NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

BSc THESIS

Robot Remote Control based on Augmented Reality Glasses

Charalampos-Michail K. Katimertzis

Supervisor: Stathes P. Hadjiefthymiades, Professor

ATHENS

JUNE 2022

EONIKO KAI KAIMNOAIZTPIAKO NMANENMIZTHMIO AOGHNQN

2ZXOAH OETIKQN ENIZTHMON
TMHMA NAHPO®OPIKHZ KAI THAEMIKOINOQNION

NTYXIAKH EPTAZIA

TnAeXeIpIopNOG PONTTOT BACIOUEVOG O€ YUOAIA eTTAUENMEVNG
TTPAYHATIKOTNTOG

XapdAaptrog-MixanA K. Katipeptig

EmiBAéTTwy: EuoTtdBiog N. XatdneuBupiadng, Kabnyntng

AOHNA
IOYNIOZ 2022

BSc THESIS

Robot Remote Control based on Augmented Reality Glasses

Charalampos-Michail K. Katimertzis

S.N.: 1115201600062

SUPERVISOR: Stathes P. Hadjiefthymiades, Professor

NTYXIAKH EPTAZIA

TnAeXeIPIOUOS POUTTOT BacIOPEVOG O€ YUAAIG eTTAUENUEVNG TTPAYUATIKOTNTOG

XapaAaptrog-MixanA K. Katipeptdng

A.M.: 1115201600062

EmBAéTwy: EuoTtdBiog N. XardneuBupiadng, Kabnyntng

ABSTRACT

In recent years, the rapid development in the field of robotics has brought an impressive
potential to the technology environment. It has been developed a wide range of
applications for node devices in order to serve the control of information in remote
locations but also in places where the human body can not even approach. This
development has created the need for new matchings of new technologies and
innovative methods in robot control.

In this thesis, we will focus on the remote control of a robot with the technology of
augmented reality. Specifically, we will be receiving a live video stream from a ROS
robot to Microsoft's AR glasses, Hololens and we will navigate back the robot from them
through a Kafka Server.

The experiments were supported by the Ubuntu 16.04 operating system, the Gazebo,
and Rviz simulators, a Turtlebot 2 with a raspberry 3 that is running the ROS operating
system, as well as a XBOX Kinect sensor with a color camera and a depth sensor.

SUBJECT AREA: Augmented Reality, Mixed Reality, Autonomous Navigation
KEYWORDS: ROS, navigation, Hololens, turtlebot, movement control

NEPIAHWYH

Ta TeAeuTtaia xpovia, n paydaia avdamTu¢n OTOovV TOMEA TNG POMUTTOTIKNAG €XEI QEPEI
EVTUTTWOIOKES duvaToTnTeG oTO TTEPIBAANOV TNG TEXVOAOYiag. 'Exel avaTrTuxOei éva eupu
QPAOUA EQAPPOYWYV UE OUOKEUEG KOPPOUG wWOTE va €EUTTNPETEITAI O €AEYXOG
TTANPOPOPIAG O€ ATTOUAKPUOUEVEG TOTTOBETIES, AAAG Kal uéPn OTTOU TO AvBPWTTIVO CWHA
dev ptropei kKav va TAnoidaoel. Auti n €CENIEN €xel dnUIOUPYNOEl TNV avaykn yia
TTPWTOTUTIA TAIPIAOUATA VEWV TEXVOAOYIWV Kal KAIVOTOPEG HEBOOOUG OTOoV €AEyXO
POUTTOT.

2€ QUTA TN OITTAWMATIKN €pyacia Ba eTTIKEVTPWOOUNE OTOV TNAEXEIPIOUO EVOG POUTTOT ME
TNV TEXVOAOYIa TNG €TTAUENUEVNG TTPAYUATIKOTNTAG. ZUYKEKPIYEVA, Ba AdBoupe otnv AR
ouokeur Hololens tng Microsoft pia wvtavh por Bivieo atmmo éva pouTToT PE AEITOUPIKO
ROS, kai 6a 1o TTAonyAcoupue atmmod Ta yuahid péow evog diakouioTr) Kafka.

