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Abstract
An operator system can be described as a self-adjoint subspace of a unital

C∗-algebra containing the unit of this C∗-algebra. A celebrated result of Choi
and Effros shows that equivalently we can consider an operator system as an
Archimedean matrix ordered ∗-vector space. The tensor product of two operator
systems can also be equipped with suitable matrix orderings, making it an opera-
tor system. In the first part of the present paper we examine three of these matrix
orderings. In the second part we study the connection between tensor products
of operator systems and several classes of non-signalling correlations.

We will now briefly describe the contents of each Chapter.

In the first Chapter we give the definition of a matrix ordering and review some
basic results regarding matrix ordered spaces such as order units, positivity, du-
ality and the Archimedeanization process.

In Chapter 2 we introduce the notion of an operator system structure on the
tensor product of two operator systems. A tensor product of operator systems
equipped with such a structure is once again an operator system. The main focus
of this chapter will be the study of theminimal, maximal and commuting operator
system tensor products. We will see that in order to determine the states on the
minimal tensor product we require the maximal tensor product and vice-versa.

In the following two Chapters (3 and 4) we define and examine the quotient
operator system and we describe the co-product of operator systems using this
concept.

In Chapter 5 we define some classes consisting of non-signalling correla-
tions with the use of Positive Operator Valued Measures (POVM’s), namely the
local, quantum, approximately quantum and quantum commuting classes. The
geometrical properties of the sets of these correlation classes are studied and it
is shown that they satisfy a chain of inclusions. Moreover, we establish bijec-
tive correspondences between the correlations belonging to each of these classes
and the states on the tensor products of certain operator systems. More specifi-
cally these operator systems will be co-products of copies of the operator system
l∞k := C⊕ · · · ⊕ C︸ ︷︷ ︸

k−times

while the tensor products in question are the aforementioned

ones (Chapter 2).
In Chapter 6 some distinctions between the various correlation sets are proven.

This is achieved with the help of non-local game theory and through methods of
operator system theory. To be more precise we will see that the set of all local
correlations differs from that of all quantum correlations and that the set of all
quantum commuting correlations differs from that of all non-signalling correla-
tions. We should also note that there was a long standing debate on whether
the set of all approximately quantum correlations coincides with that of all quan-
tum commuting correlations, referred to as the weak Tsirelson’s problem. This
was answered in the negative by Slofstra in [21]. Another long-standing question,
known as the strong Tsirelson’s problem, waswhether or not the set of all approx-
imately quantum correlations coincides with that of all quantum correlations. In
a recent paper [10] it was shown that the answer to the strong Tsirelson’s prob-
lem is also negative. We will not examine these two separations as their proofs,
found in the papers given above, use techniques beyond the scope of this paper.

In the literature, the various correlation classes we discussed are sometimes
defined using Projection Valued Measures (PVM’s) instead of Positive Operator
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Valued Measures. In the last Chapter it is shown that in both cases the same
correlation classes are obtained.

iii



Περίληψη

Ένα σύστημα τελεστών μπορεί να περιγραφεί ως ένας αυτοσυζυγής υπόχω-
ρος μιας μοναδιαίας C∗-άλγεβρας ο οποίος περιέχει την μονάδα αυτής της C∗-
άλγεβρας. Σύμφωνα με ένα θεμελιώδες αποτέλεσμα των Choi και Effros μπορού-
με ισοδύναμα να θεωρήσουμε ένα σύστημα τελεστών σαν έναν *-διανυσματικό
χώρο με Αρχιμήδεια διάταξη πινάκων. Το τανυστικό γινόμενο δύο συστημά-
των τελεστών δύναται επίσης να εφοδιαστεί με μία κατάλληλη διάταξη πινά-
κων ούτως ώστε να γίνει και αυτό ένα σύστημα τελεστών. Στο πρώτο μέρος
της παρούσας εργασίας εξετάζουμε τρεις από αυτές τις διατάξεις πινάκων. Στο
δεύτερο μέρος μελετούμε την σχέση μεταξύ ορισμένων non-signalling κλάσεων
συσχετίσεων και κάποιων τανυστικών γινομένων συστημάτων τελεστών.

Ακολουθεί μια σύντομη περιγραφή των περιεχομένων κάθε κεφαλαίου.

Στο πρώτο κεφάλαιο δίνεται ο ορισμός της διάταξης πινάκων καθώς και μία
ανάλυση των βασικών αποτελεσμάτων που αφορούν τους χώρους με διάταξη
πινάκων όπως είναι οι μονάδες διάταξης, η θετικότητα, ο δυϊσμός και η Αρχιμη-
δοποίηση.

Στο δεύτερο κεφάλαιο εισάγουμε την έννοια της δομής συστήματος τελε-
στών στο τανυστικό γινόμενο δύο συστημάτων τελεστών. Ένα τανυστικό γι-
νόμενο δύο συστημάτων τελεστών εφοδιασμένο με τέτοια δομή είναι και αυτό
ένα σύστημα τελεστών. Εδώ επικεντρωνόμαστε στην μελέτη του ελαχιστικού
(minimal), του μεγιστικού (maximal) και του commuting τανυστικών γινομένων
συστημάτων τελεστών. Θα δούμε πως προκειμένου να περιγράψουμε τις κατα-
στάσεις (states) του ελαχιστικού τανυστικού γινομένου χρειαζόμαστε το μεγι-
στικό τανυστικό γινομενο και αντιστρόφως.

Στα δύο επόμενα κεφάλαια (3 και 4) ορίζουμε και μελετούμε το σύστημα τε-
λεστών πηλίκο και βασιζόμενοι στην έννοια αυτή περιγράφουμε το co-product
συστημάτων τελεστών. Θα δούμε πως το co-product συστημάτων τελεστών μπο-
ρεί να κατασκευαστεί ως σύστημα τελεστών πηλίκο.

Στο πέμπτο Κεφάλαιο θα ορίσουμε διάφορες κλάσεις αποτελούμενες από
non-signalling συσχετίσεις χρησιμοποιώντας μέτρα με τιμές θετικούς τελεστές
(POVM’s), πιο συγκεκριμένα τις κλάσεις των τοπικών (local), κβαντικών (quantum),
προσσεγγιστικά κβαντικών (approximately quantum) και quantum commuting
συσχτίσεων. Ακολούθως εξετάζονται οι γεωμετρικές ιδιότητες των συνόλων αυ-
τών των συσχετίσεων και αποδεικνύεται ότι τα σύνολα αυτά ικανοποιούν μία
σειρά από εγκλεισμούς.
Επιπροσθέτως, θα αποδείξουμε την ύπαρξη αμφιμονοσήμαντων αντιστοιχιών α-
νάμεσα στις συσχετίσεις που ανήκουν στις παραπάνω κλάσεις και στις κατα-
στάσεις στα τανυστικά γινόμενα ορισμένων συστημάτων τελεστών.
Ειδικότερα, τα ζητούμενα συστήματα τελεστών είναι co-products αντιγράφων
του συστήματος τελεστών l∞k := C⊕ · · · ⊕ C︸ ︷︷ ︸

k−times

ενώ τα εν λόγω τανυστικά γινό-

μενα είναι τα προαναφερθέντα (Κεφάλαιο 2). Στην ουσία θα δούμε ότι:
1. Υπάρχει μία ένα προς ένα και επί αντιστοιχία μεταξύ του συνόλου όλων

των non-signalling συσχετίσεων και του συνόλου των καταστάσεων
(states) του χώρου S(n, k)⊗max S(m, l), n, k,m, l ∈ N.

2. Υπάρχει μία ένα προς ένα και επί αντιστοιχία μεταξύ του συνόλου όλων
των quantum commuting συσχετίσεων και του συνόλου των καταστάσεων
(states) του χώρου S(n, k)⊗c S(m, l), n, k,m, l ∈ N.
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3. Υπάρχει μία ένα προς ένα και επί αντιστοιχία μεταξύ του συνόλου όλων
των approximately quantum συσχετίσεων και του συνόλου των καταστά-
σεων (states) του χώρου S(n, k)⊗min S(m, l), n, k,m, l ∈ N.

οπου S(n, k) ειναι το co-product n αντιγράφων του χώρου l∞k και με⊗max,⊗c

και⊗min συμβολίζουμε το μεγιστικό, το commuting και το ελαχιστικό τανυστι-
κό γινόμενο συστημάτων τελεστών αντίστοιχα.

Στο Κεφάλαιο 6 δείχνουμε πως οι εγκλεισμοί μεταξύ των συνόλων των συ-
σχετίσεων που ορίσαμε προηγουμένως είναι γνήσιοι. Αυτό επιτυγχάνεται με την
βοήθεια της μη-τοπικής θεωρίας παιγνίων αλλά και με την χρήση μεθόδων της
θεωρίας τανυστικών γινομένων συστημάτων τελεστών. Θα εστιάσουμε τις προ-
σπάθειες μας στην απόδειξη των δυο ακόλουθων ισχυρισμών:

1. Το σύνολο όλων των τοπικών (local) συσxετίσεων είναι γνήσιο υποσύνολο
του συνόλου όλων των κβαντικών (quantum) συσχετίσεων.

2. Το σύνολο όλων των quantum commuting συσχετίσεων είναι γνήσιο υπο-
σύνολο του συνόλου όλων των non-signalling συσχετίσεων.

Στο σημείο αυτό ωφείλουμε να αναφέρουμε πως δεν θα μελετήσουμε το αν το
σύνολο όλων προσσεγγιστικά κβαντικών (approximately quantum) συσχετίσε-
ων ταυτίζεται με το σύνολο όλων των κβαντικών (quantum) συσχετίσεων. Αυτο
το ερώτημα, γνωστό και ως ισχυρό πρόβλημα του Tsirelson, απαντήθηκε αρνητι-
κά στην εργασία [10]. Επισημαίνουμε ακόμα πως ούτε η απάντηση στο αθενές
πρόβλημα του Tsirelson, αν δηλαδή το σύνολο όλων προσσεγγιστικά κβαντι-
κών (approximately quantum) συσχετίσεων ταυτίζεται με το σύνολο όλων των
quantum commuting συσχετίσεων, αναλύεται στην παρούσα εργασία. Η απά-
ντηση στο ασθενές πρόπλημα είναι και αυτή αρνητική όπως έδειξε ο Slofstra
στο [21]. Επιλέξαμε να μην ασχολειθούμε (παρά μόνον επιδερμικά) με τα δύο
αυτά ζητήματα καθώς για την αποσειξή τους απαιτούνται τεχνικές οι οποίες
δεν παρουσιάζονται στην παρούσα εργασία.

Στην βιβλιογραφία είναι σύνηθες οι διάφορες κλάσεις συσχετίσεων που πε-
ριγράψαμε να ορίζονται με την χρήση μέτρων με τιμές προβολές (PVM’s) αντί
των μέτρων με τιμές θετικούς τελεστές (POVM’s). Στο τελευταίο κεφάλαιο θα
δούμε πως και στις δυο περιπτώσεις παίρνουμε τις ίδιες κλάσεις συσχετίσεων.
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1 Introduction
We will assume that the reader has some familiarity with basic C∗-algebraic theory
such as the Gelfand-NaimarkTheorem and the tensor product construction in theC∗-
algebra category.
For a thorough review of these topics the reader is advised to see [13].

1.1 Matrix Ordered Spaces

If V is a complex vector space, we denote the space of n×m matrices whose entries
are elements of V byMn,m(V ), which is also a vector space in a natural way. We set
Mn,n(V ) :=Mn(V ) andMn,m :=Mn,m(C).
The spaceMn,m has the canonical basis {Ei,j : 1 ≤ i ≤ n, 1 ≤ j ≤ m} where Ei,j is
the n ×m matrix with 1 in the (i, j) entry and 0 everywhere else. Ifm = n we will
writeMn,n =Mn.

A *-vector space is a complex vector space together with a conjugate linear map
* : V → V which is involutive ( that is (v∗)∗ = v). We say that an element v is her-
mitian (self-adjoint) if v∗ = v and we let Vh denote the real subspace of V containing
all such elements. Note that if we have a v ∈ V then there exists a decomposition of
v into self adjoint elements v = x+ iy where x = 1

2 (v + v∗) and y = 1
2i (v − v

∗) so:

V = Vh + iVh, Vh ∩ iVh = {0}

If V is a *-vector space, then we define a *-operation on Mn(V ) by letting [vij ]
∗ =

[(vji)
∗], with this operationMn(V ) becomes a *-vector space. We letMn(V )h denote

the set of all hermitian elements ofMn(V ).

We call a subsetK of a real vector-space V a cone if it satisfies the following proper-
ties:

1. λv ∈ K , for every λ ∈ R+ = [0,∞) and v ∈ K

2. v1 + v2 ∈ K , for every v1, v2 ∈ K

An ordered *-vector space is a pair (V, V +) satisfying:

1. V + is a cone in Vh

2. V + ∩ (−V )+ = 0 (i.e., V + is proper)

If V is an ordered *-vector space we may define a partial order ≤ on Vh by declaring
w ≤ v if and only if v − w ∈ V +. Then v ∈ V + if and only if 0 ≤ v, for this reason
V + is called the cone of positive elements of V . Note that w ≤ v implies that:

1. w + x ≤ v + x for any x ∈ V

2. λw ≤ λv for any λ ∈ [0,∞)

1



Remark: We used the cone V + to define a partial ordering, however we could have
done the opposite: If ≤ is a partial order on Vh satisfying (1) and (2) as above and we
set V +={v ∈ V : 0 ≤ v} then one can easily check that the pair (V, V +) is an ordered
vector space.

LetH be a Hilbert space we letB(H) denote the space of all bounded linear operators
on H and Hn the direct sum of n-copies of H . We will denote an element h ∈ Hn

by,

h =

h1...
hn

 = (h1, . . . , hn)
t

Throughout this Chapter t will denote the transpose.
The inner product on Hn is defined by

h1...
hn

 ,

k1...
kn



Hn

=

n∑
i=1

(hi, ki)H

with this inner product Hn is a Hilbert space and for an element of Hn its norm is
given by ∥∥∥∥∥∥∥

h1...
hn


∥∥∥∥∥∥∥
Hn

=
√
∥h1∥2H + ∥h2∥2H + · · ·+ ∥hn∥2H

Moreover B(H) with the usual *-operation and positive cone that of the positive
operators is an ordered vector space. (An operator T is called positive if (Th, h) ≥ 0
for every h ∈ H).

We also have the identificationMn(B(H)) = B(Hn).
Let [αij ] ∈Mn(B(H)) we define an operator A : Hn → Hn via the rule:

A

h1...
hn

 = [αij ]

h1...
hn

 =


∑n
j=1 α1jhj

...∑n
j=1 αnjhj


Then [aij ] ∈ B(Hn). Indeed, A is clearly well-defined, linear and for
h = (h1, . . . , hn)

t ∈ Hn we have that

∥Ah∥2 = ∥[αij ]h∥2 = ∥
n∑
j

α1jhj∥2 + · · ·+ ∥
n∑
j

αnjhj∥2

≤ (

n∑
j

∥α1j∥2)(
n∑
j

∥hj∥2) + · · ·+ (

n∑
j

∥αnj∥2)(
n∑
j

∥hj∥2)

= (

n∑
i,j

∥αij∥2)∥h∥2

2



so ∥A∥ ≤ (
∑n
i,j=1 ∥αij∥2)

1
2 <∞ because for each i, j we have that αij is a bounded

operator.
On the other hand, every operator A ∈ B(Hn) can be written in the above form.

To see this, for every j = 1, . . . , n, let Vj : H → Hn be the map that sends an h ∈ H
to the element (ξ1, . . . , ξn)t ofHn where ξi = 0 for i ̸= j and ξj = h. The adjoint of
this map V ∗

j : H → Hn is the projection on the j-th coordinate, i.e.,

V ∗
j

(
(h1, . . . , hn)

t
)
= hj

Set αij = V ∗
i AVj then for h, k ∈ Hn we have that

(Ah, k) = (A(V1h1 + · · ·+ Vnhn), (V1k1 + · · ·+ Vnkn))

=

n∑
i,j=1

(AVjhj , Viki) =

n∑
i,j=1

(V ∗
i AVjhj , ki)

= ([αij ]h, k)

Thus, A = [αij ].

Now we claim that the map Φ : Mn(B(H)) → B(Hn) : [αij ] → A is an ∗-
isomorphism.

Indeed, let [αij ], [βij ] ∈Mn(B(H)) then

[αij ][βij ](h1, . . . , hn)
t = [αij ](

n∑
j=1

β1jhj , . . . ,

n∑
j=1

βnjhj)
t

= (

n∑
l=1

α1l

n∑
j=1

βljhj , . . . ,

n∑
l=1

αnl

n∑
j=1

βljhj)
t

= (

n∑
l,j=1

α1lβljhj , . . . ,

n∑
l,j=1

αnlβljhj)
t

= [
∑
l

αilβlj ](h1, . . . , hn)
t

so Φ([αij ])Φ([βij ]) = Φ([αij ][βij ]), in addition we see that for every h, k ∈ Hn

(Φ([αij ])
∗h, k) = (h,Φ([αij ])k) =

n∑
i=1

hi, n∑
j=1

αijhj

 =

n∑
i,j=1

(
α∗
ijhi, kj

)
=

n∑
i,j=1

(
V ∗
j A

∗Vihi, kj
)
=

n∑
i,j=1

(A∗Vihi, Vjkj) = (A∗h, k) = (Φ([αij ]
∗)h, k)

hence our claim was true.

3



Now we know that B(Hn) with the operator norm is a C∗-algebra so if we transfer
this norm toMn(B(H)) by setting

∥[αij ]∥ = ∥Φ([αij ])∥B(Hn)

thenMn(B(H)) becomes a C∗-algebra.

Example 1: In this way we may identifyMn =Mn(C) with B(Cn).

Example 2: Let A be a C∗-algebra and take the universal representation
ρ : A → B(H). We use it to define the following injective *-homomorphism
Ψ :Mn(A)→ B(Hn) : [αij ]→ Ψ([αij ]) where

Ψ([αij ])

h1...
hn

 =


∑n
j=1 ρ(α1j)hj

...∑n
j=1 ρ(αnj)hj


Then we can define a C∗-norm onMn(A) via the rule

∥[αij ]∥ = ∥Ψ([αij ])∥B(Hn)

Some other identifications we will use frequently include :

(Cn)m = Cnm andMn(Mm(V )) =Mnm(V ), for any V *-vector space

Note that the map:

((x1, . . . , xn), . . . , (y1, . . . , yn))→ (x1, . . . , xn, . . . , y1, . . . , yn)

is an isometry from (Cn)m onto Cnm, where Cnm has the euclidean norm ∥ · ∥2 and

∥((x1, . . . , xn), . . . , (y1, . . . , yn))∥(Cn)m =√
∥((x1, . . . , xn)∥22 + · · ·+ ∥(y1, . . . , yn))∥22

Similarly for any *-vector space V we can identify Mn(Mm(V )) with Mnm(V ) via
the map:

A11 . . . A1n

...
. . .

...
An1 . . . Ann

→



α11
11 . . . α11

1m . . . . . . α1n
11 . . . α1n

1m
...

. . .
... . . . . . .

...
. . .

...
α11
m1 . . . α11

mm . . . . . . α1n
m1 . . . α1n

mm
...

...
... . . . . . .

...
...

...
...

...
... . . . . . .

...
...

...
αn111 . . . αn11m . . . . . . αnn11 . . . αnn1m
...

. . .
... . . . . . .

...
. . .

...
αn1m1 . . . αn1mm . . . . . . αnnm1 . . . αnnmm
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Where each Akl = [αklij ]i,j ∈Mm(V ), for every k, l ∈ {1, . . . , n}.

If V is a (unital) C∗-algebra it is easy to see that the above identification preserves
the multiplication and the ∗-operation, i.e., it defines a ∗-isomorphism.
It follows that by removing the inner brackets we obtain the following isomorphisms:

Mn(Mm(V)) ∼=Mnm(V)) ∼=Mm(Mn(V))

Another way to see the latter identification with the use of tensor products:

Mn,m(V ) =Mn,m ⊗ V andMn,m(V ) = V ⊗Mn,m via the maps,

[vij ]→
n,m∑
i,j=1

Ei,j ⊗ vij and [vij ]→
n,m∑
i,j=1

vij ⊗ Ei,j

Indeed, define π :Mn(V )→Mn ⊗ V to be the map given by

π([vij ]) =

n,m∑
i,j=1

Ei,j ⊗ vij

then it is clearly linear. We will show that π is a ∗-isomorphism.

π is injective : Assume that [vij ] ∈ kerπ then
∑n,m
i,j=1Ei,j⊗vij = π([vij ]) = 0. Since

the elements Eij are linearly independent for all 1 ≤ i ≤ n and 1 ≤ j ≤ m, we have
that vij = 0 for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. Thus [vij ] = 0.

π is surjective : Let v ∈ V ⊗Mn then v can be written as v =
∑n,m
i,j=1Ei,j ⊗ vij =

π([vij ]), for some vij ∈ V .

π is ∗-preserving : Let [vij ] ∈Mn,m(V ) then

π([vij ]
∗) = π([v∗ji]) =

n,m∑
i,j=1

Ei,j⊗v∗ji =
n,m∑
i,j=1

E∗
j,i⊗v∗ji = (

n,m∑
i,j=1

Ei,j⊗vij)∗ = π([vij ])
∗

In the case in which V is a C∗-algebra we have seen that there exists a norm on
Mn(V ) making it a C∗-algebra. Moreover, π as defined above is a ∗-homomorphism
betweenMn(V ) andMn⊗V . ThusMn⊗V is aC∗-algebra with respect to the norm
it inherits fromMn(V ).
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To see this, let [vij ], [wij ] ∈Mn(V ) then:

π([vij ][wij ]) = π([
∑
k

vikwki]) =

n∑
i,j=1

Ei,j ⊗ (
∑
k

vikwki)

=

n∑
i,j=1

Ei,kEk,j ⊗ (
∑
k

vikwki) =
∑
i,j,k,l

Ei,kEs,j ⊗ (vikwlj)

= (

n∑
i,j=1

Ei,j ⊗ vji)(
n∑

i,j=1

Ei,j ⊗ wij)

= π([vij ])π([wij ])

Since every C∗-algebra admits a unique complete C∗-norm we have proved the fol-
lowing proposition :

Proposition 1.1 For every C∗-algebra A and for every n ∈ N there exists a unique
C∗-norm on the algebraic tensor productMn ⊗A, i.e.,Mn is a nuclear C∗-algebra.

If V andW are vector spaces then V ⊗W is the linear span of the set {v ⊗ w : v ∈
V,w ∈ W}. Thus, Mn(V ⊗ W ) = Mn ⊗ (V ⊗ W ) is the linear span of the set
{Eij ⊗ (v ⊗ w) : 1 ≤ i, j ≤ n, v ∈ V,w ∈W}. Hence, the map

Ei,j ⊗ (v ⊗ w)→ (Ei,j ⊗ v)⊗ w

extends to a linear isomorphism between the spacesMn ⊗ (V ⊗W ) and
(Mn ⊗ V )⊗W , soMn(V ⊗W ) is linearly isomorphic toMn(V )⊗W .

For v ∈Mn,m(V ) and u ∈Mk,l(V ) we use the notation

v ⊕ w =

[
v 0
0 w

]
∈Mn+k,m+l(V )

for the direct sum of v and w.

Definition 1.2 If (V, V +) is an ordered *-vector space, an element e ∈ Vh is called an
order unit for V if for all v ∈ Vh there exists a real positive number r such that −re ≤
v ≤ re. Equivalently such an e is called an order unit if and only if ∪[−λe, λe] = Vh
for all real λ > 0.

Lemma 1.3 ([16]) If (V, V +) is an ordered *-vector space with order unit e, then:

1. e ∈ V +

2. If v ∈ V and a real number r ≥ 0 is chosen so that re ≥ v, then
se ≥ v, for all s ≥ r.

3. Vh = V + − V + (V + is a full cone of Vh)
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4. If v1, . . . , vn ∈ V + and v1 + · · ·+ vn = 0, then v1 = · · · = vn = 0

5. If v1, . . . , vn ∈ V + and there are real numbers 0 ≤ αi, for 0 ≤ i ≤ n such that
α1v1 + · · ·+ αnvn = 0 then either vi = 0 or αi = 0, for every 0 ≤ i ≤ n.

Definition 1.4 If (V, V +) is an ordered *-vector space with order unit e, we say that e
is an Archimedean order unit if whenever v ∈ V with 0 ≤ re+ v, for every r > 0 then
v ∈ V +. Equivalently, if ∩[−λe, λe] = {0}.
In this case the triple (V, V +, e) is called Archimedean ordered *-vector space, AOU for
short.

Definition 1.5 Let V be a *-vector space.
The family {Cn}∞n=1 where Cn ⊆Mn(V )h for every n, is called a matrix ordering on
V if:

(1) Cn is cone inMn(V )h, for every n.

(2) Cn ∩ (−Cn) = {0}, for every n (Cn is a proper cone, ∀n)

(3) for every n,m ∈ N and for every X ∈Mn,m : X∗CnX ⊆ Cm

Condition (3) is often referred to as the compatibility of the family {Cn}∞n=1.

We call the pair (V, {Cn}∞n=1) amatrix ordered *-vector space.

Note: It follows from the properties (1) and (2) of the above definition that (Mn(V ), Cn)
is an ordered *-vector space for every n ∈ N. If A,B ∈ Mn(V )h, we write A ≤ B
when B −A ∈ Cn.

Definition 1.6 Let (V, {Cn}∞n=1) be a matrix ordered *-vector space. For an element
e ∈ Vh we set en to be the corresponding diagonal matrix inMn(V ), with entries: e in
the main diagonal and 0 everywhere else:

en :=

e . . .
e

 = In ⊗ e

where In denotes the identity matrix ofMn.

We say that e is a matrix order unit for (V, V +) if for every n ∈ N we have that en is
an order unit for (Mn(V ), Cn). Furthermore, e is called an Archimedean matrix order
unit when en is an Archimedean order unit for (Mn(V ), Cn).
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1.2 Positive maps on Matrix ordered spaces

In this subsection we will briefly examine positive and completely positive maps on
matrix ordered spaces. Positive and completely positive maps are essential to the
study of operator systems.

Definition 1.7 Let (V, V +) and (W,W+) be ordered ∗-vector spaces with order units
e1 and e2 respectively, then a linear map ϕ : V →W is called:

1. unital if ϕ(e1) = e2.

2. positive if ϕ(V +) ⊆W+.

3. order isomorphism if it is an isomorphism of vector spaces and both ϕ,ϕ−1 are
positive, in this case we have: v ∈ V + ⇐⇒ ϕ(v) ∈W+.

Let V andW be vector spaces and suppose that φ : V → W is a linear map then for
every n ∈ N the map φ induces a linear map φn :Mn(V )→Mn(W ) given by

φn([vij ]i,j) := [φ(vij)]i,j

Definition 1.8 If (V, {Cn}∞n=1) and (W, {Dn}∞n=1) are matrix ordered *-vector spaces,
a linear map ϕ : V →W is called:

(i) completely positive (c.p. or CP for short) if ϕn(Cn) ⊆ Dn, for all n ∈ N, that is
to say the induced map ϕn :Mn(V )→Mn(W ) is positive.

(ii) order isomorphism if it is bijective and both ϕ, ϕ−1 are positive.

(iii) complete order isomorphism if it is bijective and both ϕ, ϕ−1 are completely
positive.

(iv) complete order embedding if it is an injective completely positive map and
whenever φn([vij ]i,j) ∈ Dn then [vij ]i,j ∈ Cn.

Given matrix ordered spaces V andW we let L(V,W ) denote the space of all linear
maps from V toW . The cone of completely positive maps provides a partial ordering
of L(V,W ).

Definition 1.9 Let (V, V +) be an ordered *-vector space with order unit e, a linear map
ϕ : V → C that is positive and unital is called a state. We denote the set of all states on
V by S(V).

Let V be a *-vector space and ϕ : V → Mn a linear map then we associate to ϕ a
linear functional sφ :Mn(V )→ C via the formula:

sφ(A) =
1

n

n∑
i,j=1

(ϕ(αij)ej , ei) , A = [αij ] ∈Mn(V )
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where {ek}nk=1 denotes the standard basis of Cn.

Alternatively, if we let x0 =
1√
n
e1 ⊕ · · · ⊕ en ∈ Cn2 = Cn ⊕ . . . .⊕Cn we have that

for each A = [αij ] inMn(V ):

sφ(A) = (ϕn(A)x0, x0) = (ϕ([αij ])x0, x0)

where the inner product is that of Cn2 .

If ϕ is unital then so is sφ and the map Φ : L(V,Mn(C)) → L(Mn(V ),C) which
takes ϕ to sφ is linear.

Conversely, if s :Mn(V )→ C is a linear functional, we define the map ϕs : V →
Mn via:

(ϕs(α)ej , ei) = ns(α⊗ Eij), α ∈ V

where α⊗Eij is the element ofMn(V ) = V ⊗Mn which has α in the (i, j) - entry
and 0 everywhere else and (ϕs(α)ej , ei) = [ϕs(α)](i,j) is the (i, j)-entry of the
complex matrix [ϕs(α)]ij .

Let ϕ ∈ L(V,Mn), s ∈ L(Mn(V ),C) and A = [aij ] ∈Mn(V ). Then,

sϕs
(A) =

1

n

n∑
i,j=1

(φs(aij)ej , ei) =
1

n

n∑
i,j=1

ns(aij ⊗ Eij) = s(A)

Now, let v ∈ V then(
φsϕ(v)ej , ei

)
= nsϕ(v ⊗ Eij) = (φ(v)ej , ei)

so we have that ϕ = ϕsφ and s = sφs , hence the maps s→ ϕs and ϕ→ sφ are mutual
inverses.

Theorem 1.10 Let (V, {Cn}∞n=1) be a matrix ordered *-vector space.
If s :Mn(V )→ C is a linear functional and ϕ = ϕs : V →Mn is the associated linear
map. Then the following are equivalent:

1. s(Cn) ⊆M+
n

2. ϕ : V →Mn is n-positive.

3. ϕ : V →Mn is completely positive.

Proof: Obviously (3) implies (2).

(2)⇒ (1): Fix a n ∈ N and assume that ϕ is n-positive, so for the map ϕn : Mn(V )
→Mn(Mn) = Mn2 we have that ϕn(Cn) ⊆M+

n2 . Let A = [αij ] be in Cn, we will
show that s(A) ∈M+

n2 . We have that

ϕn(A) = [ϕ(αij ] ∈M+
n2 , therefore (ϕn(A)h, h) ≥ 0 for every h ∈ Cn

2
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Applying this to the vector x0 = 1√
n
e1 ⊕ · · · ⊕ en which is in Cn2 and we obtain:

(using the fact that s = sφ and ϕ = ϕs)

s(A) = sφ(A) := (ϕn(A)x0, x0) = (ϕ([αij ])x0, x0) ≥ 0,

as required.

(1)⇒ (3): Assume that s(A)≥ 0 for allA inCn. Wewant to show thatϕ is completely
positive or equivalently that for every m the map ϕm : Mm(V ) → Mm(Mn) is
positive. Let X = [vij ] ∈ Cm := (Mm(V ))+, we want:

ϕm([vij ]) = [ϕ(vij)] ∈Mm(Mn)
+

Since [ϕ(vij)] acts on Cmn we need to show that ([ϕ(vij)]h, h) ≥ 0, for every h ∈
Cmn.

We write h asm-column vector h =


ht1
ht2
...
htm

 where for every i ∈ {1, . . . ,m} each hi

is a row vector in Cn and the superscript t denotes the transpose. Now [ϕ(vij)] is a
m×m block matrix (with the blocks being n× n matrices) so:

([ϕ(vij)]h, h) =

m∑
i,j=1

(
ϕ(vij)h

t
j , h

t
i

)
(the first inner product is on Cmn the second on Cn)

Remark: Given row vectors h = [h1 . . . hn] and k = [k1 . . . kn] of scalars since ϕ(v)
∈ B(Cn) for any v ∈ V , we have that:

(
ϕ(v)ht, kt

)
=

n∑
i,j=1

hjki (ϕ(v)ej , ei)Cn =

n∑
i,j=1

(
ϕ(kivhj)ej , ei

)
Cn = ns([kivhj ]) = ns(k∗vh)

where k∗ =


k̄1
k̄2
...
k̄n

 (Remember that ϕ = ϕs)

so k∗vh ∈Mn(V ) is the matrix product whose (i, j) entry is [k̄ivhj ].

10



Using the above remark we have that:

([ϕ(vij)]h, h)Cn2 =

m∑
i,j=1

(
[ϕ(vij)]h

t
j , h

t
i

)
Cn

=

m∑
i,j=1

s(h∗i vijhj)

= s(

m∑
i,j=1

h∗i vijhj)

Let A ∈Mmn denote the matrix A =

h1 . . . h1
... . . .

...
hm . . . hm


whosem - rows are the vectors h1, . . . , hm ∈ Cn then

∑m
i,j=1 h

∗
i vijhj is just the ma-

trix productA∗XA. We assumed thatX ∈Cm and the family {Cn}∞n=1 is compatible
so we have that A∗XA ∈ Cn, and therefore s(A∗XA) is positive.

From the above theorem we obtain that the maps s→ ϕs and its inverse are pos-
itive (they take completely positive maps to completely positive maps).
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1.3 Dual of matrix ordered space

We will say that the real or complex vector spaces V and V1 are in duality if there
exists a bi-linear map (v, f)→ v · f from V × V1 to the scalars such that

(a) v ∈ V is 0 if and only if v · f = 0 for all f ∈ V1

(b) f ∈ V1 is 0 if and only if v · f = 0 for all v ∈ V .

If V and V1 are in duality, each defines the weak topology on the other. We refer to
the weak topology on V as the σ(V, V1) topology (i.e., vi → 0 means that vi · f → 0
in C for all f ∈ V1).

Theorem 1.11 The map G : V1 → V δ : f → φf , where φf (v) = v · f, (v ∈ V ) is an
isomorphism.

Proof: Notice that for each f ∈ V1 the functional φf : V → C is weakly continuous
by definition of the weak topology σ(V, V1), so φf ∈ V δ .

G is linear and 1-1: Let f1, f2 ∈ V1 and v ∈ V then

G(f1 + λf2)[v] = φf1+λf2(v) = v · (f1 + λf2) =

v · f1 + v · λf2 = φf1(v) + λφf2(v) = G(f1) + λG(f2)

Let f ∈ V1 such that G(f) = 0, that is φf (v) = 0 for every v ∈ V which means that
v · f = 0 for every v ∈ V . Thus from the properties of duality we have that f must
be the zero mapping, so ker(G) = {0} hence G is injective.

G is onto: Let φ ∈ V δ , so φ is weakly continuous. We will show that φ = G(f) = φf
for some f ∈ V1. Since σ(V, V1) is the weakest topology on V making each φf
continuous, given ε there exist a δ > 0 and a finite set {f1, . . . , fn} ⊆ V1 such that:

|fi(v)| < δ, ∀i = 1, . . . , n which implies that |φ(v)| < ε

In particular, if |fi(v)| = 0, ∀ i = 1, . . . , n, then for allm ∈ N we have that:

|fi(mv)| = 0, ∀ i = 1, . . . , n and, hence |φ(mv)| < ε

Thus |φ(v)| < 1
mε, for allm in N and so φ(v) = 0. This shows that if

|fi(mv)| = 0, ∀ i = 1, . . . , n then φ(v) = 0. It follows that:
n⋂
i=1

kerφfi ⊆ kerφ

This condition implies that the linear map φ is a linear combination of the maps φfi ,
so there exist scalars ci such that φ =

∑n
i=1 ciφfi .

Letting f :=
∑n
i=1 cifi ∈ V1 we have φ = φf as claimed.

Applying the above theorem to the space V δ we have that: (V δ)δ = V
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If V and V δ are complex spaces in duality thenMm(V ) andMm(V δ) are in duality
under the bi-linear function

[vij ] · [fij ] :=
∑
i,j fij(vij).

