EONIKO KAI KAMOAIZTPIAKO NMANENIZTHMIO AOGHNQN

2XOAH OETIKQN ENIZTHMQN
TMHMA NMAHPO®OPIKHZ KAI THAEMIKOINQNIQN

NMPOrPAMMA METAMNTYXIAKQN ZMNOYAQN
"MAHPO®OPIKH"

AINAQMATIKH EPT AZIA

AtrAouoTteuon TnG aAAnAemidopaong pe Tutroug OplopPévoug aTro

Tov XpRoTtn tng SQL pe tn xprRion piag Wrapper BiIBAI0OAKNG TG
JDBC

Mavayiwtng Z. ZTaupdT1TOoUAOg

EmiBAéTTwv: AAéEENg AeAng, Kabnyntig EKIA

ABRva
ATtrpiAiog 2022

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATION TECHNOLOGY AND TELECOMMUNICATIONS

POSTGRADUATE STUDIES PROGRAM
"COMPUTER SCIENCE"

MASTER THESIS

Simplifying the Interaction with User-Defined Types in SQL via a
JDBC Wrapper Library

Panagiotis S. Stavropoulos

Supervisor: Alex Delis, Professor NKUA

Athens
April 2022

AINAQMATIKH EPTAZIA

AtrAouoTeuon TNG aAAnAeTTidpaong pe Tuttoug Opiopévoug atd Tov Xpnotn Tng SQL pe
xpnon uiag Wrapper BiBAiodrikng tng JDBC

Mavayiwtng Z. ZTaupdT1TOUAOG

A.M.: CS2180015

EmiBAéTTwV: AAEENG AgAng, Kabnynthg EKTA

EZETASTIKH ENITPOMH: AA£Enc AeAng, KaBnyntic EKMA

Mépa PouoootroUAou, Kabnyntic EKIA
AAéGavdpog NToUAag, Ettikoupog KaBnyntig EKMA

ATrpiAiog 2022

MSC Thesis

Simplifying the Interaction with User-Defined Types in SQL via a JDBC Wrapper Library

Panagiotis S. Stavropoulos

S.N.: CS2180015

SUPERVISOR: Alex Delis, Professor NKUA

EXAMINATION COMITEE: Alex Delis, Professor NKUA
Mema Roussopoulou, Professor NKUA

Alexandros Ntoulas, Assistant Professor NKUA

April 2022

NEPIAHWYH

H Java Database Connectivity (JDBC) €ival pia dietra@r) Trpoypapuatiopyou epapuoywyv (API)
yla TN YAWooa TTpoypauaTIoONoU Java, n otroia opiel Tov TPOTTO JE TOV OTT0I0 £vag TTEAATNG
MTTOPEl va €xel TTpdoaon o€ pia BAaon dedopévwy. To yeyovog OTI gival Baoikd, To KaBIoTa
QAUOPO KOl KOUPAOTIKO YIa EKTETAMEVN AUEON XPRON Kal autd HEYIOTOTTOIEITAl KATA TNV
evaoxoAnon pe o ouvBeToug User-Defined Types (UDT) otnv SQL.

H 1Tapouca dimmAwpaTIKn gpyacia teplypd@el Tn diadikaoia uAotroinong uiog BiBAI0BRAKNg
mepITUAigng dieragrc JDBC Ttrou amrAotrolei Tnv TTpocBacn otn Baon dedopévwy amo Tnv
atTAf ekTéAeon evioAwv SQL o€ TTI0 OUVOETEG TTEPITITWOEIG XPAONG ME TUTTOUG TTOU OpifovTal
atrd Tov XproTn. MNa va 1o €mMTUXOUUE AUTO AUTOUOTOTTOIOUME KAl KPUBOUME aTTd TOV XPrioTn
d1adIKaoieg TTou €W Twpa To BAPOC TNG UAOTTOINONG TOUG E£TTEQPTE OTOV TTPOYPAMUATIOTH.
Tétoleg d1adIkaoieg gival n TTposToIACia Kal N dAAWON TwV TTAPAPETPWY €1I0000U A £€600U, N
01adIKAC IO KOTAOKEUNG TOU ATTOTEAECUATOS KAl GAAQL.

Ta amoteAéopata NG TTapatmdvw OladIKaoiag ATav ApKETA evOappuVvTIKA Kal £DeICav OTI N
BIBAIOOAKN MOG KATOPEPVEL VA PEIWOEI OPANATIKA TOV KWOAIKA TTOU OTTAITEITAI VIO TIG TTPALEIG
TTOU XelpiCovTal Toug TUTTOUG TTOU opifovTal atTd Tov XPnoTn, diatnpwvtag TTapdAAnAa tnv
XPOVIKA €TTIBApuvon og Ox1 onuavTika emmieda. H peiwon TnG TTOAUYAwOTIag Teivel va €XEl
TTEPAITEPW OETIKES ETTITITWOEIG OTTWG N MEIWON TWV TTIBAVOTATWY EPNPAVIONG CPOAPATWY KAl N
augnon TNG TTapaywyIKOTNTAG.

