contradicts with the fact that   is a strictly 

plurisubharmonic.   

 

Moreover, the strictly pseudoconvex sets may consist of infinitely many components.  

 

Remark 2.8.3. Every strictly pseudoconvex set is pseudoconvex. Indeed, since   is 

strictly pseudoconvex there exists a strictly plurisubharmonic 2C − function   in 

some neighborhood U  of the boundary of   such that ( ) : 0U z U z  =   . 

Let    and B U   a small open ball centered at  -see figure 2.8.3.1.- .  

We consider the function 1/u = −  which is plurisubharmonic for all w B , 

since for z B , ( )u z →  . For z B  we have ( )221/ r z− →  , hence 

B  is pseudoconvex and therefore by Theorem 2.6.27   is pseudoconvex.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Examples 2.8.4. 

(i) The set  2 4: 1 = = +  + z x iy x y  is strictly pseudoconvex.  

(ii) Let  2 2

1 1 1( ,..., ) : Im ... − = =   + +n

n n nz z z z z z . Every boundary point is a 

is a strictly speudoconvex point.   

Figure 2.8.3.1 
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(iii) Let ( ) ( ) 2 2 2

1 2: ... 1 =  + + n

nz f z f z f  where ( ) jf O . Then   is 

pseudoconvex. If p  and ( )det 0
 

 
 

j

k

f
p

z
 then p  is a point of strict 

pseudoconvexity.  

 

Theorem 2.8.5. (Solution of  - equation ([12, Theorem 6.16], [10, Lemma 2.4.1]) 

Let   n
 be  a strictly pseudoconvex open set with 2C  boundary and a smooth 

( , ) −p q form f  with bounded coefficients in   with = 0f . Then there is a 

bounded C ( , 1)− −p q form u  in   such that u = f.  

 

The Levi polynomial plays an important role for strictly plurisubharmonic functions. 

 

 

 

 

2.8.1. The Levi polynomial. 

 

Definition 2.8.6. Let :U →  be a strictly plurisubharmonic 2C − function in some 

neighborhood U  of the boundary of   such that  

( ) : 0U z U z  =   . 

The Levi polynomial of the function  is the following second degree polynomial of z

: 

 












−−




+−




−=  

= 

n

j nkj
kkjj

kj
jj

j

zzzzF
1 ,1

2

))((
)(

)(
)(

2),( 








 , ,z   . 

Remark 2.8.7. The Levi polynomial is only continuous in .  At the Henkin’s 

construction-see Section 2.9.- the continuous derivatives 
( )2

j k

 

 



 
 are replaced by 

sufficiently close 1C − functions. The obtained modification of ( ),F z   is denoted by 

( ),Q z  , and it is called the modified Levi polynomial. 

 

 

The following lemma describes the connection between the Levi polynomial and the 

Levi form-see Remark 2.5.15.(i)-.  

 

Lemma 2.8.8.  Let 
n   be an open set, and   be a real valued 2C − function in 

 . Then, for all    and ,z →  

( ) ( ) ( )
( )

( )( ) ( )
2

2

, 1

Re ,
n

j j k

j k j k

z F z z z z

 
      

 =


= − + − − + −

 
 ,        (2.8.8.1)  
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where ( )Re ,F z   is the real part of ( ), .F z   

Proof.  Let ( )j jx x = be the real coordinates of n   such that 

( ) ( )j j j nx ix  += + , 1,...,j n= .Then a computation gives  

( )
( ) ( )( )

( )
( )

2

1 , 1

2Re .
n n

j j j j

j j kj j

x z x z
x

   
 

= =

  
− = − 

   
   

and  

 

( )
( ) ( )( ) ( ) ( )( )

( )
( )( )

( )
( )( )

22

, 1

2 2

, 1 , 1

1

2

Re .

=

= =


− − =

 

  
= − − + − − 

     



 

n

j j k k

j k j k

n n

j j k k j j k k

j k j k j kj k

x z x x z x
x x

z z z z

 
 

   
   

  

 

Consequently, (2.8.8.1.) is the Taylor expansion of  at .  -see Taylor Theorem 

2.1.5.-    □ 

 

Proposition 2.8.9. ([21, Proposition 2.16]) Let nC  be an open set, and   be a 

strictly plurisubharmonic real valued 2C –function in  . Given  U  there are 

constants 0c  and 0, such that the function ( , )F z ζ  defined on  n
by  

( ) 2

1 ,

1 ( )
( , ) ( ) ( )( )

2=  

 
= − − − −

  
 j j j j k k

j j k

n

j 1 j k n

ρ ζ ρ ζ
F z ζ z ζ z ζ z ζ

ζ ζ ζ
 

satisfies the estimate 

( ) ( )
2

2Re ( , )  − + −F z ζ ρ ζ ρ z c ζ z  for  ζ U and − ζ z ε . (2.8.9.1.) 

Proof. From Proposition 2.5.14 and Lemma 2.8.8, we see that the Taylor expansion 

of ( )z  at  is given by  

( ) ( ) ( ) ( )2
2Re ( , ) , o= − + − + −ρρ z ρ ζ F z ζ L ζ z ζ ζ z                (2.8.9.2.) 

If  U is compact, then by Remark 2.5.15.(ii) there is 0,c such that 

( )
2

, −  −L z 2c ζ z    for ζ U and  nz . Taylor Theorem and the uniform 

continuity on U  of the derivatives of 
 up to order  2 imply that the error term in 

(2.8.9.2.) is uniform in ζ U , that is 0, so that ( )2 2
−  −z c z   for ζ U  

and − ζ z ε . Equation (2.8.9.1.) now follows by using these estimates in (2.8.9.2.) 

and rearranging.□ 
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2.9. Henkin’s Construction 

 

Locally the Levi polynomial – see definition 2.8.6 – can be used as the support 

function ),( z . To obtain ),( z globally, we have to solve some  – equation 

which depends continuously differentiable on a parameter. This can be done by using 

the following lemma 2.9.1. and certain arguments which follow from Banach’s open 

mapping theorem. First we give some notations.  

 

Notation.  If  nY is a measurable set and ( )f C Y , 0 1 a  wedenote by 

,a Y
f  the   a – Hölder norm, 

( ) ( )
,

.

,

sup sup=

 

−
+

−a Y
z Y z Y

f z f
f f

z





 

Set ( ) ( ) ,
: :=   a

a Y
H Y f C Y f  , ( )aH Y endowed with the norm 

,
.

a Y
 forms 

a Banach space, which is called the space of  a – Hölder continuous functions( Hölder 

space).  

The notations 
( ) ( )a
p,qH  , 

( )
( )

p,qC  , 
( )

( )
p,qC   will be used for the spaces of 

differential forms of bidegree ( , )p q and with coefficients in 
( ) ( )a
p,qH  , 

( )
( )

p,qC  , 

( )
( )

p,qC  , respectively.  

If nC  be an open set, then we denote by ( ) C  the Fréchet space of all 

complex- valued C – functions in   endowed with the topology of uniform 

convergence on compact sets together with all derivatives. By 
( ) ( )0 1
 

,
Z will be 

denoted the Fréchet space (endowed with the same topology) of all 
( )0 1


,
C – forms f  

in   such that = 0f   in  . 

 

Lemma 2.9.1. ([10, Lemma 2.3.4.])  Let   n
 be a strictly pseudoconvex open 

set, and let f   be a continuous (0, )q –  form in some neighbourhood


U  of   such 

that = 0f   in  


U  , 1 . q n Then there exists a 
( ) ( )0 1

1/2
−

 ,qu H  such that =u  f  in 

 .  

 

Lemma 2.9.2. ([10, Lemma 2.4.1.]) Let   n
 be a strictly pseudoconvex open 

set and let 


U  be a neighbourhood of   . Then there exists a continuous linear 

operator 
( ) ( ) ( )
0 1
 


→ 

,
T : Z  U C C – function such that  

=Tf  f  in   for all 
( ) ( )0 1





,
f Z  U . 
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Lemma 2.9.3. (Henkin’s contruction ([10, Lemma 2.4.2.])  Let us consider an open 

set nC  and a 2C  strictly plurisubharmonic function   in a neighbourhood of 

 . If we set  













=



= 



1,:
)(

min
3

1

,1

2





 withn

nkj
kj

kj

C  

then 0  and there exist 1C  functions jka  in a neighbourhood of   such that  

2

2

:
)(

)(max
n

a
kj

jk







 

















− . 

Let 0  be sufficiently small so that  

2

22

2
,:

)()(
max

n
zwithz

xx

z

xx kjkj



















−



−




 for nkj 2,...,2,1, = , 

where )(jj xx =  are the real coordinates of 
nC  such that )()(  njjj ixx ++= . 

