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Abstract

In longitudinal epidemiological studies, the evolution of markers related to

disease progression is often of great interest. However, longitudinal marker

data often suffer from the presence of missing data, frequently in the form

of dropout. Missing data though can ultimately undermine inferences un-

der certain cases. It has been shown that likelihood-based methods, such

as linear mixed models (LMMs) could provide unbiased results even after

ignoring the dropout mechanism, given that the dropout probabilities de-

pend on the observed marker values (MAR). When missingness depends

on unobserved quantities (MNAR), joint modeling of the marker evolution

and the dropout process is generally required for unbiased estimates. In this

thesis, we address several issues arising due to incomplete data, motivated

by the epidemiology of HIV, focusing mainly on longitudinal modeling of

CD4 counts before/after treatment initiation.

When modeling CD4 count trajectories during untreated HIV infection,

CD4 counts are mainly censored due to treatment initiation, with the nature

of this mechanism remaining debatable (MAR or MNAR). Several shared-

random effects models (SREMs), a specific subclass of MNAR joint models,

have been fitted to such data. Motivated by this example, we analytically

show that specific SREMs, when fitted to data subject to certain MAR

mechanisms, can produce seriously biased marker rate of change estimates.

In addition, we propose a more robust alternative SREM model that works

well under specific MAR and MNAR dropout mechanisms.

Under MAR, CD4 cell counts during untreated HIV infection are usually



modeled through LMMs with random intercept and random slope. We an-

alytically show that using a random intercept and slope structure when the

true covariance structure is more complex can lead to seriously biased es-

timates, with the degree of bias depending on the magnitude of the MAR

drop-out. Under misspecified covariance structure, we compare, in terms of

induced bias, the approach of adding a fractional Brownian motion (BM)

process on top of random intercepts and slopes with the approach of us-

ing splines for the random effects. Moreover, to discriminate between the

examined approaches in real-data applications, we adopt Bayesian model

comparison criterion based on the posterior model probabilities.

When modeling CD4 counts after treatment initiation, dropout can occur

due to death in care or disengagement from care, which are competing

events. Death is usually considered to correspond to MNAR dropout though

the nature of the mechanism of disengagement from care is less clear. This

setting calls for joint modeling. We propose a flexible class of SREMs

to jointly model the marker evolution and multiple causes of failure using

cumulative incidence functions (CIFs) in the survival submodels, with the

CIFs depending on the “true” marker value over time. The fact that the

all-cause CIF should be bounded by 1 is formally considered. The proposed

models are extended to account for potential failure cause misclassification

through double sampling. We also provide a multistate representation of

the whole population by defining mutually exclusive discrete states based

on the “true” marker values and the competing risks. Based solely on the

assumed joint model, we derive fully Bayesian inference for state occupation

and transition probabilities.



Σε διαχρονικές επιδημιολογικές μελέτες, η εξέλιξη βιο-δεικτών που σχετίζονται

με την εξέλιξη της νόσου είναι συχνά κύριου ενδιαφέροντος. Ωστόσο, σε δια-

χρονικά δεδομένα δεικτών συχνά δημιουργούνται δυσκολίες από την παρουσία

ελλειπουσών τιμών, συνήθως στη μορφή της περικοπής. Ελλείποντα δεδο-

μένα μπορούν όμως να υπονομεύσουν τα συμπεράσματα σε συγκεκριμένες πε-

ριπτώσεις. ΄Εχει αποδειχθεί ότι μέθοδοι βασιζόμενες στην πιθανοφάνεια, όπως

τα μεικτά γραμμικά μοντέλα, μπορούν να αποδώσουν αμερόληπτες εκτιμήσεις

αγνοώντας το μηχανισμό περικοπής δεδομένου ότι οι πιθανότητες περικοπής

εξαρτώνται από τις παρατηρηθείσες τιμές του δείκτη (τυχαίος μηχανισμός πε-

ρικοπής). ΄Οταν οι πιθανότητες περικοπής εξαρτώνται από μη παρατηρούμενες

ποσότητες (μη τυχαίος μηχανισμός περικοπής), από κοινού μοντελοποίηση της

εξέλιξης του δείκτη και του μηχανισμού περικοπής χρειάζεται συχνά για αμε-

ρόληπτες εκτιμήσεις. Στην παρούσα διατριβή, αντιμετωπίζουμε πολλά ζητήματα

που προκύπτουν λόγω ημιτελών δεδομένων, ορμώμενοι από την επιδημιολογία

του ιού HIV, εστιάζοντας κυρίως στη διαχρονική μοντελοποίηση των CD4

λεμφοκυττάρων πριν και μετά την έναρξη θεραπείας.

΄Οταν μοντελοποιούνται οι πορείες του αριθμού των CD4 λεμφοκυττάρων, οι

μετρήσεις των CD4 λεμφοκυττάρων περικόπτονται λόγω έναρξης θεραπείας, με

τη φύση του συγκεκριμένου μηχανισμού να παραμένει αμφίβολη. Αρκετά μο-

ντέλα κοινών τυχαίων επιδράσεων [shared-random effects models (SREMs)],

μια συγκεκριμένη υποκατηγορία μη τυχαίων από κοινού μοντέλων, έχουν ε-

φαρμοστεί σε τέτοια δεδομένα. Παρακινούμενοι από αυτό το παράδειγμα, δε-

ίχνουμε αναλυτικά ότι συγκεκριμένα SREM μοντέλα, όταν εφαρμοστούν σε η-

μιτελή σύνολα δεδομένα λόγω ενός τυχαίου μηχανισμού, μπορεί να αποδώσουν

σημαντικά μεροληπτικές εκτιμήσεις για το ρυθμό μεταβολής του δείκτη. Ε-

πιπρόσθετα, προτείνουμε ένα πιο ανθεκτικό εναλλακτικό SREM μοντέλο το

οποίο αποδίδει καλά κάτω από συγκεκριμένους τυχαίους και μη τυχαίους μη-

χανισμούς περικοπής.

Υποθέτοντας τυχαίο μηχανισμό περικοπής, ο αριθμός των CD4 λεμφοκυττάρων



κατά τη διάρκεια της HIV λοίμωξης χωρίς θεραπεία μοντελοποιείται μέσω μει-

κτών γραμμικών μοντέλων τυχαίας σταθεράς και κλίσης. Αποδεικνύουμε α-

ναλυτικά ότι μια δομή τυχαίας σταθεράς και κλίσης, όταν η πραγματική δομή

συνδιακύμανσης είναι πιο περίπλοκη, μπορεί να οδηγήσει σε σοβαρά μερολη-

πτικές εκτιμήσεις, με το βαθμό της μεροληψίας να εξαρτάται από την ένταση

του τυχαίου μηχανισμού περικοπής. Υπό λανθασμένη δομή συνδιακύμανσης,

συγκρίνουμε, με βάση την επαγόμενη μεροληψία, την προσέγγιση της πρόσθε-

σης μιας κλασματικής κίνησης Brown διαδικασίας [fractional Brownian motion

(BM)] σε ένα μοντέλο τυχαίας σταθεράς και κλίσης με την προσέγγιση της

χρησιμοποίησης κατά τμήματα πολυωνυμικών συναρτήσεων (splines) για τις

τυχαίες επιδράσεις. Επίσης, για να επιλέξουμε μεταξύ των υπό εξέταση προ-

σεγγίσεων σε εφαρμογές με πραγματικά δεδομένα, υιοθετούμε ένα κριτήριο

Μπεϋζιανής σύγκρισης μοντέλου βάσει των εκ των υστέρων πιθανοτήτων των

μοντέλων.

΄Οταν μοντελοποιούνται οι μετρήσεις CD4 μετά την έναρξη θεραπείας, περικοπή

μπορεί να συμβεί λόγω θανάτου κατά τη διάρκεια της φροντίδας ή απόσυρσης

από τη φροντίδα, τα οποία ενδεχόμενα είναι ανταγωνιστικοί κίνδυνοι. Ο θάνα-

τος συνήθως θεωρείται ότι αντιστοιχεί σε μη τυχαία περικοπή, ενώ η φύση

του μηχανισμού απόσυρσης από τη φροντίδα είναι λιγότερο ξεκάθαρη. Σε ένα

τέτοιο παράδειγμα ενδείκνυται από κοινού μοντελοποίηση. Προτείνουμε μια ευ-

έλικτη υποκατηγορία SREM μοντέλων για την από κοινού μοντελοποίηση πολ-

λαπλών αιτιών αποτυχίας μέσω των συναρτήσεων αθροιστικής επίπτωσης στα

υπο-μοντέλα των αιτιών αποτυχίας, με τις συναρτήσεις αθροιστικής επίπτωσης

να εξαρτώνται από την «πραγματική» τιμή του δείκτη στο χρόνο. Το γεγονός

ότι η συνολική αθροιστική επίπτωση πρέπει να είναι μικρότερη του 1 λαμβάνεται

ρητά υπόψη. Η προτεινόμενη μεθοδολογία έχει επεκταθεί για να λάβει υπόψη

πιθανή δυσταξινόμηση των αιτιών αποτυχίας μέσω διπλής δειγματοληψίας. Πα-

ρέχουμε επίσης μια αναπαράσταση, μέσω πολλαπλών καταστάσεων, του συ-

νολικού πληθυσμού ορίζοντας αμοιβαία αποκλειόμενες καταστάσεις βάσει των



«πραγματικών» τιμών του δείκτη και των ανταγωνιστικών κινδύνων. Βασι-

ζόμενοι αποκλειστικά στο από κοινού μοντέλο, εξάγουμε πλήρως Μπεϋζιανή

συμπερασματολογία για πιθανότητες καταστάσεων και πιθανότητες μεταβάσε-

ων μεταξύ καταστάσεων.
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Chapter 1

General Introduction

1.1 Statistical modeling in longitudinal studies

In many studies in various disciplines, data can be repeatedly collected over time on

the same individuals (referred to as longitudinal data), or the data can be collected at

different points in space, leading to spatial data. In this work, we focus on the former

case, with the corresponding studies being referred to as longitudinal studies. Typi-

cally, in longitudinal studies, information on many variables/characteristics is recorded

at different visits on the same individuals, which makes the study of within-individual

evolution feasible. In longitudinal epidemiological studies concerning chronic diseases,

the evolution of biochemical markers that are related to disease progression is often of

primary interest. The advantages of using such markers in tracking disease progression

are comprehensibly described in Jewell and Kalbfleisch (1992). In contrast to longitu-

dinal studies, in cross-sectional ones, data on a single time point are collected for each

individual though the time points differ between individuals. Thus, inferences can be

obtained only about the marginal marker evolution of the population, but studying the

within-individual correlation is impossible. On the other hand, longitudinal studies can

explicitly model the correlation and are expected to be more powerful than the corre-

sponding cross-sectional ones as, for most outcomes, the variability across individuals,

e.g. due to unmeasured characteristics such as genetic or environmental factors, is sub-
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1. GENERAL INTRODUCTION

stantially greater than the within-individual variability. The effects of such factors are

canceled out in longitudinal studies as within-individual marker changes are ultimately

estimated, with each individual considered to serve as his/her own control. Also, longi-

tudinal studies can distinguish the age and cohort effects, i.e. the direct effects of aging

and the effects implied by comparing groups of individuals with different baseline ages,

respectively (Diggle et al., 2002).

Since marker data from the same individuals tend to be (positively) correlated, most

statistical approaches for modeling longitudinal data take that correlation into account.

It should be emphasized, though, that the correlation is not usually of scientific interest,

except for special cases (e.g. in genetic or environmental studies). Some methods

explicitly postulate a model for the covariance structure of the data, such as compound

symmetry, exponential correlation, Toeplitz, or unstructured covariance (e.g. Diggle

et al., 2002, Fitzmaurice et al., 2011). Parameter estimation can be carried out by

employing either a fully parametric model (e.g. using the Normal distribution) or

a semi-parametric model using the generalized estimating equation (GEE) approach,

initially introduced by Liang and Zeger (1986).

Another popular class of models for describing longitudinal data is known as random-

effect models. In these models, the covariance structure is specified by using subject-

specific latent quantities referred to as the random effects, firstly introduced by Harville

(1977) and popularized by Laird and Ware (1982), though these ideas derive from the

ANOVA paradigm. The random effects are considered to be inherent characteristics

of individuals, assumed to remain constant over time, and assigned a prior distribu-

tion, e.g. the Normal distribution. Hence, after integrating out the random effects, a

specific model for the marginal covariance structure of the data is implicitly assumed.

One frequently applied random-effect model is the random intercept and slope model,

which is more suitable when the marker evolves more or less linearly over time. This

model assumes that the baseline marker value is subject-specific and it is equal to a

population-averaged baseline plus a “random intercept” term, measuring the deviation

of the individual’s baseline marker value from the population baseline. The rate of
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1.1 Statistical modeling in longitudinal studies

change is assumed to be linear and subject-specific, with the “random slope” measur-

ing the difference of the individual’s rate of change relative to the population-averaged

rate of change.

In most longitudinal studies, in principle, the protocol assumes a regular time sched-

ule for collecting data, i.e. measurements are expected to be recorded at prespecified

fixed times. Although fixed visit times can greatly facilitate data collection and statis-

tical analysis, this is rarely the case in studies involving human subjects, resulting in

highly imbalanced data and different numbers of observations among individuals. Some

reasons for the occurrence of imbalanced data include staggered entry of individuals,

missed visits, death, and dropout of the study based on individual’s decision. Most

methods can easily handle imbalanced longitudinal data (Harville, 1977, Harville and

Mee, 1984, Laird and Ware, 1982, Liang and Zeger, 1986, Lindstrom and Bates, 1988,

Zeger and Karim, 1991, Zeger et al., 1988). For a more comprehensive review of the

available methods for longitudinal data analysis, we refer to Fitzmaurice et al. (2008).

Apart from imbalanced data, there are many types and reasons for missing data.

In general, the pattern of missingness may be either monotone (the individual drops

permanently out of the study, often referred to as attrition or dropout) or intermit-

tent (missing observations between the observed ones). In epidemiological longitudinal

studies, it is commonplace to collect data on time to event outcomes apart from the

longitudinal marker data. In many cases, the occurrence of the event of interest (e.g.

death) precludes subsequent data collection on the marker, leading to monotone miss-

ingness. It should be also noted that in some instances, the occurrence of an event may

influence the marker distribution so drastically that the marker measurements collected

after the event have to be excluded from the analysis. This is also considered to be a

missing data problem even though there are no actually missing data, strictly speaking.

A classic example occurs in the pre-marketing stages of drug development, where the

focus is often on drug efficacy rather than effectiveness, with observations collected

after study drug discontinuation excluded from the analysis, following the so-called “de

jure” estimand. Irrespective of whether the data are actually missing or excluded from
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1. GENERAL INTRODUCTION

the statistical analysis, missing data can have serious consequences on the analyses.

Research on the quality of inferences drawn from incomplete data has grown since

the seminal paper by Rubin (1976). The main implication from Rubin (1976) is that the

validity of inferences depends crucially on the nature of the missing data mechanism,

i.e. the probability of a marker value being missing conditional on the marker values

that are intended to be collected. The taxonomy made by Rubin (1976), which is

widely adopted in the literature, categorizes the missing data mechanisms into three

groups: (i) missing completely at random (MCAR), (ii) missing at random (MAR), and

(iii) missing not at random (MNAR). Data are said to be MCAR when the missingness

probabilities are unrelated to all marker measurements that are intended to be collected.

This mechanism poses no problems to the analyses apart from a higher variability due

to lower sample size. A standard example of MCAR data is when individuals drop out

of the study due to work or other considerations that are unrelated to the individual’s

health status. Data are said to be MAR when the missingness probabilities depend on

the set of the observed marker measurements, but are unrelated to the marker values

that would have been observed. A standard example of MAR data occurs when some

information is collected only when the current marker value exceeds or drops below

some predetermined threshold. Finally, a missing data mechanism is MNAR when

the probability of a marker measurement being missing depends on the marker values

that should have collected, in addition to the ones actually observed. This is the most

difficult case to deal with.

Based on standard theory (Laird, 1988, Little and Rubin, 2002, Rubin, 1976),

likelihood-based methods, based on either the Frequentist or Bayesian approach mod-

eling all observed marker data, provide unbiased estimates given that the correct model

is applied and the missing data mechanism is MAR. This, in turn, implies that if the

fitted model does not adequately describe the true covariance structure of the data, the

estimates for the mean marker evolution over time can be biased under MAR missing-

ness. An additional implication is that approaches that are not based on the likelihood

function, e.g. semi-parametric methods such as the GEE models, can produce biased
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estimates under MAR data. In any case, though, such biases can be easily resolved

by weighting the GEE estimator by the inverse of the estimated probability of being

observed (Robins et al., 1995), hence the term inverse probability weighting (IPW),

which is frequently used in the literature. IPW as a general method of estimation

was derived by Horvitz and Thompson (1952) and further developed by Robins et al.

(1994), though extensions of IPW producing unbiased estimates under less restrictive

assumptions have been proposed (Scharfstein et al., 1999). An alternative modeling

framework to deal with missing longitudinal marker data is the multiple imputations

approach proposed by Rubin (1987), in which the missing values are filled in, i.e. im-

puted, multiple times based on some stochastic mechanism. Then the model of interest

is fitted to multiple “fully” observed datasets, combining the results using the so-called

Rubin’s rules (Rubin, 1987).

In general, the most difficult case to handle in practice is when the missing data

mechanism is informative in the sense that the probability of missingness depends

on values that are not (directly) observed (i.e. MNAR). Under MNAR, it has been

shown that likelihood-based methods modeling the observed data only (i.e. ignoring

the missing data mechanism) can lead to biased parameter estimates (Laird, 1988,

Little and Rubin, 2002, Rubin, 1976). To fully eliminate such biases, one should jointly

model the marker evolution over time and the missing data mechanism. Plenty of joint

modeling approaches have been proposed, with the corresponding literature having

become vast, including models with different aims and plenty of parameterizations.

Some indicative references include (Diggle and Kenward, 1994, Faucett and Thomas,

1996, Gruttola and Tu, 1994, Huang et al., 2010, Little, 1993, 1994, Pantazis et al., 2005,

Schluchter, 1992, Touloumi et al., 1999, Wu and Carroll, 1988, Wulfsohn and Tsiatis,

1997). The primary distinctive feature of these models constitutes the way the joint

likelihood of the marker and missing data processes are factorized. In addition, much

of the literature focuses on monotone missing data mechanisms in the form of dropout.

Another difference between these models is about whether the primary motivation

comes from the accurate estimation of the marker evolution over time adjusted for
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informative missingness or from the accurate estimation of the risk for the dropout

event conditionally on the “true” marker values. A special subclass of MNAR models

which is frequently applied in biomedical settings is termed shared random effects

models (SREMs) (e.g. Gruttola and Tu, 1994, Wulfsohn and Tsiatis, 1997) in which

the marker evolution and the time to dropout are assumed to depend on the individual’s

random effects. In some SREMs (Gruttola and Tu, 1994, Schluchter, 1992, Touloumi

et al., 1999), the time to dropout is directly modeled conditional on the random effects,

where some parameters relate the random effects to the distribution of the time to

dropout. Thus, these models can examine whether individuals with marker profiles

worse than the population average are more likely to drop out of the study earlier.

When the association parameters are estimated to be different from zero, the authors

claimed that this is an indication of MNAR dropout. In other SREMs (e.g. Faucett

and Thomas, 1996, Wulfsohn and Tsiatis, 1997), where the motivation is based on

estimating the risk for dropout given the true marker value, a proportional hazards

model is usually assumed for the time to dropout conditionally on the current “true”

marker value.

In practice, there may be multiple reasons for dropout, usually in the form of

competing risks, i.e. multiple mutually exclusive events. The most typical example of

competing risks is death from different causes. One approach would be to combine all

reasons into a composite one, but this is not generally recommended, especially when

the marker is likely to affect the risk for each dropout event differentially. In the last

few years, though, joint modeling of longitudinal data and competing risks time to

event data has also gained attention (e.g. Andrinopoulou et al., 2014, 2017, Elashoff

et al., 2008, Hickey et al., 2018, Hu et al., 2012, 2009, Huang et al., 2010, Proust-Lima

et al., 2016, Williamson et al., 2008). In competing risks analysis, a frequent issue is

that the failure cause is missing or potentially misclassified. To deal with this issue, a

random sample from individuals with potentially misclassified or missing failure cause

can be selected, with the true failure cause actively ascertained.

In applied epidemiological/medical research, especially for prediction purposes, pro-
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gression of cohorts over time may be monitored by using mutually exclusive states

defined jointly by competing risks data and discretized continuous marker data. The

literature on multistate modeling is extensive but most approaches usually consider

observed states (e.g Klein and Shu, 2002, Putter et al., 2007), with few methodological

approaches on estimating multistate probabilities defined jointly by unobserved marker

data and observed competing risks data (Hu et al., 2012).

1.2 Disease markers in people with HIV

The human immunodeficiency virus (HIV) is a retrovirus causing the acquired immune

deficiency syndrome (AIDS), a condition in which the human immune system collapses,

leading to the, so-called, opportunistic infections that in many cases result to death.

HIV can be classified into two main types: HIV-1 and HIV-2. HIV-1 was discovered

first and is more prevalent worldwide, while HIV-2 is less pathogenic and transmissible,

and it is mostly confined to West Africa. So when we generally say HIV, we refer to

HIV-1. The fundamental differences between HIV-1 and HIV-2 infections lie in the

mechanism of retroviral pathogenesis, which has not been fully clear yet. There is large

variability in the time from HIV infection to AIDS onset (Muñoz et al., 1989, Pantaleo

et al., 1993, Phair et al., 1992), with the corresponding median time in the absence

of treatment estimated to be around 10 years. However, due to the introduction of

combined antiretroviral therapy (ART) in 1996, the mortality and morbidity of HIV has

substantially decreased over time, tending to still improve in recent years. Therefore,

if patients are diagnosed relatively early, initiate and remain compliant to treatment,

they are at risk mainly for non-AIDS serious adverse events nowadays. Thus, HIV

infection is now considered more as a chronic disease.

During this variable and often prolonged asymptomatic period after the acute

viremic phase (Muñoz et al., 1989), several immunologic and virologic markers, such

as the percentage of CD4 cell count, serum β2-microglobulin and neopterin levels and

HIV p24 antigenemia, have been considered as potential markers of disease progres-

7



1. GENERAL INTRODUCTION

sion (Fahey et al., 1990, Lang et al., 1989, Stein et al., 1992). Among all potential

predictors, the most reliable ones are the absolute value of the CD4 cell count and the

HIV-RNA viral load (VL). These markers have been routinely used to keep track of

disease progression and have formed the basis of WHO guidelines for ART initiation

for almost 20 years.

CD4 lymphocyte cells, also termed T-helper cells, are a subset of the total T lym-

phocytes. They are called helper cells because one of their main roles is to send signals

to other types of immune cells, including CD8 killer cells, which then destroy the infec-

tious particle. Thus, CD4 cells have a key role in the immune function but constitute

the primary target cells of HIV. Many epidemiological studies have shown that the

absolute number of CD4 cells gradually declines during the course of the disease (e.g.

Detels et al., 1988, Eyster et al., 1987, Lang et al., 1989, Touloumi et al., 2012). More

accurately, though, CD4 counts decrease very rapidly immediately after HIV infection

(i.e. the acute HIV infection period). At approximately 6 weeks since infection, CD4

counts start to increase again up to around 12 weeks since infection, when HIV sero-

conversion occurs (i.e. the time point after which a patient can test positive for HIV).

Then, in the absence of ART, the number of CD4 cells starts decreasing again but at

a much slower rate. Many researchers have used transformations of CD4 counts (e.g.

square root, log, fourth root) mainly to linearize their decline over time and normalize

their distribution during the HIV natural history (disease evolution if untreated). It is

also well known that a low count of CD4 cells is a reliable predictor for increased risk

for development of AIDS, and that patients with steeper CD4 slopes tend to develop

AIDS or die sooner. The performance of CD4 cell count as a surrogate measure for

clinical events, such as AIDS onset or death, in clinical trials has also been evaluated

in the literature (e.g. Choi et al., 1993, Tsiatis et al., 1992). Apart from evaluating the

progression of the disease, CD4 decline during the HIV natural history is of paramount

importance for other epidemiological purposes, as well, e.g. when interest focuses on

predicting the time gap between HIV seroconversion and HIV diagnosis based on post-

diagnosis CD4 counts (Pantazis et al., 2019b) or when estimating the HIV incidence
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(van Sighem et al., 2015). CD4 cell count was the main factor for ART initiation based

on the WHO guidelines from 1996 to 2015. That is, patients did not start ART im-

mediately after diagnosis, but rather when the current CD4 count dropped below a

certain cutoff, though this cutoff was regularly updated when new information became

available. However, the results of the START study (Lundgren et al., 2015) in 2015

showed clearly the benefits of early initiation of ART in reducing drastically mortality

and the risk for opportunistic infections. In addition, early initiation of ART leads to

controlled viremia (i.e. undertectable HIV-RNA) which, in turn, minimizes the proba-

bility of transmission, having thus a great benefit not only for the individual but also

for public health. Therefore, nowadays, ART is initiated soon after diagnosis, which

implies that very few CD4 counts collected before ART initiation will be available from

now on.

CD4 count recovery after ART initiation has also been thoroughly examined by

many authors. Provided that patients adhere to treatment, a very rapid increase in

CD4 counts is expected, though the probability of full CD4 recovery (e.g. CD4>800

cells/µL) depends to a large extent on the CD4 at ART initiation (e.g. Pantazis et al.,

2019a, Stirrup et al., 2018) and on some other factors (Balestre et al., 2012), as well.

Based on data from sub-Saharan Africa cohorts, though, it has been shown that the

probability of sub-optimal immune recovery is considerable (Nakanjako et al., 2016).

Epidemiological research on VL, i.e. the amount of virus in blood, started to grow

when reliable quantitative methods became available (Holodniy et al., 1991). Immedi-

ately after infection, HIV multiplies rapidly and a person’s viral load is typically very

high. After a few weeks to months, this rapid replication of HIV declines and the

person’s viral load drops to its set point and increase slowly afterwards. The interval

between HIV seroconversion and viral set point is estimated to be around 1 year (Lyles

et al., 2000, Touloumi and Hatzakis, 2000, Touloumi et al., 2004). What is essential is

that the VL levels at viral set point are strongly associated with subsequent disease pro-

gression, and more importantly, independently of CD4 counts (Jurriaans et al., 1994,

Mellors et al., 1995, 1996, O’Brien et al., 1996). The joint evolution of CD4 and VL
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Figure 1.1: Generalised course of HIV infection. The evolution of the CD4 T cell count

(blue) and viral load (red) during acute infection, clinical latency and AIDS phase (repro-

duced from Fauci AS et al. 1996 58).

evolution during the HIV natural history is described in Figure 1.1. After initiating

ART, though, VL drops very steeply, by 90% within the first few days and by 99%

within the first few weeks. Typically, in most people viral load become undetectable

(i.e. VL result below detection limits) within one to three months given adherence to

treatment.

1.3 HIV studies: The CASCADE and the East African

IeDEA collaboration

We briefly describe the two databases used in this thesis:

The Concerted Action of Seroconversion to AIDS and Death in Europe (CASCADE)

study (e.g. Collaboration, 2000, Pantazis et al., 2014, Touloumi et al., 2004) is a collab-

oration of HIV cohorts pooled within the European Coordinating Committee for the
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Integration of Ongoing Coordination Actions Related to Clinical and Epidemiological

HIV Research (EuroCoord; www.EuroCoord.net). All collaborating cohorts have re-

ceived approval from their respective regulatory or national ethics review boards. The

individual cohorts include only patients for whom the seroconversion date can be esti-

mated with reasonable precision. For the majority of them, seroconversion dates were

estimated as the midpoint between the last documented negative and first positive HIV

antibody test dates with an interval of 3 years or less between tests. For the remainder,

the seroconversion date was estimated through laboratory evidence of acute serocon-

version or as the date of seroconversion illness. The purpose of CASCADE was to study

HIV infection throughout the whole course of the disease, addressing research questions

regrading both the HIV natural history and response to ART. The idea behind this

collaboration was to address research questions that could not be reliably explored by

the individual studies. Some descriptive characteristics of the CASCADE study data

are provided in Sections 3.5 and 4.7.

The East African International Databases to Evaluate AIDS (IeDEA-EA) (Nakan-

jako et al., 2016, Tymejczyk et al., 2019) is one of the seven regional data centers

funded by the U.S. National Institutes of Health to provide a rich resource for globally

diverse HIV/AIDS data. Indiana University leads the East African region in collab-

oration with the University of California San Francisco (U.S.), Columbia University

(U.S.), University of Toronto (Canada), Moi University (Kenya), Mbarara University

(Uganda), the Kenyan Medical Research Institute (Kenya) and the Tanzanian National

AIDS Control Program (Tanzania). The primary goal of this consortium is the provi-

sion of answers to questions that clinicians, programs, governments and international

organizations consider central to the evolution and sustainability of their long term HIV

care and treatment strategies. The current global focus is on achieving the UNAIDS

90-90-90 targets (Joint United Nations Programme on HIV/AIDS and Joint United

Nations Programme on HIV/Aids, 2014). Descriptive characteristics of the included

study participants are presented in Section 5.7.
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1.4 Aims

Using the CASCADE and the IeDEA-EA studies as motivated examples, and the need

to analyze the evolution of CD4 counts over time, we focus on two main aims: 1) to

analyze CD4 counts changes over time prior to ART initiation (i.e., during natural

history of the HIV infection) and 2) to analyze CD4 count trajectories after ART

initiation. In both cases, longitudinal CD4 count measurements could be censored due

to patient drop-out. The main mechanism of drop-out is ART initiation in the first

case and death or disengagement from care in the second one.

For the first aim, we focus mainly on the nature of the drop-out mechanism. When

the nature of the dropout mechanism is unknown, many researchers may apply SREMs,

at least as part of a set of sensitivity analyses if informative dropout is suspected.

Following standard recommendations from published papers (e.g. Gras et al., 2013,

Schluchter, 1992, Touloumi et al., 1999), researchers may, perhaps wrongly, interpret de-

viations between results from LMMs (assuming ignorable dropout) and from SREMs as

indicating MNAR missingness. The discrimination though between MAR and MNAR

is difficult in practice (Molenberghs et al., 2008); thus one may end up fitting a SREM

to data that are actually MAR. The aims of this part of the thesis are:

(a) to investigate the performance of SREMs when fitted to data subject to certain

MAR mechanisms

(b) to propose a more robust model that could provide valid estimates in both MAR

and MNAR cases, and

(c) to investigate the performance of the commonly used LMMs under misspecified

covariance structure and to compare various approaches to identify the model

with the “correct” covariance structure.

The various modeling approaches will be compared in simulation studies and fitted to

CASCADE study data.

For the second aim, we focus on analyzing the evolution of a marker when more
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than one dropout mechanisms are present. On top of that, we also examine the issue

of potentially misclassified cause of dropout. Multiple dropout mechanisms (e.g. death

and disengagement from care) yield competing-risk data, thus the issue here is to

joint model longitudinal marker data along with competing-risk data under the SREM

framework. The main aims of this part of the thesis are:

(a) to propose a unified and flexible approach to jointly model a continuous disease

marker over time using CIFs for the failure (i.e., drop-out) submodels, and

(b) to propose a way to adjust for misspecified failure cause.

The methods developed/investigated in this part of the PhD will be examined in simu-

lation studies and will be fitted to data from the IeDEA-EA cohort study, where clinical

relevant predictions will be made.

1.5 Structure of the thesis

Chapter 2 presents an overview of the available methods for modelling longitudinal

data with missingness. The notation used throughout this thesis and standard re-

sults from missing data theory are described first. Some frequently applied traditional

approaches to modeling the observed longitudinal data solely, as well as commonly ap-

plied approaches to jointly modeling longitudinal data and the missing data process,

are described in detail.

In Chapter 3, we examine the case in which SREM models are fitted to incomplete

data due to MAR dropout. We show analytically that specific SREMs when fitted

to incomplete data, produced by a MAR drop-out mechanism, can yield seriously bi-

ased population estimates, with the magnitude of bias increasing as the MAR dropout

probability increases. We also propose an alternative SREM model.

In Chapter 4, we explore the consequences of covariance structure misspecification

in LMMs under MAR dropout in terms of bias in the population estimates. Specifically,

we analytically calculate the asymptotic bias in the marker trend estimates of LMMs
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using covariance structures that have been used in real-data applications. We also

investigate the performance of LMMs with more complex covariance structures and, in

addition, we adopt o Bayesian model comparison to discriminate in real applications

among alternative covariance structure specifications of LMMs.

Chapter 5 is concerned with joint modeling of longitudinal data and competing risks.

More specifically, we propose a unified and flexible approach to jointly model a normally

distributed continuous disease marker (e.g. a transformation of CD4 counts) over time

and competing risk data (e.g. death and disengagement from care) using CIFs for

the failure submodels, also accounting for failure cause misclassification. Based solely

on the assumed joint model, we estimate state occupation and transition probabilities

defined jointly by competing risks and discretized marker data. The performance of

the proposed methodology is evaluated through simulation studies. We also fit the

proposed approaches to CD4 data after ART initiation from the East Africa IeDEA

study.

Finally, Chapter 6 first summarizes the relevant literature and discusses the gaps

this thesis has filled. In addition, the main developments of this work are briefly pre-

sented, discussing also their practical contributions as well as their potential extensions

and limitations.
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Chapter 2

Overview of longitudinal data

analyses methods under

missingness

Studies involving repeated measurements of some variable for each individual, or more

precisely for each measurement unit (e.g., human beings, animals, or laboratory sam-

ples), have become very popular nowadays. Especially in medical research, it is common

that a cohort of patients is followed up over time, with plenty of information recorded

at a set of pre-specified visits. Thus, a series of longitudinal measurements on the same

individual is obtained, with such studies being referred to as longitudinal studies. It

has been shown that longitudinal studies concerning a disease play a prominent role

in enhancing our understanding of the development and persistence of a disease. The

analysis of longitudinal data, though, poses some difficulties compared to other clas-

sic approaches in biostatistics, mainly due to the lack of independence of observations

from the same individual. The growing popularity of longitudinal studies resulted in

the development of numerous statistical approaches that differ in complexity, statis-

tical power, and conditions of use. In longitudinal studies, and more often in studies

involving humans, missing data is a frequently encountered problem as it can ultimately
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undermine the validity of results under certain conditions.

In this chapter, we first introduce the notation used for longitudinal data with

missingness, specifically in the case of monotone missingness in the form of dropout.

In Section 2.2, we outline the standard taxonomy of missing data mechanisms used in

the literature based on Rubin (1976), also presenting the corresponding implications

for data analysis. In Section 2.3, we describe some standard longitudinal analysis

approaches that model the observed longitudinal data only. However, these methods

are valid only under certain assumptions about the missing data. Finally, in Section 2.4,

we introduce the most commonly applied approaches to jointly model longitudinal data

and the missing data mechanism, since joint modeling is required in order to obtain

reliable estimates under certain assumptions about the missing data mechanism.

2.1 Notation

Let Yij denote the measurement of the outcome (e.g. a disease marker) intended to

be collected at time tij on a randomly sampled individual i, j = 1, 2, . . . , Qi, with

Qi denoting the maximum number of marker observations of individual i. In some

cases, e.g. in the clinical trials settings, the maximum number of observations and

the measurement times are the same for all individuals, i.e. Qi = Q and tij = tj ,

for i = 1, 2, . . . , N , respectively, where N denotes the number of individuals. In other

words, all individuals are measured at the same times. These are referred to as balanced

data, but this is rarely the case in longitudinal studies including human subjects. Even

when the number of marker observations is the same for all individuals, mistimed

observations are frequent. Associated with each Yij are the values xijk, k = 1, 2, . . . , p,

of p explanatory variable that typically include some function of time.

In most cases, though, the data can be incomplete due to some stochastic missing

data mechanism; to take missingness into account, let Rij be the missingness indicator

for Yij , i.e. Rij = 1 if Yij is observed and Rij = 0 otherwise. In matrix notation,

let Y ⊤
i = (Yi1, . . . , YiQi) be the full data on individual i and R⊤

i = (Ri1, . . . , RiQi)
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2.2 Inference under missing data

the associated missingness indicators. In general, there are 2Qi possible missing data

patterns. To distinguish the data actually observed from the full data, for a given

missingness pattern Ri = ri, let Y i,(ri) denote the observed marker data and Y i,(ri)

the missing ones. For example, if Qi = 3, given r⊤i = (1, 0, 1), Y i,(ri) = (Yi1, Yi3)
⊤

and Y i,(ri) = Yi2, that is, the second scheduled measurement is missing. Thus, it

is evident that the observed data are represented by (Ri,Y i,(Ri)) as both Ri and

Y i,(Ri) are required to fully characterize which components of Y i are observed for a

randomly chosen individual. The special focus of this thesis is on monotone missingness

mechanisms, e.g. arising from dropout or attrition, which means that the marker data

are not available after a certain point in time. This implies that the missing data

indicators ri are of the form (1, 0, . . . , 0), (1, 1, . . . , 0), . . ., (1, 1, . . . , 1), that is, the

subject dropped out after the first, or the second visit, or he/she was followed up

until the end of the study. Under this setting, the missing data indicators can be

equivalently expressed by the scalar variableMi =
∑Qi

j=1Rij denoting the number of the

observed marker measurements. Thus, given Mi = mi, the observed measurements are

Y ⊤
i,(mi)

= (Yi1, Yi2, . . . , Yimi) and the missing ones Y ⊤
i,(mi)

= (Yimi+1, Yimi+2, . . . , YiQi).

Most statistical methods aim to provide inferences on the parameters of the distribution

of the full marker data Y i, though it is apparent that the estimating process can be

based only on the observed marker data Y i,(mi) of each individual i.

2.2 Inference under missing data

When data are incomplete due to some stochastic mechanism, the density of the full

data is equal to

f(Y i,Mi;θL,θt),

where θL denotes the parameter vector of the marker model, f(Y i;θL), and θt denotes

the parameter vector of the dropout mechanism, Pr(Mi|Y i;θt). Dependence on poten-

tial covariates is suppressed here to simplify the notation. It should be noted that it

is always valid to factorize f(Y i,Mi;θL,θt) as f(Y i;θL) × f(Mi|Y i;θt). It has been
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shown (Laird, 1988, Rubin, 1976) that when there are missing data, given Mi = mi for

i = 1, 2, . . . , N , the “observed” data likelihood is obtained after integrating the missing

data out of the full data density, i.e.

N∏
i=1

∫
f(Y i,mi;θL,θt)dY i,(mi) =

N∏
i=1

∫
f(Y i;θL) Pr(Mi = mi|Y i;θt)dY i,(mi). (2.1)

Therefore, for likelihood-based inferences, we require a parametric model for the joint

distribution of (Y i,Mi). As shown in the literature, the main factor influencing the

validity of the methods applied to incomplete data is the form of the dropout mecha-

nism, i.e. Pr(Mi|Y i;θt). Standard taxonomy of the missing data mechanisms includes

(i) the missing completely at random (MCAR), (ii) the missing at random (MAR), and

(iii) the missing not at random (MNAR) definitions, provided below.

Missing completely at random

Data are said to be missing completely at random (MCAR) when the missingness

probabilities are unrelated to both the specific marker values that, in principle, should

have been obtained and the set of the observed measurements. That is, under monotone

missingness, data are MCAR when Mi is independent of both Y i,(Mi) and Y i,(Mi)
, the

observed and unobserved components of Y i, respectively. As such, missingness in Y i

is simply the result of a chance mechanism unrelated to both observed and unobserved

marker measurements. Formally, data are MCAR when

Pr(Mi = mi|Y i,(mi),Y i,(mi);θt) = Pr(Mi = mi;θt), (2.2)

for each Mi = 1, 2, . . . , Qi. For example, consider a randomized clinical trial in which

participants are randomized at baseline to receive one treatment or the other and

then followed for a specified period of time. Subjects have the outcome of interest and

other health status information measured at baseline, i.e. immediately prior to starting

treatment, and then are to return to the clinic at additional pre-specified times at which

the outcome of interest and other health information are to be ascertained. Suppose

that individuals drop out of the study because they move away for work or family
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2.2 Inference under missing data

considerations; in this case, dropout has nothing to do with the individual’s health

status or other issues of the study. Thus, it can be reasonable to assume that dropout

is MCAR.

Another example of MCAR missingness may come from a nutrition study focusing

on the daily average percent fat intake. Accurate measurement of this outcome requires

individuals to keep a detailed “food diary” over a long period of time, which is both

time-consuming for individuals to maintain and expensive for investigators to design. A

simpler approach would be to have individuals recall all the food they ate in the last 24

hours. However, such a measure can only be considered as a surrogate for the outcome

of interest as it obviously includes measurement error. To reduce costs and subject

burden, the study could be designed so that all individuals provide a 24-hour recall

(surrogate) measurement, but only a subset of participants provide the expensive and

time-consuming exact measurement, often being referred to as a validation sample. If

the validation sample is constructed by selecting members from the entire study sample

with probability 0.1, say, then missingness is by design, thus it can be reasonably

assumed to be MCAR.

In the statistical literature, it seems that there is no universal agreement on whether

the definition of MCAR also assumes no dependence of missingness on the covariates,

Xi. Little (1995) suggested restricting the use of the term MCAR to the case where

Pr(Mi = mi|Y i,(mi),Y i,(mi),Xi;θt) = Pr(Mi = mi;θt), that is, missingness does

not depend on observed covariate values. When missingness depends on Xi, but is

conditionally independent of Y i, Pr(Mi = mi|Y i,(mi),Y i,(mi),Xi;θt) = Pr(Mi =

mi|Xi;θt) a subtle, but important, issue arises. The conditional independence of Y i

and Ri, given Xi, may not hold when conditioning on only a subset of the covariates.

Consequently, when an analysis is based on a subset of Xi that excludes a covariate

predictive of Ri, Y i is no longer unrelated to Ri. To avoid any potential ambiguity,

Little (1995) suggests that MCAR be reserved for the case where there is no dependence

of Ri on Y i orXi; when there is dependence onXi alone, he suggests that the missing

data mechanism be referred to as “covariate-dependent” missingness.
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The essential feature of MCAR is that the observed data can be thought of as

a random sample of the full data. Consequently, all moments, and even the joint

distribution, of the observed data do not differ from the corresponding moments or

joint distribution of the complete data. Thus, in general, all methods for analysis that

yield valid inferences in the absence of missing data will also yield valid inferences

when the analysis is based on all available data, or even when it is restricted to the

individuals who did not drop out (analysis of completers), although an issue of reduced

power could be raised in such an analysis.

Missing at random

In contrast to MCAR, data are said to be missing at random (MAR) when the missing-

ness probabilities depend on the set of observed marker measurements responses, but

are further unrelated to the specific missing values that, in principle, should have been

obtained. In other words, if individuals are stratified based on similar observed marker

values, missingness is just a chance mechanism that does depend on future unobserved

values. Formally, dropout is MAR when, given relevant covariates,

Pr(Mi = mi|Y i,(mi),Y i,(mi);θt) = Pr(Mi = mi|Y i,(mi);θt), (2.3)

for each dropout pattern, j = 1, 2, . . . , Qi, and any realization of the observed data,

Y i,(mi) (Seaman et al., 2013). For a more technical review of MAR definitions, we

refer to Seaman et al. (2013). This makes explicit that it is possible to think of MAR

as implying that dropout is a sequentially random process; whether or not a subject

still in the study drops out at time mi is “at random” in the sense that it depends

on the history of observed data to that point. In the previous surrogate measurement

example, if the validation sample is constructed by selecting individuals from the full

study sample depending on whether or not their 24-hour recall measurements exceed

some threshold, then the missingness of the expensive diary measurement depends on

a variable that is always observed, and hence is MAR. In the clinical trial example, if

drop-out depends on observed health history, then missingness is MAR. If, for example,
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2.2 Inference under missing data

all patients who reach a certain value of the disease marker stop trial, then this, most

likely, represents a MAR mechanism.

Recall that the likelihood for the observed data is equal to

N∏
i=1

∫
f(Y i,mi;θL,θt)dY i,(mi)

=

N∏
i=1

∫
f(Y i;θL) Pr(Mi = mi|Y i,(mi),Y i,(mi);θt)dY i,(mi), (2.4)

that is, the full data density with the missing data integrated out. Under MAR dropout

though, Pr(Mi = mi|Y i,(mi),Y i,(mi);θt) = Pr(Mi = mi|Y i,(mi);θt) for any value of

the missing data, Y i,(mi). Thus, Equation (2.4) is equal to

N∏
i=1

Pr(Mi = mi|Y i,(mi);θt)

∫
f(Y i;θL)dY i,(mi), (2.5)

where f(Y i,(mi);θL) =
∫
f(Y i;θL)dY i,(mi) =

∫
f(Y i,(mi),Y i,(mi);θL)dY i,(mi), i.e.

the density function for the part of Y i that is observed for fixedMi = mi, as it is simply

the density function for the full marker data with the “missing part” integrated out. For

example, if Y i ∼ N(µ,Σ), then the marginal distribution of Y i,(mi) ∼ N(µ(mi),Σ(mi)),

by standard properties of the multivariate Normal distribution, where µ(mi) and Σ(mi)

denote the corresponding submatrices of µ and Σ, respectively. For other multivariate

distributions, though, such a property may not hold. If we further assume that θL and

θt are variation independent, or “distinct” (Rubin, 1976), i.e. denoting the parameter

spaces of θL and θt by ΘL and Θt, respectively, the parameter space for (θ⊤L ,θ
⊤
t )

⊤ is

ΘL×Θt, it is evident that all information about θL is included in
∏N
i=1

∫
f(Y i,(mi);θL)

and thus
∏N
i=1 Pr(Mi = mi|Y i,(mi);θt) is irrelevant for estimating θL. Hence, a MAR

dropout mechanism is said to be ignorable in the literature (Laird, 1988, Little and

Rubin, 2002, Rubin, 1976), as there is no need to estimate the dropout mechanism when

likelihood-based methods are applied for the marker model. That is, the maximum

likelihood estimator based on
∏N
i=1

∫
f(Y i,(mi);θL) is consistent for θL, irrespective of

the dropout mechanism (Rubin, 1976). The last statement is critical as an ignorable

mechanism implies nothing about the validity of inferences which are not based on the
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likelihood of the observed marker data. It should be also noted that it is the missingness

mechanism, not the missing data (or the individuals with missing data), which can be

ignored (Laird, 1988) as the distribution of Y i,(mi)|Mi = mi is no longer equal to the

marginal distribution of Y i,(mi) under MAR. The important implication of this feature

of MAR is that sample moments are not unbiased estimates of the same moments of

the full data. Thus, inference based on these moments without accounting for MAR,

such as scatterplots of the sample marker evolution, may prove misleading.

An equivalent formulation of MAR is in terms of the predictive distribution of the

missing marker measurements, Y i,(mi), given the observed ones, Y i,(mi) and Mi = mi,

has been provided in Molenberghs et al. (2008). In particular, assuming MAR, this

distribution takes the following form:

f(Y i,(mi)|Y i,(mi),Mi = mi;θL,θt) = f(Y i,(mi)|Y i,(mi);θL), (2.6)

i.e. only the distribution of each individual’s missing values Y i,(mi), conditioned on the

observed values, Y i,(mi), is the same as the distribution of the corresponding observa-

tions of the full data. Thus, missing values can be validly predicted using the observed

data and a correctly specified model for the joint distribution of (Y ⊤
i,(mi)

,Y ⊤
i,(mi)

).

Missing not at random

The third type of missing data mechanisms is referred to as missing not at random

(MNAR). In contrast to MAR, missing data are said to be MNAR when the probability

that marker measurements are missing is related to the specific values that should have

been obtained, in addition to the ones actually observed. That is, in the case of

dropout, the conditional distribution of Mi, given Y i,(mi), is related to Y i,(mi), with

Pr(Mi|Y i,θt) = Pr(Mi|Y i,(mi),Y i,(mi);θt) depending on at least ons component of

Y i,(mi).

For example, consider a longitudinal study comparing anti-hypertensive agents with

systolic blood pressure as the outcome. Suppose that the outcome is to be collected

at pre-specified scheduled visit times. An individual might take his/her blood pressure
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right before the scheduled clinic visit and, if it is high, decide to terminate his/her

participation in the study, feeling the agent he/she is taking is not helping. This

a classic example of MNAR dropout, where at time tij , the probability of dropout

increases with the (unobserved) outcome value, Yij .

An MNAR mechanism is often referred to as non-ignorable missingness because

the missing data mechanism cannot be ignored when one aims to make inferences

about the distribution of the complete marker data. This is the case as the integral

in Equation (2.4) does no longer simplify to Equation (2.5). In general, any valid

inferential procedure under MNAR requires specification of a model for the missing

data mechanism. We note that the term informative has often been used to describe

missing data that are MNAR, especially for the monotone missingness such as dropout.

When dropout is MNAR, the model assumed for Pr(Mi|Y i,(mi),Y i,(mi);θt) is criti-

cal and must be included in the analysis. Moreover, many authors have pointed out that

the results are often sensitive to the specified missingness model, which can fully drive

the results in some cases. It has also been shown that an MNAR assumption about

the missingness mechanism cannot be ultimately verified based solely on the observed

data (Molenberghs et al., 2008). That is, the observed data provide no information

that can either fully support or refute one MNAR mechanism over another. Thus,

without additional information, it is evident that identification is driven by model as-

sumptions, and many authors have discussed the importance of conducting sensitivity

analyses (e.g. Copas and Eguchi, 2001, Creemers et al., 2011, Laird, 1988, Little and

Rubin, 2002, Molenberghs et al., 2001, Njagi et al., 2014, Rosenbaum and Rubin, 1983,

1985, Scharfstein et al., 1999, Verbeke et al., 2001). It is, therefore, suggested that,

when missingness is thought to be MNAR, the sensitivity of inferences to a variety of

plausible assumptions concerning the missingness process should be carefully assessed.

Under MNAR, almost all standard methods of analyzing the observed marker data

only (e.g. likelihood-based methods) are invalid. To obtain valid estimators, joint

models for the marker measurements and the missing data mechanism are required.

Models for (Y i,Mi) can be specified in numerous ways, depending on how the joint
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distribution is factorized. Three common factorizations of the joint distribution of

the marker and missing data mechanism give rise to selection, pattern-mixture, and

shared-parameter models, which are described in Section 2.4.

We first review in Section 2.3 some standard approaches for longitudinal data anal-

ysis that model the observed marker data only, and essentially assume that missingness

is MCAR or MAR, whereas in 2.4 we review some MNAR approaches which jointly

model the observed marker measurements and the dropout probabilities.

2.3 Longitudinal data analysis methods assuming MCAR

or MAR

2.3.1 General linear model with correlated errors

As previously mentioned, when data are incomplete due to some stochastic missing

data mechanism, most statistical methods assume a model for the full data intended to

be collected. When the outcomes Yij , j = 1, 2, . . . , Qi, are continuous, one traditional

approach is the general linear model, which assumes that Yij follow the regression

model:

Yij = β1xij1 + . . .+ βpxijp + ϵij ,

where βj , j = 1, 2, . . . , p are the regression coefficients (or the fixed effects, which

are constant across all individuals) and ϵij are error terms assumed to have zero mean

which, on the contrary to the classical linear model, are assumed to be correlated as they

refer to the same individual. Thus, apart from modeling E(Yij) over time, longitudinal

data analysis requires modeling the covariance structure of the data, Cov(Yij , Yik),

j ̸= k, as well. In matrix notation, recall that Y ⊤
i = (Y1, . . . , YQi) is the full set of

marker measurements, Xi the Qi × p fixed effects design matrix with the jth row

equal to (xij1, . . . , xijp), and ϵ
⊤
i = (ϵi1, . . . , ϵiQi) the full vector of errors. To explicitly

model the correlation in the data, the covariance matrix of ϵi is assumed to be equal

to V ar(ϵi) = σ2V i, where V i is a non-diagonal positive definite matrix, which further
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implies that E(Y i|Xi) =Xiβ and V ar(Y i|Xi) = σ2V i. The form of V i is crucial for

robust inference as reliable inference on the fixed effects (which are of primary interest)

requires that the form of V i can adequately describe the true covariance structure of

the data. Typically, the form of V i is expected to be a function of time, depending on

some unknown parameters (θv) to be estimated based on the data. Some traditional

approaches for modeling the covariance are described below (e.g. Diggle et al., 2002,

Fitzmaurice et al., 2008, 2011).

Compound symmetry

Historically, one of the first covariance pattern models used for analysis of repeated

measurements was the compound symmetry. With a compound symmetry covariance,

it is assumed that the variance is constant across occasions, say σ2 , and Cor(Yij , Yik) =

ρ for all j and k. That is,

V ar(Y i) = σ2



1 ρ ρ · · · ρ

ρ 1 ρ · · · ρ

ρ ρ 1 · · · ρ
...

...
...

. . .
...

ρ ρ ρ · · · 1


,

usually with the constraint that ρ > 0. The compound symmetry covariance is very

parsimonious, with only two parameters regardless of the number of visits/occasions

and whether the data are balanced or not. Thus, it is mainly applied for explanatory

analyses due to its simplicity. Also, it has a randomization justification in certain

settings (e.g., split-plot designs) and it also equivalent to a random-effects model with a

single random effect per individual. However, it does make the rather strong assumption

that the correlation between any pair of measurements is the same regardless of the

time interval between the measurements. This latter aspect of the compound symmetry

covariance, i.e. the constraint on the correlation among repeated measurements, is

somewhat unappealing for most longitudinal data, where the correlations are expected
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to decay over time. Also the assumption of constant variance across time may be

unrealistic in most settings.

Exponential correlation

The motivation for the Exponential correlation model derives from the fact that the

correlation of observations closer together in time is expected to be higher than that of

observations farther apart. Formally, the correlation between two marker measurements

is assumed to depend on the time distance between two measurements, i.e.

Cor(Yij , Yik) = ρ|tij−tik|,

with the variance assumed to be constant across all measurement occasions, σ2. That

is, the correlation between any pair of repeated measures decreases exponentially with

the time separations between them. This structure is referred to as an “exponential”

covariance model because it can be re-expressed as

Cov(Yij , Yik) = σ2ρ|tij−tik|,

= σ2 exp (−ι|tij − tik|) ,

where ι = − log(ρ) for ι > 0. Also note that the Exponential covariance model is

invariant under linear transformations of the time scale. That is, if we replace tij by

(a+btij) (e.g., if we replace “weeks” by “days”), the same form for the covariance matrix

holds. The main advantage of the Exponential correlation is that it is much more

realistic than the compound symmetry model, as the correlation is time-dependent,

while remaining parsimonious as it includes only two parameters. Thus, it can be

applied to real data irrespective of whether the data are balanced or not. A distinctive

feature of the Exponential correlation model is that it assumes that the correlation is

equal to one if measurements are made repeatedly at the same occasion (or replicate

measurements on an individual can be obtained at the same occasion), and that the

correlation decreases rapidly to zero as the time separation between measurements

increases. This first aspect of the exponential covariance model corresponds to the
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assumption that the responses are measured without error, an unrealistic assumption

in most longitudinal studies in health sciences. The latter feature, correlations among

repeated measurements that decay to zero, is rarely observed in longitudinal studies.