Ta Teipduata uttooTNPiXBNKav atd 10 AciToupylkd cuoTtnua Ubuntu 16.04, Toug
TTpooopolwTéG Gazebo kai Rviz, éva Turtlebot 2 pe raspberry 3 mou ekTeAEi TO
Aeiroupyikd cuoTnua ROS, kabwg kai évav aiodntipa XBOX Kinect pe éyxpwun Kapepa
Kal aioOntrpa BaBoud.

OEMATIKH NMEPIOXH: EtTrauénuévn MpayuaTtikétnta, Meikt MNpayuatikdtnra,
Autévoun MNAorynon

AEZEIZ KAEIAIA: ROS, mmAoiynon, Hololens, turtlebot, éAeyxog kivhong

ACKNOWLEDGEMENTS

| would like to express my deepest appreciation to my supervisor professor, Stathes P.
Hadjiefthymiades, who gave me the chance to work in the field of robotics and AR and
trusted me with this thesis. | would also like to extend my deepest gratitude to Dr.
Kyriaki Panagidi for her constant support throughout the duration of this project and
Nektarios Deligiannakis for his invaluable contribution to this thesis.

ABSTRACT
ACKNOWLEDGEMENTS
CONTENTS

LIST OF FIGURES

LIST OF TABLES

1. INTRODUCTION

2. UNMANNED VEHICLES

2.1 Definition of Unmanned Vehicles
2.1.1 Unmanned Ground Vehicles
2.1.2 Unmanned aerial vehicle
2.1.3 Unmanned Underwater Vehicles
2.1.4 Unmanned Surface Vehicles

2.2 Robotic Operation System — ROS
2.2.1 Definition of ROS
2.2.2 ROS Packages
2.2.3 ROS Stack
2.2.4 ROS Nodes
2.2.5 ROS Catkin
2.2.6 ROS Topics
2.2.7 Master Node
2.2.8 ROS Messages
2.2.9 ROS services
2.2.10 Launch files
2.2.11 World files
2.2.12 Sensors

2.2.13 Turtlebot

CONTENTS

11
13
14
15

15
16
16
17
18
19
19
21
21
22
22
22
23
23
24
24
24
25

25

2.2.14 Gazebo Simulator

3. AR TECHNOLOGIES AND TOOLS
3.1. Reality Technologies
3.1.1 Virtual Reality
3.1.2 Augmented Reality
3.1.3 Mixed Reality
3.2 HoloLens
3.2.1 HoloLens 2
3.3 Holograms
3.4 Hololens Actions
3.4.1 Gaze tracking
3.4.2 Gesture input
3.4.2.1 Touch
3.4.2.2 Hand ray
3.4.2.3 Air Tap
3.4.2.4 Bloom
3.4.2.5 Start Gesture
3.4.3 Voice support
4. ROBOT’S REMOTE CONTROL AND VIDEO STREAMING APPLICATION
4.1 Application’s Basic Tools
4.1.1 Unity Engine
4.1.2 Mixed Reality Toolkit - MRTK
4.1.3 Kafka
4.1.4 Visual Studio
4.2 Application’s Basic Components
4.2.1 Turtlebot
4.2.1.1 Controller Ros Package
4.2.1.2 Kinect Camera Stream

4.2.1.3 Turtlebot activation

26
27
27
27
27
27
27
27
31
35
35
36
36
36
36
36
37

37

38
38
38
39
40
41
41
42
46

46

4.2.1.4 ROS web video server 46

4.2.2 Kafka 47
4.2.3 Hololens 47
4.2.3.1 Ul 47
4.2.3.2 Scene Manager Script 50
4.2.3.3 Mjpeg Video Stream 56
5. EXPERIMENTAL EVALUATION 59
5.1 Experiment Scenario 59
5.2 Precision Check 60
6. RELATED WORK 63
6.1 Concept and architecture for programming industrial robots using augmented reality with
mobile devices like Microsoft HoloLens 63
6.2 Interactive Robots Control Using Mixed Reality 63
6.3 Remote Supervision of an Autonomous Surface Vehicle using Virtual Reality 63
6.4 Improving Collocated Robot Teleoperation with Augmented Reality 63
7. FUTURE WORK 65
8. CONCLUSION 66