Let [vij ] ∈Mn(V ) such that:

[vij ] · [fij ] = 0, for every [fij ] ∈Mn(V
δ) (∗)

Condition (∗) is equivalent to saying that:
∑
i,j fij(vij) = 0 for every fij ∈ V δ , i, j

∈ {1, . . . , n}.
Condition (∗) is satisfied by every [fij ] ∈Mn(V

δ) so all the matrices that have only
the (i, j) - entry non zero satisfy (∗) and from this we obtain that: fij(vij) = 0 for
every i, j ∈ {1, . . . , n}. Since (∗) is valid for any [fij ] ∈ V δ we have that for all i
and j, fij can be any element of V δ so from the duality of V and V δ we obtain that
vij = 0, for every i, j ∈ {1, . . . , n} therefore [vij ] is the zero matrix ofMn(V ).

Conversely,

if [vij ] =

0 . . . 0
...

. . .
...

0 . . . 0

 ∈Mn(V ) then obviously:

[vij ] · [fij ] :=
∑
i,j fij(vij) = 0, for every [fij ] ∈Mn(V

δ).

The fact that [fij ] = 0 if and only if [vij ] · [fij ] = 0 for all [vij ] inMn(V ) is proven in
a similar fashion.

So,Mn(V )δ =Mn(V
δ) and we can consider an element [fij ] ∈Mn(V

δ) as a
weakly continuous linear map F :Mn(V )→ C.

Note: Let S ⊆ B(H) be an operator system and s = [sij ] ∈ Mn(S)
+ then for any

arbitrary n×m matrix A = [αik] of complex numbers we have that:

A∗sA = [

n∑
i,j=1

αikrijαjl]kl ∈Mm(S)+

.
Indeed, we have that s is positive in Mn(S), so it can be written as s = b∗b, b ∈
Mn(S). Therefore, A∗sA = (bA)∗bA which is positive.

Lemma 1.12 Let (V, {Cn}∞n=1) be a matrix ordered space, and v = [vij ] ∈Mn(V ) and
A = [αij ] ∈Mn. We define Φ(v) : Mn → V by : Φ(v)(A) =

∑n
i,j=1 αijvij , then the

map Φ :Mn(V )→L(Mn, V ) is an order isomorphism.

Proof: It is clear that Φ is linear and it is easy to see that it is injective.
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Φ is surjective: Assume that f ∈ L(Mn, V )with f(Ei,j) = vij , 1 ≤ i, j ≤ n. Letting
v = [vij ] ∈Mn(V ) we have that

Φ(v)(Ei,j) =

n∑
k,l=1

(δkiδlj)vkl = vij = f(Ei,j)

where Ei,j = [δkiδlj ]k,l. It follows that f = Φ(v) ergo Φ is surjective.

Now we check the positivity of Φ and its inverse.
Let v = [vij ] ∈Mn(V ) be such that Φ(v) is completely positive, that means: Φ(v)n :
Mn(Mn)→Mn(V ) is positive, for every n ∈ N.
Consider the element

E = [Ei,j ] ∈Mn(Mn) then E =


E1,1 . . . E1,n

0 . . . 0
... . . .

...
0 . . . 0



E1,1 . . . E1,n

0 . . . 0
... . . .

...
0 . . . 0


∗

so E ∈Mn(Mn)
+.Thus,

v = [vij ] = [Φ(v)(Ei,j)]i,j := Φ(v)n(E) ≥ 0

(Ei,j = [ekl] is then n × n matrix with (i, j) - entry 1 and 0 everywhere else and
Φ(s)(Ei,j) :=

∑n
k,l=1 eklvkl = vij ).

On the other hand, suppose that v ∈ Cn. Let m ≥ 1, we will show that if A ∈
Mm(Mn)

+, then Φ(v)m(A)≥ 0. If a matrixA ∈Mm(Mn) =Mmn is positive semi-
definite, i.e., A ∈ M+

mn, then from the spectral theorem it admits a representation∑N
k=1 βkβ

∗
k for βk ∈ Cmn, k ∈ {1, . . . , N} where N denotes the rank of the matrix.

Let βk = (βk1 , . . . , βkm) where for each 1 ≤ j ≤ m: βkj ∈ Cn.
Then βkβ∗

k = [βkiβ
∗
kj
]mi,j=1 where every βkiβ∗

kj
is a n × n complex positive matrix

and for each 1 ≤ i ≤ m we have that βki = (βki1 , . . . , βkin).
We let B = [βkit ], 1 ≤ i ≤ m, 1 ≤ t ≤ n then B is a m × n complex matrix.
Moreover,

βkβ
∗
k = [βkiβ

∗
kj ]

m
i,j=1 = [[βkitβ

∗
kjp ]

n
t,p=1]

m
i,j=1

and

Φ(v)m(βkβ
∗
k) = [Φ(v)[βkitβ

∗
kjp ]

n
t,p=1]

m
i,j=1 = [

n∑
t,p=1

βkitvtpβ
∗
kjp ]

m
i,j=1 = BvB∗ ∈ Cm

from the compatibility of the family {Cn}∞n=1. Since the sum of positive elements
remains positive it follows that

Φ(v)m(A) ≥ 0

Since every operator system is a matrix ordered space we also have that if S is an
operator system then the mapΦ of Lemma 1.12 is an order isomorphism fromMn(S)
to L(Mn,S).
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Dual cone: Let (V, {Cn := Mn(V )+}) be a matrix ordered space and let V δ be the
dual of V , we partially order V δ by the dual cone: (V δ)+ = V δ

⋂
(V d)+ where

V d := L(V,C) = {linear functions from V to C}. We regardMn(V
δ) as the dual of

Mn(V ), i.e.,Mn(V
δ) := Mn(V )δ and we partially order it for each n ∈ N with the

cone (Mn(V )δ)+ =Mn(V )δ
⋂
(Mn(V )d)+.

Lemma 1.13 If V is a matrix ordered space with matrix order unit e and with dual
V δ , then the above structure is a matrix ordering on V δ .

Proof: We need to check that the conditions (1),(2),(3) of Definition 1.5 are satisfied.
Let F ∈ (Mn(V )δ)+

⋂
−(Mn(V )δ)+ and v ∈Mn(V )+ then

F (v) = F1(v) = −F2(v) for some F1, F2 ∈Mn(V )d+

therefore F (v) must be equal to zero.
Since V has an order unit we have that Vh = V +−V + so V = (V +−V +)+ i(V +−
V +) hence we have that F (v) = 0 for every v inMn(V ).
Thus F is the zero function onMn(V ).

For (3): Assume that F = [fij ] ∈Mn(V
δ)+ andX is a n×m complex matrix, and let

v = [vrs] ∈Mm(V )+ then:

v ·X∗FX = [vrs] · [
n∑

i,j=1

x̄irxjsfij ]
m
r,s=1 =

m∑
r,s=1

n∑
i,j=1

x̄irxjsfij(vij) =

n∑
i,j=1

m∑
r,s=1

x̄irxjsfij(vij) = [

m∑
r,s=1

x̄irxjsvrs]i,j · [fij ] = (Xt)∗vXt · F

where Xt denotes the transpose of X . Since V is matrix ordered we have that:
A∗(Mn(V )+)A ⊆ (Mm(V )+) for any complex n×m matrix A so in our case:
(Xt)∗vXt ∈Mn(V )+. Since F ∈Mn(V

δ)+ it follows that ((Xt)∗vXt) · F ≥ 0.
We proved that when F ∈Mn(V

δ)+, then X∗FX takes any positive element of
Mm(V ) to [0,+∞). Consequently X∗FX ∈Mm(V δ)+, so

X∗Mn(V
δ)+X ⊆Mm(V δ)+.

which proves that condition (3) is satisfied.

If V is a matrix ordered space with a matrix order unit, then we will call the matrix
ordered space (V δ, {(Mn(V )δ)+}∞n=1 the matrix ordered dual of V .

If V andW are vector spaces with duals V δ andW δ respectively, then each weakly
continuous linear map φ : V → W induces the adjoint map φδ : W δ → V δ via the
formula:

φδ(f)[v] := f(φ(v)), for every f ∈W δ and v ∈ V
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Lemma 1.14 The map δ : Bσ(V,W )→ Bσ(W
δ, V δ) : φ→ φδ is a linear surjective

isomorphism.

Proof: It is clearly linear and injective.

Surjective: Let ψ ∈Bσ(W δ, V δ), that is ψ :W δ→ V δ linear and weakly continuous.
For v ∈ V consider the functional αv : W δ → C with αv(f) = ψ(f)[v]. Then αv is
weakly continuous, so αv ∈ Bσ(W δ,C) :=W δδ (=W ).

From this fact we obtain that there existsw ∈W such that αv(f) = f(w), for every
f ∈W δ . We set φ(v) = w then φ : V → W is well defined (since the dual separates
the points of the space). Now f(φ(v)) = f(w) for every f ∈W δ , therefore φδ(f)[v]
= ψ(f)[v]. Hence φδ = ψ.

Remark: For every φ ∈ Bσ(V,W ) we have that:

(φn)δ = (φδ)n and (φ∗)δ = (φδ)∗.

If the above Remark is true, then it follows that in the case in which V ,W are matrix
ordered *-vector spaces we have that a linear map φ : V →W is completely positive
if and only if φδ :W δ → V δ is completely positive.

Indeed, let n ≥ 1, [vij ] ∈Mn(V ) and [fij ] ∈Mn(W
δ)+. Then

(φδ)n([fij ]) · [vij ] = (φn)δ([fij ]) · [vij ] = [fij ] · φn[(vij)] ≥ 0

whenever [vij ] is positive, since φ is completely positive.
Therefore, we conclude that indeed φδ is CP.

Conversely, if φδ : V δ →W δ is CP since (V δ)δ = V and (W δ)δ = W we have
that (φδ)δ = φ and using the above argument we have that φ = (φδ)δ is completely
positive.

We conclude that the map δ in Lemma 1.14 is an order isomorphism, where the posi-
tive cone ofBσ(V,W ) is the space of all completely positive weakly continuous linear
maps from V toW .

Proof of the Remark: If φ ∈ Bσ(V,W ) then (φδ)n is a map fromMn(W
δ) toMn(V

δ).
Let [fij ] ∈Mn(W

δ) and [vij ] ∈Mn(V ). Then,

(
(φδ)n([fij ])

)
([vij ]) = [φδ(fij)] · [vij ] =

n∑
i,j=1

fij(φ(vij))

= [fij ] · [φ(vij)] = [fij ] · (φn([vij ]))

=
(
(φn)δ([fij ])

)
([vij ])

The other part follows from the way we defined the dual map and the ∗-operation.

Let V , V δ be matrix ordered *-vector spaces in duality. Given v = [vij ] ∈Mn(V ) we
define Ψ(v) : V δ →Mn by: Ψ(v)[f ] = [f(vij)].
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We will show that Ψ(v) = Φ(v)δ where Φ is the map defined in Lemma 1.12.

Indeed, let f ∈ V δ and A = [αij ] ∈Mn then,

f(Φ(v)[A]) = f(

n∑
i,j=1

αijvij)

=

n∑
i,j=1

αijf(vij)

= [αij ] · [f(vij)]
= A ·Ψ(v)[f ]

Now the following hold true:

1. Φ :Mn(V )→ Bσ(Mn, V ) and δ : Bσ(Mn, V )→ Bσ(V
δ,Mn), both of which

are order isomorphisms.

2. Ψ : Mn(V ) → Bσ(V
δ,Mn), and Ψ = δ ◦ Φ. Since it is a composition of

surjective linear order isomorphisms Ψ too is an order isomorphism.

So we obtain:

Lemma 1.15 If V is a matrix ordered *- vector space with an order unit and V δ is its
matrix ordered dual, then the mapΨ :Mn(V )→Bσ(V

δ,Mn) is an order isomorphism.

1.4 Archimedeanization of a matrix ordered *-vector space with a
matrix order unit

Given an ordered *-vector space (V, V +, e) there exists a process, introduced in [16],
called Archimedeanization that allows us to obtain an Archimedean ordered *-vector
space. In [18] it was shown that if (V, {Cn}∞n=1, e) is a matrix ordered *- vector space
then by applying the Archimedeanization process to each level (Mn(V ), Cn, en) we
obtain an Archimedean matrix ordered *-vector. space. In this subsection we will
review the procedures described above. For more information on this subject the
reader is instructed to see [18].

Firstly, we will consider real vector spaces. Suppose that (V, V +) is a matrix ordered
real vector space with an order unit e. Let

D := {v ∈ V : re+ v ∈ V +, ∀r > 0}

and set
N := D ∩ (−D)

It is easy to see that D is a cone with V + ⊆ D and that N is a real subspace of V .
The following proposition proven in [16] gives us another useful characterization of
N .
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Proposition 1.16 [16, Proposition 2.34.] Let (V, V +) be an ordered real vector space
with an order unit e and define N as above. Then,

N =
⋂

f∈S(V )

ker f

Theorem 1.17 Let (V, V +) be an ordered real vector space with an order unit e, and
define N and D as in the paragraph at the start of this subsection. Set

(V /N)+ := D +N = {d+N : d ∈ D}

Then (V /N, (V /N)+) is an ordered vector space with e+N as an Archimedean order
unit.

Proof: The fact that (V /N)+ is a cone follows readily from the fact that D is a cone.
Next we show that it is a proper cone, let v + N ∈ (V /N)+

⋂
−(V /N)+ we shall

show that v +N = 0 +N .
We have that v + N = d + N and v + N = −d′ + N for some d, d′ ∈ D. Thus,
we obtain that v − d ∈ N ⊆ D and v + d′ ∈ N ⊆ −D. However, D is a cone
and d, d′ ∈ D it follows that v ∈ D and v ∈ −D, i.e., v ∈ D

⋂
(−D) := N so

v +N = 0 +N .

e + N is an order unit: Since e is an order unit for (V, V +) there exists r > 0 such
that re+ v ∈ V + for any v ∈ V . Let v+N ∈ V /N then there exists r > 0 such that
r(e+N) + (v +N) = (re+ v) +N ∈ V + +N ⊆ D +N = (V /N)+.

e+N is an Archimedean order unit: Assume that v+N ∈ V /N with r(e+N)+(v+
N) ∈ (V /N)+, ∀r > 0. Then, (re+ v) +N ∈ D+N and re+ v ∈ D for all r > 0.
Choose r′ > 0, then r′

2 e+ v ∈ D. By the definition ofD we have that r
′

2 e+ v ∈ V +

so r′

2 e+ ( r
′

2 e+ v) ∈ V +. It follows that r′e+ v ∈ V + for all r′ > 0. Once again by
the definition of D we have that v ∈ D. Therefore, v +N ∈ D +N = (V /N)+.
The proof is now complete.

Definition 1.18 Let (V, V +) be an ordered real vector space with an order unit e. Let

D := {v ∈ V : re+ v ∈ V +, ∀r > 0}

and set
N := D ∩ (−D)

We define VArch to be the Archimedean ordered vector space (V /N, (V /N)+, e+N).
We call VArch the Archimedeanization of V .

We now turn our attention towards *-vector spaces.
Let (V, V +) be an ordered *-vector space with order unit e ∈ Vh.
For u, v ∈ Vh we define: [u, v] = {x ∈ Vh : u ≤ x ≤ v}. Consider the set

E := [−e, e] = {v ∈ Vh : −e ≤ v ≤ e}

and the Minkowski functional of that set which is:
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pE : E → R, pE(x) := inf{λ > 0 : x ∈ λE}, x ∈ Vh.
This defines a semi norm on Vh.

Moreover, notice that e is an Archimedean order unit if and only if pE is a norm
on Vh.

Remark: Let (V, V +) be an ordered *-vector space with order unit e and (W,W+) be
an ordered *-vector space. Ifϕ : V →W is a positive linear map, thenϕ(v∗) = ϕ(v)∗

for every v ∈ V .

Proof : Since e is an order unit we have that Vh = V + − V + and ϕ is positive so
ϕ(Vh) ⊆ Wh. Let v ∈ V then v can be written as v = x + iy where x, y are in Vh,
thus

ϕ(v∗) = ϕ(x− iy) = ϕ(x)− iϕ(y) = (ϕ(x) + iϕ(y))∗ = ϕ(x+ iy)∗ = ϕ(v)∗

Using the above remark one can see that if (V, V +) is an ordered *-vector space with
an order unit and f : V → C is a positive C-linear functional then f(v)∗ = f(v) for
every v ∈ V .

Definition 1.19 Let (V, V +) be an ordered *-vector space and f : Vh → R linear map,
then we define f̃ : V → C by f̃(v) := f(Re(v)) + if(Im(v)).

The proofs of the following propositions can be found in [16]

Proposition 1.20 Let (V, V +) be an ordered *-vector space. If f : Vh → R is R-linear,
then f̃ : V → C is C-linear. Moreover, f is positive if and only if f̃ is positive and f is
state if and only if f̃ is a state.

Proposition 1.21 Let (V, V +) be an ordered *-vector space with an order unit e.
If f : V → C is C linear then f is positive if and only if: f = g̃ for some linear and
positive map g : Vh → R.

Lemma 1.22 Let (V, V +) be a ordered ∗-vector space with order unit e.
Given u ∈ Vh, let

α := sup{r ∈ R : re ≤ u} and β := inf{s ∈ R : u ≤ se}

Then,

(a) [α, β] = {f(u) : f ∈ S(V )} .

(b) pE(u) = max{|α|, |β|} = sup{|f(u)| : f ∈ S(V )}.

Proof: We shall show that f(u) ∈ [α, β] for every state f : V → C. If re ≤ u ≤ se
then α ≤ r ≤ s ≤ β, hence

α ≤ r = rf(e) ≤ f(u) ≤ sf(e) = s ≤ β

Therefore, {f(u) : f ∈ S(V )} ⊆ [α, β].
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For the reverse containment, we will show that for every γ ∈ [α, β] there exist a state
fγ : V → C such that fγ(u) = γ. Consider the following R-linear subspace of Vh:

W := {re+ tu : r, t ∈ R}

and the R-linear functional

gγ :W → R : re+ tu→ r + tγ

Notice that gγ(u) = γ and gγ(e) = 1. We claim that gγ is positive.
Indeed, suppose that re+ tu ∈ V +. It is obvious that gγ(re+ tu) ≥ 0 for t = 0.

For t > 0 the relation re+ tu ≥ 0 gives − rt e ≤ u and so − rt ≤ α ≤ γ which means
that r + tγ ≥ 0. Similarly when t < 0 we have that − rt ≥ u and hence − rt ≥ β ≥ γ
so once again r + tγ ≥ 0.
Now we use the usual Zorn’s Lemma argument for the family of all pairs of (W̃ , g̃)
where W̃ are sub-spaces of Vh containing W and g̃ are positive linear functionals
form W̃ to R extending g, this allows us to extend gγ to a positive linear form on the
whole of Vh, whichwewill call g′. This extensionwill satisfy g′(e) = 1 and g′(u) = γ.
Now define fγ : V → C by fγ = g̃′ this proves part (a).

For part (b) notice that if −re ≤ u ≤ re then r must be non-negative.
Furthermore, in this case we have that:

−r ≥ α and r ≥ β and so r > max{|α|, |β|}

Consequently, pE(u) ≥ max{|α|, |β|}.
On the other hand, if t > max{|α|, |β|} then −t < α and t > β. Thus, −te ≤

u ≤ te and therefore pE(u) ≤ t. Since t was arbitrary we obtain that pE(u) ≤
max{|α|, |β|}. We conclude that

pE(u) = max{|α|, |β|} (a)
= sup{|f(u)| : f ∈ S(V )}

and the proof is complete.

Proposition 1.23 Let Let (V, V +) be an ordered *-vector space with an order unit e.
Then e is an Archimedean order unit if and only if for every v ∈ V the following holds:

f(v) = 0, for every f ∈ S(V) ⇐⇒ v = 0

Proof: Let E := [−e, e] and pE : Vh → R be the Minkowski functional of E. The
states separate the points of V so they separate the points of Vh. Thus from the equal-
ity: pE(v) = max{|α|, |β|} = sup{|f(v)| : f ∈ S(V )}, for every v in Vh, we have
that pE is a norm on Vh and so e is an Archimedean order unit.

Conversely, if e is an Archimedean order unit and for a v ∈ V we have that f(v) =
0, ∀ f ∈ S(V). Then f(Re(v)) = f(Im(v)) = 0, for all f ∈ S(V). Hence from Lemma
1.22 : pE(Re(v)) = pE(Im(v)) = 0 which implies that Im(v) = Re(v) = 0.
Thus, v = 0.
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Proposition 1.24 Let (V, V +, e) be an Archimedean ordered ∗-vector space. Then for
an element v ∈ V we have that:

v ∈ V + ⇐⇒ f(v) ≥ 0, for every state f : V → C

Proof: If v ∈ V + then clearly f(v) ≥ 0.
Conversely, if f(v) ≥ 0 for every state f then f(v) ∈ R so f(v∗) = f(v)∗ = f(v).

Hence, since v − v∗ ∈ Vh this element is annihilated by every state and thus by
Proposition 1.23 we have that v − v∗ = 0, i.e., v ∈ Vh. Using Lemma 2.3 we see
that there exists a state fα such that fα(v) = sup{r ∈ R : re ≤ v}. Now from our
hypothesis fα(v) ≥ 0, and so sup{r ∈ R : re ≤ v} ≥ 0. It follows that for every
r < 0: re ≤ v or equivalently that v + (−r)e ∈ V +. Since e is Archimedean and
−r > 0 we have that v ∈ V +.

Let (V, V +) be an ordered *-vector space with order unit e, then we can produce an
Archimedean ordered *-vector space in the following way: We define the sets

D := {v ∈ Vh : re+ v ≥ 0 for every r ∈ R+} and NR = D ∩ (−D)

Then NR is a real subspace of Vh and by Proposition 1.16 we have that:
NR =

⋂
f :Vh→R,fstate ker(f). Now we define

N :=
⋂
{ker(f) : f ∈ S(V)}

It follows from Proposition 1.21 that N = NR ⊕ iNR.
Moreover, N is a complex subspace of V closed under the *-operation (of V ), so the
quotient V /N with the well defined *-operation: (v∗ + N) = v∗ + N is a *-vector
space and

(V /N)h = {v +N : v ∈ Vh}

(if v +N ∈ (V /N)h then v +N = v∗ +N and so v = v+v∗

2 +N ∈ Vh/N ).
We define (V /N)+ = {v +N : v ∈ D} and VArch := (V /N, (V /N)+, e+N).
We claim that the spaces ((V /N)h, (V /N)+) and (Vh/NR, D + NR) are order iso-
morphic via the map v +N → v +NR.

Indeed, it is straightforward to see that this map is an isomorphism between vector
spaces. Moreover, if v + N ∈ (V /N)+ then v ∈ D and so v + NR ∈ D + NR.
Conversely, if v +NR ∈ D +NR then v ∈ D and so v +N ∈ (V /N)+.

Now by Theorem 1.17 we have that the space VArch is an Archimedean ordered
*-vector space. We call VArch the Archimedeanization of the *-vector space V .

Lemma 1.25 Let (V, {Cn}∞n=1) be a matrix ordered *-vector space with matrix order
unit e and N as described above. For each n ∈ N, we define

Nn :=
⋂
{ker(f) : f ∈ S(Mn(V ))}

Then Nn =Mn(N), for every n ∈ N.
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Proof: Let n ∈ N and A = [αkl] ∈ Nn then f(A) = 0 for every f ∈ S(Mn(V )) by
the definition of Nn, which implies that g(A) = 0 for every positive linear functional
g : Mn(V ) → C. If s ∈ S(V) and P = [pij ] ∈ M+

n then the map sP : Mn(V ) →
C given by sP ([xij ]) :=

∑n
i,j=1 s(pijxij) is a linear functional onMn(V ). We will

show that sp is positive.
LetP be a rank one positive matrix inMn thenP = u∗u for some u ∈M1,n (P has

only one non zero eigenvalue λ, take an eigenvector u with ∥u∥ =
√
λ). Since {Cn}

is a matrix ordering we have that u∗Xu ∈ C1 for any X = [xij ] ∈ Cn. Therefore,

sP ([xij ]) =

n∑
i,j=1

s(pijxij) =

n∑
i,j=1

uixij ūj = s(u∗Xu) ≥ 0 (∗)

Every positive matrix has a decomposition into a sum of rank-one matrices so if we
take P to be any arbitrary positive n×n-complex matrix of rank r, then we have that
P =

∑r
i u

∗
i ui, so from (∗) and the linearity of sP it follows that sP (X) ≥ 0, for all

P ∈M+
n , X ∈ Cn.

It follows that sP (A) =
∑
i,j=1 s(αijpij) = 0 for any s ∈ S(V) and any matrix

P ∈M+
n . If we choose 1 ≤ k ≤ n and let D be the diagonal n × n matrix with 1 in

the (k, k) entry and zeroes elsewhere, then D ∈M+
n so we have that sD(A) = 0 for

every state s ∈ S(V). Hence,

s(αkk) = 0, for every s ∈ S(V) (I)

Now choose 1 ≤ k, l ≤ n and let u ∈ M1,n be the row vector with entry 1 in the
k-th and l-th positions and 0 elsewhere and set P := u∗u then P ∈M+

n . Since P has
entries: 1 in the (k, k), (k, l), (l, k), and (l, l) positions and 0 elsewhere, we have that
sP (A) = s(αkk)+s(αKl)+s(αlk)+s(αll) = 0. Combining this with (I) we see that

s(αkl) + s(αlk) = 0 (II)

Similarly if let b ∈ M1,n be the vector with 1 in the k-th position, and i in the l-
th position, and zeroes elsewhere. Then Q := b∗b ∈ M+

n and has 1 in (k, k) and
(l, l) entries, i in the (k, l) entry, −i in the (l, k) entry, and zeroes elsewhere. Then,
sQ(A) = 0 so s(αkk) + s(αll) + is(αkl)− is(αkl) = 0. Thus by (II) we have that:

is(αkl)− is(αkl) = 0⇒ −s(αkl) + s(αkl) = 0 (III)

It follows from (II) and (III) that for any l, k ∈ {1, . . . , n} and any s ∈S(V) : s(αk,l) =
0. Therefore αkl ∈ N i.e., A ∈Mn(N).

Conversely, we assume thatA = [αkl] ∈Mn(N) and s :Mn(V )→ C is a state on
Mn(V ). For 1 ≤ k, l ≤ n we define skl : V → C via: skl(v) := s(Ek,l ⊗ v).

The sk,l are linear functionals and for every s ∈ S(V), s(A) =
∑n
k,l=1 skl(αkl).

Choose k in {1,…,n}, then for any v ∈ C1 = V + the diagonal matrixDv with v in the
(k, k) - entry and 0 elsewhere is positive because:

diag(0, . . . , 0, v, 0, . . . , 0) = diag(0, . . . , 0, 1, 0, . . . , 0)∗·v·diag(0, . . . , 0, 1, 0, . . . , 0)
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which is in Cn. Hence, skk(v) = s(Dv) ≥ 0. Thus skk : V → C is a positive linear
functional, therefore

skk(x) = 0, ∀x ∈ N (a)
Let v ∈ V + = C1 and 1 ≤ k, l ≤ n. We consider the matrix P ∈Mn(V ) which has
v in the (k, k), (k, l), (l, k), (l, l) - entries and 0 elsewhere, then P ∈ Cn and we have
that skk(v) + skl(V ) + slk(v) + sll(v) = s(P ) ≥ 0.
Thus skk+skl+slk+sll : V →C is a positive linear functional, so skk(x)+skl(x)+
slk(x) + sll(x) = 0 for all x in N . Using (a) we obtain:

skl(x) + slk(x) = 0, ∀x ∈ N (b)

In a similar fashion if we set Q ∈Mn(V ) to be the matrix with v in the (k, k), (l, l) -
entries, iv in the (k, l) - entry and−iv in the (l, k) - entry thenQ ∈ Cn. We have that
skk(v)+ iskl(V )− islk(v)+sll(v) = s(P )≥ 0. Thus skk+ iskl− islk+sll : V → C
is a positive linear functional. As a result, skk(x)+ iskl(x)− islk(x)+ sll(x) = 0 for
all x in N , by (a) we have:

iskl(x)− islk(x) = 0, ∀x ∈ N ⇒ −skl(x) + slk(x) = 0, ∀x ∈ N (c)

It follows from (b) and (c) that skl(x) = 0 for all x inN . Consequently, sinceA = [αij ]
∈Mn(N) we have that s(A) =

∑n
k,l=1 skl(αkl) = 0, so A ∈ Nn.

Let V be a matrix ordered *-vector space with an order unit e and N the *-subspace
of V we defined before. IdentifyingMn(V /N) =Mn(V )/Mn(N) we see that (A +
Mn(N))∗ = A∗ +Mn(N) and (Mn(V )/Mn(N))h = {A+Mn(N) : A∗ = A, A ∈
Mn(V )}. Moreover, (e+N)n = en +Mn(N).

Definition 1.26 Let (V, {Cn}∞n=1, e) be a matrix ordered *-vector space with matrix
order unit e. We set:

CArchn := {A+Mn(N) ∈Mn(V )/Mn(N) :(ren +A) +Mn(N) ∈ Cn +Mn(N),

∀r > 0}

and let,
V Archn := (V /N, {CArchn }∞n=1, e+N) .

Proposition 1.27 Let (V, {Cn}∞n=1, e) be a matrix ordered *-vector space with matrix
order unit e. Then VArch := (V /N, {CArchn }∞n=1, e + N) is an Archimedean matrix
ordered *-vector space with e+N being the Archimedean matrix order unit.

Proof: Under the identificationMn(V /N) =Mn(V )/Mn(N) and using Lemma 1.25
we see that for any n ∈ N:

(Mn(V /N), CArchn , e+Mn(N)) = (Mn(V )/Nn, C
Arch
n , e+Nn)

Hence, (Mn(V /N), CArchn , e+Mn(N)) is the Archimedeanization of
(Mn(V ), Cn, en).
The Archimedeanization is always an AOU space so CArchn is a proper cone and
en +Mn(N) is an Archimedean order unit.
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It remains to show the compatibility of the family {CArchn }∞n=1. Let A ∈ CArchn and
X ∈ Mn,m. Then X∗enX ∈ Mm(V ) and e is a matrix order unit, so there exists
some r0 > 0 such that r0em − X∗enX ∈ Cm. Since A ∈ CArchn we have that
(ren +A) +Mn(N) ∈ Cn +Mn(N), for all r > 0. Thus for all r > 0:

(
r

r0
en +A) +Mn(N) ∈ Cn +Mn(N)

We also have that X∗CnX ⊆ Cm and X∗Mn(N)X ⊆Mm(N).
Combining the above facts we obtain:

X∗(
r

r0
en +A)X +Mm(N) ∈ Cm +Mm(N)

or equivalently

(
r

r0
X∗enX +X∗AX) +Mm(N) ∈ Cm +Mm(N)

Now the element B := rem − r
r0
X∗enX = r

r0
(r0em −X∗enX) ∈ Cm

So B + ( rr0X
∗enX + X∗AX) +Mm(N) ∈ Cm +Mm(N), i.e.,

(rem +X∗AX) +Mm(N) ∈ Cm +Mm(N)

The above relation holds for all r > 0 so we have that X∗AX + Mm(N) ∈ CArchm .
ConsequentlyX∗CArchn X ⊆ CArchm , thus {CArchn }∞n=1 is indeed a compatible family.

Remark: In particular we are interested in the case when (V, {Cn}∞n=1, e) is a matrix
ordered *-vector space with matrix order unit e and (V,C1, e) is an Archimedean
ordered *-vector space. Since e is an Archimedean order unit for (V,C1 := V +) we
have from the above proposition that,

N :=
⋂
{ker(f) : f ∈ S(V)} = {0}

Thus, in this case: V /N = V and CArch1 = C1.

In addition, since N = {0}, for n ≥ 2 we have that:

CArchn = {A ∈Mn(V ) : ren +A ∈ Cn, ∀r > 0}

We conclude that in this case CArchn is obtained by enlarging Cn.
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1.5 Operator Systems

An abstract operator system is a triple (V, {Cn}∞n=1, e)whereV is a complex *-vector
space, {Cn}∞n=1 is a matrix ordering on V and e ∈ Vh is an Archimedean matrix order
unit.

Definition 1.28 A (concrete) operator system S is a subspace of B(H) such that the
identity operator I ∈ S and if s ∈ S , then s∗ ∈ S .

If S ⊆ B(H) is a concrete operator system then it is a *-vector space with respect to
the adjoint operation of B(H) and it inherits an order structure form B(H) that is,

Sh = S ∩B(H)h and S+ = S ∩B(H)+

Furthermore, S ⊆ B(H), soMn(S) ⊆Mn(B(H)) = B(Hn), henceMn(S) inherits
an involution and order structure from B(Hn) and has the diagonal n × n matrix
diag(I, .., I) as an Archimedean order unit.
Thus we may regard (S,Mn(S)+ = Mn(S) ∩ B(Hn)+, e) as an abstract operator
system.

The converse is also true as shown by the following theorem of Choi and Efrros
(see [4]):

Theorem 1.29 If (V, {Cn}∞n=1, e) is an Archimedean matrix ordered *-vector space,
then there exist a Hilbert space H , an operator system S ⊆ B(H) and a unital com-
plete order isomorphism Φ : V → S .

Using the above theoremwemay identify abstract and concrete operator systems and
refer to them as operator systems.
We will denote the order unit of an operator system S as e and will use the symbol
Mn(S)+ for the cone of positive elements ofMn(S), n ∈ N. Notice that any unital
C∗-algebra is also an operator system in a canonical way.

If S is an operator system then any unital and self-adjoint subspace S0 of S with
the induced matrix order structure is again an operator system. We say that S0 is an
operator subsystem of S . Observe that in this case the inclusion S0 ↪−→ S is a unital
complete order embedding.

Every matrix ordered space with an Archimedean order unit may be equipped with a
norm:

Proposition 1.30 [15, Proposition 13.3] Let (V, {Cn}∞n=1, e) be an Archimedean matrix
ordered space, for every v ∈Mn(V ) set

∥v∥n = inf{r ∈ R :

[
ren v
v∗ ren

]
∈ C2n}

Then ∥ · ∥n is a norm on Mn(V ). Moreover, with respect to this norm Cn is a closed
subspace ofMn(V ), for every n ∈ N.
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Proof: We will prove the case n = 1. The other cases can be proven in a similar
fashion.
Positive definiteness: Let

[
re v
v∗ re

]
∈ C2 and set X =

[
1 0
0 −1

]
∈M2. Then,

[
re −v
−v∗ re

]
= X∗

[
re v
v∗ re

]
X ∈ C2 ({Cn}∞n=1 is compatible)

Therefore,

2rdiag(e, e) =

[
re v
v∗ re

]
+

[
re −
−v∗ re

]
∈ C2 (C2 is a cone)

Since C2 is a proper cone and diag(e, e) ∈ C2 it follows that r ≥ 0.
Thus, ∥v∥1 ≥ 0 for every v ∈ V .
Furthermore, if ∥v∥1 = 0, then from the compatibility of the family {Cn}∞n=1 we have
that for every t ∈ C:

C1 ∋
(
1 t

) [re v
v∗ re

](
1
t

)
= re+ tv∗ + tv + ttre

= r(1 + |t2|)e+ (tv)∗ + tv︸ ︷︷ ︸
Vh

Since e is an Archimedean order unit we obtain that (tv)∗ + tv ∈ C1, ∀t ∈ C. Now
setting t = 1,−1 gives v+ v∗ = 0 while setting t = i,−i gives (iv)∗ + iv = 0. Thus,
v = 0. It is straightforward to see that when v = 0 then ∥v∥1 = 0.
Homogeneity: Let λ ̸= 0 and notice that[√

λ 0

0
√
(λ)

] [
re v
v∗ re

] [√
(λ) 0

0
√
λ

]
=

[
|λ|re λv

λv∗ |λ|re

]
Therefore, [

re v
v∗ re

]
∈ C2 if and only if

[
|λ|re λv

λv∗ |λ|re

]
∈ C2 (I)

(because {Cn}∞n=1 is compatible).
Thus,

∥λv∥1 = inf{r ∈ R :

[
re λv

(λv)∗ re

]
∈ C2}

= inf{r ∈ R :

[
|λ|−1re v
v∗ |λ|−1re

]
∈ C2} from (I)

= inf{|λ|r′ ∈ R :

[
r′e v
v∗ r′e

]
∈ C2} (r′ = |λ|−1r)

= |λ|∥v∥1
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∥v∥1 = ∥v∗∥1: It follows from the compatibility of C2 and the fact that for

A =

[
0 1
1 0

]
: A∗

[
re v
v∗ re

]
A =

[
re v∗

v re

]

Triangle inequality: Let v1, v2 ∈ V and consider r1 ∈ {r ∈ R :

[
re v1
v∗1 re

]
∈ C2} and

r2 ∈ {r ∈ R :

[
re v2
v∗2 re

]
∈ C2}.