Gaussian correlation

In the Exponential covariance model, the log correlation is linear in the distance. An

alternative covariance model is the Gaussian correlation model, which specifies the

decay of correlation using the squared distance:

Cor(Yij , Yik) = exp
{
−ι(tij − tik)

2
}
,

where ι > 0. The Gaussian correlation model is very similar to the Exponential corre-

lation model, so the choice between one of them should be based on model fit to the

observed data.

Unstructured covariance

When the number of measurement occasions is relatively small and the (observed)

marker data are roughly balanced, it may be reasonable to allow the covariance matrix

to be arbitrary, with all of its elements unconstrained. The only formal requirement,

though, is that the covariance matrix be symmetric and positive-definite. When no

explicit structure is assumed for the covariance among the repeated measures, the re-

sulting covariance is referred to as an “unstructured” covariance. The main advantage

of such an “unstructured” covariance is that no assumptions are made about the vari-

ances and covariances. The absence of restrictions on the variances is essential since

empirical evidence based on various longitudinal studies suggests that the variances are

rarely constant over time. With n measurement occasions, the “unstructured” covari-

ance matrix has n × (n + 1)/2 parameters: the n variances and then n × (n − 1)/2

pairwise covariances (or correlations).

The main drawback, though, is that the number of covariance parameters to be

estimated grows rapidly with the number of occasions. For example, when there are
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three occasions (n = 3), the number of covariance parameters is 6 (3 variances and 3

pairwise covariances). However, when n = 5, the number of covariance parameters has

grown to 15, while when n = 10, the number of covariance parameters is 55. When

the number of covariance parameters that need to be estimated is large, relative to the

sample size, estimation is likely to be highly unstable. Thus, using an unstructured

covariance will be appealing only in cases where the number of subjects, N , is large

relative to the number of covariance parameters, n × (n + 1)/2. Some methods that

improve the convergence of the unstructured covariance model have been proposed in

the literature (Lu and Mehrotra, 2010). Also, under certain assumptions, it has been

shown that the unstructured covariance model can be marginally equivalent to a mixed

model using B-splines for the random effects, as explained in detail in Garćıa-Hernandez

et al. (2020).

Setting aside the issue of the potentially large number of covariance parameters

that may need to be estimated, the use of an unstructured covariance matrix is prob-

lematic when there are mistimed measurements or, more generally, when visiting times

are expected to be irregular. Even the most carefully designed longitudinal study will

frequently suffer from deviations from the measurement protocol, resulting in measure-

ments made at arbitrary, irregularly timed intervals. When this problem arises, as

it frequently does in studies in health sciences, the resulting mistimed repeated mea-

surements cannot be accommodated in an unstructured covariance. Thus, when the

longitudinal data are inherently unbalanced and/or when the sample size is not suffi-

ciently large to estimate an unstructured covariance, it is usually desirable to impose

some structure on the covariance matrix.

Estimating methods

Since the desired complete data are not available, statistical procedures to estimate

the model parameters can take into account only the data that are actually observed.

A traditional approach to semi-parametrically estimate the fixed effects, β, is to use

the weighted least squares estimator, β̂(W ), which minimizes the sum of the quadratic
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forms (Y i,(mi)−Xi,(mi)β)
⊤W i,(mi)(Y −Xi,(mi)β) over subjects, whereW i,(mi) is any

symmetric “weight” matrix. Using straightforward manipulations, it can be shown that

the weighted least squares estimator, conditionally on observing the dropout pattern

indicators, Mi = mi, i = 1, 2, . . . , N , is equal to

β̂(W ) =

(
N∑
i=1

X⊤
i,(mi)

W i,(mi)Xi,(mi)

)−1 N∑
i=1

X⊤
i,(mi)

W i,(mi)Y i,(mi),

while it is straightforward to verify that β̂(W ) is unbiased for β, i.e. E{β̂(W )} = β,

irrespective of the choice for W i,(mi) if E(Y i,(mi)|Mi = mi) =Xi,(mi)β. This happens

if either (i) there are no missing data at all (i.e. Mi = Qi, for all i = 1, 2, . . . , N) or

(ii) Y i and Mi are independent random variables, which is equivalent to an MCAR

assumption for dropout. The corresponding variance, though, is equal to

V ar
{
β̂(W )

}
= σ2

(
N∑
i=1

X⊤
i,(mi)

W i,(mi)Xi,(mi)

)−1

(
N∑
i=1

X⊤
i,(mi)

W i,(mi)V i,(mi)W i,(mi)Xi,(mi)

)(
N∑
i=1

X⊤
i,(mi)

W i,(mi)Xi,(mi)

)−1

,

which depends on both W i,(mi) and V i,(mi). This last remark suggests that the most

efficient weighted least-squares estimator for β uses W i,(mi) = V −1
i,(mi)

(Diggle et al.,

2002), in which case V ar
{
β̂(V )

}
= σ2

(∑N
i=1X

⊤
i,(mi)

V −1
i,(mi)

Xi,(mi)

)−1
. Thus, it is

evident that the specification of the variance matrix, V i,(mi), is crucial when modeling

longitudinal data even though any weight matrix can produce unbiased estimates under

MCAR or no missing data at all. Fully semi-parametric estimation of β(V ) and θv

could be carried out using the generalized estimating equation (GEE) theory described

in Section 2.3.2.

An alternative estimation procedure is to assume a fully parametric model based

on the Normal distribution for the full data, Y i ∼ N(Xiβ, σ
2V i). Thus, the marginal

distribution of the observed data is equal to Y i,(mi) ∼ N(Xi,(mi)β, σ
2V i,(mi)), with

parameter estimates obtained by maximizing the likelihood function of the observed
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data (conditionally on Mi = mi, i = 1, 2, . . . , N):

L(β,θv) = −1

2

{
n log(σ2) +

N∑
i=1

log |V i,(mi)|

+
1

σ2

N∑
i=1

(Y i,(mi) −Xi,(mi)β)
⊤V −1

i,(mi)
(Y i,(mi) −Xi,(mi)β)

}
, (2.7)

where n =
∑N

i=1mi. Given V i,(mi), i = 1, 2, . . . , N , the maximum likelihood estimator

for β coincides with the weighted least squared estimator

β̂(V ) =

(
N∑
i=1

X⊤
i,(mi)

V −1
i,(mi)

Xi,(mi)

)−1 N∑
i=1

X⊤
i,(mi)

V −1
i,(mi)

Y i,(mi),

replacing W i,(mi) by V −1
i,(mi)

. The maximum likelihood estimate for σ2 (given V ) is

equal to

σ̂2(V ) =
N∑
i=1

{Y i,(mi) −Xi,(mi)β̂(V )}⊤V −1
i,(mi)

{Y i,(mi) −Xi,(mi)β̂(V )}
/
n,

whereas maximization with respect to the unique parameters in V can be carried out

after substituting β ≡ β̂(V ) and σ2 ≡ σ̂2(V ) into the likelihood function (2.7). Except

for very special cases, though, this requires a numerical optimization routine, such as

the Newton-Raphson algorithm.

Note that when using maximum likelihood estimation for simultaneous estimation

of β and θv, the design matrix Xi,(mi) is involved explicitly in the estimation of θv.

One consequence of this is that if assuming an incorrect form for Xi,(mi), we may get

inconsistent estimates for θv. To address this issue, it is recommended (Diggle et al.,

2002) to use an over-elaborated form for Xi,(mi) when investigating the covariance

structure of the data. When the data come from a well-designed experiment, it is

suggested to use a “saturated” mean model by using time as a class factor for each

occasion. After inferring the most appropriate covariance model, a more parsimonious

mean model can be used. However, in most observational studies, there are continuous

covariates and the visiting times may be irregular, so the concept of a saturated model

may break down.
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Another potential problem with the saturated model is that when the number of

columns in Xi,(mi) is large relatively to the number of individuals, the estimates for θv

can be seriously biased. For example, it is well known that when V i,(mi) = I(mi), an

unbiased estimator for σ2 requires a divisor of (n−p), rather than n, in the denominator,

and the problem is further exacerbated by the correlated structure of the data. To

overcome this issue, one can use the method of restricted maximum likelihood (REML)

(Patterson and Thompson, 1971). The REML estimator is defined as a maximum

likelihood estimator based on a linearly transformed set of data such that the resulting

distribution does not depend on β. One way to achieve this is by using the projection

matrix converting the data to ordinary least squares residuals. Some main findings

include:

• The resulted estimators for σ2 and V do not depend on the choice of the trans-

formation matrix.

• The transformation needs not be explicit.

After noting that the Jacobian of the transformation does not depend on the model

parameters, it can be shown that the REML is equal to Equation (2.7) plus the term

−1
2 log |σ

−2
∑N

i=1X
⊤
i,(mi)

V −1
i,(mi)

Xi,(mi)|. Therefore, given V i,(mi), the REML estimates

for β and σ are the same, except for n − p instead of n in the denomination of the

estimator for σ2. In general, the REML estimator is asymptotically equivalent to the

MLE when p is fixed and n → ∞. It should be noted that since the REML and

MLE estimates of the variance components differ, the estimates for β also differ, but

often not substantially. The REML approach has also a Bayesian interpretation, as it

corresponds to using a uniform prior distribution for β and integrating it out of the

joint posterior distribution.

2.3.2 Population-averaged (marginal) models using GEE

The generalized estimating equations (GEE) approach has been widely used for longi-

tudinal data analysis, especially when the marker is discrete, in which case there is no
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well-defined and easy to apply multivariate distribution. GEEs are often also referred

to as marginal models, since they model the marginal expected values of the marker for

each time point conditionally on explanatory variables, similarly to what is modeled in

a cross-sectional study. The popularity of GEEs is mainly due to the lack of full distri-

butional assumptions for the full vector of marker values, i.e. they are semi-parametric,

actually extending the idea of quasi-likelihood functions (Wedderburn, 1974). The GEE

approach can be though of as being a particular type of extension of generalized linear

models (GLM) to longitudinal, or more generally, cluster-correlated data, though GLMs

can be also adapted to the longitudinal case by incorporating individual-specific random

effects, as well. In GEEs (Liang and Zeger, 1986, Zeger and Liang, 1986, Zeger et al.,

1988), the expected value of the marker at visit j, j = 1, 2, . . . , Qi, E(Yij |Xij) = µij ,

is assumed to depend on covariates Xij , with a known link function g(µij) = Xijβ,

with β, the population-average parameter, being of main interest. The variance of the

marker at visit j is assumed to be V ar(Yij |Xij) = ϕV (µij), where V (·) is a known

variance function and ϕ is a nuisance scale factor. Thus, the mean model follows the

GLM structure, whereas dependence between observations is considered as a nuisance

parameter in the residual error component of the model. In matrix notation, the ex-

pected value is equal to E(Y i|Xi) = µi, with µi = (µi1, . . . , µiQi)
⊤, and the assumed

covariance matrix of Y i, Cov(Y i) = V i = ϕC
1/2
i Ri(ρ)C

1/2
i , where Ri(ρ) is an as-

sumed (working) correlation matrix depending on a vector of unknown parameters, ρ,

and Ci = Diag {V (µi1), . . . , V (µiQi)}. Then the regression parameters β are estimated

by the GEE

U(β) =

N∑
i=1

D⊤
i V

−1
i (Y i − µi) = 0, (2.8)

with Di =
∂µi
∂β . However, in most applications, ϕ and ρ would be unknown. Zeger

and Liang (1986) proposed the following iterative procedure to obtain estimates for

β: (i) start with an initial estimate of β, e.g. obtained through ordinary GLM as-

suming independent observations, (ii) given the current estimate β(l), calculate the

method-of-moments estimates for ϕ and ρ and estimate the covariance matrix V̂ i =
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ϕ̂Ĉ
1/2
i Ri(ρ̂)Ĉ

1/2
i , and (iii) update β through a modified Fisher scoring algorithm

β(l+1) = β(l) +
(∑N

i=1 D̂
⊤
i V̂

−1
i D̂i

)−1∑N
i=1 D̂

⊤
i V̂

−1
i (Y i − µ̂i), iterating between (ii)

and (iii) until convergence. In a seminal paper, Liang and Zeger (1986) proved that

the estimator β̂ is consistent and asymptotically Normal irrespective of whether Ri(ρ)

is correctly specified, hence the term working correlation matrix for Ri(ρ). However,

if Ri(ρ) coincides with the true correlation structure of the data, the efficiency of the

estimator obtained by solving Equation (2.8) improves. Furthermore, Liang and Zeger

(1986) showed that if the correlation matrix is correctly specified, the covariance matrix

of β̂ can be accurately estimated by A−1, where A =
∑N

i=1 D̂
⊤
i V̂

−1
i D̂i, whereas if the

correlation is not correct, the covariance matrix should be estimated by a sandwich

formula, i.e. A−1BA−1, where B =
∑N

i=1 D̂
⊤
i V̂

−1
i (Y i − µ̂i)(Y i − µ̂i)⊤V̂

−1
i D̂i.

Despite the great flexibility of the GEE estimators, their appealing properties may

be compromised when there is dropout. Missing data create no difficulties in obtaining

GEE estimates as one can circumvent the problem by simply basing inferences on the

observed responses, i.e. by solving

Uobs(β) =

N∑
i=1

D⊤
i,(mi)

V −1
i,(mi)

(Y i,(mi) − µi,(mi)) = 0. (2.9)

However, consistency of β̂ when the correlation model is misspecified can be directly

verified only when dropout is MCAR (Liang and Zeger, 1986). Consequently, several

authors have pointed out when data are MAR, the standard GEE method that bases in-

ferences on the observed marker values can yield biased regression parameter estimates,

though this may be not the case if the the correlation model is correctly specified in

specific examples (Liang and Zeger, 1986). Therefore, there have been various exten-

sions of the standard GEE method proposed by Liang and Zeger (1986), mainly to

improve the estimation of the correlation model (e.g. Liang et al., 1992, Lipsitz et al.,

1991, 1992, 2000, Prentice, 1988, Zhao and Prentice, 1990).

When missing data are assumed to be MAR, two main approaches have been pro-

posed to handle this problem within the GEE framework: multiple imputation (e.g.

Paik, 1997) and weighted estimating equations (Robins et al., 1995). The idea behind
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multiple imputation is very simple: one just needs to fill in the missing marker values

with imputed values. However, to properly reflect the uncertainty inherent in the im-

putation of the unobserved values, the imputation process is repeated multiple times.

The imputations are typically based on some assumed model for the missing data given

the observed data and other relevant covariates. The nice feature of imputation meth-

ods is that, once a filled-in data set has been constructed, the standard GEE method

for complete data can be readily applied. The multiple data sets yield different sets of

parameter estimates and standard errors, which are appropriately combined to provide

a single parameter estimate together with a standard error obtained from Rubin’s rule

(Rubin, 1987). In any case, multiple imputation methods have been very popular in

recent years as they can be straightforwardly applied to any model when missingness

arises.

The second general approach for handling data that are MAR is via weighted esti-

mating equations, where an individual’s contribution to the standard GEE is weighted

inversely by the probability of being observed at the given times. Thus, the fact that

certain marker profiles are under-represented in the observed cohort is formally taken

into account. The idea originates from the survey literature (Horvitz and Thompson,

1952) in which the weights are often known and related to the survey design. To

clarify the weighting methods, we present a simple example where there are at most

two marker measurements and the first one is always observed. Then the probabil-

ity of a complete case is assumed to be equal to πi = πi(θt) = Pr(Mi = 2|Yi1;θt),

i.e. MAR, since the probability of dropout depends on the first marker measurement,

which is always observed. Note also that Pr(Mi = 1|Yi1;θt) = 1 − πi. Then each

individual’s contribution to the standard GEE is weighted by the inverse probability of

being observed, thereby accounting for those subjects with the same history of marker

values (and, possibly, other covariates), whose Yi2 is missing. Specifically, the GEE

in Equation (2.9) is weighted by the inverse probabilities to yield a simple “weighted
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GEE”

UobsW (β) =
N∑
i=1

(
I(Mi = 2)

πi
+
I(Mi = 1)

1− πi

)
D⊤
i,(mi)

V −1
i,(mi)

(Y i,(mi) − µi,(mi)) = 0.(2.10)

By doing so, the observed data are re-weighted to mimic what would likely be observed

in a data set without missing data. It can been easily verified that (2.10) is an unbiased

estimating equation and, thus, the estimator obtained by solving (2.10) is consistent.

One issue, though, is that the dropout probabilities, πi, are unknown, which means that

they should be estimated based on the observed data. Robins et al. (1995) proposed a

very general class of “semi-parametrically efficient” weighted estimators for longitudinal

data provided that the missingness model has been correctly specified.

A further development, the so-called doubly robust, or doubly protected, estimators

(which were introduced in the discussion rejoinder in Scharfstein et al. (1999) and in the

contribution to the discussion of Bickel and Kwon (2001) by Robins and Rotnitzky) are

robust under certain conditions to misspecification of the model for the probability of

dropout. Weighted GEE are consistent when the dropout model is correctly specified,

whereas imputation methods are consistent when the imputation model is correctly

specified. The key idea behind doubly robust methods is to augment the weighted

GEE by a function of the outcome. When this augmentation term is properly selected

and modeled correctly according to the distribution of the complete data, the estimator

of β is consistent even if the model for dropout is misspecified. On the other hand,

if the model for missingness is correctly specified, the augmentation term does not

need to be correctly specified to yield consistent estimators of β. Thus, doubly robust

estimators are doubly robust in the sense of providing double protection against model

misspecification. A more theoretical exposition of doubly robust methods is provided

in Tsiatis (2007), whereas a nice introduction to the application of such methods is

given by Carpenter et al. (2006).
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2.3.3 Random effects models

Another alternative approach for modeling longitudinal marker data is by assuming

that the correlation in the data comes from a set of unobserved characteristics attached

to each individual, referred to as the random effects. Conditionally on the random

effects, bi, which are assigned a prior distribution, e.g. bi ∼ N(0,D), the marker

measurements are assumed to be independent. Thus, after integrating the random

effects out of the marker distribution, a certain model for the correlation between

two marker measurements of the same individual is induced, though this may not

be available in closed form. The idea of the random effects was initially applied to

continuous normally distributed outcomes (Harville, 1977, Laird and Ware, 1982) and

the first extensions to more general distributions within the exponential family were

provided by West (1985), Wong and Mason (1985), but the concept was popularized by

Breslow and Clayton (1993) using the term “generalized linear mixed model” (GLMMs).

More specifically, GLMMs assume that the marker measurements Yij |bi, j = 1, 2, . . . , Qi,

are independent given the random effects, with conditional distributions from the ex-

ponential family:

f(Y i|bi;θL) =
Qi∏
j=1

exp

{
Yijθij − ψ(θij)

ϕ
+ c(Yij , ϕ)

}
, (2.11)

where ϕ is a dispersion parameter, θij is the canonical parameter, and ψ(·) and c(·) are

known functions. The conditional mean, E(Yij |bi), is related to the canonical parameter

through E(Yij |bi) = ψ′(θij) =
∂ψ(θij)
∂θij

, and is further related to the linear predictor

through a known link function g(·), i.e. g {E(Yij |bi)} = ηij , where ηij = x⊤
ijβ + z⊤ijbi.

In matrix notation, ηi =Xiβ+Zibi, where Xi and Zi are the full design matrices of

the fixed and random effects, β and bi, respectively. Typically, Zi is a subset of Xi

including some function of the measurement times. The conditional variance is equal

to V ar(Yij |bi) = ϕψ′′(θij) = ϕV {E(Yij |bi)}, where V (·) is the variance function.

A critical point that should be clarified is that the regression parameters from

the marginal models (e.g. GEE) do not have the same interpretation as the fixed-

effects regression parameters in GLMMs since the former models describe the marginal
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means whereas the latter the conditional ones (Breslow and Clayton, 1993, Zeger et al.,

1988). The key difference between the two modeling frameworks is that the GLMMs

include the term z⊤ijbi in the linear predictor, which implies that the fixed effects,

β, do not have a marginal interpretation but rather reflect the effects of covariates

conditionally on the random effects. Thus, β reflects the effects of covariates when

the random effects are equal to zero or comparing two randomly sampled individuals

with different covariates but with the same value of the random effects. In principle,

an equivalent marginal model derived from a random effects model can be identified

through E(Yij) =
∫
g−1(x⊤

ijβ+ z⊤ijbi)f(bi)dbi, where f(bi) is the prior distribution for

the random effects, typically assumed bi ∼ N(0,D). Expect for very special cases,

this model is not available in closed form. However, if g(·) is the identity link function,

E(Yij) = x
⊤
ijβ, which implies that the regression coefficients from marginal and random-

effects models have the same interpretation. A thorough discussion of the differences

between marginal and random-effects models is provided in Zeger et al. (1988).

A standard difficulty with GLMMs is that the estimation process requires integra-

tion over the distribution of the random effects,
∫
f(Y i|bi;θL)f(bi;θL)dbi, which can

be time-consuming or can lead to convergence problems. Initial approaches used ap-

proximate procedures for inference (Breslow and Clayton, 1993), but nowadays, various

improved approaches have been proposed and implemented in user-friendly statistical

packages (Capanu et al., 2013, Pinheiro and Bates, 1995).

Due to the independence of Yij given the random effects, the distribution of the ob-

served marker measurements is easily derived. Thus, givenMi = mi, the observed likeli-

hood of the GLMMs is equal to
∫
f(Y i,(mi)|bi;θL)f(bi;θL)dbi, where f(Y i,(mi)|bi;θL) =∏mi

j=1 exp
{
Yijθij−ψ(θij)

ϕ + c(Yij , ϕ)
}
. In contrast to the standard GEE, GLMMs are

valid also under MAR dropout, this requires though that the likelihood model for the

marker process is correctly specified.
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2.3.3.1 Linear mixed models

Linear mixed models (LMMs) can be considered as a special case of GLMMs using

the Normal distribution for the marker, along with the identity link function. A nice

motivation for LMMs based on a two-stage procedure is described in Molenberghs and

Verbeke (2000). At the first stage, the marker measurements Y i are assumed to follow

the linear regression model:

Y i = Ziβi + ϵi, (2.12)

where Zi is a Qi × q matrix of covariates describing how the marker evolves over time

for the ith individual. Moreover, βi is a q-dimensional vector of unknown subject-

specific regression coefficients, and ϵi is the vector of within-subject residuals assumed

to follow independent normal distributions, ϵi ∼ N(0, σ2IQi). At the second stage, a

multivariate regression model of the form

βi =Kiβ + bi, (2.13)

is used to explain the observed variability between subjects with respect to their subject-

specific regression coefficients βi. Ki is a (q × p) matrix of known covariates, and β is

a p-dimensional vector of unknown regression parameters. Finally, the bi are assumed

to be independent, following a q-dimensional Normal distribution with mean vector

zero and general positive definite covariance matrix D. In practice, the regression

parameters in Equation (2.13) are of primary interest. They could be estimated by

sequentially fitting the models (2.12) and (2.13). First, all βi are estimated by fitting

model (2.12) to the observed data vector Y i of each subject separately, yielding esti-

mates β̂i. Afterwards, model (2.13) is fitted to the estimates β̂i, providing inferences

for β.

Obviously, such a two-stage approach would suffer from several problems. First,

there may be a severe loss of information when summarizing the marker data Y i by

β̂i. This means that random variability is introduced by replacing the βi’s in model

(2.13) by their estimates β̂i, i = 1, 2, . . . , N . Moreover, the covariance matrix of β̂i
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highly depends on the number of measurements available for the i-th subject, as well

as on the time points at which these measurements were taken.

The models can be combined into one unified model by replacing β̂i in Equation

2.12 by the expression in Equation (2.12), yielding

Y i =Xiβ +Zibi + ϵi,

where Xi = Ziβi is the appropriate (Qi × p) matrix of known covariates, and where

all other components are as defined earlier. This is an LMM with fixed effects β

and with subject-specific random effects bi (Harville, 1977, Laird and Ware, 1982). It

is also assumed that bi and ϵi are independent, with the most common case, bi ∼

N(0,D) and ϵi ∼ N(0, σ2IQi). In several approaches in the literature (Bates et al.,

2000), a re-parametrization is performed on the covariance matrix of the random effects,

bi ∼ N(0, σ2D), mainly for computational purposes. It can be easily shown that

the marginal distribution of Y i is multivariate Normal, Y i ∼ N(Xiβ, σ
2V i), with

V i = I +ZiDZ
⊤
i . Thus, it is evident that the fixed effects in an LMM model have a

marginal interpretation, coinciding with the interpretation of the regression parameters

in the corresponding marginal model (e.g. GEE). One frequently applied special case

of LMMs is the random intercept and slope model, which is more suitable when the

marker evolves more or less linearly over time. Specifically, it is assumed that

Yij = (β0 + bi0) + (β1 + bi1)tij + ϵij ,

where bi0 is frequently referred to as the “random intercept” as it measures the deviation

of individual’s i baseline marker value from the population baseline (i.e. β0). The same

holds for the random slope, bi1, which measures the difference of the individual’s i rate of

change relative to the population-averaged rate of change, β1. Thus, each individual has

his/her own intercept and slope. The covariance function of the model is Cov(Yij , Yik) =

σ2{D11 + (tij + tik)D21 + tijtikD22 + 1}, which implies that the variance function of

the marker is quadratic over time with positive curvature D22. Thus, it is evident that

LMMs are fully parametric approaches, and therefore, when there is MAR dropout,

the whole marker likelihood model (i.e. both the mean marker evolution and the
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random-effects structure) should be correctly specified to ensure consistent parameter

estimates. Given the dropout indicators Mi = mi, as Y i,(mi) ∼ N(Xi,(mi), σ
2V i,(mi)),

the observed data likelihood for the marker model assuming MAR dropout is equal to

ℓ(θL) = log f(Y 1,(m1), . . . ,Y N,(mN );θL) = −1

2

N∑
i=1

log |σ2V i,(mi)|

− 1

2σ2

N∑
i=1

(Y i,(mi) −Xi,(mi)β)
⊤V −1

i,(mi)
(Y i,(mi) −Xi,(mi)β).

Then it can be straightforwardly verified that, conditionally on D, the estimates for β

and σ2, are equal to

β̂(D) =

(
N∑
i=1

X⊤
i,(mi)

V −1
i,(mi)

Xi,(mi)

)−1 N∑
i=1

X⊤
i,(mi)

V −1
i,(mi)

Y i,(mi),

σ̂2(D) =
1

N

N∑
i=1

{
Y i,(mi) −Xi,(mi)β̂(D)

}⊤
V −1
i,(mi)

{
Y i,(mi) −Xi,(mi)β̂(D)

}
.

Thus, plugging in these solutions into the likelihood function, one obtains a profile-

likelihood approach (e.g. Bates et al., 2000), which can be maximized through a nu-

merical optimization method, parameterizing D based on e.g. the Cholesky factoriza-

tion (Lindstrom and Bates, 1988) or the matrix logarithm scale (Bates et al., 2000,

Leonard and Hsu, 1992). The likelihood can be alternatively maximized through the

EM algorithm (Dempster et al., 1977), as descibed in McLachlan and Krishnan (1996).

Similarly to the general linear model, to account for the loss in degrees of freedom

due to estimating β, one could use the REML estimators, obtained by maximizing

ℓ(θL)− 1
2 log |σ

−2
∑N

i=1X
⊤
i,(mi)

V −1
i,(mi)

Xi,(mi)| (Lindstrom and Bates, 1988).

In many applications, simple random-effects structures (e.g. a random intercept and

slope structure) are often employed. However, since every random-effects specification

actually implies a certain model for the marginal covariance of the marker, assuming

an over-simplistic covariance structure may result in biased population parameter esti-

mates under MAR dropout. Therefore, to improve the estimation of the covariance in

the data, two different approaches have been proposed in the literature. In the first one,

a high-dimensional vector of functions of time t, expressed in terms of high-order poly-

nomials or splines, can be used in the design matrix of the random effects (Rizopoulos,
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2012b). Compared to polynomials, though, splines are usually preferred due to their

local natural and better numerical properties (Ruppert et al., 2003); e.g. B-splines have

been employed by Rizopoulos et al. (2009)and Brown et al. (2005). An alternative ap-

proach is to incorporate an additional stochastic process into the LMM to capture the

remaining serial correlation in the observed measurements not captured by the random

effects, e.g. the Brownian motion stochastic process (Stirrup et al., 2015, Taylor and

Law, 1998). Based on Rizopoulos (2012b), the choice between the two approaches is to

a large extent based on the analyst’s belief about the true data generating mechanism.

More specifically, a random-effects-based only model assumes that the subject-specific

marker trajectory is fully determined by the random effects, which is a time-constant

inherent characteristic of the individual. On the other hand, models including both

random effects and additional stochastic processes attempt to more precisely capture

the features of the marker trajectory by allowing the subject-specific trends to vary in

time. It should be emphasized that as both the random-effects and the stochastic serial

correlation approaches attempt to appropriately model the marginal correlation in the

data, there is a contest for information between the two procedures. Thus, a model

including an elaborate random-effects structure and a model with a simpler one but

with an additional stochastic process may result in indistinguishable fits to the data

(Rizopoulos, 2012b).

We now briefly describe the basics of Brownian motion, a stochastic process that

is often used in LMMs to model the remaining serial correlation in the observed mea-

surements not captured by the random effects. Brownian motion is a non-stationary

stochastic process constituting a continuous-time generalization of a simple random

walk (Grimmett et al., 2001), in which successive increments are independent of the

history of the process. When considered in terms of a given set of measurement times,

though, a scaled Brownian motion process, denoted by Wt at time t, is defined by the

following equations:

W0 = 0

Wt −Ws ∼ N{0, κ(t− s)} for 0 ≤ s < t, 0 < κ.
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The baseline (t = 0) value of the process is equal to 0 with its increments being

stationary, independent (for disjoint periods of time) and normally distributed with

mean zero and variance equal to the difference in time between observation points

scaled by a positive constant factor κ. Therefore, the following properties are implied

E(Wt) = 0,

V ar(Wt) = κt,

Cov(Ws,Wt) = κmin(s, t).

Thus, the distribution of a set of n observations at given time points follows a multi-

variate Normal distribution with zero mean and covariance matrix as defined by the

previous formulas. For example, a scaled Brownian motion can be incorporated in a

random intercept and slope model as follows:

Yi(t) = (β0 + bi0) + (β1 + bi1)t+Wt + ϵi(t).

Since the baseline (t = 0) value of the scaled Brownian motion process is 0, the ran-

dom intercept and the within-individual variance are the only sources of variability at

baseline. For times different from zero, the covariance structure of the marker process

becomes more complex as it depends on the covariance function of depends on the

{Wt}∞t=0.

In some cases a scaled Brownian motion may not suffice to appropriate describe

the correlation in the data not captured by the random effects. In such cases, the

Fractional Brownian motion process can be used, which represents an extension of

the scaled Brownian motion process. In the fractional Brownian motion process, the

increments for disjoint time periods are not constrained to be independent, though

they do remain stationary. The process was firstly introduced by Mandelbrot and Ness

(1968). The characteristics of a fractional Brownian motion process are determined by

one additional parameter, referred to as H or “the Hurst index”, that taking a value

in (0,1). Standard Brownian motion constitutes a special case of fractional Brownian

motion, corresponding to H = 1/2. As for standard Brownian motion, the expectation
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of the value of the process is zero for all points in time. When H < 1/2, successive

increments of the process are negatively correlated, whereas, for H > 1/2, successive

increments of the process are positively correlated. As for Brownian motion, a positive

scale parameter (κ) can be added to the standard definition of fractional Brownian

motion, corresponding to the variance of the process at t = 1. We may then characterize

the properties of the process as follows:

W0 = 0,

E(Wt) = 0,

V ar(Wt) = κ|t|2H ,

Cov(Ws,Wt) =
κ

2
(|s|2H + |t|2H − |t− s|2H).

Similarly, fractional Brownian motion, when evaluated at a given set of time points,

a multivariate Normal distribution is implied. Thus, (fractional and non-fractional)

Brownian motion processes seem to have very appealing properties, and as shown by

Stirrup et al. (2015), they can be readily incorporated into the theoretical framework

of LMMs.

2.4 Joint modeling of longitudinal and time-to-dropout

data

In this section, we describe the most common approaches for joint modeling of marker

and missing data process, i.e. the selection, pattern-mixture, and shared-parameter

models.

Selection models

In selection models, one first assumes a complete data model for the marker, which

characterizes the evolution of the marker that would have been observed in the absence

of dropout. Then a model for the probability of dropout at each time point is assumed

to depend not only on the observed marker values up to that point but also on future
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values that would have obtained after dropout. That is, selection models specify the

joint distribution of Mi and Y i via models for the marginal distribution of Y i and the

conditional distribution of Mi given Y i, i.e.

f(Y i,Mi;θL,θt) = f(Y i;θL) Pr(Mi|Y i;θt), (2.14)

with the dropout mechanism Pr(Mi|Y i;θt) specifying dependence on the missing marker

values on top of the observed ones. For identifiability, though, the models are usually re-

stricted in some way by specifying parametric assumptions about f(Y i;θL) and models

for the dependence of the dropout probabilities on the unobserved outcomes.

Early development of selection models, especially in the econometric literature, was

due to the Tobit model (Heckman, 1976). This approach combines a marginal Normal

regression model for the marker with a Normal-based random threshold model for the

missingness probability. For example, Y ∼ N(µ, σ2), with the probability of a value

being missing depending on a different Normal random variable Ym ∼ N(µm, σ
2
m),

where Pr(R = 0) = Pr(Ym < 0). To introduce dependence of missingness on Y ,

Y and Ym are assumed to be correlated. To avoid the potentially complex direct

likelihood maximization, Heckman (1976) used a two-step inferential procedure. It

should be noted that the use of the Tobit model led to considerable debate in the

econometric literature, mainly raising issues about the identifiability and sensitivity of

the model (Amemiya, 1984). At first, the Tobit model does not appear to lie within

the selection-models family specified in Equation (2.14). However, due to the bivariate

Normal distribution of (Y, Ym), it is straightforward to show that in the Tobit model,

Pr(R = 0|Y = y) = Φ(β0 + β1y), with suitably chosen parameters β0 and β1 and Φ()

denoting the Normal cumulative distribution function. This can be seen as a probit

regression model for the (binary) missingness indicators.

This basic structure has formed the basis for more advanced selection models pro-

posed for longitudinal data under dropout. For example, Diggle and Kenward (1994)

proposed a selection model combining a multivariate Normal model for the complete

marker data, Y i, with a logistic regression model for the dropout probabilities condi-

tionally on both observed and unobserved marker data. For example, based on Molen-
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berghs and Verbeke (2000), a simplified version of the model proposed by Diggle and

Kenward (1994) is

Pr(Mi = j|Mi ≥ j,Y i;θt) = θt0 + θt1Yij + θt2Yij+1, (2.15)

where Pr(Mi = j|Mi ≥ j,Y i;θt) denotes the hazard for dropout (with Yij+1, . . . , YiQi

being missing given Mi = j). Thus, under this model, dependence of dropout on the

observed and unobserved marker values is measured through the parameters, θt1 and

θt2, respectively. Note that θt1 = θt2 = 0 implies MCAR dropout and if θt2 ̸= 0,

dropout is MNAR, whereas MAR is a special case where θt2 = 0 and θt1 ̸= 0. Thus,

under the assumed model, it is possible to test for nonignorable dropout by testing the

hypothesis H0: θt2 = 0, e.g. through a likelihood ratio test, though it has been shown

that such tests are sensitive to minor violations of the model assumptions (Molenberghs

and Verbeke, 2000).

The model in Equation (2.15) relates dropout to the current and previous observa-

tion only, though Diggle and Kenward (1994) considered a more general model where

dropout at occasion j + 1 (i.e. Mi = j) can depend on the complete observed his-

tory {Yi1, . . . , Yij}, as well as on external covariates. In theory, selection models could

allow dependence of dropout on all future observed marker values. However, includ-

ing all future marker measurements in Equation (2.15) (i) may be counter-intuitive in

many cases, especially when it is difficult for the study participants to make projec-

tions about the future responses (Molenberghs and Verbeke, 2000) and (ii) leads to an

observed data likelihood that requires evaluating cumbersome high-dimensional inte-

grals over the missing values. Diggle and Kenward (1994) used the simplex algorithm

(Nelder and Mead, 1965) to maximize the likelihood, and Molenberghs et al. (1997)

proposed a similar selection model carried out through the EM algorithm (Dempster

et al., 1977).

The main advantage of selection models for informative dropout is that they directly

model the quantities of primary interest, i.e. the marginal distribution of the marker

process Y i and the distribution of the dropout process conditional on Y i. The former

is used for marginal inferences on marker profiles; the latter is used to characterize the
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nature of the dropout process (MCAR, MAR, MNAR). Several authors have pointed

out that results from such models may be highly sensitive to the model’s assumptions.

For example, Kenward (1998) reanalyzed the data of Diggle and Kenward (1994) and

found that all evidence for MNAR dropout vanishes when the normality assumption

is replaced by a heavy-tailed t-distribution. On top of that, the model of Diggle and

Kenward (1994) is easier to comprehend and conceptualize when marker data are col-

lected at fixed equally-spaced visits and it is plausible to consider marker values after

the dropout event. In human studies, though, such a strict visiting protocol is hardly

the case and the exact time of dropout (e.g. time to death or disease progression)

may be of particular interest. These difficulties with the selection model proposed by

Diggle and Kenward (1994) have motivated the use of alternative approaches in which

the marker and dropout processes are linked through common parameters, e.g. the

marker subject-specific random effects, hence the term “shared random effects models”

(SREMs), described and discussed below:

Shared random effects models

In SREMs, it is assumed that both Y i|bi and Mi|bi depend on shared latent variables,

bi. More specifically, the model for Y i is linked with a model for Mi via a vector of

random effects that are shared between the complete data model and the model for

the dropout mechanism. Conceptually, each individual is assumed to have subject-

specific random effects influencing both each marker value, Yij , and the probability of

dropout, Mi. Note also that, for such models, Wu and Bailey (1989) used the term

right informative censoring models. However, Little (1995) preferred the term non-

ignorable random-coefficient-based dropout to distinguish this type of models from

those of the form of Diggle and Kenward (1994), called non-ignorable outcome-based

dropout models, as in the latter, it is assumed that dropout depends on the hypothetical

marker measurements collected after dropout. The complete data likelihood of these

models is equal to

f(Y i,Mi, bi;θ) = f(Y i|bi;θ)f(bi;θ) Pr(Mi|bi,Y i;θ),
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where θ⊤ = (θ⊤L ,θ
⊤
t ) denotes the full parameter vector of the model. In most ap-

plications, though, Y i|bi and Mi|bi are assumed to be independent of one another,

thus,

f(Y i,Mi, bi;θ) = f(Y i|bi;θ)f(bi;θ) Pr(Mi|bi;θ),

though extended SREMs relaxing the conditional independence assumption have also

been proposed in the literature (Creemers et al., 2011, Njagi et al., 2014), mainly

constituting tools for sensitivity analyses adding unidentifiable random terms. Recall

that given Mi = mi, Y
⊤
i = (Y ⊤

i,(mi)
,Y ⊤

i,(mi)
). It is, thus, evident that the observed

data likelihood of SREMs requires integration over both the latent variables, bi, and

the missing marker values, Y i,(mi), i.e.

f(Y i,(mi),Mi;θ) =

∫ ∫
f(Y i|bi;θ)f(bi;θ) Pr(Mi|bi;θ)dY i,(mi)dbi

=

∫ ∫
f(Y i|bi;θ)dY i,(mi)f(bi;θ) Pr(Mi|bi;θ)dbi

=

∫
f(Y i,(mi)|bi;θ)f(bi;θ) Pr(Mi|bi;θ)dbi, (2.16)

where f(Y i,(mi)|bi;θ) is the marginal distribution of the observed marker values con-

ditionally on the random effects. As in most applications, Yij |bi, j = 1, 2, . . . , Qi are

assumed to be independent given the random effects, the distribution of f(Y i,(mi)|bi;θ)

is easy to obtain. As also pointed out by Rizopoulos (2012b), the observed data likeli-

hood of the SREMs is easily obtained without requiring explicit integration with respect

to the missing marker values even under intermittent missingness. This is in contrast to

the selection and pattern-mixture model framework where cumbersome computations

are needed to evaluate the likelihood (Jansen and Molenberghs, 2008, Troxel et al.,

1998a,b).

Because the vector of the random effects, bi, is shared between the two models,

marginally, i.e. after integrating over the distribution of the random effects, this induces

correlation betweenMi and the observed and unobserved components of Y i. Thus, the

resulting missing data mechanism is MNAR, though the underlying mechanism for

the dependence of Mi on Y i may not be immediately transparent. To clarify this, as
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discussed in Rizopoulos (2012b), note the dropout mechanism implied by SREMs is

equal to

Pr(Mi = mi|Y i,(mi),Y i,(mi);θ) =

∫
Pr(Mi = mi|bi,Y i,(mi),Y i,(mi);θ)

×f(bi|Y i,(mi),Y i,(mi);θ)dbi =

∫
Pr(Mi = mi|bi;θ)f(bi|Y i,(mi),Y i,(mi);θ)dbi,(2.17)

where the simplification in the last line is due to the conditional independence assump-

tion. Thus, it is evident that the dependence of dropout on the missing observation is in-

duced through the posterior distribution of the random effects, f(bi|Y i,(mi),Y i,(mi);θ).

It should be emphasized, though, that if there is no dependence of Mi on the random

effects, bi, then Pr(Mi = mi|bi;θ) can be moved outside the integral sign, and thus

Pr(Mi = mi|Y i,(mi),Y i,(mi);θ) = Pr(Mi = mi;θ) as
∫
f(bi|Y i,(mi),Y i,(mi);θ)dbi = 1,

which implies MCAR dropout (or covariate-dependent missingness if some covariates

are considered in the dropout model). Therefore, in the SREMs, the dropout mech-

anism is allowed to be either MNAR or MCAR; that is, MAR cannot hold without

reducing to MCAR (Njagi et al., 2014). Although SREMs are often treated as a sep-

arate category in the literature, as Equation (2.17) revealed, they can be regarded as

special cases of the selection models, but they can also, theoretically, be represented

within the pattern-mixture models family (Molenberghs et al., 2014). Some frequently

used specific SREM models are outlined below.

Much of the early development in the field was due to Wu and Carroll (1988) who

modeled the disease marker by an LMM and a probit model for the dropout process

depending on both the “true” (i.e. including both fixed and random effects) initial

value and slope of the marker and on discrete time components. They also derived a

likelihood ratio test to test for informative dropout. Moreover, Wu and Bailey (1988,

1989) showed that under this probit model, the expected individual slope is a monotonic

function of the dropout time. However, a limitation of these approaches is that they

assumed that all patients are potentially followed up the same length of time, i.e.,

staggered entry was not allowed. On top of that, patients with only a single marker

measurement for whom a slope cannot be calculated must be excluded from the analysis.
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In most real data applications in biomedical studies, though, the time to dropout

is continuous. Thus, it is more natural to model the dropout time, say T ⋆i , through

common continuous-time survival models. Schluchter (1992) extended and formalized

the conditional linear model of Wu and Carroll (1988) by modeling jointly the marker

measurements and the individuals’ survival times and obtained inferences through di-

rect maximum likelihood estimation, which enabled them to take into account all data

and to allow for staggered entry. It was assumed that the underlying individual in-

tercept and slope and the log-survival time follow a trivariate Normal distribution.

A similar approach was applied by Gruttola and Tu (1994), which is essentially a

re-parameterization of the model by Schluchter (1992), but allowing for a more gen-

eral class of models. Specifically, the model of Gruttola and Tu (1994), termed LN-

SREM(RE) from now on, has the following form

Y i = Xiβ +Zibi + ϵi

Ui = γ⊤wi +α
⊤bi + ri, (2.18)

i.e. the marker process is described through a general LMM, whereas, regarding the

log-time to dropout, Ui, wi denotes baseline covariates with an associated parameter

vector, γ, α denotes a parameter vector that measures the effects of each random

effect on the dropout time, and ri ∼ N(0, s2) the corresponding residuals. Both the

approaches proposed by Schluchter (1992) and Gruttola and Tu (1994) applied the

EM algorithm to maximize the likelihood. However, both approaches may suffer from

convergence issues. Touloumi et al. (1999) proposed a similar model to jointly model

a disease marker through a general LMM and the log-time to dropout by assuming

that the residuals of the dropout model and the marker random effects follow the

multivariate Normal distribution. Estimation was obtained through iterative use of the

restricted iterative generalized least squares (RIGLS) estimator along with a nested

EM algorithm to incorporate survival censored data, which was computationally less

complex than direct maximization of the joint likelihood.

In a considerable amount of the literature on SREMs, the main interest lies in the
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time-to-dropout process (e.g. death, drop out of the study, or treatment discontinua-

tion), which terminates the collection of marker measurements, aiming to describe the

effects of the “true” marker process on the probability of dropout. The motivation for

this comes from the fact that simply including the observed marker values as a time-

varying covariate in a survival model can severely underestimate the true association

(Prentice, 1982, Wulfsohn and Tsiatis, 1997). Furthermore, two-stage approaches (e.g.

Tsiatis et al., 1995) can lead to biased results and are not fully efficient (Wulfsohn and

Tsiatis, 1997). For normally distributed markers, perhaps the most frequently applied

approach is to assume an LMM for the marker process and a proportional hazards

model for the time to dropout conditionally on the “true” (i.e. after eliminating the

measurement error) marker value (e.g. Faucett and Thomas, 1996, Mauff et al., 2020, Ri-

zopoulos, 2012a,b, Tsiatis et al., 1995, Wulfsohn and Tsiatis, 1997). Under this setting,

it is convenient to reformulate the LMM as Y i(t) = X⊤
i (t)β +Z⊤

i (t)bi + ϵi(t), where

Y i(t), Xi(t), Zi(t), and ϵi(t) ∼ N(0, σ2) are the observed marker value, the design

matrix for the fixed effects, the design matrix of the random effects, and the measure-

ment error at time t since time origin, respectively. Then mi(t) =X
⊤
i (t)β+Z⊤

i (t)bi is

interpreted as the “true” marker value, i.e.. the marker value which would have been

observed had the measurement error been eliminated.

To quantify the strength of the association between the “true” marker value and the

risk for the dropout event, the most commonly applied model is a relative risk model

of the form:

hi{t|Mi(t);θt} = lim
dt→0

Pr{t ≤ T ⋆i < t+ dt|T ⋆i ≥ t,Mi(t);θt}
dt

= h0(t;ψ) exp{γ⊤wi + αmi(t)}, (2.19)

where Mi(t) = {mi(s), 0 ≤ s < t} denotes the history of the “true” unobserved marker

process up to time point t, h0(t;ψ) denotes the baseline hazard function, and wi is

a vector of baseline covariates with a corresponding parameter vector, γ. Similarly,

parameter α quantifies the effect of the underlying marker value to the risk for an event,

with exp(α) denoting the relative increase in the hazard for dropout at time t resulting
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from one unit increase in mi(t) at the same time point. Since the model in Equation

(2.19) is a proportional hazards model using the current-value parameterization, we

refer to it as the PH-SREM(CV) model. Moreover, note that the relative risk model

in Equation (2.19) postulates that the risk for an event at time t depends only on the

current value of the time-dependent marker mi(t). However, this does not hold for the

survival function as

Si{t|Mi(t);θt} = Pr{T ⋆i > t|Mi(t);θt}

= exp

[
−
∫ t

0
h0{s;ψ} exp{γ⊤wi + αmi(s)}ds

]
, (2.20)

which implies that the corresponding survival function, in contrast to Equation (2.19),

depends on the whole true marker history, Mi(t).

The literature on joint modeling has greatly expanded, including various extensions

to the standard parameterization in Equation (2.19). A comprehensive discussion of

the available models is provided in Rizopoulos (2012b). One extension is motivated by

the fact that the standard parameterization in Equation (2.19) assumes a homogeneous

effect of the true marker value on the whole population. However, this is evidently a

strong assumption that may not be met in practice. A straightforward extension to

handle such situations is to include in the linear predictor of the relative risk model,

interaction terms of the marker with baseline covariates of interest (Rizopoulos, 2012b),

i.e.,

hi{t|Mi(t);θt} = h0(t;ψ) exp
[
γ⊤w1i +α

⊤ {w2imi(t)}
]
, (2.21)

where w1i is used to accommodate the direct effects of baseline covariate to the risk

for an event, and w2i contains interaction terms that expand the association of mi(t)

in different subgroups in the data.

In some occasions, the standard assumption that the current value of the “true”

marker value affects the current risk for dropout may lead to medically illogical con-

clusions. A typical example has been presented by Cavender et al. (1992) who, in a

study on patients with coronary artery disease, noted that current smoking decreased
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the risk for death (though not statistically significantly). This unexpected result may

be attributed to the fact that most patients who died were smokers but many of them

had stopped smoking at the last visit prior to death. Thus, many of the patients who

died had just quit smoking, whereas some of the patients who were still alive were

still smoking, leading to the surprising result. To adjust for that, one could apply the

time-lagged parameterization. Specifically, one could use the following re-formulation

of the model

hi{t|Mi(t);θt} = h0(t;ψ) exp
[
γ⊤wi + αmi{max(t− c, 0)}

]
, (2.22)

which postulates that the hazard for dropout at time t depends on the true value of

the marker at time t − c, where c denotes the time lag of interest, typically specified

by the analyst on medical grounds.

In the previous parameterizations we have assumed that the risk for an event de-

pends on either the current or a previous value of the marker. However, there may

be cases where, especially when the marker follows a non-linear evolution over time, it

is reasonable to allow the risk for dropout to depend on other features of the marker

trajectory. Such a parameterization was considered by Ye et al. (2008) who postulated

a joint model in which the risk depends on both the current true value of the marker

and the corresponding slope at time t:

hi{t|Mi(t);θt} = h0(t;ψ) exp{γ⊤wi + α1mi(t) + α2m
′
i(t)}, (2.23)

where m′
i(t) =

∂X⊤
i (t)
∂t β +

∂Z⊤
i (t)
∂t bi. The interpretation of parameter α1 remains the

same as in the standard parameterization (2.19), but comparing individuals with the

same marker slope. Parameter α2 measures the strength of the association between the

hazard for dropout and the marker slope, providing that mi(t) remains constant. As

discussed in Rizopoulos (2012b), such parameterizations capture situations where, for

example, at a specific time point two patients show similar true marker levels, but they

may differ in the rate of change of the marker. Some authors, though, have pointed out

that the results based on the time-dependent slope parameterization in Equation (2.23)

may be more sensitive to violations of the model assumptions than the results based on
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the more standard, current-value parameterization in Equation (2.19) (Crowther et al.,

2016, Garćıa-Hernandez et al., 2020).

Another type of parameterization that is frequently used in joint models includes

only the random effects in the linear predictor of the dropout model, i.e.,

hi{t|Mi(t);θt} = h0(t;ψ) exp(γ
⊤wi +α

⊤bi), (2.24)

with this model termed PH-SREM(RE) from now on; α denotes a vector of association

parameters with each one measuring the association between the corresponding random

effect and the hazard for dropout. However, this parameterization is more meaningful

when a simple random intercepts and slopes structure is assumed for the marker, in

which case, the random effects express subject-specific deviations from the average

intercept and average slope, hi{t|Mi(t);θt} = h0(t;ψ) exp(α0bi0 + α1bi1). Then if

α0 < 0 and α1 < 0, patients with lower marker values (i.e. bi0 < 0) at baseline

and slopes lower than the population average (bi1 < 0) have higher probability of

dropout. The PH-SREM(RE) model shares some similarities with the LN-SREM(RE)

model in the sense that they directly measure the effects of the random effects on the

time to dropout. Also, PH-SREM(RE) can be similar to the time-dependent slope

parameterization (2.23) under certain models for the marker evolution.

So far, the most commonly applied estimating methods for joint models is the

(semi-parametric) maximum likelihood (e.g. Henderson et al., 2000, Hsieh et al., 2006,

Wulfsohn and Tsiatis, 1997), with a theoretical treatment of the asymptotic properties

of the joint model estimators provided by Zeng and Cai (2005). Nevertheless, Bayesian

inference on joint models has been investigated by many authors (Chi and Ibrahim,

2006, Hanson et al., 2011, R. Brown and G. Ibrahim, 2003, Wang and Taylor, 2001),

as well.

One standard disadvantage of joint modeling is that the estimation process is quite

complex, leading to high computational time under both Frequentist approaches (e.g.

maximum likelihood) and Bayesian approaches (e.g. MCMC), when the sample size is

large. However, due to recent advances in computational algorithms (Crowther et al.,

2012, Rizopoulos, 2010, 2012a, 2016) and the availability of user-friendly statistical
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software (Crowther, 2012, Rizopoulos, 2010, 2016), the application of joint models to

real data has grown considerably.

We now introduce the likelihood function of SREM models. To take potential right

censoring into account, let Ti = min(T ⋆i , Ci) denote the observed survival time, i.e. the

minimum of the true survival time T ⋆i and a hypothetical right censoring time Ci, and

δi = I(T ⋆i < Ci) denote the corresponding dropout indicator. No marker measurements

are observed after Ti, and it is assumed that there areMi = mi observed measurements

in total. Thus, the likelihood function for the observed data is equal to

f(Y i,(mi), Ti, δi;θ) =

∫
f(Y i,(mi)|bi;θ)f(bi;θ)f(Ti, δi|bi;θ)dbi, (2.25)

with the difference between (2.16) and (2.25) being that Pr(Mi|bi;θ) has been replaced

by f(Ti, δi|bi;θ), as dropout is modeled in continuous time. Assuming that censoring is

non-informative (Kalbfleisch and Prentice, 2002), in the sense that, given the observed

history of information, censoring is independent of the true dropout time, the future

marker measurements, and the random effects, it can be shown that, for the PH-

SREM(CV) model, the likelihood for the ith subject is equal to

f(Ti, δi|bi;θ) = hi{Ti|Mi(Ti);θt}δiSi{Ti|Mi(Ti);θt}

= h0{Ti;ψ} exp{γ⊤wi + αmi(Ti)}δi

× exp

[
−
∫ Ti

0
h0{s;ψ} exp{γ⊤wi + αmi(s)}ds

]
,

i.e. the standard form of a survival likelihood under non-informative right censoring.

Since the integral in Equation (2.25) does not have a closed-form solution, except for

very special cases, computationally-intensive methods are, in general, required to ap-

proximate the integral. For this reason, early approaches relied on two-step inferential

procedures (e.g. Self and Pawitan, 1992, Tsiatis et al., 1995). However, it has been

shown that such approaches can lead to biased results (Dafni and Tsiatis, 1998, Tsiatis

and Davidian, 2001, Ye et al., 2008). For these reasons, most authors have now focused

on full likelihood approaches.