REFERENCES 67

LIST OF FIGURES

Figure 1 - Unmanned aerial vehicle
Figure 2 - Drone Taxi

Figure 3 - Unmanned Underwater Vehicle
Figure 4 - Unmanned Surface Vehicle
Figure 5 - ROS Universe Structure
Figure 6 - Topic Communication

Figure 7 - Turtlebot 2

Figure 8 - Hololens 2 Side View

Figure 9 - Hololens 2 Parts

Figure 10 - Hololens 2 Front Glass
Figure 11 - Start Menu Hologram
Figure 12 - Holograms Medicine Case
Figure 13 - Holograms Browsing Case
Figure 14 - Holograms 3D Model Simulation Case
Figure 15 - Hololens Head Gaze
Figure 16 - Mixed Reality Toolkit Objects
Figure 17 - Kafka Structure

Figure 18 - Application Structure
Figure 19 - Class Movement

Figure 20 - Method Turn

Figure 21 - Method turtle_navigation
Figure 22 - Vvariables Panel

Figure 23 - Main Scene

Figure 24 - Main Scene on Play Mode

16
17
18
19
21
23
26
28
29
30
31
31
33
34
35
39
40
41
42
44
45
45
49
50

Figure 25 - Application Files

Figure 26 - Scene Manager Components
Figure 27 - Scene Manager Script Part 1
Figure 28 - Scene Manager Script Part 2
Figure 29 - Scene Manager Script Part 3
Figure 30 - Scene Manager Script Part 4
Figure 31 - Mjpeg Texture

Figure 32 - Mjpeg Script Part 1

Figure 33 - Mjpeg Script Part 2

Figure 34 - Url Publisher Python Script
Figure 35 - Application’s Running Commands
Figure 36 - Experiment’'s Screen

Figure 37 - Position Script

Figure 38 - Position JSON Output

50
51
52
53
54
95
56
56
57
58
59
60
62
62

Table 1 - Ros Messages Table

LIST OF TABLES

24

Robot Remote Control based on Augmented Reality Glasses

1. INTRODUCTION

Over recent years, significant growth has been observed in the Internet of Things (loT)
field. The advancement of technology in the performance of processors, the size of the
devices, and the wireless data transmission speed have created favorable conditions for
loT solutions to a big variety of problems. With the term loT, we refer to a network of
physical objects, that are equipped with sensors, and suitable software and are
connected to each other via the Internet. The main purpose of the devices is to collect
and exchange data, in order to interact with the physical world. In this Thesis, we will
see the UGVs which stands for Unmanned Ground Vehicles which is a subfield of the
loT area. UGVs can be referred to as IoT because there are connected mobile nodes
that are equipped with sensors and can navigate in the environment and react to
specific events, thus meeting the conditions of the definition.

The second area that we will examine in this thesis, is Augmented reality (AR). AR is an
interactive experience of a real-world environment, where the objects in the real world
are enhanced by computer-generated perceptual information, sometimes across
multiple sensory modalities, including visual, haptic, and auditory somatosensory. For
this thesis, AR is an excellent user interface and an innovative way for the remote
interaction of the user with the UGV devices. This technology matching opens up a
whole new range of possibilities that brings the benefits of augmented reality in the
robot navigation field.

The purpose of this thesis is to help mature a software solution for the custom type of
devices communication like the one we examined in the previous paragraph, and help
to approach extra interest to the extraction of Augmented Reality’s possibilities in other
fields such as Robotics and loT.