OEMATIKEZ MNEPIOXEZX: >xeoiakég Baoeig Acdopévwy, ZuvdeoiudtnTa Baong dedopévwy,
SQL Tutror Opiopévol atrd Tov XpAoTn
AEZEIZ KAEIAIA: Baon Asdopévwy, JDBC, Wrapper BifAioBAkn, SQL, UDT

ABSTRACT

Java Database Connectivity (JDBC) is an application programming interface (API) for the
Java programming language that defines how a client can access a database. Being basic
makes it verbose and tedious for extended direct use. This is intensified while dealing with
more complex User-Defined Types (UDT) in SQL database language.

This thesis outlines the process of implementing a lightweight JDBC wrapper library that
intents to simplify database access from simple execute of SQL statements to more complex
use cases with user-defined types. To achieve this, we decrease verbosity by automating and
hiding from the user many processes that until now their implementation burden has fallen on
the developer. Such processes are the resource management, the preparation and
declaration of input or output parameters, the process of building the result and more.

The results of the above process were quite encouraging and showed that our library
manage to dramatically reduce the amount of code (~90%) required for operations handling
user-defined types while keeping the time overhead in not considerable levels. Decreasing
verbosity tends to have further positive effects such as reducing the chances of errors and
increasing productivity.

SUBJECT AREAS: Relational Databases, Database Connectivity, SQL User-Defined Types
KEYWORDS: Database, JDBC, Wrapper Llibrary, SQL, UDT

To my late best friend Paco...

ACKNOWLEDGEMENTS

| would like to thank my supervisor, Alex Delis, for his excellent guidance and support
throughout the whole thesis.

To all my colleagues at UOA and at my job: | would also like to thank you for your wonderful
cooperation. It was always helpful to discuss ideas with you about my research.

My parents and friends deserve special thanks. Your wise advice and kind words have
served me well.

| hope you enjoy reading this thesis!

TABLE OF CONTENTS

1. INTRODUCTION ...ttt e e e e e e et a e e e e e e e eeestanaeeeeeaeeeeennns 12
2. JAVA DATABASE CONNECTIVITY (IDBC) ..ciii it e e eeeeeees 13
3. SQL USER-DEFINED TYPES (UDT).ccuuttuiiiiiieiiiiiiiiiiiise e e e e eeeeieiins e e e e e e eeeesnnnnn s 15
3.1 SETUCTUIEA TYPES oottt 15
G 3 o] | = o3 1 o S 16
4. SQL USER-DEFINED TYPES AND JDBCcooiiiiiiiiieeeeeeeee e 18
5. IJDBC WRAPER LIBRARY ..eetiiiiii ittt a e e e e e e eenannn s 20
5.1 Objectives of the lIDrary ... 20
5.2 Interaction With UDTuuiiiii it e e e e e e e e e e e eeeennn s 21
6. IMPLEMENTATION ..ottt e e e e et et e s e e e e e e e e e aenan s e eeeeeeeenennes 23
6.1 DefiNition OFf UDT ..ot e et s e e e e e e e et e s e e e e e eeenennes 23
6.3 BUIld SQL Statement......c.ouiiiiiii e 26
6.4 Prepare INpUt ParametersS ...t 26
6.5 Prepare OUIPUL ParametersSviiiiiiiiiii et 27
G A = T ¥] o I @ U § o 1V S EEPPSRR 29
7. CONGCLUSION ..ttt ettt e e e e e e e e e et e e e e e e eeennnees 30
TERMINOLOGY: ABBREVIATIONS AND ACRONYMS ... 31
AP END DX e e e et e a b a e 32
SOURCE CODE ... ittt e e e e et e et b e e e e e e eeenneee 32

REFERENCES ... e 33

LIST OF FIGURES

Figure 1: IDBC ArCRItECIUIEccoviiiiiiiiiiiiiiiiieeeeeeeeeee et 13
Figure 2: Example of Stored Procedure call with UDT parameters via JDBC................ 19
Figure 3: Example of stored procedure call via JDBC wrapper library.........cccccccevvveeeee.. 22
Figure 4: Routine call floWChart ... 25
Figure 5: Prepare Input parameters process flowchart...........cccccovviiiiiiiiiiiiiiiiiiiiiiennn. 27

Figure 6: Prepare Output parameters process flowchart..........ccccccevvvviviiiiiiiiiiiiiiiiiinnne. 28