For ,z  we consider the modified Levi polynomial  












−−+−




−=  

= 

n

j nkj
kkjjjkjj

j

zzazzQ
1 ,1

))(()(
)(

2),( 



 . 

Then we have the estimate  
2

)()(),(Re zzzQ −+−   for ,z  with  − z .        (2.9.3.1)  

 

Proof. The proof follows from Lemma 2.8.8. and Taylor Theorem 2.1.5.      □ 

 

Theorem 2.9.4. (Henkin’s construction ([10, Theorem 2.4.3.])  Let nC  be a 

strictly pseudoconvex open set, let   be an open neighbourhood of  , and let   be 

a 2C  strictly plurisubharmonic function in a neighbourhood of   such that  

}0)(:{ = zz  . 

Let us choose  ,  , and ( ),Q z ζ , as above, and let us make the positive number   

smaller so that   

− }2:{  zz nC  for every  .               (2.9.4.1.) 

Then there exists a function ),( z  defined  for   in some open neighbourhood 

U  of   and  = UUz , which is 1C  in   UUz ),(  , 

holomorphic in Uz , and such that 0),(  z  for   UUz ),(   with 

 − z , and  

),(),(),(  zCzQz =   for   UUz ),(   with  − z , 

for some −1C function ),( zC  defined for   UUz ),(   and 0  when 

 − z  

Proof. It follows from (2.9.3.1) that  
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Re ( ),Q z ζ ( ) ( ) 2 − +ρ ζ ρ z βε  for ( ) Θz,ζ  with 2 − ε ζ z ε .       (2.9.4.2.) 

Since 0=ρ  on  and by (2.9.4.1.), we can choose a neighbourhood Θ V  of   

so small that 
2

3

βε

ρ  on 
V  and, for every

ζ V , the ball 2− ζ z ε  is 

contained in Θ .  Set 
Θ

:  V V . Then, for every ( ) 
 z,ζ V V , both ζ  and z  

belong to Θ  and it follows from (2.9.4.2.) that Re ( ),Q z ζ
2

3

βε

 for all 


z V  and 

ζ V  with 2 − ε ζ z ε . Therefore, we can define ln ( ),Q z ζ  for 


z V  and 

ζ V  with 2 − ε ζ z ε . Choose a C – function RC →n:  such that ( ) 1χ ξ =  

for / 4ξ ε+ε  and ( ) 0χ ξ =   for 2 / 4 −ξ ε ε .  

For 


z V and 
ζ V  we define  

( )
( ) ( )ln , if 2

, :
0 otherwise.

 −  − 
= 



z z Q z ζ ε ζ z ε
f z

 
  

Then the map ( ) →V ζ f .,ζ  is continuously differentiable with values in the 

Fréchet space
( ) ( )0 1


,
Z  V . Now we choose a neighbourhood 

 U V  such that 

: 
= U U  is strictly pseudoconvex.  

Then by Lemma 2.9.2., there is a continuous linear operator 

( ) ( ) ( )0 1
:  

 
→

,
T Z  V C U  such that  =T   on 


U  for all 

( ) ( )0 1





,
Z  V .  

For 


z U and 
ζ U  we define  

( ) ( )( )( ):=u z,ζ Tf .,ζ z , ( ) ( )( )C : exp= −z,ζ u z,ζ   and  

),( z
( ) ( ) ( )

( ) ( ), C if
:

exp ln , if

 − 
= 

− − − 

Q z ζ z,ζ ζ z ε,

χ ζ z Q z ζ u z,ζ ζ z ε.
 

This completes the proof.   □ 
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3          Bergman type spaces 

 

3.1. The Bergman spaces )(pLO  

Definition 3.1.1. Let nC  be a bounded open set. We recall that for 1p , the  

Bergman space )(pLO  is defined to be the set of holomorphic functions C→:f  

 such that 

+












= 



p
p

p
zdvzff

/1

)()(: , 

where dv  is the Lebesgue measure in nC . Then the quantity 
p

  is a norm, and with 

this norm, )(pLO  is a Banach space.  

 

Theorem 3.1.2. ([11], Theorem 1.2.4) Let nC  be a bounded open set. For every 

compact set K    there are constants  such that 

, for ,  

where  is a constant depending on  and the multi-index . 

 

Remarks 3.1.3. We also recall that if a sequence )(1  Lfk O  converges to f , in the 

−)(1L norm, then the convergence is uniform on compact subsets of  . Indeed, 

this follows from the inequality of Theorem 3.1.2. 

In particular, )(1 LO  is closed subspace of )(1 L , and, more generally, )(pLO  is 

closed subspace of )(pL , for 1p . Since we assume   to be bounded, 

)()(  pq LL OO  when pq  . Similarly we define the space )(LO , of bounded 

holomorphic functions C→:f , which becomes a Banach space with the norm 

)(sup zff
z 


= . 

For a fixed 1q , we will also consider the spaces  


qp

pL


)(O  

endowed with the metric  




= −+

−
=

1 12

1
:),(

j p

p

j

j

j

gf

gf
gfd , 

qp

pLgf


 )(, O , 

where jp  is a sequence with qppp j  211  and qp j →  (as →j ).  

Then 
qp

pL


)(O  becomes a complete metric space, its topology being independent 

of the choice of the sequence jp . In fact, a sequence kf  converges to f , in the space 

),( Kc 

1
),(sup fKc

z

f

K










)(1  Lf O

),( Kc  K 



41 
 


qp

pL


)(O , if and only if 0→−
pk ff  for every qp  . Thus, Baire’s theorem 

holds in 
qp

pL


)(O : A countable intersection of open and dense subsets of 


qp

pL


)(O  is dense and G  in this space. Moreover, we point out that the space 


qp

pL


)(O , with the above topology, is also a topological vector space. In particular, 

if 
qp

p
k Lff



 )(, O  with 0),( →ffd k  ( →k ), and C ,k  with  →k , then 

0),( →ffd kk  . 

Finally, we observe that all the above hold in the case =q  too, defining the space 





p

pL )(O , and that this space contains the space of bounded holomorphic functions 

in  : 

)()(  



LL
p

p OO . 

 

3.2. The case of totally unbounded functions in )(pLO  

 

     We will show that under certain assumptions on  , the set of the functions in the 

space 
qp

pL


)(O , which are totally unbounded in  , is dense and G  (in this space). 

We will also give examples of specific domains in which this G – density conclusion 

holds. 

 

Theorem 3.2.1. Let nC  be a bounded open set and Rq , 1q . Suppose that 

for every point  , there exists a function f  such that  


qp

pLf


 )(O   and  =


→

)(lim zf

z
z




. 

Then the set of the functions g  in the space 
qp

pL


)(O , which are totally unbounded 

in  , is dense and G  in this space. In particular, the set of the functions h  in the 

space 
qp

pL


)(O , which are singular at every boundary point of    is dense and G  

in this space. 

 

 

Proof. Let us fix a pair ),( bB , where B  is a «small» open ball whose center lies on 

  and b  is a «smaller» open ball with  Bb , and let ),( bBE  be the 
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connected component of B  which contains b , i.e., bbBE ),( . We are going to 

apply Theorem 2.1.12. with 
qp

pL


= )(OV  and ),( bBEX = . For this purpose we 

consider the linear operator  
),()(: bBE

qp

pLT C→


O , )(:))(( zfzfT =  for ),( bBEz  . 

For each fixed ),( bBEz  , the functional 

C→



qp

p
z LT )(: O , defined by )())(()( zfzfTfTz == , for 

qp

pLf


 )(O , 

is continuous. (This follows from the fact that convergence in the space 
qp

pL


)(O  

implies pointwise convergence.) We also observe that, in this case, the set 

})(:{ XonunboundedisfTfS V=  is equal to  













+==


)(sup:)(),(
),(

zfLfbBS
bBEzqp

pO . 

We claim that ),( bBS . Indeed, since the set ),( bBE  meets the boundary of  , 

there exists a point  ),( bBE . (See the Remark 2.2.2.) By the hypotheses, 

there is a function 
qp

pLf


 )(O  such that =


→

)(lim zf

z
z




, and, therefore 

),( bBSf  . It follows from Theorem 2.1.12 that ),( bBS  is dense and G  in 


qp

pL


)(O . 

     To complete the proof of the theorem, we consider a countable dense subset 

},...,,{ 321 www of  , and the set ,...}3,2,1,:),({ == + jwB j QB .  