The software for this type of solution and the combination of these two technologies is
not so mature at the time of writing this thesis. Specifically, a desirable choice would be
an open-source solution that combines two devices dominant in their field. The Devices
are Microsoft Hololens 2 Augmented Reality Glasses and the TurtleBot 2 which run on
ROS operating system. So the problem isn’t a standardized solution, because the need
is specific enough. It is necessary to exist a custom solution that allows us to
live-stream the robot’s video feed from the ROS environment to Hololens and reliable
navigate back the turtlebot from the Glasses.

C. Katimertzis 14

Robot Remote Control based on Augmented Reality Glasses

2. UNMANNED VEHICLES

2.1 Definition of Unmanned Vehicles

The term “unmanned vehicle” defines a vehicle that operates without the need of a
human to control it. The operation of these machines can be successful remotely. For
example, an operator can use a computer to send messages to a vehicle through a
streaming platform like Apache Kafka. A second case is an unmanned vehicle operating
autonomously with the help of installed sensors by running algorithms that process
these incoming data.

The users can be divided into two categories. At first, the user is in the same area with
the device to observe it. In the second category, the person can be far away from the
vehicle and keep track of it by relying exclusively on the help of sensors. For example,
the user can be in a computer room and look at the vehicle with a camera. The
teleoperation is time-sensitive, so it must have smooth streaming of the incoming data
to succeed. Many scientists have been working on this problem in the last years to find
efficient and innovative ways to teleoperate unmanned vehicles as their applications
grow. These vehicles have a lot of applications such as exploration of inaccessible
environments like space and ocean, support in rescue teams, military, hobby, and much
more. In this Thesis, the control of the vehicle is possible through an augmented reality
kit and can be done explicity based on sensors. The vehicles are categorized
depending on the environment that they are in. The categories are unmanned aerial
vehicles - UAVs or drones, unmanned Ground Vehicles - UGVs, unmanned sea surface
vehicles - USSVs/USVs, unmanned underwater vehicles - UUVs or underwater drones.

2.1.1 Unmanned Ground Vehicles

Unmanned ground vehicles - UGVs perform on the surface without the need of a human
to be on the vehicle. They can be controlled remotely or work entirely autonomously
with specialized algorithms. UGVs are very useful when we don’t have access to
someplace or the environment is too dangerous for a human to be present. For
example, rescue situations like building debris or space missions like the Mars Rover, a
vehicle to explore Mars’ surface. Another use that has rapid growth is self-driving cars.
A ground transportation vehicle can drive itself and avoid obstacles based on the help of
sensors and software that interact with its environment. Those specific UGVs will have a
massive impact on our daily life. They can release substantial human effort and
person-hours from driving. It will be a revolution in cars’ safety and accidents reduction.
Many companies give their best on research to make autonomous driving better and
much stabler.

C. Katimertzis 15

Robot Remote Control based on Augmented Reality Glasses

2.1.2 Unmanned aerial vehicle

Figure 1 - Unmanned aerial vehicle

Unmanned aerial vehicles - UAVs, commonly known as drones, i.e. an aircraft without
the need of a human to be on board. Initially, drones are developed through the
twentieth century to help military missions. However, by the twenty-first century, the
benefits that drones gave us and the fields that became necessary are a lot more.
These include aerial photography, agriculture, science, policing, product deliveries,
surveillance, infrastructure inspections, and drone racing.

A field that deserves special mention is autonomous drone transportation, like
self-driving cars will be a powerful means of transport. In Asia, the autonomous drone
taxis’ first-off tests have already begun. Traditional infrastructure such as large airports
or runways is not required, suiting the scenario demands of urban air mobility and
serving as an effective way to relieve the current traffic congestion pressures. The
technology of autonomous flight eliminates the possibility of failure or malfunction
caused by man-made errors. Without any concern about controlling or operating the
aircraft, the passengers can just sit and enjoy the journey. In an emergency, 5G
networks offer the ability of smooth communication for the remote control of the aircraft
and real-time transmission of flight data.