LIST OF TABLES
Table 1: UDT support in RDBMS VENUOIScooeiiiiieiiiiiiiie ettt e e

Table 2: Abbreviations and acronyms

file:///C:/Users/Panagiotis/Downloads/Master_Thesis_final%20(1).doc%23bookmark7
file:///C:/Users/Panagiotis/Downloads/Master_Thesis_final%20(1).doc%23bookmark8

Simplifying the Interaction with User-Defined Types in SQL via a JDBC Wrapper Library

1. INTRODUCTION

Today all Java applications use the JDBC API for database connectivity. JDBC provides
basic interfaces for the interaction with database. Its use can be either direct or behind the
scenes with higher level of abstractions like JPA. Frameworks, such as Hibernate, hide any
complexity that may arise from direct use of JDBC. Although, fully grown ORM frameworks
may be heavyweight. On the other hand, JDBC being basic, makes it verbose and tedious for
extended direct use, which is intensified while dealing with more complex scenarios like the
interaction with User-Defined Types (UDT) in SQL database language.

SQL's UDT are custom types that extend the built-in types and, as we'll see later, can be
quite useful in some situations. Although their use can introduce new functionality and
benefits at the database layer, it increases the complexity of implementing the data access
layer. Interacting with the UDT via direct JDBC is verbose, tedious, and requires plenty of
boilerplate code for simple procedures such as a function call. In addition, we could not
identify any framework or library that supports them, and JDBC support for UDT is not well
documented. Therefore, simplifying UDT interaction via JDBC has become a critical issue
that yet is technically challenging.

Our main goal is to create a lightweight JDBC wrapper library that supports and simplifies the
use of SQL UDT. With this library, we aspire to bridge the gap between low-level JDBC
access and ORM frameworks while keeping overhead at negligible levels. Our library should
be easy to learn and use and achieve LOC reduction compared to direct use of JDBC.
Finally, we try to introduce an additional layer of error prevention in the implementation of the
data access layer. To achieve our goals, we will automate and hide from the user many of the
processes required to interact with the UDT.

P. Stavropoulos 12

Simplifying the Interaction with User-Defined Types in SQL via a JDBC Wrapper Library

2. JAVA DATABASE CONNECTIVITY (JDBC)

Java Database Connectivity (JDBC) is an application programming interface (API) for the
programming language Java, which defines how a client may access a database. It is a Java-
based data access technology used for Java database connectivity. It is part of the Java
Standard Edition platform, from Oracle Corporation. It provides methods to query and update
data in a database and is oriented toward relational databases. A JDBC-to-ODBC bridge
enables connections to any ODBC-accessible data source in the Java virtual machine (JVM)
host environment. [1]

JDBC API
Java JDBC
> Database
Application Driver A\ J

Figure 1: JDBC Architecture

Bellow we present an example Java program that uses the JDBC interface. The code
illustrates how connections are opened, how statements are executed and results processed,
and how connections are closed. [2]

public static void JDBCexample(String userid, String passwd)
{
try
{

Class.forName ("oracle.jdbc.driver.OracleDriver");
Connection conn = DriverManager.getConnection(

"jdbc:oracle:thin:@db.yale.edu:1521:univdb",

userid, passwd);
Statement stmt = conn.createStatement();
try {

stmt.executeUpdate(
"insert into instructor values('77987’, 'Kim’, ‘Physics’, 98000)");

} catch (SQLEXxception sgle)

System.out.printin("Could not insert tuple. " + sqgle);

ResultSet rset = stmt.executeQuery(
"select dept name, avg (salary) "+
" from instructor "+
" group by dept name");
while (rset.next()) {
System.out.printin(rset.getString("dept name") + " " +

P. Stavropoulos 13

Simplifying the Interaction with User-Defined Types in SQL via a JDBC Wrapper Library

rset.getFloat(2));
}

stmt.close();
conn.close();

catch (Exception sqle)

{

System.out.printin("Exception : " + sgle);

}
}

The word JDBC was originally an abbreviation for Java Database Connectivity, but the full
form is no longer used. The Java program must import java.sql.*, which contains the interface
definitions for the functionality provided by JDBC. [2]

We use JDBC as the core of our library to automate processes and eliminate the boilerplate
code that used to be a burden of the developers. We expose interfaces for the main functions
we will cover hiding the complexity from the end user.

P. Stavropoulos 14

Simplifying the Interaction with User-Defined Types in SQL via a JDBC Wrapper Library

3. SQL USER-DEFINED TYPES (UDT)

User-defined types (UDT) were introduced in the SQL 2000 standard. They are custom
complex types defined by the user. Many RDBMS vendors support their use (definition,
creation, pass as parameters, use as a column type, etc.) with direct SQL commands, while
other vendors support them partially, by which we mean that the user may need to write code
in a vendor-specific programming language such as SQL-CLR and .NET for Microsoft SQL
Server or like C in Postgres. Finally, there are RDBMS that are not yet supported by.