For each BB , let B  be the countable set of the balls b  with centers in 
ni )( QQ +

and rational radii, so that  Bb . By Baire’s theorem, the set  

 
B B b B

bBS ),(  

is dense and G  in 
qp

pL


)(O . Notice that if f  belongs to this set then f  is totally 

unbounded in  .  

Indeed suppose that w , 0 , and E  is a connected component of the set 

),( wB . Let b  be a ball with «rational» center and rational radius, and Eb  . 

Then we may choose a ball BB  so that ),( wBB   and Bb  . Then the 

connected component ),( bBE  of B  which contains b , is contained in E , i.e., 

EbBE ),( . Since +=


)(sup
),(

zf
bBEz

, it follows that +=


)(sup zf
Ez

. 

    To prove the last assertion of the theorem, we will use Theorem 2.1.14. For this 

purpose let us consider a pair of balls ),( bB with   b B B , and as before, let 

),( bBE  be the connected component of B  which contains b .  
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Then by the Remark 2.2.2,   E(B,b) B . If  ζ E(B,b) B  then the 

function f  ( of the hypothesis of the theorem) belongs to 
qp

pL


= )(OV  and its 

restriction 
ζ bf  (to b ) does not have any bounded holomorphic extension to B . 

Hence Theorem 2.1.14 gives the required conclusion.  □ 

 

Remarks 3.2.2. 
 

(i) By examining the above proof we see that if the sets B  are connected (for 

those B ’s having sufficiently small radius – depending on the center of the 

each B ) then the theorem holds under the weaker hypothesis of the existence 

of the functions f , not necessarily for all  , but only for   in a 

countable dense subset of  . This is the case – for example – in which the 

boundary of   is 1C .  

 

(ii) Let us point out that the above theorem holds also in the case « =q ». The 

proof in this case is essentially the same. Although the case « =q » is, in 

some sense, the most interesting one, it does not imply the case « q ». 

Notices that changing the value of q  in 
qp

pL


)(O , changes not only the 

space but also the topology.  

 

(iii) We can also prove an analogous theorem in the case of the spaces )(pLO  

for each fixed p  (  p1 ). In this case we do not need to assume   to be 

bounded. Thus if nC  is an open set and for every point  , there 

exists a function f  such that )( pLf O  and =
→

)(lim
,

zf
zz




, then the 

set of functions g  in the space )(pLO , which are totally unbounded in  , is 

dense and G  in this space.  

 

 

 

3.3. Functions in 
qp

pL


)(O  which do not belong to ( )O q
L  

In this section we will prove – under certain assumptions on the open set   – that 

generically the functions in 
qp

pL


)(O do not belong to the space ( )O q
L , not even 

‘locally’. More precisely we will prove the following theorem.  

 

Theorem 3.3.1. Let 
nC  be a bounded open set and Rq , 1q . Suppose that 

for every point η  and 0 , there exists a function η,εf  such that  
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η,εf 
qp

pL


)(O  and  η,εf ( )( , ) O q
L Β η ε  for every 0 . 

Then the set  













=


0)),((:)(),(  everyandeveryforBLgLgq q

qp

p OOS 

is dense and G  in the space 
qp

pL


)(O .  

 

 

Proof. Let us fix a point w  and 0 . We are going to apply Theorem 2.1.12 

with 
qp

pL


= )(OV  and X  being the set of all compact subsets K  of the 

intersection ),( wB . For this purpose we consider the sublinear operator  

X

qp

pLT C→


 )(: O , 

q

K

q
dvfKfT

/1

:))((













=   for XK  . 

For every XK  , the functional  

C→



qp

p
K LT )(: O , ))(()( KfTfTK = , 

is continuous. Indeed, if kf , ,...3,2,1=k , is a sequence which converges to f , in 


qp

pL


)(O , then kf  converges to f , uniformly on K , and therefore  

 →

K

q

K

q
k dvfdvf , as →k . 

We also observe that, in this case, the set })(:{ XonunboundedisfTfS V=  is 

equal to  














+== 

 ),(

:)(),(




wB

q

qp

p dvfLfwS O . 

This follows from the fact that  




=

K

q

XKwB

q
dvfdvf sup

),( 

. 

Also ),( wS , since ),( wSfw   . Therefore, from Theorem 2.1.12, ),( wS  is 

dense and G  in the space 
qp

pL


)(O . 

     Next let us observe that if ju  is a sequence of points in   which converges to a 

point u , and 
qp

pLf


 )(O , then  

+=
),( juB

q
dvf  ( j )   +=

)2,( uB

q
dvf . 

This follows from the fact that if −uu j0
 (for some 0j ) then 

,),()2,(
0

 juBuB   which implies that 
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),()2,(
0

 juB

q

uB

q
dvfdvf . 

     To complete the proof of the theorem we consider a countable dense subset 

},...,,{ 321 www  of   and a decreasing sequence s  of positive numbers, with 

.0→s  By the first part of the proof and Baire’s theorem, the set  




=



=1 1

),(
j s

sjwS   

is dense and G  in 
qp

pL


)(O . Notice that if f  belongs to this set, and ,  and 

mj
w  is a subsequence of jw  which converges to  , then +=

),( smj
wB

q
dvf



, and 

therefore +=
)2,( sB

q
dvf



. Since this holds for every ,  and the sequence 

0→s , this implies that ),( qf S . This completes the proof of the theorem.     □ 

 

 

Remarks 3.3.2. 

 

(i) By examining the above proof, we see that this theorem holds under the 

weaker hypothesis of the existence of the functions η,εf , not necessarily 

for all ,η  but only for η  in a countable dense subset of  . 

 

(ii) The following version of the above theorem can be proved in a similar 

manner. Let nC  be a bounded open set and Rqq ~,  with 1~  qq

. Suppose that for every point  , there exists a function f  such 

that  


qp

pLf


 )(O  and  )),((
~

  BLf qO  for every 0 . 

Then the set  













=


0)),((:)()~,,(
~

 andBLgLgqq q

qp

p OOS 

is dense and G  in the space 
qp

pL


)(O . 

(iii) If the boundary of   is 1C  and a function )),((  BLg qO , for   

 every   and every 0 , then g  is singular at every point of 

.  

 Indeed, this follows from the fact that for sufficiently small 0  

(depending on each point  ), the sets ),( B  are connected. 

 

(iv)  In the above theorem if the sets ),( B  are connected (for those 

sB' having sufficiently small radius – depending on the center of each B ) 
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then the set of the functions h  in the space 
qp

pL


)(O  which are 

singular at every boundary point of is dense and G  
in this space. This 

follows from the Theorem 2.1.14.  

 
 

Theorem 3.3.3. Let nC  be a bounded open set and  q1 . Suppose that for 

every point  , there exists a function f  such that  


qp

pLf


 )(O ,  )),((   BLf qO  for every 0 , and =


→

)(lim zf

z
z




. 

Then the set  










inunboundedtotallyisgLg
qp

p :)(O  

0),),((   andBLgand qO  

is dense and G  in the space 
qp

pL


)(O . 

Proof. The conclusion follows from Theorems 3.2.1 and 3.3.1. Indeed, it suffices to 

notice that the set in this theorem is the intersection of the corresponding sets of the 

Theorems 3.2.1 and 3.3.1, and that the intersection of two dense and G  sets in the 

complete metric space 
qp

pL


)(O  is again dense and G , by Baire’s theorem.     □ 

 

 

3.4. Applications  

 

3.4.1. Examples in the case 1=n .  

 

(i) Let C  be a bounded open set with 1C  boundary. For a fixed point  , let 

us consider the holomorphic function  

C→:f , 



−

=
z

zf
1

)( , z . 

 Then 
2

)(



p

pLf O  but )(2  Lf O . Indeed, for «small» 0 , 

+
−


 ),(

)(

 Bz
p

z

zdv
 when 2p , while +=

−


 ),(
2

)(

 Bz z

zdv
. 

To prove the last equation, it suffices to notice that, since   is assumed to be 
1C , 

there is a small angular region   with vertex at   such that  ),( B , and, 

that the integral  

+=
−


 ),(

2

)(

 Bz z

zdv
, 

as we can easily see if we integrate in polar coordinates with center at  .  
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     Next, continuing to consider the point   fixed, let −Ca  be a point, 

sufficiently close to the point  , so that the line segment ],[ a , which connects a  

and  , is contained in −C . (Such a point exists since we assume that   is 1C .) 