C. Katimertzis 16

Robot Remote Control based on Augmented Reality Glasses

Figure 2 - Drone Taxi

2.1.3 Unmanned Underwater Vehicles

Unmanned Underwater Vehicles - UUVs, also known as underwater drones, are
submarine-like vehicles that can operate underwater without a human occupant. We
have two subcategories for them, remotely operated underwater vehicles - ROUVs and
autonomous underwater vehicles - AUVs. The most common uses of UUVs are military
purposes and deep-ocean exploration, documentaries, and research.

C. Katimertzis 17

Robot Remote Control based on Augmented Reality Glasses

Figure 3 - Unmanned Underwater Vehicle

2.1.4 Unmanned Surface Vehicles

Unmanned Surface Vehicles - USVs, also known as drone ships, are boats that operate
at the sea surface without a crew. USVs have various levels of autonomy and can be
driven remotely by a human on land or work with autonomous COLREGs compliant
navigation. The attention of USVs is on military purposes, oceanography, seaweed
farming, and the last years at logistics.

C. Katimertzis 18

Robot Remote Control based on Augmented Reality Glasses

Figure 4 - Unmanned Surface Vehicle

2.2 Robotic Operation System — ROS

The rapid growth of all the unmanned vehicles in plenty of fields has created the need
for software solutions that can support the various applications independently from the
hardware and the characteristics of the machine. ROS is the dominant solution for this
problem. The Robot Operating System - ROS is an open-source platform for building
robotic software applications. Also, it has a global open-source community of engineers,
developers, and hobbyists who contribute to making robots better and more available to
our lives. ROS covers numerous industries from agriculture to medical devices to
vacuum cleaners but is escalating to include all kinds of automation and
software-defined dynamic use-cases.

2.2.1. Definition of ROS

Robot Operating System (ROS) is a software framework for operating robots. It is an
open-source, meta-operating system that assumes an underlying operating system runs
alongside. ROS isn’t an operating system. It provides many of the expected services of
an operating system, including hardware abstraction, message-passing between
processes, and package management, but not the core functionalities of an operating
system is supposed to provide. It also provides tools and libraries that help you build,
write, and run your project’s code across multiple computers. It is fundamental to
understand that ROS isn’t actually an operating system. It is a set of libraries and tools
that aims to simplify robotic’s software development. Due to its open-source nature, the
best operating system to work with is Linux OS.

C. Katimertzis 19

Robot Remote Control based on Augmented Reality Glasses

The main advantages of ROS are:

1. Distributed communication: ROS provides a reliable procedure for communication
between processes regardless of whether they belong to the same computer. This
feature is essential for robotics’ software because plenty of algorithms span processes
on multiple machines.

2. Open Source: The ROS framework is an open-source project, inheriting all the
benefits of this feature. Developers worldwide, who use the framework, can contribute
their code and reuse the code of others. Reusability of code, ROS’s standard, and many
other popular packages contain the majority of essential algorithms often used. The
result is that developers are not concerned with the same problems and focus on the
new parts of their projects.

3. Testing: Software that runs on robotics is inefficient for testing. Sometimes the
developers don’t have access to the whole equipment. Also, deploying this software to a
robot every time a change exists is time-consuming. This problem at the production time
is a huge productivity disadvantage. ROS provides a set of simulators and a simple way
of recording logs. That improves the software production process and gives us efficient
testing times without every time deploying the code on the machines. An overview of
ROS main components is presented in Figure 5 below.

C. Katimertzis 20

Robot Remote Control based on Augmented Reality Glasses

package RePOSItory
Package Nodes
Nodes Messages
Messages Services Stack stack
Services
Package 0
recaze e s
&=
]
! [— oo
|
]
v 7
'd s '
'd \\
I’ p
Stack
ROS Universe
Package P?\fkdag
lodes
MNodes Messages
lessage: Servic
Services Repnsnory
Package Repository stack

Repository

Figure 5 - ROS Universe Structure

2.2.2. ROS Packages

ROS software is separated into packages. A package is a folder that contains all the
code and supporting files that serve a business logic or purpose. The directory has Files
of ROS parts such as ROS nodes, ROS-independent library, a dataset, and
configuration files. The result is that the package is the smallest unit that can build and
release. This is an easy way to organize ROS functionalities and maintain the code.
Packages are easily reusable and should have only necessary of the functionality that
they serve. We can create packages manually or with ROS tools like catkin_create pkg.