To employ a full-likelihood approach, though, one needs to make assumptions about

the baseline hazard, h0(t;ψ). The most convenient method would be to leave it unspec-

54



2.4 Joint modeling of longitudinal and time-to-dropout data

ified and use the Cox partial likelihood approach to estimate the parameters. However,

as explained in Hsieh et al. (2006), this is not possible within the SREM framework,

where a full likelihood approach is required. When a semi-parametric approach is

employed, the cumulative hazard function, Hi(t) =
∫ t
0 h(s)ds, is replaced by a step

function with jumps at the observed dropout times, leading to a high-dimensional

parameter vector causing complications when inverting the Hessian matrix to derive

standard errors. Similarly to Cox partial likelihood, a profile likelihood approach could

be used, but Hsieh et al. (2006) showed that standard asymptotic results do not apply

and proposed Bootstrapping to derive standard errors. Alternative semi-parametric ap-

proaches are described in Kim et al. (2017), R. Brown and G. Ibrahim (2003), Song and

Wang (2008). Many authors, though, have modeled hi(t) through flexible parametric

models, e.g. B-splines (Rizopoulos, 2012b), restricted cubic splines (Crowther et al.,

2012), and piecewise constant functions (Rizopoulos, 2012a). The main computational

burden to evaluate the likelihood of the SREM joint models is due to the two integrals

involved in Equations (2.25) and (2.20). The former, though, is computationally more

demanding as it possibly involves multi-dimensional integration over the distribution

of the random effects, whereas, the latter, as it is uni-dimensional, can be efficiently

approximated by e.g. the 7-point or 15-point Gauss-Kronrod rule (Press et al., 2007).

To evaluate the integral over the random effects, (adaptive or non-adaptive) Gaussian

quadrature rules have been typically applied (Crowther et al., 2012, 2016, Henderson

et al., 2000, Wulfsohn and Tsiatis, 1997).

The literature in SREMs has substantially grown in the last years, including many

alternative parameterizations and estimating approaches. One of the most interest-

ing extensions is to allow for competing risks, i.e. multiple mutually exclusive events

causing termination of marker measurements. For example, HIV-positive individuals

receiving ART can die while in care or disengage from care, which are competing risks

causing termination of collection of CD4 cell count data. Various competing risks

SREMs have been proposed recently (e.g. Andrinopoulou et al., 2014, 2017, Elashoff

et al., 2008, Hickey et al., 2018, Hu et al., 2009, Huang et al., 2010, Proust-Lima et al.,
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2016, Williamson et al., 2008). In principle, competing risks data can be analyzed

through either cause-specific hazards or cumulative incidence functions (CIFs). The

former measures the rate of failure from a particular cause at a specific time point

given that the individual has survived up to that point, whereas the latter is the prob-

ability of occurrence of a specific cause over time (Bakoyannis and Touloumi, 2012,

Beyersmann et al., 2011, Kalbfleisch and Prentice, 2002). When one wishes to address

aetiological-type research questions, cause-specific hazard models seem to be more ap-

propriate, whereas a CIF-based statistical analysis should be used for evaluating the

prognosis of a disease, interventions in populations, as well as for prediction purposes

in general. In most cases, though, the competing risks submodels are specified in terms

of the cause-specific hazards under the SREM framework (Andrinopoulou et al., 2014,

2017, Elashoff et al., 2008, Hu et al., 2009, Rizopoulos, 2012b, Williamson et al., 2008).

For example, the survival submodels in terms of the cause-specific hazards using the

current-value parameterization are equal to

αik{t|mi(t);θt} = lim
dt→0

Pr{t ≤ T ⋆i < t+ dt,Ki = k|T ⋆i ≥ t,Mi(t);θt}
dt

= α0k{t;ψ} exp{γ⊤
kwik + αkmi(t)} (2.26)

where Ki denotes the failure cause, αik{t|mi(t);θ} denotes the cause-specific hazard

for cause k, and wik denotes some baseline covariates associated with cause k. This

further implies that the overall survival function is equal to

Si{t|Mi(t);θt} = exp

[
−

K∑
k=1

∫ t

0
α0k{s;ψ} exp{γ⊤

kwik + αkmi(s)}ds

]
, (2.27)

assuming that there are K failure causes. As mentioned in Rizopoulos (2012b) and

Bakoyannis and Touloumi (2012), calculating the likelihood when using cause-specific

hazards can be easily carried out by transforming the data to the competing-risk long

format using K rows for each individual, one for each possible cause. Thus, in gen-

eral, cause-specific hazard models are computationally easy to implement, which might

explain why most competing-risks SREMs are based on cause specific hazards. An ex-

ception is the proportional subdistribution hazards joint model proposed by Deslandes
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and Chevret (2010), which is defined as

λik{t|mi(t);θt} = lim
dt→0

Pr{t ≤ T ⋆i < t+ dt,Ki = k|T ⋆i ≥ t ∪ (T ⋆i ≤ t ∩Ki ̸= k),mi(t);θt}
dt

= λ0k{t;ψ} exp{γ⊤
kwik + αkmi(t)}, (2.28)

where λik{t|mi(t);θt} denotes the subdistribution hazard for cause k. The rationale for

assuming models based on the subdistribution hazards is mainly that there is an one-

to-one relationship between the CIF for cause k and the corresponding subdistribution

hazard, i.e.

λik{t|mi(t);θt} = −∂ log [1− Fik{t|Mi(t),wik;θt}]
∂t

, (2.29)

where Fik{t|Mi(t),wik;θt} = Pr{T ⋆i ≤ t,Ki = k|Mi(t),wik;θtk} denotes the CIF for

cause k. In theory, a cause-specific CIF can be obtained from cause-specific hazards by

integrating the product of the respective cause-specific hazard and the overall survival

function over time, Fik{t|Mi(t),wik;θt} =
∫ t
0 αik{s|mi(s);θt}Si{s|Mi(s);θt}ds (e.g.

Bakoyannis and Touloumi, 2012). On top of that, though, in many SREMs, further

complexity emerges as (a) the overall survival function is approximated by numerical

integration too (Andrinopoulou et al., 2014, 2017, Rizopoulos, 2012b) or is semipara-

metrically estimated as a step function (Elashoff et al., 2008, Williamson et al., 2008)

and (b) when focusing on dynamic predictions or population-averaged estimates, mul-

tidimensional integration over the random effects is also required, e.g. (Andrinopoulou

et al., 2017) and (Rizopoulos, 2012b, Chapter 7). Thus, estimating CIFs based on a

cause-specific hazards SREM requires complex integration, which is challenging. There-

fore, if one focuses on CIFs, an SREM in terms of the CIFs (or some function of them)

would be more natural and could substantially reduce the computational burden of

formally deriving CIF estimates based on cause-specific hazard estimates.

In standard survival analysis, the literature on regression modelling of CIFs in-

cludes numerous approaches, with the most frequently applied method probably being

the proportional subdistribution hazards model by Fine and Gray (1999). Ever since,

various extensions have been proposed in the literature, including, for example, semi-

parametric approaches (Bakoyannis et al., 2017, Mao and Lin, 2017), flexibly parametric
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approaches (Mozumder et al., 2018), and fully parametric methods based on the Gom-

pertz distribution (Jeong and Fine, 2006). One issue when specifying models for CIFs

is that the all-cause CIF should be bounded by 1. In some approaches, this constraint is

not formally taken into account (Fine and Gray, 1999, Jeong and Fine, 2006, Mozumder

et al., 2018). To some extent, though, an all-cause CIF greater than 1 may indicate

model misspecification and can be dealt with by adjusting for all appropriate covari-

ates including also any potential interaction. Shi et al. (2013) tackled this problem by

modelling the baseline asymptote for one cause-specific CIF, with the remaining CIFs

expressed as a function of this plateau. Mao and Lin (2017) imposed a small positive

number on the survival function as a “buffer” to force it to be strictly positive, whereas

Bakoyannis et al. (2017) incorporated a formal boundedness constraint during the max-

imisation process. However, how to impose such a constraint in SREMs may not be so

clear as these models are defined conditionally on the random effects, with integration

over the prior distribution of the random effects required to obtain the observed data

likelihood. Under the Bayesian paradigm, Gelfand et al. (1992) suggested that when

the constraints somehow involve the data (as it is the case in CIF modelling), it is more

natural to think of the constraints as built into the likelihood function rather than the

prior distribution. It was also pointed out that the posterior distribution has the same

functional form as it would have had if the constraints had been ignored but it is equal

to zero when the constrains are violated (Gelfand et al., 1992). It should be noted,

though, that this constraint is automatically fulfilled when applying competing-risks

models through cause-specific hazards.

In competing-risk settings, a frequent issue is that the cause of failure is missing or

potentially misclassified. For example, in HIV cohort studies, especially in those from

resource-constrained countries, significant under-reporting of deaths is a frequent major

issue. That is, patients who have actually died may have been incorrectly classified as

disengaged from care, which is an example of failure cause misclassification. This

implies that there may be serious underestimation of mortality and overestimation of

the risk for disengagement from care. To deal with this issue, a standard approach is to
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collect a small random sample from the patients reported to be disengaged from care

and actively ascertain their true vital status, which is an example of a double sampling

design (Cook and Kosorok, 2004). Since this is performed for typically 10-20% of the

patients due to financial constraints, the “true” failure causes for the remaining patients

are missing. Various methods to adjust for outcome misclassification using double

sampling data have been proposed in the literature. For example, Bakoyannis et al.

(2019) used a pseudo-likelihood approach to account for missing absorbing states in a

multistate model, Daniel Paulino et al. (2003) accounted for outcome misclassification

in Binomial regression using MCMC, and Lyles et al. (2011) used a direct maximum

likelihood approach in logistic regression under outcome misclassification.

Another setting where a competing-risk SREM could be particularly useful is to de-

scribe the progression of a study population in terms of multistate probabilities based

on marker and competing-risk data. For example, in applied epidemiological/medical

research, especially for prediction purposes, progression of cohorts over time may be

monitored by using mutually exclusive states defined jointly by competing-risk data

and discretised continuous marker data. For example, the United Nations (UN) Joint

Programme in HIV/AIDS (UNAIDS) produces various estimates of parameters rele-

vant to the worldwide HIV epidemic using the following CD4 states: [0,50), [50,100),

[100,200), [200,250), [250,350), [350,500), [500,∞] cells/µL, through the Spectrum soft-

ware (Stover et al., 2019). In Spectrum, the CD4 states are considered along with many

clinical events/endpoints, e.g. death, onset of AIDS, and disengagement from care. In

chronic kidney disease longitudinal studies, the Glomerular filtration rate (GFR) is a

key surrogate of kidney function, which is typically collected over time. Survival states

(death and end-stage kidney disease) together with discrete states based on the GFR

levels have been used in this context (Hu et al., 2012). Hu et al. (2012) proposed an

interesting approach estimating multistate probabilities defined jointly by unobserved

marker data and observed competing-risk data. However, estimates are not based on

a single unified model but rather they are based on a two-stage approach which does

not account for potential failure cause misclassification. At the first stage, the un-
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observed marker data are estimated by subject-specific regression models and, at the

second stage, marker states are obtained by averaging over individuals accounting for

the randomness of the estimated marker trajectories. Thus, the effects of the true

marker values on the competing risks are not explicit and it is questionable how well

the method would perform under highly irregular visit times and a considerable pro-

portion of individuals with one marker measurement (as it is the case in CD4 modeling

and many other examples).

Pattern-mixture models

In pattern-mixture models, a different factorization of the joint distribution of (Y i,Mi)

is used. Specifically, one assumes a model for the conditional distribution of the marker

given the dropout pattern and then a model for the marginal probability of dropout,

i.e. f(Y i,Mi;θL,θt) = f(Y i|Mi;θL) Pr(Mi;θt). Based on this factorization, it is

clear that the conditional distribution of the marker given the dropout pattern is not

entirely identifiable for all patterns except for the “completers” as marker values after

dropout are missing. Thus, restrictions must be built into the model to ensure that

there are links among the distributions of the outcomes conditional on the patterns of

non-response (Little, 1993, 1994, Little and Wang, 1996). The marker probabilities of

dropout, Pr(Mi = j;θt), j = 1, 2, . . . , Q, can definitely be estimated using the observed

data, where Q denotes the number of dropout patterns in the data. To estimate the

marginal marker distribution, which is often of primary interest, one can apply the

formula f(Y i;θL) =
∑Q

j=1 f(Y i|Mi = j;θL) Pr(Mi = j;θt).
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Chapter 3

Performance of longitudinal and

time-to-dropout joint models

when the dropout mechanism is

at random

3.1 Introduction

In the previous chapter, we presented an overview of various methods for modeling

a longitudinal marker when there are incomplete data, juxtaposing the different as-

sumptions of the available approaches. Most methods make, implicitly or explicitly,

assumptions about the joint distribution of the marker and the dropout processes. The

take-home message is that the validity of results from a model applied to incomplete

data depends crucially on the nature of the true missing data mechanism, i.e. on how

the probabilities of missingness depend on the full set of marker values.

In the missing data literature, it has long been emphasized that when there are

missing data, it is not always possible to verify the assumptions about the missing

data mechanisms based on the observed data. In the joint modeling literature, though,
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especially in SREMs, the consequences of this result are sometimes ignored. Thus, in

practice, when the nature of the dropout mechanism is unknown, many researchers may

apply SREMs, at least as part of a set of sensitivity analyses, if informative dropout

is suspected. Following standard recommendations from published papers (e.g. Gras

et al., 2013, Schluchter, 1992, Touloumi et al., 1999), researchers may, perhaps wrongly,

interpret deviations between results from LMMs (assuming ignorable dropout) and

from SREMs as indicating MNAR missingness. The discrimination though between

MAR and MNAR is not possible in practice, as it depends on untestable assumptions

(Molenberghs et al., 2008). Thus one may end up fitting an SREM to data that are

actually MAR. However, even though the bias of LMMs when fitted to MNAR data

has been thoroughly investigated, what has not been fully studied is the performance

of SREM models when the true dropout mechanism is MAR.

The motivation for this research question has been clearly motivated by issues aris-

ing in the CD4 cell count modeling during the HIV natural history. In the earlier

years of the HIV epidemic, censoring of CD4 counts was mainly due to AIDS onset

or death. This is considered to correspond to an MNAR mechanism, and thus several

SREMs have been applied to adjust for that. However, nowadays, the primary source

of censoring is treatment initiation, with the nature of this mechanism being still debat-

able. Some authors argue that it should be considered to be MAR as cART is initiated

mainly based on observed values of CD4 counts (Pantazis et al., 2005); according to

guidelines up to 2015, cART should be initiated when CD4 counts drop below a certain

level. On the other hand, other researchers suggest adjusting for informative dropout

due to cART initiation, as results from joint models were substantially different from

those from LMMs (Gras et al., 2013). This issue is further complicated by the fact that

cART initiation was also recommended when very high (i.e. > 105 copies/mL) viral

load (VL) levels are observed. VL is another marker of disease progression quantifying

the amount of virus in blood, which is also measured longitudinally over time. VL and

CD4 are correlated and they may be both related to dropout probabilities; thus VL

may act as an auxiliary variable which is required in order to make the MAR assump-
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tion more reliable. If so, a bivariate model, modeling simultaneously both markers may

be necessary.

In this chapter, we examine the case in which an SREM model is applied to in-

complete MAR data. In Section 3.2 we derive the bias in the slope estimate from the

LN-SREM(RE) model under two specific MAR dropout mechanisms. The correspond-

ing bias in the PH-SREM(CV) model is derived in Section 3.3. A proposed alternative

model, along with the fitting procedure, are described in Section 3.4. The performance

of the proposed model is evaluated in a simulation study in Section 3.5. In Section 3.6

the proposed model, as well as other SREMs, are fitted to real data from the “Con-

certed action on seroconversion to AIDS and death in Europe” (CASCADE) study, a

collaboration of cohorts of HIV-infected individuals with known seroconversion dates

(Pantazis et al., 2016). Section 3.7 presents concluding remarks and discusses possible

extensions.

3.2 Asymptotic Bias in the LN-SREM(RE) Model when

Fitted to MAR Data

Let Y ⊤ = (Y1, . . . , YQ) be the measurements of the response variable (a disease marker,

e.g. CD4 count), intended to be collected at the same times t1, . . . , tQ on a randomly

chosen subject i. Index i has been suppressed for simplicity. Let us also assume

that missingness arises only from subjects’ dropout. Recall that since missingness

is assumed to be monotone, the missingness indicators R⊤ = (R1, . . . , RQ), where

Rj = 1 if Yj is observed and Rj = 0 otherwise, can be replaced by M =
∑Q

j=1Rj ,

the number of the observed marker values. Supposing that M = j, the full data can

be factorized as Y ⊤ = (Y ⊤
(j),Y

⊤
(j̄)), where Y

⊤
(j) = (Y1, . . . , Yj) is the observed part of

Y and Y ⊤
(j̄) = (Yj+1, . . . , YQ) is the missing part of Y . M = Q implies that the full

data are observed. We assume that missingness is MAR, i.e. the dropout probabilities,

Pr(M = j|Y (j);θt0), depend only on the observed data for each dropout pattern and

every realization of the observed data Y (j), j = 1, . . . , Q (Seaman et al., 2013). Let
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T be the time to dropout and δ = I(M < Q) be the dropout indicator. We assume

that dropout happens 0.1 years after the last observed measurement, i.e. T = tj + k

for j < Q with k = 0.1 years, whereas T = tQ for M = Q. We set k = 0.1 as in

our motivating example, when patients fulfill the criteria for treatment initiation it

typically takes approximately one month on average to start antiretroviral treatment.

We assume that the true marker evolution is based on an LMM of the form Y =

Xβ0 + Zb + ϵ; recall that X and Z denote the design matrices for the fixed and

random effects at the scheduled times, respectively, ϵ ∼ N(0, σ20IQ) are the within-

subject residuals and b ∼ N(0, σ20D0) are the random effects. Thus, the true mean and

covariance matrix of Y are equal to E0(Y ) = Xβ0 and V ar0(Y ) = σ20(I +ZD0Z
⊤),

respectively. Subscript “0” indicates the true parameter values while the notation E0

and V ar0 is used to emphasize that the expectations are taken with respect to the true

data generating mechanism. For simplicity, no covariates will be assumed, thus the

matrices X and Z both include a column of 1’s and a column with the measurement

times. In this setting, β0 includes the true values of the population average at time zero

and the time-slope. Our interest lies on the second element of β0, i.e. the time-slope,

which is our target estimand throughout this part of the thesis.

Recall that in the LN-SREM(RE) model, the marker is modeled through an LMM

as described above, whereas the log-time to dropout, U , is described through a model

of the form: U = ζ + λ⊤b + r, with r ∼ N(0, ν2σ2), ζ being the expected log-time

to dropout and ν2σ2 being the variance of the log time to dropout. Note that r ∼

N(0, ν2σ2) corresponds to a re-parameterization of the variance of the log-time to

dropout which does not affect the model’s estimates. In this formulation, the key

parameter is λ, the parameter measuring the association between the two processes. In

our special case, Yj = (β0+b0)+(β1+b1)tj+ϵj , j = 1, . . . , Q, and U = ζ+λ0b0+λ1b1+r,

where λ0 and λ1 relate the dropout time to the subject-specific baseline marker values

and marker rate of change (slope), respectively. That is, positive values of λ1 imply that

subjects with slopes lower (i.e. steeper) than the population average β1 (i.e. b1 < 0) are

more likely to drop out of the study earlier. If the association parameters are non-zero,
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the model indicates MNAR mechanism, conditional on the model’s assumptions being

correct (Gruttola and Tu, 1994, Touloumi et al., 1999).

Given M = j for j < Q, the likelihood contribution is f(Y (j);θL)f(uj |Y (j);θ),

where θ⊤ = (β⊤,λ⊤, vech(D)⊤, ζ, ν, σ2) is the parameter vector of the LN-SREM(RE)

model and uj = log(tj+k) the assumed log-time to dropout; let θ⊤L = (β⊤, vech(D)⊤, σ2)

denote the corresponding parameters of the marker model. Using standard results, the

mean and covariance matrix of U |Y (j);θ are equal to

E(U |Y (j);θ) = ζ + λ⊤DZ⊤
(j)V

−1
(j)(Y (j) −X(j)β)

V ar(U |Y (j);θ) = σ2(ν2 + λ⊤Dλ− λ⊤DZ⊤
(j)V

−1
(j)Z(j)Dλ),

respectively, where X(j) and Z(j) are the appropriate submatrices of X and Z, and

V (j) = (I(j) + Z(j)DZ
⊤
(j)). When M = Q, f(uQ|Y (Q);θ) has to be replaced by∫ +∞

uQ
f(x|Y (Q);θ)dx, where uQ = log(tQ). Thus, the likelihood function for a randomly

sampled individual from the population is equal to

f(Y (M), U ;θ) =



f(Y (1);θL)f(u1|Y (1);θ) if M = 1;

f(Y (2);θL)f(u2|Y (2);θ) if M = 2;
...

f(Y (Q);θL)
∫∞
uQ
f(x|Y (Q);θ)dx if M = Q.

To derive the asymptotic bias of the LN-SREM(RE) slope estimator, we use a

method identifying the limit in probability of estimators under incomplete data (e.g.

Manski, 1988, Newey and McFadden, 1994, Rotnitzky and Wypij, 1994). This requires

solving E0{U(θ)} = 0, where U(θ) = ∂
∂θ log f(Y (M), U ;θ) is the score vector of the

LN-SREM(RE) model, with the expectation taken over the true distribution of the data

and the dropout process, evaluated at the true parameter values, i.e. E0 is a shorthand

for E(Y (M),M){·;θ0}, with θ0 being the true parameter value of the distribution of
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(Y (M),M). Therefore, we need to solve the following system of equations

Q∑
j=1

∫
∂

∂θ

{
log f(Y (j);θL)

}
f0(Y (j),M = j;θ0)dY (j)

+

Q−1∑
j=1

∫
∂

∂θ

{
log f(uj |Y (j);θ)

}
f0(Y (j),M = j;θ0)dY (j)

+

∫
∂

∂θ

{
log

∫ ∞

uQ

f(x|Y (Q);θ)dx

}
f0(Y (Q),M = Q;θ0)dY (Q) = 0, (3.1)

where f0(Y (j),M = j;θ0) denotes the likelihood of the “true” joint distribution of the

marker and the dropout process, evaluated at the true parameter values. Interchanging

the order of differentiation and integration, we have that the first term in Equation (3.1)

(i.e. the contribution of the marker model) equals

Q∑
j=1

∂

∂θ
a0jE0

{
−j log(σ

2)

2
−

log |V (j)|
2

−
(Y (j) −X(j)β)

⊤V −1
(j)(Y (j) −X(j)β)

2σ2

∣∣∣∣∣M = j;θ0

}
,

where a0j = Pr(M = j;θ0) denotes the true probability of the jth dropout pattern.

By the formula E
{
(Y − a)⊤W (Y − a)

}
= (µ−a)⊤W (µ−a)+ tr(ΩW ), where Y is

any random vector with E(Y ) = µ and V ar(Y ) = Ω, it follows that the contribution

of the marker model equals

Q∑
j=1

∂

∂θ

{
− ja0j log(σ

2)

2
−
a0j log |V (j)|

2

−
a0j(µ0(j) −X(j)β)

⊤V −1
(j)(µ0(j) −X(j)β) + a0jtr(V

−1
(j)Ω0(j))

2σ2

}
, (3.2)

where µ0(j) and Ω0(j) denote the mean and covariance matrix of the true distribution

of Y (j)|M = j;θ0, respectively. After some straightforward algebra, the log-density of

the dropout model for the jth dropout pattern (j < Q) can be shown to be equal to

−
log V ar(U |Y (j);θ)

2
− 1

2V ar(U |Y (j);θ)

[
u2j − 2uj

{
ζ + ω⊤

(j)(Y (j) −X(j)β)
}

+ ζ2 + 2ζω⊤
(j)(Y (j) −X(j)β) + (Y (j) −X(j)β)

⊤A(j)(Y (j) −X(j)β)

]
, (3.3)
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with ω⊤
(j) = λ

⊤DZ⊤
(j)V

−1
(j) and A(j) = ω(j)ω

⊤
(j). By taking the expectation of Equation

(3.3) over the true distribution of Y (j)|M = j;θ0 and observing that V ar(U |Y (j);θ)

and ω(j) do not depend on Y (j) (thus V ar(U |Y (j);θ) = V ar(U |µ0(j);θ)), we arrive at

−
log V ar(U |µ0(j);θ)

2
− 1

2V ar(U |µ0(j);θ)

[
u2j − 2uj

{
ζ + ω⊤

(j)(µ0(j) −X(j)β)
}

+ ζ2 + 2ζω⊤
(j)(µ0(j) −X(j)β) + (µ0(j) −X(j)β)

⊤A(j)(µ0(j) −X(j)β) + tr(A(j)Ω0(j))

]
.

Next, letting E(U |µ0(j);θ) = ζ + λ⊤DZ⊤
(j)V

−1
(j)(µ0(j) − X(j)β) be the mean of the

log-time to dropout evaluated at the true mean of Y (j)|M = j;θ , it can be easily

shown by completing the square that the second row in Equation (3.1) is equal to

Q−1∑
j=1

∂

∂θ

[
−
a0j log V ar(U |µ0(j);θ)

2
− a0j

2V ar(U |µ0(j);θ)

{
uj − E(U |µ0(j);θ)

}2

− a0j
2V ar(U |µ0(j);θ)

tr(A(j)Ω0(j))

]
. (3.4)

Therefore, replacing the first two lines of Equation (3.1) by Equation (3.2) and Equation

(3.4), respectively, leads to

∂

∂θ

(
Q∑
j=1

[
−ja0j log(σ2)

2
−
a0j log |V (j)|

2

−
a0j

{
(µ0(j) −X(j)β)

⊤V −1
(j)(µ0(j) −X(j)β) + tr(V −1

(j)Ω0(j))
}

2σ2

]
+

Q−1∑
j=1

[
−
a0j log V ar(U |µ0(j);θ)

2
−
a0j

{
uj − E(U |µ0(j);θ)

}2
+ a0jtr(A(j)Ω0(j))

2V ar(U |µ0(j);θ)

]

+a0QE0

{
log

∫ ∞

uQ

f(x|Y (Q);θ)dx

∣∣∣∣∣M = Q;θ0

})
= 0. (3.5)

To solve Equation (3.5), one could use the the Newton-Raphson algorithm. This,

however, requires, the derivative of (3.5) with respect to θ, which are presented in

detail in the following subsection.
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3.2.1 Derivatives of Equation (3.5) over θ

We now present the first- and second-order partial derivatives of Equation (3.5), except

for the pattern of no dropout for which the central difference approximation was used

(Press et al., 2007). These matrix differentiation formulas were mainly based on results

from Harville (1997) and Lindstrom and Bates (1988). To save space we show results

from the jth summand of (2). Using straightforward matrix differentiation rules, the

first-order partial derivatives with respect to λ are

Uj(λ) = −
a0j

∂V ar(U |µ0(j);θ)

∂λ

2V ar(U |µ0(j);θ)
− a0j

2V ar(U |µ0(j);θ)

[
∂{uj − E(U |µ0(j);θ)}2

∂λ
+
∂tr(A(j)Ω0(j))

∂λ

]

+
a0j
2

[
{uj − E(U |µ0(j);θ)}2 + tr(A(j)Ω0(j))

] ∂V ar(U |µ0(j);θ)

∂λ
/V ar2(U |µ0(j);θ),

(3.6)

where
∂V ar(U |µ0(j);θ)

∂λ = 2σ2(D − DZ⊤
(j)V

−1
(j)Z(j)D)λ,

∂{uj−E(U |µ0(j);θ)}2
∂λ = 2{uj −

E(U |µ0(j);θ)}
∂{uj−E(U |µ0(j);θ)}

∂λ with
∂{uj−E(U |µ0(j);θ)}

∂λ = −DZ⊤
(j)V

−1
(j)r(j), and

∂tr(A(j)Ω0(j))

∂λ =

2DZ⊤
(j)V

−1
(j)Ω0(j)V

−1
(j)Z(j)Dλ. Note that tr(A(j)Ω0(j)) can be written equivalently as

ω⊤
(j)A(j)ω(j), by the basic properties of the trace operator.

Similarly, the partial derivatives with respect to β are equal to

Uj(β) =
a0j
σ2
X⊤

(j)V
−1
(j)r(j) −

a0j
2V ar(U |µ0(j);θ)

∂{uj − E(U |µ0(j);θ)}2

∂β
, (3.7)

where
∂{uj−E(U |µ0(j);θ)}2

∂β = 2{uj−E(U |µ0(j);θ)}
∂{uj−E(U |µ0(j);θ)}

∂β and
∂{uj−E(U |µ0(j);θ)}

∂β =

X⊤
(j)V

−1
(j)Z(j)Dλ. Also, the partial derivative with respect to ζ is just

a0j

{
uj − E(U |µ0(j);θ)

}
/V ar(U |µ0(j);θ), whereas the first-order derivative with re-

spect to ϕ = log(ν2) is

Uj(ϕ) = −
a0j

∂V ar(U |µ0(j);θ)

∂ϕ

2V ar(U |µ0(j);θ)
+
a0j

∂V ar(U |µ0(j);θ)

∂ϕ

2V ar(U |µ0(j);θ)

[
{uj − E(U |µ0(j);θ)}2 + tr(A(j)Ω0(j))

]
,

(3.8)

with
∂V ar(U |µ0(j);θ)

∂ϕ = σ2eϕ. Moving on the calculations regarding the Hessian matrix,
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we first give the λ block of it, which is equal to

Hj(λ) = − a0j
2V ar2(U |µ0(j);θ)

{
V ar(U |µ0(j);θ)

∂2V ar(U |µ0(j);θ)

∂λ∂λ⊤ (3.9)

−
∂V ar(U |µ0(j);θ)

∂λ

∂V ar(U |µ0(j);θ)

∂λ⊤

}
− a0j

2

∂

∂λ⊤

{
fj(λ)

gj(λ)

}
,

where
∂2V ar(U |µ0(j);θ)

∂λ∂λ⊤ = 2σ2(D −DZ⊤
(j)V

−1
(j)Z(j)D), with

fj(λ) = V ar(U |µ0(j);θ)

[
∂{uj − E(U |µ0(j);θ)}2

∂λ
+
∂tr(A(j)Ω0(j))

∂λ

]

−
[
{uj − E(U |µ0(j);θ)}2 + tr(A(j)Ω0(j))

] ∂V ar(U |µ0(j);θ)

∂λ

and gj(λ) = V ar2(U |µ0(j);θ) defined to facilitate the presentation of the results. Then

∂

∂λ⊤ fj(λ) =

[
∂{uj − E(U |µ0(j);θ)}2

∂λ
+
∂tr(A(j)Ω0(j))

∂λ

]
∂V ar(U |µ0(j);θ)

∂λ⊤

+ V ar(U |µ0(j);θ)

[
∂2{uj − E(U |µ0(j);θ)}2

∂λ∂λ⊤ +
∂2tr(A(j)Ω0(j))

∂λ∂λ⊤

]

−
∂V ar(U |µ0(j);θ)

∂λ

[
∂{uj − E(U |µ0(j);θ)}2

∂λ⊤ +
∂tr(A(j)Ω0(j))

∂λ⊤

]

−
[
{uj − E(U |µ0(j);θ)}2 + tr(A(j)Ω0(j))

] ∂2V ar(U |µ0(j);θ)

∂λ∂λ⊤ ,

where

∂2{uj − E(U |µ0(j);θ)}2

∂λ∂λ⊤ = 2
∂
{
uj − E(U |µ0(j);θ)

}
∂λ

∂
{
uj − E(U |µ0(j);θ)

}
∂λ⊤

and
∂2tr(A(j)Ω0(j))

∂λ∂λ⊤ = 2DZ⊤
(j)V

−1
(j)Ω0(j)V

−1
(j)Z(j)D. It also follows that ∂

∂λ⊤ gj(λ) =

2V ar(U |µ0(j);θ)×
∂V ar(U |µ0(j);θ)

∂λ⊤ , thus

∂

∂λ⊤

{
fj(λ)

gj(λ)

}
=
gj(λ)

∂
∂λ⊤ fj(λ)− fj(λ)

∂
∂λ⊤ gj(λ)

g2j (λ)

completes the calculations required for the λ-block of the Hessian matrix. Similarly,
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the β-block of the Hessian matrix is equal to

Hj(β) =
a0j
σ2
X⊤

(j)V
−1
(j)X(j) −

a0j
V ar(U |µ0(j);θ)

∂
{
uj − E(U |µ0(j);θ)

}
∂β

×
∂
{
uj − E(U |µ0(j);θ)

}
∂β⊤ , (3.10)

whereas, after some straightforward manipulations, the (β,λ) block can be shown to

be equal to

H(β,λ) = − a0j
V ar(U |µ0(j);θ)

[
∂
{
uj − E(U |µ0(j);θ)

}
∂λ

∂
{
uj − E(U |µ0(j);θ)

}
∂β⊤

+
{
uj − E(U |µ0(j);θ)

} ∂2 {uj − E(U |µ0(j);θ)
}

∂λ∂β⊤

]
+

a0j
V ar2(U |µ0(j);θ)

{
uj − E(U |µ0(j);θ)

}

×
∂V ar(U |µ0(j);θ)

∂λ

∂
{
uj − E(U |µ0(j);θ)

}
∂β⊤ , (3.11)

with
∂2{uj−E(U |µ0(j);θ)}

∂λ∂β⊤ = DZ⊤
(j)V

−1
(j)X(j). The ζ-block of the Hessian matrix is just

−a0j/V ar(U |µ0(j);θ), whereas, after some algebra, the ϕ block can be written as

Hj(ϕ) = −a0j
2

∂2V ar(U |µ0(j);θ)

∂2ϕ
V ar(U |µ0(j);θ)−

{
∂2V ar(U |µ0(j);θ)

∂ϕ

}2

V ar2(U |µ0(j);θ)

+
a0j
2

 ∂2V ar(U |µ0(j);θ)

∂2ϕ
V ar2(U |µ0(j);θ)− 2V ar(U |µ0(j);θ)

{
∂2V ar(U |µ0(j);θ)

∂ϕ

}2

V ar4(U |µ0(j);θ)


×

[
{uj − E(U |µ0(j);θ)}2 + tr(A(j)Ω0(j))

]
, (3.12)

with
∂2V ar(U |µ0(j);θ)

∂2ϕ
= σ2eϕ. The (ϕ, ζ) block simply is

Hj(ϕ, ζ) = −a0j
∂V ar(U |µ0(j);θ)

∂ϕ
× {uj − E(U |µ0(j);θ)}2

/
V ar2(U |µ0(j);θ). (3.13)

The (β, ζ) block is equal to H(β, ζ) =
a0j

V ar(U |µ0(j);θ)

∂{uj−E(U |µ0(j);θ)}
∂β whereas the (β, ϕ)

block is equal to H(β, ϕ) = a0j
∂{uj−E(U |µ0(j);θ)}2

∂β

∂V ar(U |µ0(j);θ)

∂ϕ /V ar2(U |µ0(j);θ). The
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(λ, ζ) block is

H(λ, ζ) = − a0j
2V ar2(U |µ0(j);θ)

[
− 2V ar(U |µ0(j);θ)

∂
{
uj − E(U |µ0(j);θ)

}
∂λ

+ 2
{
uj − E(U |µ0(j);θ)

} ∂V ar(U |µ0(j);θ)

∂λ

]
, (3.14)

and the (λ, ϕ) block is

H(λ, ϕ) = +
a0j
2

∂V ar(U |µ0(j);θ)

∂ϕ

V ar2(U |µ0(j);θ)

∂V ar(U |µ0(j);θ)

∂λ

+
a0j
2

∂V ar(U |µ0(j);θ)

∂ϕ

V ar2(U |µ0(j);θ)

[
∂{uj − E(U |µ0(j);θ)}2

∂λ
+
∂tr(A(j)Ω0(j))

∂λ

]

−
a0j

∂V ar(U |µ0(j);θ)

∂ϕ

V ar3(U |µ0(j);θ)

∂V ar(U |µ0(j);θ)

∂λ

×
[
{uj − E(U |µ0(j);θ)}2 + tr(A(j)Ω0(j))

]
. (3.15)

Next, following the proposal in Lindstrom and Bates (1988), we present the derivatives

with respect to the variance components. As shown by Lindstrom and Bates (1988), the

Choleski factorization of D (i.e. D = L⊤L, with L being an upper-triangular matrix)

dramatically improves the converge properties of the Newton-Raphson algorithm. In

fact, to facilitate the computations, we first calculated the derivatives over vec(D)

assuming that D is an unrestricted matrix and then used the chain rule to obtain the

derivatives over vec(L), deleting the entries that correspond to the entries in L that are

0 by definition. The vector of the first-order partial derivatives with respect to vec(D)

are

Uj{vec(D)} = −a0j
2

∂ log |V (j)|
∂ vec(D)

− a0j
2σ2

{
∂r⊤(j)V

−1
(j)r(j)

∂ vec(D)
+
∂tr(V −1

(j)Ω0(j))

∂ vec(D)

}

−a0j
2

∂V ar(U |µ0(j);θ)

∂ vec(D)

V ar(U |µ0(j);θ)
− a0j

2V ar(U |µ0(j);θ)

[
∂{uj − E(U |µ0(j);θ)}2

∂ vec(D)
+
∂tr(A(j)Ω0(j))

∂ vec(D)

]

+
a0j

2V ar2(U |µ0(j);θ)

[
{uj − E(U |µ0(j);θ)}2 + tr(A(j)Ω0(j))

] ∂V ar(U |µ0(j);θ)

∂ vec(D)
. (3.16)

To exemplify the calculations, we derive
∂ log |V (j)|
∂ vec(D) . By the formula ∂

∂xj
log |F | =
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tr(F−1 ∂F
∂xj

) (Harville, 1997, page 305), and using basic properties of the trace oper-

ator we have that the derivative with respect to the ikth element of D is

∂ log |V (j)|
∂Mik

= tr

(
V −1

(j)

∂V (j)

∂Mik

)
= tr

{
V −1

(j)

∂

∂Mik

(
I(j) +Z(j)DZ

⊤
(j)

)}
= tr

(
V −1

(j)Z(j)
∂D

∂Mik
Z⊤

(j)

)
= tr

(
V −1

(j)Z(j)uiu
⊤
k Z

⊤
(j)

)
= u⊤

k Z
⊤
(j)V

−1
(j)Z(j)ui

= [Z⊤
(j)V

−1
(j)Z(j)]ki,

where u⊤
k and ui are the kth row and ith column of the identity matrix, respectively.

Thus,
∂ log |V (j)|
∂Mik

equals the kith element of Z⊤
(j)V

−1
(j)Z(j). Expressing the derivatives in

terms of the matrix D (i.e. getting a matrix of derivatives) results in

∂ log |V (j)|
∂D

=
(
Z⊤

(j)V
−1
(j)Z(j)

)⊤
= Z⊤

(j)V
−1
(j)Z(j),

as V (j) is symmetric by definition. Thus, using vector notation, we get that

∂ log |V (j)|
∂ vec(D)

= vec(Z⊤
(j)V

−1
(j)Z(j)).

Similarly, it can be shown that
∂r⊤

(j)
V −1

(j)
r(j)

∂ vec(D) = − vec(v(j)v
⊤
(j)) and

∂tr(V −1
(j)

Ω0(j))

∂ vec(D) =

− vec(C(j)), with v(j) = Z⊤
(j)V

−1
(j)r(j) and C(j) = Z⊤

(j)V
−1
(j)Ω0(j)V

−1
(j)Z(j). To see this,

note that we used the formula ∂F−1

∂xj
= −F−1 ∂F

∂xj
F−1 (Harville, 1997, page 307). Thus,

∂

∂Mik
r⊤(j)V

−1
(j)r(j) = tr

(
r(j)r

⊤
(j)

∂V −1
(j)

∂Mik

)

= −tr

(
r(j)r

⊤
(j)V

−1
(j)

∂V (j)

∂Mik
V −1

(j)

)
= −tr

(
r(j)r

⊤
(j)V

−1
(j)Z(j)uiu

⊤
k Z

⊤
(j)V

−1
(j)

)
= −u⊤

k Z
⊤
(j)V

−1
(j)r(j)r

⊤
(j)V

−1
(j)Z(j)ui

Thus,
∂r⊤

(j)
V −1

(j)
r(j)

∂D = −(v(j)v
⊤
(j))

⊤ = −(v(j)v
⊤
(j)), which leads to

∂r⊤
(j)
V −1

(j)
r(j)

∂ vec(D) = − vec(v(j)v
⊤
(j)).

Next, for the derivatives in the time-to-dropout model, it turned out to be simpler

to first calculate the derivatives with respect to vec(B) (B = D−1) and then get

the derivatives with respect to vec(D) by the chain rule. Note that, by the ma-

trix formula (R + STU)−1 = R−1 − R−1S(T−1 + UR−1S)−1UR−1, we have that
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Γ−1
(j) = (D−1 + Z⊤

(j)Z(j))
−1 = D − DZ⊤

(j)V
−1
(j)Z(j)D, thus V ar(U |µ0(j);θ) equals

σ2(ν2 + λ⊤Γ−1
(j)λ). Then in a very similar way, it can be shown that

∂V ar(U |µ0(j);θ)

∂ vec(B)
= −σ2 vec(Γ−1

(j)λλ
⊤Γ−1

(j)).

Next, by the formula (P−1 +B⊤R−1B)−1B⊤R−1 = PB⊤(BPB⊤ +R)−1, with P

and R being positively definite matrices, it follows that (D−1 + Z⊤
(j)Z(j))

−1Z⊤
(j) =

DZ⊤
(j)V

−1
(j), which means that E(U |µ0(j);θ) = ζ + λ⊤Γ−1

(j)Z
⊤
(j)r(j). Thus, by similar

manipulations, we get that

∂E(U |µ0(j);θ)

∂ vec(B)
= − vec(Γ−1

(j)λr
⊤
(j)Z(j)Γ

−1
(j)),

while
∂{uj−E(U |µ0(j);θ)}2

∂ vec(B) = −2{uj − E(U |µ0(j);θ)}
∂E(U |µ0(j);θ)

∂ vec(B) . Also, it can be shown

that
∂tr(A(j)Ω0(j))

∂B = −Γ−1
(j)λλ

⊤Γ−1
(j)Z

⊤
(j)Ω0(j)Z(j)Γ

−1
(j)−(Γ−1

(j)λλ
⊤Γ−1

(j)Z
⊤
(j)Ω0(j)Z(j)Γ

−1
(j))

⊤,

and by the definition of the commutation matrix Kmn, vec(A
⊤) = Kmn vec(A) with

A being a m× n matrix (Harville, 1997, page 344), it follows that

∂tr(A(j)Ω0(j))

∂ vec(B)
= −(Iq2 +Kqq) vec(Γ

−1
(j)λλ

⊤Γ−1
(j)Z

⊤
(j)Ω0(j)Z(j)Γ

−1
(j)).

Finally, for the time-to-dropout model, we need to also represent the derivatives in

terms of vec(D), which can be carried out through the chain rule. Thus, if f(B) is a

scalar- or vector-valued function of B, then

∂f(B)

∂ vec(D)⊤
=

∂f(B)

∂ vec(B)⊤
∂ vec(B)

∂ vec(D)⊤
=

∂f(B)

∂ vec(B)⊤
∂ vec(D−1)

∂ vec(D)⊤

= − ∂f(B)

∂ vec(B)⊤

{
(D−1)⊤ ⊗D−1

} ∂ vec(D)

∂ vec(D)⊤
= − ∂f(B)

∂ vec(B)⊤
(
D−1 ⊗D−1

)
,

where ⊗ stands for the kronecker product of matrices. Note that if f(B) is a scalar-

valued function of B, the derivative in terms of the column vector vec(D) is ∂f(B)
∂ vec(D) =

−
(
D−1 ⊗D−1

) ∂f(B)
∂ vec(B) , as D is symmetric. Thus, denoting by ϕ(B) the matrix of

the first-order partial derivatives over B, we have that

∂f(B)

∂ vec(D)
= −

(
D−1 ⊗D−1

)
vec{ϕ(B)} = − vec{D−1ϕ(B)D−1},

by the formula vec(ABC) = (C⊤ ⊗A) vec(A) (Harville, 1997, page 341).
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Moving on the calculation of the vec(D) block of the Hessian matrix, letting

fj{vec(D)} = V ar(U |µ0(j);θ)

[
∂{uj − E(U |µ0(j);θ)}2

∂ vec(D)
+
∂tr(A(j)Ω0(j))

∂ vec(D)

]

−
[
{uj − E(U |µ0(j);θ)}2 + tr(A(j)Ω0(j))

] ∂V ar(U |µ0(j);θ)

∂ vec(D)
,

and gj{vec(D)} = V ar2(U |µ0(j);θ), we have that the second-order partial derivatives

over vec(D) are

Hj{vec(D)} = −a0j
2

∂2 log |V (j)|
∂ vec(D)∂ vec(D)⊤

− a0j
2σ2

{
∂2r⊤(j)V

−1
(j)r(j)

∂ vec(D)∂ vec(D)⊤
+

∂2tr(V −1
(j)Ω0(j))

∂ vec(D)∂ vec(D)⊤

}

− a0j
2V ar2(U |µ0(j);θ)

{
V ar(U |µ0(j);θ)

∂2V ar(U |µ0(j);θ)

∂ vec(D) vec(D)⊤
−
∂V ar(U |µ0(j);θ)

∂ vec(D)

∂V ar(U |µ0(j);θ)

∂ vec(D)⊤

}

− a0j
2

[
gj{vec(D)}∂fj{vec(D)}

∂ vec(D)⊤
− fj{vec(D)}∂gj{vec(D)}

∂ vec(D)⊤

]/
g2j {vec(D)}, (3.17)

where
∂gj{vec(D)}
∂ vec(D)⊤

= 2V ar(U |µ0(j);θ)
∂V ar(U |µ0(j);θ)

∂ vec(D)⊤
and

∂fj{vec(D)}
∂ vec(D)⊤

=

[
∂{uj − E(U |µ0(j);θ)}2

∂ vec(D)
+
∂tr(A(j)Ω0(j))

∂ vec(D)

]
∂V ar(U |µ0(j);θ)

∂ vec(D)⊤

+ V ar(U |µ0(j);θ)

[
∂2{uj − E(U |µ0(j);θ)}2

∂ vec(D)∂ vec(D)⊤
+

∂2tr(A(j)Ω0(j))

∂ vec(D)∂ vec(D)⊤

]

−
∂V ar(U |µ0(j);θ)

∂ vec(D)

[
∂{uj − E(U |µ0(j);θ)}2

∂ vec(D)⊤
+
∂tr(A(j)Ω0(j))

∂ vec(D)⊤

]

−
[
{uj − E(U |µ0(j);θ)}2 + tr(A(j)Ω0(j))

] ∂2V ar(U |µ0(j);θ)

∂ vec(D)∂ vec(D)⊤
,

where, through the product rule of differentiation,

∂2{uj − E(U |µ0(j);θ)}2

∂ vec(D)∂ vec(D)⊤
= 2

[
∂E(U |µ0(j);θ)

∂ vec(D)

∂E(U |µ0(j);θ)

∂ vec(D)⊤

−{uj − E(U |µ0(j);θ)}
∂2E(U |µ0(j);θ)

∂ vec(D)∂ vec(D)⊤

]
. (3.18)

To show the manipulations that need to be made in the above expressions, similarly to

Lindstrom and Bates (1988), we derive
∂2r⊤

(j)
V −1

(j)
r(j)

∂ vec(D)∂ vec(D)⊤
using the product rule along
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with standard properties of the vec operator and the kronecker product.

∂2r⊤(j)V
−1
(j)r(j)

∂ vec(D)∂ vec(D)⊤
= −

∂ vec(v(j)v
⊤
(j))

∂ vec(D)⊤
= −(v(j) ⊗ I)

∂ vec(v(j))

∂ vec(D)⊤
− (I ⊗ v(j))

∂ vec(v⊤(j))

∂ vec(D)⊤

= −(v(j) ⊗ I)
∂ vec(Z⊤

(j)V
−1
(j)r(j))

∂ vec(D)⊤
− (I ⊗ v(j))

∂ vec(r⊤(j)V
−1
(j)Z(j))

∂ vec(D)⊤

= −(v(j) ⊗ I)(r⊤(j) ⊗Z
⊤
(j))

∂ vec(V −1
(j))

∂ vec(D)⊤

− (I ⊗ v(j))(Z⊤
(j) ⊗ r

⊤
(j))

∂ vec(V −1
(j))

∂ vec(D)⊤

= (v(j)r
⊤
(j) ⊗Z

⊤
(j))(V

−1
(j) ⊗ V

−1
(j))

∂ vec(Z(j)DZ
⊤
(j))

∂ vec(D)⊤

+ (Z⊤
(j) ⊗ v(j)r

⊤
(j))(V

−1
(j) ⊗ V

−1
(j))

∂ vec(Z(j)DZ
⊤
(j))

∂ vec(D)⊤

= (v(j)v
⊤
(j) ⊗Z

⊤
(j)V

−1
(j)Z(j)) + (Z⊤

(j)V
−1
(j)Z(j) ⊗ v(j)v⊤(j)).

Using similar arguments, it can be shown that
∂2 log |V (j)|

∂ vec(D)∂ vec(D)⊤
= −(Z⊤

(j)V
−1
(j)Z(j) ⊗

Z⊤
(j)V

−1
(j)Z(j)) and

∂2tr(V −1
(j)

Ω0(j))

∂ vec(D)∂ vec(D)⊤
= (C(j) ⊗ Z⊤

(j)V
−1
(j)Z(j)) + (Z⊤

(j)V
−1
(j)Z(j) ⊗ C(j)).

As when calculating the first-order partial derivatives, the second derivative matrix of

the terms associated with the time-to-dropout model can be easier expressed in terms

of vec(B). In this case, similarly to the above manipulations, it can be shown that
∂2V ar(U |µ0(j);θ)

∂ vec(B)∂ vec(B)⊤
= σ2(Γ−1

(j)λλ
⊤Γ−1

(j) ⊗ Γ−1
(j)) + σ2(Γ−1

(j) ⊗ Γ−1
(j)λλ

⊤Γ−1
(j)),

∂2tr(A(j)Ω0(j))

∂ vec(B)∂ vec(B)⊤
= (Iq2 +Kqq)(Γ

−1
(j)Z

⊤
(j)Ω0(j)Z(j)Γ

−1
(j)λλ

⊤Γ−1
(j) ⊗ Γ−1

(j))

(Iq2 +Kqq)(Γ
−1
(j)Z

⊤
(j)Ω0(j)Z(j)Γ

−1
(j) ⊗ Γ−1

(j)λλ
⊤Γ−1

(j))

(Iq2 +Kqq)(Γ
−1
(j) ⊗ Γ−1

(j)λλ
⊤Γ−1

(j)Z
⊤
(j)Ω0(j)Z(j)Γ

−1
(j)),

and
∂2E(U |µ0(j);θ)

∂ vec(B)∂ vec(B)⊤
= (Γ−1

(j)Z
⊤
(j)r(j)λ

⊤Γ−1
(j) ⊗ Γ−1

(j)) + (Γ−1
(j) ⊗ Γ−1

(j)λr
⊤
(j)Z(j)Γ

−1
(j)). Then,

we need to re-express the second derivative matrix in terms ofD. Denoting by f(B) the

scalar function to be differentiated, since ∂f(B)
∂ vec(D)⊤

= − vec{D−1ϕ(B)D−1}, it easily

follows that

∂2f(B)

∂ vec(D)∂ vec(D)⊤
= (D−1 ⊗D−1)

∂2f(B)

∂ vec(B)∂ vec(B)⊤
(D−1 ⊗D−1)

+ {D−1ϕ(B)⊤D−1 ⊗D−1}+ {D−1 ⊗D−1ϕ(B)D−1}.
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Next, we give the {β, vec(D)} block of the Hessian matrix

H{β, vec(D)} =
a0j
2

∂X⊤
(j)V

−1
(j)r(j)

∂ vec(D)⊤
− a0j

2

[
V ar(U |µ0(j);θ)

∂2{uj − E(U |µ0(j);θ)}2

∂β∂ vec(D)⊤

−
∂{uj − E(U |µ0(j);θ)}2

∂β

∂V ar(U |µ0(j);θ)

∂ vec(D)⊤

]
/V ar2(U |µ0(j);θ),(3.19)

where

∂2{uj − E(U |µ0(j);θ)}2

∂β∂ vec(D)⊤
= −2

∂{uj − E(U |µ0(j);θ)}
∂β

∂E(U |µ0(j);θ)

∂ vec(D)⊤

+2{uj − E(U |µ0(j);θ)}
∂2{uj − E(U |µ0(j);θ)}

∂β∂ vec(D)⊤
.

For the terms associated with the time-to-dropout model, we again express the deriva-

tives in terms of vec(B) and then back-transform to the derivatives over vec(D) via

the chain rule. Using similar arguments, it can be shown that
∂2{uj−E(U |µ0(j);θ)}

∂β∂ vec(B)⊤
=

−(λ⊤Γ−1
(j)⊗X

⊤
(j)Z(j)Γ

−1
(j)) and

∂X⊤
(j)V

−1
(j)
r(j)

∂ vec(D)⊤
= −(v⊤(j)⊗X

⊤
(j)V

−1
(j)Z(j)), which completes

the calculation of the {β, vec(D)} block of the Hessian matrix.

Next, by similar manipulations, the {vec(D), ζ} block of the Hessian matrix is

H{vec(D), ζ} =
a0j

V ar2(U |µ0(j);θ)

[
− V ar(U |µ0(j);θ)

∂E(U |µ0(j);θ)

∂ vec(D)

−{uj − E(U |µ0(j);θ)}
∂V ar(U |µ0(j);θ)

∂ vec(D)

]
. (3.20)

This way, the {vec(D), ϕ} block of the Hessian matrix is

H{vec(D), ϕ} =
a0j
2

∂V ar(U |µ0(j);θ)

∂ϕ

∂V ar(U |µ0(j);θ)

∂ vec(D)

V ar2(U |µ0(j);θ)

+
a0j
2

∂V ar(U |µ0(j);θ)

∂ϕ
V ar2(U |µ0(j);θ)

[
∂{uj − E(U |µ0(j);θ)}2

∂ vec(D)
+
∂tr(A(j)Ω0(j))

∂ vec(D)

]

− a0j
2

∂V ar(U |µ0(j);θ)

V ar4(U |µ0(j);θ)∂ϕ

[
{uj − E(U |µ0(j);θ)}2 + tr(A(j)Ω0(j))

]
×
∂V ar2(U |µ0(j);θ)

∂ vec(D)
.