Then, r1 + r2 ∈ {r ∈ R :

[
re v1 + v2

(v1 + v2)
∗ re

]
∈ C2} and so

inf{r ∈ R :

[
re v1 + v2

(v1 + v2)
∗ re

]
∈ C2} ≤ r1 + r2, for all such r1, r2

It follows that:

∥v1 + v2∥1 = inf{r ∈ R :

[
re λv1 + v2

(v1 + v2)
∗ re

]
∈ C2}

≤ inf{r ∈ R :

[
re v1
v∗1 re

]
∈ C2}+ inf{r ∈ R :

[
re v2
v∗2 re

]
∈ C2}

= ∥v1∥1 + ∥v2∥1

For the second part, let (vn)n be a sequence of elements of C1 with vn
∥·∥1−→ v. We

shall show that v ∈ C1. SinceC1 ⊆ Vh we have that vn = v∗n, ∀n ∈ Nwhich implies
that v = v∗. Given any r > 0 we can find some n1 ∈ N such that ∥xn1 − x∥1 < r.
Now from the definition of the norm ∥ · ∥1 we have that[

re v − vn1

v − vn1
re

]
∈ C2

Set X =

[
1
1

]
, then

2re+ 2v − 2vn1
= X∗

[
re v − vn1

v − vn1
re

]
X ∈ C1

Since vn1
∈ C1 and C1 is a cone, it follows that re + v ∈ C1 and in turn since e is

Archimedean it follows that v ∈ C1. The proof is now complete.

Remark: Using Lemma 1.3 we can see that if S is an operator system then
Sh = S+ − S+. For another way to see this observe that any s ∈ Sh can be written
as

s =
eS∥s∥1 + s

2
− eS∥s∥1 − s

2
(eS denotes the unit of S)

It is straightforward to generalize this result forMn(S).
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Given operator systems S and T we will use the notations CP(S, T ) and
UCP(S, T ) for the cones of all completely positive maps and unital and completely
positive maps from S to T respectively.

The following theorems will be used frequently throughout this paper, their proofs
can be found in ([15, Theorem’s 7.5., 3.9., 3.11.]):

Theorem 1.31 (Arveson’s extension theorem).Let A be a C∗-algebra, S ⊆ A an
operator system and ϕ : S → C a a completely positive map. Then there exists a
completely positive map ϕ̃ : A → C which extends ϕ.

Theorem 1.32 Let ϕ : A → B be a linear map between unital C∗-algebras.
If A or B is commutative then ϕ is positive if and only if it is completely positive. This
statement remains true in the case in which A is an operator system and B is a commu-
tative unital C∗-algebra.

Lemma 1.33 Let (V, {Cn}∞n=1, e) be a matrix ordered *-vector space with matrix order
unit e and such that (V,C1, e) is an AOU space. Suppose that T is an operator system
and ϕ : V → T is a linear map. Then,

ϕn(CArchn ) ⊆Mn(T )+ if and only if ϕn(Cn) ⊆Mn(T )+, for each n ∈ N

Proof: Since Cn ⊆ CArchn for each n ∈ N when ϕn(CArchn ) ⊆Mn(T )+ we have that
ϕn(Cn) ⊆Mn(T )+.

On the other hand, let D ∈ CArchn then D + ren ∈ Cn, ∀r > 0 and we have
that ϕn(D + ren) ∈ ϕn(Cn) ⊆ Mn(T )+, ∀r > 0. Since ϕ is linear andMn(T )+ is
closed:

ϕn(D) + rϕn(en) ∈Mn(T )+, ∀r > 0

and by letting r → 0 we obtain, ϕn(D) ∈Mn(T )+.

Lemma 1.34 Let S, T be operator systems with underlying vector space V .
If UCP(S, B(H)) = UCP(T , B(H)), for every Hilbert space H , then S is completely
order isomorphic to T .

Proof: Suppose that S ⊆ B(H1) for some Hilbert space H1 as a concrete operator
system. The identity map id1 : S → B(H1) is a unital completely positive map so by
our hypothesis it will be unital and completely positive when consider as a map from
T to B(H1) and thusMn(T )+ ⊆Mn(S)+.

Reversing the roles of S and T in the above argument we can see thatMn(S)+ ⊆
Mn(T )+. Consequently, we have thatMn(S)+ =Mn(T )+. The requested complete
order isomorphism will be the identity map on V .

The following Lemma will be instrumental in proving many a result in the chapters
that follow.

Lemma 1.35 Let S be an operator system. Then for a P ∈Mn(S) we have that:
P ∈Mn(S)

+ ⇐⇒ φn(P ) ∈M+
nk, ∀φ ∈ UCP(S,Mk) , ∀ k ≥ 1
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Proof: Assume that S ⊆ B(H) for some Hilbert space H and that for P = [pij ] ∈
Mn(S)

+, φn(P ) ∈ M+
nk, for all φ ∈ UCP(S,Mk), k ∈ N. Let h = (h1, . . . , hn)

t ∈
Hn (where t denotes the transpose andHn the direct sum of n - copies ofH) and let
ψ : S →Mn be the map given by ψ(s) = [(shj , hi)]i,j , s ∈ S .

Then ψ is completely positive:

Let [spq]lp,q=1 ∈Ml(S)
+ and consider the following elements ofMn,

Ypq := [(spqhj , hi)]i,j

If we show that the matrix Y := [Ypq] = [ψ([spq])] ∈ Ml(Mn) is positive we are
done.

Let λr =


λr1
λr2
...
λrn

 ∈ Cn, for r ∈ {1, . . . , l}, then setting λ̃ =


λ1
λ2
...
λl

 ∈ Cln,

h̃r =
∑n
i=1 λrihi and h̃ =


h̃1
h̃2
...
h̃l

 we have that:

(
Y λ̃, λ̃

)
=

l∑
p,q=1

(Ypqλq, λp) =

l∑
p,q=1

n∑
i,j

((spqhj , hi)λqj , λpi)

=

l∑
p,q=1

n∑
i,j

(spqhj , hi)λqjλpi

=

l∑
p,q=1

spq n∑
j=1

λqjhj ,

n∑
i=1

λpihi


=

l∑
p,q=1

(
spqh̃q, h̃p

)
=
(
[spq]h̃, h̃

)
which is ≥ 0 because [spq]lp,q=1 ∈Ml(S)

+.
This proves that ψ is CP. Hence ψn(P ) ≥ 0.
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Now let θ =


e1
e2
...
en

 ∈ Cn2 where {e1, . . . , en} is the standard basis of Cn, then

(Ph, h) =

n∑
i,j

(pijhj , hi) =

n∑
i,j=1

(ψn(pij)ej , ei) = (ψn(P )θ, θ) ≥ 0

so P ∈Mn(B(H))+. Thus P ∈Mn(B(H))+ ∩Mn(S) =Mn(S)+.

The other direction is straightforward.

Lemma 1.36 Let V be an operator system (matrix ordered space with Archimedean order
unit) then both V ⊗Mn andMn(V ) are Archimedean ordered ∗-vector spaces. Further-
more, the ∗-isomorphism π : Mn(V ) → Mn ⊗ V we defined in section 1.1 is now an
order isomorphism.

Proof: Remember that for a [vij ] ∈Mn(V ), π([vij ]) =
∑n
i,j Eij ⊗ vij .

Suppose that π([vij ]) ∈ (Mn ⊗ V )+ we will show that [vij ] ∈Mn(V )+, in order
to achieve this we will appeal to Lemma 1.35.
Let k ∈ N and letΦ : V →Mk be a unital completely positive map, then (idn⊗Φ) ∈
UCP (Mn ⊗ V,Mnk) and

Φn([vij ]) = (idn ⊗ Φ)(

n∑
i,j=1

Eij ⊗ vij) ≥ 0

so by Lemma 1.35 we have that [vij ] ∈Mn(V )+.
For the other part, assume that V ⊆ B(H) for some Hilbert spaceH and consider

π as a map whose domain is B(H), notice that in this case π is a ∗-homomorphism.
Let [vij ] ∈ Mn(V )+ = Mn(V )

⋂
Mn(B(H))+ then [vij ] = [wij ][wij ]

∗ for some
[wij ] ∈Mn(B(H)). Thus,

π([vij ]) = π([wij ][wij ]
∗) = π([wij ])π([wij ]

∗) = π([wij ])π([wij ])
∗ ≥ 0

so the proof is complete.

Let S be an operator system and S∗ denote its Banach space dual. We define a *-
operation on S∗ by: f∗(s) = f(s∗) for every f ∈ S∗. This operation turns S∗ into
a *-vector space and the cone of positive linear functionals defines a partial order on
S∗ (because their image is in C: positive ⇐⇒ completely positive). We declare an
element [fij ] ∈Mn(S

∗) to be positive if and only if the map F : S →Mn given by
F (s) := [fij(s)] is completely positive. From Lemmas 1.15 and 1.14, and the fact that
every operator system is a matrix ordered *- vector space with a unit we have the
following:

The family {Cn}∞n=1 where Cn = {[fij ] ∈Mn(S∗) | F : S →Mn is CP}is a
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matrix ordering on S∗. Wewill write Sd for the arisingmatrix ordered ∗-vector space.
That is,

Sd := (S∗, {Cn}∞n=1)

In the case where S is a finite dimensional operator systems we have a stronger result,
the matrix ordered space Sd is in fact an operator system as shown in Corollary 4.5
of [4].
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2 Tensor Products Of Operator Systems
In this Chapter we review the theory of tensor products in the category of operator
systems as established in [12].

Consider two operator systems (S, e1) and (T , e2), wewish to endow the vector space
tensor product S ⊗ T with a matrix ordering (see Definition 1.5)
{Cn ⊆Mn(S⊗T ) : n ∈ N} such that (S⊗T , {Cn}∞n=1, e1⊗e2)will be an operator
system.

Definition 2.1 Suppose that (S, {Pn}∞n=1, e1) and (T , {Qn}∞n=1, e2) are operator sys-
tems, then an operator system structure on S ⊗ T is a family of cones τ = {Cn}∞n=1,
where Cn ⊆Mn(S ⊗ T ), ∀n, such that:

1. (S ⊗ T , {Cn}∞n=1, e1 ⊗ e2) is an operator system, denoted S ⊗τ T

2. Pn⊗Qm ⊆ Cnm, ∀n,m ∈ N, i.e., if P = [pij ] ∈ Pn andQ = [qkl] ∈ Qm then
P ⊗Q := [pij ⊗ qkl] ∈ Cnm

3. If φ ∈ UCP(S,Mn) and ψ ∈ UCP(T ,Mm) then φ⊗ ψ ∈ UCP(S ⊗ T ,Mnm)

We may write Cn :=Mn(S ⊗ T )+. Suppose that τ1 and τ2 are two operator system
structures we say that τ1 is greater than τ2 if the identity map on S⊗T from S⊗τ1T
to S ⊗τ2 T is completely positive that meansMn(S ⊗τ1 T )+ ⊆Mn(S ⊗τ2 T )+.
In other words the operator system structure with the smaller cones is the bigger one,
this is parallel to the fact that for two norms on a complex vector space the bigger
one is the one with the smaller unit ball. Looking at Proposition 1.30, one can also
see that smaller cones give bigger norms.

Let O denote the category which has operator systems as objects and unital CP
maps as morphisms. By an operator system tensor product we mean a map τ : O×O
→ O, such that τ(S, T ) is an operator system structure on S ⊗ T for every pair of
operator systems S, T . We denote it by S ⊗τ T .

Definition 2.2 We call an operator system tensor product τ :

1. functorial if for any φ ∈ UCP(S1,S2) and ψ ∈ UCP(T1, T2) where Si, i = 1, 2,
and Tj , j = 1, 2, are operator systems we have that φ⊗ψ ∈UCP(S1⊗τ T1,S2⊗τ
T2)

2. associative if for any three operator systems Si, i = 1, 2, 3 the operator system
tensor products (S1⊗τ S2)⊗τ S3 and S1⊗τ (S2⊗τ S3) are canonically completely
order isomorphic.

3. symmetric if for any two operator systems S, T the flip map θ : S⊗T → T ⊗S
extends to a unital complete order isomorphism from S ⊗τ T to T ⊗τ S .

We say that a functorial operator system product ⊗τ is injective if for all operator
systems S1 ⊆ S2 and T1 ⊆ T2 the embedding S1 ⊗τ T1 ⊆ S2 ⊗τ T2 is a complete
order isomorphism onto its range, i.e.,

Mn(S1 ⊗τ T1) ∩Mn(S2 ⊗τ T2)+ =Mn(S1 ⊗τ T1)+, ∀n ∈ N.
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2.1 Minimal Tensor Product

Let (S, e1) and (T , e2) be two operator systems. For each n ∈ N, we set

Cminn = Cminn (S, T ) = {[pij ] ∈Mn(S ⊗ T ) : [(φ⊗ ψ)(pij)] ∈M+
nkm,

∀φ ∈ UCP(S,Mk), ψ ∈ UCP(T ,Mm), ∀k,m ∈ N}

Lemma 2.3 Let S, T be operator systems and P ∈Mn(S)⊗ T . If

(φn⊗ψ)(P ) ≥ 0, ∀φ ∈
∞⋃
m=1

{f : S →Mm : f UCP}, ψ ∈
∞⋃
m=1

{f : T →Mm : f UCP},

then (Φ⊗ ψ)(P ) ≥ 0, ∀Φ ∈
⋃∞
m=1{f :Mn(S)→Mm : f UCP}.

Proof: Fixm ∈ N and ψ ∈ {f : T →Mm : f UCP}.
For every functional ω : Mm → C let gω : Mn(S)⊗ T → Mn(S) be the map given
by gω(X ⊗ y) := ω(ψ(y))X .

If v1, v2 ∈ Cm we let ωv1,v2 : Mm → C be the functional given by ωv1,v2(x) =
(xv1, v2). Let v1, . . . , vr ∈ Cm and k ∈ N, we define the following map:

[Lωvt,vs
]s,t :Mnkm =Mnk ⊗Mm →Mnkr : A→ [Lωvt,vs

(A)]s,t

with [Lωvt,vs
(A1 ⊗A2)]s,t = [A1ωvs,vt(A2)]s,t, and we extend it linearly.

Claim: The map [Lωvt,vs
]s,t is positive.

Indeed, let A ∈ M+
nkm = (Mnk ⊗ Mm)+ then there exist B =

∑
iNi ⊗ Mi ∈

Mnk ⊗Mm such that A = B∗B. Thus for any ξ = (ξ1, . . . , ξr) ∈ (Cnk)r :(
[Lωvt,vs

(A)]s,tξ, ξ
)
=
(
[Lωvt,vs

(B∗B)]s,tξ, ξ
)

=

[Lωvt,vs
(
∑
i,j

N∗
i Nj ⊗M∗

iMj)]s,t)ξ, ξ


=

r∑
s,t=1

Lωvt,vs
(
∑
i,j

N∗
i Nj ⊗M∗

iMj)ξt, ξs


=

r∑
s,t=1

∑
i,j

(ωvt,vs(M
∗
iMj)N

∗
i Njξt, ξs)

=

r∑
s,t=1

∑
i,j

((M∗
iMjvt, vs)N

∗
i Njξt, ξs)

r∑
s,t=1

∑
i,j

(M∗
iMjvt, vs) (N

∗
i Njξt, ξs)

=

r∑
s,t=1

∑
i,j

((N∗
i Nj ⊗M∗

iMj)ξt ⊗ vt, ξs ⊗ vs)

=

r∑
s,t=1

((B∗B)ξt ⊗ vt, ξs ⊗ vs) ≥ 0
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and so the Claim is proved.

Now suppose that (φn ⊗ ψ)(P ) ∈M+
nkm for any UCP map φ : S →Mk , k ∈ N. We

know that the map [Lωvt,vs
]s,t : Mnkm →Mnkr : A→ [Lωvt,vs

(A)]s,t, 1 ≤ s, t ≤ r,
is positive so

[Lωvt,vs
((φn ⊗ ψ)(P ))]s,t ∈M+

nkr

Now we shall show that φnr([gωvt,vs
(P )]s,t) ≥ 0, ∀φ ∈ UCP(S,Mk).

It suffices to verify this on elementary tensors of the form P = X ⊗ y.
For all φ ∈ UCP(S,Mk),

φnr([gωvt,vs
(P )]s,t) = φnr([gωvt,vs

(X ⊗ y)]s,t) = ([φn(ωvt,vs(ψ(y))X)]s,t)

= [ωvt,vs(ψ(y))φ
n(X)]s,t = [Lωvt,vs

(φn(X)⊗ ψ(y))]s,t ≥ 0

Applying Lemma 1.35 we obtain [gωvt,vs
(P )] ∈Mnr(S)+.

Hence, Φr([gωvt,vs
(P )]) ≥ 0, for all Φ ∈ CP(Mn(S),Mk), for every k ∈ N.

Now fix such a Φ then, [Lωvt,vs
((Φ⊗ ψ)(P ))]s,t ≥ 0. Thus if h1, . . . , hr ∈ Ck then,(

(Φ⊗ ψ)(P )(
r∑
t=1

ht ⊗ vt),
r∑
s=1

hs ⊗ vs

)
=

r∑
t,s=1

(Φ(X)ht ⊗ ψ(y)vt, hs ⊗ vs) =
r∑

t,s=1

(Φ(X)ht, hs) (ψ(y)vt, vs) =

r∑
t,s=1

(ωvt,vs(ψ(y))Φ(X)ht, hs) =

r∑
t,s=1

(
Lωvt,vs

((Φ⊗ ψ)(P ))ht, hs
)
=

(
[Lωvt,vs

((Φ⊗ ψ)(P ))]s,t[h1 . . . hr]t, [h1 . . . hr]t
)
≥ 0

It follows that (Φ⊗ ψ)(P ) is indeed positive.

Lemma 2.4 If ψ ∈ UCP(S,Mk) and ψ ∈ UCP(T ,Mm), for operator systems S, T .
Then (φ⊗ ψ)n = φn ⊗ ψ.

Proof: We will prove the result for elementary tensors of the form P = X⊗y, where
X = [xij ] ∈Mn(S) and y ∈ T , then the general case follows by linearity.
Let P be as described above then,

(φn ⊗ ψ)(P ) = φn([xij ])⊗ ψ(y) = φn([xij ])⊗ ψ(y)

and

(φ⊗ ψ)n(P ) = [(φ⊗ ψ)(xij ⊗ y)]i,j = [φ(xij)⊗ ψ(y)]i,j = [φ(xij)]i,j ⊗ ψ(y)

The result follows.

34



Theorem 2.5 Let (S, e1) and (T , e2) be two operator systems, and let iS : S → B(H)
and iT : T → B(K) be embeddings that are complete order isomorphisms onto their
ranges. The family {Cminn }∞n=1 := {Cminn (S, T )} is an operator system structure on
S ⊗ T arising from the embedding iS ⊗ iT : S ⊗ T → B(H ⊗K).

Proof: Let P ∈ Cminn and set Q := (iS ⊗ iT )n(P ).
We will show that Q ∈ B((H ⊗ K)n)+. Assume that Q =

∑m
r=1Xr ⊗ yr , for

Xr ∈ Mn(iS(S)) and yr ∈ iT (T ), 1≤ r ≤ m. Let ξs ∈ Hn and ηs ∈ K for
1 ≤ s ≤ k and set ζ =

∑k
s=1 ξs ⊗ ηs. We define the mappings Φ : Mn(iS(S)) →

Mk by Φ(X) = [(Xξt, ξs)]s,t and ψ : iT (T ) → Mk by ψ(y) = [(yηt, ηs)]s,t. In
a similar way as in the Lemma 1.35 it can be shown that Φ and ψ are completely
positive. Since Q ∈ Cminn (S, T ) we have from the definition of Cminn and Lemma
2.4 that (φn0 ⊗ ψ0)(Q) = (φ0 ⊗ ψ0)

n(Q) ∈ M+
nk2 , ∀φo ∈ UCP(iS(S),Mk) (φ

n
0 :

Mn(iS(S)) → Mk is positive) and ∀ψ0 ∈ UCP(iT (T ),Mk). Now, from Lemma 2.3,
(Φ⊗ ψ)(Q) ∈M+

nk2 .

Let θ =


e1
e2
...
ek

 ∈ Ck2 where {e1, . . . , ek} is the standard basis of Ck .Then,

(Qζ, ζ) =
∑m
r=1

∑k
s,t=1 (Xrξt, ξs) (yηt, ηs) =

∑m
r=1 ((Φ(Xr)⊗ ψ(yr))θ, θ) =

((Φ⊗ ψ)(Q)θ, θ) ≥ 0, because (Φ⊗ ψ)(Q) ∈M+
nk2

Consequently, Q ∈ B((H ⊗K)n)+. Thus if Dn ⊆ Mn(S ⊗ T ) is the cone arising
from the inclusion of iS(S)⊗ iT (T ) into B(H ⊗K), in other words

Dn = {A ∈Mn(S ⊗ T ) : (iS ⊗ iT )n(A) ∈ B((H ⊗K)n)+} =

[(iS ⊗ iT )n]−1(B((H ⊗K)n)+)

then Cminn (S, T ) ⊆ Dn (Remember thatMn(S ⊗ T ) is identified withMn(S) ⊗ T
and (iS ⊗ iT )n = inS ⊗ iT ).

For the inverse inclusion, let φ ∈UCP(S,Mm) andψ ∈UCP(T ,Mk). We identify
S with iS(S) ⊆ B(H) and by applying Arveson’s extensionTheorem, we find a UCP
map φ̃ : B(H) → Mm such that φ̃ ↾S= φ. In the same way we find a UCP map
ψ̃ : B(K) → Mk that extends ψ. Now, the minimal C∗ tensor product ⊗C∗min of
the C∗ algebras B(H), B(K) satisfies the following ([15, Chapter 12])

B(H)⊗C∗min B(K) ⊆ B(H ⊗K)

Furthermore, there exists a UCP map φ̃⊗ ψ̃ : B(H)⊗C∗minB(K)→Mmk . We once
again apply Arveson’s extension theorem and obtain a UCP map Ψ : B(H ⊗K) →
Mmk , with Ψ ↾B(H)⊗C∗minB(K)= φ̃⊗ ψ̃.
Therefore, if A = [αij ] ∈ Dn ⊆ B((H ⊗K)n)+ =Mn(B(H ⊗K))+, then

[(φ⊗ ψ)(αij)] = [(φ̃⊗ ψ̃)(αij)] = [Ψ(αij)] ∈M+
nmk
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Hence, Dn = Cminn (S, T ).
It follows that Cminn (S, T ) is an operator system structure on the vector space

S ⊗ T (see Definition 2.1) with e1 ⊗ e2 as Archimedean matrix order unit.

Definition 2.6 We call the operator system (S ⊗ T , {Cminn (S, T )}∞n=1, e1 ⊗ e2) the
minimal tensor product of S and T and denote it by S ⊗min T .

The next corollary is immediate:

Corollary 2.7 ForA and B unital C∗-algebras denote their C∗-algebraic minimal ten-
sor product as A⊗C∗min B. Then A⊗C∗−min B is completely order isomorphic to the
image of A⊗ B inside A⊗C∗min B.

Theorem 2.8 The operator system tensor product⊗min is functorial, injective , associa-
tive and symmetric. Moreover, if S and T are operator systems then⊗min is the smallest
operator system structure on S ⊗ T . This means that, if τ is any other operator system
structure on S ⊗ T then Cτn ⊆ Cminn , n ≥ 1.

Proof: The fact that ⊗min is functorial and injective follows fromTheorem 2.5. Next,
suppose that S1,S2,S3 are operator system and ij : Sj → B(Hj) is a complete order
embedding which is a complete order isomorphism onto its range, j = 1, 2, 3. From
the associativity of the Hilbert space tensor product we have that (H1⊗H2)⊗H3 =
H1 ⊗ (H2 ⊗H3).

It follows that (S1⊗minS2)⊗minS3 and S1⊗min (S2⊗minS3) are completely order
isomorphic.
The symmetry follows in a similar way.

Lastly, if τ is an operator system structure on S ⊗ T then by property 3 of the
Definition 2.1 we indeed have that Cτn ⊆ Cminn , n ≥ 1.

Lemma 2.9 Let S be an operator system, then

Mn ⊗min S ∼=c.o.i. Mn(S)

Proof: Consider S as an operator subsystem of a unital C∗-algebra A. Since the
minimal operator system tensor product is injective we have that

(Mn ⊗min S)+ =Mn ⊗min S ∩ (Mn ⊗min A)+

For the C∗-algebra A we also have that

Mn ⊗min A ∼=c.o.i. Mn ⊗C∗−min A and Mn ⊗C∗−min A =Mn(A)

It follows that
Mn ⊗min S ∼=c.o.i. Mn(S)

Let V and W be vector spaces (V finite dimensional) then we can identify each
element of the space V ⊗ W with a linear function from V d to W via the map
Lu : V d →W given by Lu(f) =

∑n
i=1 f(si)ti, for u =

∑
i si ⊗ ti ∈ V ⊗W .

36



Proposition 2.10 Let S and T be operator systems and let u = [uij ] ∈ Mn(S ⊗ T ).
The following are equivalent:

1. u = [uij ] ∈Mn(S ⊗min T )+

2. The map Lu : Sd →Mn(T ) : f → [Luij
(f)]i,j , where

[Luij
(f)] = [L∑

β s
ij
β ⊗tijβ

(f)]i,j =

∑
β

f(sijβ )t
ij
β


i,j

is completely positive.

Proof: Using the identificationMn(S ⊗min T ) = S ⊗minMn(T ) it suffices to show
this for n = 1.

Let u =
∑
i si ⊗ ti ∈ (S ⊗min T )+ and let [frs] ∈ Mk(Sd)+ for some k ∈ N,

then map F : S →Mk given by F (v) = [frs(v)], ∀v ∈ S will be CP.

We will show that (Lu)k([frs]) ∈Mk(T )+, to do this we will appeal to Lemma 1.35.

Let φ ∈ UCP(T ,Mm). Then for each 1 ≤ p, q ≤ m there exists a (unique) φpq ∈ T d
such that φ(t) = [φpq(t)], for every t ∈ T . Hence,

φk((Lu)
k([frs])) = [φ ◦ Lu(frs)]r,s = [[φpq ◦ Lu(frs)]p,q]r,s =

[[φpq(
∑
i

frs(si)ti)]p,q]r,s = [[frs(
∑
i

siφpq(ti))]p,q]r,s =

[(frs)
m[
∑
i

siφpq(ti)]p,q]r,s = τ(Fm([
∑
i

siφpq(ti)]p,q))

where τ :Mm ⊗Mk →Mk ⊗Mm is the canonical flip isomorphism.
Now since ⊗min is functorial (see Definition 2.2) and id ∈ UCP(S,S) we have that
id⊗ φ : S ⊗min T →Mm(S) is UCP, and

0 ≤ (id⊗ φ)(u) =
∑
i

id(si)⊗ φ(ti) = [
∑

siφpq(ti)]p,q

Thus, φk((Lu)k([frs]) ≥ 0 and our objective follows from Lemma 1.35.
For the opposite direction, suppose that for u =

∑
ζ sζ ⊗ tζ ∈ S ⊗min T the map

Lu : Sd → T is completely positive. Let φ ∈ UCP(S,Mk) and ψ ∈ UCP(T ,Mm), for
k,m ≥ 1. We will show that (φ⊗ ψ)(u) ∈M+

km. For 1 ≤ i, j ≤ k and 1 ≤ p, q ≤ m
there exist φij ∈ Sd and ψpq ∈ T d such that φ(s) = [φij(s)] and ψ(t) = [ψpq(t)],
∀s ∈ S, t ∈ T . Since, the maps φ and ψ are UCP we have that [φij ] ∈Mk(T d)+ and
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[ψpq] ∈Mm(Sd)+. Thus,

(φ⊗ ψ)(u) =
∑
ζ

φ(sζ)⊗ ψ(tζ) = [[
∑
ζ

φij(sζ)ψpq(tζ)]p,q]i,j

= [[ψpq(
∑
ζ

φij(sζ)tζ)]p,q]i,j = [[ψpq(Lu(φij))]p,q]ij

= [ψ((Lu(φij))]i,j = ψk([(Lu(φij)]i,j)

= ψk ◦ (Lu)k([φij ]i,j)

which is inM+
km since both ψ and Lu are completely positive and [φij ] ∈Mk(Sd)+.

Hence, u ∈ (S ⊗min T )+.

2.2 Maximal Tensor Product

Let (S, e1) and (T , e2) be two operator systems. For each n ∈ N, we set

Dmax
n = Dmax

n (S, T ) =

{X(P ⊗Q)X∗ : P ∈Mk(S)+, Q ∈Mm(T )+, X ∈Mn,km, k,m ∈ N}

Lemma 2.11 Let (S, e1) and (T , e2) be two operator systems and {Dn}∞n=1 be a com-
patible family of cones, withDn ⊆Mn(S ⊗ T ), satisfying property 2 of Definition 2.1.
Then Dmax

n ⊆ Dn for every n ∈ N.

Proof: Let P ∈ Mk(S)+ and Q ∈ Mm(T )+ then by property 2, P ⊗ Q ∈ Dkm.
Since {Dn}n is compatible it follows that X(P ⊗Q)X∗ ∈ Dn, ∀X ∈ Mn,km. Thus
Dmax
n ⊆ Dn.

Lemma 2.12 Let (S, e1) and (T , e2) be two operator systems,P = [Pij ]i,j ∈Mk(Mn(S))+
and Q = [qij ]i,j ∈Mk(T )+. Then

∑
i,j=1 Pij ⊗ qij ∈ Dmax

n .

Proof: Let In be the identity matrix inMn, and X = [X1 . . . Xk2 ] ∈ Mn,nk2 , where
Xm ∈Mn, 1 ≤ m ≤ k2, such that

X1 = Xk+2 = X2k+3 = · · · = Xk2 = In

and Xm = 0, ∀m ̸∈ {1, k + 2, 2k + 3, . . . , k2}. Then,∑k
i,j=1 Pij ⊗ qij = X(P ⊗Q)X∗ ∈ Dmax

n .

Proposition 2.13 Let (S, e1) and (T , e2) be two operator systems. Then S⊗T together
with the family {Dmax

n (S, T )}∞n=1 = {Dmax
n }∞n=1 is a matrix ordered space with ma-

trix order unit e1 ⊗ e2.
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Proof: Let n ∈ N, Xi ∈Mn,kimi , Pi ∈Mki(S)+ and Qi ∈Mmi(T )+, for i = 1, 2.
Then X1(P1 ⊗Q1)X

∗
1 , X2(P2 ⊗Q2)X

∗
2 ∈ Dmax

n . Moreover,

X1(P1 ⊗Q1)X
∗
1 +X2(P2 ⊗Q2)X

∗
2 =

[
X1 0 0 X2

]
·


P1 ⊗Q1 0 0 0

0 P1 ⊗Q2 0 0
0 0 P2 ⊗Q1 0
0 0 0 P2 ⊗Q2

 ·

X∗

1

0
0
X∗

2

 =

[
X1 0 0 X2

]
((P1 ⊕ P2)⊗ (Q1 ⊕Q2))

[
X1 0 0 X2

]∗ ∈ Dmax
n

where
[
X1 0 0 X2

]
∈Mn,k1m1+k1m2+k2m1+k2m2 and

(P1 ⊕ P2)⊗ (Q1 ⊕Q2) = (P1 ⊗Q1)⊕ (P1 ⊗Q2)⊕ (P2 ⊗Q1)⊕ (P2 ⊗Q2)

Clearly Dmax
n is closed under scalar multiplication, so from the above we have that

{Dmax
n }∞n=1 is a family of cones. The fact that this family is compatible is obvious from

the way we defined its elements. Nowwe know that {Cminn }∞n=1 is a compatible fam-
ily of proper cones and by Lemma 2.11, Dmax

n ⊆ Cminn , hence Dmax
n

⋂
(−Dmax

n ) ⊆
Cminn

⋂
(−Cminn ) = {0}, so Dmax

n is a proper cone for every n ∈ N. Furthermore
since e1⊗e2 is a matrix order unit for {Cminn }, it follows that it will be a matrix order
unit for {Dmax

n }. We conclude from all the above that {Dmax
n } is a matrix ordering

with matrix order unit e1 ⊗ e2.

Let (S, e1) and (T , e2) be operator systems. Then (S ⊗ T , {Dmax
n }∞n=1, e1 ⊗ e2)

is a matrix ordered space. However there exist examples where e1 ⊗ e2 fails to be
Archimedean. For this reasonwe consider the Archimedeanization of {Dmax

n }, which
we denote by {Cmaxn (S, T )} := {Cmaxn }.
In general for a matrix ordered *-vector space (V, {Cn}n, e) we have seen that for
each n ∈ N, CArchn is the set:

{A+Mn(N) ∈Mn(V )/Mn(N) : (ren +A) +Mn(N) ∈ Cn +Mn(N), ∀r > 0}

where N =
⋂
{ker f : f ∈ S(V )}.

In our case we have that V = S ⊗ T , Cn = Dmax
n , n ∈ N and the matrix order unit

is e1 ⊗ e2.
Notice that (this will be proven in Theorem 2.15): if we endow the space S ⊗ T with
the cones Dmax

n then whenever ϕ1 ∈ UCP(S,C) and ϕ2 ∈ UCP(T ,C) we have that
ϕ1 ⊗ ϕ2 ∈ UCP(S ⊗ T ,C). Thus if ϕ1, ϕ2 are states on S and T respectively then
ϕ1 ⊗ ϕ2 will be a state on (S ⊗ T , {Dmax

n }).
Now suppose thatN ̸= {0}, this would imply that we could find an non-zero element
of S ⊗ T which would be annihilated by every state on (S ⊗ T , {Dmax

n }). We call
that element v and we write v as v =

∑
i si⊗ ti where the ti are chosen to be linearly
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independent. Now our hypothesis implies that for every ϕ1 state on S and every ϕ2

state on T ,
(ϕ1 ⊗ ϕ2)(v) = 0

,i.e.,
(ϕ1 ⊗ ϕ2)(

∑
i

si ⊗ ti) = 0

hence ∑
i

ϕ1(si)⊗ ϕ2(ti) = 0

since for each i, ϕ1(si), ϕ2(ti) ∈ C the above is equivalent to∑
i

ϕ1(si)ϕ2(ti) = 0

and ϕ2 is C-linear so the above gives

ϕ2(
∑
i

ϕ1(si)ti) = 0

Since T is an operator system it has an Archimedean order unit, it follows from Propo-
sition 1.23 that ∑

i

ϕ1(si)ti = 0

and from the fact that the ti’s are linearly independent we have that

ϕ1(si) = 0 for every i

,i.e, for every state ϕ1 on S and for every i: ϕ1(si) = 0 which, again by Proposition
1.23, would give that

si = 0, for every i

which leads to a contradiction (v = 0).

Definition 2.14 We call the operator system (S⊗T , {Cmaxn }∞n=1, e1⊗e2) the maximal
operator system tensor product of S and T and denote it by S ⊗max T .

Theorem 2.15 Themappingmax : O×O → O : (S, T )→ S⊗maxT is a symmetric,
associative and functorial operator system tensor product. Moreover,⊗max is the largest
operator system tensor structure on S⊗T in the sense that if τ is another operator system
structure on S ⊗ T with cones {Cτn}n∈N then Cmaxn ⊆ Cτn, ∀n ∈ N.