In the table below we present some of the most popular RDBMS vendors and the level of
UDT support they provide.

Table 1: UDT support in RDBMS vendors

Vendor Fully Supported (SQL) Extension-based Not yet supported
supported

Oracle Db v

IBM DB2 V4

Microsoft SQL Server N4

Postgres v

MySQL v
MariaDB N4

Using UDTs we can extend the built-in types and we can enforce standards. Standards can
improve the readability of code. In addition, with UDTs we can introduce Object-Oriented
concepts at the database level.

There are different types of UDTs and several times we find differences depending on the
RDBMS vendor. We in the context of the thesis will deal with the two main types as defined
by the SQL standard, the Structured types and the Collections.

3.1 Structured types

Structured types allow composite attributes of E-R designs to be represented directly. Those
types are ccomparable to classes in object-oriented languages. Such types are called user-
defined types in SQL. [2]

P. Stavropoulos 15

Simplifying the Interaction with User-Defined Types in SQL via a JDBC Wrapper Library

For instance, we can define the following structured type to represent a composite attribute
name with component attribute firstname and lastname:

create type Name as (
firstname varchar(20),

lastname varchar(20)) ;

Similarly, the following structured type can be used to represent a composite attribute
address:

create type Address as
(street varchar(20),
city varchar(20),

zipcode varchar(9));

Such types are called user-defined types in SQL. The first form of CREATE TYPE creates a
composite type. The composite type is specified by a list of attribute names and data types.
An attribute's collation can be specified too if its data type is collatable. A composite type is
essentially the same as the row type of a table but using CREATE TYPE avoids the need to
create an actual table when all that is wanted is to define a type. A stand-alone composite
type is useful, for example, as the argument or return type of a function.

3.2 Collections

Collections are comparable to arrays in other programming languages. We can now use
these types to create composite attributes in a relation, by simply declaring an attribute to be
of one of these types. For example, we could create a table person as follows:

create table person (
name Name,
address Address,

dateOfBirth date
);

P. Stavropoulos 16

Simplifying the Interaction with User-Defined Types in SQL via a JDBC Wrapper Library

The components of a composite attribute can be accessed using a “dot” notation; for instance
name.firsthame returns the firsthame component of the name attribute. An access to attribute
name would return a value of the structured type Name. We can also create a table whose
rows are of a user-defined type.

For example, we could define a type PersonType and create the table person as follows:
create type PersonType as (
name Name,
address Address,
dateOfBirth date);

create table person of PersonType;

A structured type can have methods defined on it. We declare methods as part of the type
definition of a structured type.

P. Stavropoulos 17

Simplifying the Interaction with User-Defined Types in SQL via a JDBC Wrapper Library

4. SQL USER-DEFINED TYPES AND JDBC

JDBC, being basic, has some disadvantages for extensive direct use. It is quite verbose and
tedious. This is multiplied when we need to interact with complex UDTs via functions and
procedures. In addition, this area is not well documented and there is a lack of libraries that
simplify interaction with the UDT via JDBC.

Code LOC and complexity increase in proportion to the complexity of the UDTs. As a result,
the implementation time spent increases and programmers must write a lot of boilerplate
code to handle these types. In addition, the user must handle low-level concepts such as
JDBC resource handling. In case of mismanagement this can lead to critical errors.

These features usually lead developers to use higher level abstractions such as JPA.
Although fully developed ORM frameworks can be heavyweight something we may want to
avoid in various situations.

The following snippet (Snippet 1) shows an example of a stored procedure call via JDBC.
This procedure takes as input parameter a simple string and returns as output parameter a
Collection UDT with two nested Structured UDTS.

This example could become even longer and more complex if the input parameters were also
UDTs or if the structure of these UDTs were even more complex with more fields and nested

types.

P. Stavropoulos 18

Simplifying the Interaction with User-Defined Types in SQL via a JDBC Wrapper Library