(3.21)
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Carrying on with the calculation of {λ, vec(D)} block of the Hessian matrix, letting

fj{vec(D)} = V ar(U |µ0(j);θ)

{
∂(uj − E(U |µ0(j);θ)}2

∂λ
+
∂tr(A(j)Ω0(j))

∂λ

}

−
[
{uj − E(U |µ0(j);θ)}2 + tr(A(j)Ω0(j))

] ∂V ar(U |µ0(j);θ)

∂λ
,

and gj{vec(D)} = V ar2(U |µ0(j);θ), viewed as a function vec(D), it can be shown that

H{λ, vec(D)} = −a0j
2

V ar(U |µ0(j);θ)
∂2V ar(U |µ0(j);θ)

∂λ∂ vec(D)⊤
− ∂V ar(U |µ0(j);θ)

∂λ

∂V ar(U |µ0(j);θ)

∂ vec(D)⊤

V ar2(U |µ0(j);θ)

− a0j
2

[
gj{vec(D)}∂fj{vec(D)}

∂ vec(D)⊤
+ fj{vec(D)}∂gj{vec(D)}

∂ vec(D)⊤

]/
g2j {vec(D)}, (3.22)

where
∂gj{vec(D)}
∂ vec(D)⊤

= 2V ar(U |µ0(j);θ)
∂V ar(U |µ0(j);θ)

∂ vec(D)⊤
and

∂fj{vec(D)}
∂ vec(D)⊤

=

[
∂{uj − E(U |µ0(j);θ)}2

∂λ
+
∂tr(A(j)Ω0(j))

∂λ

]
∂V ar(U |µ0(j);θ)

∂ vec(D)⊤

+ V ar(U |µ0(j);θ)

[
∂2{uj − E(U |µ0(j);θ)}2

∂λ∂ vec(D)⊤
+
∂2tr(A(j)Ω0(j))

∂λ∂ vec(D)⊤

]

−
∂V ar(U |µ0(j);θ)

∂λ

[
∂{uj − E(U |µ0(j);θ)}2

∂ vec(D)⊤
+
∂tr(A(j)Ω0(j))

∂ vec(D)⊤

]

−
[
{uj − E(U |µ0(j);θ)}2 + tr(A(j)Ω0(j))

] ∂2V ar(U |µ0(j);θ)

∂λ∂ vec(D)⊤
.

It is then straightforward to show that
∂2V ar(U |µ0(j);θ)

∂λ∂ vec(B)⊤
= −2σ2(λΓ−1

(j) ⊗ Γ−1
(j)),

∂2{uj−E(U |µ0(j);θ)}
∂λ∂ vec(B)⊤

= (r⊤(j)Z(j)Γ
−1
(j) ⊗ Γ−1

(j)) and

∂{uj − E(U |µ0(j);θ)}2

∂λ∂ vec(D)⊤
= 2

[
−
∂{uj − E(U |µ0(j);θ)}

∂λ

∂E(U |µ0(j);θ)

∂ vec(D)⊤

+ {uj − E(U |µ0(j);θ)}
∂2{uj − E(U |µ0(j);θ)}

∂λ∂ vec(D)⊤

]
,

completing the calculations required for the {λ, vec(D)} block of the Hessian matrix.

Using the reparameterization θ = log(σ2), the first-order partial derivatives with
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respect to θ are

Uj(θ) = −(j + 1)a0j
2

+
a0j
2eθ

{
r⊤(j)V

−1
(j)r(j) + tr(V −1

(j)Ω0(j))
}

+
a0j

∂V ar(U |µ0(j);θ)

∂θ

2V ar2(U |µ0(j);θ)

[
{uj − E(U |µ0(j);θ)}2 + tr(A(j)Ω0(j))

]
, (3.23)

and the second derivative matrix are

H(θ) = −a0j
2eθ

{
r⊤(j)V

−1
(j)r(j) + tr(V −1

(j)Ω0(j))
}
− a0j

2

[
{uj − E(U |µ0(j);θ)}2 + tr(A(j)Ω0(j))

]
×

{
V ar2(U |µ0(j);θ)

∂2V ar(U |µ0(j);θ)

∂θ∂θ

−
∂V ar(U |µ0(j);θ)

∂θ

∂V ar2(U |µ0(j);θ)

∂θ

}/
V ar4(U |µ0(j);θ), (3.24)

with
∂V ar(U |µ0(j);θ)

∂θ = V ar(U |µ0(j);θ).

The (λ, θ) block of the Hessian matrix is

H(λ, θ) = +
a0j
2

∂V ar(U |µ0(j);θ)

∂θ

V ar2(U |µ0(j);θ)

[
∂{uj − E(U |µ0(j);θ)}2

∂λ
+
∂tr(A(j)Ω0(j))

∂λ

]
+

a0j
2

[
{uj − E(U |µ0(j);θ)}2 + tr(A(j)Ω0(j))

]
×

V ar2(U |µ0(j);θ)
∂2V ar(U |µ0(j);θ)

∂λ∂θ − ∂V ar(U |µ0(j);θ)

∂λ

∂V ar2(U |µ0(j);θ)

∂θ

V ar4(U |µ0(j);θ)
, (3.25)

where it can be easily shown that
∂2V ar(U |µ0(j);θ)

∂λ∂θ =
∂V ar(U |µ0(j);θ)

∂λ .

Next, the (β, θ) block of the Hessian matrix is

H(β, θ) =
a0j

∂V ar(U |µ0(j);θ)

∂θ

2V ar2(U |µ0(j);θ)

∂{uj − E(U |µ0(j);θ)}2

∂β
− a0j

eθ
X⊤

(j)V
−1
(j)r(j). (3.26)

The (ζ, θ) block of the Hessian matrix is

H(ζ, θ) = −a0j
∂V ar(U |µ0(j);θ)

∂θ
{uj − E(U |µ0(j);θ)}/V ar2(U |µ0(j);θ). (3.27)

Similarly, the (ϕ, θ) block of the Hessian matrix can be shown to be equal to

H(ϕ, θ) =
a0j
2

V ar2(U |µ0(j);θ)
∂2V ar(U |µ0(j);θ)

∂ϕ∂θ − ∂V ar(U |µ0(j);θ)

∂ϕ

∂V ar2(U |µ0(j);θ)

∂θ

V ar4(U |µ0(j);θ)

×
[
{uj − E(U |µ0(j);θ)}2 + tr(A(j)Ω0(j))

]
. (3.28)
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Finally, the {vec(D), θ} block of the Hessian matrix is equal to

H{vec(D), θ} = − a0j
2σ2

{
∂r⊤(j)V

−1
(j)r(j)

∂ vec(D)
+
∂tr(V −1

(j)Ω0(j))

∂ vec(D)

}

+
a0j
2

∂V ar(U |µ0(j);θ)

∂θ

V ar2(U |µ0(j);θ)

[
∂{uj − E(U |µ0(j);θ)}2

∂ vec(D)
+
∂tr(A(j)Ω0(j))

∂ vec(D)

]
+
a0j
2

[
{uj − E(U |µ0(j);θ)}2 + tr(A(j)Ω0(j))

]
×
V ar2(U |µ0(j);θ)

∂2V ar(U |µ0(j);θ)

∂ vec(D)∂θ − ∂V ar(U |µ0(j);θ)

∂ vec(D)

∂V ar2(U |µ0(j);θ)

∂θ

V ar4(U |µ0(j);θ)
, (3.29)

where
∂2V ar(U |µ0(j);θ)

∂ vec(D)∂θ =
∂V ar(U |µ0(j);θ)

∂ vec(D) . We now need to express all the derivatives

involving vec(D) in terms of vec(L), the Choleski factor of vec(D). Assuming that

f(D) is a scalar- or vector-valued function of D, it follows through the chain rule that

∂f(D)

∂ vec(L)⊤
=

∂f(D)

∂ vec(D)⊤
∂ vec(D)

∂ vec(L)⊤
.

Using the product rule and the very definition of the commutation matrix, we have

that ∂ vec(D)
∂ vec(L)⊤

= (L⊤ ⊗ Iq)Kqq + (Iq ⊗ L⊤). Then, assuming that f(D) is scalar and

denoting by ϕ(D) the matrix of the partial derivatives over D, it can be shown that

u{vec(L)} =
∂f(D)

∂ vec(L)
= vec{Lϕ(D)⊤}+ vec{Lϕ(D)},

whereas, by similar manipulations the second derivative matrix is equal to

∂u{vec(L)}
∂ vec(L)⊤

= (Iq ⊗L)
{
(Kqq + Iq2)

∂2f(D)

∂ vec(D)∂ vec(D)⊤

}
{(L⊤ ⊗ Iq)Kqq + (Iq ⊗L⊤)}

+ {ϕ(D) + ϕ(D)⊤} ⊗ Iq.

We compared the results from our analytical derivative formulas with those obtained

from numerical approximation methods implemented in numDeriv package in R (Gilbert

and Varadhan, 2016), yielding negligible differences of order less than 10−7.

In the following subsections we define the true mechanisms with respect to which

bias is quantified. It should be emphasized that the terms a0j , µ0(j), and Ω0(j) are

considered constant in Equation (3.5) as differentiation is taken over θ.
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3.2.2 MAR Drop-out Completely Determined by Observed Measure-

ments

Let us assume that subjects drop out of the study when the marker drops below some

threshold value c. This scenario is based on the WHO guidelines up to 2015 that cART

should be initiated when CD4 counts fall below 500 cells/µL. Note that M = j im-

plies that Y1 ≥ c, . . . , Yj−1 ≥ c, Yj < c for j < Q and Y1 ≥ c, . . . , YQ−1 ≥ c, YQ ∈ R

for M = Q. As the marginal distribution of Y (j) is multivariate normal and M = j

poses the above constraints, the distribution of Y (j)|M = j is a truncated multivari-

ate normal (Wilhelm and Manjunath, 2015). To calculate its moments, we used the

method proposed by Wilhelm and Manjunath (2015), whereas the true probability of

the jth dropout pattern, a0j , was calculated by the cumulative distribution function

of the multivariate normal distribution. In this dropout mechanism, the probability of

dropout is completely dependent on c since Pr(M = j|M ≥ j,Y (j);θt0) = I(Yj < c)

for j < Q, which implies that increasing the value of c leads to higher rate of dropout

(i.e. dropout occurs sooner).

Finally, we solved Equation (3.5) using the Newton-Raphson algorithm, where the

last term in Equation (3.5) was approximated by quasi-Monte Carlo integration, a

derandomized alternative to Monte Carlo integration (e.g. Morokoff and Caflisch, 1995),

with 105 contributing points. D was parameterized in terms of its Choleski factor

L (i.e. L⊤L = D), with derivatives over vec(L) obtained from the chain rule. A

detailed derivation is given in subsection 3.2.1. The results at convergence of the

algorithm constitute the values to which the LN-SREM(RE) estimators converge. By

comparing these values with the true parameter values, we calculated the bias in the

LN-SREM(RE) model.

3.2.3 MAR Drop-out Stochastically Determined by Observed Mea-

surements

We now generalize the previous true dropout mechanism by allowing the hazard of

dropout to depend on the current observed marker levels via a probabilistic model.
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Specifically, we assume a logistic model of the form P (M = j|M ≥ j,Y (j);θt0) =

ec1+c2(Yj−Y ⋆)

1+ec1+c2(Yj−Y ⋆) , for j < Q, and P (M = Q|M ≥ Q,Y (Q);θt0) = 1, which translates into

the corresponding probabilities being equal to the products

P (M = j|Y (j);θt0) =

j∏
k=1

{
1 + ec1+c2(Yk−Y

⋆)
}−1

ec1+c2(Yj−Y
⋆)

P (M = Q|Y (Q);θt0) =

Q−1∏
k=1

{
1 + ec1+c2(Yk−Y

⋆)
}−1

,

respectively. The parameter c1 is associated with the chance of dropout when the

marker is at a certain level Y ⋆, whereas c2 quantifies the change in the log-odds of

dropout associated with one unit increase in the marker values. Thus, a zero value

of c2 corresponds to an MCAR dropout mechanism. Instead, if c2 is non-zero, the

dropout mechanism is MAR. To calculate the moments of the true distribution of

Y (j)|M = j;θt0 and the marginal probabilities of dropout, a0j , we used quasi-Monte

Carlo integration along with importance sampling, using a multivariate normal impor-

tance density with mean equal to the mode of Y (j)|M = j;θt0 and covariance matrix

equal to the inverse curvature at the mode.

First, recall that a0j is equal to

a0j = Pr(M = j;θ0) =

∫
Pr(M = j|Y (j);θt0)f(Y (j);θ0)dY (j).

which cannot be computed analytically unless the dropout is completely at random.

This, however, can be written equivalently as∫
Pr(M = j|Y (j);θt0)

f(Y (j);θ0)

g(Y (j))
g(Y (j))dY (j),

where g(Y (j)) density the density of a multivariate Normal distribution with mean equal

to the mode of Y (j)|M = j;θ0 and covariance matrix equal to the inverse curvature at

the mode. Therefore, to estimate a0j , we used the formula

âj =
1

Nmc

Nmc∑
i=1

Pr(M = j|Y i
(j);θt0)

f(Y i
(j);θ0)

g(Y i
(j))

,

where Y i
(j)s were obtained by first transforming the sobol sequences to univariate

normal low-discrepancy sequences (Christophe and Petr, 2019) and then applying a
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Choleski-based transformation to get at the multivariate normal distribution of g(Y (j)).

The advantage of this approach is that if the conditional distribution of Y (j)|M = j;θ0

is well approximated by a normal distribution, the ratio Pr(M = j|Y (j);θt0)
f(Y (j);θ0)

g(Y (j))

will be nearly constant in Y (j), resulting in much more precise estimates. To estimate

the expected value of Y (j)|M = j;θ0, µ0(j) =
∫
Y (j)f(Y (j)|M = j;θ0)dY (j), we used

the formula
1

Nmc

Nmc∑
i=1

Y i
(j)

Pr(M = j|Y i
(j);θt0)f(Y

i
(j);θ0)

g(Y i
(j))âj

.

A similar formula was used to approximate E(Y (j)Y
⊤
(j)|M = j;θ0). Then the co-

variance matrix Ω0(j) can be estimated using the identity E(Y (j)Y
⊤
(j)|M = j;θ0) −

µ0(j)µ
⊤
0(j). Using Nmc = 5 · 105 draws resulted in the desired accuracy.

3.2.4 Parameters of the Data Generating Process and Bias Results

Throughout this analysis, all features regarding the true mechanisms generating the

data were based on the CD4 count evolution during the HIV natural history, using

results from models applied to data from the CASCADE study. Specifically, we assumed

a random intercept and slope model for the square root of CD4 counts, with population

parameter β0 = (23.60,−1.30); the variances of the random intercepts and slopes being

equal to 22.6 and 1.85, respectively, and the covariance being equal to −2.07. The

within-subject variance was set to 5.3.

To quantify the bias in the LN-SREM(RE) model, we solved Equation (3.5) for var-

ious values of the parameters of the dropout mechanisms. In the case of MAR dropout

completely determined by observed measurements, the threshold c, below which the

next measurements are missing, ranged from 50 to 550 cells/µL. Results are shown

on the left hand side at the top of Figure 3.1. It is clear that the bias in the popula-

tion slope is an increasing function of c (range: 2-322%), implying that the higher the

dropout probability, the larger the bias in the estimated slope.

For the stochastic MAR dropout mechanism, we set c1 to be the hazard of dropout

at 500 cells/µL (on the logit scale), which approximately corresponds to the CD4 counts

at HIV seroconversion (i.e. the “baseline”). We calculated the asymptotic bias in the
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estimated slope for various values of the parameters (c1, c2). The results are presented

on the left hand side at the bottom of Figure 3.1. When c2 = 0, which corresponds to an

MCAR mechanism, the LN-SREM(RE) model is nearly unbiased. For a given baseline

dropout rate, the bias increases as c2 decreases (increases in absolute value), while for a

given value of c2, the bias increases as the baseline hazard of dropout increases. Thus,

provided that the dropout mechanism is not MCAR, the bias in the estimated slope

increases as the dropout becomes heavier.

3.3 Asymptotic Bias in the PH-SREM(CV) when Fitted

to MAR Data

In this section we study the potential bias in the PH-SREM(CV) model in which the

hazard of dropout, modeled by a proportional hazards model, depends on the “true”

current marker value (Wulfsohn and Tsiatis, 1997). Marker’s trends are again modeled

through a random intercept and slope model, whereas the proportional hazards model

for the dropout mechanism is of the form

h{t|m(t);θt} = h0(t;ψ) exp {αm(t)} ,

where m(t) = (β0 + b0) + (β1 + b1)t is the underlying “true” marker value at time t

and h0(t;ψ) denotes the baseline hazard function. log{h0(t;ψ)} was modeled through

restricted cubic splines of log time (e.g. Crowther et al., 2012) with two internal knots.

Briefly, restricted cubic splines are cubic splines constrained to be linear beyond some

boundary knots kmin and kmax, with such knots usually placed at the extreme observed

log time values. Additionally, m distinct internal knots k1 < . . . < km are specified,

where k1 > kmin and km < kmax. A restricted cubic spline may then be written as

s(x;ψ) = ψ0 + ψ1x+ ψ2v1(x) + . . . ψm+1vm(x) = V
⊤(x)ψ,

where x = log(t) and ψ is an associated parameter vector. The jth basis function is

defined for j = 1, 2, . . . ,m as

vj(x) = (x− kj)
3
+ − λj(x− kmin)

3
+ − (1− λj)(x− kmax)

3
+, (3.30)
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Figure 3.1: Asymptotic bias in a disease’s marker rate of change estimated by the LN-

SREM(RE) model (A and C) and the PH-SREM(CV) model (B and D) assuming MAR

dropout mechanisms: subjects drop out when the marker reaches a certain threshold c (A

and B; deterministic dropout) or when the probability of dropout is a function of marker

values (C and D; stochastic dropout). In the latter case, c2 measures the change in the

log-odds of dropout associated with one unit decrease in the current marker value. The

size of the plotting symbol is proportional to the dropout probability at 500 CD4 cells/µL,

i.e. approximately the CD4 counts at seroconversion (baseline).
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where λj = (kmax−kj)/(kmax−kmin) and (x)+ = max{0, x}. The parameter α quanti-

fies the dependence between the two submodels. GivenM = j, the likelihood contribu-

tion is
∫
f(Y (j)|b;θL)h(T |m(T );θt)

I(j<Q)S{T |Mi(T );θt}f(b;θL)db, where T = tj+0.1

for M < Q and T = tQ for M = Q, and θ⊤ = (β⊤, α, vech(D)⊤,ψ, σ2) is the param-

eter vector of the PH-SREM(CV) model. The conditional survival function, S(t|b;θ),

equals

S{t|Mi(t);θt} = exp

(
−
∫ T

0
exp [s(log(u);ψ) + αm(u)] du

)
, (3.31)

which is not available in closed form, though. To approximate this integral, we used

the 15-point Gauss-Kronrod rule (Press et al., 2007).

To derive the asymptotic bias, similarly to Equation (3.5), we need to calculate

expectations such as EY (j)|M=j;θ0

{
log f(Y (j), T, δ;θ)|M = j;θ0

}
, j = 1, . . . , Q, with

the expectation taken with respect to the true marker distribution given the dropout

pattern. Since the likelihood cannot be expressed in closed-form, the expectation cannot

be evaluated analytically. However, by making a simple but reasonable approximation

to the likelihood, we can easily approximate the bias.

The likelihood of the PH-SREM(CV) model can be factorized as f(Y (j)|T, δ;θ)f(T, δ;θ),

where f(T, δ;θ) =
∫
f(T, δ|b;θ)f(b;θ)db can be easily evaluated by adaptive Gauss-

Hermite rules. The expected value and the covariance matrix of Y (j)|T, δ are equal

to µ(j) =X(j)β +Z(j)E(b|T, δ;θ) and Ω(j) = σ2I(j) +Z(j)V ar(b|T, δ;θ)Z⊤
(j), respec-

tively, which can be effectively evaluated using the same quadrature rules as those used

in evaluating f(T, δ;θ) (Saha and Jones, 2005). Making a Laplace-type approximation

in which the distribution of Y (j)|T, δ is approximated by N(µ(j),Ω(j)), the approxi-

mate log-likelihood contribution for the jth dropout pattern becomes a quadratic form

in Y (j). Upon observing that f(T, δ;θ), as well as µ(j) and Ω(j), do not depend on

Y (j), the equation to be solved simplifies to

∂

∂θ

Q∑
j=1

a0j

{
−

(µ0(j) − µ(j))
⊤Ω−1

(j)(µ0(j) − µ(j))

2

−
tr(Ω−1

(j)Ω0(j))

2
−

log |Ω(j)|
2

+ log f(T, δ;θ)

}
= 0, (3.32)
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recalling that µ0(j) and Ω0(j) denote the mean and covariance matrix of the true dis-

tribution of Y (j)|M = j;θ0, respectively, with µ(j) and Ω(j) referring to the corre-

sponding model-based ones by the PH-SREM(CV) model. Nevertheless, as Equation

(3.32) relies on the quality of the approximation made to the distribution of Y (j)|T, δ,

results obtained by solving Equation (3.32) may not be as accurate as desired. Thus,

we proceeded with a better approach, using the results from Equation (3.32) only as

starting values. Namely, we first factorized the likelihood as f(Y (j);θ)f(T, δ|Y (j);θ).

Then the expectation of the log-likelihood of the marker model with respect to the

true data distribution can be obtained analytically as log f(Y (j);θ) is a quadratic form

in Y (j), whereas f(T, δ|Y (j);θ) =
∫
f(T, δ|b;θ)f(b|Y (j);θ)db, with the distribution of

b|Y (j) being multivariate normal with covariance matrixΣb,(j) = σ2(D−1+Z⊤
(j)Z(j))

−1

and mean µb,(j) = Σb,(j)Z
⊤
(j)(Y (j) − X(j)β)/σ

2. To evaluate this integral, we used

the pseudo-adaptive quadrature rule proposed by Rizopoulos (2012b), integrating over

α = 2−1/2Bb,(j)(b−µb,(j)) instead of b, where B⊤
b,(j)Bb,(j) = Σ−1

b,(j). By noting that b is

equal to µb,(j)+
√
2B−1

b,(j)α, the Jacobian of the transformation is | ∂b
∂α⊤ | = 2q/2|Bb,(j)|−1.

Note also that, as Σb,(j) is positive definite, the entries in the main diagonal ofBb,(j) are

positive, and thus the Jacobian is also positive. Since (b−µb,(j))⊤Σ−1
b,(j)(b−µb,(j))/2 =

α⊤α, it easily follows that the dropout contribution can be written as

f(T, δ|Y (j);θ) = π−q/2
∫
f(T, δ|b = µb,(j) +

√
2B−1

b,(j)α;θ)e
−α⊤αdα,

which can be approximated by Gauss-Hermite quadrature using the formula

f(T, δ|Y (j);θ) ≃ π−q/2
nQH∑
i1=1

. . .

nQH∑
iq=1

ωi1 . . . ωiqf

T, δ|b = µb,(j) + 21/2B−1
b,(j)


xi1
...

xiq

 ;θ

 ,

where x1, . . . , ωnQH and ω1, . . . ωnQH denote the nQH-point Gauss-Hermite product

rule abscissas and weights, respectively. To calculate the asymptotic bias in the joint

model, though, we need to calculate the expectations, EY (j)|M=j;θ0

{
log f(T, δ|Y (j);θ)|M = j;θ0

}
,

with respect to the true mechanism generating the data (Y (M),M). These are equal
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to

−q
2
log(π)+

∫
log

[∫ {
f(T, δ|b = µb,(j) +

√
2B−1

b,(j)α;θ)e
−α⊤α

}
dα

]
f0(Y (j)|M = j;θ0)dY (j).

The inner integral was evaluated using Gauss-Hermite quadrature with 15 points as

shown above. For the deterministic MAR dropout scenario, the outer integral was ap-

proximated through quasi-Monte Carlo integration as the one used in Subsection 2.1,

whereas for the stochastic MAR dropout scenario, through quasi-Monte Carlo coupled

with importance sampling as the one described in Subsection 3.2.3. We used 104 quasi-

Monte Carlo draws. To solve the equations required, we used the BFGS algorithm

(Thisted, 1988), which does not require the explicit evaluation of the Hessian matrix.

The first-order partial derivatives were approximated using the forward difference ap-

proximation.

We used the same data generating mechanisms as those described in Section 3.2.

The results are presented graphically on the right hand side of Figure 3.1. The im-

plications remain the same; the bias in the slope estimate increases with higher MAR

dropout probability, though the bias in the PH-SREM(CV) model is lower than the

bias in the LN-SREM(RE) model.

Both the PH-SREM(CV) and LN-SREM(RE) models assume continuous dropout

time, as it is the case in most real data examples. However, mainly for computational

reasons, i.e. to avoid integration over the dropout times, the “true” dropout time

was assumed to be discrete. To investigate whether part of the calculated bias in

the slope estimate was due to this misspecification, we also evaluated the bias in a

SREM(CV) model assuming discrete dropout time. The SREM(CV) model was of the

form, P (M = j|M ≥ j, b) =
exp{l1+l2m(tj)}

1+exp{l1+l2m(tj)} for j < Q, i.e. the hazard of M = j

is equal to the “true” marker value at tj (recall that m(tj) = (β0 + b0) + (β1 + b1)tj

is the “true” marker value at tj), and P (M = j|M ≥ j, b) = 1, for j = Q. The bias

calculation was performed in the same way as with the continuous-time PH-SREM(CV)

model, after replacing f(T, δ|Y (j);θ) with

j∏
k=1

[1 + exp {l1 + l2m(tk)}]−1 exp {l1 + l2m(tj)} , for j < Q,
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and
∏j−1
k=1 [1 + exp {l1 + l2m(tk)}]−1 for j = Q. We compared the bias in the estimated

slope using the continuous-time PH-SREM(CV) model with natural splines for the

baseline hazard function with the corresponding bias in the discrete PH-SREM(CV)

using the same parameters regarding the true dropout mechanisms. The results for

the discrete SREM on the current value are presented in Figure 3.2. The maximum

difference between the slope estimates was quite minor (2.10%) for the stochastic true

dropout model, and small (-10.28%) for the deterministic true dropout model. It should

be also emphasized that, under the deterministic true dropout model, the bias in the

estimated slope was higher in the discrete SREM(CV) compared to the continuous

PH-SREM(CV) model. Thus, these results suggest that evaluating a continuous-time

SREM under a discrete dropout mechanism does not seem to have strong influence on

the estimate of the population slope. Also, our findings on the increasing bias in the

estimated slope, as the MAR dropout probability becomes higher, still hold.

3.4 Proposed Model

3.4.1 Structure of the proposed model

A major assumption made by most SREMs is that the marker measurements (for

example modeled by an LMM) and the time to dropout are independent given the

random effects. This further implies that, in these models, the dropout mechanism

is allowed to be either MNAR or MCAR; i.e. MAR cannot hold without reducing

to MCAR (Njagi et al. 2014). Under a MAR true dropout mechanism, the dropout

probabilities by definition depend on the observed data. In this sense, the estimated

association parameters of an SREM applied to MAR data are likely to differ from zero,

which in turn may affect the estimates of the marker population parameters (i.e. the

slope estimate).

Motivated by the definition of MNAR, which implies dependence on the missing

observations after conditioning on the observed ones in at least one missingness pat-

tern and one realisation, we propose an SREM model in which the hazard of dropout
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Figure 3.2: Asymptotic bias in a disease’s marker rate of change estimated by a discrete

SREM model using the current-value parameterization assuming MAR dropout mecha-

nisms: subjects drop out when the marker reaches a certain threshold c (A; deterministic

dropout) or when the probability of dropout is a function of marker values (B; stochastic

dropout). In the latter case, η1 measures the change in the log-odds of dropout associated

with one unit decrease in the current marker value. The size of the plotting symbol is

proportional to the dropout probability at 500 CD4 cells/µL, i.e. approximately the CD4

counts at seroconversion (baseline).
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depends on the last observed marker value, as well as on the random effects, referred

to as PH-SREM(LV,RE) from now on. That is, the marker enters as an explanatory

covariate in the dropout process, which, in contrast to most SREMs, implies that the

marker and dropout processes are not independent given the random effects. To dis-

tinguish subjects, we reintroduce subscript i assuming also that the maximum number

of observations and the visit times may differ between subjects. Given Mi = mi, the

observed marker measurements on subject i are Y ⊤
i,(mi)

= (Yi1, . . . , Yimi) collected at

times ti1, . . . , timi . We also assume that the observed dropout time Ti and its associ-

ated dropout indicator δi are exactly known for each subject, as is the case in most

applications. If tij ≤ t < tij+1, the assumed hazard function of the model is

h{t|bi,Yi(t);θ} = h0(t;ψ) exp
{
γ⊤wi +α

⊤bi + ϕ
⊤g(yij)

}
, (3.33)

where g is a potentially vector-valued function of the most recent observed marker

values, associated with a parameter ϕ, and the parameter α measures the associ-

ation of the dropout model with the random effects, after taking into account the

last value observed. Also, h0(t) is the baseline hazard function, assumed to be con-

stant within each of J pre-specified intervals, wi is a vector of baseline covariates

with a corresponding vector of regression parameters γ and Yi(t) denotes the his-

tory of observed marker values up to time point t. When the association parame-

ter α is different from zero, a MNAR missingness mechanism is implied, whereas if

α = 0, the model suggests that missingness is MAR or MCAR, depending on the

value of ϕ (i.e. α = 0 with ϕ = 0 implies MCAR, while α = 0 with ϕ ̸= 0

implies MAR dropout). The implied likelihood contribution for the ith subject is

f(Y i,(mi), Ti, δi;θ) =
∫
f(Y i,(mi)|bi;θ)f{Ti, δi|Yi(Ti), bi;θ}f(bi;θ)dbi, where the time-

to-event contribution is equal to

f{Ti, δi|Yi(Ti), bi;θ} =
{
h0(Ti;ψ)e

γ⊤ωi+α
⊤bi+ϕ

⊤g(Yimi
)
}δi

× exp

{
−
mi−1∑
k=1

∫ tik+1

tik

h0(u;ψ)e
γ⊤ωi+α

⊤bi+ϕ
⊤g(Yik)du

−
∫ Ti

timi

h0(u;ψ)e
γ⊤ωi+α

⊤bi+ϕ
⊤g(Yimi

)du

}
. (3.34)
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For the marker model we assume a standard LMM of the form Y i,(mi) = Xi,(mi)β +

Zi,(mi)bi + ϵi,(mi), where bi ∼ N(0,D) and ϵi,(mi) ∼ N(0, ω−1I(mi)).

3.4.2 Outline of the MCMC algorithm

To estimate the model parameters, we developed a Bayesian inferential procedure

based on a Markov chain Monte Carlo (MCMC) method. A normal prior distribu-

tion, N(µ0,C0), was used for β, a Gamma(τ1, τ2) distribution with shape τ1 and rate

τ2, f(ω) ∝ ωτ1−1e−τ2ω, for ω and a normal, N(µs0,C0
s), distribution for the parameter

vector of the dropout model, βs⊤ = (γ⊤,ϕ⊤,α⊤). For the covariance matrix of the ran-

dom effects,D, we assumed the Inverse-Wishart distribution, i.e. D ∼ InvWish(A, df).

Independent Gamma(a0k, λ0k) prior distributions, k = 1, . . . , J , were assumed for

the baseline hazard parameters. Letting D = {(Y i,(mi),Xi,(mi),Zi,(mi),ωi, Ti, δi); i =

1, 2, . . . , N} be the observed data, the posterior distribution of the parameters is pro-

portional to

f(θ, {bi}Ni=1|D) ∝ f(θ)

N∏
i=1

[
ωmi/2 exp

{
−ω
2
∥Y i,(mi) −Xi,(mi)β −Zi,(mi)bi∥

2
}

× |D|−1/2 exp

{
−1

2
b⊤i D

−1bi

}
f{Ti, δi|Yi(Ti), bi;θ}

]
.

Given the likelihood and prior specifications, it immediately follows that the conditional

posterior distribution of β given the remaining parameters is multivariate normal with

covariance matrix C1 = (C−1
0 +ω

∑N
i=1X

⊤
i,(mi)

Xi,(mi))
−1 and mean µ1 = C1{C−1

0 µ0+

ω
∑N

i=1X
⊤
i,(mi)

(Y i,(mi) − Zi,(mi)bi)}, the conditional posterior distribution of ω is the

Gamma(n/2+τ1, τ2+
∑N

i=1 ∥Y i,(mi)−Xi,(mi)β−Zi,(mi)bi∥2/2) distribution, where n =∑N
i=1mi, and the conditional distribution of D is the InvWish(A+

∑N
i=1 bib

⊤
i , df +N)

distribution.

3.4.2.1 Conditional posterior distribution of the random effects, bi

To efficiently simulate random draws from the conditional distribution of bi, we used

rejection sampling. The idea behind rejection sampling is to first simulate from a dif-
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ferent distribution (the proposal distribution) and then accept the proposed value with

a specified probability. If the probability of acceptance fulfils a specific condition, the

accepted values will constitute a sample from the target distribution. After dropping

the dependence on the observed data and the remaining parameters for notational con-

venience, the conditional posterior distribution of bi, which is our target distribution,

is proportional to

f(bi) ∝ exp

{
− 1

2
b⊤i (D

−1 + ωZ⊤
i,(mi)

Zi,(mi))bi

+ ωb⊤i Z
⊤
i,(mi)

(Y i,(mi) −Xi,(mi)β) + δib
⊤
i α− eb

⊤
i αqi

}
,

where qi is a positive constant with respect to bi. Note that we have suppressed the

dependence on the data and on the other parameters to simplify the notation. Our

proposal distribution requires the posterior mode. This can be calculated by using the

Newton-Raphson (NR) algorithm working on the log scale. The vector of the first-order

partial derivatives is

U(bi) = −(D−1 + ωZ⊤
i,(mi)

Zi,(mi))bi + ωZ⊤
i,(mi)

(Y i,(mi) −Xi,(mi)β) + δiα−αeb
⊤
i αqi,

and the information matrix is

I(bi) = (D−1 + ωZ⊤
i,(mi)

Zi,(mi)) +αα
⊤eb

⊤
i αqi.

Letting b̂
(t)

i be the current estimate of the posterior mode, the next estimate is ob-

tained by the formula b̂
(t+1)

i = b̂
(t)

i + I(b̂
(t)

i )−1U(b̂
(t)

i ). After very few NR iterations

(about 2 or 3 in our examples) we get the posterior mode b̂i. We take the proposal

distribution to be a multivariate normal density with mean b̂i and covariance matrix

(D−1 + ωZ⊤
i,(mi)

Zi,(mi))
−1. Thus,

g(bi) ∝ exp

{
−1

2
b⊤i (D

−1 + ωZ⊤
i,(mi)

Zi,(mi))bi + b
⊤
i (D

−1 + ωZ⊤
i,(mi)

Zi,(mi))b̂i

}
.

To apply the rejection algorithm, we need to ensure that there exists a K > 0 such

that f(bi) ≤ Kg(bi), for all bi. Thus, K ≥ f(bi)/g(bi), which means that K =

max {f(bi)/g(bi)}. The ratio of f(bi) to g(bi) on the log scale is equal to

ℓ(bi) = ωb⊤i Z
⊤
i,(mi)

(Y i,(mi)−Xi,(mi)β)+δib
⊤
i α−eb

⊤
i αqi−b⊤i (D−1+ωZ⊤

i,(mi)
Zi,(mi))b̂i,
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after dropping the additive constants. Since b̂i maximizes f(bi), it must be the case

that U(b̂i) = 0, which implies that −(D−1 + ωZ⊤
i,(mi)

Zi,(mi))b̂i + ωZ⊤
i,(mi)

(Y i,(mi) −

Xi,(mi)β) + δiα = αeb̂
⊤
i αqi. Thus,

ℓ(bi) = b
⊤
i αe

b̂
⊤
i αqi − eb

⊤
i αqi.

Note that ℓ(bi) depends on bi only through the term b⊤i α and it does not depend

on the individual elements of bi. Therefore, we can make the change of variables

xi = b⊤i α, leading to ℓ(xi) = xie
x̂iqi − exiqi, where x̂i = b̂

⊤
i α. This means that

L′(xi) = ex̂iqi − exiqi, and thus L′(xi) = 0 ⇒ xi = x̂i. To show that x̂i is indeed a

maximum, we need to ensure that the second derivative is negative, which immediately

follows as L′′(xi) = −exiqi < 0. Thus, K = exp
(
b̂
⊤
i αe

b̂
⊤
i αqi − eb̂

⊤
i αqi

)
. To carry out

the rejection algorithm, we first simulate a value bcani from g(bi) and then accept the

proposed value if u ≤ f(bcani )
Kg(bcani ) , that is, if

u ≤ exp

{
(bcani

⊤α− b̂
⊤
i α)e

b̂
⊤
i αqi − (eb

can
i

⊤α − eb̂
⊤
i α)qi

}
,

with u being a random value from the uniform distribution over the interval (0, 1).

3.4.2.2 Conditional posterior distribution of the parameters of the dropout

mechanism, (βs,ψ)

Finally, the parameters of the dropout mechanism are updated via a Metropolis-

Hastings step described below. Let Xs
i,(mi)

be a matrix with the j-th row being

xsij
⊤ = (ω⊤

i , g(yij)
⊤, b⊤i ), δij be the failure indicator on the jth occasion, j = 1, . . . ,mi,

t0i = (ti1, . . . , timi)
⊤ and t1i = (ti2, . . . , timi−1, Ti)

⊤. Note that δij = 0, for j < mi, and

δij = δi, for j = mi. It follows that

f(Ti, δi|Yi(Ti), bi;βs,ψ) =
mi∏
j=1

{
h0(t

1
ij ;ψ) exp

(
xsij

⊤βs
)}δij

× exp
{
−H0(t

1
ij ;ψ)e

xs
ij

⊤βs

+H0(t
0
ij ;ψ)e

xs
ij

⊤βs
}
, (3.35)

since
∫ t1ij
t0ij
h0(u;ψ)du = H0(t

1
ij ;ψ) −H0(t

0
ij ;ψ). Since we have assumed that the base-

line hazard function remains constant within the pre-specified intervals [sg−1, sg), it
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follows that H0(t;ψ) =
∑J

k=1 Ik(t)
{
ψk(t− sk−1) +

∑k−1
g=1 ψg(sg − sg−1)

}
, with Ik(t) =

I(sk−1 ≤ t < sk). Thus, from Equation (3.35), the conditional likelihood of the dropout

model is (Ibrahim et al., 2001, Sahu et al., 1997)

N∏
i=1

f(Ti, δi|Yi(Ti), bi;βs,ψ) =
N∏
i=1

mi∏
j=1

J∏
k=1

{
ψke

xs
ij

⊤βs
}Ik(t1ij)δi

(3.36)

exp

[
− Ik(t

1
ij)

ψk(t1ij − sk−1) +
k−1∑
g=1

ψg(sg − sg−1)

 ex
s
ij

⊤βs

+Ik(t
0
ij)

ψk(t0ij − sk−1) +
k−1∑
g=1

ψg(sg − sg−1)

 ex
s
ij

⊤βs

]
.

However, it is more convenient to write down the likelihood as a product of indepen-

dent contributions over the J intervals. Note that the first term in Equation (3.36)

involves only the set of patients failing in the k-th interval, which is denoted by Dk.

Thus, the likelihood contribution implied is ψDk
k exp

{∑
(i,j)∈Dk

xsij
⊤βs

}
, where Dk is

the number of patients in Dk. By an analogous argument, the second row of Equa-

tion (3.36) can be written as ψk
∑

(i,j)∈R1
k
∆1
ijke

xs
ij

⊤βs

, where ∆1
ijk = min

{
t1ij , sk

}
−

sk−1 (with
∑

(i,j)∈R1
k
∆1
ijk denoting the total person years lived in the k-th inter-

val by all subjects), and R1
k =

{
(i, j) : t1ij ≥ sk−1

}
, whereas the third row can be

written as ψk
∑

(i,j)∈R0
k
∆0
ijke

xs
ij

⊤βs

, where ∆0
ijk = min

{
t0ij , sk

}
− sk−1 and R0

k ={
(i, j) : t0ij ≥ sk−1

}
. With this notation, it follows that

N∏
i=1

f(Ti, δi|Yi(Ti), bi;βs,ψ) =
J∏
k=1

ψDk
k exp

{ ∑
(i,j)∈Dk

xsij
⊤βs

−ψk

 ∑
(i,j)∈R1

k

∆1
ijke

xs
ij

⊤βs

−
∑

(i,j)∈R0
k

∆0
ijke

xs
ij

⊤βs

}.
Assuming independent Gamma(α0k, λ0h) prior distributions for ψk, k = 1, 2, . . . , J ,

the conditional posterior distribution of ψk is a Gamma distribution with shape Dk +

α0k and rate λ0k + Sk, with Sk =
∑

(i,j)∈R1
k
∆1
ijke

xs
ij

⊤βs

−
∑

(i,j)∈R0
k
∆0
ijke

xs
ij

⊤βs

. By

completing the density of the Gamma(Dk + α0k, λ0k + Sk) distribution, we can easily

integrate out the baseline hazard parameters, λk, resulting in the marginal posterior
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distribution of βs

J∏
k=1

f(βs) exp
(∑

(i,j)∈Dk
xsij

⊤βs
)

(∑
(i,j)∈R1

k
∆1
ijke

xs
ij

⊤βs

−
∑

(i,j)∈R0
k
∆0
ijke

xs
ij

⊤βs
)Dk+α0k

.

Using straightforward matrix differentiation, the vector of first-order partial deriva-

tives is U(βs) =
∑J

k=1

{∑
(i,j)∈Dk

xsij − (Dk + α0k)xk

}
− Cs

0
−1(βs − µs0), where xk

is a weighted mean of the covariates over all subjects in the k-th risk set, i.e. xk =

(
∑

(i,j)∈R1
k
xsij∆

1
ijke

xs
ij

⊤βs

−
∑

(i,j)∈R0
k
xsij∆

0
ijke

xs
ij

⊤βs

)/Sk and the information matrix

I(βs) =
J∑
k=1

(Dk + α0k)

{( ∑
(i,j)∈R1

k

xsijx
s
ij
⊤∆1

ijke
xs
ij

⊤βs

−
∑

(i,j)∈R0
k

xsijx
s
ij
⊤∆0

ijke
xs
ij

⊤βs
)
/Sk − xkx⊤

k

}
+Cs

0
−1.

Let (βs,ψ) be the current value of the chain. We propose a value βscan from a multivari-

ate normal distribution with mean obtained from one NR step starting from the cur-

rent value and covariance matrix I(βs)−1. Given the proposed value βscan, we propose

a value ψcan for ψ through its conditional posterior distribution. Then the Metropo-

lis–Hastings acceptance probability only depends on the marginal posterior distribution

of βs.

3.4.3 Extending the Proposed Model to the Bivariate Case

The univariate marker model can be easily extended to a bivariate one, in which

two correlated longitudinally measured markers can be simultaneously modeled. Let

Y c
i,(mc

i )
= (Y c

i1, . . . , Y
c
imc

i
)⊤ and Y v

i,(mv
i )

= (Y v
i1, . . . , Y

v
imv

i
)⊤ be the sequences of measure-

ments of the first and second marker (e.g. CD4 cell count and HIV-RNA viral load,

respectively) collected at times tci1, . . . , t
c
imc

i
and tvi1, . . . , t

v
imv

i
, respectively. Let Xc

i,(mc
i )

and Xv
i,(mv

i )
be the design matrices associated with the fixed effects βB = (βc⊤,βv⊤)⊤

of the two markers and Zc
i,(mc

i )
and Zv

i,(mv
i )

be the corresponding design matrices asso-

ciated with the random effects bBi = (bci
⊤, bvi

⊤)⊤. The model for the evolution of both
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markers is assumed to be of the form

(
Y c
i,(mc

i )

Y v
i,(mv

i )

)
=

 Xc
i,(mc

i )
0

0 Xv
i,(mv

i )

βB +

 Zc
i,(mc

i )
0

0 Zv
i,(mv

i )

 bBi +

(
ϵci,(mc

i )

ϵvi,(mv
i )

)
,

where ϵci,(mc
i )
∼ N(0, ω−1

c Imc
i
) and ϵvi,(mv

i )
∼ N(0, ω−1

v Imv
i
) are the within-subject resid-

uals for both markers, respectively, assumed independent of each other. In addition,

the random effects of the two markers are assumed to jointly follow the multivariate

normal distribution, i.e. bBi ∼ N(0,DB). Thus, the correlation between the two mark-

ers is induced through the correlation of the random effects. The hazard of dropout is

assumed to depend on the most recent values of both markers, as well as on the random

effects. The posterior distribution of all unknown quantities is thus

f(θ, b|D) ∝ f(θ)
N∏
i=1

{
ω
mc

i/2
c ω

mv
i /2

v exp

(
− ωc

2
∥Y c

i,(mc
i )
−Xc

i,(mc
i )
βc −Zc

i,(mc
i )
bci∥2

− ωv
2
∥Y v

i,(mv
i )
−Xv

i,(mv
i )
βv −Zv

i,(mv
i )
bvi ∥2 −

1

2
b⊤i D

B−1
bi

)
|DB|−1/2

× f(Ti, δi|Yci (Ti),Yvi (Ti), bi;θ)
}
,

where Yci (t) and Yvi (t) denote the history of observed responses for both markers up

to time t and θ denotes the whole parameter vector. Assuming independent gamma

prior distributions for the within-subject precisions, i.e. ωc ∼ Gamma(τ c1 , τ
c
2) and

ωv ∼ Gamma(τv1 , τ
v
2 ), it immediately follows that the conditional posterior distributions

for ωc and ωv are the Gamma(nc/2+τ c1 , τ
c
2+
∑N

i=1 ∥Y
c
i,(mc

i )
−Xc

i,(mc
i )
βc−Zc

i,(mc
i )
bci∥2/2)

and Gamma(nv/2+ τv1 , τ
v
2 +

∑N
i=1 ∥Y

v
i,(mv

i )
−Xv

i,(mv
i )
βv −Zv

i,(mv
i )
bvi ∥2/2) distributions,

respectively, with nc =
∑N

i=1m
c
i and nv =

∑N
i=1m

v
i . Defining W i to be a diagonal

(mc
i +mv

i )× (mc
i +mv

i ) matrix with the main diagonal taking the value ωc for the first

mc
i entries and the value ωv thereafter, the conditional posterior distribution of βB

becomes

exp

{
−1

2

N∑
i=1

(Y B
i,(mi)

−XB
i,(mi)

βB −ZB
i,(mi)

bBi )
⊤W i(Y

B
i,(mi)

−XB
i,(mi)

βB −ZB
i,(mi)

bBi )

}
f(βB),
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with XB
i,(mi)

=

 Xc
i,(mc

i )
0

0 Xv
i,(mv

i )

, ZB
i,(mi)

=

 Zc
i,(mc

i )
0

0 Zv
i,(mv

i )

 and Y B
i,(mi)

=

(Y c
i,(mc

i )
⊤,Y v

i,(mv
i )

⊤)⊤. Assuming a N(µ0,C0) prior distribution for βB, it can be

easily shown that the conditional posterior distribution of βB is the N(µ1,C1) dis-

tribution, with C1 = (C−1
0 +

∑N
i=1X

B
i,(mi)

⊤
W iX

B
i,(mi)

)−1 and µ1 = C1{C−1
0 µ0 +∑N

i=1X
B
i,(mi)

⊤
W i(Y

B
i,(mi)

− ZB
i,(mi)

bBi )}. Moreover, similarly to the univariate case,

assuming an Inverse-Wishart prior distribution for DB, i.e. DB ∼ InvWish(A, df), it

can be shown that the conditional posterior distribution of DB is the InvWish(A +∑N
i=1 b

B
i b

B
i
⊤
, df + G) distribution. Assuming that the markers were measured at the

same times (i.e. tcij = tvij = tij , j = 1, . . . ,mi), the dropout likelihood contribution is[
h0(Ti;ψ) exp

{
γ⊤ωi +α

B⊤
bBi + ϕc⊤gc(ycimi

) + ϕv⊤gv(yvimi
)
}]δi

× exp

{
−
mi−1∑
k=1

∫ tik+1

tik

h0(u;ψ)e
γ⊤ωi+α

B⊤
bBi +ϕc⊤gc(ycik)+ϕ

v⊤gv(yvik)du

−
∫ Ti

timi

h0(u;ψ)e
γ⊤ωi+α

B⊤
bBi +ϕc⊤gc(ycimi

)+ϕv⊤gv(yvimi
)
du

}
, (3.37)

where ϕc and ϕv are parameters quantifying the dependence of the hazard of dropout on

the most recent values of the first and second marker, respectively, and the parameter

αB measures the association of the dropout time with the random effects of both

markers. Assuming also that the baseline hazard function is constant within pre-

specified intervals and letting Xs
i,(mi)

be a matrix with the jth row being xsij
⊤ =

(ω⊤
i , g

c(ycij)
⊤, gv(yvij)

⊤, bBi
⊤
),j = 1, 2, . . . ,mi, we can update the parameters of the

dropout model using the algorithm described in 3.4.2.2. If the two markers have not

been measured at exactly the same times, let ti1, ti2, . . . , tiQ be the the distinct ordered

measurement times arising from both markers on subject i. Then we can still use the

algorithm in 3.4.2.2, but we should use the last observed markers’ values in the jth row

of Xs
i,(mi)

, j = 1, 2, . . . Q. Thus, some data manipulation is needed in this case. In our

motivating example, CD4 cell count and HIV-RNA viral load were mostly measured at

exactly the same times.

Finally, the conditional posterior distribution of the random effects is proportional
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to

f(bBi ) ∝ exp

{
− 1

2
bBi

⊤
(DB−1

+ZB
i,(mi)

⊤
W iZ

B
i,(mi)

)bBi

+ bBi
⊤
ZB
i,(mi)

⊤
W i(Y

B
i,(mi)

−XB
i,(mi)

βB) + δib
B
i
⊤
αB − eb

B
i

⊤
αB
qi

}
,(3.38)

where qi is constant with respect to bBi . To update the values of the random effects, we

used the Metropolis-Hastings algorithm, taking the proposal density to be a multivari-

ate normal density with mean obtained from few Newton-Raphson iterations applied

to Equation (3.38) and covariance matrix equal to the inverse curvature evaluated at

the mean of the proposal distribution.

3.5 Simulations

A simulation study was carried out to evaluate the performance of the proposed model,

relatively to the performance of the LN-SREM(RE) and PH-SREM models, under

specific MAR and MNAR dropout mechanisms. 500 datasets, each containing 1000

subjects, were simulated assuming a random intercept and slope model, with its pa-

rameters’ values given in Subsection 3.2.4. The maximum study duration was set to

5 years, with the marker assessed every 3 months. The dropout time was assumed to

follow the exponential distribution, depending on already observed values (the MAR

scenario) or on both observed and unobserved measurements (the MNAR scenario).

Under MAR, the hazard of dropout depended on the most recent observed marker

value yij , i.e. h(t) = exp (3.956− 0.221yij), for tij ≤ t < tij+1, whereas, under MNAR,

the chance of dropout at a given time was, in addition, allowed to depend on fu-

ture observed marker values yij+1, i.e. h(t) = exp {3.956− 0.221(yij + yij+1)/2}, for

tij ≤ t < tij+1. Simulation of such dropout times is feasible using the Inverse CDF

theorem. Marker’s values measured after the simulated dropout time were ignored.

The examined models were: (1) the PH-SREM(CV) model described in Section

3.3, with h(t|b;θ) = h0(t;ψ) exp {αm(t)}, where log{h0(t;ψ)} is modeled through re-

stricted cubic splines with 2 internal knots, (2) a SREM in which the hazard of dropout
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depends explicitly on the random effects, h(t|b;θ) = h0(t;ψ) exp (α0b0i + α1b1i), re-

ferred to as the PH-SREM(RE) model, modeling h0;ψ(t) as in PH-SREM(CV), (3) the

LN-SREM(RE) model, (4) the proposed PH-SREM(LV,RE) model, h{t|b,Yi(t);θ} =

h0(t;ψ) exp (α
′
0b0i + α′

1b1i + ϕyij), tij ≤ t < tij+1, using a constant baseline hazard

function within 4 intervals, and (5) an LMM. It should be noted that under the MNAR

scenario, none of the examined models is correctly specified as dropout is assumed to

depend on the mean of the current and future observed marker values, thus provid-

ing information on the robustness of the SREMs under misspecified MNAR dropout

mechanisms. For both the PH-SREM(CV) and the PH-SREM(RE) model, the STJM

software (Crowther, 2012) was used with 10 quadrature points.

In the proposed model, we used a burn-in period of 1000 iterations and recorded

15000 draws. To adjust for potential auto-correlation in the posterior samples, we

thinned the chain by keeping every third draw, thus producing posterior inferences

based on 5000 draws. The prior distributions used were the following:

• Fixed effects parameters: β⊤ = (β0, β1)
top ∼ N(0, 100I2)

• Survival submodel parameters: (α′
0, α

′
1, ϕ)

top ∼ N(0, 100I3)

• Baseline survival parameters: hk ∼ Gamma(0.001, 0.001), k = 1, . . . , 4

• Covariance matrix of the random effects: D ∼ InvWish{diag(20, 1), 2}

• Within-subjects precision: ω = 1/σ2 ∼ Gamma(0.001, 0.001)

Results from the simulation study are presented in Table 3.1. In the MAR case,

the LMM was nearly unbiased, as expected. All SREMs but the PH-SREM(LV,RE)

model tended to overestimate the marker decline over time, with the bias being more

severe (bias up to 86.59%) in the LN-SREM(RE) and PH-SREM(RE) models. The

proposed model gave nearly unbiased results with the association parameters being on

average close to zero and their 95% CI’s including zero about 95% percent of the time.

Under the MNAR scenario, the LMM estimates were biased, as expected. Focusing on

the slope estimate, it was again almost unbiased in the proposed model, moderately
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biased in PH-SREM(CV), whereas it was seriously biased in the remaining models.

The Monte Carlo SEs were close to the corresponding average model-based SEs in all

SREMs, though the LMM model-based SE was underestimated by 9.64% and 12.18%

for the MAR and MNAR scenarios, respectively.

To examine the mixing properties of the MCMC algorithm used in the proposed

model, we present trace plots of posterior samples of β0, β1 and ω = 1/σ2, and α0,

α1 and ϕ in Figures 3.3 and 3.4, respectively. It can be seen that our algorithm

mixes well and converges soon. There is some small degree of auto-correlation in the

posterior samples (mainly for the population intercept and slope), which is reasonable

considering the fact that the model is particularly complex. Recall, however, that the

auto-correlation in the final sample have reduced since we have thinned the chain by

keeping every third draw, thus producing posterior inferences based on 5000 draws.

To evaluate the performance of the proposed model for bivariate marker data rela-

tively to a bivariate LMM, we ran an additional simulation study. 500 datasets, each

containing 1000 subjects, were simulated including 2 markers, mimicking the CD4 and

VL evolution. The maximum study was set to 5 years, with the markers assessed every

3 months. For the CD4 evolution we assumed a random intercept and slope model on

the square root scale, ycij = (βc0+b
c
i0)+(βc1+b

c
i1)tij+ϵ

c
ij , whereas for the viral load levels

a model of the form yvij = (βv0 + b
v
i0)+(βv1 + b

v
i1)tij+β

v
2 log(tij+κ)+ ϵ

v
ij was used on the

log10 scale. The true values of the population parameters were βc⊤ = (23.712,−1.313)

and βv⊤ = (4.213, 0.190,−0.299). Note also that the term log(tij+κ) was used to cap-

ture the non-linear evolution of the viral load, i.e. VL tends to reach very high levels

soon after infection, then it drops to some minimum levels after a few months and it

increases again but at a much smaller rate. The value of κ was pre-specified through a

grid search using results from linear mixed models fitted to CASCADE data, yielding

κ = 0.013. The within-subject residuals, ϵcij and ϵvij , were assumed to follow inde-

pendent normal distributions with zero means and variances σ2c and σ2v , respectively,

whereas correlation between the two markers was induced through the correlation of

the random effects, i.e. bBi
⊤
= (bci0, b

c
i1, b

v
i0, b

v
i1)

top ∼ N(0,DB). The true value of the
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3.5 Simulations

Table 3.1: Performance of the different models under MAR and MNAR mechanisms:

results from 500 replications with each dataset containing 1000 subjects. The mean es-

timate, percentage bias, empirical coverage probability and the Monte Carlo standard

error are shown. The true values were 23.60 cells/µL and -1.30 cells/µL/year for the

intercept and slope (on the square root scale), respectively. Estimates for the proposed

PH-SREM(LV,RE) model are based on posterior modes.