Proof: Let S and T be operator systems. We need to check if the family {Cmaxn }n
satisfies the properties 1, 2 and 3 of Definition 2.1. We have shown 1, and 2 follows
from the definition of {Cmaxn }n.Furthermore, since Cmaxn ⊆ Cminn it follows that it
satisfies property 3, because {Cminn }n does.
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Assume that φ ∈ UCP(S1,S2) and ψ ∈ UCP(T1, T2), and let P ∈ Mk(S1)
+,

Q ∈Mm(T1)+ andX ∈Mn,km. Then φk(P ) ∈Mk(S2)+ and ψm(Q) ∈Mm(T2)+.
Thus,

(φ⊗ ψ)n(X(P ⊗Q)X∗) = X(φk(P )⊗ ψm(Q))X∗ ∈ Dmax
n (S2, T2)

So (φ⊗ψ)n(Dmax
n (S1, T1)) ⊆ Dmax

n (S2, T2), and by Lemma 1.33 we have that⊗max
is functorial.

Now, suppose that P ∈ Mk(S)+ and Q ∈ Mm(T )+. Consider the map θ :
S ⊗ T → T ⊗ S : s⊗ t→ t⊗ s. Then, after conjugation with a permutation matrix
U : θ(km)(P ⊗Q) = U(Q⊗ P )U∗. Thus, for all X ∈Mn,km

θn(X(P ⊗Q)X∗︸ ︷︷ ︸
∈Dmax

n (S,T )

) = Xθ(km)(P⊗Q)X∗ = XU(Q⊗P )U∗X∗ = (XU)(Q⊗ P )(XU)∗︸ ︷︷ ︸
∈Dmax

n (T ,S)

Hence, θ : S ⊗max T → T ⊗max S is a complete order isomorphism, i.e., max
is symmetric. Lemma 2.11 implies that max is the largest operator system tensor
product (it has the smallest cones). In particular let {Cn} be any matrix ordering on
S ⊗ T for which e1 ⊗ e2 is an Archimedean matrix order unit. If P ∈ Cmaxn then for
every r > 0, P + r(e1⊗ e2)n ∈ Dmax

n ⊆2.11Cn. Since e1⊗ e2 is Archimedean matrix
order unit for Cn we have that P ∈ Cn.
We omit the proof of the associativity.

Let (S, e) be an operator system we call an element s ∈ S strictly positive if there
exists a real number δ > 0 such that s ≥ δe.

Lemma 2.16 Let (S, e1) and (T , e2) be operator systems. If u ∈ S ⊗max T is strictly
positive, then there exists n ∈ N, A = [aij ] ∈Mn(S)+ andB = [bij ] ∈Mn(T )+ such
that

u =

n∑
i,j=1

aij ⊗ bij

.

Proof: Since u is strictly positive we have that there exists some δ > 0 such that
u − δ(e1 ⊗ e2) ∈ (S ⊗max T )+ = Cmax1 (S, T ). By the definition of Cmax1 and
Dmax

1 there exist P = [pij ] ∈ Mn(S)+ and Q = [qkl] ∈ Mm(T )+ and X =[
x11 · · · x1m x21 · · · x2m · · · xn1 · · · xnm

]
∈M1,nm for n,m ∈ N

such that

u = (u− δ(e1 ⊗ e2)) + δ(e1 ⊗ e2) = X(P ⊗Q)X∗ =

n∑
i,j=1

m∑
k,l=1

x̄ikpij ⊗ qklxjl

For each pair (i, j)we set aij = pij , thusA = P ∈Mn(S)+ and bij =
∑m
k,l=1 x̄ikqklxjl.

ThenB = [bij ] = (Xt)∗Q(Xt)where t denotes the transpose, soB ∈Mn(T )+. The
result follows.

If V,W and U are vector spaces and φ : V ×W → U is a bi-linear map, then for
n,m ∈ Nwe let φ(n,m) :Mn(V )×Mm(W )→Mn(U) to be the bi-linear map given
by φ(n,m)([vij ]i,j , [wkl]k,l) := [φ(vij , wkl)](i,k),(j,l)
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Definition 2.17 Let S and T be operator systems. We call a bi-linear map φ : S ×
T → B(H) jointly completely positive if φ(n,m)(P,Q) ∈ Mnm(B(H))+, for every
P ∈Mn(S)+ and every Q ∈Mm(T )+.

Theorem 2.18 Let S and T be operator systems. Then

1. If φ : S × T → B(H) is jointly c.p. map, then its linearization φL : S ⊗ T →
B(H), which is given by φL(s⊗t) = φ(s, t), is completely positive on S⊗maxT .

2. If ψ : S ⊗max T → B(H) is completely positive, then the map φ : S × T →
B(H) given by φ(x, y) = ψ(x ⊗ y), x ∈ S and y ∈ T , is jointly completely
positive.

3. Let τ be an operator system structure on S ⊗ T such that the linearization of
every UCP map φ : S × T → B(H) is completely positive on S ⊗τ T , then
S ⊗τ T = S ⊗max T .

4. For every n ∈ N, set

Kn := {P ∈Mn(S ⊗ T ) : φnL(P ) ≥ 0 for every jointly completely positive

φ : S × T → B(H) and every H : Hilbert space}

Then, the following holds:

Cmaxn (S, T ) = Kn, ∀ n ∈ N

Proof: Fix S and T operator systems, P ∈Mk(S)+ and Q ∈Mm(T )+.

For 1: Let φ : S × T → B(H) be a jointly completely positive map, then

φ
(km)
L (P⊗Q) = [φL(pij⊗qrs)](i,r),(j,s) = [φ(pij , qrs)](i,r),(j,s) = φ(k,m)(P,Q) ≥ 0

Thus, if X ∈Mn,km then

φnL(X(P ⊗Q)X∗) = X(φ
(km)
L (P ⊗Q))X∗ ≥ 0

so φn(Dmax
n ) ⊆Mn(B(H))+.

Thus, from Lemma 1.33 φL is completely positive.

For 2: As above φ(k,m)(P,Q) = ψ(km)(P ⊗Q) ≥ 0, because ψ is completely positive.

For 3: We know that the cones of themaximal tensor product are the smallest possible,
so every UCP map from S ⊗τ T to B(H) is a UCP map from S ⊗max T to B(H). By
the hypothesis of 3 combined with 1,2 we have that the converse is also true. Hence,
UCP(S⊗τ T , B(H)) = UCP(S⊗max T , B(H)). By Lemma 1.34 we have that S⊗τ T
= S ⊗max T .

42



For 4: One can check that {Kn}∞n=1 is an operator system structure on S ⊗ T and
denote it by τ . Then τ satisfies property 3 by definition, so we have the desired result.

Given a bounded bilinear map φ : S × T → C we define L(φ) : S → T d : s →
L(φ)(s) (resp,R(φ) : T → Sd) byL(φ)(s)(t) = φ(s, t) (resp. R(φ)(t)(s) = φ(s, t)).

Lemma 2.19 Let S and T be operator systems and let φ : S × T → C be a bilinear
map. The following are equivalent

1. φ is jointly completely positive.

2. L(φ) : S → T d is completely positive.

3. R(φ) : T → Sd is completely positive.

Proof: We will show the equivalence 1 ⇐⇒ 2. With a similar argument one can
show the equivalence 1 ⇐⇒ 3.

The map L(φ) is CP if and only if: for every v = [vij ] ∈ Mk(S)
+ we have that

L(φ)k([vij ]) = [L(φ)(vij)] ∈ Mk(T d)+ or equivalently that the map ˆL(φ)(vij) :
T →Mk : t→ [L(φ)(vij)(t)] is CP. That is to say, for all w = [wrs] ∈Mm(T )+

0 ≤ ˆL(φ)(vij)
m
([wrs]) = [[L(φ)(vij)(wrs)]i,j ]r,s =

[L(φ)(vij)(wrs)](i,r),(j,s) = [φ(vij , wrs)](i,r),(j,s) = φ(k,m)(v, w)

Hence, we have the equivalence of 1 and 2.

Lemma 2.20 Let (S, e1) be a finite dimensional operator system. The canonical isomor-
phismˆ : S → (Sd)d : x → x̂, where x̂(f) = f(x), ∀f ∈ Sd, is a complete order
isomorphism.

Proof: It suffices to show the following:

Mn(S)
+ ∋ [xij ] ⇐⇒ [x̂ij ] ∈Mn((S

d)d)+

Remember that for any operator systemR an element [fij ] ∈Mn(Rd)+ if and only if
the map F : R→Mn given by F (r) = [fij(r)] is CP. Assume that [xij ] ∈Mn(S)

+.
We will show that the map Φ : Sd →Mn given by

Φ(f) = [x̂ij(f)]i,j = [f(xij)]i,j , f ∈ Sd

is completely positive. This implies that [x̂ij ] ∈Mn((S
d)d)+.

Suppose that [gkp] ∈ Mm(Sd)+ or equivalently that the map S ∋ s→ [gkp(s)]k,p ∈
Mm is CP. Then,

Φm([gkp]k,p) = [Φ(gkp)]k,p =

[[gkp(xij)]i,j ]k,p = [gnkp([xij ]i,j)]k,p ≥ 0
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because [xij ] ∈Mn(S)
+ and the mapping S ∋ s→ [gkp(s)]k,p ∈Mm is CP.

It follows that Φ is completely positive.
For the opposite direction, we suppose that [xij ] ∈ Mn(S) is such that [x̂ij ] ∈

Mn((S
d)d)+ we shall show that [xij ] ∈ Mn(S)+. Let k ∈ N and φ ∈ UCP(S,Mk)

then for each 1 ≤ p, q ≤ k there exist a unique φpq ∈ Sd such that φ(s) = [φpq(s)]
and since φ is UCP we have that [φpq] ∈ Mk(Sd)+. Now, letting Φ : Sd → Mn be
the map given as in the previous part then Φ is CP and

φn([xij ]i,j) = [φ(xij)]i,j = [[φpq(xij)]p,q]i,j

= [[x̂ij(φpq)]p,q]i,j = τ(Φk([φpq])) ≥ 0

where τ is the canonical ∗-isomorphismMn ⊗Mk
∼=Mk ⊗Mn. By Lemma 1.35 we

obtain that [xij ] ∈Mn(S)+.

Lemma 2.21 Let S be an operator system, then

Mn ⊗min S ∼=c.o.i. Mn(S) ∼=c.o.i. Mn ⊗max S

Proof: The first identification is Lemma 2.9. For the other one, suppose that P ∈
Mk(Mn(S))+ , then we could write:

P = X(In ⊗ P )X∗, where X :=
[
Ik 0 · · · 0

]
,

and Ik ∈Mk is the identity matrix.
Therefore we have that X ∈ Mk,nk , In ∈ M+

n and P ∈ Mk(Mn(S))+ so P =
X(In ⊗ P )X∗ ∈ Dmax

k (Mn,S).

Thus,Mk(Mn(S))+ ⊆ Dmax
k (Mn,S) ⊆ (Mk(Mn ⊗max S))+ := Cmaxk (Mn,S).

Now we know that Cmaxk (Mn,S) ⊆ Cmink (Mn,S), ∀k ∈ N and Cmink (Mn,S) =
Mk(Mn(S))+ hence we conclude that

(Mk(Mn ⊗max S))+ =Mk(Mn(S))+, k ∈ N

Theorem 2.22 Let S and T be finite dimensional operator systems.
Then (S ⊗max T )d is completely order isomorphic to Sd ⊗min T d and (S ⊗min T )d is
completely order isomorphic to Sd ⊗max T d.

Proof: From Proposition 2.10 we have that (S⊗minT )+ = CP (Sd, T ). Furthermore,
from Theorem 2.18 and Lemma 2.19 we have that a map f : S ⊗max T → C is
completely positive if and only if φf : S × T → C, given by φf (x, y) := f(x ⊗ y)
is jointly completely positive and this is equivalent with L(φf ) : S → T d being
completely positive. Hence,

(S ⊗max T )d+ = CP (S, T d)
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for all operator systems S, T , so this is true if we put Sd and T d in the place of S
and T respectively. Thus, from the above and the fact that T and (T d)d are complete
order isomorphic (Lemma 2.20) we obtain

((Sd ⊗max T d)d)+ = CP (Sd, T ) = (S ⊗min T )+ (I)

Thus far we have shown that there is a bijective correspondence between positive
linear functionals on Sd ⊗max T d and positive elements of S ⊗min T . Hence, there
exists a bijective linear map from S ⊗min T to (Sd ⊗max T d)d which is an order
isomorphism. We need to show that it is a complete order isomorphism.

We identifyMn(S)⊗minT withMn(S⊗minT ). Sincemax is associativewe have
that (Mn ⊗ Sd) ⊗max T d = Mn ⊗ (Sd ⊗max T d). Moreover, for any R operator
system we have the identification Mn(R

d) = Mn(R)
d. In particular we have that

Mn(R
d) ∋ [fij ] → φ ∈ L(R,Mn) where φ(r) = [fij(r)] and then from the section

about positive maps we have that

L(R,Mn) ∋ φ→ sϕ ∈ L(Mn(R),C) =Mn(R)d where sϕ([rij ]) =
n∑

i,j=1

fij(rij)

Thus,

(Mn(Sd)⊗max T d)d = (Mn(Sd ⊗max T d))d =Mn((Sd ⊗max T d)d) (II)

Now replacing S byMn(S), from the relation (I) we have that
(Mn(Sd) ⊗max T d)d+ = (Mn(S) ⊗min T )+ = Mn(S ⊗min T )+ and combining
this with (II) we obtain

(Mn((Sd ⊗max T d)d))+ =Mn(S ⊗min T )+

Hence we conclude that

(Sd ⊗max T d)d and S ⊗min T are completely order isomorphic (III)

Remember that for any operator system R we have that it is completely order iso-
morphic with (Rd)d. Now replacing S → Sd and T → T d in (III) we have that
(S ⊗max T )d is completely order isomorphic to Sd ⊗min T d. By taking duals in (III)
we have that (S ⊗min T )d is completely order isomorphic to Sd ⊗max T d.

For the remainder of this subsection whenever A, B are C∗-algebras we will use the
following notation: A⊗B for their C∗-algebraic tensor product andA⊗C∗maxB for
their maximalC∗-algebraic tensor product. We will see that⊗max gives an extension
of the maximal C∗-algebraic tensor product from the category of C∗-algebras to the
category of operator systems.
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We will need the following [2, theorem 3.5.3] :

Proposition 2.23 Let A1, A2, A3, A4 be C∗-algebras and ϕ : A1 → A2 and ψ :
A3 → A4 be completely positive maps then the algebraic tensor product map ϕ ⊙ ψ :
A1 ⊗ A3 → A2 ⊗ A4 extends to a completely positive map from A1 ⊗C∗max A3 →
A2 ⊗C∗max A4.

Theorem 2.24 LetA and B be unitalC∗-algebras. Then the operator systemA⊗maxB
is completely order isomorphic to the image of A⊗ B inside A⊗C∗max B.

Proof: Let C := A⊗C∗max B.
Claim: The faithful inclusionA⊗B ⊆ A⊗C∗max B endowsA⊗B with an operator
system structure.
For this claim to be true we need to check whether the conditions of Definition 2.1
are satisfied. Indeed, 1 and 2 are clearly true as for 3 it follows from proposition 2.23.
We denote the arising operator system by A⊗τ B.
For every n ∈ N, let Dn = Mn(A⊗τ B)+ = Mn(A⊗ B)

⋂
Mn(C)+. Sincemax is

the largest operator system structure on A⊗ B, i.e. it has the smallest cones, we see
that Cmaxn (A,B) ⊆ Dn.

Now we will show that the Archimedean ordered ∗-vector spaces
(Mn(A⊗ B), Cmaxn (A,B)) and (Mn(A⊗ B), Dn) have the same state space.
For the above to be true it suffices to show that whenever we have a linear map f :
Mn(A⊗B)→ Cwith f(Cmaxn (A,B)) ⊆ R+ then f(Dn) ⊆ R+, because the inverse
follows form the inclusion Cmaxn (A,B) ⊆ Dn.
To this end fix a linear map f : Mn(A ⊗ B) → C such that f(Cmaxn (A,B)) ⊆ R+.
Suppose that X =

∑k
i=1 αi ⊗ βi, where αi ∈ Mn(A) and βi ∈ B. Notice that

P = [αiα
∗
j ]
k
i,j=1 ∈ Mk(Mn(A))+ and Q = [βiβ

∗
j ]
k
i,j=1 ∈ Mk(B)+. Thus, from

Lemma 2.12 we have that

XX∗ =

k∑
i,j=1

αiα
∗
j ⊗ βiβ∗

j ∈ Cmaxn (A,B)

So f(XX∗) ≥ 0.
On the other hand, we know from C∗-algebraic theory that the C∗-algebraic ten-

sor product is associative and that Mn is a nuclear C∗-algebra. Hence we have the
natural identificationMn(C) =Mn(A)⊗C∗max B.
By the definition of states on the C∗-algebraic tensor product (see [7] p.7-9) we have
that the state space ofMn(C) =Mn(A)⊗C∗max B denoted S(Mn(A)⊗C∗max B) is
the following set of linear functionals

{g :Mn(A)⊗ B → C : g unital and g(yy∗) ≥ 0, ∀y ∈Mn(A)⊗ B}

Since X ∈Mn(A)⊗ B we observe that the linear map

f :Mn(A⊗ B) =Mn(A)⊗ B → C
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is an element of the above set, i.e., f ∈ S(Mn(C)). Consequently, f(Mn(C)+) ⊆ R+

and thus f(Dn) ⊆ R+.
Finally, let A ∈ Dn and f : Mn(A ⊗max B) → C be a positive map, that is,

f(Cmaxn (A,B)) ⊆ R+. By the above discussion : f(A) ≥ 0 and by Proposition 1.24
A ∈ Cmaxn (A,B) which completes the proof.
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2.3 The Commuting Tensor Product

Let(S, e1) and (T , e2) be operator systems. We set,

ucp(S, T ) = {(φ, ψ) : H is a Hilbert space, φ : S → B(H) and ψ : T → B(H)

are unital completely positive maps with commuting ranges}
We call a pair (φ, ψ) as above commuting and we let φ · ψ : S ⊗ T → B(H) be the
map given on elementary tensors by (φ · ψ)(u⊗ v) = φ(u)ψ(v) = ψ(v)φ(u), u ∈ S
and v ∈ T .

For each n ∈ N, let

Ccomn = Ccomn (S, T ) = {u = [uij ] ∈Mn(S⊗T ) : (φ·ψ)n(u) = [(φ·ψ)(uij)] ∈ B(Hn)+,

for all (φ, ψ) ∈ ucp(S, T )}

Proposition 2.25 The collection {Ccomn }∞n=1 is amatrix ordering onS⊗T withArchimedean
matrix order unit e1 ⊗ e2.
In other words, (S ⊗ T , {Ccomn }∞n=1, e1 ⊗ e2) is an operator system.

Proof: The fact that Ccomn is a cone follows from the linearity of (φ ·ψ) which in turn
follows from the linearity of φ and ψ.

In order to prove compatibility let u = [ukl] ∈ Ccomm and X = [xik] ∈ Mn,m

then,

(φ · ψ)n(XuX∗) = (φ · ψ)n[
m∑

k,l=1

xikuklxjl]
n
ij,=1

= [(φ · ψ)(
m∑

k,l=1

xikuklxjl)]
n
i,j=1

= [

m∑
k,l=1

xik(φ · ψ)(ukl)xjl]ni,j=1

= X(φ · ψ)m(u)X∗

andX(φ ·ψ)m(u)X∗ ∈ B(Hm)+, soXuX∗ ∈ Ccomm . Hence the family {Ccomn }∞n=1

is compatible.
Let φ ∈ UCP(S,Mk) and ψ ∈ UCP(T ,Mm) we define φ̃ : S → Mk ⊗ Im and

ψ̃ : S → Ik ⊗Mm by φ̃(u) = φ(u) ⊗ Im and ψ̃(v) = Ik ⊗ ψ(v). Notice that if
[vij ] ∈Mn(S)+ then

(φ̃)n([vij ]) = [φ̃(vij)] = [φ(vij)⊗ Im] = [φ(vij)]⊗ Im = φn([vij ])⊗ Im

which is positive because φ is completely positive. In the same way we see that
(ψ̃)n([uij ]) ≥ 0 for any [uij ] ∈ Mn(T )+. Hence (φ̃, ψ̃) ∈ ucp(S, T ). Let P =

[pij ] ∈ Ccomn where pij =
∑
α,β u

α
ij ⊗ v

β
ij , u

α
ij ∈ S and vβij ∈ T , then
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(φ⊗ ψ)n(P ) = [(φ⊗ ψ)(pij)] = [
∑
α,β

φ(uαij)⊗ ψ(v
β
ij)] =

[
∑
α,β

(φ(uαij)⊗ Im)(Ik ⊗ ψ(vβij)] = [
∑
α,β

φ̃(uαij)ψ̃(v
β
ij)] =

[(φ̃ · ψ̃)(
∑
α,β

uαij ⊗ v
β
ij)] = [(φ̃ · ψ̃)(pij)] = (φ̃ · ψ̃)n(P ) ≥ 0

Now remembering the definition of the cones Cminn (see subsection 2.1), we see that
P ∈ Cminn . Thus Ccomn ⊆ Cminn for every n ∈ N.
Since Cminn

⋂
(−Cminn ) = {0} and e1 ⊗ e2 is a matrix order unit for {Cminn }∞n=1 we

have that: Ccomn

⋂
(−Ccomn ) = {0} and e1⊗e2 is a matrix order unit for {Ccomn }∞n=1.

Finally, suppose that u ∈Mn(S ⊗T ) is such that r(e1⊗ e2)n+ u ∈ Ccomn for all
r > 0.Then for all (φ, ψ) ∈ ucp(S, T ),

0 ≤ (φ · ψ)n(r(e1 ⊗ e2)n + u) = r(IH)n + (φ · ψ)n(u), ∀r > 0

Since IH is an Archimedean matrix order unit for B(H) we have that
(φ · ψ)n(u) ≥ 0, for all (φ, ψ) ∈ ucp(S, T ). It follows that u ∈ Ccomn . Thus, e1 ⊗ e2
is an Archimedean matrix order unit.

Definition 2.26 We call the operator system (S ⊗ T , {Ccomn }∞n=1, e1 ⊗ e2) the com-
muting tensor product of S and T and we denote it by S ⊗c T .

Theorem 2.27 The mapping c : O ×O → O : (S, T ) → S ⊗c T is a symmetric and
functorial operator system tensor product.

Proof: We need to check that it satisfies properties 1,2 and 3 of Definition 2.1. From
the previous proposition we have that this is true for 1 and 3.

For 2: Suppose that P = [pij ] ∈ Mn(S)+ and Q = [qkl] ∈ Mm(T )+, and let
(φ, ψ) ∈ ucp(S, T ). We shall show that P ⊗Q ∈ Ccomnm . Indeed,

(φ · ψ)(nm)(P ⊗Q) = (φ · ψ)(nm)([pij ⊗ qkl]) =



(φ · ψ)(p11 ⊗ q11) · · · (φ · ψ)(p11 ⊗ q1m) · · · (φ · ψ)(p1n ⊗ q11) · · · (φ · ψ)(p1n ⊗ q1m)
... · · ·

... · · ·
... · · ·

...
(φ · ψ)(p11 ⊗ qm1) · · · (φ · ψ)(p11 ⊗ qmm) · · · (φ · ψ)(p1n ⊗ qm1) · · · (φ · ψ)(p1n ⊗ qmm)

... · · ·
... · · ·

... · · ·
...

... · · ·
... · · ·

... · · ·
...

(φ · ψ)(pn1 ⊗ q11) · · · (φ · ψ)(pn1 ⊗ q1m) · · · (φ · ψ)(pnn ⊗ q11) · · · (φ · ψ)(pnn ⊗ q1m)
... · · ·

... · · ·
... · · ·

...
(φ · ψ)(pn1 ⊗ qm1) · · · (φ · ψ)(pn1 ⊗ qmm) · · · (φ · ψ)(pnn ⊗ qm1) · · · (φ · ψ)(pnn ⊗ qmm)
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=



φ(p11)ψ(q11) · · · φ(p11)ψ(q1m) · · · φ(p1n)ψ(q11) · · · φ(p1n)ψ(q1m)
... · · ·

... · · ·
... · · ·

...
φ(p11)ψ(qm1) · · · φ(p11)ψ(qmm) · · · φ(p1n)ψ(qm1) · · · φ(p1n)ψ(qmm)

... · · ·
... · · ·

... · · ·
...

... · · ·
... · · ·

... · · ·
...

φ(pn1)ψ(q11) · · · φ(pn1)ψ(q1m) · · · φ(pnn)ψ(q11) · · · φ(pnn)ψ(q1m)
... · · ·

... · · ·
... · · ·

...
φ(pn1)ψ(qm1) · · · φ(pn1)ψ(qmm) · · · φ(pnn)ψ(qm1) · · · φ(pnn)ψ(qmm)


=



φ(p11) . . .
φ(p11)

ψm(Q) · · ·

φ(p1n) . . .
φ(p1n)

ψm(Q)

...
. . .

...φ(pn1) . . .
φ(pn1)

ψm(Q) · · ·

φ(pnn) . . .
φ(pnn)

ψm(Q)


=

[(φ(pij)⊗ Im)ψm(Q)]i,j = [(φ(pij)⊗ Im)]i,j(In ⊗ ψm(Q)) ≥ 0

The last term is positive because [(φ(pij)⊗ Im)]i,j = φn(P )⊗ Im which is positive
since φ is CP and P ∈ Mn(S)+ and it commutes with (In ⊗ ψm(Q)) which in turn
is positive since ψ is completely positive and Q ∈ Mm(T )+. Thus P ⊗ Q ∈ Ccomnm

and property 3 is satisfied.

Functoriality: Let ρ : S1 → S2 and η : T1 → T2 be unital completely positive
maps, and let v ∈ Mn(S1 ⊗c T1) be positive. If (φ, ψ) ∈ ucp(S2, T2) we have that
(φ ◦ ρ, ψ ◦ η) ∈ ucp(S1, T1). Moreover,

(φ · ψ)n((ρ⊗ η)n(v)) = ((φ ◦ ρ)(ψ ◦ η))n(v) ≥ 0

Hence (ρ⊗ η)n(v) ∈Mn(S2 ⊗c T2)+ and the functoriality follows.
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Symmetric: Consider the map θ : S ⊗ T → T ⊗ S : u ⊗ v → v ⊗ u, we shall show
that it extends to a unital complete order isomorphism from S ⊗c T onto T ⊗c S .
Firstly notice that (φ, ψ) ∈ ucp(S, T ) if and only if (ψ, φ) ∈ ucp(T ,S).

Now let v =
∑
p sp ⊗ tp ∈ S ⊗ T and (φ, ψ) ∈ ucp(S, T ). Then,

(φ · ψ)(v) =
∑
p

φ(sp)ψ(tp) =
∑
p

ψ(tp)φ(sp)

= (ψ · φ)(
∑
p

tp ⊗ sp) = (ψ · φ)(θ(
∑
p

sp ⊗ tp))

= (ψ · φ)(θ(v))

Hence for a v ∈Mn(S ⊗c T ) we have that v ∈Mn(S ⊗c T )+ if and only if (θ(v)) ∈
Mn(S ⊗c T )+. It follows that the commuting tensor product is symmetric.

Theorem 2.28 Let A and B be unital C∗-algebras, then A⊗c B = A⊗max B

Proof: By theorem 2.15 we have that Cmaxn (A,B) ⊆ Ccomn (A,B).
Conversely, suppose that u ∈ Ccomn (A,B). From theorem 2.24 we have that

A ⊗max B is completely order isomorphic to the image of A ⊗ B inside the maxi-
mal C∗-algebraic tensor product A⊗C∗max B. Let ιA : A → A⊗C∗max B given by
ιA(a) = a ⊗ 1B and ιB : B → A ⊗C∗max B given by ιB(b) = 1A ⊗ b. Obviously,
these maps are completely positive and their ranges commute. Moreover, Theorem
2.24 implies that u ∈ Cmaxn (A,B) if and only if (ιA · ιB)n(u) ≥ 0. However the latter
is true by the definition of the commuting tensor product. Thus the proof is complete.

We have shown that the cones of the maximal tensor product are the smallest possible
and those of the minimal tensor product are the largest. Thus, we have the following
inclusions

Cmaxn ⊆ Ccomn ⊆ Cminn

as well as the following completely positive maps

S ⊗max T
id
↪−→ S ⊗c T

id
↪−→ S ⊗min T

It turns out that the above inclusions are in fact strict as we will see in later Chapters.
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3 TheQuotient
In this Chapter we recall some fundamental results regarding operator system quo-
tients introduced in [19] are examined. In the following Chapter we will use the
quotient theory in order to construct the coproduct of operator systems.

Let (S, e1) and (T , e2) be operator systems, and ϕ : S → T be a non-zero (unital)
completely positive map. Note that the kernel, kerϕ, of ϕ is a closed (because ϕ is
continuous/bounded) *-subspace of S and does not contain e1 (obviously). Further-
more, it is an order ideal of S , that means:

If x ∈ kerϕ and 0 ≤ y ≤ x then y ∈ kerϕ

However the reverse of the above arguments, in general, is not true. (for example:
span {E1,1} ⊆Mn).

Let (S, e1) be an operator system and J a closed *-subspace of S which does not
contain e1. On the algebraic quotient S/J we let q : S → S/J be the canonical
quotientmap. The vector spaceS/J has a natural involution induced by q, (s+J )∗ =
q(s)∗ = q(s∗) = s∗ +J , which turns it into a *-vector space. For each n ∈ N we set,

Dn(S/J ) = {[sij+J ]i,j ∈Mn(S/J ) : ∃ kij ∈ J such that [sij+kij ] ∈Mn(S)+}

The family {Dn(S/J )}∞n=1 is a matrix ordering on S/J with e1 + J as a matrix
order unit. Unfortunately, it is not Archimedean.

Definition 3.1 We call a subspace J of an operator system S a kernel if there exist
some operator system T and a (unital) completely positive map ϕ : S → T such that
J = kerϕ.

Remark: Let S be an operator system and J a kernel in S . Then the following holds

{[sij + J ] : [sij ] ∈Mn(S)+} = Dn(S/J )

Proof: The proof for the general case is no different than that for the case in which
n = 1.
Call the set on the left hand side B. If s+J ∈ B, then s ∈ S+ and so for k = 0 ∈ J
we have that s+ k = s+ 0 = s ∈ S+. It follows that B ⊆ D1(S/J ).

Conversely, if s+ J ∈ D1(S/J ) then there exist some k ∈ J such that s+ k ∈
S+. Hence, (s+ k) + J ∈ {x+ J : x ∈ S+}. Hence,D1(S/J ) ⊆ B and the result
follows.

Let (S, e1) be an operator system and J ⊆ S a kernel. Consider the family of cones
{Cn(S/J )}∞n=1, where for each n ∈ N:

Cn(S/J ) = {[sij + J ] ∈Mn(S/J ) : ∀ε > 0 there exist kij ∈ J such that

ε(e1)n + [xij + kij ] ∈Mn(S)+}
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= {[sij + J ] ∈Mn(S/J ) : ∀ε > 0, ε(e1 + J )n + [sij + J ] ∈ Dn(S/J )}

It was shown in [19, Proposition 3.4] that if we endow S/J with this family of cones,
then the quotient S/J becomes a matrix ordered *-vector space with Archimedean
matrix order unit e1 + J and the quotient map q : S → S/J is completely positive.

Definition 3.2 [19, Definition 3.5]The operator system (S/J , {Cn(S/J )}∞n=1, e1+J )
arising from the above construction is called the quotient operator system.

Definition 3.3 Let S be an operator system and J a kernel in S . We call the ker-
nel J order proximinal if D1(S/J ) = C1(S/J ) and completely order proximinal
if Dn(S/J ) = Cn(S/J ), ∀n ∈ N.

The quotient operator system satisfies an operator system version of the First Isomor-
phism Theorem (see [19, Proposition 3.6.]):

Proposition 3.4 Let S be an operator system and J a kernel in S .
Whenever R is an operator system and φ : S → R is a unital completely positive

map with J ⊆ kerφ. Then the induced map φ̃ : S/J → R given by φ̃(s+J ) = φ(s),
that is φ̃ ◦ q = φ, is also unital and completely positive.

Conversely, if ψ : S/J → R is a UCP map between operator systems then there
exists a UCP map φ : S → R with, necessarily J ⊆ kerφ such that φ = q ◦ ψ.

Note: The above proposition remains true if we drop the condition on the unitality of
both sides.

A completely positive surjective linear map between operator systems φ : S → T
is called complete quotient map if the induced map φ̃ : S/ kerφ → T is a complete
order isomorphism.

Lemma 3.5 Let (S, e1) and (T , e2) be operator systems, and φ : S → T a complete
quotient map. Then for every n ∈ N and every strictly positive y ∈Mn(T ) there exists
a strictly positive x ∈Mn(S) such that φn(x) = y.

Proof: We will prove it for n = 1 the proof for the general case is similar.
Suppose that y ∈ T is strictly positive. Then by definition, ∃δ > 0 such that:
y ≥ δe2. Hence, y′ = y − δe2 ∈ T+ and consequently z = y′ + δ

2e2 ∈ T
+. Notice

that y = y′ + δe2 = z + δ
2e2. From the hypothesis we have that φ̃ : S/ kerφ → T

is a complete order isomorphism, in particular it is surjective, so there exists h̃ =
h + kerφ ∈ S/ kerφ such that z = φ̃(h̃). The positive elements of the quotient are
those in the cone

C1(S/ kerφ) = {(s+ kerφ) : ∀ ε > 0, ∃ k ∈ kerφ such that εe1 + s+ k ∈ S+}

Take ε = δ
4 then ∃ k ∈ kerφ such that, δ4e1 + h + k ∈ S+. Set β = δ

2e1 + h + k =
δ
4e1+( δ4e1+h+k). Since

δ
4e1+h+k ≥ 0wehave that β ≥ δ

4e1, thismeans that β ∈ S
is strictly positive. Moreover, φ(β) = φ̃(β̃) = δ

4e2 +
δ
4e1 + φ̃(h̃) + 0 = δ

4e2 + z = y
and the proof is complete.
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Theorem 3.6 Let S and T be operator systems and φ : S → T be a complete quotient
map. Then the dual map φd : T d → Sd is a complete order embedding.

Proof: φd is completely positive: Fix a n ∈ N then for any G = [gij ] ∈ Mn(T d)+,
which we identify with the CP map Ĝ : T →Mn : t→ [gij(t)] we have that

(φd)n(G) = [φd(gij)] = [gij ◦ φ]←→ Ĝ ◦ φ

and Ĝ ◦ φ is a composition of CP maps thus it is CP.

φd is injective: It suffices to show that kerφd = {0}. To that end let f : T → C be a
linear map with f ∈ kerφd then φd(f)(s) = 0 or equivalently f(φ(s)) = 0 for every
s ∈ S . Since φ : S → T is surjective ∀ t ∈ T , ∃ s ∈ S such that φ(s) = t. Thus we
have that f(t) = 0 for every t ∈ T and the desired result follows.

φd is a complete order embedding: We will show that if G = [gij ] ∈Mn(T d) is such
that (φd)n(G) ∈ Mn(Sd)+ then necessarily G ∈ Mn(T d)+ or equivalently that the
mapping Ĝ : T →Mn : t→ [gij(t)] is completely positive.

Let k ∈ N and [tlm] ∈ Mk(T )+. Then Ĝk([tlm]) = [[gij(tlm)]i,j ]l,m. For any
ε ≥ 0 we set [tϵlm] = [tlm] + ε(e2)k ∈ Mk(T ), where e2 denotes the unit of T . This
element is strictly positive so from Lemma 3.5 we have that there exists a (strictly)
positive [sϵlm] ∈Mk(S) such that [tϵlm] = φk([sϵlm]) = [φ(sϵlm)]. Thus,

[gij(t
ϵ
lm)]i,j ]l,m = [[gij(φ(s

ϵ
lm))]i,j ]l,m = [Ĝ(φ(sϵlm))]l,m = (Ĝ ◦ φ)k([sϵlm]l,m)

Now the map Ĝ ◦ φ : S → Mn corresponds to the positive element φd(G) of
Mn(Sd)+ so it is completely positive. Since [slm] is a positive element of Mk(S)
we see that [gij(tϵlm)]i,j ]l,m is positive inMk(Mn). Considering that ε was arbitrary
and tϵlm −−−→ϵ→0

tlm we conclude that [[gij(tlm)]i,j ]l,m ∈ Mk(Mn)
+. This implies that

Ĝ is indeed CP.