1- public List<Map> getMedicalFolders(String beneficiaryId) throws SQLException {
2
3 // SQL UDT names
a4 String foldersArray = "FOLDERS_TAB";
5 String drugsArray = "DRUGS_TAB";
6 String drugType = "DRUG";
7 String dectorsArray = "DOCTORS_TAB";
8 String dectorType = "DOCTOR";
9
10 List<Map> folders = new Arraylist();
11
12 Connection conn = DriverManager.getConnection(url);
13
14 String query = "call cnss.get_benef_folders { ? }";
15 CallableStatement cstmt = conn.prepareCall(query);
16
17 cstmt.setString("benef_id", beneficiaryId);
18 // call the stored procedure
19 cstmt.executeUpdate();
20
21~ try {
22 StructDescriptor structDescriptor = StructDescriptor.createDescriptor(foldersArray, conn);
23 final ResultSetMetaData folderMetaData = structDescriptor.getMetaData();
24
25 StructDescriptor structDescriptorDrug = StructDescriptor.createDescriptor(drugType, conn);
26 final ResultSetMetaData drugMetaData = structDescriptorDrug.getMetaData();
27
28 StructDescripter structDescriptorDoctor = StructDescriptor.createDescriptor(doctorType, conn);
29 final ResultSetMetaData doctorMetaDate - structDescriptorDoctor.getMetaData();
38
31 Object[] data = (Object[]) ((Array) cstmt.getObject(l)).gethrray();
32 cstmt.close();
33
34~ if (data != null && data.length > @) {
35~ for (Object tmp : data) {
36 int 1 = 1;
37
38 Struct row = (Struct) tmp;
39 Map folder = new HashMap();
48
a1 - for (Object attribute : row.getAttributes()) {
42 List<Map> drugs = new ArraylList<Map>()
43 List<Map> doctors = new Arraylist<Map>()
44
45 - if (folderMetaData.getColumnName(i).equals(drugsirray)) {
46 Object[] dataDrug = (Object[]) ((Array) attribute}.getArray();
47
48 - for (Object _drug : dataDrug) {
49 Map medic = new HashMap();
50 Struct rowMedic = (Struct) _drug;
51 int j = 1;
52+ for (Object attributeMedic : rowMedic.getAttributes()) {
53 medic.put({drughetaData.getColumniame(j), attributeMedic);
54 J#+;
55 }
56 drugs.add(medic);
57
58 folder.put("ListDrugs", drugs);
59 }
60
61~ if (folderMetaData.getColumnName(i).equals(doctorsArray)) {
62 Object[] dataDoctor = (Object[]) ((Array) attribute).getArray();
63+ for (Object _doctor : dataDoctor) {
64 Map doctor = new HashMap();
65 Struct rowInp = (Struct) _doctor;
66 int j = 1;
67+ for (Object attributeInp : rowlnp.getAttributes()) {
68 doctor. put (doctorMetaDate.getColumniame(j), attributeInp);
69 Je+s
70 T
71
72 doctors.add(doctor);
73
74 folder.put("ListDoctors™, doctors);
75 }
76 folder.put(folderMetaData.getColumnName(i}, attribute);
77 i+
78
79 // Map folder details
80 folders.add(mapFolderDetails(folder));
81 }
82 ¥
83~ } catch (Exception ex) {
84 conn.rollback();
85 Logger.getlogger (this.getClass().getName()).log(Level .SEVERE, null, ex);
86~ 1 finally {
87~ if (estmt 1= null) {
88 estmt.close();
89
9@ conn.close();
91
92 return folders;
93 ¥
94
95 - privats Map mapFolderDetails(Map dossier) {
96 // Map output parameters
97 o
98 return dossier;
99
188 }

Figure 2: Example of Stored Procedure call with UDT parameters via JDBC

P. Stavropoulos

Simplifying the Interaction with User-Defined Types in SQL via a JDBC Wrapper Library

5. JDBC WRAPER LIBRARY

In the context of this thesis, we developed a JDBC wrapper library in java to simplify
interaction with a database via JDBC. Our library supports most of the quite used operations
for accessing and modifying data as well as operations for developing and updating the
database schema. Although our main goal is to focus on interaction with UDTs and to simplify
their use.

Our library aims to have the following characteristics. To be a lightweight wrapper around the
JDBC API using 100% pure JDBC and not any vendor specific code. To make interaction
with the Database less verbose (LOC reduction) and less tedious by automating many
processes that until now have required a lot of boilerplate code to implement. In this way we
aim to simplify complex cases especially when interacting with the UDT. Furthermore, our
library aims to be easy to learn and use and finally provide an additional level of error
prevention.

5.1 Objectives of the library

The main goal of our library is to simplify interaction with the UDT. However, it supports many
other functions for data access, data modification, and more. The objectives of the library are
listed below:

e Support for user-defined types
o Collections
o Structured types

Routine calls

o Stored procedures

o Functions

CRUD operations
o Create
o Read
o Update
o Delete
e Management of JDBC internal resources
o Connections
o Callable Statements
o Prepared Statements

o Result sets

P. Stavropoulos 20

Simplifying the Interaction with User-Defined Types in SQL via a JDBC Wrapper Library

e Database schema management
o Create
o Alter

We focus on the interaction with UDTs when passing them as parameters of stored
procedures and functions. Examples of all other functions can be found at the end of this
document (APPENDIX A).