2.2.3 ROS Stack

A collection of packages make a stack. They are one layer above packages and aim to
simplify the process of code contribution. Stack is the original build and release of the
Ros Software. They have versions and can declare dependencies on other stacks.
Dependencies also have a version number, which adds higher stability in development.
ROS distributing software feature based a lot on this mechanism. This information is
stored and managed in a .xml file called manifest. Unlike traditional software libraries,
stacks are able to add functionality through topics and services, while the robot’s
program is running.

C. Katimertzis 21

Robot Remote Control based on Augmented Reality Glasses

2.2.4 ROS Nodes

One layer below of packages, we find nodes. Nodes are processes that perform
computations and specific functionalities of a robot. For example, the camera’s feed or
the robot's movement. Nodes are organized in a graph and communicate with each
other with a mechanism called topics.

The nodes work independently, so if some stop working, the others will not be affected.
With that in mind, we can debug, add or remove a node without damaging the whole
system. As a result, the development has less code complexity.

The running nodes have names as unique identifiers and a specific manually defined
type. These make referring much easier.

2.2.5 ROS Catkin

Catkin is the ROS build system used to build all packages in ROS. It is the set of tools
to create executables, libraries, interfaces, and scripts so the rest parts can use them.

2.2.6 ROS Topics

The topic is named bus by which nodes can exchange data. Most topics are the means
to transmit ROS messages between nodes. Each topic has two nodes, a publisher and
a subscriber node. If someone wants to access and consume the data, a node can
subscribe to the topic’s subscriber node.

C. Katimertzis 22

Robot Remote Control based on Augmented Reality Glasses

ROS Master A
e .
O 8ISt
(3&\0,7 (~-~£r;3t/o n
Rele RS, Subscriber
,I \ <S\(<
Y% Node
. AN /}C')
Publisher \x/;,,
Node Seeeo 27N
> Topic -7 S

"2 subscriber
Node

Figure 6 - Topic Communication

Respectively if someone wants to generate and provide data on a topic, publish on it.
The publisher and subscriber nodes are mostly unaware of which node will publish or
consume the messages. Each topic is able to have multiple subscribers and publishers
as shown in Figure 6 insomuch they have different names.

2.2.7 Master Node

Ros contains many files, nodes, and topics. The Master node is responsible for
coordinating all these complex operations and the synchronous running of all nodes.

Before any ROS code execution, we run the ROS Master node. With the command
‘roscore ” the Master will start. This node must be functioning the entire time in the
background to provide ROS functionality.

2.2.8 ROS Messages

The nodes’ communication in ROS is attained with Topics. Through them, the nodes
can exchange messages. Publisher nodes create the message that will be published to
a topic. One or more subscriber nodes can consume this published message.

The messages have some standard types, but we could create some customs types
too. To define each message type, standard, or custom, we need to have a msg file for
them.

C. Katimertzis 23

Robot Remote Control based on Augmented Reality Glasses

Table 1 - Standard ROS message types

Primitive Type Serialization C++ Python2 Python3
bool unsigned 8-bit int uint8_t bool
int8 signed 8-bit int int8_t int
uint8 unsigned 8-bit int uint8_t int
intl6 signed 16-bit int intl6_t int
uintl6 unsigned 16-bit int uintl6_t int
int32 signed 32-bit int int32_t int
uint32 unsigned 32-bit int uint32_t int
int64 signed 64-bit int inteé4_t long int
uinte4 unsigned 64-bit int uinte4_t long int
float32 32-bit IEEE float float float
float64 64-bit IEEE float double float
string ascii string std::string str bytes
time sgcs/nsecs unsigned 32- ros::Time rospyTime
bit ints
duration is:tcss/nsecs signed 32-bit ros::Duration rospy.Duration

2.2.9 ROS services

As mentioned above, ROS's communication is based on topics. This type of data
sharing is unsuitable if we need synchronous transactions between nodes.ROS
services solve this problem.