Lemma 3.7 Let (S, e1) be an operator system and y a self-adjoint element of S which
is neither positive nor negative. Then the set span {y} = {λy : λ ∈ C} is a proximinal
kernel in S .

Proof: Firstly, we will show that it is a kernel. Assume that S = A is a unital C∗-
algebra and let J = span {y}. We equip A/J with the cone D1 = D1(A/J ) =
{α + J : α ∈ A+} and observe that D1

⋂
(−D1) = {0}. Indeed, assume that

d ∈ D1

⋂
(−D1) then d = x1 + J = −x2 + J , where xi ∈ A+, i = 1, 2. Thus

there exists some j ∈ J such that x1 = −x2 + j which means that j = x1 + x2 ≥ 0.
However j is neither positive nor negative, hence x1 = x2 = 0 and d = 0 + J =
0A/J . Now we shall show that e1 +J is an Archimedean order unit for (A/J , D1).
Let x+ J ∈ A/J be such that

ε(e1 + J ) + x+ J ∈ D1, ∀ε > 0 (∗)

We will prove that x+ J ∈ D1 and it suffices do this for a self-adjoint x. Condition
(∗) is equivalent to the following: (εe1+x)+J ∈ D1, ∀ε > 0. Thus for every ε > 0
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there exists some αϵ ∈ C such that εe1 + x+ αϵy ∈ A+. Since εe1 + x+ αϵy ∈ A+

it is self-adjoint, which implies that αϵ ∈ R.
Consider the set Pϵ = {α ∈ R : εe1 + x + αy ∈ A+} this is a closed subset

of R (because A+ is closed in A) and for every δ ≥ ε, Pϵ ⊆ Pδ . Take the Jordan
decomposition, y = y1 − y2, yi ∈ A+ with y1y2 = y2y1 = 0, of y (remember that
A is a C∗ − algebra). For ε = 1 we have that e1 + x + αy ≥ 0 and by multiplying
left and right by y1 we obtain:

y21 + y1xy1 + αy1yy1 ≥ 0

y21 + y1xy1 + α(y1y1 − y1y2)y1 ≥ 0

αy31 ≥ −y21 − y1xy1 (I)

Since y1 is non-zero, (I) gives us a lower bound for α. In particular, consider A as a
C∗-subalgebra of B(H) for some Hilbert space H . Then since y1 is non-zero and
positive there exists some h ∈ H such that (y1h, h)H > 0. Therefore from (I):

α ≥ ((−y21−y1xy1)h,h)H
(y31h,h)H

= β ∈ R. Correspondingly multiplying both sides by y2
we obtain an upper bound for α. We conclude that P1 is bounded. Hence, (Pϵ)0<ϵ≤1

is a decreasing ε-net of closed and bounded subsets of R, i.e., compact, thus they
have a non-empty intersection. It follows that there exists some α0 ∈

⋂
Pϵ, then

εe1 + x + α0y ∈ A+, ∀ 0 < ε ≤ 1 and letting ε → 0, we have x + α0y ≥ 0. This
implies that x+ J ∈ D1.

It is clear from the above points that (S/J , D1, e1 + J ) is an Archimedean or-
dered *-vector space, so we can equip it with the minimal operator system structure
OMIN(A/J ) (for more details we refer the reader to [18, definition 3.1]). The quo-
tient map q : A → A/J is UCP and has J as a kernel, so from [18, Theorem 3.4] it
will be UCP from A to OMIN(A/J ), and J remains its kernel. This proves that J
is a kernel of a UCP map from A to an operator system and thus it is a kernel in A.

For the general case, suppose thatA is a unital C∗-algebra which contains S . We
have shown that there exist an operator system R and a UCP map φ : A → R with
kernel span {y}. Consider the restriction of φ on S , this remains a UCP map between
operator systems with kernel span {y}. This completes the first part of the proof.

Now we will work towards proving the proximinality of span {y}which we will once
more denote by J . As before we start by examining the case in which S = A is a
unital C∗-algebra.

Let x + J be element in (A/J )+ = C1(A/J ) = C1. We can assume that x is
self-adjoint. By the definition of C1 for every ε > 0 there exists αϵy ∈ J such that
x + εe1 + αϵy ∈ A+. As in the previous case we have that αϵ ∈ R. Set Πϵ = {α ∈
R : x + αy + εe1 ∈ A+}, then (Πϵ)0<ϵ≤1 is a decreasing ε-net of compact subsets
of R. Thus,

⋂
Πϵ is a non-empty set, which means that there exists α0 ∈ R such that

x + α0y + εe1 ∈ A+, ∀ 0 < ε ≤ 1. Hence, x + α0y ∈ A+, i.e., ∃ j ∈ J such
that x + j ∈ A+ so x + J ∈ D1(A/J ). This shows that C1(A/J ) ⊆ D1(A/J )
and since the other inclusion is always true we conclude thatC1(A/J ) = D1(A/J ).
Now assume that y is an element in an operator system S . Consider S as an operator
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subsystem of a unitalC∗-algebraA. Then y ∈ A so from the abovewe have thatJ is a
proximinal kernel inA. Let q : A → A/J be the quotient map, this map is UCP with
kernel J . If q0 : S → A/J is the restriction of q on S , then q0 is UCP with kernel J .
Therefore from theorem 3.4 we have that the induced map q̃0 : S/J → A/J is UCP.
Let s+J ∈ (S/J )+ = C1(S/J ), then s+J ∈ (A/J )+ = C1(A/J ) = D1(A/J )
so there exists an element α ∈ A+ such that s + J = α + J and since J ⊆ S , α
must be in S . Hence, α ∈ S

⋂
A+ = S+ and s + J = α + J ∈ D1(S/J ). The

result follows.

Let S be an operator system. A finite dimensional *-closed subspace J of S , which
contains no other positive element of S except from 0 is called a null subspace of S .

An example of a one dimensional null subspace of an operator system is the set
span {y} of the previous proposition.

Lemma 3.8 Let V be a vector space and v1, . . . , vn ∈ V .
Set J = span {v1, . . . , vn} and let J0 = span {v1, . . . , vk} ⊂ J . Then for J1 =
span {

∑n
j=k+1 vj + J0} ⊆ V /J0,

V /J ∼= (V /J0)/J1

In the case in which V is an operator system and J0, J1 are proximinal kernels in V
and V /J0 respectively then we have that,

1. There exists an order isomorphism between the matrix ordered spaces

(V,D1(V /J0)) and ((V /J0)/J1, D1((V /J0)/J1))

2. There exists an order isomorphism between the Archimedeanmatrix ordered spaces

(V,C1(V /J0)) and ((V /J0)/J1, C1((V /J0)/J1))

Proof: Consider the map T : V /J0 → V /J defined by T (v + J0) = v + J , v ∈
V . It is easy to see that T is well-defined, linear and surjective. We will show that
kerT = J1.

kerT = {v + J0 ∈ V /J0 : T (v + J0) = 0V /J }
= {v + J0 ∈ V /J0 : v + J = 0 + J }
= {v + J0 ∈ V /J0 : v ∈ J }

Let v ∈ J then there exist λi, 1 ≤ i ≤ n+ 1, such that v =
∑n
i=1 λivi. Hence,

v + J0 =

n∑
i=1

λivi + J0 =

k∑
i=1

λivi +

n∑
i=k+1

λivi + J0 =

n∑
i=k+1

λivi + J0 ∈ J1

Thus, kerT ⊆ J1 and the other inclusion is trivial. So we have that T : V /J0 →
V /J is a surjective linear map with kerT = J1. Hence it induces a well-defined
isomorphism G : (V /J0)/J1 → V /J given by G((v + J0) + J1) = T (v + J0).
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Now for the case in which V is an operator system.

Firstly we recall the following:

C1(V /J ) = {v+J ∈ V /J : ∀ε > 0 there exist kϵ ∈ J such that εe1+v+k ∈ V +}

and
D1(V /J ) = {v + J ∈ V /J : v ∈ V +}

Furthermore,

C1(V /J0) = {(v + J0) ∈ V /J0 : ∀ε > 0, ∃ τϵ ∈ J0 s.t. εe1 + v + τϵ ∈ V +}

this is the positive cone of the operator system quotient V /J0 and because J0 is
proximinal it is equal to

D1(V /J0) = {v + J0 ∈ V /J0 : v ∈ V +}

Moreover,
C1((V /J0)/J1)) = {(v + J0) + J1 ∈ (V /J0)/J1 :

∀ε > 0, ∃k′ϵ ∈ J1 s.t. ε(e1 + J0) + ((v + J0) + k′ϵ) ∈ C1(V /J0)}

Now we prove 1: Let (v + Jo) + J1 ∈ D1((V /J0)/J1) then v + J0 ∈ C1(V /J0).
However, since J0 is proximinal in V , C1(V /J0) = D1(V /J0) and so we have that
that v ∈ V +. Thus,

G((v + Jo) + J1) = T (v + Jo) = v + J , with v ∈ V +

so G((v + Jo) + J1) ∈ D1(V /J ).
Conversely, we will show that whenever G((v + Jo) + J1) ∈ D1(V /J ) then

necessarily (v + Jo) + J1 ∈ D1((V /J0)/J1).
Indeed, G((v + Jo) + J1) ∈ D1(V /J ) means that T (v + J0) ∈ D1(V /J ) but
T (v + J0) = v + J which implies that v ∈ V +. Thus,

v + J0 ∈ D1(V /J0)

so (v + J0) + J1 ∈ D1((V /J0)/J1)).

For 2: Let (v+Jo)+J1 ∈ C1((V /J0)/J1), since J1 is a proximinal kernel in V /J0
this is equivalent to (v + Jo) + J1 ∈ D1((V /J0)/J1) which from 1 means that
G((v + Jo) + J1) ∈ D1(V /J ), however G((v + Jo) + J1) = T (v + J0) = v + J
so we have that v ∈ V +. Hence, for every ε > 0: εe1 + v ∈ V +. Thus, letting
kϵ = 0 ∈ J for every ε > 0, we have that

εe1 + kϵ + v ∈ V +
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which implies that G((v + J0) + J ) ∈ C1(V /J ).

On the other hand, suppose that G((v + Jo) + J1) ∈ C1(V /J ) we shall show that
then necessarily (v + Jo) + J1 ∈ C1((V /J0)/J1).
Indeed, G((v + Jo) + J1) ∈ C1(V /J ) means that T (v + J0) ∈ C1(V /J ) however
T (v + J0) = v + J .
It follows from the above that ∀ε there exists kϵ ∈ J such that εe1+v+kϵ := x ∈ V +.
Hence, ∀ε there existλi,ϵ such that (εe1+v+

∑n
i=1 λi,ϵvi)+J0 = x+J0 ∈ D1(V /J0)

so

(εe1 + v +

k∑
i=1

λi,ϵvi︸ ︷︷ ︸
∈J0

+

n∑
i=k+1

λi,ϵvi) + J0 = x+ J0, x ∈ V +, ∀ε > 0

or equivalently,

ε(e1 + J0) + (v + J0) + (

n∑
i=k+1

λi,ϵvi + J0)︸ ︷︷ ︸
∈J1

= x+ J0 ∈ D1(V /J0), ∀ε > 0

meaning that for every ε > 0 there exist k′ϵ =
∑n
i=k+1 λi,ϵvi + J0 ∈ J1 such that

ε(e1 + J0) + (v + J0) + k′ϵ ∈ D1(V /J0)

This is equivalent to (v + Jo) + J1 ∈ C1((V /J0)/J1).

Proposition 3.9 Let S be an operator system and J a null subspace of S . Then J is a
completely proximinal kernel.

Proof: Firstly we will show that J is a proximinal kernel in S . This will be done
by induction. If J = span{y}, where y is a self-adjoint element of S then Lemma
3.7 proves the point. Suppose that the statement holds for every null-subspace of S
generated by n self-adjoint elements of S and let J be a null-subspace of S gener-
ated by n+ 1 self-adjoint elements. Then J = span {y1, . . . , yn, yn+1} where every
yi, 1 ≤ i ≤ n + 1, is self-adjoint. Set J0 = span {y1, . . . , yn} then J0 is a n-
dimensional null-subspace of S so from the induction hypothesis it is a proximinal
kernel in S .

Claim 1: The element yn+1 + J0 of S/J0 is self-adjoint and is neither positive nor
negative.
Proof of Claim 1: It is obviously self-adjoint (from the way we defined the involution
on the quotient). Now assume that it is positive, i.e., yn+1 + J0 ∈ C1(S/J0) =
D1(S/J0) = {s+ J0 : s ∈ S+} (J0 is proximinal). Thus there exists x ∈ S+ such
that yn+1 + J0 = x + J0. Hence, x − yn+1 ∈ J0 = span {y1, . . . , yn}, so ∃λi ∈
C, 1 ≤ i ≤ n such that x− yn+1 =

∑n
i=1 λiyi. It follows that x ∈ J , which means

that we have found a positive element in J , however J contains no other positive
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element except from zero. Consequently, x = 0. Therefore yn+1 + J0 = 0 + J0, so
yn+1 ∈ J0 which is a contradiction. The fact that yn+1 cannot be negative is proven
in a similar way.
It follows from the above claim that span {yn+1 + J0} is the linear span of a self-
adjoint element of S/J0 which in neither positive nor negative and thus from Lemma
3.7 we have that it is a proximinal kernel in S/J0.

We setK := span {yn+1 + J0} and consider the following quotient maps:

S q0−→ S/J0
q1−→ (S/J0)/K

For the map q := q1 ◦ q0 we have that:

ker q = {s ∈ S : (q1 ◦ q0)(s) = 0(S/J0)/K} = {s ∈ S : q1(s+ Jo) = 0S/J0
+K}

= {s ∈ S : (s+ J0) +K = 0 + J0 +K} = {s ∈ S : s+ J0 ∈ K} = J

Since J0 is a proximinal kernel in S and K is a proximinal kernel in S/J0, using
Lemma 3.8 we have that

D1(S/J ) = D1((S/J0)/K) = C1((S/J0)/K) = C1(S/J )

We conclude that J is indeed a proximinal kernel in S .
In order to show that J is completely order proximinal we will use the identification
Mn(S/J ) =Mn(S)/Mn(J ).

Claim 2: Mn(J ) is a null-subspace ofMn(S).

Proof of the Claim 2: Mn(J ) is clearly a ∗-closed subspace ofMn(S). Suppose that
there exist non-zero positive elements inMn(J )and let [jkl] be one of them. Then for
every unital (completely) positive map φ : S → C we would have that φn([jkl]) =
[φ(jkl)] ∈ M+

n , i.e., the matrix [φ(jkl)] would be positive semi-definite. Thus, all of
its diagonal entries would be positive or zero. In the scenario where all the diagonal
entries are zero then the matrix would be the zero-matrix which in turn would imply
that [jkl] = 0 in Mn(J ) which contradicts our hypothesis. We conclude that for
every state φ on S the matrix [φ(jkl)] must have some positive (non-zero) diagonal
entry. More specifically, there would be some k1 ∈ {1, . . . , n} such that for every
φ : S → C completely positive, φ(jk1k1) ≥ 0 and it would be non-zero for at least
one of these φ. Since S is an operator system (it has an Arch. order unit) this would
mean that jk1k1 is a non-zero positive element of J which is a contradiction.

Finally, from the first part of the proof and claim 2 it is immediate that J is a
completely order proximinal kernel in S .
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4 The Coproduct
In category theory the coproduct of two objects O1 and O2 in a category is: another
object (in the same category) denoted O1 ∗O2 together with morphisms of this cate-
gory ι1 : O1 → O1 ∗ O2 and ι2 : O2 → O1 ∗ O2, satisfying the following universal
property:
If f1 : O1 → O and f2 : O2 → O are morphisms then there exists a unique mor-
phism F : O1 ∗ O2 → O such that F ◦ ι1 = f1 and F ◦ ι2 = f2. In other words we
have the following commuting diagram,

O

O1

f1

::vvvvvvvvvv
ι1
// O1 ∗ O2

F

OO�
�
�

O2

f2

ddHHHHHHHHHH

ι2
oo

In the category of operator systems the morhpisms are the UCP maps.
Given two operator systemsS and T their coproduct denoted byS⊕1T is an operator
system together with UCP maps ι1 : S → S ⊕1 T and ι2 : S → S ⊕1 T satisfying
the following: If R is an operator system and, ϕ : S → R and ψ : T → R are UCP
maps then there exists a unique UCP map Φ : S ⊕1 T → R such that Φ ◦ ι1 = ϕ and
Φ ◦ ι2 = ψ, i.e.,

R

S

φ

;;wwwwwwwww
ι1
// S ⊕1 T

Φ

OO�
�
�

T

ψ

ccGGGGGGGGG

ι2
oo

is a commuting diagram.

We will construct this object with the help of operator system quotients.
The construction shown below is presented in Section 8 of [11], for a different con-
struction see Section 3 of [9].
Let (S, e1) and (T , e2) be two operator systems. Consider their direct sum
S ⊕ T ⊂ B(H1) ⊕ B(H2), for some Hilbert spaces H1, H2, this is an operator
system in a canonical way with unit e1 ⊕ e2. The element (e1,−e2) := e1 ⊕ (−e2)
is self-adjoint and neither positive nor negative. It follows from Lemma 3.7 that J =
span {(e1,−e2)} = {λ(e1 ⊕ (−e2)) : λ ∈ C} is a proximinal kernel in S ⊕ T .
In particular it is a null-subspace of S , so using Proposition 3.9 we see that it is a
completely order proximinal kernel. Thus we obtain the quotient operator system
S ⊕ T /J . We shall show that this quotient equipped with the maps ι1 : S → S ⊕
T /J : s → (2s, 0) + J and ι2 : T → S ⊕ T /J : t → (0, 2t) + J satisfies the
universal property of the coproduct.

Note: IfH1, H2 are Hilbert spaces and T1⊕T2 ∈ (B(H1)⊕B(H2))
+, then T1⊕T2 =

(A ⊕ B)(A ⊕ B)∗, for some A ∈ B(H1) and B ∈ B(H2). Thus, T1 ⊕ T2 =
AA∗ ⊕BB∗ and so T1 = AA∗ ∈ B(H1)

+ and T2 = BB∗ ∈ B(H2)
+.
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Firstly, we will show that ι1 and ι2 are complete order isomorphisms.
Indeed, ι1 is unital since ι1(e1) = (2e1, 0) + J = (e1, e2) + J where the last

equality stems from the fact that (−e1, e2) ∈ J . Furthermore, it is completely pos-
itive because it can be written as a composition of CP maps, specifically ι1 = q ◦ f
where q : S ⊕ T → S ⊕ T /J denotes the quotient map and f : S → S ⊕ T is the
map given by f(s) = (2s, 0). It remains to show that ι−1

1 is CP. For this it suffices to
show that whenever we have [sij ] ∈Mn(S) such that ιn1 ([sij ]) = [(2sij , 0)+J ] is a
positive element ofMn(S ⊕ T /J ) then necessarily [sij ] is positive.

If [(2sij , 0) + J ] ∈ Mn(S ⊕ T /J )+ from the way the positivity in the quotient
is defined we have that there exist scalars αij ∈ C such that

[(2sij , 0)+αij(e1,−e2)]ij ∈Mn(S⊕T )+, i.e., [(2sij+αije1,−αije2)]ij ∈Mn(S⊕T )+

From this and the previous Note we obtain that [−αije2] ∈ Mn(T )+ and conse-
quently [−αije1] ∈Mn(S)+ (αij are scalars). Hence, sinceMn(S)+ is a cone

[sij ] = [sij + αije1] + [−αije1] ∈Mn(S)+

It follows that ι1 is a complete order isomorphism and in a similar way one can show
that this is also true for ι2.

We conclude from the above that both ι1 : S → S⊕T /J and ι2 : T → S⊕T /J
are complete order isomorphisms.
Now assume that (R, eR) is an operator system and ϕ : S → R, ψ : T → R are UCP
maps. Consider the map Φ : S ⊕ T /J → R given by the formula Φ((s, t) + J ) =
φ(s)+ψ(t)

2 , it will be CP because ϕ and ψ are CP. Moreover, notice that

(i) Φ((e1, e2) + J ) = φ(e1)+ψ(e2)
2 = eR+eR

2 = eR

(ii) (Φ ◦ ι1)(s) = Φ((2s, 0) + J ) = φ(2s)+ψ(0)
2 = 2φ(s)+0

2 = ϕ(s), ∀s ∈ S

(iii) as above (Φ ◦ ι2)(t) = ψ(t), ∀t ∈ T

Thus, Φ is a UCP map with Φ ◦ ι1 = ϕ and Φ ◦ ι2 = ψ which implies that S ⊕
T / span {(e1,−e2)} satisfies the universal property of the coproduct.
Subsequently, we have that

S ⊕ T / span {(e1,−e2)} = S ⊕1 T .

Note: For operator systems (S, e1) and (T , e2) we have that in the coproduct S ⊕1 T
their units coincide. Indeed,

(2e1, 0) + J = (e1, e2) + (e1,−e2) + J = (e1, e2) + J =

(e1, e2) + (−e1, e2) + J = (0, 2e2) + J
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Remark (i): The category with objects unital C∗-algebras and morphisms the
∗-homomorphisms also admits a coproduct, the free product amalgamated over the
unit. If A1, A2 are unital C∗-algebras their free product amalgamated over the unit,
denoted A1 ∗1 A2, is a C∗-algebra equipped with inclusions

ιj : Aj → A1 ∗1 A2, j = 1, 2

satisfying the following: If πi : Ai → B(H), i = 1, 2 are ∗-homomorphisms then
there exists a (unique) ∗-homomorphism π : A1∗1A2 → B(H)with π◦ιj = πj , j =
1, 2.

Remark (ii): The coproduct of operator systems (respectively C∗-algebras) can be ex-
tended in the obvious way to the case in which we have more than two terms.
In that case we would take for kernel

J = {(e,−e, 0, . . . , 0), (e, 0,−e, 0, . . . , 0), . . . , (e, 0, . . . , 0,−e)}

(here e denotes the unit of the corresponding operator system)

In order to prove some of our next results we will invoke the following theorem found
in [1] (for another proof see [5]).

Theorem 4.1 Let A1, . . . ,An be unital C∗-algebras and ϕi : Ai → B(H) be unital
completely positive maps, 1 ≤ i ≤ n. Then there exists a unital completely positive map
ϕ : A1 ∗1 · · · ∗1 An → B(H) whose restriction to each Ai is ϕi.

Theorem 4.2 Let n ∈ N and Si be an operator subsystem of a C∗-algebra Ai for 1 ≤
i ≤ n. Set

S = span {s1 + · · ·+ sn : si ∈ Si, 1 ≤ i ≤ n} ⊆ A1 ∗1 · · · ∗1 An

Then the canonical map S1⊕1 · · ·⊕1 Sn ↪−→ A1 ∗1 · · · ∗1An arising from the inclusions
ik : Sk → Ak , k = 1, . . . , n is a unital complete order embedding with image S .

Proof: We will show that S satisfies the universal property of the coproduct.
Suppose that T ⊆ B(H) is an operator system and ϕm : Sm → T is a UCP map,

form = 1, . . . , n. Let ϕ̃m : Am → B(H) be a unital completely positive extension of
ϕm (obtained by Arveson’s theorem), using theorem 4.1 we obtain a unital completely
positive map ϕ : A1 ∗1 · · · ∗1 An → B(H) such that ϕ ↾Am

= ϕ̃m. Let s ∈ S then,
s =

∑n
i=1 λisi for some λi ∈ C and si ∈ Si so

ϕ(s) =

n∑
i=1

λiϕ(si) =

n∑
i=1

λiϕ̃i(si) =

n∑
i=1

λiϕi(si) ∈ T

Now it follows that for the map Φ := ϕ ↾S : S → T we have that, Φ ↾Sm
= ϕm, i.e.,

S satisfies the desired universal property.

Remark: Using theorem 4.2 we see that if Ai, 1 ≤ i ≤ n, are unital C∗-algebras then
the operator subsystem

A1 + · · ·+An ⊆ A1 ∗1 · · · ∗1 An
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is complete order isomorphic to the free product A1 ⊕1 · · · ⊕1 An.

Proposition 4.3 Let (S1, e1), (S2, e2), . . . , (Sn, en) be finite dimensional operator sys-
tems. Then up to a (canonical) complete order isomorphism:

(S1⊕1S2⊕1 · · ·⊕1Sn)d = {ϕ1⊕· · ·⊕ϕn ∈ Sd1⊕· · ·⊕Sdn : ϕ1(e1) = · · · = ϕn(en)}

Moreover, (S1 ⊕1 S2 ⊕1 · · · ⊕1 Sn)d is completely order isomorphic to a subspace of
(S1 ⊕ S2 ⊕ · · · ⊕ Sn)d.

Proof: Firstly, notice that the quotient map

q : S1 ⊕ S2 ⊕ · · · ⊕ Sn → S1 ⊕1 S2 ⊕1 · · · ⊕1 Sn

is clearly a complete quotient map between operator systems, i.e., the induced map q̃
is a complete order isomorphism. Thus from theorem 3.6 the dual map

qd : (S1 ⊕1 S2 ⊕1 · · · ⊕1 Sn)d → (S1 ⊕ S2 ⊕ · · · ⊕ Sn)d

is a complete order embedding. This proves the second part.

Moreover, since (S1 ⊕S2 ⊕ · · · ⊕ Sn)d = Sd1 ⊕Sd2 ⊕ · · · ⊕ Sdn, by identifying (S1 ⊕1

S2 ⊕1 · · · ⊕1 Sn)d with its image under qd we have that

(S1 ⊕1 S2 ⊕1 · · · ⊕1 Sn)d ⊆ (S1 ⊕ S2 ⊕ · · · ⊕ Sn)d = Sd1 ⊕ Sd2 ⊕ · · · ⊕ Sdn

For the proof of first part we will discuss the case in which we have two operator
systems (S1, e1) and (S2, e2) the general case can be proved in a similar way.

Set J = {λ(e1 ⊕ (−e2)) : λ ∈ C}, then S1 ⊕1 S2 = S1 ⊕ S2/J and let

J 0 = {ϕ ∈ (S1 ⊕ S2)d : ϕ ↾J= 0}

Suppose that φ ∈ J 0. Since (S1 ⊕S2)d = Sd1 ⊕Sd2 , φ can be written as φ = φ1 ⊕ φ2
where φi ∈ Si, i = 1, 2.
Furthermore, φ ◦ j1 = φ1 and φ ◦ j2 = φ2 where j1 : S1 → S1 ⊕ S2 : s1 → (s1, 0)
and j2 : S2 → S1 ⊕ S2 : s2 → (0, s2) are the natural embeddings. Observe that
ϕ ↾J= 0 means that:

ϕ(λ(e1 ⊕ (−e2))) = 0 ∈ S1 ⊕ S2, ∀λ ∈ C

⇐⇒ ϕ(e1 ⊕ (−e2)) = 0

⇐⇒ ϕ(e1 ⊕ 0 + 0⊕ (−e2)) = 0

⇐⇒ ϕ(e1 ⊕ 0) + ϕ(0⊕ (−e2)) = 0

⇐⇒ ϕ(e1 ⊕ 0) = ϕ(0⊕ e2)
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Thus,

φ1(e1) = (φ ◦ j1)(e1) = φ(e1, 0) = φ(0, e2) = (φ ◦ j2)(e2) = φ2(e2)

Consequently,

J 0 = {ϕ1 ⊕ ϕ2 ∈ Sd1 ⊕ Sd2 : ϕ1(e1) = ϕ2(e2)}

Now we will show that the map L : J 0 → (S1 ⊕ S2/J )d with L(f) = f̂ , where
f̂((s1, s2) + J ) = f((s1, s2)), is a complete order isomorphism.

Firstly, we see that f̂ is well-defined because whenever (s′1, s′2) + J = (s1, s2) +
J then (s′1, s

′
2) − (s1, s2) ∈ J so f((s′1, s′2) − (s1, s2)) = 0, which implies that

f̂((s′1, s
′
2) + J ) = f̂((s1, s2) + J ).

Moreover notice that for every f ∈ J 0, ker f ⊆ J and f̂ ◦ q = f , so it follows from
Proposition 3.4 that L is a complete order isomorphism.

L is injective: It can be easily checked that kerL = {0}

L is surjective: Let ψ ∈ (S1 ⊕1 S2)d = (S1 ⊕ S2/J )d then qd(ψ) ∈ (S1 ⊕ S2)d and
qd(ψ) ↾J= 0. Thus qd(ψ) ∈ J 0 and for every (s1, s2) + J ∈ S1 ⊕ S2/J we have
that

L(qd(ψ))((s1, s2) + J ) = qd(ψ)((s1, s2)) = ψ(q((s1, s2))) = ψ((s1, s2) + J )

Hence L(qd(ψ)) = ψ.

We conclude that

(S1 ⊕1 S2)d = {ϕ1 ⊕ ϕ2 ∈ Sd1 ⊕ Sd2 : ϕ1(e1) = ϕ2(e2)}

Remark: Suppose that S and T are operator systems and S0 ⊆ S and T0 ⊆ T are
operator subsystems, then the identity map

id : S0 ⊗c T0 → S ⊗c T

is a completely positive.

Indeed, let (φ, ψ) ∈ ucp(S, T ) and v ∈ Mn(S0 ⊗c T0)+. If φ0 = φ ↾S0
and ψ0 =

ψ ↾T0
then (φ0, ψ0) ∈ ucp(So, T0) and

(φ · ψ)n(v) = (φ0 · ψ0)
n(v) ∈Mn((B(H))+.

This map can sometimes be a complete order embedding as shown in Lemma 2.6 of
[17]:

Theorem 4.4 [17] Let Ai, i = 1, . . . , n, and Bj , j = 1, . . . ,m be unital C∗-algebras.
Set S = A1 ⊕1 · · · ⊕1 An, T = B1 ⊕1 · · · ⊕1 Bm, A = A1 ∗1 · · · ∗1 An and
B = B1 ∗1 · · · ∗1 Bm. Then, the inclusion of S ⊗c T intoA⊗max B is a complete order
isomorphism onto its range, i.e.:

S ⊗c T ⊆c.o.i. A⊗max B
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5 Quantum Correlations
Quantummechanics is a mathematical framework used for the development of physi-
cal theories that attempt to describe the universe in a subatomic scale. In what follows
we state some of the basic postulates of quantum mechanics. For more information
on the topic of quantum mechanics the reader is advised to see [14].

Postulate I : To each isolated physical system, there corresponds a (complex) Hilbert
space H , called the state space. Every unit vector in H represents a possible state,
called state vector or pure state. The system is completely described by its state
vector.

The first Postulate tells us that the state space of a quantum system is described by a
(complex) Hilbert space. However, it neither tells us which Hilbert space corresponds
to a given physical system nor what the state vector of the system is. More often than
not figuring out these facts is quite difficult.
We will focus on the study of quantum systems which are not closed (they interact
with the environment). In particular in our scenarios there will be ”observers” con-
ducting measurements on the systems. The next Postulate tells us in what way these
measurements affect the system.

Postulate II : Quantum measurements are always described by a class of operators
{Mi}i∈J , where J is the set of all possible outcomes.
The probability that we observe outcome i, when the system is in a state y is given
by pi = ∥Miy∥2 and if we observe outcome i then the system changes to the state
Miy

∥Miy∥ .
The measurement operators satisfy the so called completeness equation :∑
i∈JM

∗
iMi = I , where I denotes the identity operator of the state space.

The completeness equation expresses the fact that the sum of all the probabilities of
all possible outcomes must be 1 (

∑
i∈J pi = 1).

Remark : The completeness equation need not necessarily be included in Postulate II
as it can be derived from the fact that the sum of all the probabilities of all possible
outcomes must be 1.
Indeed, letm ∈ N and consider a quantum experiment with at mostm possible out-
comes and let H denote the state space of the system. Now let {Mi}mi=1 be a family
of operators where,Mi ∈ B(H), ∀i ∈ {1, . . . ,m}. Suppose that before the measure-
ment the system is at a state y, where y is a unit vector in H . Then,

1 =

m∑
i=1

pi =

m∑
i=1

∥Miy∥2 =

m∑
i=1

(Miy,Miy) =

m∑
i=1

(M∗
iMiy, y) =

(
m∑
i=1

M∗
iMiy, y

)

Since the above equality holds for every unit vector y ∈ H1, it follows that:
m∑
i=1

M∗
iMi = I
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The following Definition stems form the above Postulate.

Definition 5.1 Let H1 and H2 be finite dimensional Hilbert spaces. A finite family of
operators {Mi : 1 ≤ i ≤ k}, withMi : H1 → H2 is called a measurement system if∑k
i=1M

∗
iMi = I .

If H1 = H2 then we call {Mi}i a measurement system on H1.

In one hand, Postulate II gives us a rule which determines the respective probabilities
of the different possible measurement outcomes. On the other hand, it also describes
the state of the system after themeasurement. However, here we aremostly interested
in the former, i.e. in the probabilities of the respective outcomes. A mathematical tool
which is extremely useful in such instances is the Positive Operator Valued Measures
(POVM’s for short).

Definition 5.2 Let H be a Hilbert space and k ∈ N, a family {Pi}Ki=1 of operators on
H is called a (K-outcome) positive operator-valued measure or POVM for short if:

1. for each i, Pi is a positive operator ((Pih, h) ≥ 0, ∀h ∈ H)

2.
∑K
i=1 Pi = IH , where IH is the identity operator on H .

Remark : Whenever we have a measurement system {Mi}i on some Hilbert spaceH
which is a state space of some system, then there exists a POVM {Pi}i on H such
that

pi = (Piy, y)

where as before pi is the probability to observe outcome i when the system is in a
state y.
To see this, set Pi =M∗

iMi for every i.

When H = Cn is finite dimensional, we identify the operators acting on H with the
elements of the algebraMn of n× n-matrices, via the following process:
Let {ei}ni=1 be an orthogonal basis forH we define for each T ∈ L(H) a n×n-matrix
A given by: A = [(Tej , ei)]i,j .
Thus we can consider the POVM’s {Pi}ni=1 acting on H = Cn as a subset ofMn.

Definition 5.3 Let H be a Hilbert space, a family {Ri}Ki=1 of orthogonal projections
(i.e., Ri = R2

i = R∗
i , ∀i) on H is called a (K-outcome) projection-valued measure

or PVM for short if:
∑K
i=1Ri = IH .

Clearly every PVM is a POVM. As we will see in the discussion that follows it is also
true that every POVM dilates to a PVM.

Theorem 5.4 Let {Pi}Ki=1 be a POVM on a Hilbert space H . Then there exist a PVM
{Ri}Ki=1 on H ⊗ CK and an isometry V : H → H ⊗ CK such that Pi = V ∗RiV , for
all 1 ≤ i ≤ K .
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Proof: We identifyH⊗CK with the direct sum of K-copies ofH ,H⊕· · ·⊕H = HK

(via the identification
∑K
i=1 hi⊗ei ←→ (h1, . . . , hn),where {ei} is the standard basis

of CK ).
Let Ei,j be the K ×K matrix with 1 in the (i, j) position and zeroes elsewhere and
set Ri = IH ⊗ Eii, this will be a K × K matrix with IH on the (i, i)-position and
zeroes elsewhere. Thus,

Ri



h1
h2
...
hn


 =



0
...
0
hi
0
...
0


That is, each Ri : H ⊗ CK → H ⊗ CK is the projection on the i-th copy of H in
H ⊗ CK = HK . Obviously, Ri = R∗

i = R2
i and

∑K
i=1Ri = IH ⊗ IK = IH⊗CK .

Hence, {Ri}Ki=1 is a PVM on H ⊗ CK . Now, define a map V : H → H ⊗ CK by

V (h) =

K∑
i=1

P
1
2
i (h)⊗ ei =


P

1
2
1 (h)
...

P
1
2

K(h)


This map is linear and an isometry. Indeed,

∥V (h)∥2 = (V (h), V (h))H⊗CK =

K∑
i=1

(
P

1
2
i (h), P

1
2
i (h)

)
H
(ei, ei)CK

Pi=P
∗
i=

K∑
i=1

(h, Pih) = (h, h) = ∥h∥2

Finally, notice that for every 1 ≤ j ≤ K :

(V ∗RjV h, h)H =

Rj


P

1
2
1 h
...