At this point we would like to mention that in this thesis we will not deal with issues such as
Object Relationship Mapping, query building and security when using the library. Thus, we
consider the following as out of scope:

e OR-Mapping

e SQL query builder

e Query generation capabilities

e Generated classes or dynamically generated proxies
e Connection pooling

e Security

To develop our library, we first did a survey of other existing work. We studied two libraries
that were close to our main goals:

e jOOQ: Excellent library for accessing databases in a secure way [3]. Because of its
different scope, it is more than just a thin wrapper around the JDBC API.

e Jdbi: Similar scope, but with a different approach [4].
Although both libraries do not support UDT.

5.2 Interaction with UDT

Our JDBC wrapper library supports interaction with the UDT. This interaction is simplified
compared to direct JDBC access. To achieve this, we automate processes that previously
required a lot of boilerplate code. Such processes are the definition of the input and output
parameters. We present those processes on detail in the next chapter.

The following figure (Figure 3) illustrates a stored procedure call with UDT as output
parameters via the JDBC wrapper library.

P. Stavropoulos 21

Simplifying the Interaction with User-Defined Types in SQL via a JDBC Wrapper Library

1~ public List < Map » getMedicalFolders(String beneficiaryId) {

2 // input parameter

3+ Object[] input = new Object[] {

4 beneficiaryId

5 I3

6 // output nested UDT

7 Map < String, Object » drugs = Map.of(JdbcCall.ARRAY + "DRUGS_TAB", JdbcCall.STRUCT + "DRUG");
8 Map < String, Object » doctors = Map.of(JdbcCall.ARRAY + "DRUGS_TAB", JdbcCall.STRUCT + "DOCTOR™);
2]

18 // output parameter

11~ Object[] output = new Object[] {

12 Map.of(JdbcCall.ARRAY + "FOLDERS_TAB", Map.of(drugs, doctors))

13 +i

14~ try {

15 jdbcCall.procedure("cnss.get _benef folders”, input, output);

16

7+ } catch (Exception ex) {

18 Logger.getlogger(this.getClass().getNama()).log{Level .SEVERE, null, ex);

19 1

28 return (Arraylist) output[e];

21}

Figure 3: Example of stored procedure call via JDBC wrapper library

The above example (Figure 3) depicts the same procedure call that we previously illustrated
(Figure 2) using direct JDBC code. It is obvious that the LOCs are dramatically reduced from
100 to 21. We achieve even greater LOC reduction in more complex cases where UDTs exist
in both input and output parameters. The benefits also increase while having to interact with
more complex types including nested UDTs.

P. Stavropoulos 22

Simplifying the Interaction with User-Defined Types in SQL via a JDBC Wrapper Library

6. IMPLEMENTATION

In this section we present the details of the JDBC wrapper library implementation. Once
again, we focus on the interaction with the UDT. We see how we define the structure of UDTs
to use them as parameters of stored procedure and function calls. We further present the
algorithm implemented to call database routines (functions and procedures) with UDT
parameters and explain in detail each separate step of the workflow.

6.1 Definition of UDT

To interact with the UDT, the user must first define the structure of each custom type. In the
remainder of this document, we will refer to UDT types that do not contain other nested UDTs
as simple UDTs and we will refer to UDT types that contain nested UDT as complex UDT.

Bellow we give an example of a Medical Folder object witch includes prescriptions of drugs
and the prescriber doctors defined as complex UDT in PL-SQL:

CREATE TYPE folder {
drugs drug_tab,

doctors doctor_tab };

We also provide the definitions for the drug collection (drug_tab) and doctor collection
(doctor_tab) as well as for their nested custom types:

CREATE drug_tab CREATE doctor_tab

IS TABLE OF drug; IS TABLE OF doctor;
CREATE TYPE drug { CREATE TYPE doctor {
drug_code VARCHAR2 (20), doctor_id NUMBER,
drug_name VARCHAR?2 (50) }; doctor_name VARCHAR2 (50) };

In order to use the folder UDT object in java with our library, we first need to define its type.
To support this process we have defined two constants in our wrapper library. One for
collections, JdbcCall. ARRAY and one for structured types, JdbcCall.STRUCT.

P. Stavropoulos 23

Simplifying the Interaction with User-Defined Types in SQL via a JDBC Wrapper Library

After we define the complex UDT type, we are able to use it as an input parameter or an
output parameter during a procedure or a function call. We will discuss this process further on
the next section.