Then, in the set  , there exists a holomorphic branch of 








−

−

z

az
log , i.e., there exists 

a holomorphic function )(zg , z , such that 



−

−
=

z

az
zg ))(exp( . Indeed, the 

Möbius transformation )/()( −− zaz  maps the point a  to 0 ,   to  , and the line 

segment ],[ a  to a half line in the complex plane, starting at 0 . We may also choose 

g  so that  )(Im zg  for z . Then, for this function g , the integral 

+
 ),(

)()(





Bz

p
zdvzg  for every p ,           (3.4.1.1) 

while =
→

)(lim
,

zg
zz




. To prove (3.4.1.1), it suffices to notice that  

kpkpp xkx //)!()(log    for every 1x , 1p  and Nk , 

and that if iww += loglog , then  

2/22 ])[(loglog pp
ww += , for R . 

Indeed, since 


 i
z

az
zg +

−

−
= log)(  (with   ), it follows that, for z  which 

are sufficiently close to the point  , 

kp
kp

kp
kp

p

p

z
k

z

az
k

z

az
zg

/
/

/
/

2/

2

2
1

)!()!(log)(






−−

−














+














−

−
=  .  

Then (3.4.1.1) follows by an appropriate choice of Nk . Finally (3.4.1.1) implies 

that  



p

pLg )(O , while )( Lg O . 

 

 

(ii) With notation as in the previous example, and for  q1 , let us consider the 

function  









= )(

2
exp)(, zg

q
zhq  , z . 

Then 
qp

p
q Lh



 )(, O , while )(,  q
q Lh O . 

 

(iii) For R , 1 , let us consider the domain  

}010:{ 
 xyandxiyxz +== C . 

Then  


1

)(
1

+





p

pL
z

O  and )(
1 1


  +L

z
O , 
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p

pLz )(log O  and )(log  Lz O , and 


qp

p

q
L

z 
+

 )(
1

/)1( 
O  and )(

1
/)1( 


+

q

q
L

z
O  for Rq , 0q . 

 

(iv) Let )}/1exp(010:{ 2xyandxiyxz −+== C . Then  





p

p

N
L

z
)(

1 O  and )(
1

 L
z N

O , for every NN . 

 

 

Theorem 3.4.1. (i) Let C  be an arbitrary bounded open set. Then the set of the 

functions 
2

)(



p

pLg O  which are totally unbounded in   is dense and G  in the 

space 
2

)(



p

pLO . 

     (ii) Suppose that C  is a bounded open set such that for every point  , 

the connected component C  of −C  which contains  , contains at least one more 

point, i.e., − }{C . Then, for each fixed q  with  q1 , the set of the 

functions 
qp

pLg


 )(O  which are totally unbounded in   is dense and G  in the 

space 
qp

pL


)(O . 

     (iii) Suppose that C  is a bounded open set with 1C  boundary and   q1 . 

Then the set  










inunboundedtotallyisgLg
qp

p :)(O  

0),),((   andBLgand qO  

is dense and G  in the space 
qp

pL


)(O . 

 

Proof. Having in mind the example (i) of Section 3.4.1, we easily obtain part (i), from 

Theorem 3.2.1., applied with the functions }:{ f  where C→:f , 

)/(1)(  −= zzf , z . Part (iii) follows from Theorem 3.3.3, applied with the 

functions g  of example (i) of Section 3.4.1 in the case =q , and the functions 

,qh  of example (ii) of Section 3.4.1 in the case  q1 . It remains to prove part 

(ii). For this purpose let us take a point Ca  , a , and a compact curve   in C  

joining the points   and a . Then the Möbius transformation )/()( −− zaz  maps 

the point a  to 0 ,   to  , and the curve   to a connected set   joining the points 0  

and  . Then in the open set −C , there is a holomorphic branch of the logarithm, 
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and, therefore, there is a function )(z , holomorphic in z , such that 

)/()()](exp[  −−= zazz .  

Also the function  









= )(

2
exp:)( z

q
z    

is holomorphic in   and  
qp

p

z

az
z

q

p
z

/2

)(Re
2

exp)(


 
−

−
=








= . 

Therefore 
qp

pL


 )(O , and, since =
→

)(lim
,

z
zz




 , part (ii) follows from 

Theorem 3.2.1.     □ 

 

 

 

3.4.2. The case of the unit ball of 
nC  

 

Let us consider the unit ball }1:{ = zz nC . For fixed  , we consider the 

function  

jj
n
j zz

zf



11

1

,1

1
)(

=−
=

−
= , z .  

Then  


1

)(
+


np

pLf O  and )(1  +nLf O . 

Indeed, if 1+ np  then the integral  


 −

p
z

zdv

,1

)(
, 

as a function of  , remains bounded for   (see [22], Proposition 2.3.2), and, 

therefore, letting  → , 

+
−


−

=
−




→


→


ppp
z

zdv

z

zdv

z

zdv

  ,1

)(
inflim

,1

)(
lim

,1

)(
. 

Next we show that 

+=
−




+1
,1

)(
n

z

zdv


.                                 (3.4.2.1) 

Indeed, for 1r  (sufficiently close to 1), 

21 1

1
log

,1

)(

rrz

zdv
n −


−




+



, 

where   is a positive constant independent of r  (see [22], Proposition 2.3.2). 

 Since   

 




+


+


+
−

=
−

=
− r

nnnn
z

zdv

rrz

zdv

rz

zdv
1211

,1

)(1

,1

)(

,1

)(
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(where }:{ rzzr n = C ), it follows that  

2

2

1 1

1
log

,1

)(

r
r

z

zdv n

r
n −


−




+



. 

Letting −→1r , we obtain (3.4.2.1). 

     Observing that 0),1Re( − z , for z , we see that 0)(Re zf , and 

therefore )(log zf  is defined and holomorphic for z , where log  is the principal 

branch of the logarithm with arg . Also 2/)](Im[log  zf . It follows, as in 

example (i) of Section 3.4.1, that  





p

pLf )(log O , while )(log  Lf O . 

Also the function ( ) 






 +
=

+
 f

q

n
f

qn
log

1
exp

/)1(
 satisfies 

( ) 
qp

pqn
Lf



+
 )(

/)1( O  and ( ) )(
/)1(


+ qqn

Lf O  for Rq , 0q . 

 

 

Theorem 3.4.2. Let  q1 . If   is the unit ball of nC , then the set  










inunboundedtotallyisgLg
qp

p :)(O  

0),),((   andBLgand qO  

is dense and G  in the space 
qp

pL


)(O . 

 

Proof It suffices to apply Theorem 3.3.3, with appropriate choices from the set of the 

functions which were constructed in Section 3.4.2.    □ 

 

 

 

 3.4.3. The case of convex sets. 

 

(i) Let 
nC  be a bounded open and convex set with 

1C  boundary and let us fix a 

point  . By the convexity of  , there exist real numbers )( jj = , 

)( jj = , nj ,...,2,1= , such that 0
22







 + jj   and 

  0)]()([)]()([
1

−+−
=

n

j
jjjjjj yzyxzx   for every z , 

where jj zzx Re)( = , jj zzy Im)( = , jjx  Re)( = , jjy  Im)( = . Setting 

jjj ic  −=: , we obtain  
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0)(Re
1













−

=

n

j
jjj zc   for every z . 

Then the conclusions of example (i) hold for the function f  where  


=

−

=
n

j
jjj zc

zf

1

)(

1
)(


 , z .                                 (3.4.3.1) 

satisfies 


2

)(



p

pLf O , while )( Lf O , and                (3.4.3.2) 





p

pLf )(log O , while )(log  Lf O .            (3.4.3.3) 

To prove (3.4.3.2), we will show that for 2p , 

+
),(

)()(





B

p
zdvzf , for «small» 0 .                        (3.4.3.4) 

Assuming, without loss of generality, that 01 c , let us consider the −C affine 

transformation  

)()(
1

1 jjj

n

j

zczw −= 
=

 , 222 )( zzw −= , ... , nnn zzw −= )( . 

Using this transformation we see that (3.4.3.2) follows from the fact that  

+


~
1

)(

w
p

w

wdv
 (for 0

~
 ). 

To justify (3.4.3.3), let us recall that since  

0)(Re
1













−

=

n

j
jjj zc   for every z , 

the function flog  is well defined and holomorphic in  . 

Then, using (3.4.3.2) as in example (i) of Section 3.4.1, we see that, for «small» 

0 , 

+
),(

)()(log





B

p
zdvzf , for every p , 

 

and this implies (3.4.3.4).  

We point out that in general the conclusion 
2

)(



p

pLf O  cannot be improved in 

the sense that in some cases  

+=
),(

2
)()(





B

zdvzf  

(see the example (ii) below). 
 

 

 (ii) Let us consider the convex domain  
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}0Re1:),...,({ 11 == zandzzzzD n
n C   

and, as local defining function for D -see Remark 2.4.11- near its boundary point 

0=  ( D0 ), 2/)()( 11 zzz +−= . Then the function (3.4.3.1) becomes 

1/1)( zzf = . In this case  

+== 
 DBDB

zdv
z

zdvzf

),0(
2

1),(

2
)(

1
)()(



 , for every 0 . 