Model MAR MNAR

PH-SREM(CV) Mean Bias Cov MCSE Mean Bias Cov MCSE

Intercept 23.61 0.03 0.96 0.15 23.64 0.16 0.95 0.16

Slope -1.65 27.06 0.00 0.08 -1.40 7.92 0.75 0.07

Association (α) -0.25 0.01 -0.24 0.01

PH-SREM(RE)

Intercept 23.68 0.33 0.96 0.14 23.71 0.46 0.88 0.16

Slope -2.19 68.45 0.00 0.10 -1.88 44.61 0.00 0.09

Association intercept (α0) -0.26 0.01 -0.26 0.01

Association slope (α1) -0.73 0.06 -0.70 0.06

LN-SREM(RE)

Intercept 23.69 0.36 0.94 0.15 23.71 0.45 0.90 0.16

Slope -2.43 86.59 0.00 0.10 -2.09 60.46 0.00 0.10

Association intercept (λ0) 0.16 0.01 0.17 0.01

Association slope (λ1) 0.54 0.03 0.59 0.03

PH-SREM(LV,RE)

Intercept 23.59 -0.04 0.96 0.15 23.65 0.19 0.96 0.16

Slope -1.31 0.97 0.94 0.11 -1.29 -0.49 0.96 0.10

Association intercept (α′
1) -0.00 0.94 0.02 -0.07 0.02

Association slope (α′
1) -0.01 0.94 0.06 -0.17 0.06

Association observed CD4 (ϕ) -0.22 -1.00 0.95 0.02 -0.15 0.02

Linear mixed model

Intercept 23.60 -0.02 0.96 0.15 23.63 0.13 0.95 0.15

Slope -1.30 0.32 0.92 0.07 -1.10 -15.19 0.15 0.07

Mean, Mean estimate; Cov, 95% Empirical coverage probability; Bias, % bias;

MCSE, Monte Carlo standard error

PH-SREM(CV): hi(t|b;θ) = h0(t;ψ) exp [α {(β0 + b0i) + (β1 + b1i)t}] , t > 0

PH-SREM(RE): hi(t|b;θ) = h0(t;ψ) exp (α0b0i + α1b1i) , t > 0

LN-SREM(RE): log(Ti) = ζ + λ0bi0 + λ1bi1 + r

PH-SREM(LV,RE): hi {t|b,Yi(t);θ} = h0(t;ψ) exp (α
′
0b0i + α′

1b1i + ϕyij) , tij ≤ t < tij+1
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Figure 3.3: Trace plots of posterior samples for the population intercept, the population

slope and the within-subject precision. The burn-in period includes 1000 iterations and

the chain was thinned by keeping every third draw.
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Figure 3.4: Trace plots of posterior samples for the parameters linking the hazard of

dropout with the the observed data, the random intercept and the random slope, ϕ, α0

and α1, respectively. The burn-in period includes 1000 iterations and the chain was thinned

by keeping every third draw.
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covariance matrix of the random effects was

DB =


23.25 −2.48 −1.76 0.53

−2.48 1.98 0.10 −0.30

−1.76 0.10 0.71 −0.16

0.53 −0.30 −0.16 0.12

 ,

whereas the within-subjects variances for CD4 and VL were σ2c = 5.5 and σ2v = 0.23,

respectively.

We considered both MAR and MNAR dropout mechanisms. Under the MAR sce-

nario, the hazard of dropout was assumed to depend on the most recent markers’ values,

i.e. h(t) = exp
(
λ1 + ϕc1y

c
ij + ϕv1y

v
ij

)
for tij ≤ t < tij+1, whereas under the MNAR sce-

nario, the hazard of dropout was also allowed to depend on future markers’ values, i.e.

h(t) = exp
{
λ1 + ϕc1(y

c
ij + ycij+1)/2 + ϕv1(y

v
ij + yvij+1)/2

}
for tij ≤ t < tij+1. Markers’

values measured after the simulated dropout time were excluded.

We fitted the bivariate extension of the proposed model in each simulated dataset,

and for comparison, a bivariate linear mixed model was also fitted. The marker model

was correctly specified in both models. In the proposed model, the survival sub-model

was assumed to be h {t|Yci (t),Yvi (t), bi;θ} = h0(t;ψ) exp
(
ϕcycij + ϕvyvij + αc0b

c
i0 + αc1b

c
i1 ++αv1b

v
i0 + αv1b

v
i1

)
for tij ≤ t < tij+1, with the baseline hazard function assumed to be constant within 4

intervals. The prior distributions used were the following:

• Fixed effects parameters: βB ∼ N(0, 100I5)

• Survival submodel parameters: (αc0, α
c
1, α

v
0, α

v
1, ϕ

c, ϕv)top ∼ N(0, 100I6)

• Baseline survival parameters: hk ∼ Gamma(0.001, 0.001), k = 1, . . . , 4

• Covariance matrix of the random effects: D ∼ InvWish{diag(20, 1, 1, 1), 4}

• Within-subjects precision: ωc = 1/σ2c ∼ Gamma(0.001, 0.001); ωv = 1/σ2v ∼

Gamma(0.001, 0.001)

Results from the simulation study are presented in Table 3.2. Under the MAR

dropout mechanism, the bivariate linear mixed model was unbiased, as expected. The
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proposed model had only small biases (up to 1.7%), while keeping the coverage rates

close to the nominal levels. Under MNAR, the bivariate linear model produced biased

results, which was also to be expected. The proposed model, though, yielded estimates

with relatively small biases (up to 3.8%) again with coverage rates close to the nominal

levels.

3.6 Application to the CASCADE data

We applied the previous models to markers’ data from the CASCADE study, restricting

to Europeans infected through sex between men after 1/1/2004. As we focus on mark-

ers’ trends during untreated HIV infection, measurements taken after cART initiation

or AIDS onset were excluded. Drop-out was assumed to have occurred on the first of

the following dates: date of cART initiation, date of death or date of AIDS diagnosis,

whereas study termination was regarded as a non-informative censoring event. As the

most recent within the study period guidelines on cART initiation were based mainly

on the current observed CD4 counts and partly on VL levels, and the vast majority of

dropouts were due to cART initiation (98%), the MAR assumption seems plausible.

Initially, we fitted the models to CD4 data only. A random intercept and slope

model on the square root scale was used for the marker model, with the time origin being

the HIV seroconversion date. Age at seroconversion, in four groups ([15,25),[25,35),[35,45)

and 45+), was used as a covariate in both the marker and dropout models. In the pro-

posed model, we used linear splines with two knots to model the association between

the hazard of dropout and the observed square root CD4 counts, whereas the baseline

hazard was assumed to be constant within 20 intervals. We used the following prior

distributions:

• Fixed effects parameters: β⊤ = (β0, β1, β2, β3, β4)
top ∼ N(0, 100I5)

• Survival submodel parameters: (γ1, γ2, γ3, α
′
0, α

′
1,ϕ)

top ∼ N(0, 100I8)

• Baseline survival parameters: hk ∼ Gamma(0.001, 0.001), k = 1, . . . , 20
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Table 3.2: Performance of the bivariate proposed model and the bivariate LMM under

MAR and MNAR mechanisms: results from 500 replications with each dataset containing

1000 subjects. The mean estimate, percentage bias, empirical coverage probability and the

Monte Carlo standard error are shown. The true values of βc
0 and βc

1 are 23.712, -1.313,

respectively, and the true values of βv
0 , β

v
1 and βv

2 are 4.213, 0.190, -0.299, respectively.

Estimates for the proposed PH-SREM(LV,RE) model are based on posterior modes.

Model MAR MNAR

Proposed model Mean Bias Cov MCSE Mean Bias Cov MCSE

CD4: Intercept (βc0) 23.71 0.00 0.95 0.15 23.75 0.14 0.95 0.15

CD4: Slope (βc1) -1.32 0.32 0.94 0.11 -1.29 -1.42 0.95 0.10

VL: Intercept (βv0) 4.21 -0.03 0.94 0.03 4.20 -0.19 0.93 0.03

VL: Slope-1 (βv1) 0.19 1.70 0.94 0.03 0.20 3.83 0.94 0.02

VL: Slope-2 (βv2) -0.30 0.05 0.95 0.01 -0.30 0.42 0.95 0.01

CD4:Association intercept (αc0) -0.00 0.95 0.02 -0.06 0.02

CD4: Association slope (αc1) 0.00 0.94 0.09 -0.13 0.08

VL:Association intercept (αv0) 0.02 0.94 0.12 0.11 0.11

VL: Association slope (αv1) 0.05 0.94 0.35 0.30 0.32

Association observed CD4 (ϕc) -0.21 0.19 0.95 0.01 -0.15 0.01

Association observed VL (ϕv) 0.46 -1.50 0.96 0.06 0.36 0.06

Linear mixed model

CD4: Intercept (βc0) 23.72 0.04 0.95 0.15 23.74 0.13 0.95 0.15

CD4: Slope (βc1) -1.31 0.03 0.91 0.08 -1.13 -13.75 0.20 0.07

VL: Intercept (βv0) 4.21 0.00 0.93 0.03 4.21 0.04 0.93 0.03

VL: Slope-1 (βv1) 0.19 -0.47 0.92 0.02 0.16 -14.57 0.64 0.02

VL: Slope-2 (βv2) -0.30 -0.07 0.94 0.01 -0.30 -0.39 0.96 0.01

Mean, Mean estimate; Cov, 95% Empirical coverage probability; Bias, (%) bias;

MCSE, Monte Carlo standard error

Proposed model: h {t|Yci (t),Yvi (t), bi;θ} = h0(t;ψ) exp
(
αc0b

c
i0 + αc1b

c
i1

+αv0b
v
i0 + αv1b

v
i1 + ϕcycij + ϕvyvij

)
for tij ≤ t < tij+1.
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• Covariance matrix of the random effects: D ∼ InvWish{diag(20, 1), 2}

• Within-subjects variance: ω ∼ Gamma(0.001, 0.001)

The first 2000 iterations were discarded as a burn-in period and we recorded 60000

draws thereafter. To reduce the auto-correlation in the posterior samples, we made

inferences using 20000 iterations keeping every third draw. In both the PH-SREM(CV)

and the PH-SREM(RE) models, we used 6 internal knots with 10 quadrature points.

The results are presented in Table 3.3. The effect of age was roughly similar across

all models. However, LN-SREM(RE) and PH-SREM(RE) yielded much steeper CD4

decline estimates compared to the one derived from the LMM. The proposed model

and the PH-SREM(CV) model gave slope estimates closer but still steeper than the

one from the LMM.

As cART initiation depends also on VL, we extended the proposed model incor-

porating the VL levels (on the log10 scale) using natural cubic splines with 3 internal

knots for the fixed effects and two random effects related to the baseline VL values and

the time term, respectively. We used linear splines with one knot to relate dropout to

the observed log10 VL levels. The following prior distributions were used:

• Fixed effects parameters: βB ∼ N(0, 100I13)

• Survival submodel parameters: (γ1, γ2, γ3, α
c
0, α

c
1, α

v
0, α

v
1,ϕ

c,ϕv)top ∼ N(0, 100I12)

• Baseline survival parameters: hk ∼ Gamma(0.001, 0.001), k = 1, . . . , 20

• Covariance matrix of the random effects: D ∼ InvWish{diag(20, 1, 1, 1), 4}

• Within-subjects precisions: ωc = 1/σ2c ∼ Gamma(0.001, 0.001); ωv = 1/σ2v ∼

Gamma(0.001, 0.001)

A bivariate LMM was then fitted for comparison reasons. In the proposed model, the

CD4 decline estimate (-1.39) is much closer to the corresponding one from the bivariate

LMM (-1.27), with the parameters associating random CD4 effects with the hazard of

dropout being very close to zero. Thus, under the assumed model, results suggest that
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once the observed data of both markers have been taken into account, censoring of CD4

counts mainly due to cART initiation seems to be MAR. However, the corresponding

association parameters for VL levels are far from zero, implying that the probability

of dropout may not be fully explained by the observed CD4 and VL measurements; it

might also depend on the underlying subject-specific VL trajectories but not on the

underlying CD4 slope. Note that, these conclusions are conditional on the model being

correctly specified and thus additional sensitivity analyses on key aspects of the model

are required to back up the conclusions.

3.7 Discussion

In this chapter we investigated the performance of a specific class of joint models,

termed shared random effects models, in estimating the rate of change of longitudinal

markers subject to MAR dropout. Recall that as described in Chapter 2, SREMs are

joint models in which the marker and the time-to-dropout process are assumed to be in-

dependent given the random effects, generally corresponding to an MNAR assumption

about the drop-out process. We analytically calculated the bias in the population slope

estimate by both the LN-SREM(RE) and PH-SREM(CV) models, using specific true

MAR dropout mechanisms based on our motivating example. The results showed that

the asymptotic bias in the estimated slope increases as the MAR dropout mechanism

strengthens. In estimating asymptotic bias, the examined SREM models assumed con-

tinuous dropout times, whereas the data were generated under discrete dropout times.

One could argue that the bias in estimated slope was, at least partly, due to this model

misspecification. However, further bias calculations after resolving this misspecification

showed that this is unlikely; what is more, our analytical results were further supported

by our simulation study findings. Motivated by the definition of MNAR, we proposed

an alternative model that allows the hazard of dropout to depend on the last observed

marker value, as well as on the random effects. Due to computational difficulties, we

did not run similar bias calculations for the proposed model. However, we evaluated
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Table 3.3: Modeling temporal trends in CD4 cell counts and VL levels in the CASCADE

data: Results from various SREMs and linear mixed models. Estimates for the proposed

PH-SREM(LV,RE) models are based on posterior modes. All parameters apart from the

association ones refer to the longitudinal marker model.

Model Estimate (SE) 95%CI Model Estimate (SE) 95%CI

LMM Bivariate LMM
Age [15,25) Ref. 23.88 0.15 (23.58,24.18) Age [15,25) Ref. 24.14 0.14 (23.86,24.42)
Age [25,35) -0.06 0.17 (-0.40,0.28) Age [25,35) -0.33 0.16 (-0.64,-0.02)
Age [35,45) -0.45 0.18 (-0.81,-0.09) Age [35,45) -0.73 0.17 (-1.06,-0.41)
Age [45,) -0.86 0.22 (-1.29,-0.42) Age [45,) -1.19 0.21 (-1.60,-0.77)
Slope -1.26 0.03 (-1.32,-1.20) Slope (CD4) -1.27 0.03 (-1.33,-1.21)

PH-SREM(LV,RE) PH-SREM(LV,RE)
(Univariate) (Bivariate)
Age [15,25) Ref. 24.14 0.16 (23.83,24.45) Age [15,25) 24.21 0.14 (23.93,24.49)
Age [25,35) -0.01 0.18 (-0.36,0.34) Age [25,35) -0.30 0.16 (-0.63,0.01)
Age [35,45) -0.40 0.18 (-0.75,-0.04) Age [35,45) -0.71 0.17 (-1.04,-0.39)
Age [45,) -0.83 0.23 (-1.28,-0.38) Age [45,) -1.19 0.22 (-1.62,-0.76)
Slope -1.64 0.04 (-1.73,-1.56) Slope (CD4) -1.39 0.05 (-1.48,-1.30)
Assoc. intercept (α′

0) -0.01 0.01 (-0.03,0.01) Assoc. intercept (αc0) 0.05 0.01 (0.03,0.07)
Assoc. slope (α′

1) -0.36 0.03 (-0.42,-0.29) Assoc. slope (αc1) 0.05 0.04 (-0.04,0.13)
Assoc. obs. CD4 (ϕ1) -0.11 0.01 (-0.14,-0.09) Assoc. intercept (αv0) 0.77 0.06 (0.65,0.88)
Assoc. obs. CD4 (ϕ2) -0.33 0.01 (-0.35,-0.31) Assoc. slope (αv1) 2.17 0.21 (1.76,2.58)
Assoc. obs. CD4 (ϕ3) -0.05 0.01 (-0.07,-0.03) Assoc. obs. CD4 (ϕc1) -0.12 0.01 (-0.14,-0.09)

PH-SREM(CV) Assoc. obs. CD4 (ϕc2) -0.35 0.01 (-0.37,-0.33)
Age [15,25) Ref. 24.00 0.16 (23.70,24.31) Assoc. obs. CD4 (ϕc3) -0.07 0.01 (-0.09,-0.04)
Age [25,35) 0.01 0.18 (-0.36,0.34) Assoc. obs. VL (ϕv1) -0.79 0.04 (-0.87,-0.71)
Age [35,45) -0.42 0.19 (-0.78,-0.05) Assoc. obs. VL (ϕv2) 0.25 0.03 (0.19,0.32)

Age [45,) -0.87 0.23 (-1.32,-0.42)
Slope -1.58 0.04 (-1.65,-1.51)
Assoc. (α) -0.27 0.01 (-0.28,-0.26)

PH-SREM(RE)
Age [15,25) Ref. 24.28 0.16 (23.98,24.59)
Age [25,35) 0.03 0.18 (-0.32,0.38)
Age [35,45) -0.34 0.19 (-0.71,0.03)
Age [45,) -0.79 0.23 (-1.24,-0.34)
Slope -2.08 0.04 (-2.15,-2.00)
Assoc. intercept (α0) -0.25 0.01 (-0.26,-0.24)
Assoc. slope (α1) -0.95 0.03 (-1.01,-0.89)

LN-SREM(RE)
Age [15,25) Ref. 24.39 0.16 (24.08,24.70)
Age [25,35) 0.07 0.18 (-0.29,0.43)
Age [35,45) -0.29 0.19 (-0.67,0.09)
Age [45,) -0.73 0.24 (-1.19,-0.27)
Slope -2.59 0.05 (-2.68,-2.50)
Assoc. intercept (λ0) 0.10 0.00 (0.10,0.11)
Assoc. slope (λ1) 0.50 0.01 (0.48,0.52)

PH-SREM(LV,RE): hi(t) = h0(t) exp
{
α′
0b0i + α′

1b1i + ϕ1yijI(yij ≤
√
250) + ϕ2yijI(

√
250 < yij ≤

√
550)

+ϕ3yijI(yij >
√
550)

}
PH-SREM(CV): hi(t) = h0(t) exp [α {(β0 + b0i) + (β1 + b1i)t}] , t > 0

PH-SREM(RE): hi(t) = h0(t) exp (α0b0i + α1b1i) ,

LN-SREM(RE): log(Ti) = ζ + λ0bi0 + λ1bi1 + r

Biv. PH-SREM(LV,RE): hi(t) = h0(t) exp
{
αc0b

c
0i + αc1b

c
1i + ϕc1y

c
ijI(y

c
ij ≤

√
250) + ϕc2y

c
ijI(

√
250 < ycij ≤

√
550)

+ϕc3y
c
ijI(y

c
ij >

√
550) + αv0b

v
0i + αv1b

v
1i + ϕv1y

v
ijI(y

v
ij ≤ 3.5) + ϕv2y

v
ijI(y

v
ij > 3.5)

}
, for tij ≤ t < tij+1.

Superscripts c and v stand for CD4 and VL, respectively. VL evolution is modeled through natural splines.
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its comparative performance in simulation studies. Using specific MAR and MNAR

dropout scenarios, the proposed model had negligible bias in the estimated slope under

both scenarios; the PH-SREM(CV) model yielded a slope estimate with serious bias

under MAR and moderate bias under MNAR. To the contrary, the SREMs that use a

random-effects parameterization yielded seriously biased results in all cases. It should

be noted, though, that the robustness of the proposed model might be partly attributed

to the type of the assumed true MNAR dropout mechanism. That is, (yij + yij+1)/2

could be decomposed in yij and (yij+1 − yij)/2, with the second part being probably

not that far from the random slope as the evolution of the marker is assumed linear.

Nevertheless, in the MNAR bivariate simulations, the proposed model yielded VL lon-

gitudinal parameter estimates with small biases at most (up to 3.83%), although the

true evolution of VL was highly nonlinear.

We fitted the examined models to recent data from the CASCADE study, with

cART being the dominating reason for dropout. All SREMs, including the proposed

one, yielded a steeper CD4 decline compared to the estimate from the LMM, with

the SREMs using a random-effects parameterization yielding the most extreme results.

It should be highlighted, though, that in the proposed dropout model, the observed

CD4 are modeled through linear splines, whereas the PH-SREM(CV) model assumes

log-linear relationship between the hazard of dropout and the underlying CD4 values.

Thus, differences between the results of these two models might be partly due to the

different functional form used for modeling CD4. As cART initiation depends not only

on CD4 counts but also on VL levels, a bivariate version of the proposed model was

applied and its results were compared to those from a corresponding bivariate LMM.

The two bivariate models yielded similar CD4 slope estimates, indicating that, after

considering also VL levels, the dropout probabilities are unlikely to depend on the

underlying CD4 slope.

There are certain extensions that could be incorporated in the proposed method-

ology. First, subjects can drop out of the study for various other reasons (e.g. due to

AIDS onset or death) and this should have been taken into account. Competing-risk
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joint models, similar to the one proposed by Huang et al. (2010), could be used to

account for that. However, in our motivating example, this would increase the com-

putational complexity unnecessarily, as the proportion of subjects developing AIDS or

dying prior to cART initiation is practically negligible. In this work we only investi-

gated the performance of specific SREMs under specific MAR dropout mechanisms.

Thus, results may not hold for other joint models or other types of MAR dropout.

In addition, other types of model misspecification have not been extensively examined

here.

To summarize, although SREMs have been effectively used to obtain unbiased es-

timates under MNAR dropout, we showed that they can lead to seriously biased slope

estimates under specific forms of MAR dropout; SREMs using a random-effect param-

eterization had the worst performance and should thus be avoided, at least in settings

similar to ours. When SREM(CV) models are applied in cases where the MAR assump-

tion seems reasonable, results should be interpreted with caution. Our proposed model,

which performed well under specific MAR and MNAR dropout mechanisms, could be

applied alternatively, at least as part of a sensitivity analysis, as discrimination between

MAR and MNAR is not possible.
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112



Chapter 4

Misspecifying the covariance

structure in a linear mixed model

under MAR dropout

4.1 Introduction

In the previous chapter we examined the case where SREM models are fitted to in-

complete MAR data. We analytically showed that the bias in the estimated slope can

be substantial and it is related to the amount of MAR dropout. To overcome this

difficulty, we proposed an alternative SREM model that is more robust under specific

both MAR and MNAR dropout mechanisms. However, another source of bias in the

estimates of the population average evolution is due to misspecification of the covari-

ance structure. That is, even when missingness is MAR, likelihood-based modeling of

the observed marker data can provide valid estimates only under the condition that the

whole likelihood model is correct (Rubin, 1976), implying that both the mean evolution

over time and the covariance structure are correctly specified.

In our motivating example of modeling the CD4 count evolution during the HIV

natural history, CD4 measurements taken after ART initiation or AIDS onset are by
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definition excluded, leading to a monotone missing data problem in the form of dropout.

Treatment guidelines up to 2015 suggested ART initiation when CD4 counts drop below

a certain level, thus, missing CD4 data are likely to be MAR, as the dropout proba-

bilities depend on the observed CD4 counts. Under the MAR assumption, modeling

the observed CD4 data is sufficient to obtain valid estimates. However, previous appli-

cation of LMMs to real CD4 data (Stirrup et al., 2015) has shown that the choice of

the covariance structure greatly influences the estimation of the CD4 average rate of

change over time (slope).

LMMs that include random intercept and slope have been typically used by many

researchers to model pre-ART CD4 count data. However, to improve model fit, it

has been suggested to either use splines in the design matrix of the random effects (Ri-

zopoulos, 2012b) or to use a random intercept and slope model along with an additional

stochastic process such as Brownian motion (BM) (Stirrup et al., 2015, Taylor and Law,

1998). In the missing data literature, other alternative methods which relax the distri-

butional assumptions about the covariance structure and/or other aspects of the model

have been proposed (Seaman and Copas, 2009, Tsiatis, 2007), including doubly robust

generalized estimating equations for longitudinal data (Seaman and Copas, 2009); for

an overview of non/semi-parametric methods under missing data, see (Tsiatis, 2007).

However, even under MAR missingness, these methods require explicit modeling of the

missingness mechanism to compute the inverse probability weights. In our motivat-

ing example, and most probably in other disciplines, (i) the dropout times are usually

continuous, (ii) there are multiple dropout mechanisms of potentially different nature

(MCAR, MAR, or MNAR), and (iii) the visiting times are highly irregular resulting

in strongly imbalanced data. Thus, the latter methods cannot be routinely applied

in CD4 natural history data. Other methods assuming a Normal distribution with

unstructured covariance have also been proposed (Lu and Mehrotra, 2010), but they

cannot be easily applied to HIV cohort data due to highly irregular clinic visits. Given

these difficulties, one can focus on LMMs with/without additional stochastic processes,

which can be quite flexible and do not require modeling of potentially complex dropout
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mechanisms.

When comparing the fit of nested LMMs, likelihood ratio tests are frequently ap-

plied. In cases where the null hypothesis lies in the boundary of the parameter space

(e.g. when testing multiple random effects or any subset of them), likelihood ratio

tests should be modified by using, for example, mixtures of chi-square distributions

(Self and Liang, 1987) or permutation tests (Drikvandi et al., 2012). However, when

comparing models that are not nested (e.g. an LMM with splines to an LMM using

random intercept and slope along with a BM process), likelihood ratio tests are ruled

out. Other information criteria such as the AIC or the BIC criterion, can be also used,

but they rely on asymptotics without a straightforward probabilistic interpretation.

An additional difficulty arises from the fact that it is not easy to define the penalty

term in the BIC criterion for mixed models (Keselman et al., 1998, Spiegelhalter et al.,

2002b). Alternatively, one can use Bayesian model comparison, an approach that uses

the marginal likelihoods of the compared models to derive the evidence in favor of one

model against another through their respective posterior model probabilities (PMPs).

Analytic evaluation of the integrals involved in the computation of the marginal likeli-

hoods is almost always impossible. To overcome this difficulty, several procedures based

on Markov chain Monte Carlo methods have been proposed (Han and Carlin, 2001),

however these approaches can be very time-consuming and usually require a substan-

tial amount of programming effort. Methods to numerically approximate PMPs have

been previously proposed for LMMs (Saville and Herring, 2009), but they are based

on Laplace approximations without analytic integration over the fixed effects. Also, to

our knowledge, extensions to LMMs with additional stochastic processes (e.g. the BM

process) have not been implemented so far.

It is known that the PMPs can be sensitive to the choice of prior distributions (Kass

and Raftery, 1995), which is particularly important when there is no prior information

on the parameters to be estimated. Default priors with large variances could be used,

though it should be kept in mind that, as the prior variance increases, the PMP tends

to favor the null model (Kass and Raftery, 1995).
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In this chapter, a) we analytically show that using a covariance structure that is

simpler than the true one can lead to seriously biased population parameters estimates

of an LMM under MAR dropout and b) we adopt a fully Bayesian model comparison

approach based on the posterior model probabilities to discriminate between alternative

models. In Section 4.2, we analytically derive the bias in the marker rate of change over

time (slope) estimate, when the covariance structure is missspecified, as a function of the

model parameters for one specific MAR dropout mechanism. We also compare, under

misspecified covariance structure, the induced bias in three modeling approaches: (i) an

LMM with random intercept and slope; (ii) an LMM with natural splines in the design

matrix of the random effects; and (iii) an LMM with random intercept and slope along

with a stochastic fractional BM process. In Section 4.4, we extend the previous setting

by quantifying the bias in the estimated slope difference between two groups. In Section

4.5, we describe the proposed Bayesian model comparison approach, and we evaluate

its performance relative to other frequently used approaches in a simulation study. All

examined models are also fitted to recent data from the CASCADE study. We compare

their performance using all considered criteria. Section 4.8 presents concluding remarks

along with a discussion of limitations and possible extensions.

4.2 Asymptotic Bias in the Population Average Marker

Rate of Change Estimate Due to Covariance Struc-

ture Misspecification under MAR Drop-out

In this section, we assume the same data generating mechanism as that described in

Sections 3.2 and 3.2.2. That is, Y = (Y1, . . . , YQ)
⊤ denote the marker measurements

intended to be collected at fixed scheduled times t1, . . . , tQ, with M denoting the num-

ber of the observed marker measurements, modelled through a logistic MAR dropout

mechanism of the form P (M = j|M ≥ j,Y (j); c1, c2) =
ec1+c2(Yj−Y ⋆)

1+ec1+c2(Yj−Y ⋆) , for j < Q, and

P (M = Q|M ≥ Q,Y (Q); c1, c2) = 1.

Suppose that the “true average” marker evolution over time can be described
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by a multivariate Normal model with mean E0(Y ) = Xβ0 and covariance matrix

V ar0(Y ) = σ20V 0. Subscript “0” indicates the true parameter values and the whole

parameter vector of the true model is denoted by θ⊤L0 = (β⊤
0 ,θ

⊤
v0), where θv0 de-

notes the true values of the variance components (i.e. σ20 along with the parameters in

V 0). Let us assume that a multivariate Normal model is fitted to the data using the

correct design matrix X, i.e. E(Y ) = Xβ, but using a wrong covariance structure,

V ar(Y ) = σ2V , with θ⊤L = (β⊤,θ⊤v ) denoting the parameter vector of the misspeci-

fied model. We study the asymptotic bias of the maximum likelihood estimator under

the misspecified model, θ̂L, by first deriving the limit in probability of the estimator

θ̂L. Using standard asymptotic theory (Newey and McFadden, 1994), under mild reg-

ularity conditions, the estimator θ̂L converges to the value of θL solving the equation

E0

{
∂
∂θL

log f(Y (M);θL)
}

= 0, with the expectation over the true joint distribution

of the dropout mechanism and the observed data (M,Y (M)), evaluated at the true

parameter values [i.e. θ⊤0 = (β⊤
0 ,θ

⊤
v0, c1, c2), with θ denoting the full parameter vector

of the joint distribution of the marker and dropout processes]. Note that the score

vector of the misspecified model for a random individual from the population is equal

to ∂
∂θL

∑Q
j=1 I(M = j)

{
− log |σ2V (j)|/2− (Y (j) −X(j)β)

⊤V −1
(j)(Y (j) −X(j)β)/2σ

2
}
,

where X(j) and V (j) are the appropriate submatrices of X and V for the jth dropout

pattern, respectively. Our approach is similar in spirit with that of Saha and Jones

(2005), who calculated the asymptotic bias in the parameters of an LMM under MNAR

missingness. Since log f(Y (M);θL) is a quadratic form in Y (j), it can be shown that

the system of equations E0

{
∂
∂θL

log f(Y (M);θL)
}
= 0 simplifies to

∂

∂θL

Q∑
j=1

[
−
a0j log |σ2V (j)|

2
− a0j

2σ2

{
tr(V −1

(j)Ω0(j))

+(µ0(j) −X(j)β)
⊤V −1

(j)(µ0(j) −X(j)β)

}]
= 0, (4.1)

with µ0(j) and Ω0(j) being the true mean and covariance matrix of Y (j)|M = j;θ0,

respectively, and a0j = P (M = j;θ0) the true marginal probability of dropout of the

jth dropout pattern. µ0(j), Ω0(j) and a0j = P (M = j;θ0) are not available in closed
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form unless missing data are MCAR; to estimate them, one could use quasi-Monte

Carlo integration coupled with importance sampling (see Section 3.2.3 of Chapter 3).

We show through direct calculations that, for given θv, the bias in the population

parameters’ estimates from the misspecified model equals Q∑
j=1

a0jX
⊤
(j)V

−1
(j)X(j)

−1
Q∑
j=1

a0jX
⊤
(j)(V

−1
(j) − V

−1
0(j))(µ0(j) −X(j)β0).

Thus, the magnitude of the bias depends on both (i) the difference between the assumed

and “true” covariance matrix V (j) − V 0(j) and (ii) the difference between µ0(j) and

X(j)β0. This implies that if the assumed covariance matrix V (j) is not equal to the

“true” one V 0(j), the bias is equal to zero only if the dropout mechanism is MCAR

(i.e. µ0(j) =X(j)β0, as Y and M are independent under MCAR).

To prove this result, we differentiate Equation (4.1) over β, and we obtain

Q∑
j=1

a0jX
⊤
(j)V

−1
(j)X(j)β −

Q∑
j=1

a0jX
⊤
(j)V

−1
(j)µ0(j) = 0, (4.2)

which has an explicit solution with respect to β. We now use the fundamental result

from the missing data theory stating that the estimates from the correct likelihood

model are consistent under any MAR dropout mechanism, implying that the expec-

tation of the score vector from the correct model over (M,Y (M)) is zero at the true

parameter values. This, in turn, implies that

Q∑
j=1

a0jX
⊤
(j)V

−1
0(j)X(j)β0 −

Q∑
j=1

a0jX
⊤
(j)V

−1
0(j)µ0(j) = 0,

where V 0(j) corresponds to the covariance matrix for the jth dropout pattern under

the correct model. Writing µ0(j) as X(j)β0 +∆(j), we show that

Q∑
j=1

a0jX
⊤
(j)V

−1
0(j)X(j)β0 =

Q∑
j=1

a0jX
⊤
(j)V

−1
0(j)X(j)β0 +

Q∑
j=1

a0jX
⊤
(j)V

−1
0(j)∆(j)

⇒
Q∑
j=1

a0jX
⊤
(j)V

−1
0(j)∆(j) = 0.
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Therefore, based on Equation (4.2), it follows that

Q∑
j=1

a0jX
⊤
(j)V

−1
(j)X(j)(β − β0) =

Q∑
j=1

a0jX
⊤
(j)V

−1
(j)∆(j)

=

Q∑
j=1

a0jX
⊤
(j)(V

−1
0(j) + V

−1
(j) − V

−1
0(j))∆(j),

which, as
∑Q

j=1 a0jX
⊤
(j)V

−1
0(j)∆(j) is always zero, implies that the bias in the estimated

population parameters is equal to

β−β0 =

 Q∑
j=1

a0jX
⊤
(j)V

−1
(j)X(j)

−1
Q∑
j=1

a0jX
⊤
(j)(V

−1
(j) −V

−1
0(j))(µ0(j)−X(j)β0). (4.3)

However, to properly derive the bias, Equation (4.1) should be solved with respect

to the whole parameter vector, θL, e.g. through a Newton-Raphson algorithm. Re-

sults at convergence of the algorithm constitute the values to which θ̂L asymptotically

converges. By comparing these values with the true parameter values, we calculate the

bias in the estimates of the misspecified model.

4.2.1 Numerical Evaluation of the Bias in the Population Average

Marker Rate of Change Estimate

As a specific application of Equation (4.1), we numerically evaluated the bias in the

population slope estimate under misspecified covariance structure in three specific mod-

els:

• Model 1 (M1): LMM including a fractional BM process on top of random inter-

cept and slope: Y = Xβ1 + Z1b1 +W + ϵ1, where b1 ∼ N(0, σ21D1) denotes

the random effects (i.e. random intercept and slope) and ϵ1 ∼ N(0, σ21I(Q))

the within-subject residuals, with X and Z1 being the design matrices of the

fixed and random effects under M1, respectively. W denotes a fractional BM

process defined at times t1, . . . , tQ with mean zero and covariance matrix σ21Σ,

parametrized in terms of two scalar parameters κ and H (Stirrup et al., 2015);

H = 0.5 implies a non-fractional BM process.
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• Model 2 (M2): LMM with natural splines for the random effects: Y = Xβ2 +

Z2b2 + ϵ2, where b2 ∼ N(0, σ22D2) and ϵ2 ∼ N(0, σ22I(Q)). Z2 denotes a natural

spline basis matrix with one internal knot at 1.42 years and boundary knots at 0

and the maximum follow-up time, following the approach described in (Lambert

and Royston, 2009).

• Model 3 (M3): LMM with random intercept and slope: Y = Xβ3 + Z3b3 + ϵ3,

where b3 ∼ N(0, σ23D3) and ϵ3 ∼ N(0, σ23I(Q)). Z3 includes a column of ones

along with a column with the measurement times (i.e. it is equal to Z1).

Two scenarios regarding the true marker model were investigated:

1. Assuming M1 as the true model, the models M2 and M3 were to be fitted. The

true parameter values of M1 were β01 = (23.24,−1.12)⊤, σ201 = 3.66, κ0 = 6.82,

H0 = 0.31, and V ar0(b11) = 23.66, V ar0(b12) = 0.75 and Cov0(b11, b12) = −2.02,

where b1 = (b11, b12)
⊤ denotes the random effects of M1. These values were chosen

to mimic the CD4 count evolution on square root scale, based on results from

models applied to the CASCADE data. In M2, we used one internal knot placed

at 1.42 years (i.e. the median observation time in CASCADE) so as the number

of covariance parameters in M1 and M2 to be comparable (5 and 6, respectively).

2. Assuming M2 as the true model, the models M1 and M3 were to be fitted.

The true parameter values of M2 were β02 = (23.24,−1.12)⊤, σ202 = 5.06 and

V ar0(b21) = 23.51, V ar0(b22) = 2.90, V ar0(b23) = 0.72, Cov0(b21, b22) = 0.98,

Cov0(b21, b23) = 0.97, Cov0(b22, b23) = 0.55, where b2 = (b21, b22, b23)
⊤ denotes

the random effects of M2.

The maximum study duration was assumed to be 5 years, with the marker assessed

every 4 months. To quantify the bias, we solved Equation (4.1) using various values

for the dropout parameters. We set c1 to correspond to the hazard of dropout at 500

CD4 cells/µL, which approximately corresponds to the median CD4 counts at sero-

conversion (i.e. the baseline). We used 3 scenarios regarding the baseline hazard of
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dropout (1%, 10% and 20%) and 21 points for c1 (−0.40,−0.38, . . . , 0), leading to 63

scenarios. When M1 was the true model generating the data, over the 3 baseline hazard

scenarios, the median (IQR, min-max) expected dropout by the end of the study was

29.2% (18.9%-41.1%, 14.0%-50.8%), 84.0% (83.1%-84.3%, 79.4%-84.6%), and 94.3%

(92.6%-96.2%, 91.4%-96.8%) for 1%, 10%, and 20% baseline hazard of dropout, respec-

tively. The corresponding median (IQR, min-max) expected numbers of the observed

measurements were 13.9 (12.9-14.6, 11.8-14.9), 7.4 (7.1-7.8, 6.9-8.1), and 5.1 (4.9-5.2,

4.8-5.3), respectively. The corresponding dropout rates under M2 were identical to the

first decimal digit. The results regarding the percentage bias in the estimated slope

[i.e. 100× (Estimated− True)/True] are presented in Figure 4.1. When c2 = 0, which

corresponds to an MCAR dropout mechanism, the bias in all cases was exactly equal

to zero, confirming the theoretical findings. For a given value of c2, the bias was small-

est when the baseline dropout rate was lowest (1% at baseline), and increased as the

baseline dropout rate increased. For a given baseline dropout rate, the bias increased

with increasing absolute values of c2 (i.e. increasing distance from 0, indicating heavier

dropout). An exception occurred when M1 was the true model and the baseline dropout

rate was high (20% at baseline), in which case the bias in the estimated slope by M3

tended to decrease when c2 became lower than −0.20 (panel A1 of Figure 4.1). The

highest biases were observed when the fitted model had covariance structure simpler

than the true model’s (i.e. fitting an LMM with random intercept and slope when the

true model was an LMM with a fractional BM process on top of random intercept and

slope or an LMM with splines for the random effects; panels A1 and B1 of Figure 4.1,

respectively). The bias was more pronounced when dropout was intense (bias up to

15%). Instead, the models with more complex covariance structures (i.e. models M1

and M2), performed roughly similarly well, with M1 slightly outperforming M2 (panels

B2 and A2 of Figure 4.1; bias up to 6%).

We also considered the case where the maximum number of observations (Q) is

doubled and halved using the same parameters for the dropout mechanism and the

same maximum study duration. In general, most findings were similar; the highest
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Figure 4.1: Asymptotic bias in a marker rate of change (slope) estimate under misspecified

covariance structure. A. True covariance structure based on an LMM with a fractional

BM process on top of random intercepts and slopes (Model M1), while the fitted models

are an LMM with random intercept and slope (Model M3), panel A1, and an LMM with

natural splines for the random effects (Model M2), panel A2. B. True covariance structure

described by M2 and fitted covariance structure by M3 (B1) and M1 (B2). The parameter

c2 measures the change in the log-odds of dropout associated with one unit decrease in

the current marker value. Three scenarios regarding the dropout rate at 500 CD4/µL, i.e.

approximately the CD4 counts at seroconversion (baseline), were presented: 1%, 10% and

20%.
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biases were seen in the estimates from M3 while the trend of increasing bias at higher

dropout rates was also similar. However, the magnitude of the bias tended to increase

when the maximum number of measurements was doubled (Q = 32 measurements) and

decrease when it was halved (Q = 8 measurements). Specifically, for M3, the maximum

percentage bias in the estimated slope increased to 19.3% when Q = 32 and decreased

to 10.7% when Q = 8. Further investigation of the differences in the dropout rates

between the scenarios of Q = 8, 16, and 32, under M1, revealed that the median (IQR,

min-max) percentage of missing observations out of the ones intended to be collected

tended to significantly increase at Q = 32, 69.2% (31.0%-78.8%, 14.1%-84.4%), and to

decrease at Q = 8, 35.8% (11.7%- 49.2%, 3.4%-52.6%), compared to the case of Q =

16, 53.5% (20.3%-67.3%, 7.2%-69.7%). Also, the variance estimates (evaluated at the

scheduled times) from M3 were more seriously biased when Q = 32 as compared to

when Q = 8. Since the degree of bias in the population parameters depends on the

differences between the true variance matrix V 0(j) and the assumed one V (j) for each

dropout pattern, we may expect the bias to be higher at Q = 32 (where the summation

involves more terms) if the assumed covariance structure poorly describes the true

covariance in the data. However, the effect of the frequency of visits on the bias of the

estimated slope requires more thorough investigation to draw a solid conclusion.

So far, we have assumed that the “true average” marker evolution followed a simple

linear trend over time. To investigate the extent of bias due to covariance structure

misspecification under a more complex mean marker evolution, we examined two addi-

tional settings:

1. we assumed that the “true average” marker evolution was piece-wise linear with

one knot at 1.42 years, with the initial slope equal to -1.12 and the ultimate (i.e.

time > 1.42 years) slope equal to -1.22. The fixed effects slope was assumed

to change at the same time point in the fitted models. In general, conclusions

were similar to those previously reported. The detailed results are presented in

Figures 4.2-4.3. It should be mentioned, though, that the highest biases were

observed for the estimated ultimate slope, as dropout was heavier at later times.
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For the ultimate slope, the model M3 had the highest biases (up to around 60%)

yielding substantially steeper rate of decline compared to the true one, whereas

M1 performed better that M2 (biases up to 3% and 20%, respectively). Regarding

the initial slope estimates, the model M3 had again the highest bias, yielding

negatively biased estimates (bias up to -17%).

2. we assumed that the true mean marker evolution was described by natural cubic

splines. Full results are provided in Figure 4.4; most conclusions were in line with

our previous findings.

4.3 Asymptotic bias in the population-averaged marker

trend estimates due to covariance structure misspec-

ification under continuous time MAR drop-out

The extent of bias was also evaluated under a continuous-time dropout mechanism, i.e.

allowing the hazard of dropout to take place at any point in continuous time. Let T

be the dropout time and δ = I(T < tQ) be the dropout indicator, which means that

T ∈ [tj , tj+1) implies that M = j. We assume that the hazard of dropout at time t ∈

[tj , tj+1) depends on the last observed marker value through the model h(t|yj , η1, η2) =

exp (η1 + η2yj). To find the limit in probability of the estimator θ̂L of the misspecified

model, we need to calculate

Q∑
j=1

∫ tj+1

tj

∫
∂

∂θL
log f(Y (j);θL)f0(Y (j), t;θL0, η1, η2)dY (j)dt, (4.4)

where f(Y (j);θL) denotes the likelihood of the misspecified model, whereas f0(Y (j), t;θL0, η1, η2)

denotes the likelihood of the “true” joint distribution of the marker and the dropout

process, evaluated at the true parameter values. Interchanging the order of differenti-

ation and integration, we show that Equation (4.4) is equal to

∂

∂θL

Q∑
j=1

∫
log f(Y (j);θL)f0(Y (j), tj ≤ T < tj+1;θL0, η1, η2)dY (j), (4.5)
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A. True model: Random slopes + BM (Model M1)

Figure 4.2: Asymptotic bias in the estimate of the initial slope of a marker (i.e. the

rate of change up to 1.42 years since baseline) under misspecified covariance structure.

A. True covariance structure based on an LMM with a fractional BM process on top

of random intercepts and slopes (Model M1), while the fitted models are an LMM with

random intercept and slope (Model M3), panel A1, and an LMM with natural splines for

the random effects (Model M2), panel A2. B. True covariance structure described by M2

and fitted covariance structure by M3 (B1) and M1 (B2). The parameter c2 measures the

change in the log-odds of dropout associated with one unit decrease in the current marker

value. Three scenarios regarding the dropout rate at 500 CD4/µL, i.e. approximately the

CD4 counts at seroconversion (baseline), were presented: 1%, 10% and 20%.
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Figure 4.3: Asymptotic bias in the estimate of the ultimate slope of a marker (i.e. the

rate of change after 1.42 years since baseline) under misspecified covariance structure.

A. True covariance structure based on an LMM with a fractional BM process on top

of random intercepts and slopes (Model M1), while the fitted models are an LMM with

random intercept and slope (Model M3), panel A1, and an LMM with natural splines for

the random effects (Model M2), panel A2. B. True covariance structure described by M2

and fitted covariance structure by M3 (B1) and M1 (B2). The parameter c2 measures the

change in the log-odds of dropout associated with one unit decrease in the current marker

value. Three scenarios regarding the dropout rate at 500 CD4/µL, i.e. approximately the

CD4 counts at seroconversion (baseline), were presented: 1%, 10% and 20%.
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Figure 4.4: Asymptotic bias in a marker average evolution estimate under misspecified

covariance structure. A. True covariance structure based on an LMM with a fractional

BM process on top of random intercepts and slopes (Model M1), while the fitted models

are an LMM with random intercept and slope (Model M3), panel A1, and an LMM with

natural splines for the random effects (Model M2), panel A2. B. True covariance structure

described by M2 and fitted covariance structure by M3 (B1) and M1 (B2). The solid

curve represents the “true” marker evolution, whereas the dashed, dotted and dot-dashed

curves show the estimated marker evolution for c2 equal to -0.02, -0.10, -0.40, respectively.

The parameter c2 measures the change in the log-odds of dropout associated with one unit

decrease in the current marker value. The dropout rate at 500 CD4/µL, i.e. approximately

the CD4 counts at seroconversion (baseline), was 20%.
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4. MISSPECIFYING THE COVARIANCE STRUCTURE IN A LINEAR
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where f0(Y (j), tj ≤ T < tj+1;θL0, η1, η2) is a shorthand for
∫ tj+1

tj
f0(Y (j), t;θL0, η1, η2)dt.

Noting that f0(Y (j), tj ≤ T < tj+1;θL0, η1, η2) can be factorized as f0(Y (j)|tj ≤

T < tj+1;θL0, η1, η2)P (tj ≤ T < tj+1;θL0, η1, η2) and letting a0j = P (tj ≤ T <

tj+1;θL0, η1, η2), it is evident that Equation (4.5) is equal to

∂

∂θL

Q∑
j=1

a0jEY (j)|tj≤T<tj+1;θL0,η1,η2

{
log f(Y (j);θL)

}
, (4.6)

which is, in turn, equal to

∂

∂θL

Q∑
j=1

[
−
a0j log |σ2V (j)|

2
− a0j

2σ2

{
tr(V −1

(j)Ω0(j)) + (µ0(j) −X(j)β)
⊤V −1

(j)(µ0(j) −X(j)β)
}]

,

(4.7)

where µ0(j) = E0(Y (j)|tj ≤ T < tj+1;θL0, η1, η2) and Ω0(j) = V ar0(Y (j)|tj ≤ T <

tj+1;θL0, η1, η2). These expectations cannot be obtained in closed form; we approx-

imated them through importance sampling coupled with quasi-Monte Carlo integra-

tion following the procedure described in subsection 3.2.3. Note also that P (tj ≤ T <

tj+1|Y (j); η1, η2) = exp
{
−
∑j−1

k=1 e
η1+η2Yk(tk+1 − tk)

}
−exp

{
−
∑j

k=1 e
η1+η2Yk(tk+1 − tk)

}
and P (T ≥ tQ|Y (j), η1, η2) = exp

{
−
∑Q−1

k=1 e
η1+η2Yk(tk+1 − tk)

}
.

The results are presented in Figures 4.5-4.8. The magnitude of the biases remained

very similar to that obtained using the discrete logistic dropout model.

4.4 Asymptotic Bias in the Slope Difference Estimator

Due to Covariance Structure Misspecification under

MAR Dropout

In this section, we extend the previous setting by considering a two group scenario,

with pg = Pr(G = g), g = 0, 1, being the probability of being in group g (p0 + p1 = 1).

For simplicity, we allow for group-specific marker slopes, but we assume that both

groups have the same population average baseline value. Thus, the fixed-effects design

matrix, X(j),g, now equals
(
1 t(j) I(g = 1)t(j)

)
, where t⊤(j) = (t1, . . . , tj) are the

measurement times up to visit j. The corresponding population parameter vector, βG,
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B. True model: Natural splines on the random effects (Model M2)

A. True model: Random slopes + BM (Model M1)

Figure 4.5: Asymptotic bias in a marker rate of change (slope) estimate under misspecified

covariance structure and continuous-time dropout. A. True covariance structure based on

an LMM with a fractional BM process on top of random intercepts and slopes (Model

M1), while the fitted models are an LMM with random intercept and slope (Model M3),

panel A1, and an LMM with natural splines for the random effects (Model M2), panel

A2. B. True covariance structure described by M2 and fitted covariance structure by M3

(B1) and M1 (B2). The parameter η2 measures the change in the log hazard rate of

dropout associated with one unit decrease in the current marker value. Three scenarios

regarding the hazard dropout rate at 500 CD4/µL, i.e. approximately the CD4 counts at

seroconversion (baseline), were presented: 0.1, 0.30 and 0.50.
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B. True model: Natural splines on the random effects (Model M2)

A. True model: Random slopes + BM (Model M1)

Figure 4.6: Asymptotic bias in the estimate of the initial slope of a marker (i.e. the

rate of change up to 1.42 years since baseline) under misspecified covariance structure and

continuous-time dropout. A. True covariance structure based on an LMM with a fractional

BM process on top of random intercepts and slopes (Model M1), while the fitted models

are an LMM with random intercept and slope (Model M3), panel A1, and an LMM with

natural splines for the random effects (Model M2), panel A2. B. True covariance structure

described by M2 and fitted covariance structure by M3 (B1) and M1 (B2). The parameter

η2 measures the change in the log hazard rate of dropout associated with one unit decrease

in the current marker value. Three scenarios regarding the hazard dropout rate at 500

CD4/µL, i.e. approximately the CD4 counts at seroconversion (baseline), were presented:

0.1, 0.30 and 0.50.
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Figure 4.7: Asymptotic bias in the estimate of the ultimate slope of a marker (i.e. the

rate of change after 1.42 years since baseline) under misspecified covariance structure and

continuous-time dropout. A. True covariance structure based on an LMM with a fractional

BM process on top of random intercepts and slopes (Model M1), while the fitted models

are an LMM with random intercept and slope (Model M3), panel A1, and an LMM with

natural splines for the random effects (Model M2), panel A2. B. True covariance structure

described by M2 and fitted covariance structure by M3 (B1) and M1 (B2). The parameter

η2 measures the change in the log hazard rate of dropout associated with one unit decrease

in the current marker value. Three scenarios regarding the hazard dropout rate at 500

CD4/µL, i.e. approximately the CD4 counts at seroconversion (baseline), were presented:

0.1, 0.30 and 0.50.
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Figure 4.8: Asymptotic bias in a marker average evolution estimate under misspecified

covariance structure and continuous-time dropout. A. True covariance structure based on

an LMM with a fractional BM process on top of random intercepts and slopes (Model

M1), while the fitted models are an LMM with random intercept and slope (Model M3),

panel A1, and an LMM with natural splines for the random effects (Model M2), panel A2.

B. True covariance structure described by M2 and fitted covariance structure by M3 (B1)

and M1 (B2). The solid curve represents the “true” marker evolution, whereas the dashed,

dotted and dot-dashed curves show the estimated marker evolution for η2 equal to -0.02,

-0.10, -0.40, respectively. The parameter η2 measures the change in the log hazard rate

of dropout associated with one unit decrease in the current marker value. The hazard of

dropout at 500 CD4/µL, i.e. approximately the CD4 counts at seroconversion (baseline),

was 0.50.
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is equal to (βG1, βG2, βG3), with the interest mainly lying on βG3, i.e. the difference in

the marker slope between the two groups. We also assume that the “true” covariance

structure is the same across the two groups, with θ⊤L0,G = (β⊤
0,G,θ

⊤
v0,G) denoting the

“true” parameter values of the mean marker evolution and the variance components,

respectively. As in Section 4.2, we assume that the mean evolution is correctly specified

in the fitted model, whereas the covariance structure is misspecified. Let µ0(j),g and

Ω0(j),g be the true mean and covariance matrix of Y (j)|M = j,G = g;θL0,G, c1,g, c2,g,

and a0j,g = Pr(M = j|G = g;θL0,G, c1,g, c2,g) be the true dropout probabilities for

group g, g = 0, 1. To derive the limit in probability of the misspecified model, we need

to solve, with respect to θL,G, the following equation

∂

∂θL,G

1∑
g=0

Q∑
j=1

pga0j,g

[
−

log |σ2GV (j),G|
2

− 1

2σ2G

{
tr(V −1

(j),GΩ0(j),g)

+ (µ0(j),g −X(j),gβG)
⊤V −1

(j),G(µ0(j),g −X(j),gβG)

}]
= 0, (4.8)

where θ⊤L,G = (β⊤
G,θ

⊤
v,G) denotes the parameters of the two-group misspecified model

and σ2GV (j),G is the covariance matrix of the misspecified model for the jth dropout

pattern. Recall that the covariance structure is assumed to be the same in the two

groups.