Below is an example of defining the complex UDT folder type using the tools provided by the
library:

1. We start by defining the inner nested types drug and doctor objects as follows

String drug = JdbcCall.STRUCT + "DRUG";
String doctor = JdbcCall.STRUCT + “DOCTOR";

2. We define the collection types as a Map with key the type and value the type of the nested
object as defined before

Map<String, Object> drugs = Map.of(JdbcCall. ARRAY + "DRUG_TAB", drug);

Map<String, Object> doctors = Map.of(JdbcCall. ARRAY + "DOCTOR_TAB",
doctor);

3. Finally we define the folder object as follows

Map<String, Object> folder = Map.of(JdbcCall.STRUCT + "FOLDER", Map.of(drugs,
doctors)) };

We do not need to explicitly define the nested types of drug and doctor object as those are
simple types in PL-SQL.

6.2 Routine Calls

After defining the structure of the UDT we are able to use them in stored procedures and
function calls as input parameters, output parameters or as the return type of a function. In
the remaining chapters of section 6 we describe the process of routine calls with UDT as
parameters. We use the term routine to describe a stored procedure or a function.

From a high-level view the algorithm implemented for routine calls is modelled in the
flowchart of Figure 4.

P. Stavropoulos 24

Simplifying the Interaction with User-Defined Types in SQL via a JDBC Wrapper Library

Build SQL statement [--- to-eeemmmmmm oo

i

Prepare Input
parameters

L

Prepare Qutput
parameters

i

Execute statement

l

Built output

‘ END ‘

Figure 4: Routine call flowchart

The flowchart is depicting the workflow if the Routine call process as it is implemented
internally in our wrapper library. We assume that the user has already defined correctly the
input and the output parameters as we described earlier on chapter 6.1.

In order to tigger the process we need to call either the procedure or the function interface of
our library like in the example bellow:

String protocolNumber = ”1002446698”;

jdbcCall.procedure("get_medical_folder", new Object{protocolNumber}, new
Object {folder});

In the previous example the parameters are:
1. The procedure name as a string.
2. The input parameters (a simple string in our case) as list of Objects.

3. The output parameters (the complex UDT folder) as list of Objects.

During the next sections we will describe in detail each step of the Routine call workflow
(Figure 4)

P. Stavropoulos 25

Simplifying the Interaction with User-Defined Types in SQL via a JDBC Wrapper Library

6.3 Build SQL Statement

The first step of our workflow is the simplest one. Here we build the statement, that means
we construct the SQL statement as a string in order to call the routine. To do so we need to
know the routine name and the number of input and output parameters. All this information is
easy to be extracted by the procedure method parameters, we saw in the previous chapter
6.2.

6.4 Prepare Input Parameters

We follow a similar recursive process for building and preparing the parameters of each
routine. In this step we describe the Prepare Input Parameters workflow.

Bellow we describe each step of the process as it is executed internally in our wrapper
library:

1. We initialise a CallableStatement object of JDBC. This object will hold all the information
needed in order to call the routine.

2. For each input parameters we check the type of the parameter (input parameters are
passed as a list of objects in the procedure method as we saw in chapter 6.2).

2.1 We register the parameter type in the CallableStatement.
2.2. If the parameter is a UDT then we repeat step 2 for each nested element

3. The process is finished once all input parameters are registered

The process of preparing input parameters is depicted bellow (Figure 5):

P. Stavropoulos 26

Simplifying the Interaction with User-Defined Types in SQL via a JDBC Wrapper Library

START Prepare Input Parameters

CallableStatement

init()
___Input parameters
T

Iy for each . .
parameter parameter instance of String ?

parameter instance of Object[] 7

AD{ Parameter Class instance of > upTt ?
Fﬁallablestalemem. selobjer.t()—l

o

More nested
elements —Yas
exist ?
| Recursive step. As long as
Ij: UDT object has more elements
More Input
es parameters ?
|
No

END

Figure 5: Prepare input parameters process flowchart

6.5 Prepare Output Parameters

We follow a similar recursive process for building and preparing the output parameters of
each routine.

Bellow we describe each step of the process as it is executed internally in our wrapper
library:

1. We use the CallableStatement object we initialised in the Prepare Input Parameters
process.

2. For each output parameter we check its type (output parameters are passed as a list of
objects in the procedure method as we saw in chapter 6.2).

2.1 We register the parameter type in the CallableStatement.

P. Stavropoulos 27

Simplifying the Interaction with User-Defined Types in SQL via a JDBC Wrapper Library

2.2. If the parameter is a UDT then we repeat step 2 for each nested element

3. The process is finished once all output parameters are registered

The process for preparing output parameters is depicted bellow (Figure 6):

P. Stavropoulos

START Prepare OQutput Parameters

.

CallableStatement

init{)
___ Output parameters

L for each . ‘ .
parameter String.class.isAssignableFrom(parameterClass) ?

parameterType equals(STRUCT) ?