A similar computation can be done for every point   in the part of the boundary of 

D  where 0Re =  (and 1 ). Of course at the points D  where 0Re  , 

the corresponding function f  satisfies  
1

)(
+


np

p DLf O  and )(1 DLf n+O , as we 

proved in Section 3.4.2. 
 

 (iii) Similarly to the previous example, if  

},...,2,1,1Im01Re0:),...,({ 1 njzandzzzzR jj
n

n === C , 

then for every point R  (where R  is smooth), the function f  satisfies  


2

)(



p

p RLf O  and )(2 RLf O . 

Similar conclusions hold for «most» points in the boundary of the polydisk  

},...,2,1,1:),...,({ 1 njzzzzP j
n

n === C . 

 
 

 Theorem 3.4.3. Let 
nC  be any bounded open and convex set and  q1 . 

Then the set of the functions g  in 
qp

pL


)(O  such that g  is totally unbounded in 

 , is dense and G  in the space 
qp

pL


)(O . 

Proof. It follows from Theorem 3.2.1 applied with the functions  flog  of the above 

example (i).     □ 

 

 

3.5. The case of strictly pseudoconvex domains 

 

   In this section we will show that some functions which are defined in terms of 

Henkin’s support function belong to certain Bergman spaces. We describe the 

Henkin’s support function ),( z  – as constructed in [10] – in Section 2.9. 

 

  First we will prove the following proposition. We use a set of coordinates – the Levi 

coordinates – which are appropriate when we are dealing with integrals involving the 

function ),( z  (for more details see [6], [10], [21]). As a matter of fact we will use 

a slight modification of the Levi coordinates. 
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Proposition 3.5.1. If, in addition,   is 1C , then, for each fixed   and for 

every 0 ,  

+



 ),( ),(

)(

 Bz
p

z

zdv
 when 1+ np , and +=




 ),(
2

),(

)(

 Bz
n

z

zdv
. 

Therefore 
1

)(
),(

1

+


 np

pLO


 and  )(
),(

1 2 


nLO


.  

Furthermore, the functions 
),(

1

z
 are 1C  in  . 

 

Proof. Since we assume   to be 1C , 0  at the points of  . Having fixed 

 , we consider a coordinate system  

))(),...,(),(),((),...,,,( 23212321 ztztztztttttt nn == , 

of real −1C functions, for points nnz 2RC = , which are sufficiently close to the 

point  , as follows: We set  

)()(1 zzt −=  and ),(Im)(2 zQzt = . 

Then )(2
)(

2),(
1








 −=




−=

==
= 

z

n

j
j

j
zz dzzQd  and, therefore,  

)]()([)],([Im)(2   −== == izQdztd zzzz . 

On the other hand,  

)]()([)]([)(1   +−=−= == zzzz zdztd . 

It follows that   

( ) ( ) 0)()(2)()( 21 −= ==  iztdztd zzzz . 

Now the existence of −1C functions )(),...,( 23 ztzt n  such that the mapping  

))(),...,(),(),(( 2321 ztztztztz n→  

is a −1C diffeomorphism, from an open neighbourhood of the point   to an open 

neighbourhood of 
nn 20 RC =  (with 0)( =t ), follows from the inverse function 

theorem-see Theorem 2.1.10. Also let us point out that, for z  sufficiently close to  , 

z  if and only if 0)(1 −= zt  . 

We will show that, for every 0 , 

+



 ),( ),(

)(

 Bz
p

z

zdv
  for 1+ np .                    (3.5.1.1) 

For points z  which are sufficiently close to  , 

),(Im)(),(Im),(Re),(),(
2

 zQzzzQzQzQz +−+−+  

and 
2
2

2
3

2
2

2
1

2
nttttz ++++−  . 

(When we write  , we mean that   , for some positive constants   

and   which are independent of z .)  
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Therefore (for z  and sufficiently close to  ) 

2
2
2

2
3

2
2

2
11),( ttttttz n ++++++  . 

(When we write   , we mean that   , for some positive constant   which 

is independent of z .) Therefore (3.5.1.1) follows from  

 

+
++++++


0

2
2

2
3

2
2

2
1211

)(t
p

ntttttt

dt


 

or equivalently from 

+
++++


0

2
2

2
3211

)(t
p

ntttt

dt


  ( 1+ np ). 

(In the above integrals ndtdtdtdt 221 =  and t  is restricted in a «small» 

neighbourhood of nn 20 RC = , i.e., t  is «small».)   

We will also show that, for every 0 ,  

+=



 ),(

2
),(

)(

 Bz
n

z

zdv
.                                   (3.5.1.2) 

This time we will use the fact that, for points z  which are sufficiently close to  , 

2/12
2

2
3

2
2

2
1 )(),(),( nttttzzQz ++++−   . 

        Therefore (3.5.1.2) follows from 

+=
++++


0

2
2

2
3

2
2

2
11

)(

)(

t
n

ntttt

zdv


. 

This completes the proof of the proposition.     □ 

 

 

Theorem 3.5.2. Let nC  be a strictly pseudoconvex open set with −2C

boundary, and  q1 . Then the following hold: 

 (i) For every point  , there exists a function f  such that  





p

pLf )(O   and =


→

)(lim zf

z
z




. 

 (ii) For every point  , there exists a function h  such that 


qp

pLh


 )(O  and )),(()1/(2  +  BLh nnqO  for every 0 , and 

=


→

)(lim zh

z
z




. 

 (iii) The set  
















inunboundedtotallyisgLg
p

p :)(O  

 is dense and G  in the space 



p

pL )(O . 
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 (iv) The set  

        









inunboundedtotallyisgLg
qp

p :)(O          

0,)),(()1/(2  +  andBLgand nnqO  

        is dense and G  in the space 
qp

pL


)(O . 

Proof. Let   be a 2C  strictly plurisubharmonic defining function of  , defined in 

an open neighbourhood of  . Let us also fix a point  . Then, as it follows 

from Taylor’s theorem and the strict plurisubharmonicity of   (see Proposition 2.8.9 

and for more details [21] Proposition 2.16 page 60), the Levi polynomial of   












−−




+−




−=  

= 

n

j nkj
kkjj

kj
jj

j

zzzzF
1 ,1

2

))((
)(

)(
)(

2),( 








  

satisfies the inequality  
2

)()(),(Re zzzF −+−   for nz C  with  − z , 

for some «small» positive constants   and  . In particular,  

0),(Re zF  for }{),(  − Bz . 

It follows that the function )],(/1log[ zF  is defined and holomorphic for 

 ),( Bz , and that =
→

)],(/1log[lim
,




zF
zz

. (Here log  is the principal 

branch of the logarithm with arg .) Also we can prove, as in the proof of the 

Proposition 3.5.1., that if 1+ nq ,  

+
 ),( ),(

)(

 Bz
q

zF

zdv
 for every 0 .                        (3.5.2.1) 

Then, using (3.5.2.1) (with 1=q , for example) as in example (i) of Section 3.4.1., we 

obtain  

+









)3/2,(

)(
),(

1
log




B

p

zdv
zF

, for every p .              (3.5.2.2) 

     Next we consider a −C function RC →n: , 1)(0  z , with compact 

support contained in )3/2,( B , and such that 1)( =z  when )3/,( Bz  . Now 

the function  










),(

1
log)(




zF
z  

is extended to a −C function in  , by defining it to be 0  in )3/2,( B− . Then 

the −)1,0( form 

















=

),(

1
log)(:)(




zF
zzu  

is defined and is 
C  in a open neighbourhood  , it is zero for  )3/,( Bz , 

and, in particular, it has bounded coefficients in  . In fact )(zu  extends to a 
C
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−)1,0( form for z  in an open neighbourhood of  , since the function 








),(

1
log

zF
 

is holomorphic in an open neighbourhood of the compact set 

− )]3/,()3/2,([  BB . It follows that there exists a bounded −C function 

C→:  which solves the equation u=  in  .   (see Theorem 2.8.5. and for 

more details [12] Theorem 16.3.4). Then the function  

)(
),(

1
log)(:)( z

zF
zzf 


 −








=  

satisfies the requirements of (i) ) (as it follows from (3.5.2.2).  

     A function h  which satisfies the requirements of (ii) is  














−








=







 +
=

+

)(
),(

1
log)(exp)(

1
exp)(

/)1(

z
zF

zzf
q

n
zh

qn




 . 