P
1
2

Kh


 , V h


H⊗CK

=





0
...
0

P
1
2
j h

0
...
0


,



P
1
2
1 (h)
...

P
1
2
j h
...

P
1
2

K(h)




=
(
P

1
2
j h, P

1
2
j h
)

= (Pjh, h)H

which implies that Pj = V ∗RjV .
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Remark: We have shown that for h ∈ H if we set h̃ = V h then,

(Pih, h)H = (V ∗RiV h, h)H = (Ri(V h), V h)H⊗CK =
(
Rih̃, h̃

)
and since V is an isometry ∥h∥ = ∥h̃∥.
So, to sum up, whenever we are given a POVM {Pi}ni=1 on a Hilbert space H and
h ∈ H , we can always dilate the POVM to a PVM {Ri}i via an isometry V : H →
H ⊗ Cn.

The elements of a POVM are not necessarily orthogonal projections, so the num-
ber of operators in a POVM can be larger than the dimension of the Hilbert space they
act on. However, since a PVM consist of projections summing up to the identity their
ranges are pairwise orthogonal, that is, RiRj = 0 = RjRi, for i ̸= j.
(actually for the above claim to be true it suffices to have that their sum is less than
the identity)
Indeed, suppose that

∑k
m=1Rm ≤ I and fix i, j such that i ̸= j then

k∑
m ̸=i

Rm ≤ I −Ri

Therefore,

0 ≤ RiRjRi ≤ Ri(
k∑

m ̸=i

Rm)Ri

Ri(I −Ri)Ri = Ri −R2
i = 0

Thus, RiRjRi = 0. But, then

0 = RiR
2
jRi

R∗
i =Ri
= R∗

iR
∗
jRjRi = (RjRi)

∗RjRi

which implies that RjRi = 0.

Theorem 5.4 gives a way to obtain a PVM from a POVM in the case where we have
one measurement system when we have several measurement systems an analogous
result is given by the following.

Theorem 5.5 Let {Pt,i}mi=1 be a family of POVM’s on a Hilbert H , indexed by t ∈ T
where |T | = n <∞. Then there exist a Hilbert spaceK and a family of PVM’s {Rt,i}mi=1

acting on K for t ∈ T and an isometry V : H → K such that V ∗Rt,iV = Pt,i, ∀t, i.
Moreover, if H is finite dimensional so isK .

Proof: We will prove it by induction to number of elements of T . The case for n = 1
is Theorem 5.2. Assume that it is true for |T | = n. Now suppose that |T | = n+1. By
the induction hypothesis we know that there exist a Hilbert space K1, an isometry
V1 : H → K1 and a family of PVM’s {Rt,i}mi=1 for 1 ≤ t ≤ n such that V ∗

1 Pt,iV1 =
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Rt,i, ∀i ∈ {1, . . . ,m} and ∀t ∈ {1, . . . , n}. At first, let P̃n+1,i = V1Pn+1,iV
∗
1 .

Then P̃n+1,i ≥ 0 and
m∑
i=1

P̃n+1,i = V1(

m∑
i=1

Pn+1,i)V
∗
1 = V1V

∗
1 (∗)

which is a projection (V1 is an isometry). We want {P̃n+1,i}mi=1 to be a POVM onK1

(the elements must sum up to the identity), so we adjust P̃n+1,1 by setting P̃n+1,1 =
V1Pn+1,1V

∗
1 + (I − V ∗

1 V1).
Now on K1, we have PVM’s {Rt,i}mi=1 and a POVM {P̃n+1,i}mi=1 = (K1)

m. Let
K = K1 ⊗ Cm, and define a map V2 : K1 → K by:

V2k =

 (P̃n+1,1)
1
2 k

...
(P̃n+1,m)

1
2 k


Notice that:

∥V2k∥2 =


 (P̃n+1,1)

1
2 k

...
(P̃n+1,m)

1
2 k

 ,
 (P̃n+1,1)

1
2 k

...
(P̃n+1,m)

1
2 k




=

m∑
i=1

(
(P̃n+1,i)

1
2 k, (P̃n+1,i)

1
2 k
)

=

m∑
i=1

(
P̃n+1,ik, k

)

=

m∑
i=1

(Ik, k) = ∥k∥2

Set Rn+1,i = IK1
⊗ Eii, 1 ≤ i ≤ m, where Eii is the m ×m matrix with 1 in the

(i, i)-entry and 0 elsewhere. Then {Rn+1,i}mi=1 is a PVM and,

(V ∗
2 Rn+1,iV2k, k) = (Rn+1,iV2k, V2k) =


0 · · · 0
... IK1

...
0 · · · 0


 (P̃n+1,1)

1
2 k

...
(P̃n+1,m)

1
2 k

 ,
 (P̃n+1,1)

1
2 k

...
(P̃n+1,m)

1
2 k




=
(
(P̃n+1,1)

1
2 k, (P̃n+1,1)

1
2 k
)

=
(
P̃n+1,1k, k

)
which implies that V ∗

2 Rn+1,iV2 = P̃n+1,1.
For all 1 ≤ t ≤ n we set:

Qt,j = V2Rt,jV
∗
2 , 2 ≤ j ≤ m and Qt,1 = V2Rt,1V

∗
2 + (I − V2V ∗

2 )
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Notice that V ∗
2 Qt,jV2 = Rt,j , thus Qt,j = V2Rt,jV

∗
2 . For 1 ≤ t ≤ n, {Qt,j}mj=1

are POVM’s, we need to show that they are PVM’s. We have that for t = n + 1,
{Rn+1,i}mi=1 is a PVM. For the other ones, note that for j ≥ 2

Q2
t,j = (V2Rt,jV

∗
2 )(V2Rt,jV

∗
2 )

V ∗
2 V2=I
= V2Rt,jRt,jV

∗
2

R2
t,j=Rt,j

= V2Rt,jV
∗
2 = Qt,j

Finally,

Q2
t,1 = (V2Rt,1V

∗
2 + (I − V2V ∗

2 ))(V2Rt,1V
∗
2 + (I − V2V ∗

2 ))

= V2Rt,1V
∗
2 + (I − V2V ∗

2 )

= Qt,1

It follows that Qt,j , j ≥ 1 are projections. Hence {Qt,j}mj=1 are PVM’s, for all 1 ≤
t ≤ n and there exists an isometry V : H → K such that V ∗Qt,jV = Pt,i, where
V = V2V1.

A system which can be thought of as being comprised by different parts is called a
composite system. We will study composite systems that are made out of two dis-
tinct physical systems. The following Postulate gives us an axiomatic mathematical
description of such a system.

Postulate III :The state space of a composite physical system is the tensor product of
the respective state spaces of the components of the total system. Furthermore, if we
have physical systems numbered 1 through n and each of them is in a state yi then
the joint state of the total system is : y1 ⊗ · · · ⊗ yn.

For example : If we have two systems modelled by Hilbert spaces H1 and H2 which
are in states h1 and h2 respectively. Then the total system is modelled by the space
H1 ⊗H2 and is in a state h1 ⊗ h2.

Non-local Games: Consider a two-person gamewhich is played between two players,
Alice and Bob, and arbitrated by a referee R. Let IA, IB ,OA,OB be finite non-empty
sets. The sets IA, IB are the sets of questions (or inputs) and the setsOA, OB are the
sets of answers (or outputs) for Alice and Bob respectively. Since this is a game it will
have some rules, which are described by a function λ : IA× IB×OA×OB → {0, 1}
where,

λ(x, y, a, b) =

{
1, means that this answer is correct
0, means that this answer is wrong

the players and the referee are all aware of the rules (the function λ).
Alice and Bob are playing the game cooperatively against the referee and they are not
allowed to communicate during the game. However, they may agree on a strategy
beforehand. We denote a gamewith input sets I, J , output setsA,B and rule function
λ, by G = (I, J,A,B, λ).

For a one-round game the referee gives Alice a question x ∈ IA and Bob a ques-
tion y ∈ IB and the players do not know what question the other was given. Then
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each of the players independently (without communicating) produces outputs (an-
swers) a ∈ OA and b ∈ OB . They win the game if λ(x, y, a, b) = 1 and lose if
λ(x, y, a, b) = 0.

A two-person non-local game is a game G = (IA, IB ,OA,OB , λ) together with
a probability distribution π : IA × IB → [0, 1]. In a single round of the game the
referee selects a pair of questions (x, y) ∈ Ia× IB according to the probability distri-
bution π and communicates x to Alice and y to Bob, then they return answers a and
b respectively. The tandem Alice-Bob wins the round whenever λ(x, y, a, b) = 1 and
loses the round otherwise. Moreover, each of them knows neither the question the
other was given nor his/her answer. We will concern ourselves only with non-local
games that involve two players, so we will drop the term “two person” and will refer
to them as “non-local games” or “games”.

Obviously, the probability distribution π acquires significance only when the game
is played multiple times. When we are concerned with winning every round of the
game independently of the chosen pair (x, y) of questions then π can be omitted all
together, in these cases by game we mean the quintuple G = (IA, IB ,OA,OB , λ).

We mentioned that Alice and Bob, although not allowed to communicate during
the game, can come up with some strategy beforehand in order to win the game. A
strategy can be either deterministic or probabilistic (they win the game with a certain
probability).

Definition 5.6 A deterministic strategy for a non-local game
G = (IA, IB ,OA,OB , λ) is a pair of functions (f, g) with f : IA → OA and g : IB →
OB .

We interpret a deterministic strategy as follows, we view the pair (f(x), g(y)) as the
answers that are given by Alice and Bob to the questions (x, y).
A deterministic strategy is called perfect if it yields awin for the players independently
of the choice of an input pair, that is, if

λ(x, y, f(x), g(y)) = 1, ∀x ∈ IA and ∀y ∈ IB

Notice that when following deterministic strategies, given a fixed (x, y) ∈ IA × IB
that appears as an input pair in two different rounds of the game, the players have to
respond with the same output pair, namely (f(x), g(y)).

As we will see probabilistic strategies offer a significant advantage to the players
compared to deterministic ones.

We say that Alice and Bob follow a probabilistic strategy when they generate out-
puts according to some probability distribution. Formally, a probabilistic strategy is
defined as follows:

Definition 5.7 A probabilistic strategy for a non-local game G = (IA, IB ,OA,OB , λ)
is a family of probability distributions:

p = {(p(a, b|x, y))(a,b)∈OA×OB
: (x, y) ∈ IA × IB}
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If p = {(p(a, b | x, y))(a,b)∈OA×OB
: (x, y) ∈ IA × IB} is a probabilistic strategy

for a non-local game G = (IA, IB ,OA,OB , λ), we interpret the value p(a, b | x, y)
as the joint conditional probability that the players will answer with the pair (a, b), if
they are given an input/questions (x, y).
Therefore it is clear that for any probabilistic strategy p:

p(a, b | x, y) ≥ 0 and
∑

(a,b)∈OA×OB

p(a, b | x, y) = 1, ∀x ∈ IA, y ∈ IB

Henceforth any tuple ((p(a, b | x, y))a∈OA,b∈OB ,x∈IAy∈IB satisfying these condi-
tions will be called a correlation and we shall use the terms correlation and strategy
interchangeably.
Notice that any correlation ((p(a, b | x, y))a∈OA,b∈OB ,x∈IAy∈IB can be viewed as a
vector in RN with non-negative coordinates, where N = |IA||IB ||OA||OB |.

In the scenario in which the players follow a probabilistic strategy they are in a
position to vary their answers for the same pair of questions, this flexibility is what
gives them the aforementioned advantage (compared to a deterministic strategy).

Definition 5.8 A probabilistic strategy

p = {(p(a, b | x, y))(a,b)∈OA×OB
: (x, y) ∈ IA × IB}

for a non-local game G = (IA, IB ,OA,OB , λ) is called a non-signalling (or NS) corre-
lation if for all x ∈ IA and y ∈ IB it satisfies the following:

1.
∑
b′∈OB

p(a, b′ | x, y′) =
∑
b′∈OB

p(a, b′ | x, y′′), y′, y′′ ∈ IB , a ∈ OA

2.
∑
a′∈OA

p(a′, b | x′, y) =
∑
a′∈OA

p(a′, b | x′′, y), x′, x′′ ∈ IA, b ∈ OB .

If we have a non-signalling correlation p we let p(a | x) (resp. (p(b | y)) denote
the values obtained from the sums in 1 (resp. 2) of definition 5.8. The conditions
required for a probabilistic strategy to be non-signalling are formal incarnations of the
requirement that Alice and Bob do not communicate during the game. Indeed, they
ensure that the conditional probability distributions p(∗, ∗ | x, y) have well-defined
(the sums in 1 and 2 do not depend on a and b, respectively) marginal distributions,
namely p(∗ | x) and p(∗ | y). Thus, there is a well-defined probability p(a | x) that
Alice responds with an answer a given a question x, independently of what Bob’s
question and answer is (and similarly for Bob ∃ p(b | y)).

We denote the set of all non-signalling correlations by Cns.
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Remark: Cns is a convex set.

Indeed, let p1, p2 ∈ Cns and λ ∈ [0, 1]. Then for p = λp1 + (1 − λ)p2 we have that
for all x ∈ IA, y′, y′′ ∈ IB , a ∈ OA:∑
b′∈OB

p(a, b′ | x, y′) =
∑
b′∈OB

(λp1(a, b
′ | x, y′) + (1− λ)p2(a, b′ | x, y′))

= λ
∑
b′∈OB

p1(a, b
′ | x, y′) + (1− λ)

∑
b′∈OB

p2(a, b
′ | x, y′)

= λ
∑
b′∈OB

p1(a, b
′ | x, y′′) + (1− λ)

∑
b′∈OB

p2(a, b
′ | x, y′′)

=
∑
b′∈OB

(λp1(a, b
′ | x, y′′) + (1− λ)p2(a, b′ | x, y′′))

=
∑
b′∈OB

p(a, b′ | x, y′′)

where the third equality stems from the fact that p1, p2 ∈ Cns.
Similarly

∑
a′∈OA

p(a′, b | x′, y) =
∑
a′∈OA

p(a′, b | x′′, y), x′, x′′ ∈ IA, j ∈
IB , b ∈ OB .

Definition 5.9 The probabilistic strategy of definition 5.8 is called perfect if

whenever λ(x, y, a, b) = 0, then p(a, b | x, y) = 0

Clearly, if the players follow a perfect strategy they win every round of the game, in
that case we say they win the game with probability one.

If (f, g) is a deterministic strategy (see 5.6) then it gives rise to the probabilistic strat-
egy pf,g defined by,

pf,g(a, b | x, y) =

{
1, if a = f(x) and b = g(y)

0, otherwise

Another way to see this is that pf,g(a, b | x, y) = pf (a | x)pg(b | y), where

pf (a | x) =

{
1, if a = f(x)

0, otherwise
and pg(b | y) =

{
1, if b = g(y)

0, otherwise

It is easy to see that such a strategy is non-signalling.

A more general class of probabilistic strategies consists of the convex combinations
of strategies of the form pf,g .
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Definition 5.10 A non-signalling correlation

p = {(p(a, b | x, y))(a,b)∈OA×OB
: (x, y) ∈ IA × IB}

is called local if there exists families of probability distributions

p
(1)
k = {(p(1)k (a | x))a∈OA

: x ∈ IA} and p(2)k = {(p(2)k (b | y))b∈OB
: y ∈ IB}

as well as non-negative scalars λk, k = 1, . . . ,m such that

p(a, b | x, y) =
m∑
k=1

λkp
(1)
k (a | x)p(2)k (b | y), x ∈ IA, y ∈ IB , a ∈ OA, b ∈ OB

as a convex combination.

We denote the set of all local correlations by Cloc.

Remark (i): Viewing a non-signalling correlation p as a vector in RN , where N =
|IA||IB ||OA||OB |, and by appealing to Caratheodory’s Theorem, one can show that
the set Cloc is a closed subset of RN (that is, it is closed in the product topology).

Indeed, let (pn)n∈N be a sequence in Cloc such that pn → p in the product topology
of RN . We have to prove that p lies in the convex set Cloc.

Since pn ∈ Cloc, ∀n ∈ N, every pn can be written as
∑m
i=1 λi,np

1
i,n ⊗ p2i,n where

p1i,n : IA ×OA → [0, 1] and p2i,n : IB ×OB → [0, 1] are functions, that is,

pn(a, b | x, y) =
m∑
i=1

λi,np
(1)
i,n(a | x)p

(2)
i,n(b | y)

Now, by Caratheodory’s Theorem each pn is a convex combination of at most N + 1
elements of the form p1 ⊗ p2, i.e., for every n ∈ N

pn =

N+1∑
t=1

λt,np
(1)
t,n ⊗ p

(2)
t,n

Notice that these sequences live in bounded sets of finite dimensional spaces, and that
there are finitely many of them (N + 1 at most which is a fixed number), so we may
pass to subsequences in order to ensure that there are scalars λt ∈ [0, 1] as well as
functions p1t ∈ [0, 1]IA×OA and p2t ∈ [0, 1]IB×OB , 1 ≤ t ≤ N + 1 such that

lim
n
λt,n = λt, lim

n
p1t,n(a | x) = p1t (a | x) and lim

n
p1t,n(b | y) = p2t (b | y)

for all (x, y, a, b) ∈ IA × IB ×OA ×OB and t = 1, . . . , N + 1. It follows that

p = lim
n
pn =

N+1∑
t=1

λtp
(1)
t ⊗ p

(2)
t
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which lies in the convex set Cloc.

Remark (ii): The extreme points of Cloc are the strategies of the form pf,g .

Proof : Let p ∈ Cloc and suppose that p is not an extreme point then there would be
p1, p2 ∈ Cloc with p1 ̸= p2 and λ ∈ (0, 1) such that p = λp1 + (1 − λ)p2. Thus, we
would have that for all x ∈ IA, y ∈ IB , a ∈ OA, b ∈ OB :

p(a, b | x, y) = λp1(a, b | x, y) + (1− λ)p2(a, b | x, y)

Fix (x, y) ∈ IA × IB , since p1 ̸= p2 we would also have that for some (a1, b1) ∈
OA ×OB :

p1(a1, b1 | x, y) ̸= p2(a1, b1 | x, y)

Assume that p1(a1, b1 | x, y) > p2(a1, b1 | x, y) then,

p(a1, b1 | x, y) = λp1(a1, b1 | x, y) + (1− λ)p2(a1, b1 | x, y)

> λp2(a1, b1 | x, y) + (1− λ)p2(a1, b1 | x, y)

= p2(a1, b1 | x, y) ≥ 0

and

p(a1, b1 | x, y) = λp1(a1, b1 | x, y) + (1− λ)p2(a1, b1 | x, y)

< λp1(a1, b1 | x, y) + (1− λ)p1(a1, b1 | x, y)

= p1(a1, b1 | x, y) ≤ 1

Thus we see that 0 < p(a1, b1 | x, y) < 1 so p does not arise from a deterministic
strategy.

We will now show that if p ∈ Cloc arises from a deterministic strategy then it is an
extreme point. Consider a correlation p in Cloc arising from a deterministic strategy.
Then p is of the form pf,g for some functions f : IA → OA and f : IB → OB .
Suppose that p was not an extreme point then there would exist p1, p2 ∈ Cloc with
p1 ̸= p2 and λ ∈ (0, 1) such that p = λp1 + (1 − λ)p2. Therefore, we would have
that for all x ∈ IA, y ∈ IB , a ∈ OA, b ∈ OB :

p(a, b | x, y) = λp1(a, b | x, y) + (1− λ)p2(a, b | x, y)

Since p1 ̸= p2 we also have that p1(a, b | x, y) ̸= p2(a, b | x, y) for (at least) one
quadruple (x, y, a, b) ∈ IA × IB ×OA ×OB . Let (x1, y1, a1, b1) be that quadruple.
Then,

p(a1, b1 | x1, y1) = λp1(a1, b1 | x1, y1) + (1− λ)p2(a1, b1 | x1, y1)

If p(a1, b1 | x1, y1) = 0 then p1(a1, b1 | x1, y1), p2(a1, b1 | x1, y1)must both be equal
to zero which is a contradiction. On the other hand if p(a1, b1 | x1, y1) = 1 then since
p1(a1, b1 | x, y) ̸= p2(a1, b1 | x, y) they cannot both be 1 which means that one of

75



them is strictly less than 1, let p2(a1, b1 | x, y) be that one. However, in this case we
would have that

1 = p(a1, b1 | x, y) = λp1(a1, b1 | x, y) + (1− λ)p2(a1, b1 | x, y)

< λ · 1 + (1− λ) · 1 = 1

which once again is a contradiction.

We will now define some additional classes of NS-correlations, this will be done using
POVM’s.

Definition 5.11 A non-signalling correlation

p = {(p(a, b | x, y))(a,b)∈OA×OB
: (x, y) ∈ IA × IB}

is called

1. quantum: if there exist a finite dimensional Hilbert spaces HA (Alice’s state
space) and HB (Bob’s state space), a unit vector ξ ∈ HA ⊗ HB and for each
x ∈ IA a POVM {Ex,a}a∈OA

on HA and for each y ∈ IB {Fy,b}b∈OB
on HB

such that

p(a, b | x, y) = ((Ex,a ⊗ Fy,bξ, ξ) , for all x ∈ IA, y ∈ IB , a ∈ OA, b ∈ OB

2. approximately quantum: if there exists a sequence (pn)n∈N of quantum corre-
lations such that pn →n→∞ p

3. quantum commuting: if there exist a (possibly infinite-dimensional) Hilbert
space H (shared state space), a unit vector ξ ∈ H as well as POVM’s on H
{Ex,a}a∈OA

for each x ∈ IA and {Fy,b}b∈OB
for each y ∈ IB , such that:

Ex,aFy,b = Fy,bEx,a, for all x, y, a, b and

p(a, b | x, y) = ((Ex,aFy,b)ξ, ξ) , for all x ∈ IA, y ∈ IB , a ∈ OA, b ∈ OB

The set of all correlations (p(a, b | x, y)) as in 1 arising from all choices of finite-
dimensional Hilbert spaces HA,HB , all POVM’s on HA,HB and all unit vectors in
HA ⊗HB is called the set of quantum correlations and is denoted by Cq .
Similarly the set of all correlations (p(a, b | x, y)) as in 3 arising from all choices of
the Hilbert spaceH , all POVM’s onH and all unit vectors is called the set of quantum
commuting correlations and will be denoted by Cqc.
The set of all approximately quantum correlations will be denoted by Cqa.

Proposition 5.12 For the correlation sets defined, we have the following inclusions:

Cloc ⊆ Cq ⊆ Cqa ⊆ Cqc ⊆ Cns
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Proof: For the first inclusion: Suppose that p =
∑m
i=1 λip

(1)
i ⊗ p

(2)
i , i.e., p(a, b |

x, y) =
∑m
i=1 λip

(1)
i (a | x)p(2)i (b | y) is a convex combination, where

p1 : OA × IA → [0, 1] and p2 : OB × IB → [0, 1]

are probability distributions. Thus p is an element of Cloc.
Now, for each (a, x) ∈ OA×IA letting e(a,x)(i) =

√
λip

1
i (a | x)we obtain a function

e(a,x) : {1, . . . ,m} → [0, 1], that is, an element of the Abelian finite dimensional
von-Neumann algebra l∞([m]). Similarly letting f(b,y)(i) =

√
λip

2
i (b | y) we obtain

a function f(b,y) ∈ l∞([m]). Moreover, if we set E(x,a) and F(y,b) to be the diagonal
operators diag(e(a,x)(i)) and diag(f(b,y)(i)) respectively, and denote the standard
basis of l2([m]) by {δi} then

p(a, b | x, y) =
m∑
i=1

e(a,x)(i)f(b,y)(i) =

m∑
i=1

(
(E(x,a)F(y,b))δi, δi

)
= Tr(E(x,a)F(y,b))

Now, write Ẽ(x,a) = E(x,a) ⊗ Im and F̃(y,b) = Im ⊗ F(y,b) these are operators
acting on l2([m]) ⊗ l2([m]), and let ξ = 1√

m

∑m
i=1 δi ⊗ δi (this is a unit vector on

l2([m])⊗ l2([m])) then:

p(a, b | x, y) =
(
(Ẽ(x,a) ⊗ F̃(y,b))ξ, ξ

)
it follows that p ∈ Cq .
In particular, we have shown that every local correlation can be written in the form of
a quantum correlation as in Definition 5.11 with the added condition that the families
of POVM’s commute.

The second inclusion is obvious.

For the third inclusion: We will make use of a fact that will be proven later on, which
is that the set Cqc is closed. Since it is closed it will contain the closure of any of its
subsets. Thus, it suffices to show that Cq ⊆ Cqc.

To this end, suppose that we have a correlation p such that for all x ∈ IA, y ∈
IB , a ∈ OA, b ∈ OB :

p(a, b | x, y) = ((Ex,a ⊗ Fy,b)ξ, ξ)

where for each x ∈ IA, {Ex,a}a∈OA
are POVM’s on a finite dimensional Hilbert space

HA and for each y ∈ IB , {Fy,b}b∈OB
are POVM’s on a finite dimensional Hilbert

space HB , and ξ ∈ HA ⊗ HB is a unit vector. Then by letting Ẽ(x,a) = E(x,a) ⊗ I
and F̃(y,b) = I ⊗ F(y,b) we see that for x ∈ IA, y ∈ IB : {Ẽ(x,a)}a and {F̃(y,b)}b
are commuting families of POVM’s acting on the Hilbert space H := HA ⊗ HB .
Furthermore,

p(a, b | x, y) =
(
(Ẽx,aF̃y,bξ, ξ

)
which proves the desired inclusion.
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For the fourth inclusion we work as follows, assume that p ∈ Cqc, then by Definition
5.11 there exist a Hilbert space H, a unit vector ξ ∈ H and POVM’s {Ex,a}a∈OA

and
{Fy,b}b∈OB

acting on H whose elements commute, such that

p(a, b | x, y) = ((Ex,aFy,b)ξ, ξ) , for all x ∈ IA, y ∈ IB , a ∈ OA, b ∈ OB

The aforementioned commutativity implies that E
1
2
x,aF

1
2

y,b = F
1
2

y,bE
1
2
x,a

(If the positive operators A,B commute then B commutes with with f(A) for all
polynomials f , and since A 1

2 is the limit of g(A) for some polynomials g it follows
that B and A 1

2 commute. The same reasoning gives us the commutativity between
A

1
2 and B 1

2 )
Now using the above it follows that

p(a, b | x, y) =
(
(E

1
2
x,aF

1
2

y,b)ξ, (E
1
2
x,aF

1
2

y,b)ξ
)
≥ 0

Since, {Ex,a}a∈OA
and {Fy,b}b∈OB

are POVM’s and ξ is a unit vector we have that∑
a∈OA,b∈OB

p(a, b | x, y) =
∑

a∈OA,b∈OB

((Ex,aFy,b)ξ, ξ) =

( ∑
b∈OB

Fy,bξ,
∑
a∈OA

Ex,aξ

)
= (ξ, ξ) = 1

and

∑
b∈OB

p(a, b | x, y) =
∑
b∈OB

((Ex,aFy,b)ξ, ξ) =

(
Ex,aξ,

∑
b∈OB

Fy,bξ

)
= (Ex,aξ, ξ) ≥ 0

Similarly it is shown that
∑
a∈OA

p(a, b | x, y) = (Fy,bξ, ξ) ≥ 0. Notice that
(Ex,aξ, ξ) and (Fy,bξ, ξ) are independent of y and x respectively.
Thus, p satisfies the non-signalling condition, i.e., p ∈ Cns.

Proposition 5.13 The set Cq of all quantum correlations is convex.

Proof: LetHA,j andHB,j be Hilbert spaces, j = 1, 2. Suppose that ξj are unit vectors
onHA,j ⊗HB,j , and for each x, y: {Ejx,a}a, {Fb,y}b are POVM’s acting onHA,j and
HB,j respectively. Then

p1(a, b | x, y) =
(
(E1

x,a ⊗ F 1
y,b)ξ1, ξ1

)
and p2(a, b | x, y) =

(
(E2

x,a ⊗ F 2
y,b)ξ2, ξ2

)
are elements of Cq . Let λ ∈ [0, 1], we shall show that the probability distribution
λp1 + (1− λ)p2 also belongs to Cq , i.e., it can be written as in 3 of definition 5.11.

Consider the following operators

Ex,a = E1
x,a ⊕ E2

x,a and Fy,b = F 1
y,b ⊕ F 2

y,b
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acting on the direct sums HA,1 ⊕HA,2 and HB,1 ⊕HB,2.
Now,

(HA,1⊕HA,2)⊗(HB,1⊕HB,2) = (HA,1⊗HB,1)⊕(HA,1⊗HB,2)⊕(HA,2⊗HB,1)⊕(HA,2⊗HB,2)

Thus in this Hilbert space the vector ξ =
√
λξ1 ⊕ 0⊕ 0⊕

√
1− λξ2 is a unit vector.

Moreover,
((Ex,a ⊗ Fy,b)ξ, ξ) =

(
((E1

x,a ⊗ F 1
y,b)⊕ (E1

x,a ⊗ F 2
y,b)⊕ (E2

x,a ⊗ F 1
y,b)⊕ (E2

x,a ⊕ F 2
y,b))ξ, ξ

)
=

(
(E1

x,a ⊗ F 1
y,b)
√
λξ1 ⊕ 0⊕ 0⊕ (E2

x,a ⊗ F 2
y,b)
√
1− λξ2,

√
λξ1 ⊕ 0⊕ 0⊕

√
1− λξ2

)
=

(
(E1

x,a ⊗ F 1
y,b)
√
λξ1,
√
λξ1

)
+
(
(E2

x,a ⊗ F 2
y,b)
√
1− λξ2,

√
1− λξ2

)
=

λ
(
(E1

x,a ⊗ F 1
y,b)ξ1, ξ1

)
+ (1− λ)

(
(E2

x,a ⊗ F 2
y,b)ξ2, ξ2

)
=

λp1(a, b | x, y) + (1− λ)p2(a, b | x, y)

and the result follows.

Proposition 5.14 The set Cqa of all approximately quantum correlations is convex.

Proof: Suppose that p, q ∈ Cqa and let λ ∈ [0, 1]. There exist sequences (pn)n, (qn)n
of quantum correlations such that pn −→n→∞ p and qn −→n→∞ p. Since Cloc we
have that for every n ∈ N, λpn + (1− λ)qn ∈ Cloc. Moreover,

λpn + (1− λ)qn −→n→∞ λp+ (1− λ)q

The result is immediate.

It is also true that Cqc is convex, a fact that will be shown in the sequel (see Subsection
5.1.3). It was shown in [6] that the set Cq is not closed.

5.1 Characterizations of the sets of correlations

Wewill try to interpret the definitions of the various correlations classes we have seen
in terms of the theory of tensor products of operator systems.

Throughout this chapter we will make use of the notation [n] = {1, . . . , n} for a
n ∈ N.
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Let k ∈ N, then Ck with component-wise multiplication and component-wise com-
plex conjugation is an Abelian C∗-algebra. The canonical basis of Ck will be denoted
by {ej}kj=1.

Notice that Ck is (canonically) ∗-isomorphic to the Abelian C∗ algebra ∆k of
the k × k diagonal matrices with complex entries which in turn is (canonically) ∗-
isomorphic to the C∗ algebra of functions on k isolated points. To see this check that
the map defined by sending a matrix diag{v1, . . . , vn} to the function f : [k] → C :
i → vi is indeed a ∗-isomorphism. Furthermore, observe that the set {δi}ni=1 where
for each i, δi : [k]→ C is given by

δi(j) =

{
1, if i = j

0, otherwise

is a set of orthogonal projections and it spans the aforementioned C∗-algebra.

We will denote this Abelian C∗-algebra by `∞k , i.e.,

`∞k = C⊕ · · · ⊕ C︸ ︷︷ ︸
k- times

= {(λi)ki=1 : λi ∈ C, 1 ≤ i ≤ k} = Ck

If S is an operator system we write

`∞(k,S) = S ⊕ · · · ⊕ S︸ ︷︷ ︸
k- times

5.1.1 Local Correlations

Let
D = `∞k ⊗ · · · ⊗ `∞k︸ ︷︷ ︸

n-times

notice that we have the following isomorphisms

D = Ck ⊗ · · · ⊗ Ck︸ ︷︷ ︸
n-times

= Ck
n

so D is ∗-isomorphic to the space of all (continuous) functions on kn-points. In addi-
tion, for 1 ≤ v ≤ n we write e′v,i for the i-th standard basis vector ei of `∞k occurring
in the v-th term of the tensor product, that means

e′v,i = 1⊗ · · · ⊗ 1⊗ ei ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
n-terms

Definition 5.15 Let A be a C∗-algebra, a state of A is called pure if it is an extreme
point of the state space of A.

Proposition 5.16 A correlation (p(i, j | v, w)) is in Cloc if and only if there exists a
state s on the tensor product D ⊗D such that

p(i, j | v, w) = s(ev,i ⊗ ew,j) (∗)
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Proof: Formula (∗) is equivalent to saying that p1k(i | v) = s1k(ev,i) for some state
s1k : D → C and p2k(j | w) = s2k(ew,j) for a state s2k : D → C. As we have seen an
element of Cloc can be written as:

p(i, j | v, w) =
m∑
k=1

λkp
1
k(i | v)p2k(j | w)

so it becomes

p(i, j | v, w) =
m∑
k=1

λks
1
k(ev,i)s

2
k(ew,j) =

m∑
k=1

λks
1
k ⊗ s2k(ev,i ⊗ ew,j)

so it is a convex combination of product states. We shall show that such combinations
yield all states on D ⊗D.
Recall that :

D ⊗D = C({1, . . . , kn})⊗ C({1, . . . , kn}) = C({1, . . . , kn} × {1, . . . , kn})

For the last equality in particular we have that :

C([kn])⊗ C([kn]) = span{f ⊗ g : f ∈ C([kn]), g ∈ C([kn])} = C([kn]× [kn])

where for f ∈ C([kn]) and g ∈ C([kn]), f ⊗ g ∈ C([kn]× [kn]) is the function given
by (f ⊗ g)(i, j) = f(i)g(j), ∀i, j ∈ [kn].
In general, given a compact (Hausdorf) space K it is known that the pure states of
C(K) are the evaluations at the points of K , so the pure states of D ⊗ D are the
evaluations at the points of {1, . . . , kn} × {1, . . . , kn}.
Let (i, j) ∈ {1, . . . , kn} × {1, . . . , kn}, we will denote the evaluation at the point
(i, j) by (̂i, j).
Let ρ be a pure state of D ⊗D then ρ = (̂i, j) for some i ∈ [kn], j ∈ [kn]. Moreover,
if f =

∑
k fk ⊗ gk ∈ D ⊗D then ,

(̂i, j)(f) = (̂i, j)(
∑
k

fk ⊗ gk) = (
∑
k

fk ⊗ gk)(i, j) =
∑
k

fk(i)gk(j)

=
∑
k

î(fk)ĵ(gk) = (̂i⊗ ĵ)(
∑
k

fk ⊗ gk)

Thus, every pure state ρ of D ⊗D can be written as ρ = î⊗ ĵ.

SinceD⊗D is a unital C∗-algebra its state space is the closed convex hull of the pure
states ([13, Corollary 5.1.9]).
Let ω be a state on D ⊗ D then there exists a sequence ωn, whose every term is a
convex combination of pure states, such that ωn → ω. Thus, for every n ∈ N:

ωn =

n∑
i=1

λi,ns
1
i,n ⊗ s2i,n
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now using Caratheodory’s theorem we obtain the desired result.

The remaining correlation classes will be described with the help of the following
coproduct of operator systems

S(n, k) = `∞k ⊕1 · · · ⊕1 `
∞
k︸ ︷︷ ︸

n-times

, n, k ∈ N

In particular we will see that correlations belonging to the aforementioned classes can
be realized as states on the tensor products of spaces of the above form (co-products
of l∞i , i ∈ N). We will see that each class of correlations corresponds to a different
tensor product.