4.4.1 A special case: Same Slope and Drop-out Mechanism in the

Two Groups

We consider a special case in which the marker slope, as well as the dropout mechanisms,

are the same in the two groups. Under these assumptions, it follows that a0j,g = a0j ,

µ0(j),g = µ0(j), and Ω0(j),g = Ω0(j), g = 0, 1. Thus, Equation (4.8) becomes equal to

∂

∂θL,G

Q∑
j=1

{
−
a0j log |σ2GV (j),G|

2
− a0j

2σ2G
tr(V −1

(j),GΩ0(j))

}

=
∂

∂θL,G

Q∑
j=1

1∑
g=0

{
pga0j
2σ2G

(µ0(j) −X(j),gβG)
⊤V −1

(j),G(µ0(j) −X(j),gβG)

}
, (4.9)
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where the equality holds element by element. Let us also denote the solution to Equa-

tion (4.9) by θ⋆L,G
⊤ = (β⋆G

⊤,θ⋆v,G
⊤). Then the slope difference is consistently estimated

if the third element of β⋆G (i.e. β⋆G3) is equal to zero; otherwise the estimate is biased.

Let θ⋆L
⊤ = (β⋆⊤,θ⋆v

⊤) be the limit in probability of the estimates from the mis-

specified model assuming no time×group interaction. Note that β⋆ is now of length

two since it only includes the population-average constant and the time-slope. It easily

follows that

∂

∂θ⋆L

Q∑
j=1

{
−
a0j log |σ⋆2V ⋆

(j)|
2

− a0j
2σ⋆2

tr(V ⋆
(j)

−1Ω0(j))

}

=
∂

∂θ⋆L

Q∑
j=1

{
a0j
2σ⋆2

(µ0(j) −X(j)β
⋆)⊤V ⋆

(j)
−1(µ0(j) −X(j)β

⋆)

}
, (4.10)

where X(j) includes a column of ones and a column with the measurement times and

σ⋆2V ⋆
(j) is the covariance matrix for the jth dropout pattern of the misspecified model

assuming no time×group interaction at θ⋆v; note that
∂S(θ⋆L)
∂θ⋆L

is interpreted to mean

∂S(θL)
∂θL

∣∣
θL=θ

⋆
L
.

We now show that the estimates from the misspecified model that assumes a

time×group interaction converge to the same corresponding values as the model that

does not include the interaction term, with the third element of β⋆G being equal to

zero, i.e. the slope difference is consistently estimated. To do so, we need to verify

that (β⋆⊤, 0) and θ⋆v solve Equation (4.9). Note that by first setting the third element

of βG (i.e. the slope difference parameter) equal to zero and evaluating the partial

derivatives of Equation (4.9) for all the parameters except for the slope difference at

θ⋆L
⊤ = (β⋆⊤,θ⋆v

⊤), we end up with Equation (4.10), which holds by definition. This

is evident upon observing that X(j),g(β
⋆⊤, 0)⊤ = X(j)β

⋆, for any g = 0, 1. Moreover,

as it will be shown, evaluating Equation (4.9) at θ⋆L
⊤ = (β⋆⊤,θ⋆v

⊤) and differentiating

over βG3, the slope difference parameter, the resulting solution over βG3 is zero, which

proves that (β⋆⊤, 0) and θ⋆v simultaneously solve Equation (4.9). Therefore, we have

proved that if the true slope difference is zero and the dropout mechanism is the same

in the two groups, the estimate of the slope difference from the misspecified model
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is unbiased, irrespective of the covariance structure of the true data model and the

parameters of the dropout mechanism.

To verify this result, we first set all the parameters except for the slope difference

parameter equal to θ⋆L
⊤ = (β⋆⊤,θ⋆v

⊤), i.e. the values to which the estimates from the

model without time×group interaction converge, and then evaluate the derivatives over

βG3, resulting in

∂

∂βG3

Q∑
j=1

1∑
g=0

pga0j
2σ⋆2

µ0(j) −
(
X(j) t(j)G

) β⋆
βG3


⊤

V ⋆
(j)

−1

µ0(j) −
(
X(j) t(j)G

) β⋆
βG3

 = 0,

where G = I(g = 1) is an indicator of Group 1, X(j) =
(
1 t(j)

)
, and σ⋆2V ⋆

(j) is the

covariance matrix for the jth dropout pattern of the misspecifed model assuming no

time×group interaction at θ⋆v. It is thus implied that

∂

∂βG3

Q∑
j=1

1∑
g=0

pga0j
2σ⋆2

(µ0(j) −X(j)β
⋆ − βG3Gt(j))

⊤V ⋆
(j)

−1(µ0(j) −X(j)β
⋆ − βG3Gt(j)) = 0

⇒ p1
2σ⋆2

∂

∂βG3

Q∑
j=1

a0j

{
(µ0(j) −X(j)β

⋆)⊤V ⋆
(j)

−1(µ0(j) −X(j)β
⋆) + β2G3t

⊤
(j)V

⋆
(j)

−1t(j)

− 2βG3t
⊤
(j)V

⋆
(j)

−1(µ0(j) −X(j)β
⋆)

}
= 0

⇒
Q∑
j=1

a0j

{
2βG3t

⊤
(j)V

⋆
(j)

−1t(j) − 2t⊤(j)V
⋆
(j)

−1(µ0(j) −X(j)β
⋆)
}
= 0

⇒ β⋆G3 =

 Q∑
j=1

a0jt
⊤
(j)V

⋆
(j)

−1t(j)

−1
Q∑
j=1

a0jt
⊤
(j)V

⋆
(j)

−1(µ0(j) −X(j)β
⋆), (4.11)

where β⋆G3 is the value to which the estimate of the slope difference converges. Taking

into account that (β⋆,θ⋆v) solve Equation (4.10), it follows that

∂

∂β⋆

Q∑
j=1

{ a0j
2σ⋆2

(µ⊤
0(j)V

⋆
(j)

−1µ0(j) + β
⋆⊤X⊤

(j)V
⋆
(j)

−1X(j)β
⋆ − 2β⋆⊤X⊤

(j)V
⋆
(j)

−1µ0(j))
}
= 0,
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which further implies that

Q∑
j=1

a0jX
⊤
(j)V

⋆
(j)

−1(µ0(j) −X(j)β
⋆) = 0

⇒
Q∑
j=1

a0j

1⊤

t⊤(j)

V ⋆
(j)

−1(µ0(j) −X(j)β
⋆) = 0

⇒

∑Q
j=1 a0j1

⊤V ⋆
(j)

−1(µ0(j) −X(j)β
⋆)∑Q

j=1 a0jt
⊤
(j)V

⋆
(j)

−1(µ0(j) −X(j)β
⋆)

 =

0

0

 .

Therefore, we have shown that
∑Q

j=1 a0jt
⊤
(j)V

⋆
(j)

−1(µ0(j) −X(j)β
⋆) = 0, which, based

on Equation (4.11), proves that β⋆G3 is equal to zero.

4.4.2 Numerical Evaluation of the Bias in the Slope Difference Esti-

mate

We numerically quantified the bias in the slope difference estimates, considering the

models described in Subsection 4.2.1. The “true” slope difference was assumed to be

0; i.e. β0,G = (23.24,−1.12, 0)⊤, whereas the dropout mechanisms applied to both

groups were allowed to be different, assuming though common baseline dropout rate,

i.e. P (M = j|M ≥ j,Y (j),g, G = g; c1, c2,g) =
exp{c1+c2,g(Yj,g−Y ⋆)}

1+exp{c1+c2,g(Yj,g−Y ⋆)} . For group 0 we

assumed that c2,0 = −0.24, whereas for group 1 we varied c2,1 from 0 to -0.40. The

results are presented in Figure 4.9. It is evident that the bias is exactly equal to zero

when c2,1 = c2,0, i.e. the two groups have the same dropout mechanism, confirming our

analytical findings. The bias increased as the difference between c2,1 and c2,0 increased,

i.e. it became higher when the two dropout mechanisms were substantially different.

Furthermore, similarly to the results in Section 4.2, the highest biases in the estimated

slope difference were obtained by model M3 (absolute bias up to 0.16). The models

M1 and M2 performed similarly well, though the bias in the estimated slope difference

was slightly lower in the former (up to 0.03) compared to the latter (up to 0.06).
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Figure 4.9: Asymptotic bias in the marker slope difference estimate between two groups

under misspecified covariance structure. A. True covariance structure based on an LMM

with a fractional BM process on top of random intercepts and slopes (Model M1), while

the fitted models are an LMM with random intercept and slope (Model M3), panel A1,

and an LMM with natural splines for the random effects (Model M2), panel A2. B. True

covariance structure described by M2 and fitted covariance structure by M3 (B1) and M1

(B2). The parameter c2,1 measures the change in the log-odds of dropout associated with

one unit decrease in the current marker value for group 1, whereas the corresponding value

for group 0 is c2,0 = −0.24. Three scenarios regarding the common dropout rate at 500

CD4/µL, i.e. approximately the CD4 counts at seroconversion (baseline), were presented:

1%, 10% and 20%.
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4.5 Bayesian model comparison

To compare two non-nested models, i.e. LMMs with different covariance structures,

we adopt a fully Bayesian model comparison approach based on the probability of a

given model being true given the data, i.e. the posterior model probability (PMP).

To refer to subjects, we reintroduce subscript i assuming also that the visit times may

differ between subjects. Recall that, given Mi = mi, the observed marker measure-

ments on subject i are Y ⊤
i,(mi)

= (Yi1, Yi2, . . . , Yimi), collected at times ti1, . . . , timi .

We aim to compare the fit of the models M1 and M2. Letting θL1 be the whole pa-

rameter vector of M1 and N the number of subjects, the marginal likelihood of M1

is f(Y 1,(m1), . . . ,Y N,(mN )|M1) =
∫ ∏N

i=1 f(Y i,(mi)|M1;θL1)f(θL1|M1)dθL1, i.e. the

marginal posterior probability of the data given the model or, equivalently, the expec-

tation of the likelihood over the prior. Assuming equal prior probabilities on the two

models, the posterior model probability (PMP) of M1 is equal to

P (M1|Y 1,(m1), . . . ,Y N,(mN )) =
f(Y 1,(m1), . . . ,Y N,(mN )|M1)

f(Y 1,(m1), . . . ,Y N,(mN )|M1) + f(Y 1,(m1), . . . ,Y N,(mN )|M2)
.

In the case of comparing K competitive models, the PMP of Mj , j = 1, 2, . . . ,K,

is given by f(Y 1,(m1), . . . ,Y N,(mN )|Mj)/
∑K

k=1 f(Y 1,(m1), . . . ,Y N,(mN )|Mk). Then the

model with the highest posterior probability is preferred.

For comparing M1 and M2, we assume the following prior distributions; ω = 1/σ2 ∼

Gamma(a0, λ0) and β|ω ∼ N(µ0, ω
−1C0). In M1 we assume a N(µκ, σ

2
κ) distribution

truncated on (0,∞) and a Beta(α1, α2) distribution for the parameters κ and H of the

fractional BM process, respectively. As it will be shown, β and ω can be analytically

integrated out (integration over β is equivalent to the method used to obtain the

restricted maximum likelihood estimates for LMMs), with the marginal likelihood being

∫
c(θv)Γ

(n
2
+ a0

)(
λ0 +

∑N
i=1 Y

⊤
i,(mi)

V −1
i,(mi)

Y i,(mi)

2
+
µ⊤
0 C

−1
0 µ0

2
− µ⊤

1 C
−1
1 µ1

2

)−(n
2
+a0)

dθv,

(4.12)

where n =
∑N

i=1mi, and V i,(mi) is equal to (I(mi) +Z1i,(mi)D1Z
⊤
1i,(mi)

+Σi,(mi)) and

(I(mi)+Z2i,(mi)D2Z
⊤
2i,(mi)

) for models M1 and M2, respectively. Recall that Σi,(mi) is
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associated with the covariance matrix of the fractional BM process. Also, C1 and µ1 are

equal to (C−1
0 +

∑N
i=1X

⊤
i,(mi)

V −1
i,(mi)

Xi,(mi))
−1 andC1(C

−1
0 µ0+

∑N
i=1X

⊤
i,(mi)

V −1
i,(mi)

Y i,(mi)),

respectively, while c(θv) is equal to (2π)
−n/2∏N

i=1 |V i,(mi)|−1/2λa00 |C0|−1/2|C1|1/2f(θv)/Γ(a0),

where f(θv) is the prior distribution on θv.

We first derive the marginal likelihood of the M1 model; for M2, the process is

very similar. Recall that the form of the model is Y i,(mi) = Xi,(mi)β1 + Z1i,(mi)b1i +

W i,(mi) + ϵ1i,(mi), where b1i ∼ N(0, ω−1
1 D1) is the vector of the random effects and

ϵ1i,(mi) ∼ N(0, ω−1
1 I(mi)) is the vector of the within-subjects errors, assumed to be inde-

pendent of one another. Also, ω1 denotes the within-subjects precision, i.e. the inverse

of the within-subjects variance in the M1 model. We denote the fractional BM process

defined at the measurement times of the ith subject ti1, . . . , timi by W i,(mi), which

implies thatW i,(mi) ∼ N(0, ω−1
1 Σi,(mi)), where Σi,(mi) is parametrized in terms of two

parameters, κ and H. With these definitions and V i,(mi) = I(mi)+Z1i,(mi)D1Z
⊤
1i,(mi)

+

Σi,(mi), the observed likelihood of the ith subject is equal to

f(Y i,(mi);θL1) = (2π)−mi/2|ω−1
1 V i,(mi)|

−1/2

× exp
{
−ω1

2
(Y i,(mi) −Xi,(mi)β1)

⊤V −1
i,(mi)

(Y i,(mi) −Xi,(mi)β1)
}

= (2π)−mi/2ω
mi/2
1 |V i,(mi)|

−1/2 × exp

{
− ω1

2

(
Y ⊤
i,(mi)

V −1
i,(mi)

Y i,(mi)

−2β⊤
1X

⊤
i,(mi)

V −1
i,(mi)

Y i,(mi) + β
⊤
1X

⊤
i,(mi)

V −1
i,(mi)

Xi,(mi)β1

)}
.

Therefore, letting n =
∑N

i=1mi, where N denotes the number of subjects, the full

likelihood is equal to

f(Y 1,(m1), . . . ,Y N,(mN );θL1) = (2π)−n/2ω
n/2
1

N∏
i=1

|V i,(mi)|
−1/2

× exp

{
− ω1

2

N∑
i=1

(
Y ⊤
i,(mi)

V −1
i,(mi)

Y i,(mi)

−2β⊤
1X

⊤
i,(mi)

V −1
i,(mi)

Y i,(mi) + β
⊤
1X

⊤
i,(mi)

V −1
i,(mi)

Xi,(mi)β1

)}
.
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Assuming a N(µ0, ω
−1
1 C0) distribution for the fixed effects

f(β1|ω1) = (2π)−p/2ω
p/2
1 |C0|−1/2 exp

{
−ω1

2
(β⊤

1 C0
−1β1 − 2β⊤

1 C0
−1µ0 + µ

⊤
0 C0

−1µ0)
}

as well as a Gamma distribution for ω1, f(ω1) =
λ
α0
0

Γ(α0)
ωα0−1
1 exp(−λ0ω1), and integrat-

ing the likelihood over the prior distribution of the fixed effects results in

∫
f(Y 1,(m1), . . . ,Y N,(mN );θL1)f(β1|ω1)f(ω1)f(θv1)dβ1

= (2π)−
n+p
2

N∏
i=1

|V i,(mi)|
−1/2 λα0

0

Γ(α0)
f(θv1)|C0|−1/2ω

n+p
2

+α0−1

1

× exp

{
−
(
λ0 +

1

2

N∑
i=1

Y ⊤
i,(mi)

V −1
i,(mi)

Y i,(mi)

+
1

2
µ⊤
0 C0

−1µ0

)
ω1

}∫
exp

[
− ω1

2

{
β⊤
1

(
C0

−1 +
N∑
i=1

X⊤
i,(mi)

V −1
i,(mi)

Xi,(mi)

)
β1

− 2β⊤
1

(
C0

−1µ0 +

N∑
i=1

X⊤
i,(mi)

V −1
i,(mi)

Y i,(mi)

)}]
dβ1. (4.13)

For notation simplicity, let

C1
−1 =

(
C0

−1 +

N∑
i=1

X⊤
i,(mi)

V −1
i,(mi)

Xi,(mi)

)

µ1 = C1

(
C0

−1µ0 +
N∑
i=1

X⊤
i,(mi)

V −1
i,(mi)

Y i,(mi)

)
.

After completing the probability density function of the N(µ1, ω
−1
1 C1), it can be shown

that Equation (4.13) is equal to

(2π)−n/2
N∏
i=1

|V i,(mi)|
−1/2 λα0

0

Γ(α0)
f(θv1)|C0|−1/2|C1|1/2ωn/2+α0−1

1 × exp

{
−
(
λ0

+
1

2

N∑
i=1

Y ⊤
i,(mi)

V −1
i,(mi)

Y i,(mi) +
1

2
µ⊤
0 C0

−1µ0 −
1

2
µ⊤
1 C1

−1µ1

)
ω1

}
. (4.14)
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Integrating also ω1 out of Equation (4.14), we have that∫
f(Y 1,(m1), . . . ,Y N,(mN );θL1)f(β1|ω1)f(ω1)f(θv1)dβ1dω1

= (2π)−n/2
N∏
i=1

|V i,(mi)|
−1/2 λα0

0

Γ(α0)
f(θv1)|C0|−1/2|C1|1/2

∫
ω
n/2+α0−1
1 exp

{
−
(
λ0

+
1

2

N∑
i=1

Y ⊤
i,(mi)

V −1
i,(mi)

Y i,(mi) +
1

2
µ⊤
0 C0

−1µ0 −
1

2
µ⊤
1 C1

−1µ1

)
ω1

}
dω

= (2π)−n/2
N∏
i=1

|V i,(mi)|
−1/2 λα0

0

Γ(α0)
f(θv1)|C0|−1/2|C1|1/2

× Γ(n/2 + α0)

/(
λ0 +

1

2

N∑
i=1

Y ⊤
i,(mi)

V −1
i,(mi)

Y i,(mi) +
1

2
µ⊤
0 C0

−1µ0 −
1

2
µ⊤
1 C1

−1µ1

)n/2+α0

.(4.15)

When the LMM with splines for the random effects is used, the only difference is that

Σi,(mi) is missing, i.e. V i,(mi) = I(mi) + Z2i,(mi)D2Z
⊤
2i,(mi)

. To also integrate out the

variance components (i.e. θv), we used adaptive quadrature for the BM model and

quasi-Monte carlo integration for the LMM with natural splines for the random effects.

In summary, both the fixed effects and the within-subjects precision are explicitly

integrated out, which makes our method feasible irrespective of the dimension of the

fixed effects. Instead, the variance components, the dimension of which is usually

expected to be up to 5 or 6, are integrated out through numerical methods.

Among all prior specifications, the prior distribution on D needs the greatest care

as it may involve a large number of parameters, which are also constrained such that

the resulting matrix D to be positive definite. To deal with this issue, we applied

the Inverse-Wishart IW (A, ν) prior distribution for D, which has the advantage of

being very popular in real data applications while easy to use, as it only requires the

specification of A and the associated degrees of freedom, ν. It has been suggested that

a good default specification is to take A to be equal to a best guess at D (based on

literature and/or historical data from past studies) times the degrees of freedom, ν

(Natarajan and Kass, 2000). For the degrees of freedom, a small value greater than

q − 1 is generally suggested, since the variance is non-decreasing in ν.

As an alternative prior specification, we also considered the separation strategy

141



4. MISSPECIFYING THE COVARIANCE STRUCTURE IN A LINEAR
MIXED MODEL UNDER MAR DROPOUT

approach proposed by Barnard et al. (2000), which factorized D as diag(S)Rdiag(S),

where S is a q × 1 vector of standard deviations, diag(S) is a diagonal matrix with

diagonal elements S, and R is the q × q correlation matrix. Based on Barnard et al.

(2000), we assumed a prior distribution for R that has marginally uniform pairwise

correlations and independent truncated Normal distributions for the variances in D.

Equation (4.12) can be approximated using numerical methods. For example, when

the number of the random effects is relatively small (e.g. in M1 which involves 5

parameters to be integrated out), the adaptive quadrature procedure can be efficiently

applied to approximate the integrals after centering and scaling the integral based

on the posterior mode and the inverse curvature at the mode (Pinheiro and Bates,

1995). If the number of the random effects is large, the number of points at which

the marginal likelihood is to be computed grows exponentially, which can make the

use of the adaptive quadrature method computationally inefficient. In such cases, we

can follow quasi Monte Carlo integration (Morokoff and Caflisch, 1995) coupled with

importance sampling using a prespecified number of draws, taking the importance

density to be multivariate normal with mean equal to the posterior mode and covariance

matrix equal to the inverse curvature at the posterior mode (Pinheiro and Bates, 1995).

However, the previous methods require an unrestricted parameter space. To do

so, we can reparameterize D in terms of the unique elements of its matrix logarithm

(Leonard and Hsu, 1992) and calculate the resulting prior distribution on the matrix

logarithm scale. However, this requires the Jacobian of the transformation, which is

described below.

Jacobian of a Transformation to the Matrix Logarithm of D

Firstly, we assume thatD ∼ IW (A, ν). To obtain the probability density of the matrix

logarithm (Leonard and Hsu, 1992) of D, we need to derive the Jacobian | ∂ vech(e
Y )

∂ vech(Y )⊤
|,

where vech stands for the “vector-half” operation, Y is the matrix logarithm of D and

eY the matrix exponential of Y . To simplify the calculations, it is often much easier to

work with the “Vec” operator, i.e. | ∂ vec(e
Y )

∂ vec(Y )⊤
|. It is well known that one efficient way to
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compute the matrix exponential eY is through the eigenvalue-eigenvector decomposi-

tion. Writing Y = U∆U⊤, where U = [u1, . . . ,uq] is the orthogonal matrix including

the normalized eigenvectors (i.e. u⊤
j uj = 1) and ∆ is the diagonal matrix with the

respective eigenvalues λ1, λ2, . . . , λq on the main diagonal, then eY = Ue∆U⊤, where

e∆ is still a diagonal matrix, including eλ1 , eλ2 , . . . , eλq on the main diagonal. By the

product rule of differentiation and the definition of the commutation matrix Harville

(1997), i.e. vec(D⊤) =Kqq vec(D), it is evident that

∂ vec(eY )

∂ vec(Y )⊤
= (U∆⊗ I) ∂ vec(U)

∂ vec(Y )⊤
+ (U ⊗U)

∂ vec(e∆)

∂ vec(Y )⊤
+ (I ⊗U∆)Kqq

∂ vec(U)

∂ vec(Y )⊤
.

(4.16)

Thus, we need to derive ∂ vec(U)
∂ vec(Y )⊤

and ∂ vec(e∆)
∂ vec(Y )⊤

. As shown by Magnus (1985),
∂uj

∂ vec(Y )⊤
=

u⊤
j ⊗ (λjI − Y )+, where Y + denotes the Moore-Penrose inverse of Y . Since U =∑q
j=1 ujϵ

⊤
j , where ϵj is the jth column of I, it easily follows from the basic properties

of the vec operation that ∂ vec(U)
∂ vec(Y )⊤

=
∑q

j=1(ϵj ⊗ I)
∂uj

∂ vec(Y )⊤
.

As Y uj = λjuj by definition, differentiating both sides over Yik (i.e. the (i, k)th

element of Y ) and pre-multiplying by u⊤
j , we arrive at

∂λj
∂Yik

= ϵ⊤i uju
⊤
j ϵk, which is in

turn equal to the (k, i)th element of uju
⊤
j . Therefore, using matrix notation,

∂λj
∂Y =

uju
⊤
j , which is equivalent to

∂λj
∂ vec(Y ) = vec(uju

⊤
j ). Denoting byEj an n×nmatrix with

all its entries equal to zero except for the identity in the (j, j)th entry, e∆ =
∑q

j=1Eje
λj .

Therefore, ∂ vec(e∆)
∂ vec(Y )⊤

=
∑q

j=1 vec(Ej)e
λj ∂λj
∂ vec(Y )⊤

. Thus, based on the above, ∂ vec(eY )
∂ vec(Y )⊤

can be easily computed.

Finally, using the chain rule along with the definition of the duplication matrix

Gq, vec(Y ) = Gq vech(Y ) Harville (1997), ∂ vech(eY )
∂ vech(Y )⊤

can be shown to be equal to

Hq
∂ vec(eY )
∂ vec(Y )⊤

Gq, where Hq = (G⊤
q Gq)

−1G⊤
q .

To apply the above procedure for the separation strategy prior distribution, we need

to first calculate the implied prior distribution for D. The separation strategy prior

distribution was described in detail in Barnard et al. (2000). However, the normalizing

constants of the distributions were not presented, as the focus was mainly on obtaining a

posterior sample through MCMC methods. The analytic form of the prior distribution

for D is presented below.
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To obtain a distribution for a correlation matrix R that has uniform marginal

correlations, Barnard et al. (2000) started from a standard Inverse-Wishart distribution,

IW (Iq, ν), i.e.

f(D|ν) = |Iq|
ν
2

2
νq
2 Γq(

ν
2 )

|D|−
ν+q+1

2 exp

{
−1

2
tr(D−1)

}
,

where Γq(x) = π
1
2(

q
2)
∏q
i=1 Γ{x + (1 − i)/2} is the multivariate generalization of the

Gamma function. Letting c1 = 1/
{
2

νq
2 Γq(

ν
2 )
}
be the normalizing constant,

f(D|ν) = c1|D|−
ν+q+1

2 exp

{
−1

2
tr(D−1)

}
.

As mentioned in Barnard et al. (2000), the Jacobian of D → (S,R) is given by

2q
∏q
i=1 s

q
i . Thus, the density function of the distribution of (S,R) is equal to

f(S,R|ν) = c12
q|diag(S)Rdiag(S)|−

ν+q+1
2

q∏
i=1

sqi exp

[
−1

2
tr
{
diag(1/S)R−1diag(1/S)

}]

= c12
q|R|−

ν+q+1
2 |diag(S)|−(ν+q+1)

q∏
i=1

sqi exp

{
− rii

2s2i

}

= c12
q|R|−

ν+q+1
2

q∏
i=1

s
−(ν+1)
i exp

{
− rii

2s2i

}
,

where rii is the (i, i)th element of R−1. Then the marginal distribution of R is given

by

f(R|ν) =

∫
f(S,R|ν)dS

= c12
q|R|−

ν+q+1
2

q∏
i=1

∫ ∞

0
s
−(ν+1)
i exp

{
− rii

2s2i

}
dsi.

To evaluate
∫∞
0 s

−(ν+1)
i exp

{
− rii

2s2i

}
dsi we make the change of variables ξ = rii

2s2i
, imply-

ing that dsi = − rii
1/2

ξ−3/2

23/2
dξ. After some algebra, the integral

∫∞
0 s

−(ν+1)
i exp

{
− rii

2s2i

}
dsi

can be shown to be equal to rii
− ν

2 2
ν
2
−1
∫∞
0 ξ

ν
2
−1 exp(−ξ)dξ, which is in turn equal to

rii
− ν

2 2
ν
2
−1Γ(ν2 ), by the definition of the Gamma function. Thus, it can be easily shown

that the marginal distribution of R is equal to

f(R|ν) =
Γ(ν2 )

q

Γq(
ν
2 )

|R|−
ν+q+1

2

q∏
i=1

rii
− ν

2 .
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Barnard et al. (2000) showed that setting the degrees of freedom equal to q + 1 (i.e.

ν = q + 1) results in a uniform marginal distribution for rij , the (i, j)th element of R.

This is the approach (ν = q + 1) that we adopt when using the separation strategy

prior.

We also specified independent prior distributions for the variances S2, which, to-

gether with the correlation matrix R, completely specify the covariance matrix D.

However, to get a proper distribution for D, we need to also calculate the Jacobian

of the transformation of (S2,R) to D. For simplicity we present results for q = 3.

Assume that

D =


D11 D21 D31

D21 D22 D32

D31 D32 D33

 .

Let x⊤ = (D11, D22, D33, r21, r31, r32) and y⊤ = (D11, D22, D33, D21, D31, D32), thus

x can be written as x⊤ = h(y) = (D11, D22, D33,
D21√
D22D11

, D31√
D33D11

D32√
D33D22

), which

implies that

∂x

∂y⊤ =



∂D11

∂D11

∂D11

∂D22

∂D11

∂D33

∂D11

∂D21

∂D11

∂D31

∂D11

∂D32

∂D22

∂D11

∂D22

∂D22

∂D22

∂D33

∂D22

∂D21

∂D22

∂D31

∂D22

∂D32

∂D33

∂D11

∂D33

∂D22

∂D33

∂D33

∂D33

∂D21

∂D33

∂D31

∂D33

∂D32

∂D21/
√
D22D11

∂D11

∂D21/
√
D22D11

∂D22

∂D21/
√
D22D11

∂D33

∂D21/
√
D22D11

∂D21

∂D21/
√
D22D11

∂D31

∂D21/
√
D22D11

∂D32

∂D31/
√
D33D11

∂D11

∂D31/
√
D33D11

∂D22

∂D31/
√
D33D11

∂D33

∂D31/
√
D33D11

∂D21

∂D31/
√
D33D11

∂D31

∂D31/
√
D33D11

∂D32

∂D32/
√
D33D22

∂D11

∂D32/
√
D33D22

∂D22

∂D32/
√
D33D22

∂D33

∂D32/
√
D33D22

∂D21

∂D32/
√
D33D22

∂D31

∂D32/
√
D33D22

∂D32



=



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1√
D22D11

0 0

0 1√
D33D11

0

0 0 1√
D33D22


Expanding the determinant of ∂x

∂y⊤
in terms of the cofactors, it follows that det

(
∂x
∂y⊤

)
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is equal to the determinant of
1√

D22D11
0 0

0 1√
D33D11

0

0 0 1√
D33D22

 , (4.17)

which is equal to
∏3
i=1D

−2/2
ii . By using mathematical induction, it can be shown that

in general the Jacobian is equal to
∏q
i=1D

−(q−1)/2
ii .

4.6 Simulation study

To evaluate the performance of the proposed method in correctly identifying the true

model, relatively to the performance of the AIC and BIC criteria, we conducted a

simulation study. Three simulation scenarios were considered for the number of subjects

(N = 50, 100, 200); for each scenario we simulated 500 datasets from the models M1 and

M2, using the parameter values of the data generating mechanisms given in Subsection

4.2.1. Regarding the parameters of the dropout mechanism, we set c1 = 1.714 and

c2 = −0.174, with Y ⋆ = 0.

For both models, the prior distributions for β and ω were the N(0, 100I2) and

Gamma(0.001, 0.001) distributions, respectively. The prior distribution for κ was the

N(0.5, 15) distribution truncated to zero, whereas the prior distribution for H was

the Beta(1.5, 1.5) distribution. For D, we considered both the IW and the separa-

tion strategy prior distributions. For the IW distribution, we set ν equal to q + 2,

which ensures a finite expected value. In M1, we set A = 4 × diag(5, 0.15) with

vech(D01) = (6.46,−0.55, 0.20)⊤ being the corresponding true value, whereas in M2

we took A = 5×diag(4, 0.40, 0.10) with vech(D02) = (4.65, 0.19, 0.19, 0.57, 0.11, 0.14)⊤

being the corresponding true value, where vech is the “vector-half” operation stacking

the columns of the lower triangular part of a symmetric matrix. In the separation

strategy prior, for both M1 and M2, we assumed a prior distribution for R resulting

in marginally uniformly distributed pairwise correlations (Barnard et al., 2000). In

M1, we assumed independent truncated Normal distributions for the diagonal elements
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of D with means 5 and 0.15, and associated variances 20 and 0.15, respectively. For

the model M2, we also assumed independent truncated Normal distributions for the

diagonal elements of D with means 4, 0.40, and 0.10, along with associated variances

20, 0.50, and 0.06, respectively. Equation (4.12) was approximated by the adaptive

quadrature rules with 5 points for M1, and by quasi-Monte Carlo integration combined

with importance sampling using 10000 draws for M2.

For the penalty term of the BIC criterion, we considered the following approaches:

(i) the total number of observations, (ii) the total number of subjects and (iii) the

“effective sample size” as proposed by Jones (2011) (i.e. the sum of the inverse of the

correlation matrix corresponding to V i,(mi), summed over subjects). For each simulated

dataset, we recorded the preferred model by all the examined model comparison criteria.

The results are presented in Table 4.1. For the M1 model, non-convergence of the

algorithm used to calculate the posterior mode occurred 1.6% and 0.8% of the time

for N = 50 and N = 100, respectively. As expected, the performance of all examined

criteria improved as the sample size increased. When M1 was the true data generating

model, all versions of the BIC criterion performed better than the proposed method and

the AIC criterion; the proposed method using the separation strategy approach slightly

outperformed the IW approach (for N=50, the true model was correctly identified

94.7% and 92.9% of the time, respectively), whereas the AIC criterion had slightly

worse performance (for N=50, the true model was correctly identified 90.6% of the

time). On the other hand, under M2, all versions of the BIC criterion performed

poorly compared to the proposed method and the AIC criterion, especially the one

using the total sample size in the definition of the penalty term. The proposed method

yielded better results when using the IW rather than the separation strategy approach,

especially in small samples (for N=50, the true model was correctly identified 91.0%

and 84.0% of the time, respectively). Thus, overall, the IW prior distribution seems to

work better than the separation strategy approach in correctly identifying the “true”

model in our simulation set-up.
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Table 4.1: Proportion of time the true model was selected according to each criterion.

500 replications with N individuals per dataset.

True Model: LMM with random slopes + BM (M1) True Model: LMM with natural splines (M2)

N PMP(IW) PMP(SEP) AIC BIC1 BIC2 BIC3 PMP(IW) PMP(SEP) AIC BIC1 BIC2 BIC3

50 92.9 94.7 90.6 97.2 95.2 96.0 91.0 84.0 87.4 60.8 77.6 74.6

100 98.0 99.2 97.2 99.8 99.0 99.2 97.4 94.8 96.8 84.8 92.2 91.6

200 99.8 100.0 99.6 100.0 100.0 100.0 99.6 99.2 99.6 97.8 98.8 98.8

Abbreviations: LMM, linear mixed model; BM Brownian motion; PMP(IW), criterion based on posterior model probability using

the Inverse-Wishart prior; PMP(SEP), criterion based on posterior model probability using the separation strategy prior; BIC1,

using total sample size; BIC2, using number of subjects; BIC3, using “effective sample size” Jones (2011).

To evaluate the sensitivity of our proposed method to the choice of prior distribu-

tions, we recalculated the PMPs using different prior hyperparameters. Specifically, for

the IW approach, we multiplied and also divided the scale matrix A by 1.5, whereas

for the separation strategy approach, we multiplied and divided the prior means of the

variances by 1.5. As an additional scenario, we set the degrees of freedom of the IW

distribution equal to q+1, and we increased the prior variances in the separation strat-

egy approach by 50%. The results are presented in Table 4.2, showing that when the

sample size is small (N=50), the IW approach is slightly more sensitive to the choice

of hyperparameters than the separation-strategy one.

4.7 Application

To illustrate our methodology, we used CD4 data from the CASCADE study up to

5 years since HIV seroconversion, restricting to Europeans (according to the country

of birth) infected through sex between men after 1/1/2004. As suggested by many

researchers, we used the square root transformation of the CD4 counts, which leads to

an almost linear average within-patient decline over time since seroconversion and to

an approximate Normal distribution. In total, 6,984 patients met our inclusion criteria;

4,374 (62.6%) were truncated due to ART initiation, 97 (1.4%) due to AIDS onset or

death, 660 (9.5%) were considered as lost to follow up, whereas the remaining 1853
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Table 4.2: Proportion of time the true model was selected according to each criterion. 500

replications with N individuals per dataset. Three sensitivity analysis scenarios regarding

the choice of prior hyper-parameters were performed. Sensitivity analysis scenario (I):

The scaled matrixA in the Inverse-Wishart approach and the prior means for the variances

in the separation strategy approach were increased by 50%, Sensitivity analysis scenario

(II): The scaled matrix A in the Inverse-Wishart approach and the prior means for the

variances in the separation strategy approach were decreased by 50%, and Sensitivity

analysis scenario (III): The degrees of freedom ν in the Inverse-Wishart approach were

set to q+1, whereas the prior variances for the variances in the separation strategy approach

were increased by 50%.

True Model: model M1 True Model: model M2

Sensitivity analysis scenario (I)

N PMP(IW) PMP(SEP) PMP(IW) PMP(SEP)

50 95.7 95.9 85.8 82.2

100 98.6 99.4 96.8 94.2

200 100.0 100.0 99.6 99.2

Sensitivity analysis scenario (II)

50 91.5 94.5 91.6 86.1

100 97.8 99.0 97.2 95.2

200 99.8 100.0 99.6 99.4

Sensitivity analysis scenario (III)

50 94.7 95.7 88.4 81.6

100 98.2 99.2 97.0 94.4

200 100.0 100.0 99.6 99.2

Abbreviations: Model M1, linear mixed model with random slopes + fractional BM;

Model M2, linear mixed model with natural splines for the random effects;

PMP(IW), criterion based on posterior model probability using the Inverse-Wishart prior;

PMP(SEP), criterion based on posterior model probability using the separation strategy prior.
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(26.5%) patients were administratively censored at the end of their follow-up time. As

the proportion of potentially informative dropouts (death or AIDS onset) is practically

negligible, throughout this chapter we assume that the mechanisms leading to incom-

plete data are MAR. Visual inspection of the data also reveals great heterogeneity of

the individual trajectories over time as well as highly imbalanced frequency of clinic vis-

its, with the median number of observations per individual being 4, the corresponding

number ranging from 1 to 27 and the IQR being 2-7.

We applied the models M1, M2, and M3, along with an LMM using a non-fractional

BM process on top of random intercepts and slopes (M4). In all models, we assumed

a linear population CD4 decline on the square root scale and we also used age at

seroconversion, in four groups, [15-25), [25-35), [35,45) and [45,) years, as a covariate

affecting both the CD4 counts at HIV seroconversion (i.e. baseline) and the CD4

decline.

We applied our proposed method based on the IW and the separation strategy

approaches, the AIC criterion, and the three versions of the BIC criterion to identify the

most plausible model. The prior distributions assigned to β were independent Normal

distributions with variances equal to 100. The prior means for the population intercept

and slope were set to 23
√

cells/µL and -1.30
√

cells/µL/year, respectively, whereas

the prior means for the effects of age on the baseline CD4 values and the CD4 slopes

were set to zero; for ω, we assumed the Gamma(0.001, 0.001) distribution. The results

are presented in Table 4.3. The preferred model according to all criteria was the model

M1; among all the examined models, the PMPs of M1 were 99.998% and 99.656% based

on the IW and the separation prior approach, respectively. Also, the likelihood ratio

test comparing the fractional BM model to the non-fractional one yielded a strongly

significant result (p<0.001). The effects of age on the baseline CD4 values were of

similar magnitude in all models. All models also showed that the CD4 decline tends to

accelerate at higher ages. However, the CD4 slope estimate in the baseline group, i.e.

[15-25) years, was quite steeper in M3 (-0.94) compared to the corresponding one in M1

(-0.74) and in M2 (-0.85). Moreover, the differences between the slope estimates from
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the M3 model and the corresponding estimates from the remaining models were more

pronounced at higher ages (Table 4.3), where further analyses revealed higher dropout

rate.

4.8 Discussion

In this chapter, we evaluated the performance of specific LMMs in estimating trends of

longitudinal markers under misspecified covariance structure and specific MAR dropout

mechanisms. We analytically calculated the asymptotic bias in the estimated marker

trends of LMMs using covariance structures that have been used in real data appli-

cations. The results showed that assuming a simple “random intercept and slope”

structure when the true one is substantially more complex can lead to serious biases,

especially when dropout is intense (e.g. starting ART at higher CD4 counts, thus earlier

on during the course of the disease) and the average marker profiles are more elaborate

than a linear slope. We also compared the approach of using a fractional BM process

on top of a random intercept and slope structure with the approach of using natural

splines for the random effects in terms of their robustness to misspecified covariance

structure. Assuming that the former is the true data generating model, we calculated

the bias in the fixed-effect estimates when the latter is fitted to data, and vice versa.

For the estimation of a single slope, the two approaches performed almost equally well,

though when the “true” population average marker evolution was based on piece-wise

linear or natural splines, the fractional BM model yielded less biased estimates. We also

considered a two groups scenario; the bias in the estimated slope difference increased

with higher MAR dropout probabilities, as well as when the dropout mechanisms were

substantially different in the two groups. We also proved analytically that if the true

slope difference is zero and the dropout mechanism is the same in the two groups, the

estimate of the slope difference from the misspecified model is always unbiased. Al-

though we focused on discrete dropout mechanisms, additional results suggested similar

degree of bias when the dropout times are continuous.

151



4. MISSPECIFYING THE COVARIANCE STRUCTURE IN A LINEAR
MIXED MODEL UNDER MAR DROPOUT

Table 4.3: Modeling CD4 cell count trends in the CASCADE data. Results from linear

mixed models with different covariance structures. The most plausible model is identified

by the examined model comparison criteria.

Parameter M3 M2 M4 M1

Intercept
√
cells/µL

Age:[15,25) 23.48 (23.14,23.81) 23.35 (23.02,23.69) 23.28 (22.94,23.61) 23.27 (22.94,23.61)
Age:[25,35)/[15,25) 0.32 (-0.07,0.71) 0.34 (-0.05,0.73) 0.35 (-0.04,0.74) 0.35 (-0.04,0.74)
Age:[35,45)/[15,25) 0.04 (-0.37,0.45) 0.03 (-0.38,0.44) 0.02 (-0.38,0.43) 0.02 (-0.39,0.42)
Age:[45,)/[15,25) -0.29 (-0.79,0.21) -0.32 (-0.82,0.18) -0.30 (-0.8,0.2) -0.31 (-0.81,0.19)

Rate of change
√
cells/µL/year

Age:[15,25) -0.94 (-1.09,-0.78) -0.82 (-0.97,-0.68) -0.75 (-0.89,-0.6) -0.74 (-0.89,-0.59)
Age:[25,35)/[15,25) -0.34 (-0.52,-0.16) -0.34 (-0.52,-0.17) -0.35 (-0.52,-0.18) -0.35 (-0.52,-0.18)
Age:[35,45)/[15,25) -0.43 (-0.62,-0.24) -0.37 (-0.55,-0.19) -0.38 (-0.56,-0.2) -0.38 (-0.55,-0.2)
Age:[45,)/[15,25) -0.51 (-0.76,-0.27) -0.45 (-0.69,-0.22) -0.45 (-0.69,-0.22) -0.45 (-0.68,-0.22)
Kappa 5.06 5.46
Hurst 0.36
PMP(IW) (%) <0.001 <0.001 0.002 99.998
PMP(SEP) (%) <0.001 <0.001 0.344 99.656
AIC 173988.21 173513.98 173234.7 173224.85
BIC-1 174089.34 173640.39 173344.26 173342.84
BIC-2 174070.42 173616.75 173323.76 173320.77
BIC-3 174072.38 173619.26 173325.86 173323.01

For the population intercept and rate of change estimates, the [15,25) age group is the baseline group, with the

remaining estimates denoting the differences compared to the estimates for the baseline age group.

Abbreviations: BIC1, using total sample size; BIC2, using number of subjects; BIC3, using “effective sample size”

Jones (2011); PMP(IW), posterior model probability using the Inverse-Wishart prior distribution; PMP(SEP): pos-

terior model probability using separation strategy prior distribution;

M3, random intercepts and slopes; PMP(IW): D ∼ IW{diag(5, 0.5), 4}; PMP(SEP): diag(D) ∼

N{(5, 0.5), diag(20, 0.15)} truncated on (0,∞).

M2, natural splines on the random effects; PMP(IW): D ∼ IW{diag(4, 0.40, 0.10), 5}; PMP(SEP): diag(D) ∼

N{(4, 0.40, 0.10), diag(20, 0.50, 0.06)} truncated on (0,∞).

M4, Brownian motion + random intercepts and slopes; κ ∼ N(0.5, 15) truncated on (0,∞); PMP(IW): D ∼

IW{diag(5, 0.15), 4}; PMP(SEP): diag(D) ∼ N{(5, 0.15), diag(20, 0.15)} truncated on (0,∞).

M1, fractional Brownian motion + random intercepts and slopes; H ∼ Beta(1.5, 1.5) and κ ∼ N(0.5, 15) truncated

on (0,∞); PMP(IW): D ∼ IW{diag(5, 0.15), 4}; PMP(SEP): diag(D) ∼ N{(5, 0.15),diag(20, 0.15)} truncated on

(0,∞).

152



4.8 Discussion

We have adopted Bayesian model comparison based on the posterior model prob-

abilities to distinguish between the approach of using splines in the design matrix of

the random effects and the approach of adding a BM process to a random intercept

and slope structure in real data applications. To our knowledge, this is the first work

considering Bayesian model comparison based on the posterior model probabilities of

LMMs with/without additional BM processes that can have any, and potentially dif-

ferent, random-effects specifications. Similarly to the method applied to obtain the

restricted maximum likelihood estimates, the fixed effects were explicitly integrated

out, resulting in a usually low dimensional integral over the variance components. Our

approach, though, relies on numerical integration methods based either on the adap-

tive quadrature method or on quasi Monte Carlo along with importance sampling to

approximate the integrals over the variance components. Since the integrand is cen-

tered at the posterior mode and scaled based on the inverse curvature at the posterior

mode, both approaches generalize the Laplace method in some sense. A limitation of

the adaptive quadrature is that the number of evaluations grows exponentially as the

number of dimensions increases, in which cases, quasi Monte Carlo using a prespecified

number of draws can be used instead, though it might need a relatively large number of

draws to achieve the desired accuracy. Two popular choices for the prior distribution

of the covariance matrix of the random effects were considered: (i) the Inverse-Wishart

distribution and (ii) the separation strategy approach. The performance of the pro-

posed method was compared to the AIC and BIC criteria through simulation studies.

Overall, the Inverse-Wishart approach worked better than the separation strategy one,

though the former seemed to be slightly more sensitive to the choice of prior hyper-

parameters in small samples. The AIC criterion had better overall performance than

the BIC criterion, with the version of BIC using the total sample size having by far

the worst performance, especially in small samples. Similar findings regarding the AIC

and BIC criteria were observed in Keselman et al. (1998).

The examined models were fitted to recent data from the CASCADE study, with

treatment initiation being the dominant reason for dropout. The preferred model by all
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criteria was the one including a fractional BM process on top of random intercept and

slope. The slope estimate in the simple random intercept and slope model was quite

steeper compared to that from the fractional BM model, with the difference being

more pronounced at higher ages where the dropout rate was higher. Given that the

fractional BM model was shown to be the most plausible one, the results confirmed

our analytical findings suggesting biased slope estimates when the fitted covariance

structure is simpler than the true one. Thus, methods that are based on results from

simple random intercept and slope models fitted to CASCADE CD4 data (Pantazis

et al., 2019b) could be reevaluated applying either LMMs including also a BM process

or LMMs with splines for the random effects.

In this chapter, we compared, in terms of bias in the fixed-effect estimates, some

frequently used approaches for modeling the covariance structure. We assumed specific

MAR dropout mechanisms with the parameters of the “true” data generating mech-

anisms based on our motivating example. However, our approach can be very easily

modified to examine any covariance structure of LMMs with/without an additional BM

process, other types of MAR dropout, and different data generating settings (e.g. dif-

ferent “true” parameter values and frequency of visits). The effects on other aspects of

inference, though, such as the type I error of Wald tests or the mean squared error, have

not been addressed in this paper. Moreover, in this project, we have considered only

fixed observation/visiting times, for an interesting exploration of MAR in continuous

time, we refer to Farewell et al. (2018). Another source of bias not considered in this

paper occurs when the random effects deviate from the normal distribution. Neverthe-

less, in random slope models, it has been shown that the fixed-effect estimates turn out

to be quite robust to violations of the normality assumption (Song et al., 2002). The

effect of misspecified covariance structure could also be investigated in a joint modeling

framework assuming MNAR missingness. However, as fitting joint models is not trivial,

including additional stochastic processes might lead to convergence problems.

To conclude, we have shown that assuming an over-simplistic covariance structure

can lead to seriously biased fixed-effect estimates in LMMs, with the magnitude of the
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bias increasing with increasing probability of MAR dropout. To reduce the induced

bias in the fixed-effect estimates of an LMM due to potentially misspecified covariance

structure, the approach of adding a BM process on top of a random intercept and

slope structure or the approach of using an LMM with natural splines for the random

effects could be adopted as we have shown that they lead to much smaller bias under

specific covariance structure misspecifications, though the BM approach had better

performance in most cases. To discriminate between different approaches of modeling

the covariance structure, our proposed Bayesian model comparison had better overall

performance than the AIC or BIC criteria in simulation studies, and thus it could be

applied in real data applications, especially when there is prior information on the

parameters to be estimated.
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Chapter 5

Joint modeling of longitudinal

and competing-risk data

accounting for failure cause

misclassification

5.1 Introduction

In the previous chapter, we investigated the bias of fixed-effect estimates of an LMM

when fitted to incomplete data due to MAR dropout under covariance structure mis-

specification. We showed that assuming a simple random intercept and slope structure

when the true one is more complex can lead to serious bias especially when the MAR

dropout probabilities are high. Two alternative approaches were formally compared in

terms of bias under covariance structure misspecifications: (a) a fractional BM process

on top of a random intercept and slope structure, and (b) a more elaborate random-

effect specification through natural splines of time. We also proposed a Bayesian model

comparison criterion to identify the model with the best fit to the data.

In this chapter, we are concerned with joint modeling of longitudinal marker data
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and multiple dropout types (competing risks) when the true failure cause is not ob-

served for all individuals. Recall that, as it is mentioned in Chapter 2, in SREM-based

joint models, the mechanism causing termination of data collection is assumed to be

MNAR as it depends on the random effects, which are unobserved. In Section 5.2, we

present the proposed approach of jointly modeling a continuous disease marker over

time and competing risks, where the failure submodels are specified in terms of CIFs

parametrized through a general family of transformation models. The extension of the

proposed model when there is failure cause misclassification is described in Section 5.3.

In Section 5.4, we describe how, solely on the basis of the proposed model, a poste-

rior sample for multistate/transition probabilities of mutually exclusive states defined

by unobserved marker data and competing risks can be obtained. We also propose a

marginalized deviance information criterion to assess the fit of the models in Section

5.5. In Section 5.6, we carry out a simulation study to evaluate the performance of the

proposed approach, whereas, the proposed methodology is applied to real data from the

East Africa International Epidemiologic Databases to Evaluate AIDS (IeDEA) study.

Finally, Section 5.8 presents concluding remarks and discusses limitations along with

possible extensions.

5.2 Proposed model

5.2.1 Marker model

For the longitudinal marker model, we use an LMM model of the form yi(t) = x
⊤
i (t)β+

z⊤i (t)bi + ϵi(t) (Laird and Ware, 1982). Recall that x⊤
i (t) and z

⊤
i (t) denote the fixed

and random effects design matrices at time t, respectively, β and bi ∼ N(0,D) denote

the fixed and random effects, respectively. Also, ϵi(t) ∼ N(0, ω−1) denotes the within-

subject residuals with ω being the within-subject precision. As usually assumed in

the joint modelling literature (Rizopoulos, 2012b), the “true” marker value at time t is

defined asmi(t) = x
⊤
i (t)β+z

⊤
i (t)bi and the history of “true” values up to time t are de-

noted byMi(t) = {mi(s) : 0 ≤ s ≤ t}. The vector of the marker measurements intended
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to be collected on the ith subject is denoted by Y ⊤
i = {Yi(ti1), Yi(ti2), . . . , Yi(tiQi)},

where ti1, . . . tiQi are the observation times and Qi is the number of marker measure-

ments on subject i. The corresponding design matrices for the fixed and random effects

at times ti1, . . . tiQi are denoted by Xi and Zi respectively. The parameters relating to

the marker model are denoted by θ⊤L = (β⊤, vech(D)⊤, ω) and b⊤ = (b1, . . . , bN ).

5.2.2 Competing-risk survival models

Let T ⋆i be the time to the first event for the ith individual and Ki ∈ {1, 2, . . . ,K} be the

corresponding failure cause. We propose to model the CIFs for all causes simultaneously

conditional on the “true” marker values, i.e.

Fik{t|Mi(t),wik;θtk} = Pr{T ⋆i ≤ t,Ki = k|Mi(t),wik;θtk}, (5.1)

where wik is a vector of baseline covariates for cause k and individual i and θtk is

the parameter vector for cause k. Note that (5.1) depends on the longitudinal model

parameters (β and bi) through the history of the true marker values, Mi(t). Since all

CIFs are modelled simultaneously, the all-cause CIFs should be bounded by 1 at each

failure time. To formally account for these boundness constraints, we assume that all

CIFs increase over time up to a common point τi at which the all-cause CIF approaches

1 and they become plateau thereafter, i.e.

Fik{t|Mi(t),wik;θtk} = FMik {t|Mi(t),wik;θtk}I(0 ≤ t < τi)

+ FMik {τi|Mi(τi),wik;θtk}I(t ≥ τi), (5.2)

where FMik {t|Mi(t),wik;θtk} is a certain parametric model for the CIF of cause k con-

ditional on the true marker values, Mi(t), and some baseline covariates, wik. To

be more formal, τi depends on the values of (β⊤,θ⊤t , b
⊤
i ), i.e. τi ≡ τi(β,θt, bi) ≡

supt

[
t :
∑K

k=1 F
M
ik {t|Mi(t),wik;θtk} < 1

]
, where θt = (θ⊤t1,θ

⊤
t2, . . . ,θ

⊤
tK)⊤. In other

words, τi is the upper limit of the support of the distribution of the survival time T ⋆i ,

and if
∑K

k=1 F
M
ik {t|Mi(t),wik;θtk} < 1 for any t > 0, τi = ∞. The motivation for as-

suming (5.2) may become clearer when considering the survival likelihood conditionally
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on the random effects under non-informative right censoring (Jeong and Fine, 2006), in

which case we are only able to observe Ti = min(T ⋆i , Ci), with Ci being the correspond-

ing censoring time. As a convention, we assume that Ki = 0 denotes right censoring.

In this case, the survival likelihood is equal to

f{Ti,Ki|Mi(Ti),wi;θt} =
K∏
k=1

fik{Ti|Mi(Ti),wik;θtk}δik

× Si{Ti|Mi(Ti),wi;θt}1−δi , (5.3)

where fik{x|Mi(x),wik;θtk} = I(0 < x < τi)∂F
M
ik {x|Mi(x),wik;θtk}/∂x is the density

function for cause k, Si{Ti|Mi(Ti),wi;θt} = 1 −
∑K

k=1 Fik{Ti|Mi(Ti),wik;θtk} is the

overall survival function, and wi = (w⊤
i1,w

⊤
i2, . . . ,w

⊤
iK)⊤.

For some specific set of parameter values, (β,θt, bi), suppose that the assumed

model yields an all-cause CIF evaluated at the observed survival time, Ti, greater

than or equal to 1, i.e.
∑K

k=1 F
M
ik {Ti|Mi(Ti),wik;θtk} ≥ 1. By the definition of

τi, it is implied that Ti does not lie within the support of T ⋆i given the parameter

values, (β,θt, bi), i.e. Ti ≥ τi(β,θtk, bi). By (5.2), it is further implied that both

fik{Ti|Mi(Ti),wik;θtk} and Si{Ti|Mi(Ti),wik;θt} are equal to zero, ensuring that the

likelihood function is equal to zero. Thus, (5.3) is equivalent to including the model-

based CIF, FMik {Ti|Mi(Ti),wik;θtk}, and its derivative along with the indicator function

I[
∑K

k=1 F
M
ik {Ti|Mi(Ti),wik;θtk} < 1] in (5.3). Therefore, our approach is consistent

with the work of Salmerón et al. (2015), who, under a Bayesian paradigm, incorporated

a similar indicator function in the likelihood of the log-Binomial regression model. In

this work, though, the proposed model itself leads to zero likelihood when the con-

straints are violated.