Indeed, we have 

+=
 ),(

2
),(

)(

 Bz
n

zF

zdv
 (for every 0 ) 

(this is proved in the same manner as the analogous result of Proposition 3.5.1) which 

implies that  

+=


+
),(

)1/(2
)(

)(

 Bz
nnq

zh

zdv
. 

Notice that the behaviour of the above integral is not affected by the functions   or  , 

since 1  near   and   is bounded in   (so that )exp( −  is both bounded and 

bounded away from zero in  ).  

     Finally assertions (iii) and (iv) follow from (i) and (ii), in combination with 

Theorems 3.2.1 and 3.3.1 (see also the Remark 3.3.2).      □ 

 

 

Remark 3.5.3. It follows from the above theorem, in combination with Theorem 

2.1.14. that the set of the functions h  in the space 
qp

pL


)(O  which are singular at 

every boundary point of   is dense and G  in this space, for  q1 . (Similar 

conclusions are reached also in the case of the convex domains, following Theorem 

3.4.3. and certain – more general – domains in , following Theorem 3.4.1.) 

 

 

 

 

3.6. Extensions of results in the case 10  p  

 

Let 
nC  be a bounded open set. Recall that if 10  p , we can define again the 

space )(pLO  as the set of holomorphic functions C→:f  such that 

+


)()( zdvzf
p

, and that with the metric  
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−= )()()(:),( zdvzgzfgfd
p

p , for )(,  pLgf O , 

)(pLO  becomes a complete metric space. (This follows from the fact that 

convergence in the space )(pL  implies uniform convergence on compact subsets of 

 , as we justify below.) 

 For a fixed q , with 10  q , we may also define the spaces  


qp

pL


)(O  

endowed with the metric  




= +
=

1 ),(1

),(

2

1
:),(

~

j p

p

j gfd

gfd
gfd

j

j
, 

qp

pLgf


 )(, O , 

where jp  is a sequence with qppp j  210  and qp j →  (as →j ). 

Then 
qp

pL


)(O  becomes a complete metric space, its topology being independent 

of the choice of the sequence jp . In fact, a sequence kf  converges to f , in the space 


qp

pL


)(O , if and only if 0),( →ffd kp  for every qp  . In particular Baire’s 

theorem -see Theorem 2.1.4.-   holds in 
qp

pL


)(O . Moreover we point out that the 

space 
qp

pL


)(O , with the above topology, is also a topological vector space.  

     Let us recall also that if ),( raP  is a polydisk, 

},...,2,1,:{),( njrazzraP jjj
n =−= C , and )),(( raPf O , then – by the 

submean value property for the function 
p

f  (see Theorem 2.5.20 and for more 

details see [21]) we have 



),(

)()(
)),((

1
)(

raP

pp
zdvzf

raPvol
af  ( 0p ). 

Thus if )( pLf O  and K  is a compact subset of  , then choosing 0 , 

sufficiently small – depending on K , such that  

=−= },...,2,1,:{: njazzP jj
n

a  C , for every Ka , 

we obtain  




 )()(
)(

1
)()(

)(

1
)( zdvzf

Pvol
zdvzf

Pvol
af

p

aP

p

a

p

a




, for every Ka . 

This gives the well-known inequality  




 )()(
)(

1
)(sup

0

zdvzf
Pvol

af
pp

Ka


. 

In particular we see that convergence in the space )(pLO  implies uniform 

convergence on compact subsets of  .  
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     The following conclusions can be reached for the case « 10  p » in the same 

manner as in the case « 1p ». 

 

 

Conclusions. Theorems 3.2.1., 3.3.1., 3.3.3., 3.4.1., 3.4.2., 3.4.3., 3.5.2., and Remark 

3.5.3., hold also in the case 10  q , and Remark 3.2.2. (iii)  holds for the case 

10  p , too. 

 

 

 

3.7. The spaces )(s
 

 

As we pointed out in Section 2.2, a totally unbounded holomorphic function in an 

open set  , is singular at every point of  . On the other hand it is well-known that 

the converse of this is far from being correct. In fact, under some assumptions on the 

set  , there are holomorphic functions in   which are 
C  up to the boundary of   

and at the same time they are singular at every point of  . For deep results in this 

direction we refer to [14] and the bibliography given there. In this section we will use 

Theorem 2.1.14. in order to give a simple proof of the fact that in some pseudoconvex 

open sets there exist functions in )(s
, }{,...}2,1,0{ s , which do not extend 

holomorphically beyond any boundary point of  . In fact we show, at the same time, 

that such functions form a dense and G  set in the space )(s
 (in the natural 

topology of this space). To make this precise, we consider, for a bounded open set   

in nC  and ,...}2,1,0{s , the set )(s
 of all holomorphic functions f  in  , whose 

derivatives  

n

n

nzz

f

z

f











=




++





1

1

1

 

extend continuously to  , for every mult-index 
n

n N= ),...,( 1   with 

sn ++=  1 . The topology in )(s
 is defined by the norm  



















= szz

z

f
f

s






,:)(sup , )( sf ,  

and with this norm, )(s
 is complete.  

    Similaly )(
 is the set of holomorphic functions f  in  , whose derivatives 


zf  /  extend continuously to  , for every multi-index 

n
n N= ),...,( 1  . 

The topology in )(
 is defined by the metric  




= −+

−
=

0 12

1
),(

N N

N

N gf

gf
gf , )(,  gf , 
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and, with this metric, )(
 is complete. Furthermore, with the corresponding 

topology, )(
 becomes a topological vector space. Thus, in particular, if 

)(,  ffk  with 0),( →ffk  ( →k ), and C ,k  with  →k , then 

0),( →ffkk  . 

 

     The following theorem follows easily from Theorem 2.1.14.  See also [2], [8] and 

[14] for related results.  
 

 

Theorem 3.7.1.  Let nC  be a pseudoconvex open set such that its closure   has 

a neighbourhood basis of pseudoconvex open sets, and =)int( .  

If }{,...}2,1,0{ s , then the set )(s
 of the functions in )(s

 which are not 

extendable, as holomorphic functions, beyond any point of the boundary  , is dense 

and G  in the space )(s
.  

In particular the conclusion holds if   is strictly pseudoconvex open set (not 

necessarily with smooth boundary) and =)int( . 

 

Proof. We will apply Theorem 2.1.14. with )(= sV . For this purpose let us 

consider a pair ),( bB  of open balls with BBb  . We claim that 

− )( nB C . For if =− )( nB C  then B  which would imply that 

)int( B , i.e., B  (since we assume =)int( ), and this contradicts the fact 

that BB  . Let )( − nB C . Since we assume that   has a neighborhood 

basis of pseudoconvex open sets, there exists a pseudoconvex open set G  such that 

G  and G . Then GB , − )( GB nC , and B  is connected, and 

therefore  GB . Let us consider a point GB   and a sequence kz  in 

GB   which converges to  . Since G  is pseudoconvex, there exists a function f , 

holomorphic in G , such that =)(sup k
k

zf  (see [15]). Then )(= sf V  and the 

restriction bf , of f  to b , has no bounded holomorphic extension to B . 

Therefore, from Theorem 2.1.14, the set )(s
 is dense and G  in the space 

)(= sV .  

The last conclusion of the theorem follows from the well-known fact that the closure 

of a strictly pseudoconvex open set has a neighbourhood basis of pseudoconvex open 

sets (for more details see [10]).       □ 

 

 

 

 

 

 



60 
 

4       Hardy type spaces 

 

4.1. Hardy type spaces in the unit ball of 
nC  

 

Definition 4.1.1. Let . We recall that the Hardy space , 

, is defined to be the set of holomorphic functions  such that  

( ) ( )
1

1/

sup
 

 
=  + 

 
 


r

p
p

p
f f r d



  
B

, 

where d  is the Euclidean surface area measure on the sphere B .  

The space   endowed with the norm 
p

  is a Banach space.  

 

Theorem 4.1.2. ([22], Theorem 7.2.5) Suppose 1, 0 .   n p  If  )(BpHf   then  

 
pn

p

pn zfzf // )1(2)( −−  

and  

( ) ( )
1

/
lim 1 0

→
− =

z

n p
z f z ( ).z B  

 

Remarks 4.1.3. We also recall that if a sequence  converges to , in the 

above norm, then  converges to  also uniformly on compact subsets of .  

Indeed this follows from the inequality  

p
Kz

fKpCzf ),()(sup 


, 

with  being a compact subset of  and  is a constant depending on  and 

K – see Theorem 4.1.2.  

Also,  is the Banach space of bounded holomorphic functions , 

with the norm . 