—> Parameter Class ——isAssignableFrom()—— uUDT ?

rcaIableStatement.registerOutParameter()—‘

<

¢

N
)
N

More nested ‘
elements Yoo

exist 7

Recursive step. As long as

No UDT object has more elements

More Output
Yes: parameters 7

Figure 6: Prepare Output parameters process flowchart

28

Simplifying the Interaction with User-Defined Types in SQL via a JDBC Wrapper Library

6.6 Execute Statement

After we have defined all the routine parameters and we have registered them in the
CallableStatement object we are ready to call the actual routine. To do so we use the JDBC
execute interface of the CallableStatement object.

6.7 Build Output

Building output is another a recursive processes similar to the Prepare input and Prepare
output parameters processes.

Bellow we describe each step of the process as it is executed internally in our wrapper
library:

1. We depict the call of the CallableStatement.execute method as the first step of the process
in order to be clear that the following steps are executed after this.

2. We initialise a list of Objects that will carry the data of the routine output.
3. For each output object we have defined earlier we check the type.

2.1 If the parameter is a simple type we retrieve the data from the ResultSet and we
add its value in the output list of Objects.

2.2 If the parameter is a UDT then we repeat step 2 for each nested element.

4. The process is finished once all output parameters are extracted and added in the output
list of Objects.

5. The output is returned.

P. Stavropoulos 29

Simplifying the Interaction with User-Defined Types in SQL via a JDBC Wrapper Library

7. CONCLUSION

Interacting with User Defined Types of SQL from a Java Application is a troublesome process
that leads to verbose and tedious code. So, we created a JDBC wrapper library that simplifies
the interaction with those types and achieves high LOC reduction (~90% for complex cases)
making the interaction with UDTs much easier.

We focused on the interaction with UDTs through the calls. There we described how we can
define UDT in order to pass them as input and output parameters in stored procedure or
function calls and finally to retrieve the actual output of the routine.

There are several open issues for improvement and future research. For example, how we
could automate other processes which include interaction with UDTs like the creation of a
table where a column has a UDT type and also operations like SELECT, UPDATE etc for this
kind of tables which include UDTs

P. Stavropoulos 30

Simplifying the Interaction with User-Defined Types in SQL via a JDBC Wrapper Library

TERMINOLOGY: ABBREVIATIONS AND ACRONYMS

Table 2: Abbrevations and acronyms

Abbreviation Meaning

API Application Programming Interface.

C C programming is a general-purpose, procedural, imperative
computer programming language

E-R Entity Relationship

JDBC Java Database Connectivity is an application programming
interface (API) for the programming language Java, which defines
how a client may access a database.

JPA Java Persistence API. It's a specification which is part of Java EE
and defines an API for object-relational mappings and for managing
persistent objects.

LOC Lines Of Code.

ORM Object Relational Mapping.

OR-Mapping Object Relational Mapping is a programming technique for
converting data from relational model to object code of object-
oriented programming

RDBMS Relational Database Management Systemis a system used to
maintain relational databases.

SQL Structured Query Language is used to communicate with a
database.

ubDT User-Defined Types.

P. Stavropoulos

31

Simplifying the Interaction with User-Defined Types in SQL via a JDBC Wrapper Library

APENDIX

SOURCE CODE

Repository: https://github.com/StavPanos/JDBCmooth

P. Stavropoulos

32

https://github.com/StavPanos/JDBCmooth

Simplifying the Interaction with User-Defined Types in SQL via a JDBC Wrapper Library

REFERENCES

[1] IDBC API Specification Version: 4.0. https://www.oracle.com/java/technologies/ [Accessed 10/12/2021]
[2] Database System Concepts Sixth Edition, Abraham Silberschatz, Henry F. Korth, S. Sudarshan pp. 1-352.
[3] JOOQ library: https://www.jooq.org/ [Accessed 10/12/2021]

[4] Jdbi library: https://jdbi.org/ [Accessed 10/12/2021]

P. Stavropoulos 33

https://www.oracle.com/java/technologies/
https://www.jooq.org/
https://jdbi.org/

	1. INTRODUCTION
	2. JAVA DATABASE CONNECTIVITY (JDBC)
	3. SQL USER-DEFINED TYPES (UDT)
	3.1 Structured types
	3.2 Collections

	4. SQL USER-DEFINED TYPES AND JDBC
	5. JDBC WRAPER LIBRARY
	5.1 Objectives of the library
	5.2 Interaction with UDT

	6. IMPLEMENTATION
	6.1 Definition of UDT
	6.3 Build SQL Statement
	6.4 Prepare Input Parameters
	6.5 Prepare Output Parameters
	6.7 Build Output

	7. CONCLUSION
	TERMINOLOGY: ABBREVIATIONS AND ACRONYMS
	APENDIX
	SOURCE CODE
	REFERENCES