For the next subsections we will write (ex,a)
k
a=1 for the canonical basis of the x-th

copy of `∞k in the coproduct S(n, k). Thus,

((ex,a)
k
a=1)

n
x=1 = (e1,a)

k
a=1 ⊕ · · · ⊕ (en,a)

k
a=1

Another space that we shall find to be useful is :

A(n, k) = `∞k ∗1 · · · ∗1 `∞k

to be more specific the usefulness of the last space lies in the fact that

S(n, k) ⊆c.o.i. A(n, k) (see Theorem 4.2)

For a Hilbert space H , the following Lemma and Proposition reveal to us an inter-
esting correspondence between unital completely positive maps from `∞k to B(H)
and POVM’s on H, and respectively between unital completely positive maps from
S(n, k) to B(H) and families of POVM’s on H.

Lemma 5.17 Suppose that ϕ : `∞k → B(H) is a unital completely positive map then
{ϕ(ej)}1≤j≤k is a POVM on H . Conversely, if {Ej}1≤j≤k is a POVM then the linear
map ϕ : `∞k → B(H) defined by ϕ(ej) = Ej is unital and completely positive.

Proof: In order to prove the forward implication notice that ej is a positive element
of `∞k , for all j ∈ [k] and ∑

j∈[k]

ej = (1, . . . , 1) = 1ℓ∞k

Thus ϕ(ej) ∈ B(H)+, ∀j ∈ [k] and
∑
j∈[k] ϕ(ej) = IH which proves the forward

part.
For the converse, assume that P = [prs]r,s ∈ Mn(`

∞
k )+ and define the map ϕ :

`∞k → B(H) via ϕ(ej) = Ej . Since {ej} is a basis for the vector space `∞k , ϕ extends
uniquely to all of `∞k . Moreover

ϕ(1ℓ∞k ) = ϕ(
∑
j∈[k]

ej) =
∑
j∈[k]

Ej = IH
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so this extension is unital. Now taking into consideration that C is a commutative
C∗-algebra, for the complete positivity of ϕ it suffices to show that it is a positive
map. To this end let α ∈ (`∞k )+, then α =

∑
j∈[k] λjej where all the coefficients λj

are in R+. Consequently,

ϕ(α) = ϕ(
∑
j∈[k]

λjej) =
∑
j∈[k]

λjϕ(ej) =
∑
j∈[k]

λjEj ∈ B(H)+

which completes the proof.

Remark : The above theorem remains true if we replace unital completely positive
maps with unital ∗-homomorphisms and POVM’s with PVM’s.

A sketch of the proof of this result using the terminology established in the proof of
the Lemma:
In the case that ϕ : `∞k → B(H) is a ∗-homomorphism we have that

(ϕ(ej))
2 = ϕ(e2j ) = ϕ(ej)

and
(ϕ(ej))

∗ = ϕ(e∗j ) = ϕ(ej)

On the other hand when {Ej}j is a PVM onH we have that for an a =
∑
j∈[k] λjej ∈

`∞k ,
(ϕ(a))∗ =

∑
j∈[k]

λ∗jE
∗
j =

∑
j∈[k]

λ∗jEj = ϕ(
∑
j∈[k]

λ∗jej) = ϕ(a)

.

Proposition 5.18 If ϕ : S(n, k) → B(H) is a unital completely positive map then
{ϕ(ex,a)1≤a≤k} is a POVM on H for every x ∈ {1, . . . , n}. Conversely, if for every
x ∈ {1, . . . , n}, (Ex,a)1≤a≤k is a POVM acting onH then there exists a (unique) unital
completely positive map ϕ : S(n, k)→ B(H) such that:
ϕ(ex,a) = Ex,a for all a ∈ {1, . . . , k}.

Proof: Let `∞k,x, 1 ≤ x ≤ n denote the x-th copy of `∞k in the coproduct S(n, k)
then as operator systems `∞k,x ⊆ S(n, k). Thus the restriction of ϕ on `∞k,x is a unital
completely positive map and by applying Lemma 5.17 we have that {ϕ(ex,a)1≤a≤k}
is a POVM on H for every 1 ≤ x ≤ n.
For the converse, suppose that (Ex,a)1≤a≤k , 1 ≤ x ≤ n is a family of POVM’s acting
onH . Once again we apply Lemma 5.17 and for each x ∈ [n]we find a UCP map ϕx :
`∞x,k → B(H) such that ϕx(ex,a) = Ex,a, for all a ∈ [k]. By the universal property of
the coproduct, there exists a (unique) unital completely positive map ϕ : S(n, k) →
B(H) such that ϕ ↾ `∞k,x = ϕx (remember that S(n, k) = `∞k ⊕1 · · · ⊕1 `

∞
k︸ ︷︷ ︸

n−times

).

The proof is now complete.

Consider the set
V(n, k) =
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{((λ1,α)α, . . . , (λn,α)α) : λi,α ∈ C, ∀i ∈ [n], α ∈ [k] and ∃ c ∈ C s.t.
k∑

α=1

λi,α = c, ∀i}

= {((λ1,α)α, . . . , (λn,α)α) : (λi,a)α ∈ `∞k , ∀i ∈ [n] and
k∑

α=1

λi,α =

k∑
α=1

λi′,α, ∀i, i′}

as an operator subsystem of `∞nk , this means that V(n, k) is seen as an operator system
with the operator system structure it inherits from `∞nk .

Proposition 5.19 The dual of S(n, k) is completely order isomorphic to V(n, k).

Proof: We have that S(n, k) is the coproduct `∞k ⊕1 · · · ⊕1 `
∞
k︸ ︷︷ ︸

n−times

and the coproduct was

defined as `∞k ⊕ · · · ⊕ `∞k /J = Ck ⊕ · · · ⊕ Ck/J , where

J = span{(e,−e, 0, . . . , 0), (e, 0,−e, 0, . . . , 0), . . . , (e, 0, . . . , 0,−e)}

is a kernel/ null subspace in Ck ⊕ · · · ⊕ Ck = Cnk (here e denotes the unit of Ck).
Moreover, by Proposition 4.3 we have the following complete order isomorphism

(`∞k ⊕1· · ·⊕1`
∞
k )d ∼=c.o.i. {f1⊕· · ·⊕fn ∈ (`∞k )d⊕· · ·⊕(`∞k )d : f1(e) = · · · = fn(e)}

= {f1 ⊕ · · · ⊕ fn ∈ (`∞k )d ⊕ · · · ⊕ (`∞k )d : fi(e) = fi′(e), ∀i, i′ ∈ [n]}

Recall that we let {eα}kα=1 denote the standard basis of `∞k = Ck . We will make the
following identification between the spaces `∞k and (`∞k )d :
For the aforementioned basis let {e∗α}kα=1 denote the dual basis (e∗j (ei) = δij , i, j ∈
[k]).
Then for linear functional f : `∞k → C we obtain the correspondence :

f =

k∑
α=1

f(eα)e
∗
α →

k∑
α=1

f(eα)eα

i.e., (`∞k )d ∋ f ←→ (f(eα))
k
α=1 ∈ `∞k , with respect to the basis {eα}kα=1

Note that f is completely positive if and only if f(eα) ≥ 0 so the identificationwe used
is a complete order isomorphism. To see this, let Ψ : (`∞k )d → `∞k be the map given
by Ψ(f) = (f(eα))

k
α=1 then Ψ is unital and positive and since `∞k is a commutative

C∗-algebra it will be completely positive. Now the inverse of Ψ is the positive map
Ψ−1 : `∞k → (`∞k )d : (λα)

k
α=1 →

∑k
α=1 λαe

∗
α. Since `∞k is a finite dimensional

operator system its dual is also an operator system and as such it will be a subspace
ofB(H) for some Hilbert spaceH . Therefore we can consider the mapΨ−1 as a map
from `∞k which is a commutative C∗-algebra to B(H) which is a C∗-algebra in this
case Ψ−1 remains positive. Now a theorem of Stinespring (see [15, Theorem 3.11])
allows us to obtain that Ψ−1 is completely positive.

Since e =
∑k
α=1 eα, the condition

fi(e) = fi′(e), ∀i, i′ ∈ [n]
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takes the following form

k∑
α=1

fi(eα)e
∗
α(eα) =

k∑
α=1

fi′(eα)e
∗
α(eα)

or equivalently
k∑

α=1

fi(eα) =

k∑
α=1

fi′(eα)

Now for every α ∈ [k], i ∈ [n] set

fi(eα) = λfi,α

then by combining the observations we made above we see that for a f ∈ S(n, k)d
we have the following identification (up to a complete order isomorphism) :

f ←→ (λf1,α)
k
α=1 ⊕ · · · ⊕ (λfn,α)

k
α=1

where

(λfi,α)
k
α=1 ∈ `∞k and

k∑
α=1

λfi,α =

k∑
α=1

λfi′,α, ∀i, i
′ ∈ [n]

so every f ∈ S(n, k)d can be written as :

f = ((λfi,α)
k
α=1)

n
i=1, where

k∑
α=1

λfi,α =

k∑
α=1

λfi′,α, ∀i, i
′ ∈ [n]

Thus
S(n, k)d is order isomorphic to a subspace of V(n, k)

Conversely, let

λ = (λ1,α)α ⊕ · · · ⊕ (λn,α)α ∈ V(n, k) ⊆c.o.i. `∞k ⊕ · · · ⊕ `∞k︸ ︷︷ ︸
n−times

for every i ∈ {1, . . . , n} we have that (λi,α)α defines a linear functional fi on (`∞k )d

via the rule

(λi,α)α =

k∑
α=1

λi,αeα ←→
k∑

α=1

λi,αe
∗
α = fi

Furthermore for each i, it is easy to see that fi is positive if and only if (λi,α)α is a
positive element of `∞k so the identification above is an order isomorphism and since

k∑
α=1

λi,α =

k∑
α=1

λi′,α, ∀i, i′ ∈ [n]
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it follows that for every 1 ≤ i, i′ ≤ n

fi(e) =

k∑
α=1

λi,αe
∗
α(

k∑
b=1

eb) =

k∑
α=1

λi,α =

k∑
α=1

λi′,α =

k∑
α=1

λi′,αe
∗
α(

k∑
b=1

eb) = fi′(e)

Set f = f1 ⊕ · · · ⊕ fn then it is not hard to verify that f ∈ S(n, k)d (and that f is
positive if and only if each fi is positive) which implies that

V(n, k) is order isomorphic to a subspace of S(n, k)d

Thus far we have shown that the spaces S(n, k)d and V(n, k) are order isomorphic.
Now we will show that they are completely order isomorphic.

Firstly, note that there exist an order isomorphism

ϕ : S(n, k)d → V(n, k) : f → λf

Now if we consider the map ϕ as a map from S(n, k)d to `∞nk then it remains positive
and its range is a subset of a commutativeC∗-algebra, so it will be completely positive.

Moreover, the map
ψ : V(n, k)→ S(n, k)d

λ = (

k∑
α=1

λ1,αeα, . . . ,

k∑
α=1

λn,αeα)→ fλ = (

k∑
α=1

λ1,αe
∗
α, . . . ,

k∑
α=1

λn,αe
∗
α)

is the inverse of ϕ, which once again is a positive map. Consider ψ as a map from
V(n, k) to (`∞k )d ⊕ · · · ⊕ (`∞k )d︸ ︷︷ ︸

n−times

∼=c.o.i. `∞k ⊕ · · · ⊕ `∞k︸ ︷︷ ︸
n−times

= Cnk then as before ψ is

a positive map whose range is a subset of a commutative C∗-algebra so it will be
completely positive.

Indeed, let λ = ((λ1,α)α, . . . , (λn,α)α) ∈ V(n, k)+ then for every i we have that
(λ1,α)α is positive in `∞k and

ψ(λ) = f1 ⊕ · · · ⊕ fn

where fi =
∑k
α=1 λi,αe

∗
α, ∀i ∈ {1, . . . , n}. Since every λi,α is positive it follows that

every fi is positive which implies that f1 ⊕ · · · ⊕ fn is positive.

Looking at the proof of the above theorem we see that the duality between the spaces
S(n, k) and V(n, k) is given via the following formula :

Let v =
∑
i,α

mi,αei,α ∈ S(n, k) and f = ((λi,α)
k
α=1)

n
i=1 ∈ V(n, k)

then f(v) =
∑
i,α

mi,αλi,α
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5.1.2 Non-Signalling Correlations

Let n, k,m, l ∈ N andA,B,X, Y be finite sets with |A| = k, |B| = l, |X| = n, |Y | =
m. Recall that the canonical generators of S(n, k) are denoted ex,a for x ∈ X, a ∈ A.
Similarly let fy,b denote the canonical generators of S(m, l).

If s : S(n, k)⊗S(m, l)→ C is a linear functional we let ps : A×B ×X × Y be the
map given by

ps(a, b | x, y) = s(ex,a ⊗ fy,b), for a ∈ A, b ∈ B, x ∈ X, y ∈ Y

Notice that the collection

{ps(a, b | x, y) : a ∈ A, b ∈ B, x ∈ X, y ∈ Y }

is non-signalling.

Indeed, for every x, x′ ∈ X if we let 1x, 1x′ denote the units of the x-th and x′-th
copies of `∞k in the co-product S(n, k), then we have that:

k∑
a=1

ps(a, b | x, y) =
k∑
a=1

s(ex,a ⊗ fy,b) = s(

k∑
a=1

ex,a ⊗ fy,b)

= s(1x ⊗ fy,b) = s(1x′ ⊗ fy,b)

= s(

k∑
a=1

ex′,a ⊗ fy,b) =
k∑
a=1

s(ex,a ⊗ fy,b)

=

k∑
a=1

ps(a, b | x′, y)

because in the co-product 1x is identified with 1x′ for all x, x′ ∈ X .
Similarly

l∑
b=1

ps(a, b | x, y) =
l∑

b=1

ps(a, b | x, y′), ∀y, y′ ∈ Y

On the other hand, the formula

sp(ex,a ⊗ fy,b) = p(a, b | x, y), a ∈ A, b ∈ B, x ∈ X, y ∈ Y

defines a unique linear functional on S(n, k) ⊗ S(m, l) when {p(a, b | x, y) : a ∈
A, b ∈ B, x ∈ X, y ∈ Y } is a non-signalling correlation, because (ex,a ⊗ fy,b)a,b,x,y
is a basis of S(n, k)⊗ S(m, l).

The argument presented above shows that the map s → ps is a bijective correspon-
dence between the space (S(n, k) ⊗ S(m, l))d and the set of non-signalling correla-
tions on A×B ×X × Y where |A| = k, |B| = l, |X| = n, |Y | = m.

In this chapter we will introduce another way to view the class Cns.
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Theorem 5.20 The map s → ps is an (affine) isomorphism between the state space of
S(n, k)⊗max S(m, l) and Cns.

Proof: Suppose that we have a linear functional s : S(n, k)⊗max S(m, l)→ C then
for all a ∈ A, b ∈ B, x ∈ X, y ∈ Y

ps(a, b | x, y) = s(ex,a ⊗ fy,b)

We shall show that if s is a state then ps ∈ Cns and vice-versa.

Since ex,a, fy,b are positive in S(n, k) and S(m, l) respectively it follows that ex,a ⊗
fy,b is positive in S(n, k)⊗max S(m, l). Consequently,

ps(a, b | x, y) = s(ex,a ⊗ fy,b) ≥ 0, ∀a ∈ A, b ∈ B, x ∈ X, y ∈ Y

Furthermore,

k,l∑
a,b=1

ex,a ⊗ fy,b = (

k∑
a=1

ex,a)⊗ (

l∑
b=1

fy,b) = 1⊗ 1

Thus
k,l∑

a,b=1

s(ex,a ⊗ fy,b) = s(

k,l∑
a,b=1

ex,a ⊗ fy,b) = s(1⊗ 1) = 1

so
k,l∑

a,b=1

ps(a, b | x, y) = 1

For the non-signalling conditions observe that in S(n, k) the following holds

k∑
a=1

ex,a = 1 =

k∑
a=1

ex′,a, for all x, x′ ∈ X

Now tensoring with fy,b we obtain :

k∑
a=1

ex,a ⊗ fy,b = 1⊗ fy,b =
k∑
a=1

ex′,a ⊗ fy,b, for all x, x′ ∈ X

and by applying s we get

k∑
a=1

s(ex,a ⊗ fy,b) = s(1⊗ fy,b)︸ ︷︷ ︸
∈R+

=

k∑
a=1

s(ex′,a ⊗ fy,b), for all x, x′ ∈ X

,i.e.,
k∑
a=1

ps(a, b | x, y) =
k∑
a=1

ps(a, b | x′, y), for all x, x′ ∈ X
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In a similar way (summing the fy,b’s and tensoring with ex,a) one can show that

l∑
b=1

ps(a, b | x, y) =
l∑

b=1

ps(a, b | x, y′), for all y, y′ ∈ Y

Hence ps satisfies conditions 1 and 2 of definition 5.8.

On the other hand, assume that ps = {(ps(a, b | x, y))a,b,x,y} ∈ Cns. Notice that in
this case

s(1⊗ 1) =

k,l∑
a,b=1

s(ex,a ⊗ fy,b) =
k,l∑

a,b=1

ps(a, b | x, y) = 1

so s is unital.
So far we have that s : S(n, k) ⊗max S(m, l) → C is a unital linear functional, i.e.,
s ∈ (S(n, k)⊗max S(m, l))d, by Theorem 2.22 we have the identification

(S(n, k)⊗max S(m, l))d ∼=c.o.i. S(n, k)d ⊗min S(m, l)d

identifying s with its image under the above complete order isomorphism it can be
viewed as an element of

S(n, k)d ⊗min S(m, l)d ∼=c.o.i. V(n, k)⊗min V(m, l) ⊆c.o.i. `∞nk ⊗min `∞ml

(The complete order embedding above being the tensor product of identities.)
Remembering the way the duality between S(n, k) and V(n, k) is achieved, we see
that there must be some elements sk,1 ∈ S(n, k)d and sk,2 ∈ S(m, l)d such that

s =

m∑
k=1

βksk,1 ⊗ sk,2 ∈ V(n, k)⊗min V(m, l) ⊆ `∞nk ⊗min `∞ml

where for every k ∈ {1, . . . ,m}

sk,1 = ((λx,a)a)x = ((sk,1(ex,a))a)x and sk,2 = ((ρy,b)b)y = ((sk,2(fy,b))b)y

If we consider s as an element of `∞nk⊗min `∞ml and recall that (`∞nk⊗min `∞ml)+ is the
set:

{z ∈ `∞nk ⊗ `∞ml : (ϕ⊗ ψ)(z) ≥ 0, ∀ϕ ∈ UCP (`∞nk,C), ∀ψ ∈ UCP (`∞ml,C)}

then is can be seen that s is positive if and only if every one of its coordinates in
`∞nkml = `∞nk ⊗ `∞ml is non-negative.
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Now,

s =

m∑
k=1

βksk,1 ⊗ sk,2 =

m∑
k=1

βk((sk,1(ex,a))a)x ⊗ ((sk,2(fy,b))b)y

=

m∑
k=1

βk

(sk,1(e1,a))a
...

(sk,1(en,a))a

⊗
 (sk,2(f1,b))b

...
(sk,2(fm,b))b



=

m∑
k=1

βk



sk,1(e1,1)...
sk,1(e1,k)


...sk,1(en,1)...

sk,1(en,k)




⊗



sk,2(f1,1)...
sk,2(f1,l)


...sk,2(fm,1)...

sk,2(fm,l)




Deleting the inner brackets yields a complete order isomorphism, which implies that
in order to obtain that s is a state we need to ensure that for all a, b, x, y

m∑
k=1

βksk,1(ex,a)sk,2(fy,b) ≥ 0

i.e.,
m∑
k=1

(βksk,1 ⊗ sk,2)(ex,a ⊗ fy,b) ≥ 0

or equivalently
s(ex,a ⊗ fy,b) ≥ 0

but for every a, b, x, y we have that s(ex,a ⊗ fy,b) = ps(a, b | x, y) and the latter,
being probabilities, are always positive.

5.1.3 Quantum Commuting Correlations

Remark: For the next Theorem we will require the following useful fact:
Given unital C∗-algebras A1,A2 then for any ∗-homomorphism π : A1 ⊗ A2 →
B(H) there exists a pair of (contractive) ∗-homomorphisms πj : Aj → B(H), j =
1, 2 with commuting ranges such that such that:

π(α1 ⊗ α2) = π1(α1)π2(α2), ∀αj ∈ Aj , j = 1, 2

Indeed, for every αj ∈ Aj , j = 1, 2 just set π1(α1) = π(α1 ⊗ 1A2
) and π2(α2) =

π(1A1
⊗ α2). Then

π(α1⊗1A2
) = π((α1⊗1A2

)(1A1
⊗α2)) = π(α1⊗1A2

)π(1A1
⊗α2) = π1(α1)π2(α2)
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On the other hand, every such pair of ∗-homomorphisms πj : Aj → B(H), j = 1, 2
with commuting ranges determines uniquely a ∗-homomorphism π on A1 ⊗ A2 by
setting π(α1 ⊗ α2) = π1(α1)π2(α2).

Theorem 5.21 The following are equivalent for an element p ∈ Cns:

1. p ∈ Cqc

2. There exists a state s of S(n, k)⊗c S(m, l) such that p = ps, where ps is defined
as in subsection 5.1.2.

3. There exist a Hilbert spaceH (possibly infinite-dimensional), a unit vector ξ ∈ H
as well as PVM’s {Ex,a}a∈A and {Fy,b}b∈B on H , for x ∈ X and y ∈ Y , such
that: Ex,aFy,b = Fy,bEx,a, for all x, y, a, b and

p(a, b | x, y) = ((Ex,aFy,b)ξ, ξ) , for all x ∈ X, y ∈ Y, a ∈ A, b ∈ B

The map s→ ps is an (affine) isomorphism between the state space of
S(n, k)⊗c S(m, l) and Cqc.

Proof: 1→ 2: LetH be a Hilbert space and {Ex,a}a∈A and {Fy,b}b∈B be commuting
POVM’s on H , for all x ∈ X and all y ∈ Y respectively, such that

p(a, b | x, y) = ((Ex,aFy,b)ξ, ξ) , for all x ∈ X, y ∈ Y, a ∈ A, b ∈ B

Suppose that we have the following maps ϕ : S(n, k) → B(H) and ψ : S(m, l) →
B(H) with ϕ(ex,a) = Ex,a and ψ(fy,b) = Fy,b, for x ∈ X, y ∈ Y, a ∈ A, b ∈
B by Proposition 5.18 these maps are unital and completely positive. Furthermore,
since our POVM’s commute these maps will have commuting ranges, i.e., (ϕ,ψ) ∈
ucp(S(n, k),S(m, l)). Now let s : S(n, k) ⊗ S(m, l) → C be the linear functional
given by:

s(ex,a ⊗ fy,b) = p(a, b | x, y), for a ∈ A, b ∈ B, x ∈ X, y ∈ Y

so
s(ex,a ⊗ fy,b) = ((Ex,aFy,b)ξ, ξ) , for a ∈ A, b ∈ B, x ∈ X, y ∈ Y

hence

s(ex,a ⊗ fy,b) = ((ϕ(ex,a)ψ(fy,b))ξ, ξ) , for a ∈ A, b ∈ B, x ∈ X, y ∈ Y

Thus for u ∈ S(n, k) and v ∈ S(m, l) we have that

s(u⊗ v) = (ϕ(u)ψ(v)ξ, ξ) = ((ϕ · ψ)(u⊗ v)ξ, ξ)

(recall that ex,a, fy,b are the generators of S(n, k), S(m, l) respectively and both s
and the inner product are linear.) Notice that:

s(1⊗ 1) = (ξ, ξ) = 1
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and remembering the definition (see section 2.3) of the positive cones of the commut-
ing tensor product of operator systems we see that

s(v1 ⊗ v2) =

(ϕ · ψ)(v1 ⊗ v2)︸ ︷︷ ︸
∈B(H)+

ξ, ξ

 ≥ 0, ∀v1 ⊗ v2 ∈ (S(n, k)⊗c S(m, l))+

(since s has range a subset of C positivity implies complete positivity).
We conclude that s is indeed a state on S(n, k)⊗c S(m, l).
Lastly, for x ∈ X, y ∈ Y, a ∈ A, b ∈ B:

p(a, b | x, y) = s(ex,a ⊗ fy,b) := ps(a, b | x, y)

so p = ps.

2→ 3: Let s be a state on S(n, k)⊗cS(m, l) then byTheorem 4.4 s can be extended to
a state s̃ onA(n, k)⊗maxA(m, l). Now the GNS representation of s̃ yields a Hilbert
space H , a unit vector ξ ∈ H and a ∗-representation π : A(n, k) ⊗max A(m, l) →
B(H) such that

s̃(u⊗ v) = (π(u⊗ v)ξ, ξ) , u ∈ A(n, k), v ∈ A(m, l)

As in the Remark at the start of this subsection we may assume that π = π1π2 for
some ∗-homomorphisms πj : Aj → B(H), j = 1, 2 with commuting ranges. Hence,
we have that

s̃(u⊗ v) = (π1(u)π2(v)ξ, ξ) , u ∈ A(n, k), v ∈ A(m, l)

By Proposition 5.18 and from the fact that π1, π2 have commuting ranges we have that
(π1(ex,a))a∈A and (π2(fy,b))b∈B are commuting families of POVM’s. Since for a ∈
A, b ∈ B, x ∈ X, y ∈ Y

p(a, b | x, y) = ps(a, b | x, y) = s(ex,a⊗fy,b) = s̃(ex,a⊗fy,b) = (π1(ex,a)π2(fy,b)ξ, ξ)

we conclude that p ∈ Cqc.
In particular (π1(ex,a))a∈A and (π2(fy,b))b∈B are PVM’s because ex,a and fy,b are
projections in A(n, k) and A(m, l) respectively.

3→ 1: Every PVM is a POVM, so this is straightforward.

Corollary 5.22 The set Cqc is a closed convex set.

Proof: Let T be the map s → ps defined in Theorem 5.21. This is an affine map
between the state space of S(n, k) ⊗c S(m, l) and Cqc. To see this let λ ∈ [0, 1] and
s1, s2 be states on S(n, k)⊗c S(m, l). Then, (1− λ)s1 + λs2 is a state on S(n, k)⊗c
S(m, l) (the state space of an operator system is convex) and

T ((1− λ)s1 + λs2) = p(1−λ)s1+λs2 := ((1− λ)s1 + λs2)(ex,a ⊗ fy,b)

= (1− λ)s1(ex,a) + λs2(fy,b)

= (1− λ)ps1 + λps2

= (1− λ)T (s1) + λT (s2)
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The state space of S(n, k) ⊗c S(m, l) is convex and compact when equipped with
the weak-∗ topology. In this case, it is easy to see that T is also a homeomorphism.
Consequently Cqc too is convex and compact, and therefore closed.

5.1.4 ApproximatelyQuantum Correlations

In this subsection we will give an alternative description of the correlations of the
class Cqa. To this end we will make use of the following Lemma.

Lemma 5.23 Assume thatH be a Hilbert space andA ⊆ B(H) is a unital C∗-algebra.
LetM = {ωξ : ξ ∈ H, ||ξ|| = 1} denote the vector state space of A (where ωξ : A →
C : α → (αξ, ξ)) and S(A) denote the state space of A. Then the convex hull ofM is
weak ∗-dense in S(A).

Proof: Obviously,M ⊆ S(A) and since A is unital the weak-∗ limit of states is a
state, so the weak-∗ convex hull ofM denoted M̃ is contained in S(A). Suppose
that there exists a state s in S(A) such that s /∈ M̃. By the Hahn-Banach separation
theorem there exist a weak-∗ continuous functional ϕ : Ad → C and a real number
β ∈ R such that:

Re(ϕ(σ)) < β < Re(ϕ(s)), ∀σ ∈ M̃ (I)

Now using the fact that weak-∗ continuous functionals onAd are given by evaluation
at some element ofAwe have that: ϕ = α̂, for someα ∈ A (whereα(f) = f(α), f ∈
Ad). Moreover, we know that α can be written as α = α1 + iα2, for α1, α2 ∈ Ah
hence for every f ∈ (Ad)+, ϕ(f) = α̂(f) = f(α) = f(α1+ iα2) = f(α1)+ if(α2).
Thus, Re(ϕ(f) = f(α1), ∀f ∈ (Ad)+ and relation (I) becomes:

σ(α1) < β < s(α1), ∀σ ∈ M̃

Subsequently, we have that

(α1ξ, ξ) < β = (β · IdHξ, ξ) , for every unit vector ξ in H

Now, let η be an arbitrary vector in H , then η
||η|| ∈ H will be a unit vector so

1

||η||2
(α1η, η) <

1

||η||2
(βIdHη, η)

i.e,
(α1η, η) < (β · IdHη, η)

which means that in A we have that α1 < β · IdH (inequality involving operators).
However, since s is a state then s(α1) < s(β · IdH) = βs(1A) = β, which is a
contradiction.
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Theorem 5.24 Let p ∈ Cns the following are equivalent:

1. p ∈ Cqa

2. There exists a state s of S(n, k)⊗min S(m, l) such that p = ps

The map s→ ps is an (affine) isomorphism between the state space of
S(n, k)⊗min S(m, l) and Cqa.

Proof: 2→ 1 We know that the minimal operator system tensor product is injective
and that S(n, k) ⊆ A(n, k), S(m, l) ⊆ A(m, l) so the embedding S(n, k) ⊗min
S(m, l) ⊆ A(n, k)⊗minA(m, l) is a complete order isomorphism onto its range. Thus
swhich is a state of S(n, k)⊗minS(m, l) can be extended to a state s̃ ofA(n, k)⊗min
A(m, l). Now let π1 : A(n, k)→ B(H1) and π2 : A(m, l)→ B(H ′

2) be faithful (one
to one) ∗-representations, then the representation

π1 ⊗ π2 : A(n, k)⊗min A(m, l)→ B(H1 ⊗H ′
2) : α1 ⊗ α2 → π1(α1)⊗ π2(α2)

is also faithful. Set B := (π1 ⊗ π2)(A(n, k)⊗min A(m, l)).
Let Ex,a = π1(ex,a), x ∈ X, a ∈ A and F ′

y,b = π2(fy,b), y ∈ Y, b ∈ B, then
by Lemma 5.18 we have that for every x ∈ X , {Ex,a}a∈A is a PVM on H1 and
respectively for every y ∈ Y , {Fy,b}b∈B is a PVM on H ′

2.
Consider a state s satisfying condition 2 and take ε > 0 arbitrary. Call s̃ the state

s, when considered as a state on B. Lemma 5.23 tells us that s̃ belongs to the weak∗
closure of the convex hull of the set of all vector states of B. Thus there exist unit
vectors ξj ∈ H1 ⊗H ′

2, j = 1, . . . , r and positive scalars λj with
∑r
j=1 λj = 1 such

that

|s̃(ex,a⊗fy,b)−
r∑
j=1

λj
(
(Ex,a ⊗ F ′

y,b)ξj , ξj
)
| < ε, for all a ∈ A, b ∈ B, x ∈ X, y ∈ Y

(Notice that
(
(Ex,a ⊗ F ′

y,b)ξj , ξj

)
= ((π1 ⊗ π2)(ex,a ⊗ fy,b))ξj , ξj) which is a vec-

tor state of B)

Let H2 = H ′
2 ⊗ Cr and ξ =

∑r
j=1

√
λjξj ⊗ ej ( where {ej} is the standard basis of

Cr), clearly ξ is a unit vector inH2. Furthermore, let Fy,b = F ′
y,b ⊗ Ir, y ∈ Y, b ∈ B

then {Fy,b}b∈B is a PVM on H2 for every y ∈ Y . Indeed,

F 2
y,b = (F ′

y,b ⊗ Ir)(F ′
y,b ⊗ Ir) = (F ′

y,b)
2 ⊗ (Ir)

2 = F ′
y,b ⊗ Ir = Fy,b

and
F ∗
y,b = (F ′

y,b)
∗ ⊗ I∗r = F ′

y,b ⊗ Ir = Fy,b

and ∑
b∈B

Fy,b =
∑
b∈B

F ′
y,b ⊗ Ir = IH′

2
⊗ Ir = IH2 .

Moreover, we now have

|s̃(ex,a ⊗ fy,b)− ((Ex,a ⊗ Fy,b)ξ, ξ) | < ε, for all a ∈ A, b ∈ B, x ∈ X, y ∈ Y (I)
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Hence if we prove the following claim we will complete our proof:

CLAIM: Let H1 and H2 be two Hilbert spaces (not necessarily finite dimensional),
ξ ∈ H = H1 ⊗ H2 a unit vector and {Ex,a}a∈A (respectively {Fy,b}b∈B) a POVM
on H1 (resp. H2) for every x ∈ X (resp. y ∈ Y ). Then the correlation p defined by

p(a, b | x, y) = ((Ex,a ⊗ Fy,bξ, ξ) , for all x ∈ X, y ∈ Y, a ∈ A, b ∈ B

is an element of Cqa.

Proof of Claim: Assume that {Pi}i∈I and {Qi}i∈I be nets of finite dimensional pro-
jections that converge in the strong operator topology to the identity operators on
H1 andH2, respectively (by relabelling the index sets of the nets, we can assume that
these sets coincide). Now set Eix,a = PiEx,a ↾ PiH1 and F iy,b = QiFy,b ↾ QiH2,
then and

Eix,a is a positive operator on PiH1 for all a in A

and ∑
a∈A

Eix,a =
∑
a∈A

PiEx,a ↾ PiH1 = PiIH1
↾ PiH1 = IPiH1

so {Eix,a}a∈A is a POVM on the Hilbert space PiH1 which is finite dimensional. Sim-
ilarly {F iy,b}b∈B is a POVM on the finite dimensional Hilbert spaceQiH2. In addition
if (for each i) we call pi the quantum non-signalling correlation arising from the above
POVM’s and the unit vector ξi = Pi⊗Qiξ

||Pi⊗Qiξ|| as in 2 of Definition 5.11 then

pi = ((PiEx,a ⊗QiFy,b)ξi, ξi)

=
1

∥(Pi ⊗Qi)ξ∥2
((PiEx,a ⊗QiFy,b)(Pi ⊗Qi)ξ, (Pi ⊗Qi)ξ)

=
1

∥(Pi ⊗Qi)ξ∥2
((PiEx,aPi ⊗QiFy,bQi)ξ, (Pi ⊗Qi)ξ)

i∈I−−→ ((IH1
Ex,aIH1

⊗ IH2
Fy,bIH2

)ξ, (IH1
⊗ IH2

)ξ)

= ((Ex,a ⊗ Fy,b)ξ, ξ) = p

since the net (Pi ⊗Qi) converges strongly to the identity and is uniformly bounded.
Hence p is a limit of elements of Cq , i.e., p ∈ Cqa.

1 → 2: Since the state space of an operator system is weak star compact (Banach-
Alaoglu) we can assume that p ∈ Cq (then by taking limits we obtain the result for
correlations in Cqa).
Let H1, H2 be Hilbert spaces, ξ ∈ H1 ⊗H2 unit vector and POVM’s {Ex,a}a∈A on
H1, x ∈ X and {Fy,b}b∈B on H2, y ∈ Y , such that

p(a, b | x, y) = ((Ex,a ⊗ Fy,bξ, ξ) , for all x ∈ X, y ∈ Y, a ∈ A, b ∈ B

95



Using Proposition 5.18 we obtain unital completely positive maps

ϕ : S(n, k)→ B(H1) : ex,a → Ex,a

and
ψ : S(m, l)→ B(H2) : fy,b → Fy,b

The minimal tensor product of operator systems is functorial so the map
ϕ⊗ψ : S(n, k)⊗minS(m, l)→ B(H1)⊗minB(H2) is unital and completely positive.
Thus, the linear functional s : S(n, k)⊗min S(m, l)→ C given by

s(v1 ⊗ v2) = ((ϕ(v1)⊗ ψ(v2))ξ, ξ) , v1 ∈ S(n, k), v2 ∈ S(m, l)

is positive (and its range is a subset of a commutative C∗-algebra consequently it
is completely positive) and obviously unital, i.e., it is a state on the tensor product
S(n, k)⊗min S(m, l). Finally, it is clear that p = ps
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6 Distinguishing between correlation sets
In this Chapter we will demonstrate a number of separations between the correlation
sets we defined previously. Remember that for each k, n ∈ N we have the following
sequence of inclusions

Cloc(n, k) ⊆ Cq(n, k) ⊆ Cqa(n, k) ⊆ Cqc(n, k) ⊆ Cns(n, k)

our aim is to prove that the above inclusions are strict. These separations combined
with the way we defined the various correlations sets via tensor products will in turn
allow us to obtain the following strict inclusions

S ⊗max T ⊂ S ⊗c T ⊂ S ⊗min T , for S, T operator systems

Since Cqa is the closure of Cq and we know that Cq is not closed we have that

Cq ̸= Cqa

The other inequalities, as we will see, are not so easy to obtain.