For each 1q , we also consider the space 
qp

pH
1

)(B , which becomes a complete 

metric space with the metric 




= −+

−

=
1 12

1
),(

j p

p

j

j

j

gf

gf

gfd , 

where  and  ( ). Although this metric 

depends on the sequence , the topology induced by this metric in the space 


qp

pH
1

)(B  is independent of the choice of the sequence . As a matter of fact, a 

sequence  converges to  in  if and only if , for every 

}1:{ = zz nCB )(BpH

 p1 CB→:f

)(BpH

)(Bp
m Hf  f

mf f B

K B ),( KpC p

)(BH CB→:f

)(sup zff
z B


=

qppp j  211 qp j → →j

jp

jp

kf f 
qp

pH
1

)(B 0→−
pk ff
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. Indeed, if the sequence converges to f , i.e., , then clearly 

0→−
jpk ff  for every ,...3,2,1=j . But if , we may choose a  so that 

. Then  and therefore . Conversely, we 

will show that if , for every , then . Let . We 

choose   so that . Since  for , 

we may choose  so that  for and . 

Then it is easy to check that  for . This shows that 

.  

Similarly, a sequence  in  is Cauchy with respect to the metric , i.e., 

 ( ) if and only if  for every .  

Therefore the completeness of the metric space  follows from the 

fact that each  is complete.  

 

 

4.2. The case of the unit ball of 
nC  

 

In this section we will first prove the following theorem. 

 

Theorem 4.2.1. Let . Then the set of the functions in the space  

which are totally unbounded in  is dense and  in this space. 

 

The proof of this theorem will be based on the following lemma and theorem 2.1.12. 

 

Lemma 4.2.2. For each point , we consider the functions  

,  and  

defined for . Then  
 

(i)  and , 

(ii)  and , 

(iii)  and  for . 

qp  kf 0),( →ffd k

qp  0j

qpp j 
0

0
0

→−
jpk ff 0→−

pk ff

0→−
pk ff qp  0),( →ffd k 0

N= )(NN
22

1

1






+= Nj
j

0→−
jpk ff Nj 1

N)(0 k
N

ff
jpk

2


− )(0 kk  Nj 1

),( ffd k )(0 kk 

0),( →ffd k

kf 
qp

pH
1

)(B d

0),( →lk ffd →lk, 0→−
plk ff qp 

















dH
qp

p ,)(
1

 B

)(BpH

],1( +q 
qp

pH
1

)(B

B G

BS =

jj
n
j zz

zf



11

1

,1

1
)(

=−
=

−
= )(log)( zfzh  = 








= )(exp)(, zh

q

n
zq 

Bz


np

pHf



1

)(B )(BnHf 





p

pHh
1

)(B )(B Hh


qp

p
q H




1

, )(B )(, Bq
q H  q1
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Proof. By Proposition 2.3.2, if , the integral  


 −Sw

p
wz

wd

,1

)(
, 

as a function of , remains bounded for , and therefore since  for , 

. 

Thus . 

Next we show that  

=
−

= 
 SS z

n
rz

n

r rz

zd
zdrzf






,1

)(
sup)()(sup

1010

. 

Indeed, by Proposition 2.3.2, the integral  


 −Sz

n
zw

zd

,1

)(
 behaves as  for , 

and therefore  

=
−

=
−

=
− 

 2
101010 1

1
logsup

,1

)(
sup

,1

)(
sup

rzr

zd

rz

zd

rz
n

rz
n

r SS 






. 

This proves (i). Next, observing that , for , we see that 

 and therefore we may define  using the principal 

branch of the logarithm with . Then , i.e., 

 with . It follows that if the point  and is 

sufficiently close to , 

, 

where we used the inequality  which holds for ,  

and . (We also used the fact that, since  for  away from 

the point , the quantity  is bounded.)  Fixing a  and choosing 

, we see (using also (i)) that  whence we obtain 

. Since obviously , (ii) follows. Finally observing 

that , we easily obtain (iii).      □ 

 

Proof of Theorem 4.2.1. Let us consider a ball b, with sufficiently small radius, 

whose center lies on , and let us set  and  . We define 

the linear operator  

np 

z Bz Br 1r


−

=
−

= 
 SSS z

p
rz

p
rz

p

r zr

zd

rz

zd
zdrzf

,1

)(
sup

,1

)(
sup)()(sup

101010 
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pHf



1

)(B

2
1

1
log

w−
Bw

0),1Re( − z Bz

0)(Re zf )(log)( zfzh  =

 − arg 2/)](Im[log  zf

)()(log)( zizfzh  += 2/)(  z Brz
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rz
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rzh
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/
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,1

1
)!()(

,1

1
log)(
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1
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kpkpp xkx //)!()(log  1x 1p

Nk 0,1 − rz Brz

 − ,1log rz p

npk / )(BpHh 





p

pHh
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)(B =
→

)(lim
,

zh
zz


B

qn

q f
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B B= bX 
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=
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)(BV
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 with   for  and . 

For each fixed , the functional  defined by , , is 

continuous. It is easy to see that the set  in 

this case is equal to  













==


)(sup:)()(
1

zfHfb
bzqp

p

B
BE . 

Also, by Lemma 4.1.5 (ii),   , since  for .  

Therefore, by Theorem 2.1.12,  is dense and  set in the space .  

        In order to complete the proof, we consider a countable dense subset 

 of , a decreasing sequence , , of positive numbers 

with , and the balls , centered at  and with radii . By the first 

part of the proof, each of the sets  is dense and  set in . It 

follows from Baire’s theorem that the set  

 is dense and  in the space . 

We claim that the set  is exactly the set of the functions  which are 

totally unbounded in . Indeed, if  and  is an open set with , 

we may choose a point  and an  so that . Since 

, it follows that . 

Conversely, if  and is totally unbounded then it is obvious that . 

This completes the proof.     □                                                                         

 

 

       Next we define Hardy type spaces associated to open subsets of the sphere 

. These are local versions of the usual Hardy spaces and the main result is that, 

in general, the functions in  do not belong to Hardy spaces of higher order, 

not even locally.  
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Now we can state the following theorem. 

 

Theorem 4.3.2. Let . Then the set 

 

is dense and  in the space . 

 

For the proof we will need the following lemma.  

 

Lemma 4.3.3. If  then for the functions  and , defined in Lemma 4.2.2, 

we have: 
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     (ii)  for . 
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 for every . 

This proves (i). Now (ii) follows from (i), if we notice that .     □ 

 

Proof of Theorem 4.3.2. Let us fix a point  and . With  

and , we consider the sublinear operator  defined as 

follows: 

 for  and . 

Then, for each fixed , the functional , , , is 

continuous. Indeed, if  and  (in ) then  converges to  

uniformly on compact subsets of , as we pointed out in 4.1. Since ,  it follows 

that  
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i.e, . 

On the other hand, by Lemma 4.3.3.(ii), the set  
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i.e., . Thus , and since it is obvious that , the 

proof is complete.   □ 
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4.4. Hardy type spaces on bounded open sets with smooth boundary 

 

First let us recall the definition of Hardy spaces in the case of bounded open sets with 

smooth boundary.  

 

Definition 4.4.1. Let  be a bounded open set with  boundary and let  be 

a defining function for this set, i.e.,  is a  function so that 

, ,  and  at the points of . For 

, the Hardy space  is defined as follows: 

, 

where  is the Euclidean surface area measure of the hypersurface 

 (with  and sufficiently small).  

 

Remarks 4.4.2. 

(i)  is independent of the defining function .   

In fact if  is another defining function for , the norms  and 

 are equivalent. This follows from the proof of Stein Lemma 2.7.4. 

(ii) Let us also observe that for compact subsets  of , 

, ,   (4.4.2.1)                                          

for some constant . To prove this inequality we may use the 

representation  
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(iii)  becomes a Banach space with the norm 
,p

f . This follows 

from (4.4.2.1) as in the case of the unit ball. (See also [28, Corollary 

4.19].) From the same inequality also follows the fact that convergence in 

 implies uniform convergence on compact subsets of . As in the 

case of the unit ball, we define a metric in the space , for a 

fixed 1q , as follows. We consider a sequence 

 with , 

 and we define the metric 

. 

Then the topology of this metric induced on the space  does not depend 

on the choice of the sequence  or on the choice of the defining function . Indeed, 

a sequence  converges to , in , if and only if , for 

every .  

 

 

 

4.5. Local Hardy spaces 

 

 

     With  and  being as above, we consider an open set  with 

 and we define the space  to be the set of holomorphic 

functions  so that  
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The space  may depend on . However we have the following lemma. 