We propose to model the CIFs using the class of generalized odds rate transforma-

tion models (e.g. Bakoyannis et al., 2017, Dabrowska and Doksum, 1988, Jeong and
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Fine, 2006)

FMik {t|Mi(t),wik;θtk} = 1− exp

{
−
∫ t

0
eB

⊤
k (s)ψk+γ

⊤
k wik+αkmi(s)ds

}
SREM-CIF-1 (5.4)

FMik {t|Mi(t),wik;θtk} = 1−
{
1 + ck

∫ t

0
eB

⊤
k (s)ψk+γ

⊤
k wik+αkmi(s)ds

}−1/ck

SREM-CIF-2 (5.5)

The model SREM-CIF-1 is a proportional subdistribution hazard model (Deslandes

and Chevret, 2010, Fine and Gray, 1999) since λMik {t|mi(t),wik;θtk} = exp{B⊤
k (t)ψk+

γ⊤
kwik + αkmi(t)}, where λMik {t|mi(t),wik;θtk} is the assumed subdistribution hazard

function. Moreover, the model SREM-CIF-2 is a generalization of SREM-CIF-1, which

reduces to SREM-CIF-1 as ck → 0 (Jeong and Fine, 2006). B⊤
k (s) denotes a B-splines

basis matrix at time s with associated parameter ψk and γk measuring the effect of the

baseline covariates on the kth CIF. The parameters αk (k = 1, . . . ,K) correspond to

the effects of the true marker values on the CIFs and indicate the level of association

between the marker and the survival submodels (referred to as the association param-

eters from now on). Under SREM-CIF-1, exp(αk) denotes the relative increase in the

kth subdistribution hazard function at time t resulting from one unit increase in mi(t)

at the same time point. The interpretation of the parameters of SREM-CIF-2 does

not seem so appealing in general, but assuming ck = 1 a proportional rate of odds in-

crease model is implied, i.e. ∂(FMik {t|Mi(t),wik;θtk}/[1−FMik {t|Mi(t),wik;θtk}])/∂t =

exp{B⊤
k (t)ψk + γ

⊤
kwik + αkmi(t)}. Throughout this paper, we assume that the pa-

rameters ck are known, as trying to estimate them can lead to non-identifiability issues

or may require very large datasets (Zeng et al., 2006).

5.2.3 Bayesian inferential procedures

All marker data measurements after time Ti are not observed, thus, supposing that the

occurrence of Ti results in Mi = mi, and thus, Y i,(mi) = (Yi1, . . . , Yimi) denotes the

observed marker values. Based on Equation (2.25), the observed data likelihood of the

joint models is equal to
∏N
i=1

∫
f(Y i,(mi)|bi;θL)f(bi;θL)f{Ti,Ki|Mi(Ti),wi;θt}dbi,
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which requires multidimensional integration over the random effects. Since such in-

tegration, especially given the constrained space due to (5.2), is challenging, we rely

on a Bayesian inferential procedure based on a Markov chain Monte Carlo (MCMC)

algorithm. Letting θ = (θ⊤L ,θ
⊤
t )

⊤ be the whole parameter vector of the model and

D =
{
(Y i,(mi),Xi,(mi),Zi,(mi), Ti,Ki,wi), i = 1, 2, . . . , N

}
be the observed data, the

posterior distribution of all unknown quantities is proportional to

f(θ, b|D) ∝ f(θ)
N∏
i=1

[
f(Y i,(mi)|bi;θL)f(bi;θL)f{Ti,Ki|Mi(Ti),wi;θt}

]
, (5.6)

where f(θ) is the prior distribution of the parameters. The integrals involved in the

definition of the CIFs in (5.4) and (5.5) can be accurately approximated by applying

numerical quadrature based on the Gauss–Legendre rule with 30 nodes. A Normal prior

distribution, N(µ0,C0), is used for β, a Gamma(λ1, λ2) for ω and a Normal, N(µs0,C
s
0),

distribution for θt. For the covariance matrix of the random effects,D, we assumed the

Inverse-Wishart IW (A, df) distribution, f(D) ∝ |D|−(df+q+1)/2 exp{− tr(D−1A)/2}.

Given the likelihood and prior specification, it follows that the conditional posterior dis-

tribution of ω is Gamma{n2 +λ1,λ2+
1
2

∑N
i=1(Y i,(mi)−Xi,(mi)β−Zi,(mi)bi)

⊤(Y i,(mi)−

Xi,(mi)β − Zi,(mi)bi)}, where n =
∑N

i=1mi is the total sample size. The correspond-

ing conditional posterior for D is IW (A +
∑N

i=1 bib
⊤
i , df + N). For the remaining

parameters, we used Metropolis-Hasting schemes. For β, we used the conditional pos-

terior distribution given the marker as the proposal density, i.e. q(βcan|D, b;ω) ∼

N(µ1,C1), where C1 = (C−1
0 + ω

∑N
i=1X

⊤
i,(mi)

Xi,(mi))
−1 and µ1 = C1{C−1

0 µ0 +

ω
∑N

i=1X
⊤
i,(mi)

(Y i,(mi)−Zi,(mi)bi)}. It can be shown that the acceptance probability is

equal to p = min
{
1,
∏N
i=1 f{Ti,Ki|M can

i (Ti),wi;θt}/
∏N
i=1 f{Ti,Ki|Mi(Ti),wi;θt}

}
,

where M can
i (Ti) and Mi(Ti) denote the true marker values up to time Ti evaluated

at βcan and β (the current MCMC value), respectively. It needs to be emphasized

that any proposed value leading to an all-cause model-based CIF greater than 1, i.e.∑K
k=1 F

M
ik {t|Mi(t),wik;θtk} > 1, is immediately rejected as the posterior ratio is equal

to zero. Thus, calculation of τi(β,θt, bi) is not required within the MCMC algorithm.

We now present the conditional posterior distributions of the random effects and the
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survival parameters, together with the Metropolis-Hasting algorithms used to update

their values within the MCMC algorithm.

5.2.3.1 Conditional posterior distribution of the random effects

The conditional posterior distribution of the random effects is proportional to

f(bi|D;θ) ∝ exp

[
−1

2
b⊤i (D

−1 + ωZ⊤
i,(mi)

Zi,(mi))bi + ωb⊤i Z
⊤
i,(mi)

(yi,(mi) −Xi,(mi)β)

]

×
K∏
k=1

fMik {Ti|Mi(Ti),wik;θtk}δik
[
1−

K∑
k=1

FMik {Ti|Mi(Ti),wik;θtk}

]1−δi

× I

[
K∑
k=1

FMik {Ti|Mi(Ti),wik;θtk} < 1

]
, (5.7)

where fMik {x|Mi(x),wik;θtk} = ∂FMik {x|Mi(x),wik;θtk}∂x. To update the value of bi

in each cycle of the MCMC algorithm, starting from the posterior mode using only

the marker model, i.e. µbi = (D−1 + ωZ⊤
i,(mi)

Zi,(mi))
−1ωZ⊤

i,(mi)
(yi,(mi) −Xi,(mi)β),

we carry out a single Newton Raphson step to maximize (5.7), i.e. b⋆i = µbi +

I(µbi)
−1U(µbi), where U(bi) = ∂ log f(bi|D;θ)

∂bi
and I(bi) = −∂2 log f(bi|D;θ)

∂bi∂b
⊤
i

. However,

in very rare cases, µbi might not fulfill the boundness constraint, i.e. it might be

the case that f(µbi |D;θ) = 0. To avoid problems with the logarithm of a function

that is equal to zero, we calculated U(bi) and I(bi) ignoring the boundness constraint

and evaluated
∂ log[1−

∑K
k=1 F

M
ik {Ti|Mi(Ti),wik;θtk}]
∂bi

by −
∑K

k=1 f
M
ik {Ti|Mi(Ti),wik;θtk}

1−
∑K

k=1 F
M
ik {Ti|Mi(Ti),wik;θtk}

, which

is always finite. Let bcani be a value for bi proposed using the density q(bcani |D;θ) ∼

N
{
b⋆i , (D

−1 + ωZ⊤
i,(mi)

Zi,(mi))
−1
}
; note that the proposal distribution does not de-

pend on the current value of bi, though it does depend on the current values of the

remaining parameters, θt and θt. The Metropolis-Hastings acceptance probability is

therefore equal to

p = min

{
1,
f(bcani |D;θ)

f(bi|D;θ)
× q(bi|D;θ)

q(bcani |D;θ)

}
.

Thus, if the all-cause CIF is not bounded by 1 at bcani , the acceptance probability is

equal to zero as f(bcani |D;θ) equals zero in this case.
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5.2.3.2 Conditional posterior distribution of the survival parameters

The conditional posterior distribution of the survival model parameters, θt, is propor-

tional to

f(θt|D, b;β) ∝
N∏
i=1

(
K∏
k=1

fMik {Ti|Mi(Ti),wik;θtk}δik
[
1−

K∑
k=1

FMik {Ti|Mi(Ti),wik;θtk}

]1−δi

× I

[
K∑
k=1

FMik {Ti|Mi(Ti),wik;θtk} < 1

])
f(θt), (5.8)

where f(θt) is the prior distribution of θt. We updated the survival parameters θtk,

k = 1, . . . ,K, separately, performing BFGS updates (Thisted, 1988) maximising each

distribution f(θtk|D, b;β,θsj , j ̸= k), starting from the current value of the chain

for θtk; note also that f(θtk|D, b;β,θsj , j ̸= k) is proportional to (5.8). Thus, this

method is based on the method proposed by Gamerman (1997). The BFGS algorithm

can be briefly described as follows: Given an approximate information matrix A
(j)
k ,

j = 0, 1, . . ., we computed a new point

θ
(j+1)
tk = θ

(j)
tk + {A(j)

k }−1U{θ(j)tk },

where U(θtk) =
∂ log f(θtk|D,b;β,θsj ,j ̸=k)

∂θtk
and θ

(0)
tk is equal to the current value of the chain

for θtk. The approximate information matrix A
(j)
k is also updated using the formula

A
(j+1)
k = A

(j)
k − yy⊤

y⊤Σ
−
A

(j)
k ΣΣ⊤A

(j)
k

Σ⊤A
(j)
k Σ

,

where y = U{θ(j+1)
tk } − U{θ(j)tk } and Σ = θ

(j+1)
tk − θ

(j)
tk . To find reasonably good

approximations of the information matrices, before starting the MCMC algorithm, we

maximized (5.8) using the estimates of the fixed and random effects from the LMM,

resulting in an estimate, θLMM
t , and calculated the corresponding information matrix

A at θLMM
t . Then we use the sub-matrix Ak associated with the parameter θtk as the

initial approximate information matrix A
(0)
k . The main advantage of this procedure

is that the computation of the hessian matrix of (5.8) is avoided, which reduces the

computational burden. After performing the BFGS steps, we obtain a value θ⋆tk. We
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then propose a value θcantk from q(θcantk |D, b;β,θtk,θsj , j ̸= k) ∼ t10

{
θ⋆tk, (A

(0)
k )−1

}
,

where t10 denotes the multivariate Student-t distribution with location parameter and

scale matrix equal to θ⋆tk and (A
(0)
k )−1, respectively, using 10 degrees of freedom. The

acceptance probability is equal to

p = min

{
1,
f(θcantk |D, b;β,θsj , j ̸= k)

f(θtk|D, b;β,θsj , j ̸= k)
× q(θtk|D, b;β,θcantk ,θsj , j ̸= k)

q(θcantk |D, b;β,θtk,θsj , j ̸= k)

}
.

We emphasize again that, if the proposed value for θcantk yields an all-cause CIF greater

than 1, the acceptance probability is equal to 0. We also need to point out that, to

calculate the proposal ratio, we need to perform the inverse BFGS step, starting from

the proposed value, θcantk , and recalculating the value of θ⋆tk in the numerator of the

posterior ratio.

In our MCMC algorithm, we used fixed initial values β(0), D(0), and ω(0) for β,

D, and ω, respectively. The initial values for the random effects were simulated from

N{bLMM
i , ({D(0)}−1 + ω(0)Z⊤

i,(mi)
Zi,(mi))

−1}, where bLMM
i stands for the predictions

of the random effects based on the LMM. Then we obtained initial values for θt by

maximising (5.8) given the initial values of {bi}Ni=1 and β. Under failure cause mis-

classification, after taking into account the true failure causes from doubly sampled

patients, we obtained initial values for θmisc based on the full conditional posterior

distribution of θmisc.

5.2.3.3 Full conditional posterior distributions for the SREM-CIF-1 model

The posterior distribution of the random effects under the SREM-CIF-1 model is pro-

portional to

f(bi|D;θ) ∝ exp

[
− 1

2
b⊤i (D

−1 + ωZ⊤
i,(mi)

Zi,(mi))bi + ωb⊤i Z
⊤
i,(mi)

(yi,(mi) −Xi,(mi)β)

+

K∑
k=1

δik

{
αkb

⊤
i zi(Ti)− Sik(bi)

}
+ (1− δi) log

{
1−K +

K∑
k=1

e−Sik(bi)

}]

×I

[
K∑
k=1

FMik {Ti|Mi(Ti),wik;θtk} < 1

]
,(5.9)
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where Sik(bi) =
∫ Ti
0 eB

⊤
k (s)ψk+γ

⊤
k wik+αkmi(s)ds. Note that (5.10) is equal to zero when

the model-based CIF is not bounded by one due to the inclusion of the indicator

function I
[∑K

k=1 F
M
ik {Ti|Mi(Ti),wik;θtk} < 1

]
. Ignoring the indicator function, the

corresponding score function is equal to

U(bi) = −(D−1 + ωZ⊤
i,(mi)

Zi,(mi))bi + ωZ⊤
i,(mi)

(yi,(mi) −Xi,(mi)β)

+
K∑
k=1

δik

{
αkzi(Ti)−

∂Sik(bi)

∂bi

}
− (1− δi)

∑K
k=1 e

−Sik(bi) ∂Sik(bi)
∂bi

1−K +
∑K

k=1 e
−Sik(bi)

,

where ∂Sik(bi)
∂bi

=
∫ Ti
0 αkzi(s)e

B⊤
k (s)ψk+γ

⊤
k wik+αkmi(s)ds. The information matrix is equal

to

I(bi) = (D−1 + ωZ⊤
i,(mi)

Zi,(mi)) +
K∑
k=1

δik
∂2Sik(bi)

∂bib
⊤
i

+ (1− δi)
∂

∂b⊤i

{ ∑K
k=1 e

−Sik(bi) ∂Sik(bi)
∂bi

1−K +
∑K

k=1 e
−Sik(bi)

}
,

where

∂

∂b⊤i

{ ∑K
k=1 e

−Sik(bi) ∂Sik(bi)
∂bi

1−K +
∑K

k=1 e
−Sik(bi)

}
= vv⊤ +{

K∑
k=1

e−Sik(bi)
∂2Sik(bi)

∂bib
⊤
i

−
K∑
k=1

e−Sik(bi)
∂Sik(bi)

∂bi

∂Sik(bi)

∂b⊤i

}/{
1−K +

K∑
k=1

e−Sik(bi)

}
,

where v =
∑K

k=1 e
−Sik(bi) ∂Sik(bi)

∂bi

/{
1−K +

∑K
k=1 e

−Sik(bi)
}
and

∂2Sik(bi)

∂bib
⊤
i

=

∫ Ti

0
α2
kzi(s)z

⊤
i (s)e

B⊤
k (s)ψk+γ

⊤
k wik+αkmi(s)ds.

The posterior distribution of the survival model parameters is proportional to

f(θt|D, b;β) ∝ f(θt)
N∏
i=1

I

[
K∑
k=1

FMik {Ti|Mi(Ti),wik;θtk} < 1

]

× exp

[
K∑
k=1

δik

{
B⊤
k (Ti)ψk + γ

⊤
kwik + αkmi(Ti)− Sik(θtk)

}
+ (1− δi) log

{
1−K +

K∑
k=1

e−Sik(θtk)

}]
,
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where Sik(θtk) =
∫ Ti
0 eB

⊤
k (s)ψk+γ

⊤
k wik+αkmi(s)ds. The first-order partial derivatives are

equal to

∂ log f(θt|D, b;β)
∂θtk

=
∂ log f(θt)

∂θtk
+

N∑
i=1

[
δik



Bk(Ti)

wik

mi(Ti)

− ∂Sik(θtk)
/
∂θtk


− (1− δi)

e−Sik(θtk)∂Sik(θtk)
/
∂θtk

1−K +
∑K

k=1 e
−Sik(θtk)

]
,

where ∂Sik(θtk)/∂θtk =
∫ Ti
0


Bk(s)

wik

mi(s)

 eB
⊤
k (s)ψk+γ

⊤
k wik+αkmi(s)ds.

5.2.3.4 Full conditional posterior distributions for the SREM-CIF-2 model

The posterior distribution of the random effects under the SREM-CIF-2 model is pro-

portional to

f(bi|D;θ) ∝ exp

(
− 1

2
b⊤i (D

−1 + ωZ⊤
i,(mi)

Zi,(mi))bi + ωb⊤i Z
⊤
i,(mi)

(yi,(mi) −Xi,(mi)β)

−
K∑
k=1

δik
1 + ck
ck

log {1 + ckSik(bi)}+
K∑
k=1

δikαkb
⊤
i zi(Ti)

+ (1− δi) log

[
1−K +

K∑
k=1

{1 + ckSik(bi)}−1/ck

])
I

[
K∑
k=1

FMik {Ti|Mi(Ti),wik;θtk} < 1

]
(5.10)

The corresponding score function of (5.10) is equal to

U(bi) = −(D−1 + ωZ⊤
i,(mi)

Zi,(mi))bi + ωZ⊤
i,(mi)

(yi,(mi) −Xi,(mi)β)

+

K∑
k=1

{
−δik

(1 + ck)
∂Sik(bi)
∂bi

1 + ckSik(bi)
+ δikαkzi(Ti)

}
− (1− δi)

∑K
k=1 {1 + ckSik(bi)}−(1+ck)/ck ∂Sik(bi)

∂bi

1−K +
∑K

k=1 {1 + ckSik(bi)}−1/ck
.

The information matrix is equal to
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I(bi) =D
−1 + ωZ⊤

i,(mi)
Zi,(mi) +

K∑
k=1

δik(1 + ck)

∂2Sik(bi)

∂bi∂b
⊤
i

{1 + ckSik(bi)} − ck
∂Sik(bi)
∂bi

∂Sik(bi)

∂b⊤i

{1 + ckSik(bi)}2

(1− δi)
∂

∂b⊤i

[∑K
k=1 {1 + ckSik(bi)}−(1+ck)/ck ∂Sik(bi)

∂bi

1−K +
∑K

k=1 {1 + ckSik(bi)}−1/ck

]
,

where

∂

∂b⊤i

[∑K
k=1 {1 + ckSik(bi)}−(1+ck)/ck ∂Sik(bi)

∂bi

1−K +
∑K

k=1 {1 + ckSik(bi)}−1/ck

]

=
∂

∂b⊤i

[
K∑
k=1

{1 + ckSik(bi)}−(1+ck)/ck ∂Sik(bi)

∂bi

]/[
1−K +

K∑
k=1

{1 + ckSik(bi)}−1/ck

]
+ vv⊤

where v =
∑K

k=1 {1 + ckSik(bi)}−(1+ck)/ck ∂Sik(bi)
∂bi

/[
1−K +

∑K
k=1 {1 + ckSik(bi)}−1/ck

]
.

In addition,

∂

∂b⊤i

K∑
k=1

{1 + ckSik(bi)}−(1+ck)/ck ∂Sik(bi)

∂bi
=

−
K∑
k=1

(1 + ck) {1 + ckSik(bi)}
− (1+ck)

ck
−1 ∂Sik(bi)

∂bi

∂Sik(bi)

∂b⊤i

+
K∑
k=1

{1 + ckSik(bi)}−(1+ck)/ck ∂
2Sik(bi)

∂bi∂b
⊤
i

.

The conditional posterior distribution of the survival model parameters is propor-

tional to

f(θt|D, b;β) ∝ f(θt)
N∏
i=1

exp

(
K∑
k=1

[
− δik

1 + ck
ck

log {1 + ckSik(θtk)}

+δik

{
B⊤
k (Ti)ψk + γ

⊤
kwik + αkmi(Ti)

}]
+ (1− δi) log

[
1−K +

K∑
k=1

{1 + ckSik(θtk)}−1/ck

])

×I

[
K∑
k=1

FMik {Ti|Mi(Ti),wik;θtk} < 1

]
,
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with the score function being

∂ log f(θt|D, b;β)
∂θtk

=
∂ log f(θt)

∂θtk
−

N∑
i=1

δik
(1 + ck)

∂Sik(θtk)
∂θtk

1 + ckSik(θtk)
+

N∑
i=1

δik


Bk(Ti)

wik

mi(Ti)


−

N∑
i=1

(1− δi)
{1 + ckSik(θtk)}−(1+ck)/ck ∂Sik(θtk)

∂θtk

1−K +
∑K

k=1 {1 + ckSik(θtk)}−1/ck
.

5.3 Inference under potentially misclassified causes of fail-

ure

When the true failure cause, Ki, is not observed for all individuals, we assume that a

cause of failure, K̃i, is always reported although potentially misclassified (i.e. Ki ̸= K̃i).

Let πjk(Dmisc,i) = Pr(K̃i = j|Ki = k,Dmisc,i;θmisc) be the probability of observing

failure cause j given the true failure cause being k and some additional observed data

Dmisc,i, with θmisc being the unknown parameter vector associated with πjk(Dmisc,i).

Note that Dmisc,i may overlap with the observed covariates in the marker and survival

models, but it may include additional auxiliary information that is not included in

the models of interest. Thus, πjk(Dmisc,i) allows for a differential misclassification

mechanism (Daniel Paulino et al., 2003). In any case, we do not allow dependence of

πjk(Dmisc,i) on the random effects, bi. Note also that πkk(Dmisc,i) is the probability of

correctly classifying cause k, whereas
∑K

j=1 πjk(Dmisc,i) = 1, for any k ∈ {1, 2, . . . ,K}.

Moreover, we assume that non-informative right censoring is always correctly classified,

i.e. Ki = 0 ⇔ K̃i = 0 with probability 1.

We assume that the true failure cause is known in a small random sample of indi-

viduals, leading to a double sampling design (e.g. Bakoyannis et al., 2019). Let Ri be

an indicator function of being doubly sampled (i.e. observing the true failure cause Ki

on top of the potentially misclassified one, K̃i). In this context, the full data are equal

to Dfull =
{
(Y i,(mi),Xi,(mi),Zi,(mi), Ti,Ki, K̃i,wi,Dmisc,i,DR,i, Ri), i = 1, 2, . . . , N

}
,

where DR,i denotes some potentially additional observed information related to the
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probability of Ri = 1, whereas the ones actually observed are equal to

Dobs =


(Y i,(mi),Xi,(mi),Zi,(mi), Ti,Ki, K̃i,wi,Dmisc,i,DR,i, Ri, ), Ri = 1, i = 1, . . . , N,

(Y i,(mi),Xi,(mi),Zi,(mi), Ti, K̃i,wi,Dmisc,i,DR,i, Ri), Ri = 0, i = 1, . . . , N.

.

(5.11)

Thus, using double sampling, the misclassification problem turns into a missing data

problem, in the sense that the “true” failure causes for those who have failed but are not

included in the double sample are missing. Under standard taxonomy of missing data

mechanisms (Rubin, 1976), we make the MAR assumption, i.e. we assume that the

probability of being included in the double sample depends on the observed data, but

not on the missing true failure cause and the random effects. More formally, we assume

that Pr(Ri = 1|Y i,(mi),Xi,(mi),Zi,(mi), Ti, K̃i,wi,Dmisc,i,DR,i;θR), i.e. the probabil-

ity of being in the double sample contains all the observed information up to time Ti,

with θR being the parameter vector of the model. The MAR assumption, along with as-

suming prior independence between (θ,θmisc) and θR, means that the model for R = 1

can be ignored for posterior inferences on (θ,θmisc). In addition, it is also implied that

the “true” failure cause can be validly predicted based on the observed data under the

assumed model, i.e. Pr{Ki = k|K̃i = j, T ⋆i = t,Mi(t),wi,Dmisc,i;θ,θmisc} = Pr{Ki =

k|K̃i = j, T ⋆i = t,Mi(t),wi,Dmisc,i,DR,i, Ri;θ,θmisc,θR} for Ri = 0, 1. Then we show

that the conditional posterior distribution of the “true” failure cause conditionally on

the observed data is equal to

Pr{Ki = k|K̃i = j, T ⋆i = t,Mi(t),wi,Dmisc,i;θ,θmisc} =
fik{t|Mi(t),wik;θtk}πjk(Dmisc,i)∑K
k=1 fik{t|Mi(t),wik;θtk}πjk(Dmisc,i)

.

(5.12)

To prove Equation (5.12), note that

Pr{Ki = k|K̃i = j, T ⋆
i = t,Mi(t),wi,Dmisc,i;θ,θmisc} =

Pr{Ki = k, K̃i = j|T ⋆
i = t,Mi(t),wi,Dmisc,i;θ,θmisc}

Pr{K̃i = j|T ⋆
i = t,Mi(t),wi,Dmisc,i;θ,θmisc}

=
Pr{Ki = k|T ⋆

i = t,Mi(t),wi,Dmisc,i;θ,θmisc}Pr{K̃i = j|Ki = k, T ⋆
i = t,Mi(t),wi,Dmisc,i;θ,θmisc}∑K

k=1 Pr{Ki = k|T ⋆
i = t,Mi(t),wi,Dmisc,i;θ,θmisc}Pr{K̃i = j|Ki = k, T ⋆

i = t,Mi(t),wi,Dmisc,i;θ,θmisc}

=
Pr{Ki = k|T ⋆

i = t,Mi(t),wi;θt}πjk(Dmisc,i)∑K
k=1 Pr{Ki = k|T ⋆

i = t,Mi(t),wi;θt}πjk(Dmisc,i)
,

with the last result following from the model assumptions stating that (a) the failure

cause probabilities do not depend on Dmisc,i and θmisc and (b) the misclassification
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probabilities πjk(Dmisc,i) are independent of the random effects and the parameters of

interest, θ, thus independent of Mi(t) and wi. It is well known that the failure cause

probabilities conditionally on the survival time T ⋆i = t (Beyersmann et al., 2011) are

equal to

Pr{Ki = k|T ⋆i = t,Mi(t),wi;θt} =
αik{t|Mi(t),wi;θt}∑K
k=1 αik{t|Mi(t),wi;θt}

,

where αik{t|Mi(t),wi;θt} denotes the kth cause-specific hazard function for individ-

ual i. Based on the CIF definition, we know that the CIF for cause k is equal to

Fik{t|Mi(t),wik;θtk} =
∫ t
0 αik{u|Mi(u),wi;θt}Si{u|Mi(u),wi;θt}du, which further

implies that fik{t|Mi(t),wik;θtk} = αik{t|Mi(t),wi;θt}Si{t|Mi(t),wi;θt}. Therefore,

Pr{Ki = k|T ⋆i = t,Mi(t),wi;θt} =
fik{t|Mi(t),wik;θtk}∑K
k=1 fik{t|Mi(t),wik;θtk}

.

Then it immediately follows that

Pr{Ki = k|K̃i = j, T ⋆
i = t,Mi(t),wi,Dmisc,i;θ,θmisc} =

fik{t|Mi(t),wik;θtk}πjk(Dmisc,i)∑K
k=1 fik{t|Mi(t),wik;θtk}πjk(Dmisc,i)

.

For individuals that are not doubly sampled, we only observe K̃i, which may be differ-

ent that Ki, though. For such cases, the observed survival data likelihood for cause j is

equal to f{Ti, K̃i = j|Mi(Ti),wi,Dmisc,i;θt,θmisc} =
∑K

k=1 fik{t|Mi(t),wik;θtk}πjk(Dmisc,i),

i.e. a function involving both the density functions for all causes and the misclassifi-

cation probabilities (Bakoyannis and Yiannoutsos, 2015). Thus, the observed data

likelihood has a complicated form, which is difficult to handle. Similarly to Stamey

et al. (2008) and Daniel Paulino et al. (2003), to deal with this issue, one can use data

augmentation (Tanner and Wong, 1987), augmenting the observed likelihood for indi-

viduals who have failed from any event but are not included in the double sampling by

the unobserved true failure causes, Ki. Letting Imis be the indices for individuals that

have failed from any event but are not doubly sampled: Imis ≡ {i : K̃i ̸= 0 & Ri = 0},

the augmented posterior distribution of all unknown quantities is proportional to

f(θ, b,θmisc, {Ki : i ∈ Imis}|Dobs) ∝ f(θ)f(θmisc)

N∏
i=1

[
f(Y i,(mi)|;θL)f(bi;θL)

K∏
k=1

fik{Ti|Mi(Ti),wik;θtk}δikSi{Ti|Mi(Ti),wi;θt}1−δi
K∏
j=1

K∏
k=1

πjk(Dmisc,i)
δ̃ijδik

]
,

171



5. JOINT MODELING OF LONGITUDINAL AND COMPETING-RISK
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where we have actually factorized the full survival likelihood f{Ti,Ki, K̃i|Mi(Ti),wi,Dmisc,i;θtk,θmisc}

as the product of f{Ti,Ki|Mi(Ti),wi;θtk} and Pr(K̃i|Ki,Dmisc,i;θmisc). Note also that

Pr(K̃i = 0|Ki = 0,Dmisc,i;θmisc) = 1, for the right censored individuals. It needs to

be emphasized that data augmentation results in a much simpler form of the joint

posterior distribution since, conditionally on the true failure causes Ki, the posterior

distributions for (θ, b) and θmisc are independent. In fact, the conditional posterior of

(θ, b) has the same form as in the case of no misclassification. The conditional posterior

of {Ki : i ∈ Imis} has been presented in (5.12). The following algorithm outlines the

modified MCMC procedure to account for misclassification:

• Choose adequate initial values θ(0), b(0), {K(0)
i : i ∈ Imis},θ(0)misc, meeting the

likelihood constraints for all individuals.

• For l = 1, 2, . . . , L

• Update (θ(l−1), b(l−1)) to (θ(l), b(l)) according to the posterior distribution f(θ, b|{K(l−1)
i :

i ∈ Imis}, {Ki : i /∈ Imis}, {(Y i,(mi),Xi,(mi),Zi,(mi), Ti,wi), i = 1, . . . , N}), i.e.

the posterior distribution of the parameters of main interest, with the missing

failure causes being equal to their current values. The MCMC algorithm for

fully observed causes of failure described in Section 5.2 is used. However, the

initial information matrix, A
(0)
k , obtained by maximising the posterior distribu-

tion f(θt|D, bLMM ;βLMM ) using the observed failure causes, may not be a good

approximation. To address this issue, we perform a quick iterative procedure

before starting the MCMC algorithm: (a) we maximize f(θt|D, bLMM ;βLMM )

using simulated missing failure causes {Ki : i ∈ Imis} and (b) based on the cur-

rent mode of f(θt|D, bLMM ;βLMM ) we carry out an approximate Gibbs sam-

pling procedure of 100 iterations for the conditional posterior distribution of

(θmisc, {Ki : i ∈ Imis}) by repeatedly simulating the missing failure causes and

locating the mode of the conditional posterior distribution of θmisc given the sim-

ulated failure causes {Ki : i ∈ Imis}. This approach is repeated 5 times and A
(0)
k

corresponds to the information matrix for θtk at the last iteration.

172



5.3 Inference under potentially misclassified causes of failure

• Update θ
(l−1)
misc to θ

(l)
misc according to f(θmisc|{K(l−1)

i : i ∈ Imis}, {Ki : i /∈

Imis}, {Dmisc,i, i = 1, . . . , N}).

• Sample {K(l)
i : i ∈ Imis} from f{Ki|K̃i, Ti,M

(l)
i (Ti),wi,Dmisc,i;θ

(l),θ
(l)
misc} di-

rectly using Equation (5.12).

To model the misclassification probabilities, we use Multinomial logistic regression up-

dating the values of θmisc using the approach proposed by Gamerman (1997). The

conditional posterior distribution of the misclassification parameters is proportional to

f(θmisc|{(Ki,Dmisc,i)}Ni=1) ∝ f(θmisc)
N∏
i=1

K∏
j=1

K∏
k=1

πjk(Dmisc,i)
δ̃ijδik .

For brevity, we present in detail the case of K = 2 competing risks, which corresponds

to a logistic regression model:

Pr(K̃i = 1|Ki,Dmisc,i;θmisc) =
eX

⊤
misc,iθmisc

1 + eX
⊤
misc,iθmisc

= pi, (5.13)

where Xmisc,i denotes the relevant design matrix associating Ki and Dmisc,i with the

probability of observing K̃i = 1. Thus, Pr(K̃i = 2|Ki,Dmisc,i;θmisc) = 1 − pi =

{1 + eX
⊤
misc,iθmisc}−1. Ignoring, at this stage, the prior distribution, the conditional

posterior distribution of θmisc is proportional to
∏N
i=1 p

δ̃i1
i (1 − pi)

δ̃i2 . The posterior

distribution on the log scale is, thus, equal to

log f(θmisc|{(Ki,Dmisc,i)}Ni=1) =
N∑
i=1

{
δ̃i1X

⊤
misc,iθmisc − δi log(1 + eX

⊤
misc,iθmisc)

}
.

The score vector and the information matrix of θmisc are equal to

U(θmisc) =
N∑
i=1

{
δ̃i1Xmisc,i − δipiXmisc,i

}
and I(θmisc) =

∑N
i=1 δiXmisc,ipi(1 − pi)X

⊤
misc,i, respectively. To update the values of

θmisc, we used the method proposed by Gamerman (1997) by carrying out one Newton-

Raphson step starting at the current value and proposing a value from a multivariate

Normal distribution with mean obtained from the Newton-Raphson step and covariance

matrix the inverse of the information matrix at the current value.
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Alternatively, a standard special case occurs when one does not intend to include

covariate information in πjk(Dmisc,i), i.e. Dmisc,i is empty. Then, a natural choice

for the prior distributions of πjk’s would be the independent Dirichlet(a1k, . . . , aKk)

distributions, i.e. f(π1k, . . . , πKk) ∝
∏K
j=1 π

ajk−1
jk , for k = 1, . . . ,K. It can be shown

that the posterior distributions of π1k, . . . , πKk are then independent Dirichlet(a1k +∑N
i=1 δ̃i1δik, a2k+

∑N
i=1 δ̃i2δik, . . . , aKk+

∑N
i=1 δ̃iKδik), k = 1, 2, . . . ,K. For K = 2 com-

peting risks, there are two distinct misclassification parameters. Assuming Beta(a1, b1)

and Beta(a2, b2) prior distributions for π11 and π22, respectively, results in the corre-

sponding conditional posterior distributions being Beta(a1+
∑N

i=1 δ̃i1δi1, b1+
∑N

i=1 δ̃i2δi1)

and Beta(a2 +
∑N

i=1 δ̃i2δi2, b2 +
∑N

i=1 δ̃i1δi2).

5.4 Posterior inferences for population-averaged CIFs and

marker states

To describe the cohort evolution over time, states defined by marker data and clinical

outcomes are often used. A pragmatic approach to do so is to discretize the marker val-

ues into non-overlapping intervals {[s0, s1), . . . , [sJ−1, sJ)} and define mutually-exclusive

states based on clinical events and (discretized) marker data. If the focus of the analysis

lies in describing the “true” biological process, as often is the case in the joint modeling

literature, states may be defined in terms of the “true” marker values, i.e., for any

t > 0, {mi(t) ∈ Sh, T
⋆
i > t}, h = 1, . . . , J and {T ⋆i ≤ t,Ki = k}, k = 1, . . . ,K, where

Sh = [sh−1, sh). Progression of the whole cohort can be easily monitored by a series

of estimated multistate probabilities Pr{mi(t) ∈ Sh, T
⋆
i > t|wi;θ}, h = 1, . . . , J and

Pr(T ⋆i ≤ t,Ki = k|wik;θ), k = 1, . . . ,K, through a multistate probability plot. The

first quantity, referred to as latent marker state probability, expresses the probability

of being event free and having true marker values in Sh. The second expression, i.e.

Pr(T ⋆i ≤ t,Ki = k|wik;θ), is the population-averaged CIF for a particular cause. To

get better insight into the dynamics of the processes, one may be also interested in tran-

sitions between states. In real-life applications (e.g. Stover et al., 2019), for simplicity,
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transitions are often defined from baseline states. Letting pg(0) = Pr{mi(0) ∈ Sg;θL},

it can be easily shown that

Pr{T ⋆i ≤ t,Ki = k|mi(0) ∈ Sg,wik;θ} =

∫
mi(0)∈Sg

Fik{t|Mi(t),wik;θtk}
f(bi;θL)

pg(0)
dbi

(5.14)

Pr{mi(t) ∈ Sh, T
⋆
i > t|mi(0) ∈ Sg,wi;θ} =

∫
mi(0)∈Sg ,mi(t)∈Sh

Si{t|Mi(t),wi;θt}
f(bi;θL)

pg(0)
dbi

(5.15)

Inference on (5.14) and (5.15) involves two distinct problems (i) approximation of the

integral over the random effects and (ii) accounting for the variability in θ.

5.4.1 Estimation procedure

We initially describe the estimation of (5.14) and (5.15) for any given θ. Specifically,

(5.14) can be approximated by drawing samples {b(j)ig }
Nmc
j=1 for bi from the N(0,D)

distribution under the linear constraint mi(0) ∈ Sg, which can be carried out, among

many other options, through Hamiltonian Monte Carlo (Pakman, 2015). Specifically,

Pr{T ⋆i ≤ t,Ki = k|mi(0) ∈ Sg,wik;θ} ≈ N−1
mc

Nmc∑
j=1

Fik{t|M
(j)
ig (t),wik;θtk} (5.16)

where m
(j)
ig (t) = x⊤

i (t)β + z⊤i (t)b
(j)
ig and M

(j)
ig (t) = {m(j)

ig (s) : 0 ≤ s ≤ t}. Using

similar ideas, it can be seen that, after multiplying and dividing (5.15) by Pr{mi(t) ∈

Sh,mi(0) ∈ Sg;θ}, (5.15) can be approximated using samples {b(j)igh}
Nmc
j=1 from the

N(0,D) distribution under the linear constraints mi(0) ∈ Sg and mi(t) ∈ Sh, i.e.

Pr{mi(t) ∈ Sh, T
⋆
i > t|mi(0) ∈ Sg,wi;θ} can be approximated by

Pr{mi(t) ∈ Sh,mi(0) ∈ Sg;θ}
Pr{mi(0) ∈ Sg;θ}Nmc

Nmc∑
j=1

Si{t|M (j)
igh(t),wi;θt}, (5.17)

wherem
(j)
igh(t) = x

⊤
i (t)β+z

⊤
i (t)b

(j)
igh andM

(j)
igh(t) = {m(j)

igh(s) : 0 ≤ s ≤ t}. Sincemi(t) ∼

N{x⊤
i (t)β, z

⊤
i (t)Dzi(t)}, Pr{mi(t) ∈ Sh,mi(0) ∈ Sg;θ} and Pr{mi(0) ∈ Sg;θ} can be
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easily computed using the cumulative distribution function of the (bivariate) Normal

distribution. Due to (5.2), it should be noted that if
∑K

k=1 F
M
ik {t|M

(j)
ig (t),wik;θtk} >

1, Fik{t|M
(j)
ig (t),wik;θtk} = Fik{t′|M

(j)
ig (t′),wik;θtk}, where t′ = τi(β,θt, b

(j)
ig ), thus

calculation of the upper bound is required only for the random draws that do not fulfil

the boundedness constraint.

A posterior sample for (5.14) and (5.15) can be obtained by (a) drawing θ(l) ∼

f(θ|Dobs), l = 1, 2, . . . , L and (b) approximating Pr{mi(t) ∈ Sh, T
⋆
i > t|mi(0) ∈

Sg,wi;θ
(l)} and Pr{mi(t) ∈ Sh, T

⋆
i > t|mi(0) ∈ Sg,wi;θ

(l)}, for each l = 1, 2, . . . , L, us-

ing (5.16) and (5.17). Thus, posterior means and posterior credible intervals can easily

be estimated. Also, once posterior samples for (5.14) and (5.15) are available, it is easy

to get posterior samples for population-averaged CIFs and latent marker state proba-

bilities through the following relationships Pr(T ⋆i ≤ t,Ki = k|wik;θ) =
∑J

g=1 Pr{T ⋆i ≤

t,Ki = k|mi(0) ∈ Sg,wik;θ}Pr{mi(0) ∈ Sg;θ} and Pr{mi(t) ∈ Sh, T
⋆
i > t|wi;θ} =∑J

g=1 Pr{mi(t) ∈ Sh, T
⋆
i > t|mi(0) ∈ Sg,wi;θ}Pr{mi(0) ∈ Sg;θ}, respectively.

In theory,
∑K

k=1 Pr{T ⋆i ≤ t,Ki = k|mi(0) ∈ Sg,wik;θ} is equal to 1−
∑J

h=1 Pr{mi(t) ∈

Sh, T
⋆
i > t|mi(0) ∈ Sg,wi;θ}. However, due to Monte Carlo approximation er-

ror, results using (5.14) and (5.15) might differ slightly. To get consistent results,

we used 1 −
∑K

k=2 Pr{T ⋆i ≤ t,Ki = k|mi(0) ∈ Sg,wik;θ
(l)} −

∑J
k=2 Pr{mi(t) ∈

Sk, T
⋆
i > t|mi(0) ∈ Sg,wi;θ

(l)} as the posterior sample for Pr{T ⋆i ≤ t,Ki = 1|mi(0) ∈

Sg,wi1;θ}, g = 1, . . . , J .

5.4.2 CIF estimates conditional on observed marker states

In a clinical application, the population-averaged CIF conditional on the observed

marker state would be valuable for prediction purposes, as it is the only available

information at baseline. Thus, for prediction purposes, one could be also interested in

Pr{T ⋆i ≤ t,Ki = k|yi(0) ∈ Sg,wik;θ}, g = 1, . . . , J . By standard calculations, it can

be shown that Pr{T ⋆i ≤ t,Ki = k|yi(0) ∈ Sg,wik;θ} is equal to
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Pr{T ⋆i ≤ t,Ki = k|yi(0) ∈ Sg,wik;θ} =
Pr{T ⋆i ≤ t,Ki = k, yi(0) ∈ Sg|wik;θ}

Pr{yi(0) ∈ Sg;θ}

=

∫
yi(0)∈Sg

∫ t

0

f{u, k, yi(0)|wik;θ}
Pr{yi(0) ∈ Sg;θ}

du dyi(0)

=

∫
yi(0)∈Sg

∫ t

0

∫
f{u, k, yi(0)|bi,wik;θ}f(bi;θ)

Pr{yi(0) ∈ Sg;θ}
dbi du dyi(0).

Due to the model assumption of conditional independence between the marker and

survival process given the random effects, Pr{T ⋆i ≤ t,Ki = k|yi(0) ∈ Sg,wik;θ} is

equal to

∫
yi(0)∈Sg

∫ [∫ t

0
f(u, k|bi,wik;θ) du

]
f{yi(0)|bi;θ}f(bi;θ)
Pr{yi(0) ∈ Sg;θ}

dbi dyi(0)

=

∫
yi(0)∈Sg

∫
Fik{t|Mi(t),wik;θtk}

f{yi(0), bi;θ}
Pr{yi(0) ∈ Sg;θ}

dbi dyi(0) (5.18)

Thus, (5.18) can be estimated by drawing samples {y(j)ig (0), b
(j)
ig }

Nmc
j=1 for {yi(0), bi}

from the

N


x⊤

i (0)β

0

 ,

σ2 + z⊤i (0)Dzi(0) z⊤i (0)D

Dzi(0) D

 ,

distribution, constrained such that yi(0) ∈ Sg, i.e. Pr{T ⋆i ≤ t,Ki = k|yi(0) ∈ Sg,wik;θ}

can be approximated byN−1
mc
∑Nmc

j=1 Fik{t|M
(j)
ig (t),wik;θtk}, wherem

(j)
ig (t) = x

⊤
i (t)β+

z⊤i (t)b
(j)
ig and M

(j)
ig (t) = {m(j)

ig (s) : 0 ≤ s ≤ t}.

Moreover, one may be also interested in CIFs conditional on being in certain states

at specific time points. In this case, it would be reasonable to condition on survival up

to the last time point, i.e. Pr{T ⋆i ≤ t,Ki = k|T ⋆i > s, yi(0) ∈ Sg, yi(s) ∈ Sh,wik;θ},

for 0 ≤ s < t and g, h ∈ {1, 2, . . . , J}. These probabilities can be estimated in a similar
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way. Specifically,

Pr{s < T ⋆i ≤ t,Ki = k, yi(0) ∈ Sg, yi(s) ∈ Sh|wi;θ}
Pr{s < T ⋆i , yi(0) ∈ Sg, yi(s) ∈ Sh|wi;θ}

=

∫
yi(0)∈Sg

∫
yi(s)∈Sh

∫ t
s f{u, k, yi(0), yi(s)|wi;θ} du dyi(s) dyi(0)∫

yi(0)∈Sg

∫
yi(s)∈Sh

∫∞
s f{u, yi(0), yi(s)|wi;θ} du dyi(s) dyi(0)

=

∫
yi(0)∈Sg

∫
yi(s)∈Sh

∫ t
s

∫
f{u, k, yi(0), yi(s)|bi,wi;θ}f(bi;θ) dbi du dyi(s) dyi(0)∫

yi(0)∈Sg

∫
yi(s)∈Sh

∫∞
s

∫
f{u, yi(0), yi(s)|bi,wi;θ}f(bi;θ) dbi du dyi(s) dyi(0)

By the conditional independence of the proposed model, i.e. the marker and survival

processes are independent given the random effects, it follows that Pr{T ⋆i ≤ t,Ki =

k|T ⋆i > s, yi(0) ∈ Sg, yi(s) ∈ Sh,wik;θ} is equal to

∫
yi(0)∈Sg

∫
yi(s)∈Sh

∫ t
s

∫
f(u, k|bi,wi;θ)f{yi(0), yi(s)|bi;θ}f(bi;θ) dbi du dyi(s) dyi(0)∫

yi(0)∈Sg

∫
yi(s)∈Sh

∫∞
s

∫
f(u|bi,wi;θ)f{yi(0), yi(s)|bi;θ}f(bi;θ) dbi du dyi(s) dyi(0)

=

∫
yi(0)∈Sg

∫
yi(s)∈Sh

∫ [∫ t
s f(u, k|bi,wi;θ) du

]
f{yi(0), yi(s)|bi;θ}f(bi;θ) dbi dyi(s) dyi(0)∫

yi(0)∈Sg

∫
yi(s)∈Sh

∫ [∫∞
s f(u|bi,wi;θ) du

]
f{yi(0), yi(s)|bi;θ}f(bi;θ) dbi dyi(s) dyi(0)

=

∫
yi(0)∈Sg

∫
yi(s)∈Sh

∫
[Fik{t|Mi(t),wi;θtk} − Fik{s|Mi(s),wi;θtk}] f{yi(0),yi(s),bi;θ}

Pr{yi(0)∈Sg ,yi(s)∈Sh;θ} dbi dyi(s) dyi(0)∫
yi(0)∈Sg

∫
yi(s)∈Sh

∫
Si{s|Mi(s),wi;θt} f{yi(0),yi(s),bi;θ}

Pr{yi(0)∈Sg ,yi(s)∈Sh;θ} dbi dyi(s) dyi(0)

Thus, in a very similar way, Pr{T ⋆i ≤ t,Ki = k|T ⋆i > s, yi(0) ∈ Sg, yi(s) ∈ Sh,wi;θ}

can be estimated by drawing samples {y(j)igh(0), y
(j)
igh(s), b

(j)
igh}

Nmc
j=1 for {yi(0), yi(s), bi}

from the

N



x⊤
i (0)β

x⊤
i (s)β

0

 ,


σ2 + z⊤i (0)Dzi(0) z⊤i (0)Dzi(s) zi(0)

⊤D

z⊤i (0)Dzi(s) σ2 + z⊤i (s)Dzi(s) zi(s)
⊤D

Dzi(0) Dzi(s) D


 ,

distribution, constrained such that yi(0) ∈ Sg and yi(s) ∈ Sh, i.e. Pr{T ⋆i ≤ t,Ki =
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k|T ⋆i > s, yi(0) ∈ Sg, yi(s) ∈ Sh,wi;θ} can be approximated by∑Nmc
j=1

[
Fik{t|M

(j)
igh(t),wik;θtk} − Fik{s|M

(j)
igh(s),wik;θtk}

]
∑Nmc

j=1 Si{s|M (j)
igh(s),wi;θt}

,

where m
(j)
igh(t) = x

⊤
i (t)β + z⊤i (t)b

(j)
igh and M

(j)
igh(t) = {m(j)

igh(s) : 0 ≤ s ≤ t}.

5.5 Comparison of models’ fit using the DIC criterion

To compare the fit of models SREM-CIF-1 and SREM-CIF-2, we use the marginalised

version (Quintero and Lesaffre, 2018) of the deviance information criterion (DIC) pro-

posed by Spiegelhalter et al. (2002a). To compute the marginal DIC criterion, we need

to calculate the observed data likelihood, which requires integration over the random

effects. Assuming that there is no misclassification, the observed data likelihood is

equal to

f(D;θ) =

N∏
i=1

f(Y i,(mi), Ti,Ki|wi;θ)

=
N∏
i=1

f(Y i,(mi);θ)

∫
f{Ti,Ki|Mi(Ti),wi;θt}f(bi|Y i,(mi);θ)dbi,(5.19)

where we have actually factorized f(Y i,(mi), Ti,Ki|wi;θ) as f(Y i,(mi);θ)f(Ti,Ki|Y i,(mi),wi;θ),

with f(Ti,Ki|Y i,(mi),wi;θ) being equal to
∫
f{Ti,Ki|Mi(Ti),wi;θt}f(bi|Y i,(mi);θ)dbi,

due to the conditional independence assumption for Y i,(mi)|bi and T ⋆i |bi. Also, it

is straightforward to show that Y i,(mi);θ ∼ N(Xi,(mi)β, ω
−1Imi + Zi,(mi)DZ

⊤
i,(mi)

)

and bi|Y i,(mi);θ ∼ N(µbi ,Σbi), where Σbi = (D−1 + ωZ⊤
i,(mi)

Zi,(mi))
−1 and µbi =

ΣbiωZ
⊤
i,(mi)

(Y i,(mi) − Xi,(mi)β). Letting Dev(θ) = −2 log f(D;θ) be the deviance

of the model, the DIC criterion is defined as DIC = Dev{E(θ|D)} + 2pEff , where

Dev{E(θ|D)} is the deviance evaluated at the posterior mean of the parameters and

pEff is the effective number of parameters. Based on Spiegelhalter et al. (2002a), pEff

should be equal to pEff = E{Dev(θ)|D} − Dev{E(θ|D)}, the posterior mean of the

deviance minus the deviance at the posterior mean of the parameters. E{Dev(θ)|D}

can be approximated by the sample mean of the deviances evaluated at each value of
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the MCMC algorithm, while Dev{E(θ|D)} by the deviance evaluated at the mean of

the MCMC sample.

In theory, DIC would be straightforward to approximate based on the MCMC sam-

ple if the deviance was available in closed form, but the integral in (5.19) cannot be

calculated analytically. Similarly to the pseudo-adaptive quadrature method proposed

by Rizopoulos (2012b), to consistently estimate f(Ti,Ki|Y i,(mi),wi;θ), we used Monte

Carlo integration, i.e. f(Ti,Ki|Y i,(mi),wi;θ) is approximated byN−1
mcf{Ti,Ki|M (j)

i (t),wik;θt},

where m
(j)
i (t) = x⊤

i (t)β + z⊤i (t)b
(j)
i , where b

(j)
i ∼ N(µbi ,Σbi), j = 1, . . . , Nmc. The

above Monte Carlo estimator had great performance as µbi was very close to the mode

of the integrand in (5.19) in almost all cases, a remark consistent with the litera-

ture (Rizopoulos, 2012b). However, in very few cases, the model-based all-cause CIF

may be greater than 1 when evaluated at µbi , leading to f{Ti,Ki|Mi(Ti),wi;θt} be-

ing equal to zero when evaluated at µbi . In this case, the variance of the Monte

Carlo estimator could be too large. To overcome this issue, we used importance sam-

pling by exploiting the posterior sample of bi available from MCMC. Specifically, we

(a) simulate b
(j)
i ∼ N(µ̄bi ,Σbi), j = 1, . . . , Nmc, where µ̄bi is the marginal poste-

rior mean of the random effect, bi, and (b) approximate f(Ti,Ki|Y i,(mi),wi;θ) by

N−1
mcf{Ti,Ki|M (j)

i (t),wik;θt}f(b
(j)
i |Y i,(mi);θ)/g(b

(j)
i ), where g(b

(j)
i ) is the density of

the N(µ̄bi ,Σbi) distribution at b
(j)
i and M

(j)
i (t) = {m(j)

i (s) : 0 ≤ s ≤ t}, with

m
(j)
i (t) = x⊤

i (t)β + z⊤i (t)b
(j)
i , j = 1, . . . , Nmc. Since the deviance has to be com-

puted at each MCMC iteration, we cannot know beforehand if the importance sam-

pling estimator would perform better than the simple Monte Carlo estimator. Thus, we

employ the importance sampling estimator only if µ̄bi leads to higher posterior density,

f(bi|Y i,(mi), Ti,Ki;θ), than µbi does. Note that the conditional posterior distribution

f(bi|Y i,(mi), Ti,Ki;θ) is proportional to the integrand in (5.19).

To evaluate the DIC criterion under failure cause misclassification, some minor ad-

justments are required, since the true failure causes are not available for all individuals.

We have actually used exactly the same procedure but the term f{Ti,Ki|Mi(Ti),wi;θt}

in (5.19) should be replaced by f{Ti,Ki|Mi(Ti),wi;θt} ×
∏K
j=1

∏K
k=1 πjk(Dmisc,i)

δ̃ijδik
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and
∑K

j=1 δ̃ij
∑K

k=1 fik{t|Mi(t),wik;θtk}πjk(Dmisc,i),, for doubly and non-doubly sam-

pled patients, respectively. For the right-censored individuals, nothing changed as

Pr(K̃i = 0|Ki = 0,Dmisc,θmisc) = 1.