The inequality Cqa ̸= Cqc was proved quite recently in ([10]). This inequality will not
be studied here as it requires techniques not mentioned in this paper.

Suppose that we have a finite input-output game G = (X,Y,A,B, λ), let t denote one
of {loc, q, qa, qc, ns} and π : X × Y → [0, 1] be a probability density. We introduce
the following quantity which will help us in our attempt to separate the correlation
sets

ωt(G, π) = sup{
∑

(x,y)∈X×Y

∑
(a,b)∈A×B

π(x, y)λ(x, y, a, b)p(a, b | x, y) : p ∈ Ct}

We call ωt(G, π) the t-value of the game and we set ωt(G) = ωt(G, πu), where πu
denotes the uniform distribution.
The idea is to find games whose value depends on the choice of t (i.e. they have
different values for different t).

6.1 Separation of local and quantum correlations

Wewill move towards proving that Cloc(2, 2) ̸= Cq(2, 2) to do so we will consider the
CHSH gamewhich was introduced in 1969 by the physicists Clauser, Horne, Shimony,
and Holt ([3]):

The CHSH game : Let X = Y = A = B = 0, 1 and

λ =

{
1, if a+ b = xy(mod2)

0, otherwise
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Proposition 6.1 We have the following:

1. ωloc(CHSH) = 3
4

2. ωq(CHSH) ≥ 1
2 +

√
2
4

Proof: Firstly notice that the players win the game in the following scenarios:

1. If x = y = 0 and they answer identically.

2. If x = 1, y = 0 and they answer identically.

3. If x = 0, y = 1 and they answer identically.

4. If x = y = 1 and their answers differ.

Since the extreme points of the convex set Cloc are precisely the strategies of the form
pf,g where (f, g) is a deterministic strategy for the game and

pf,g(a, b | x, y) =

{
1, if a = f(x) and b = g(y)

0, otherwise

by enumerating the deterministic strategies for the CHSH game we can deduce its
local value. Now a deterministic strategy for this particular game is a pair of functions
f : {0, 1} → {0, 1} and g : {0, 1} → {0, 1} which determine Alice and Bob’s
responses respectively. Since for each player there are four functions of that form
we see that the (maximum) number of all possible pairs of strategies for Alice and
Bob is sixteen, while the set of all possible pairs of questions has four elements. It is
not hard to verify that for each such strategy there exists a pair (x, y) of questions
that will make the strategy fail (for example if they choose the strategy in which they
always answer 1 then they win in every case except for the one in which x = y = 1).
This shows that for every choice of (f, g)we always have pf,g(a, b | x, y) = 0 for one
pair of questions (x, y). Consequently, we deduce that

ωloc(CHSH) =
1

4
(1 + 1 + 1) =

3

4

On the other hand, let H1 = H2 = C2 and let {e0, e1} denote the standard basis of
C2 , we consider the following

e =
1√
2
(e0 + e1) , f0 = cos(π

8
)e0 + sin(

π

8
)e1 , f1 = cos(π

8
)e0 − sin(

π

8
)e1

and the maximally entangled vector in H1 ⊗H2

ξmax =
1√
2
(e0 ⊗ e0 + e1 ⊗ e1)

Moreover, for each x ∈ X and for each y ∈ Y , let {Ex,a}a∈A and {Fy,b}b∈B be
POVM’s on C2 arising as follows:

E0,0 = e0e
∗
0 E1,0 = ee∗ F0,0 = f0f

∗
0 F1,0 = f1f

∗
1
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E0,1 = I− e0e∗0 E1,1 = I− ee∗ F0,1 = I−f0f∗0 F1,1 = I−f1f∗1
Here we use the notation : xy∗(z) = (z, y)x.
Let p be the quantum correlation arising from this data, i.e.,

p(a, b | x, y) == ((Ex,a ⊗ Fy,b)ξmax, ξmax)) , x ∈ X, y ∈ Y, a ∈ A, b ∈ B

We will compute the probabilities of winning for each pair of questions.

For x = y = 0 :

p(0, 0 | 0, 0) = ((E0,0 ⊗ F0,0)ξmax, ξmax))

=
1

2
((E0,0 ⊗ F0,0)(e0 ⊗ e0) + (E0,0 ⊗ F0,0)(e1 ⊗ e1), e0 ⊗ e0 + e1 ⊗ e1)

=
1

2
(e0e

∗
0(e0)⊗ f0f∗0 (e0) + e0e

∗
0(e1)⊗ f0f∗0 (e1), e0 ⊗ e0 + e1 ⊗ e1)

=
1

2

(
e0 ⊗ cos(π

8
)f0 + 0, e0 ⊗ e0 + e1 ⊗ e1)

)
=

1

2
cos(π

8
) (e0 ⊗ f0, e0 ⊗ e0) + cos(π

8
) (e0 ⊗ f0, e1 ⊗ e1)

= cos(π
8
) (e0, f0) + 0

=
1

2
cos(π

8
)
(
e0, cos(

π

8
)e0 + sin(

π

8
)e1

)
=

1

2
cos2(π

8
)

and

p(1, 1 | 0, 0) = ((E0,1 ⊗ F0,1)ξmax, ξmax)

=
1

2
(((I − e0e∗0)⊗ (I − f0f∗0 )(e0 ⊗ e0 + e1 ⊗ e1), e0 ⊗ e0 + e1 ⊗ e1)

=
1

2
(0 + 0 + 0 + cos2(π

8
))

=
1

2
cos2(π

8
)

Via similar calculations one can see that:

For x = 1, y = 0 :

p(0, 0 | 1, 0) = 1

4
+

1

2
cos(π

8
) sin(π

8
)

and similarly
p(1, 1 | 1, 0) = 1

4
+

1

2
cos(π

8
) sin(π

8
)
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For x = 0, y = 1 :

p(0, 0 | 0, 1) = 1

2
cos2(π

8
)

and
p(1, 1 | 0, 1) = 1

2
cos2(π

8
)

For x = y = 1 :

p(1, 0 | 1, 1) = 1

4
+

1

2
cos(π

8
) sin(π

8
) = p(0, 1 | 1, 1)

We know set

p1 := p(0, 0 | 0, 0) = p(1, 1 | 0, 0) = p(0, 0 | 0, 1) = p(1, 1 | 0, 1) = 1

2
cos2(π

8
)

and

p2 := p(0, 0 | 1, 0) = p(1, 1 | 1, 0) = p(0, 0 | 1, 0) = p(1, 1 | 0, 1) = 1

4
+
1

2
cos(π

8
) sin(π

8
)

Then combining all of the above we obtain,

ωq(CHSH) ≥ 1

4
(4p1 + 4p2)

=
1

4
(2 cos2(π

8
) + 4(

1

4
+

1

2
cos(π

8
) sin(π

8
))

=
1

2
cos2(π

8
) +

1

4
+

1

2
cos(π

8
) sin(π

8
)

=
1

4
+

1

2

√
2

4
+

1

4
+

1

2

√
2

4

=
1

2
+

√
2

4

Thus, we conclude that ωq(CHSH) ≥ 1
2 +

√
2
4 > 3

4 = ωloc(CHSH).

It follows from Proposition 6.1 that when the players follow local strategies they win
the CHSH game with probability 75% whereas if they follow a quantum one they win
with probability (at least) 85%, so indeed Cloc ̸= Cq .

The above example also concretely demonstrates that quantum strategies offer a sig-
nificant advantage to the players in comparison to the deterministic ones. From a
physics point of view the CHSH game shows that correlations arising from quantum
entanglement cannot be explained by any non-quantum theory of physics (such as
the local hidden variable theory).
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6.2 Separation of quantum commuting and NS correlations

We will use the following result which is proved in [8, Theorem 6.3.]

Proposition 6.2 For any operator systemR the following holds

R⊗c S(2, 2) = R⊗min S(2, 2)

Furthermore, recall that for every k, n ∈ N we defined

V(n, k) =

{((λ1,α)α, . . . , (λn,α)α) : (λi,a)α ∈ `∞k , ∀i ∈ [n] and
k∑

α=1

λi,α =

k∑
α=1

λi′,α, ∀i, i′}

and we proved that V(n, k) ∼=c.o.i. S(n, k)d.

The main objective of this chapter is to prove the following Theorem:

Theorem 6.3
V(2, 2)⊗min V(2, 2) ̸= V(2, 2)⊗max V(2, 2)

If the aforementioned theorem holds true then combining it with Proposition 5.19 we
will obtain that

S(2, 2)d ⊗min S(2, 2)d ̸= S(2, 2)d ⊗max S(2, 2)d

which by Theorem 2.22 and Proposition 6.2 is equivalent to

(S(2, 2)⊗max S(2, 2))d ̸= (S(2, 2)⊗min S(2, 2))d = (S(2, 2)⊗c S(2, 2))d

This inequality viewed in light of Propositions 5.20 and 5.21 implies that there exists
a correlation p in Cns which does not belong to Cqc and thus we obtain the desired
separation.

For the proof of Theorem 6.3 several Lemma’s will be required.

Firstly recall the following Lemma we proved in Section 2.1

Lemma [2.16] Let (S, e1) and (T , e2) be operator systems. If u ∈ S ⊗max T is strictly
positive, then there exists n ∈ N, A = [aij ] ∈Mn(S)+ andB = [bij ] ∈Mn(T )+ such
that

u =

n∑
i,j=1

aij ⊗ bij

.
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Lemma 6.4 LetS and T be finite dimensional vector spaces, in addition let s1, . . . , sm ∈
S and t1, . . . , tn ∈ T . Moreover, let [xij ] ∈ Mp(S) and [yij ] ∈ Mp(T ) and assume
that for k = 1, . . . ,m and l = 1, . . . , n there exist Ak, Bl ∈ Mp such that [xij ] =∑m
k=1Ak ⊗ sk and [yij ] =

∑n
l=1Bl ⊗ tl. Then, we have that

p∑
i,j

xij ⊗ yij =
m∑
k=1

n∑
l=1

Tr(AkB
t
l )sk ⊗ tl

Proof: For each k = 1, . . . ,m we have that Ak = [a
(k)
ij ]pi,j=1 where

aij ∈ C, 1 ≤ i, j ≤ p, and

Ak ⊗ sk = [a
(k)
ij ]⊗ sk = [a

(k)
ij sk]

so

[xij ] =

m∑
k=1

Ak ⊗ sk =

m∑
k=1

[a
(k)
ij sk] = [

m∑
k=1

a
(k)
ij sk]

and similarly

[yij ] =

n∑
l=1

Bl ⊗ tl =
n∑
l=1

[b
(l)
ij tl] = [

n∑
l=1

b
(l)
ij tl]

for some Bl = [b
(l)
ij ] ∈Mp. Now,
p∑
i,j

xij ⊗ yij =
p∑
i,j

(

(
m∑
k=1

a
(k)
ij sk

)
⊗

(
n∑
l=1

b
(l)
ij tl

)
)

=

p∑
i,j

(

m∑
k=1

n∑
l=1

a
(k)
ij sk ⊗ b

(l)
ij tl)

=

m∑
k=1

n∑
l=1

(

p∑
i,j

a
(k)
ij b

(l)
ij sk ⊗ tl)

=
m∑
k=1

n∑
l=1

Tr(AkB
t
l )sk ⊗ tl

(the sums are all finite and the tensor product is bi-linear).

Now we will use both of the above in order to prove :

Lemma 6.5 LetS and T be finite dimensional vector spaces, with linear bases {s1, . . . , sm} ⊆
S and {t1, . . . , tn} ⊆ T and let

u =

m∑
k=1

n∑
l=1

qk,lsk ⊗ tl ∈ S ⊗ T , qkl ∈ C

If u is strictly positive in S ⊗ T then there exist a p ∈ N as well as matrices U1 =∑m
k=1Ak ⊗ sk ∈ Mp(S)+ and U2 =

∑n
l=1Bl ⊗ tl ∈ Mp(T )+, where for each

k = 1, . . . ,m and l = 1, . . . , n : Ak, Bl arematrices inMp such thatTr(AkBtl ) = qk,l.
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Proof: Suppose that u =
∑m
k=1

∑n
l=1 qk,lsk⊗tl ∈ S⊗T is a strictly positive element

ofMp(S), then by Lemma 2.16 there exist a p ∈ N, and positive elements U1 = [αij ]
and U2 = [βij ] inMp(S) andMp(T ) respectively such that

u =

p∑
i,j

αij ⊗ βij

SinceMp(S) ∼=c.o.i. Mp ⊗ S andMp(T ) ∼=c.o.i. Mp ⊗ T we are able to write U1 =∑m
k=1Ak ⊗ sk and U2 =

∑n
l=1Bl ⊗ tl where Ak, Bl ∈Mp for all k = 1, . . . ,m and

all l = 1, . . . , n. Using Lemma 6.4 it is immediate that u can be written in the form
we desire.

Observe that

V(2, 2) = {((λ1,1, λ1,2), (λ2,1, λ2,2)) : λi,j ∈ C and
2∑
j=1

λi,j =

2∑
j=1

λi′,j , ∀i, , i′, j ∈ [2]}

= {(z1, z2, z3, z4) : zi ∈ C, i ∈ [4] and z1 + z2 = z3 + z4}

Let p ∈ N then, using the identificationMp(V (2, 2)) =Mp ⊗ V (2, 2) we have that

Mp(V(2, 2)) = {
4∑
i=1

Xi ⊗ ei : Xi ∈Mp, X1 +X2 = X3 +X4, i ∈ [4]}

Indeed, suppose that p ∈ N and [λmn] ∈Mp(V(2, 2)) then

[λmn] =

p∑
m,n=1

Em,n ⊗ λmn

and for each m,n ∈ [p] we have that λmn =
∑4
i=1 b

mn
i ei where bmn1 + bmn2 =

bmn3 + bmn4 . Thus,

p∑
m,n=1

Em,n ⊗ λmn =

p∑
m,n=1

Em,n ⊗
4∑
i=1

bmni ei =

p∑
m,n=1

4∑
i=1

Em,n ⊗ bmni ei =

p∑
m,n=1

4∑
i=1

bmni Em,n ⊗ ei =

4∑
i=1

(
p∑

m,n=1

bmni Em,n

)
⊗ ei

Now for i = 1, 2, 3, 4 set

Xi =

p∑
m,n=1

bmni Em,n
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Then [λmn] =
∑4
i=1Xi⊗ei and it is straightforward to see thatX1+X2 = X3+X4.

Moreover, it follows from the above discussion that

Mp(V(2, 2))+ = {
4∑
i=1

Xi ⊗ ei : X1 +X2 = X3 +X4, Xi ∈M+
p , ∀i ∈ [4]}

To see this suppose that (
∑4
i=1Xi⊗ ei) ∈ (Mp⊗ l∞4 )+ and let ξ ∈ Cp then we have

that for every j = 1, . . . , 4:(
4∑
i=1

Xi ⊗ ei(ξ ⊗ ej), (ξ ⊗ ej)

)
≥ 0

and at the same time for every j = 1, . . . , 4:(
4∑
i=1

Xi ⊗ ei(ξ ⊗ ej), (ξ ⊗ ej)

)
=

4∑
i=1

(Xiξ, ξ) (eiej , ej) = (Xjξ, ξ)

Thus, (Xjξ, ξ) ≥ 0 for every j = 1, . . . , 4 and every ξ ∈ Cp which proves our point.

The other direction is trivial.

The next proposition gives us a realization of the strictly positive elements ofV(2, 2)⊗max
V(2, 2).

Proposition 6.6 Let v =
∑4
i,j=1 qijei⊗ej be a strictly positive element inV(2, 2)⊗max

V(2, 2). Then there exist a p ∈ N and matrices Xi, Yj ∈ M+
p satisfying: X1 + X2 =

X3 +X4 and Y1 + Y2 = Y3 + Y4 = I such that

qij = Tr(XiYj) for 1 ≤ i, j ≤ 4.

Proof: Using Lemma 6.5 we can find a p ∈ N, U1 =
∑4
i=1Xi ⊗ ei, Xi ∈ Mp and

U2 =
∑4
j=1Bj⊗ej ,Bj ∈Mp withU1, U2 ∈Mp(V(2, 2))+ such that

∑4
i,j=1 qijei⊗

ej =
∑4
i,j=1 Tr(XiB

t
j)ei ⊗ ej . Furthermore, since U1, U2 ∈Mp(V(2, 2))+ we have

that Xi, Bj ∈ M+
p and X1 +X2 = X3 +X4 and B1 + B2 = B3 + B4. Moreover,

for each i ∈ [4] we set Bj = Y tj then the formulas above take the following form

qij = Tr(Xi(Y
t
j )
t) = Tr(XiYj), Y1 + Y2 = Y3 + Y4 and Yj ∈M+

p

Let E be the projection onto ker(Y1+Y2)⊥ where ⊥ denotes the orthogonal comple-
ment.

Claim 1: There exists a positive invertible matrix P such that:

4∑
j=1

P−1YjP
−1 = 2E
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Proof of Claim 1: Firstly, notice that E is the orthogonal projection onto ker(Y1 +
Y2)

⊥ = Im((Y1 + Y2)
∗) = Im(Y1 + Y2)= Im

√
Y1 + Y2. We will make use of the

following fact: If T is a positive semi-definite operator on a finite dimensional Hilbert
space and π is the orthogonal projection onto Im(T ) then

√
T =

√
Tπ = π

√
T

Proof : Let x ∈ Cp then x = h1 + h2 with h1 ∈ ker(T )⊥ = Im(T ∗) = Im(T ) and
h2 ∈ ker(T ) so π(x) = h1. Thus

√
Tπ(x) =

√
T (h1) =

√
T (x) (because ker(

√
T ) ⊆

ker(T )). On the other hand, since Im(T )= Im
√
T we have that

√
T (h1) ∈ Im(T )

therefore π
√
T (x) = π

√
T (h1) =

√
T (h1) =

√
Tπ(x).

We apply the above for the operator B := (Y1 + Y2) and for the projection E, so we
obtain that √

B =
√
BE = E

√
B

which implies that

B =
√
B
√
B =

√
B
√
BE =

√
BE
√
B

Now consider the operator

Px =

{√
Bx, x ∈ ker(Y1 + Y2)

⊥

x, x ∈ ker(Y1 + Y2)

then P is a positive and injective linear operator so it will be positive and invertible
and the same will hold for its matrix (which we will denote by the same letter). More-
over, we have that Y1 + Y2 = PEP . Indeed, let let x ∈ Cp then it can be written as
x = h1 + h2, for h1 ∈ ker(Y1 + Y2)

⊥ and h2 ∈ ker(Y1 + Y2), hence

(Y1 + Y2)(x) = (Y1 + Y2)(h1 + h2)

= (Y1 + Y2)(h1) + (Y1 + Y2)(h2)

= (Y1 + Y2)(h1) + 0

= B(h1) + E(h2)

=
√
BE
√
B(h1) + E(h2)

= PEP (h1 + h2)

= PEP (x)

(becauseE(h2) = 0). Thus, Y1+Y2 = PEP or equivalently P−1(Y1+Y2)P
−1 = E.

Since Y1 + Y2 = Y3 + Y4 we also have that P−1(Y3 + Y4)P
−1 = E, the result now

is immediate.
For each i ∈ {1, . . . , 4}, set

Ŷi = P−1YiP
−1 and X̂i = PXiP
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then for all i, j ∈ {1, . . . , 4} we have that Ŷi and X̂i are positive. Indeed, since P is
positive and invertible its inverse is also positive and for A,B positive matrices we
have that ABA is also positive ((ABAx, x) = (B(Ax), (Ax)) ≥ 0).

In addition, notice that

Ŷ1 + Ŷ2 = Ŷ3 + Ŷ4 = E and X̂1 + X̂2 = X̂3 + X̂4 (I)

(since: Y1 + Y2 = PEP so Ŷ1 + Ŷ2 := P−1(Y1 + Y2)P
−1 = P−1PEPP−1 = E)

and
Tr(XiYj) = Tr(PXiYjP

−1) = Tr(PXiPP
−1YjP

−1) =

Tr(X̂iŶj) = Tr((EX̂iE)(EŶjE)) (II)

The last equality stems from the following claim :

Claim 2: Ŷj = ŶjE.

Proof of Claim 2: E is the orthogonal projection onto ker(Y1 + Y2)
⊥ = Im((Y1 +

Y2)
∗) = Im(Y1 + Y2). Let x ∈ Cp then it can be written as x = h1 + h2, for

h1 ∈ Im(Y1 + Y2) and h2 ∈ ker(Y1 + Y2) so

Y1(x) = Y1(h1) + Y1(h2) = Y1E(x) + Y1(h2)

It is also true that ker(Y1 + Y2) = ker(Y1)
⋂
ker(Y2) (because Y1 and Y2 are positive

semi-definite) thus we have that h2 ∈ ker(Y1). Thus, Y1(h2) = 0 and so Y1(x) =
Y1E(x), ∀x ∈ Cp. In the same way it can be shown that Yj = YjE, j = 2, 3, 4.

Now, once again let x ∈ Cp, we can write x = h1 + h2 with h1, h2 defined as above.
Then

PE(x) = PE(h1 + h2) = PE(h1) + PE(h2) = P (h1) + 0 =
√
B(h1)

and
EP (x) = EP (h1) + EP (h2) = E

√
B(h1) =

√
B(h1) = PE(x)

Thus, EP = PE. Multiplying with P−1 from left and right we see that P−1E =
EP−1. Finally, we obtain that for every x ∈ Cp and for j = 1, 2, 3, 4:

ŶjE(x) := P−1YjP
−1E(x)

= P−1YjEP
−1(x)

= P−1YjP
−1(x)

= Ŷj(x)

It follows that Ŷj = ŶjE. The proof of the Claim is now complete.

Furthermore, since (Ŷj)∗ = Ŷj , ∀j ∈ [4] and E∗ = E (E is an orthogonal projection
onto a closed subspace) we also have that EŶj = Ŷj = ŶjE, j = 1, 2, 3, 4. Thus,

EŶjE = EŶj = Ŷj
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So for every i, j ∈ {1, . . . , 4} we have that,

X̂iEŶjE = X̂iŶj

Notice that if we replace X̂i and Ŷj withEX̂iE andEŶjE respectively, the equations
(I) and (II) still hold. Since E is a projection we can diagonalize it, in particular E
can be written in the form: diag{1, . . . , 1, 0, . . . , 0} where the number of one’s is
equal to dim(Im(E)) = dim(ker(Y1 + Y2)

⊥) while the number of zeroes is equal
to dim(kerE). This implies that we can regard the matrices EX̂iE and EŶiE as
matrices of smaller size (by “cutting” the matrix at the point that all its rows and
columns are zero) . Now, if we abuse the notation and denote these smaller matrices
again by EX̂iE and EŶiE, from (I) we have that

EŶ1E + EŶ2E = EŶ3E + EŶ4E = diag(1, . . . , 1)

Thus without loss of generality we may assume that Y1 + Y2 = Y3 + Y4 = I or
equivalently that

∑4
i=1 Yi = 2I . The proof is now complete.

(If the original matrices do not satisfy our requirements we replace them with the
matrices EX̂iE and EŶiE and regard them as matrices of smaller size in the way we
described, for the smaller size matrices the Lemma is true in its entirety.)

Definition 6.7 Let A = [αij ] be a n ×m matrix, the Frobenius norm of A is denoted
by ∥ · ∥F and is given by

∥A∥F =

√∑
i,j

|αij |2 =
√
Tr(A∗A)

Note : In the space of n × m complex matrices we can define an inner product as
follows, let A = [αij ], B = [βij ] ∈Mn,m then

(A,B)Mn
= Tr(B∗A)

The induced norm of this inner product is the Frobenius norm. Since this is an inner
product it will satisfy the Cauchy-Schwarz inequality, i.e.,

(A,B)Mn
≤ ∥A∥F ∥B∥F

Lemma 6.8 Let p ∈ N and for i, j ∈ {1, . . . , 4} suppose that Xi, Yj ∈ M+
p with

X1 + X2 = X3 + X4 and Y1 + Y2 = Y3 + Y4 = I . Moreover, for i, j = 2, set
qij = Tr(XiYj) and for a, c ∈ {0, 2}, set

Sa,c(j, k) = min
b∈{0,2}

2∑
i=1

√
qb+i,a+j

√
qb+i,c+k

Then,

Tr(X1 +X2) ≤ min
a,c

2∑
j,k=1

Sa,c(j, k)
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Proof: We set β = Tr(X1 + X2) = Tr(X3 + X4). Since Y1 + Y2 = Y3 + Y4 = I
and for all square matrices A,B we have that Tr(A+B) = Tr(A) + Tr(B), we see
that for all a, b, c ∈ {0, 2} :

β = Tr((Ya+1 + Ya+2)(Xb+1 +Xb+2)(Yc+1 + Yc+2))

=

2∑
i,j,k=1

Tr(Ya+jXb+iYc+k)

=

2∑
i,j,k=1

Tr((Ya+jX
1
2

b+i)(X
1
2

b+iYc+k))

=

2∑
i,j,k=1

Tr((X
1
2

b+iYa+j)
∗(X

1
2

b+iYc+k))

≤
2∑

j,k=1

2∑
i=1

∥X
1
2

b+iYa+j∥F ∥X
1
2

b+iYc+k∥F

(for all a, j, b, i, Ya+j , X
1
2

b+i are p.s.d. matrices so Hermitian)

Conversely, if X and Y are positive (semi-definite) matrices and Y ≤ I , then

∥X 1
2Y ∥2F = Tr(X

1
2Y 2X

1
2 ) ≤ Tr(X 1

2Y X
1
2 ) = ∥X 1

2Y
1
2 ∥2F

and
∥X 1

2Y
1
2 ∥2F = Tr(X

1
2Y X

1
2 ) = Tr(XY )

Combining these results we have that

β ≤
2∑

j,k=1

2∑
i=1

∥X
1
2

b+iY
1
2
a+j∥F ∥X

1
2

b+iY
1
2

c+k∥F

≤
2∑

j,k=1

2∑
i=1

√
Tr(Xb+iYa+j)

√
Tr(Xb+iYc+k)

=

2∑
j,k=1

2∑
i=1

√
qb+i,a+j

√
qb+i,c+k

and this holds for every b ∈ {0, 2}. Taking minimum over all b ∈ {0, 2} we obtain
the desired inequality.

Lemma 6.9 Let u =
∑4
i,j=1 qijei ⊗ ej ∈ (V(2, 2) ⊗max V(2, 2))+. For a, c ∈ {0, 2}

set

Sa,c(j, k) = min
b∈{0,2}

2∑
i=1

√
qb+i,a+j

√
qb+i,c+k
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Then, for all d ∈ {0, 2} we have that

2∑
i,j=1

qd+i,d+j ≤ min
a,c

2∑
i,j=1

Sa,c(j, k)

Proof: Given δ > 0 the element

u+ δ1⊗ 1 =

2∑
i,j

(qij + δ)ei ⊗ ej

is strictly positive, so by Proposition 6.6 there exist a p ∈ N andmatricesXi, Yj ∈M+
p

with X1 +X2 = X3 +X4 and Y1 + Y2 = Y3 + Y4 = I such that

qij + δ = Tr(XiYj), 1 ≤ i, j ≤ 2

By Lemma 6.8 we obtain that,

Tr(X1 +X2) ≤ min
a,c

2∑
i,j=1

Sa,c(j, k) (I)

Moreover, observe that for d ∈ {0, 2}

Tr(X1 +X2) = Tr((Xd+1 +Xd+2)(Yd+1 + Yd+2)︸ ︷︷ ︸
I

) =

2∑
i,j=1

(qd+i,d+j + δ)

Letting δ → 0 and using relation (I) we obtain the desired result.

We are now in a position to prove Theorem 6.3,

Proof of Theorem 6.3 : We want to show that :

V(2, 2)⊗min V(2, 2) ̸= V(2, 2)⊗max V(2, 2)

We begin by identifying `∞4 ⊗ `∞4 withM4 via the map

ei ⊗ ej → eie
∗
j = Ei,j , 1 ≤ i, j ≤ 4

Under this identificationV(2, 2)⊗V(2, 2) coincideswith the space of all 4×4-matrices
such that :

1. The sum of the first two entries in each row is equal to the sum of the last two
entries

2. The sum of the first two entries in each column is equal to the sum of the last
two entries
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To see this let v ∈ V(2, 2)⊗ V(2, 2) then it can be written as

v =
∑
i,j

αiei ⊗ βjej =
∑
i,j

αiβjei ⊗ ej

where α1 + α2 = α3 + α4 and β1 + β2 = β3 + β4. Using the aforementioned
identification we that v corresponds to the following element ofM4 :

∑
i,j

αiβjEi,j =


α1β1 α1β2 α1β3 α1β4
α2β1 α2β2 α2β3 α2β4
α3β1 α3β2 α3β3 α3β4
α4β1 α4β2 α4β3 α4β4


Now it is straightforward to see that the above matrix satisfies both of the conditions
given above. Moreover, we claim that this identification is a (complete) order isomor-
phism between the operator systems (l∞4 ⊗min l∞4 )+ andM4, whereM4 is the space
of the 4× 4 complex matrices with involution given by

([vij ]
4
i,j=1)

∗ = [v∗ij ]
4
i,j=1, [vij ]

4
i,j=1 ∈M4

and is equipped with the cone of the real matrices with non-negative entries (the fact
thatM4 is indeed an operator system is very easy to prove).
Indeed, call the aforementioned identification Φ. The fact that Φ is unital is trivial.
Moreover, notice that with respect to the usual involution on `∞4 ⊗min `∞4 and the
involution we defined onM4, Φ is involution preserving.
Now set

K = {[bij ] ∈M4 : bij ≥ 0, ∀i, j}

We shall show that Φ and Φ−1 are positive maps with respect toK .
Suppose thatΦ(

∑
i,j αiei⊗βjej) ∈ K this means that [αiβj ] ∈ K . Thus if k,m ∈ N

and φ1 ∈ UCP (`∞4 ,Mk) and φ2 ∈ UCP (`∞4 ,Mm) then

(φ1 ⊗ φ2)(
∑
i,j

αiei ⊗ βjej) =
∑
i,j

αiβj︸︷︷︸
≥0

φ1(ei)⊗ φ2(ej) ∈M+
km

It follows that
∑
i,j αiei ⊗ βjej ∈ (`∞4 ⊗min `∞4 )+.

Conversely, let
∑
i,j αiei ⊗ βjej ∈ (`∞4 ⊗min `∞4 )+. Notice that for all l, q ∈

{1, . . . , 4} the following maps are unital completely positive from `∞4 to C

1. φl : `∞4 → C projection to the l-th coordinate

2. φq : `∞4 → C projection to the q-th coordinate

Thus
(φl ⊗ φq)(

∑
i,j

αiei ⊗ βjej) ≥ 0, ∀l, q ∈ [4]
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So for all l, q ∈ {1, . . . , 4} we have that

0 ≤
∑
i,j

αiφl(ei)⊗ βjφq(ej) =
∑
i,j

αiδil ⊗ βjδjq = αlβq

This implies that the matrix [αiβj ]i,j ∈ K and completes the proof of our claim.

Since (`∞4 ⊗min `∞4 )+ is the cone of all real matrices inM4 with non-negative entries,
we see that the matrix

Q = [qij ] =


1 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1


is an element of (`∞4 ⊗min `∞4 )+ and it satisfies conditions 1 and 2 above, so

Q ∈ (V(2, 2)⊗ V(2, 2)) ∩ (`∞4 ⊗min `∞4 )+ = (V(2, 2)⊗min V(2, 2))+

Nowwe will work towards proving thatQ /∈ (V(2, 2)⊗maxV(2, 2))+, a fact that will
complete the proof.
Let d ∈ {0, 2} then

∑2
i,j=1 qd+i,d+j = 1 + 1 = 2. Now set a = 0, c = 2, take b = 0

and consider the quantity Sa,c(j, k) we defined in Lemma 6.9, we see that

0 ≤ S0,2(2, 1) ≤
2∑
i=1

√
qi,2
√
qi,3 = 0 · 1 + 1 · 0 = 0

and

0 ≤ S0,2(1, 2) ≤
2∑
i=1

√
qi,1
√
qi,4 = 1 · 0 + 0 · 1 = 0

On the other hand, if b = 2 then we have that

0 ≤ S0,2(1, 1) ≤
2∑
i=1

√
q2+i,1

√
q2+i,3 = 0 · 1 + 1 · 0 = 0

and

0 ≤ S0,2(2, 2) ≤
2∑
i=1

√
q2+i,2

√
q2+i,4 = 1 ·+0 · 1 = 0

Thus in any case
∑2
i,j=1 qd+i,d+j = 2 > 0 = mina,c

∑2
i,j=1 Sa,c(j, k)which violates

Lemma 6.9.
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7 Disambiguation
The correlation classes in Definition 5.11 were defined via POVM’s however some
authors chose to use PVM’s instead of POVM’s while defining these classes of cor-
relations. The main reason for this is that since the PVM’s are pairwise orthogonal
projections the computations with a PVM are much better than the computations
with a POVM. In this chapter we shall see that in both cases we obtain the same cor-
relation sets. The correlation classes defined using POVM’s in Definition 5.11 were
the quantum and quantum commuting and we denoted their respective sets by Cq and
Cqc. Hereafter we will let C′q and C′qc denote the aforementioned correlation sets when
their correlations are defined via PVM’s.
Notice that by Proposition 5.21 we already have that Cqc = C′qc, so it remains to show
that Cq = C′q . The next proposition will give us this result.

Proposition 7.1
Cq = C′q

Proof: Since every PVM is a POVM the inclusion C′q ⊆ Cq is immediate.
We will work towards proving the reverse inclusion. Let p(a, b | x, y) ∈ Cq then there
exist finite dimensional Hilbert spacesHA andHB , a unit vector ξ ∈ HA⊗HB as well
as families of POVM’s {Ex,a}a, x ∈ X on HA ( for every x ∈ X , Ex,a ≥ 0, ∀a ∈ A
and

∑
aEx,a = IHA

) and {Fy,b}b, y ∈ Y on HB such that for all x ∈ X, y ∈ Y, a ∈
A, b ∈ B:

p(a, b | x, y) = ((Ex,a ⊗ Fy,b)ξ, ξ)

Using Theorem 5.5 for the space HA and the family {Ex,a}a we can find a finite
dimensional Hilbert spaceH ′

A (HA is finite dimensional), a family of PVM’s {E′
x,a}a

and an isometry VA : HA → H ′
A such that for every (x, a) ∈ X × A we have

that Ex,a = V ∗
AE

′
x,aVA. Doing the same for the space HB and the family {Fy,b}b

we obtain a finite dimensional Hilbert space H ′
B , a family of PVM’s {F ′

y,b}b and an
isometry VB : HB → H ′

B such that for every (y, b) ∈ Y × B we have that Fy,b =
V ∗
BF

′
y,bVB .

In the spaceH ′
A⊗H ′

B , we define the following element ξ′ = (VA⊗VB)(ξ) and notice
that it is a unit vector. Moreover,(

(E′
x,a ⊗ F ′

y,b)ξ
′, ξ′
)
=
(
(E′

x,a ⊗ F ′
y,b)(VA ⊗ VB)ξ, (VA ⊗ VB)ξ

)
=
(
(V ∗
A ⊗ V ∗

B)(E
′
x,a ⊗ F ′

y,b)(VA ⊗ VB)ξ, ξ
)

=
(
(V ∗
AE

′
x,aVA ⊗ V ∗

BF
′
y,bVB)ξ, ξ

)
= ((Ex,a ⊗ Fy,b)ξ, ξ)

= p(a, b | x, y)

which shows that C′q ⊆ Cq and concludes the proof.
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