 

Lemma 4.5.1. Let  and  be two defining functions for . If  and  are two 

open subsets of  with  and , and if  then  
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(The positive parameter  is assumed to be sufficiently small so that the various 

assertions in this proof  hold true.) By the submean value property, if , 

 for , 

where  for  and  for . In what 

follows, , , are appropriate constants independent of . Then  

, 

 

where we used Fubini’s theorem (see Theorem 2.1.9)  and the measurability of the 

function  for  with respect to the product measure 

. Since , making  smaller – if necessary – we may assume 

that 

 for . 

Then  

 if   and  

for . 

It follows that  

. 

(The existence of the constant  follows from the coarea formula – see Theorem 

2.3.3.) Thus 

, 

and this implies that .      □   

 

 

4.6. The case of strictly pseudoconvex domains  

 

      In this section we will show that some functions which are defined in terms of 

Henkin’s support function belong to certain Hardy spaces. We describe the Henkin’s 

support function – as constructed in [10] – in Section 2.9.  

 

First we will prove the following lemma. We use a set of coordinates – the Levi 

coordinates – which are appropriate when we are dealing with integrals involving the 
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fact we will use a slight modification of the Levi coordinates. 
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Lemma 4.6.1. For each fixed point ,  
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Therefore (4.6.1.1) follows from  
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Integrating in polar coordinates (see Lemma 2.3.1) we see that the last integral is 

equal to  
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This proves (4.6.1.3) and completes the proof of (4.6.1.1).  

In order to prove (4.6.1.2), let us observe that for points  which are sufficiently 
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Lemma 4.6.2. Let nC  be a strictly pseudoconvex open set with 2C  boundary 

and let   be a 2C  strictly plurisubharmonic defining function of   defined in a 

neighbourhood of  . If  q1  and nU C  with U , then there exists a 

function Uqh ,  so that   
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 . 

 

Proof. Let us fix a point Let us fix a point U . Then, as it follows from 

Taylor’s theorem and the strict plurisubharmonicity of   (see Proposition 2.8.9 and 

for more details [21] Proposition 2.16 page 60), the Levi polynomial of   
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Next we consider a −C function RC →n: , 1)(0  z , with compact support 
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Notice that the behaviour of the above integral is not affected by the functions   or 
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Indeed this follows from (4.6.2.2), since 1  near   and )exp( −  is bounded away 

from zero in  . 

Thus setting ,, : qUq hh =  we obtain the required function.    □                                                                  

 

Remark 4.6.3. The function )(zf  which was constructed in the proof of the 

previous lemma has the following properties: 
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(The first part follows from (4.6.2.1).) 

 

Theorem 4.6.4. Let 
nC  be a strictly pseudoconvex open set with 

2C  boundary 

and }{Rq , 1q . Then the following hold: 

(i) The set of the functions in the space 
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pH
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)(  which are totally unbounded in 

  is dense and G  in this space.  
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(ii) The set of the functions in the space 
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pH
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)(  which are singular at every 

boundary point of   is dense and G  in this space.  

 

Proof. Let us consider a ‘small’ ball B  whose center lies on  , and let us set 
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)(V . We define the linear operator  

XT C→V:  with )())(( zfzfT =  for Xz   and Vf . 

For each fixed Xz  , the functional C→V:zT  defined by )()( zffTz = , 

Vf , is continuous. It is easy to see that the set 

})(:{ XonunboundedisfTf VE =  in this case is equal to  













==


)(sup:)()(
1

zfHfB
Bzqp

pE . 

Now we consider the function f  which was constructed in the proof of Lemma 
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Remark 4.6.3.) Therefore, by Theorem 2.1.12., )(BE  is dense and G  set in the space 
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Theorem 4.6.5. Let 
nC  be a strictly pseudoconvex open set with 

2C  boundary 
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Proof. Let us fix a point w  and a positive number  . With }0:{ 0 =X  

(where 0  is a ‘small’ positive number) and 
qp

pH
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)(V , we consider the 

sublinear operator XT C→V:  defined as follows: 
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continuous.  

Also, by Lemma 4.6.2, the set   == }:))((sup{::),( XfTfw  VE . 

Therefore, by Lemma by Theorem 2.1.4, the set ),( wE  is dense and G  in the space 

V . 

In order to complete the proof, we consider a countable dense subset }...,,,{ 321 www  

of   and a decreasing sequence s , ,...3,2,1=s , of positive numbers with 0→s . 

By the first part of the proof and Baire’s theorem, the set   
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sjw EY  is dense and G  in the space 
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Now it easy to see that 
qBY = , and this completes the proof. □ 

 

Combining Theorem 4.6.5 with Lemma 4.6.1, we will see that the set 
qB  is 

independent  of  . Thus we have the following theorem.  

 

Theorem 4.6.6. Let nC  be a strictly pseudoconvex open set with 2C  

boundary. If Rq , 1q , then the set 
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−
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is dense and G  in the space 
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Proof. It is clear that 
qq BB  . Conversely, if 

qg B , U  is any open set with 

U  and   is any defining function of  , let us consider an open set V  

with V  and UV  . By Lemma 4.6.1, 

),(),( /)12(/)12(
VHUH nqnnqn

 −−
 . 

But 
qg B  implies that ),(/)12( VHg nqn  −

 , and therefore ),(
/)12(

UHg
nqn


−

 . 

It follows that qg B . Thus 
qq BB = .     □ 
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   It is easy to see that one can obtain results analogous to the ones of Theorems 4.2.1, 

4.3.2, 4.6.4, 4.6.6, with the spaces pH  in place of the intersections 
qp

pH


. Thus we 

have the following theorem. 

 

Theorem 4.6.7. (i) For  p1 , the set of the functions in the space )(BpH  which 

are totally unbounded in B  is dense and G  in this space. 

(ii) For  qp1 , the set 

}0)),(,(:)({   anyandanyforBHgHg qp SSBB  

is dense and G  in the space )(BpH . 

(iii) If nC  is a strictly pseudoconvex open set with 2C  boundary and 

,1  p  the set of the functions in the space )(pH  which are totally unbounded 

in   is dense and G  in this space.   

(iv) If nC  is a strictly pseudoconvex open set with 2C  boundary,  p1  

and npnq /)12( − , then the set 

}

),(:)({





offunctiondefininganyand

UwithUsetopenanyforUHgHg
qp





is dense and G  in the space )(pH . 

 

 

 

4.7. Hardy Spaces of harmonic functions  

 

   The results of the previous sections can be extended to the case of harmonic 

functions in domains of . To describe this extension, let us consider a bounded 

open set  with  boundary. If  is a  defining function of  then one 

can define the harmonic Hardy spaces , , (see definition 4.7.1 below and 

for more details [1], [26] pages 3 and 117 respectively), the intersections , 

and the local Hardy spaces , as before. (  is an open set with 

.)  

 

Definition 4.7.1. Let 
nC  be a bounded open set with 

2C  boundary and let   be 

a defining function for this set. For 1p , the harmonic Hardy space  is 

defined as follows: 

nR
nR 2C  2C 
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h harmonic in so that z dσ zu u u u

where 
d  is the Euclidean surface area measure of the hypersurface

})(:{  −= zz nC  (with 0  and sufficiently small).  

 

Lemma 4.7.2. Let  and . Then the function  ( )  

belongs to  if and only if . In particular . 

 

Proof. We may assume that , in which case  becomes the function  

. 

We must show that  

  if and only if .                (4.7.2.1) 

Using a local diffeomorphism – near the point  of  – we may assume that the 

hypersurface , near , is defined by the equation , and that  for 

 (close to ). Then (4.7.2.1) is equivalent to 

  if and only if .   (4.7.2.2) 

Integrating in polar coordinates (see Lemma 2.3.1) we see that the above integral 

behaves as 

. 

By monotone convergence theorem - see Theorem 2.1.8 , 

,  

 

and (4.7.2.2) follows.     □ 

 

 

Lemma 4.7.3. Let  and . Then  for . 

 

Proof. It follows easily from the previous lemma.     □                                                                             

 

With the above lemmas, we can prove the following theorems. Their proofs are 

similar to the proofs of Theorems 4.6.4 and 4.6.6.   
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Theorem 4.7.4. Let . Then the set of the functions in the space 

 which are totally unbounded in  is dense and  in this space. 

 

Theorem 4.7.5. Let . Then the set 

 

is dense and  in the space . 

 

Remark 4.7.6.  According to Theorem 4.7.4, the functions in the space  

are generically totally unbounded in , despite the fact that all these functions have 

non-tangential limits almost everywhere at the points of the boundary of  (by 

Fatou’s theorem – see Theorem 2.1.7. –). Similar remarks can be made for Theorems 

4.1.4 and 4.6.4. 
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