5.6 Simulation study

5.6.1 Simulation study under no misclassification of failure cause

A simulation study was carried out to evaluate the performance of the proposed method-

ology under certain conditions. Marker data were generated using a piece-wise linear

LMM yi(t) = (β0 + bi0) + (β1 + bi1)min(t, 1) + (β2 + bi2)[max{min(t, 5), 1} − 1] +

β3{max(t, 5) − 5} + ϵi(t), with (bi0, bi1, bi2) ∼ N(0,D) and ϵi(t) ∼ N(0, ω−1). Thus,

the population slopes are β1, β2, and β3, when t ∈ [0, 1), t ∈ [1, 5), and t > 5, respec-

tively. Note that this model mimics, at least roughly, the CD4 cell count evolution

since ART initiation. Measurements were assumed to be collected biannually and the

maximum study duration was assumed to be 10 years. The true values of β, vech(D),

and ω were assumed to be (12.85, 6.03, 0.77, 0)⊤, (25.09,−5.08,−2.65, 10.18, 1.09, 0.85)⊤

and 1/8.14, respectively, where vech stands for the “vector-half” operator stacking the

columns of the lower triangular part of a symmetric matrix. We assumed 2 competing

risks (e.g. Ki = 1, 2 corresponding to death and disengagement from care, respectively),

with the marker measurements after the first occurring event being ignored. Two sce-

narios regarding the competing-risk data were considered: survival data were simulated

based on (a) the SREM-CIF-1 model and (b) the SREM-CIF-2 model (c1 = c2 = 1),

according to the following equations:

FMik {t|Mi(t), wi;θtk} = 1− exp

{
−
∫ t

0
uk1(s)e

γkwi+αkmi(s)ds

}
, SREM-CIF-1

FMik {t|Mi(t), wi;θtk} = 1−
{
1 +

∫ t

0
uk2(s)e

γkwi+αkmi(s)ds

}−1

, SREM-CIF-2

where k = 1, 2 and wi is a binary baseline covariate following the Bernoulli distribution

with probability of success equal to 0.5. For each simulation scenario, we simulated

500 datasets, each including N = 1500 individuals. To generate the competing-risk
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data, based on Beyersmann et al. (2011), we first simulated the overall survival time

T ⋆i within (0, τi) using the inverse CDF theorem and then determined the failure causes

with corresponding probabilities equal to

∂FMik {T ⋆i |Mi(T
⋆
i ), wi;θtk}/∂T ⋆i ∂FMi1 {T ⋆i |Mi(T

⋆
i ), wi;θs1}

∂T ⋆i + ∂FMi2 {T ⋆i |Mi(T ⋆i ), wi;θs2}/∂T ⋆i
,

k = 1, 2. An independent right censoring mechanism was also applied using Ci ∼

min(Ui, 10), where Ui ∼ Exp(0.025) (i.e. the exponential distribution with rate=0.025).

Regarding the true parameter values, we assumed that α1 = −0.16, α2 = −0.02,

γ1 = 0.15, and γ2 = −0.15. For the baseline levels, we assumed that u11(t) = 0.62 ×

0.25 exp(−0.25t+7×0.16)/[1−0.62{1−exp(−0.25t)}], u21(t) = 0.70×0.13 exp(−0.13t+

7× 0.02)/[1− 0.70{1− exp(−0.13t)}], u12(t) = 0.67× 0.25 exp(−0.25t+ 7× 0.16)/[1−

0.67{1− exp(−0.25t)}], and u22(t) = 0.83× 0.13 exp(−0.13t+ 7× 0.02)/[1− 0.83{1−

exp(−0.13t)}].

Under each of the two scenarios for the survival submodels, we fitted the proposed

model using both the SREM-CIF-1 and SREM-CIF-2 parameterisations. This way, we

can evaluate the sensitivity of the results to misspecification of the link function for the

CIF submodels. The marker model was correctly specified in the fitted models though.

The B-splines matrices Bk(t) approximating the baseline CIF levels had 2 and 3 knots

for the first and the second failure type, respectively, placed at the observed quantiles

of the respective event times. To derive inference on the model parameters, we applied

the MCMC algorithm described in subsection 5.2.3 using 200 draws as a burn-in pe-

riod and recorded additional 10500 iterations. To account for the autocorrelation in

the MCMC sample we thinned the chain by keeping every third draw, thus producing

posterior inferences based on 3500 draws. For the population parameters and the sur-

vival parameters, β and θt, respectively, we assumed independent normal distributions

with zero means and variances equal to 100, for the covariance matrix of the random

effects, D, we assumed the Inverse-Wishart IW (A, df) distribution with df = 3 and

A = 3× diag(25, 5, 5), and for the within-subject precision, ω, the Gamma(0.01, 0.01)

distribution. Apart from the model parameters, we examined the performance of the

proposed approach in deriving inferences on (a) latent marker state probabilities over
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time, (b) transition probabilities by baseline marker states, (c) population-averaged

CIFs, and (d) population-averaged CIFs by baseline marker states, using the method-

ology described in Section 5.4. These estimates were produced at times 0, 2, 4, 6, 8,

and 10 years. The numerical integration required was performed through Nmc = 1000

Monte Carlo draws using a posterior sample for θ of L = 350 draws, obtained by

keeping every tenth MCMC draw. Parameter estimates were based on the posterior

medians, with the corresponding credible intervals estimated by the observed 2.5% and

97.5% quantile of the MCMC posterior sample. For each fitted model, we calculated

the marginal DIC criterion using Nmc = 200, based on 500 draws from the posterior

distribution of θ obtained by keeping every seventh draw. The performance of the

DIC criterion at correctly identifying the true model was assessed by recording the

proportion of time the true model was chosen under both scenarios.

To assess model performance, we present the bias, the Monte carlo standard devi-

ation, the average model-based standard error, and the empirical coverage probability

of the respective credible intervals. Since parameters γk and αk do not have the same

interpretation under SREM-CIF-1 and SREM-CIF-2, we did not provide bias and cov-

erage probability results for γk and αk when the fitted model was misspecified. The

results under the SREM-CIF-1 and SREM-CIF-2 scenarios are presented in Tables

5.1 and 5.2, respectively. The fixed-effect estimates were approximately unbiased for

both models under the two scenarios (bias: from -0.011 to 0.010), while the coverage

probabilities were close to the nominal level (from 92.6 to 96.4%). The estimates for

γk and αk were nearly unbiased along with approximately 95% coverage probabilities

when the fitted model coincided with the true data generating mechanism. The DIC

criterion had moderate ability to identify the correct model as it selected the true

model 75.0% and 62.4% of the time under the SREM-CIF-1 and SREM-CIF-2 scenar-

ios, respectively. Its discriminating ability substantially increased to 90.0% and 86.0%,

respectively, when a simulation study including 8000 individuals and 50 replications

was performed. Focusing on the population CIFs estimates, both models yielded esti-

mates with negligible bias along with adequate empirical coverage probabilities, while
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the Monte Carlo standard deviation was close to the average model-based standard

error. Thus, misspecification of the link function of the survival submodels does not

seem to affect the performance of population CIFs estimates.
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5.6 Simulation study

5.6.1.1 Simulation study results for marker state probabilities

We also present results for marker state probabilities over time (probabilities of being

event free and having “true” marker values in predefined intervals) from the SREM-CIF-

1 and SREM-CIF-2 models in Tables 5.3-5.6. Our findings were similar, as both models,

even when misspecified, yielded estimates with small biases and adequate coverage rates

(91-97%).
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5.6 Simulation study
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5. JOINT MODELING OF LONGITUDINAL AND COMPETING-RISK
DATA ACCOUNTING FOR FAILURE CAUSE MISCLASSIFICATION
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5.6 Simulation study
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5. JOINT MODELING OF LONGITUDINAL AND COMPETING-RISK
DATA ACCOUNTING FOR FAILURE CAUSE MISCLASSIFICATION

5.6.1.2 Simulation study results for transition marker state probabilities

by baseline marker state

In this subsection, we provide results for transition marker probabilities by baseline

marker state in Tables 5.7-5.10. In nearly all cases, both models performed satisfactorily

with small biases and coverage rates close to the nominal level, except for some cases

where the true transition probability was very low and the fitted model was misspecified.

For example, when the data were generated from the SREM-CIF-1 model and the

SREM-CIF-2 model was fitted, the coverage probability for the “mi(0) <
√
50 →

{mi(6) <
√
50} ∩ (T ⋆i > 6)” transition was equal to 85.4% (Table 5.7).
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5.6 Simulation study
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5.6 Simulation study
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5.6 Simulation study

5.6.1.3 Simulation study results for population-averaged CIFs by baseline

marker state

Results for population-averaged CIFs by baseline marker state are provided in Fig-

ures 5.1-5.4. In general, both models, even when misspecified, led to nearly unbiased

estimates with satisfactory coverage rates. However, there were few cases where the

coverage probabilities from the misspecified model were lower than the nominal level.

For example, when data were generated from the SREM-CIF-1 model, the coverage

probability based on the SREM-CIF-2 model of the population-averaged CIF of cause

1, conditional on the mi(0) >
√
500 initial state, reduced to 88% (Figure 5.2).
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Population CIF estimates by baseline marker state in group 1 (w=1)  when data are simulated by the SREM−CIF−1 model
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Figure 5.1: Simulation study results for population-averaged CIF estimates by baseline

marker state for group 1 when data are simulated under the SREM-CIF-1 model and

there is no misclassification. CIF is estimated at certain years since baseline. Open circles

show the empirical estimates based on posterior medians over 500 replications whereas

closed circles show the true values. Shown are also the corresponding empirical coverage

probabilities. The true marker is based on linear splines with knots at 1 and 5 years since

baseline and it is correctly specified when fitting SREM-CIF-1 and SREM-CIF-2 models.
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Population CIF estimates by baseline marker state in group 0 (w=0)  when data are simulated by the SREM−CIF−1 model
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Figure 5.2: Simulation study results for population-averaged CIF estimates by baseline

marker state for group 0 when data are simulated under the SREM-CIF-1 model and

there is no misclassification. CIF is estimated at certain years since baseline. Open circles

show the empirical estimates based on posterior medians over 500 replications whereas

closed circles show the true values. Shown are also the corresponding empirical coverage

probabilities. The true marker is based on linear splines with knots at 1 and 5 years since

baseline and it is correctly specified when fitting SREM-CIF-1 and SREM-CIF-2 models.
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Population CIF estimates by baseline marker state in group 1 (w=1) when data are simulated by the SREM−CIF−2 model
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Figure 5.3: Simulation study results for population-averaged CIF estimates by baseline

marker state for group 1 when data are simulated under the SREM-CIF-2 model and

there is no misclassification. CIF is estimated at certain years since baseline. Open circles

show the empirical estimates based on posterior medians over 500 replications whereas

closed circles show the true values. Shown are also the corresponding empirical coverage

probabilities. The true marker is based on linear splines with knots at 1 and 5 years since

baseline and it is correctly specified when fitting SREM-CIF-1 and SREM-CIF-2 models.
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Population CIF estimates by baseline marker state in group 0 (w=0) when data are simulated by the SREM−CIF−2 model
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Figure 5.4: Simulation study results for population-averaged CIF estimates by baseline

marker state for group 0 when data are simulated under the SREM-CIF-2 model and

there is no misclassification. CIF is estimated at certain years since baseline. Open circles

show the empirical estimates based on posterior medians over 500 replications whereas

closed circles show the true values. Shown are also the corresponding empirical coverage

probabilities. The true marker is based on linear splines with knots at 1 and 5 years since

baseline and it is correctly specified when fitting SREM-CIF-1 and SREM-CIF-2 models.
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5.6.2 Simulation study under misclassification of failure cause

An additional simulation study was performed to assess the model performance when

there is failure cause misclassification under the same data generating mechanisms,

but including 2000 subjects per dataset. We assumed non-differential misclassification

probabilities π11 = 0.75 and π22 = 0.90, that is, the probabilities of observing failure

cause 1 and 2 given a true failure cause 1 and 2 were π11 and π22, respectively. The

basic results are presented in Tables 5.11 and 5.12. Most findings were similar; the

models produced estimates with small biases and acceptable coverage rates, with the

same conclusion holding for the estimates of the misclassification parameters π11 and

π22. Both models were able to provide accurate estimates for the population-averaged

CIFs and marker states probabilities despite the fact that the survival submodels were

misspecified. The performance of the DIC criterion in identifying the true model re-

duced to some extent to 74.2% and 56.8%, under the SREM-CIF-1 and SREM-CIF-2

scenarios, respectively. Similarly to the no misclassification case, the performance of

the DIC criterion substantially improved when including 8000 individuals, becoming

88.0% and 78.0% under the SREM-CIF-1 and SREM-CIF-2 scenarios, respectively.
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5.6 Simulation study

5.6.2.1 Simulation study results for marker state probabilities under mis-

classified failure cause

In this subsection, we present results for marker state probabilities in Tables 5.13-5.16.

Both models, even when misspecified, yielded estimates with small biases and adequate

coverage rates (91.0-96.6%).
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5.6 Simulation study
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5. JOINT MODELING OF LONGITUDINAL AND COMPETING-RISK
DATA ACCOUNTING FOR FAILURE CAUSE MISCLASSIFICATION
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5. JOINT MODELING OF LONGITUDINAL AND COMPETING-RISK
DATA ACCOUNTING FOR FAILURE CAUSE MISCLASSIFICATION

5.6.2.2 Simulation study results for transition marker state probabilities

by baseline marker state under misclassified failure cause

The transition marker probabilities by baseline marker state are shown in Tables 5.17-

5.20. Both models had great performance leading to estimates with small biases and

acceptable coverage probabilities in almost all cases. However, when the data were

generated from the SREM-CIF-1 model and the SREM-CIF-2 model was fitted, the

coverage probability for the “mi(0) <
√
50 → {mi(6) <

√
50} ∩ (T ⋆i > t)” transition

was equal to 82.8% (Table 5.17). Recall that the same finding was observed in the

simulation study with known failure cause (Table 5.7).
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5.6 Simulation study
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5.6 Simulation study

5.6.2.3 Simulation study results for population-averaged CIFs by baseline

marker state under misclassified failure cause

Results for population-averaged CIFs by baseline marker state are provided in Figures

5.5-5.8. Both models, even when the fitted model was misspecified, yielded almost un-

biased estimates with satisfactory coverage rates. However, there were few cases where

the coverage probabilities from the misspecified model were lower than the nominal

level. For example, when data were generated from the SREM-CIF-1 model, the cov-

erage probability based on the SREM-CIF-2 model of the population-averaged CIF of

cause 1, conditional on the mi(0) >
√
500 initial state, reduced to 87.6% (Figure 5.6).

This result is very similar to that found in the simulation study assuming that the

failure cause is available for all individuals (Figure 5.2).
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5. JOINT MODELING OF LONGITUDINAL AND COMPETING-RISK
DATA ACCOUNTING FOR FAILURE CAUSE MISCLASSIFICATION

0 2 4 6 8 10

Estimated CIFs for cause 1 by the SREM−CIF−1 model

Time (years)

P
ro

b
a

b
ili

ty
 (

%
)

0

5

10

15

20

25

30

35

40

93.8%

93.2%

91.6%

93%
93.6%

94.4%

94%

93.6%

93.2%
94.2%

94.8%

95%

94.6%
94.4%

93.2%

94.4%

94%

94.6%
94.2%

93.8%

93.2%

93.8%

93.8%
93.8%

93.2%

93.6%

94%
94.4%

93.8%
93.4%

93.6%
94.2%

94.2%
93.8% 93.6%

mi(0) < 50

50 ≤ mi(0) < 100

100 ≤ mi(0) < 200

200 ≤ mi(0) < 250

250 ≤ mi(0) < 350

350 ≤ mi(0) < 500

500 ≤ mi(0)
True

0 2 4 6 8 10

Estimated CIFs for cause 1 by the SREM−CIF−2 model

Time (years)

P
ro

b
a

b
ili

ty
 (

%
)

0

5

10

15

20

25

30

35

40

94.6%

93.4%

92.8%

92.2%
92.6%

95.2%

94.4%

93%

93.2%
93.8%

94.2%

95.2%

94%

94.4%
93.2%

92.2%

92.8%

93.4%
93.2%

92.8%

91%

91.6%

92.8%
92.6%

91.6%

90%

91.2%

93.6%
92.8%

91.2%

89.2%
90%

93.2%
93.2% 92.2%

mi(0) < 50

50 ≤ mi(0) < 100

100 ≤ mi(0) < 200

200 ≤ mi(0) < 250

250 ≤ mi(0) < 350

350 ≤ mi(0) < 500

500 ≤ mi(0)
True

Population CIF estimates by baseline marker state in group 1 (w=1) 
when data are simulated by the SREM−CIF−1 model with failure cause misclassification
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Figure 5.5: Simulation study results for population-averaged CIF estimates by baseline

marker state for group 1 when data are simulated under the SREM-CIF-1 model and

there is failure cause misclassification. CIF is estimated at certain years since baseline.

Open circles show the empirical estimates based on posterior medians over 500 replications

whereas closed circles show the true values. Shown are also the corresponding empirical

coverage probabilities. The true marker is based on linear splines with knots at 1 and 5

years since baseline and it is correctly specified when fitting SREM-CIF-1 and SREM-CIF-

2 models.
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Population CIF estimates by baseline marker state in group 0 (w=0) 
when data are simulated by the SREM−CIF−1 model with failure cause misclassification
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Figure 5.6: Simulation study results for population-averaged CIF estimates by baseline

marker state for group 0 when data are simulated under the SREM-CIF-1 model and

there is failure cause misclassification. CIF is estimated at certain years since baseline.

Open circles show the empirical estimates based on posterior medians over 500 replications

whereas closed circles show the true values. Shown are also the corresponding empirical

coverage probabilities. The true marker is based on linear splines with knots at 1 and 5

years since baseline and it is correctly specified when fitting SREM-CIF-1 and SREM-CIF-

2 models.

217



5. JOINT MODELING OF LONGITUDINAL AND COMPETING-RISK
DATA ACCOUNTING FOR FAILURE CAUSE MISCLASSIFICATION

0 2 4 6 8 10

Estimated CIFs for cause 1 by the SREM−CIF−1 model

Time (years)

P
ro

b
a

b
ili

ty
 (

%
)

0

5

10

15

20

25

30

35

40

92%

93.6%

94%

92.8%
93.4%

91.4%

92.8%

93%

93%
92.6%

92.4%

92%

92.4%
91.8%

91.4%

93.4%

92.2%

91.8%
92.2%

92.2%

92.4%

92.4%

92.2%
92%

91.6%

92.4%

93%

91.2%
92%

92%

91.8%
93.2%

92.2%
92.6% 92.4%

mi(0) < 50

50 ≤ mi(0) < 100

100 ≤ mi(0) < 200

200 ≤ mi(0) < 250

250 ≤ mi(0) < 350

350 ≤ mi(0) < 500

500 ≤ mi(0)
True

0 2 4 6 8 10

Estimated CIFs for cause 1 by the SREM−CIF−2 model

Time (years)

P
ro

b
a

b
ili

ty
 (

%
)

0

5

10

15

20

25

30

35

40

94.6%

95.2%

94.6%

94.2%
94%

93.6%

94.2%

94.6%

93.8%
93.6%

92.8%

92.8%

92.6%
92.4%

91.8%

93%

92.6%

93.2%
92.4%

92.2%

93.2%

92%

92.4%
92%

92.4%

94%

92.8%

92.8%
93%

91.4%

94.2%
93.6%

93.6%
92.6% 91.4%

mi(0) < 50

50 ≤ mi(0) < 100

100 ≤ mi(0) < 200

200 ≤ mi(0) < 250

250 ≤ mi(0) < 350

350 ≤ mi(0) < 500

500 ≤ mi(0)
True

Population CIF estimates by baseline marker state in group 1 (w=1) 
when data are simulated by the SREM−CIF−2 model with failure cause misclassification
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Figure 5.7: Simulation study results for population-averaged CIF estimates by baseline

marker state for group 1 when data are simulated under the SREM-CIF-2 model and

there is failure cause misclassification. CIF is estimated at certain years since baseline.

Open circles show the empirical estimates based on posterior medians over 500 replications

whereas closed circles show the true values. Shown are also the corresponding empirical

coverage probabilities. The true marker is based on linear splines with knots at 1 and 5

years since baseline and it is correctly specified when fitting SREM-CIF-1 and SREM-CIF-

2 models.
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Population CIF estimates by baseline marker state in group 0 (w=0) 
when data are simulated by the SREM−CIF−2 model with failure cause misclassification

0 2 4 6 8 10

Estimated CIFs for cause 2 by the SREM−CIF−1 model

Time (years)

P
ro

b
a

b
ili

ty
 (

%
)

10

15

20

25

30

35

40

45

93.2%

94%

95%

95.6%

94.6%

92.8%

93.8%

94.8%

94.6%

93.8%

93.8%

94.2%

94.2%

94.2%

93.4%

93.2%

93.2%

94%

93%

92.6%

92.6%

94.2%

94.2%

93.2%

93.4%

92.4%

93.6%

94.2%

92.8%

93%

93.6%

93%

94.6%

93.4%

93.2%

mi(0) < 50

50 ≤ mi(0) < 100

100 ≤ mi(0) < 200

200 ≤ mi(0) < 250

250 ≤ mi(0) < 350

350 ≤ mi(0) < 500

500 ≤ mi(0)
True

0 2 4 6 8 10

Estimated CIFs for cause 2 by the SREM−CIF−2 model

Time (years)

P
ro

b
a

b
ili

ty
 (

%
)

10

15

20

25

30

35

40

45

94.6%

94.6%

95.2%

95%

94.4%

94%

94.6%

95%

94.8%

93.4%

93%

95%

94.2%

93.6%

92.8%

93.4%

94.2%

94.6%

92.6%

93.6%

92.2%

93.8%

95%

92.8%

92.8%

93.2%

93%

93.8%

93%

93%

93.4%

92.4%

93.2%

92.2%

93%

mi(0) < 50

50 ≤ mi(0) < 100

100 ≤ mi(0) < 200

200 ≤ mi(0) < 250

250 ≤ mi(0) < 350

350 ≤ mi(0) < 500

500 ≤ mi(0)
True

Figure 5.8: Simulation study results for population-averaged CIF estimates by baseline

marker state for group 0 when data are simulated under the SREM-CIF-2 model and

there is failure cause misclassification. CIF is estimated at certain years since baseline.

Open circles show the empirical estimates based on posterior medians over 500 replications

whereas closed circles show the true values. Shown are also the corresponding empirical

coverage probabilities. The true marker is based on linear splines with knots at 1 and 5

years since baseline and it is correctly specified when fitting SREM-CIF-1 and SREM-CIF-

2 models.
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5.7 Application

The proposed methodology was applied to data from the East Africa International

Epidemiologic Databases to Evaluate AIDS (IeDEA) Regional Consortium. We aimed

to jointly estimate the CD4 evolution after ART initiation and the CIFs for death

and disengagement from care, assuming that the CIFs depend on the “true” marker

values over time. An important issue in the study data is that there may be serious

mortality underestimation as many deaths are likely to have been incorrectly classified

as disengagements from care. To adjust for that, we incorporated information from

double sampling, i.e. a random sample from disengaged patients whose true vital

status was ascertained by tracing these patients in the community. It should be noted

that, in this application, misclassification can be safely assumed to be uni-directional,

that is, a true death can be incorrectly classified as a disengagement from care but

a true disengagement from care cannot be misclassified as an observed death. Thus,

assuming non-differential misclassification, there is actually only one misclassification

parameter π11, with K = 1 and K = 2 corresponding to death and disengagement

from care, respectively. The time gap between two consecutive clinical visits was, on

average, approximately equal to one month, with the disengagement date estimated by

the the midpoint between the last visit and 2 months after the next scheduled visit date.

After taking double sampling data into account, based on the assumed joint model, we

estimated multistate probabilities by jointly considering states of “true” CD4 values

and the terminal events of death and disengagement from care.

To illustrate the proposed methodology, out of the 61,973 patients with at least one

observed CD4 value after ART initiation, we randomly selected 60% of them within

each participating clinic, leading to 37,186 patients. To reduce the heterogeneity in the

sample, we used data on women aged from 35 to 45 years (the most frequent covariate

pattern in the data), leading to 8,005 patients included. The time origin (baseline) was

defined at ART initiation, and all available CD4 counts from baseline to the first loss

to clinic event were considered. Since there were very few CD4 measurements after
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7 years since ART initiation, we censored CD4 observations at 7 years, i.e. all CD4

measurements after 7 years were ignored and the corresponding patients were considered

right-censored at 7 years. 3,275 (40.9%) and 273 (3.4%) observed disengagements from

care and deaths were seen, respectively, whereas 4,457 (55.7%) were free of any event

(right-censored). Deceased patients had substantially lower median (IQR) CD4 counts

at baseline [78.0 (31.0, 162.0) cells/µL], compared to disengaged patients [145.0 (67.0,

230.6) cells/µL], and those who were right-censored, 183.0 (99.0, 290.0) cells/µL. In

443 (13.5%) patients out of those who disengaged from care, the true vital status was

ascertained through double sampling, in whom there were 80 (18.1%) hidden deaths.

To model the CD4 evolution over time, we used an LMM model on the square

root scale using cubic B-splines of time with knots at 0.5, 2, and 4 years since baseline

for the fixed effects and a random intercept and slope structure for the random effects.

Baseline CIF levels for death and disengagement from care were modeled through cubic

B-splines with 2 and 3 knots, respectively. To identify the model with the best fit

according to the DIC criterion, we performed a grid search over all combinations of the

values c1, c2 ∈ {1e− 05, 0.25, . . . , 2} assuming non-differential misclassification π11. We

used the prior distributions listed in Subsection 5.2.3, with µ0 = µs0 = 0, C0 and Cs
0

diagonal matrices with variances 100, λ1 = λ2 = 0.01, df = 2, A = 2× diag(25, 1), and

π11 ∼ Beta(1, 1) (uniform distribution). The DIC criterion was optimized at c1 = 1.5

and c2 = 1e − 05, that is, the subdistribution hazard model yielded the best fit for

disengagement from care but not for death. A corresponding joint model assuming

that π11(Dmisc) = expit(θmisc,1 + θmisc,2T
⋆
i ) was also fitted; it was indicated that the

probability of correctly classifying a death may decrease at longer times from ART

initiation but the effect was not significant, i.e. the odds ratio for one year increase in

event time was 0.84 (95%CI: 0.70-1.03). Thus, the final model assumed non-differential

misclassification, and for comparison, we also fitted the corresponding model without

misclassification. To estimate model parameters, we used 1000 iterations as burn-in,

recorded 50000 draws thereafter keeping every tenth posterior value for inferences.

The main results from the two models are presented in Table 5.21. There is sub-
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stantial underestimation of mortality, as only 29.21% of the estimated “true” deaths

were reported. The fixed effect estimates and the effects of the “true” marker value on

the CIF for death were roughly similar between the two models; for example, based on

the model accounting for misclassification, the association parameter α1 for one unit

increase in mi(t) was -0.20 (95%CI: -0.23,-0.17). Of note, the corresponding effects on

the CIF of disengagement from care were discordant, i.e. increase of mi(t) was asso-

ciated with greater subdistribution hazard for disengagement from care when double

sampling data were taken into account, whereas, the model using the observed failure

causes implied no effect. This finding may be attributed to the considerable proportion

of hidden deaths among the patients flagged as lost to clinic, as deceased patients had

lower “true” marker values on average. From now on, we focus only on the model that

accounts for misclassification. The estimated CD4 evolution [(x⊤
i (t)β)

2] is presented

in panel A1 of Figure 5.9. After an initial very rapid increase from ART initiation to

around 6 months, CD4 cell counts continued increasing but at a lower rate, until reach-

ing a plateau at about 6 years since ART initiation. The estimates from the proposed

model were similar to those obtained by a corresponding LMM (Figure 5.9, panel A1).

We also estimated the population-averaged CIFs using L = 1000 posterior draws

keeping every fifth draw, with using Nmc = 1000. The results are presented in panel A2

of Figure 5.9. Also shown is the CIFs for death and disengagement from care ignoring

potential misclassification, i.e. Pr(T ⋆i ≤ t, K̃i = 1;θ;θmisc) = Pr(T ⋆i ≤ t,Ki = 1;θ)π11

and Pr(T ⋆i ≤ t, K̃i = 2;θ;θmisc) = Pr(T ⋆i ≤ t,Ki = 1;θ)(1 − π11) + Pr(T ⋆i ≤ t,Ki =

2;θ), respectively. These estimates are in close agreement with the corresponding

estimates using the Aalen–Johansen Estimator, implying that the model is flexible

enough to model the observed patterns of events. As expected, CIF estimates ig-

noring misclassification led to underestimation of mortality and overestimation of the

risk for disengagement from care. In panel A3 of Figure 5.9, we present multistate

probabilities over time for all states simultaneously, i.e. both marker states and the

terminal events of death and disengagement from care. By the end of the study (7

years since baseline), we estimated that 15.09% (95% CI: 13.13,17.23%) had died
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Table 5.21: Results from SREM-CIF-2 models with c1 = 1.5 and c2 = 1e− 05 applied to

East Africa IeDEA data†.

Misclassification No Misclassification

Parameter Median SD LB UB Median SD LB UB

Longitudinal

Intercept 12.48 0.06 12.35 12.60 12.47 0.06 12.35 12.59

β1 4.32 0.10 4.13 4.51 4.36 0.10 4.17 4.55

β2 4.81 0.11 4.59 5.03 4.84 0.11 4.63 5.06

β3 8.07 0.15 7.78 8.36 8.07 0.15 7.78 8.36

β4 9.62 0.27 9.10 10.17 9.52 0.28 8.96 10.05

β5 10.76 0.44 9.88 11.61 10.51 0.44 9.64 11.38

β6 10.52 0.65 9.25 11.77 10.24 0.66 8.94 11.51

Cause1 (Death)

“True” marker value, α1 -0.20 0.01 -0.23 -0.17 -0.18 0.02 -0.22 -0.15

Cause2 (Disengagement)

“True” marker value sHR, exp(α2) 1.04 0.01 1.03 1.06 1.00 0.00 0.99 1.01

π11 29.21 1.99 25.56 33.32

† The mean evolution was based on cubic B-splines of time with knots at 0.5, 2, and 4

years since ART initiation while the random-effects specification was based on a

random intercept and slope structure. “Median”, “SD”, “LB”, and “UB” denote the

posterior median, standard deviation, 2.5% and 97.5% quantiles, respectively. “sHR”

denotes the subdistribution hazard ratio.

and 57.93% (95%CI: 55.22,60.78%) had disengaged from care, whereas, at the end

of the study, 0.51% (95%CI: 0.24,0.82%), 0.75% (95%CI: 0.51,1.05%), 2.28% (95%CI:

1.75,2.85%), 1.43% (95%CI: 1.18,1.69%), 3.18% (95%CI: 2.75,3.62%), 4.88% (95%CI:

4.40,5.35%), and 13.95% (95%CI: 11.72,16.09%) were event free with “true” marker

states: mi(t) <
√
50,

√
50 ≤ mi(t) <

√
100,

√
100 ≤ mi(t) <

√
200,

√
200 ≤ mi(t) <

√
250,

√
250 ≤ mi(t) <

√
350,

√
350 ≤ mi(t) <

√
500,

√
500 ≤ mi(t), respectively. The

corresponding results for transition probabilities by baseline marker state are presented

in Figure 5.10. The CIF of death at 7 years for those starting at mi(0) <
√
50 was
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33.57% (95%CI: 29.85,37.55%), remarkably higher than that of the remaining base-

line marker states; even those starting at
√
50 ≤ mi(0) <

√
100 were significantly less

likely to die, with the posterior median of the difference being 12.31% (95%CI: 10.30,

14.55%). Conditionally on mi(0) <
√
50, the transition probability to mi(5) ≥

√
500 at

5 years while being event-free was as low as 6.93% (95%CI: 5.86,8.01%), whereas the

corresponding probability for those with
√
50 ≤ mi(0) <

√
100 was 12.53% (95%CI:

11.36,13.67%).
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Figure 5.9: Estimated CD4 evolution, population-averaged CIFs, and marker states

based on the SREM-CIF-2 model with c1 = 1.50 and c2 = 1e − 05, taking the double

sampling data into account, applied to East Africa IeDEA data. A1: Estimated CD4

evolution over time since ART initiation, back-transformed on the original scale (from

the square-root scale). A2: population-averaged CIFs for death and disengagement from

care along with the corresponding CIFs for observed death and disengagement from care.

A3: Stacked multistate probability plot of marker states and competing risks for death

and disengagement from care over time since ART initiation. The corresponding state

occupancy probabilities are visualized through the difference between two adjacent curves

with different shades of gray.
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Figure 5.10: Transition probabilities by baseline marker state as estimated by the SREM-

CIF-2 model with c1 = 1.5 and c2 = 1e− 05 accounting for failure cause misclassification

applied to IeDEA data.
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5.8 Discussion

In this chapter, we proposed a flexible and unified class of models to jointly model a

normally distributed marker over time and competing risks using CIFs for the survival

submodels, with inference on model parameters obtained through a hybrid MCMC

algorithm. The proposed models assume that the CIFs depend on the “true” marker

value over time, mi(t), thus the association between the marker and survival processes

is induced via the random effects. Hence, the proposed models lie within the family of

shared random effects models. Most competing-risk shared random effects models rely

on cause-specific hazards; but CIF estimates may be of particular interest when the

focus lies on population predictions. Though it is feasible to derive CIF estimates based

on estimated cause-specific hazards, it requires complex integration, being particularly

challenging in joint models. In contrast, under our proposed approach, the effects on the

CIFs are described in a direct and straightforward way. To model the link functions, we

used the generalized odds rate transformation, with the proportional subdistribution

hazards model (Deslandes and Chevret, 2010, Fine and Gray, 1999) being a special

case. Due to potential failure cause misclassification in our motivating example, we

extended our methodology by incorporating information from doubly sampled patients,

i.e. a random sample from patients to whom a gold standard diagnostic procedure was

performed. On top of this issue, based solely on the joint model, we also estimated

multistate probabilities jointly defined by “true” marker states and competing risks.

A simulation study was carried out to examine the performance of the methodology,

which indicated that the model performance is satisfactory under certain conditions.

The proposed models were also fitted to data from the IeDEA study using CD4 count

data from ART initiation until the occurrence of death or disengagement from care.

Ignoring double sampling data led to serious underestimation of mortality and implied

no effect of the “true” CD4 count, mi(t), on the risk for disengagement from care, while

after adjusting for misclassification positive correlation between mi(t) and the risk for

disengagement from care was revealed. We suppose that this discrepancy could be at
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least partly explained by the considerable proportion of deaths among those observed

to disengage from care.

One important issue when specifying models for CIFs is that the all-cause CIF

should be bounded by 1 at each failure time. We addressed this issue by assum-

ing τi(β,θt, bi) as the upper bound of the survival time, which led to zero likelihood

when the constraint is violated. Recall that calculation of τi(β,θt, bi) was not required

within the MCMC algorithm, but as noted in Section 5.4, calculation of τi(β,θt, bi) was

generally required for valid population-averaged inferences. In summary, we followed

Gelfand et al. (1992) who suggested building the constraint in the likelihood function

rather than in the prior distribution when the constraint set depends on the data, thus

the prior distribution remained bi ∼ N(0,D) under our approach.

Our approach of multistate modelling differs from standard approaches (e.g. Putter

et al., 2007) in which states are assumed to be directly observed and usually rely on the

Markov assumption. In contrast, under our approach, marker states were not assumed

to be directly observed, with the computations being solely based on the assumed joint

model by formally deriving posterior samples for the quantities of interest, acknowl-

edging that the population CIFs and the marker state probabilities are functions of

the parameters of the assumed joint model. Although describing the progression of a

cohort via mutually exclusive states over time, defined by both marker and survival

data, may offer an alternative view to the data which is frequently used in medical

research, relatively few methodological efforts have been made for reliable inference.

It should be noted that the proposed methodology relies on fully parametric models

for inference. Hence, as always with parametric approaches, certain assumptions may

not hold in practice. Our proposed approach could be extended by assuming more

robust measurement errors and potentially heterogeneous random effects (Huang et al.,

2010). To obtain greater flexibility, one could also relax the normality assumption on

the prior distribution of the random effects by allowing them to have a non-parametric

prior distribution through a Dirichlet process (Kleinman and Ibrahim, 1998). Among all

model assumptions, though, the ones that are most difficult to verify are perhaps those
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related to the missing data mechanisms, e.g. the proposed models, lying within the

general class of shared random effects models, assume that missing marker data after

the first occurring event are MNAR. However, it has been shown that if the true missing

data mechanism causing termination of marker data is MAR and specific SREMs are

fitted to such data, the fixed effect estimates are susceptible to bias (Thomadakis

et al., 2019). In our application, though, we feel that this is unlikely as the fixed-effect

estimates from the proposed model were in line with the corresponding estimates from

an analogous LMM.

There are certain extensions that could be incorporated into the proposed methodol-

ogy. For example, one may also be interested in transition failure probabilities by latent

marker state such as Pr{Ti ≤ t2,Ki = k|Ti ≥ t1,mi(t1) ∈ Sj′ ,wik;θ}, 0 ≤ t1 < t2, or

in dynamic predictions for specific individuals (Andrinopoulou et al., 2017, Rizopoulos,

2012b). It also needs to be pointed out that, in our application example, the date of

disengagement is not exactly known; we instead defined the disengagement date as the

one on which patients were expected to no longer have access to medication supplies.

Being more precise, the time to disengagement is interval-censored (Bakoyannis et al.,

2017), which can be taken into account by adjusting the likelihood for disengaged pa-

tients. Given the short time between consecutive visits, though, we expect that the

effects of ignoring the interval censoring issue will be minor in this application. More-

over, in the proposed models, the CIFs, or more precisely, some function thereof, are

assumed to linearly depend on mi(t). This assumption could be relaxed by using a

more flexible structure.

To sum up, we have proposed a flexible class of shared random effects models to

jointly model a normally distributed marker and competing risks using CIFs in the sur-

vival submodels. As most approaches in the literature rely on cause-specific hazards,

our proposed approach can be a useful alternative when the focus is on identifying risk

factors for the risk of an event and on predictions in general. The proposed models

have been extended to account for potential failure cause misclassification, and based

solely on the assumed joint model, a multistate representation of the whole population
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in terms of “true” marker states and competing risks is provided by formally deriv-

ing posterior samples for population-averaged CIFs, transitions failure probabilities by

baseline marker states, marker state occupation probabilities and transition marker

probabilities by baseline states.
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Chapter 6

Discussion

Studies that involve longitudinal measurements of a marker related to some chronic

disease have become very popular in medical research. The evolution of such markers

is typically strongly associated with the evolution of the disease, and thus, longitudi-

nal monitoring of such markers is essential to keep track of disease progression (Jewell

and Kalbfleisch, 1992). Moreover, under certain requirements, repeated marker mea-

surements have been used as surrogate outcome measures for hard clinical endpoints

in randomized clinical trials set up to evaluate new treatments, especially in diseases

with a long time course. For example, in the HIV epidemiology, several immunological

and virologic markers have been examined. Among them, the markers that are used

more frequently in medical/epidemiological studies are the number of CD4 cells and

the HIV-RNA viral load (VL).

Parallel to the extensive use of such longitudinal studies in medical research, plenty

of methodological approaches have investigated the consequences on inferences when

incomplete marker data are present. The take-home message is that the quality of

inferences crucially depends on the nature of the missing data mechanisms, i.e. the

probability of a measurement being missing. Nowadays, there are many available

methods for modeling longitudinal data with missingness, some of which focus on

monotone missingness in the form of dropout. It has been shown that likelihood-based

approaches ignoring the dropout mechanism yield consistent estimates given that the
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dropout mechanism is MAR and that the likelihood model for the full marker data

has been correctly specified. The most difficult case to handle in practice, though,

occurs when the missingness probabilities depend on the missing values or on other

unobserved characteristics related to the subject-specific marker trajectories (e.g. the

random effects). Such missingness mechanisms are referred to as missing not at random

(MNAR), whereas the term informative missingness is sometimes adopted, especially

for monotone missingness in the form of dropout, which is the focus of this thesis.

There are two main approaches to modeling longitudinal data under MAR miss-

ingness, i.e. the use of marginal and the use of conditional models, both reviewed in

Chapter 2. The marginal models can be semi-parametrically estimated using the gen-

eralized estimating equations (GEE) method, which is a very powerful and versatile

semi-parametric approach for marginal inference in longitudinal data. Unfortunately,

the appealing properties of GEE hold only under fully observed data or MCAR dropout,

i.e. as they do not exploit the full likelihood, they cannot guarantee valid estimates

under MAR dropout. One alternative modeling approach is that of the conditional

models, more specifically, the generalized linear mixed models (GLMMs). GLMMs

are fully parametric approaches, under which, the repeated marker measurements are

assumed to be independent conditionally on subject-specific random effects, following

the exponential family of distributions. In contrast to marginal models, the regression

parameters of GLMMs do not have a marginal interpretation, but rather correspond

to the covariate effects on a typical individual. An exception occurs in linear mixed

models (LMMs), which correspond to GLMMs with the identity link function along

with the Normal distribution for the repeated measurements.

Under MNAR dropout, it is necessary to jointly model the marker measurements

and the dropout probabilities to ensure unbiased estimates. There are three main ap-

proaches in joint modeling of longitudinal and time-to-dropout data, i.e. (i) selection

models, (ii) shared random effects models (SREM), and (iii) pattern-mixture models.

These three model frameworks essentially use different factorizations of the full likeli-

hood, i.e. the joint distribution of the full marker data and the dropout mechanism.
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In selection models, one specifies a model for the distribution of the full marker data

and a (selection) model for the dropout mechanism. The dropout probabilities are

assumed to depend on both observed and unobserved marker measurements. The main

advantage of selection models is that they can directly estimate the parameters relating

to the distribution of the full data, with such estimates usually being of main interest.

On the other hand, pattern-mixture models stratify the whole population by pattern

of dropout, factorizing the full likelihood as the marker distribution given the dropout

pattern and the marginal probabilities of dropout. In SREMs, conceptually, each indi-

vidual is assumed to have subject-specific random effects influencing both the marker

values and the probability of dropout. In theory, SREMs can be considered as either

selection models or pattern-mixture models.

One of the first SREM models in the literature was the model proposed by Gruttola

and Tu (1994), which was termed LN-SREM(RE) in this thesis. Gruttola and Tu

(1994) combined an LMM for the marker model with a log-normal model for the time

to dropout, with the mean log-time to dropout assumed to be a linear combination of

the random effects plus, possibly, some time-independent covariates. This model, as

well as many others (Pantazis et al., 2005, Schluchter, 1992, Touloumi et al., 1999),

was developed from a missing data perspective, i.e. to adjust for bias in the estimated

marker evolution due to MNAR dropout. Apart from accurately estimating the marker

evolution under MNAR dropout, estimation of the risk of dropout conditionally on the

“true” (i.e., excluding measurement error) marker value is also of great interest, and it

has been shown that simply including the observed marker values in a survival model

can severely underestimate the true association (Prentice, 1982, Wulfsohn and Tsiatis,

1997). A standard example of such a modeling approach is the proportional hazards

model that includes the “true” current marker value, as predicted by an LMM, in

the linear predictor, termed PH-SREM(CV) in this thesis. Most of the literature in

joint modeling assumes that there is a single dropout event, but joint modeling of

longitudinal data and competing risks has also gained attention.

The research included in this thesis has ultimately been motivated by the epidemi-
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ology of HIV infection, mainly concerning the evolution of CD4 cell counts before and

after treatment initiation. For example, when studying the CD4 evolution during the

HIV natural history (i.e., while individuals remain untreated and AIDS-free), treatment

initiation is the primary source of dropout, with the nature of this mechanism (MAR

or MCAR) being still debatable (Gras et al., 2013, Pantazis et al., 2005). Assuming

MAR dropout, many authors have applied random intercept and slope models to CD4

natural history data. However, if the true covariance structure of the data is more

complex, the random intercept and slope model can yield biased results. Therefore, to

improve model fit, it has been suggested to either use splines in the design matrix of

the random effects (Rizopoulos, 2012b) or to use a random intercept and slope model

along with an additional stochastic process such as Brownian motion (BM) (Stirrup

et al., 2015, Taylor and Law, 1998).

Focusing on the CD4 evolution after ART initiation, patients on ART may die while

in care or disengage from care, which are competing events. Many researchers may be

interested in the effects of the “true” (excluding random error) CD4 count on the risk

for death and disengagement from care, with this setting calling for joint analysis of

longitudinal and competing-risk data. Moreover, in HIV cohort studies, especially in

those from resource-constrained countries, substantial under-reporting of deaths is a

frequent major issue. That is, patients who have actually died may have been incor-

rectly classified as disengaged from care, which results in failure cause misclassification.

Thus, in this setting, disengagement form care cannot be simply treated simply as non-

informative right censoring, as the latter would be valid if individuals who were lost to

follow-up were representative of those who were not. In HIV epidemiology, progression

of cohorts over time is sometimes monitored by using mutually exclusive states, de-

fined jointly by survival data (e.g. death or disengagement from care) and discretized

CD4 data (Stover et al., 2019). In this setting, joint modeling approaches could be

advantageous.

Our literate review revealed that the bias of LMMs under MNAR dropout has been

well described and recognized and that plenty of SREMs have been proposed including
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various parameterizations. Although it is well known that an ultimate discrimination

between MAR and MNAR missingness is not possible (Molenberghs et al., 2008), in

practice, this seems to have been partially ignored in the joint modeling literature. For

example, the effects of fitting an SREM model to MAR data, in terms of induced bias

in the parameter estimates, have not been thoroughly studied. Therefore, in Chapter 3,

we examined the performance of specific SREM models in estimating the rate of change

of longitudinal markers subject to MAR dropout. We analytically calculated the bias in

the population slope estimate by both the LN-SREM(RE) and PH-SREM(CV) models.

The results revealed that the asymptotic bias in the estimated slope increases as the

MAR dropout mechanism strengthens, i.e. at higher MAR dropout probabilities.

In Chapter 3, motivated by the definition of MNAR, we also proposed an alternative

model that allows the hazard of dropout to depend on the last observed marker value,

as well as on the random effects. In addition, we extended the proposed model to the

bivariate case, modeling two correlated markers simultaneously. Based on a simulation

study using specific MAR and MNAR dropout scenarios, the proposed model had neg-

ligible bias in the estimated slope under both scenarios, whereas the other examined

SREM models yielded biased results, especially under the MAR dropout scenario. The

examined models were fitted to CD4 data from the CASCADE study, with ART being

the dominating reason for dropout. All SREMs, including the proposed one, yielded

a steeper CD4 decline compared to the estimate from the LMM, which could indicate

presence of an MNAR mechanism, with the SREMs using a random-effects parame-

terization yielding the most extreme results. In the bivariate version of the proposed

model though, that is the one including VL levels as well, the proposed SREM model

and the LMM model yielded similar CD4 decline estimates, indicating that, after ac-

counting for viral load levels, the dropout probabilities are unlikely to depend on the

underlying CD4 slope. Thus, our bivariate analysis favours the MAR rather than the

MNAR assumption for the missing CD4 counts.

In summary, when SREM models are applied in cases where the MAR assumption

seems reasonable, results should be interpreted with caution. The proposed model of
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Chapter 3 could be alternatively applied when the nature of the dropout mechanism

is debatable, at least as part of a sensitivity analysis. Part of this work received a

student award in the International Society for Clinical Biostatistics (ISCB) conference,

Birmingham (2016), whereas the full paper was published in Biometrics (Thomadakis

et al., 2019).

Focusing on modeling of marker evolution under MAR dropout, although the claim

that an LMM with a stochastic process (e.g. Brownian motion) on top of a simple

random-effect structure should be equivalent to an LMM with an elaborate random-

effect specification (e.g. through splines) is reasonable, no formal comparison on the

basis of bias in parameter estimates under MAR dropout had been evaluated. In Chap-

ter 4, we analytically showed that assuming a simple “random intercept and slope”

structure when the true one is substantially more complex can lead to serious biases.

We also compared the approach of using a fractional BM process on top of a random

intercept and slope structure with the approach of using natural splines for the ran-

dom effects in terms of their robustness to misspecified covariance structure. For the

estimation of a single slope, the two approaches performed almost equally well, though

when the “true” population-averaged marker evolution was based on piecewise linear

or natural splines, the fractional BM model yielded less biased estimates.

The comparison of the fit of the models in such cases is usually based on the AIC or

BIC criteria, as likelihood ratio tests are not possible for non-nested models. However,

as the AIC and BIC criteria rely on asymptotics without a straightforward probabilistic

interpretation, more formal model comparison criteria could be developed. In Chapter

4, we adopted a Bayesian model comparison approach, based on the posterior model

probabilities, to discriminate between LMMs with/without additional BM processes

that can have any, and potentially different, random-effect specifications. The examined

covariance structure approaches were applied to CD4 natural history data from the

CASCADE study. The preferred, by all examined criteria, model was the one including

a fractional BM process on top of a random intercept and slope structure. The slope

estimate in the simple random intercept and slope model was quite steeper compared
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with that from the fractional BM model, which was in line with our analytical findings

suggesting biased slope estimates when the fitted covariance structure is simpler than

the true one.

To sum up, over-simplistic covariance structures should be avoided under MAR

dropout as they could lead to seriously biased fixed-effect estimates. The approach of

adding a BM process on top of a random intercept and slope structure or the approach

of using an LMM with natural splines for the random effects could be adopted to re-

duce bias due to potentially misspecified covariance structure. To discriminate between

different approaches modeling the covariance structure, the proposed Bayesian model

comparison could be applied, especially when there is prior information on the parame-

ters to be estimated. Different parts of this work received a student award in the ninth

conference of the Eastern Mediterranean Region of the International Biometrics Society

(EMR-IBS), Thessaloniki (2017), and a Best Poster Award in the session Biomedical

studies in the ISCB conference, Vigo (2017). The full approach was published in Statis-

tics in Medicine (Thomadakis et al., 2020).

Regarding joint modeling of marker data and competing-risk survival data, our

literature review revealed that the literature is dominated by cause-specific hazard

approaches. However, methods based on cumulative incidence functions (CIFs) are

equally valid and may have a more appealing interpretation. In Chapter 5, we pro-

posed a flexible and unified class of models to jointly model a normally distributed

marker over time and competing risks using CIFs for the survival submodels. The pro-

posed model assumes that the CIFs depend on the “true” marker value over time, thus

the association between the marker and survival processes is induced via the random ef-

fects. Hence, the proposed model lies within the family of shared random effects models.

Although it is feasible to derive CIF estimates based on estimated cause-specific haz-

ards, it requires complex integration, which is particularly challenging in joint models.

In contrast, under the proposed methodology, estimating the CIFs is computationally

easier and more direct. Due to death under-reporting in our motivating example, we

extended our methodology to take a double sampling design into account (Bakoyannis
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et al., 2019), i.e. a small random sample from patients reported to have disengaged from

care, in whom, the true vital status is actively ascertained. On top of this issue, based

solely on the joint model, we also estimated multistate probabilities jointly defined by

“true” marker states and competing risks. A simulation study was carried out to ex-

amine the performance of the proposed methodology, which indicated that the model

performance is satisfactory under certain conditions. The proposed models were also

fitted to data from the IeDEA study using CD4 count data from ART initiation until

the occurrence of death or disengagement from care. Ignoring double sampling data led

to serious mortality underestimation and implied no effect of the “true” CD4 count on

the risk for disengagement from care, while after adjusting for death misclassification,

statistically significant positive correlation between the “true” CD4 count and the risk

for disengagement from care was found. We suppose that this discrepancy could be at

least partly explained by the considerable proportion of deaths among those reported

to disengage form care.

One important issue when specifying models for CIFs is that the all-cause CIF

should be bounded by 1 at each failure time. We addressed this issue by following

Gelfand et al. (1992) who suggested building the constraint in the likelihood function

rather than in the prior distribution when the constraint set depends on the data. Our

approach of multistate modelling differs from standard approaches (e.g. Putter et al.,

2007) in which states are assumed to be directly observed and usually rely on the

Markov assumption. In contrast, under our approach, marker states were not assumed

to be directly observed, with the computations being solely based on the assumed joint

model by formally deriving posterior samples for the quantities of interest, acknowl-

edging that the population CIFs and the marker state probabilities are functions of the

parameters of the assumed joint model. The proposed approach could be improved in

several ways: e.g. by including more robust measurement errors or potentially hetero-

geneous random effects (Huang et al., 2010). As with all parametric models, the validity

of the estimates depend on the correctness of model assumptions. Among all model

assumptions, though, the ones that are most difficult to verify in practice are perhaps
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those related to the missing data mechanisms. Recall that the proposed approach lies

within the SREM class of MNAR models. However, in Chapter 3, we showed that if

the true dropout mechanism causing termination of marker data is MAR and specific

SREMs are fitted to such data, the fixed-effect estimates are susceptible to bias. In

this application, though, we feel that this is unlikely as the fixed-effect estimates from

the proposed model were in line with the corresponding estimates from the LMM.

To summarize, as most approaches in the literature rely on cause-specific hazards,

our proposed approach can be a useful alternative when one focuses on identifying risks

factors for the risk of an event and on predictions in general. The proposed model has

been extended to account for potential failure cause misclassification through double

sampling, as in HIV cohort studies it is highly likely that the population of disengaged

patients includes hidden (unobserved) deaths in care. Moreover, we proposed a unified

and formal approach to estimate state occupation and transition probabilities in terms

of “true” or observed marker states and competing risks based solely on the assumed

SREM joint model. Parts of this work were presented as oral presentations in the

ISCB conference, Leuven (2019) and Lyon (2021). The full paper and has submitted

to Biostatistics and is currently under revision.

To summarize, this thesis focuses mainly on joint modelling of a disease marker

evolution and clinical outcomes. Its contribution can be summarized as follows:

1. It has been shown that SREMs under MAR marker data due to dropout could

lead to seriously biased marker evolution estimates. An alternative model has

been proposed, which could be used, at least as a sensitivity analysis, when the

nature of the drop out mechanism is not known, with its performance evaluated

through simulation studies. The proposed model performs well under specific

MAR and MNAR missing marker data.

2. When fitting LMMs under MAR dropout, it has been shown that a simple co-

variance structure when the true one is more complex can lead to seriously biased

fixed-effect estimates. To minimize induced biases, alternative approaches, such
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including a BM process or including splines in the design matrix of random ef-

fects, have been evaluated. In addition, a Bayesian model comparison criterion

has been proposed to compare non-nested models, e.g. when models with different

covariance structure are compared.

3. A unified method to model the evolution of a disease marker along with its effect

on the CIFs of the competing events, subject also to failure cause misclassifica-

tion, has been proposed and evaluated through simulation studies. The proposed

method can be used: a) to estimate the effect of the underlying marker level on

the risk of each of the competing outcomes; b) to estimate the probability that

a randomly chosen individual from the population is in specific states, defined in

terms of underlying or observed marker level and clinical outcomes. Transition

probabilities between states have also been derived. For these approaches, sev-

eral methodological/statistical issues have been dealt with. The proposed unified

approach could be applied not only in infectious diseases (such as the HIV, which

was used as an example in this thesis) but also in chronic diseases (such as car-

diovascular diseases and cancer studies) for predictions purposes or for evaluating

public health interventions.
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lier, D. Costagliola, M. Guiguet, P. Vanhems, M.-L. Chaix, J. Ghosn, C. Goujard,

L. Meyer, F. Boufassa, O. Hamouda, C. Kücherer, B. Bartmeyer, G. Touloumi,
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