Services work with the request-response model, so it is needed a pair of defined
messages for every service. With the same logic as the messages, the services are be
described in a srv file, and we can access them via a string name.

2.2.10 Launch files

The roslaunch tool makes it easier to execute multiple nodes at once and set up
parameters for the execution. This tool uses one or more launch files. These are XML
configuration files with a .launch extension. The use of launch files is to define the
parameters and the nodes we want to spawn. Also, launch files include options to
respawn automatic processes that have already died. The location of launch files should
be anywhere in the package directory because they are associated with a specific
package. The syntax of the roslaunch command for executing a launch file is roslaunch
package name launch_file_name.

2.2.11 World files

As we mentioned above, for the purpose of testing, ROS has a set of Simulators. The
World files are used to define a virtual world close to the real world that the robot lives

C. Katimertzis 24

Robot Remote Control based on Augmented Reality Glasses

and interacts with. The files detail the whole scene, objects, and various models. Some
of the most crucial object characteristics are the size, the location, and the obstacle's
name. World files are XML configuration files and have a .world extension. Commonly
they are defined in the launch files, so the simulator will be informed what scene must
begin with.

2.2.12 Sensors

Robots as unmanned vehicles need to have sensors to understand their surroundings
and interact with the world. For example, cameras or lidar sensors would be necessary
for the robot’s navigation. In this thesis, we use a Kinect camera which is a camera
combined with 3D sensors, to understand the depth.

2.2.13 Turtlebot

TurtleBot is a popular small, low-conscious personal robot kit built for education and
early-stage development. It is a repurposed robot vacuum cleaner to keep the product’s
budget low. Turtlebot is the most affordable advanced ROS robot on the market. With
TurtleBot, you'll be able to build a robot that can drive around a room, see in 3D, and
have enough power to make various applications. Turtlebot was designed in
collaboration with the original makers of ROS, so it offers an affordable solution to get
started with ROS.

C. Katimertzis 25

Robot Remote Control based on Augmented Reality Glasses

Figure 7 - Turtlebot 2

Turtlebot needs an external computer device to connect with all the sensors and
operate. The most common solution that also this thesis has is a Raspberry Pi which
can be mounted on the robot and run Linux operating system.

2.2.14 Gazebo Simulator

Robot simulation is a key tool in every robotic development project. A well-designed
simulator makes it possible to design robots, test algorithms rapidly, perform regression
testing, and train Al systems using realistic scenarios. Gazebo is an open-source
simulator that can accurately simulate populations of robots in multiple complex indoor
and outdoor environments. In this Thesis Gazebo was the testing tool for the robot’s
interaction with its environment and, more specifically, for its movement and video
source. This simulator is the most popular in the robotic community in order to achieve
similar results with the real world. To operate ROS with Gazebo and create the
simulation, we need a set ROS packages named gazebo_ros_pkgs. These packages
have default files and we can launch them with the command roslaunch
turtlebot_gazebo turtlebot_world.launch.

C. Katimertzis 26

Robot Remote Control based on Augmented Reality Glasses

3. AR TECHNOLOGIES AND TOOLS

3.1. Reality Technologies
3.1.1 Virtual Reality

Virtual Reality is a computer-generated environment that covers the entire field of the
user’s vision and makes him feel like interacting with the real world. This environment
has 3d scenes and objects to make it perceive realistic. The device we use for VR is
called Virtual Reality helmet or headset. Virtual reality commonly incorporates auditory
and video feedback, but other types of sensory may also be allowed, such as force
feedback through haptic technology. Virtual Reality applies to many fields such as
entertainment, education, art, medicine, etc.

3.1.2 Augmented Reality

Augmented Reality is a computer-generated environment like VR with the main
difference, that augmented reality alters one's ongoing perception of a real-world
environment, whereas virtual reality completely replaces the user's real-world
environment with a simulated one. The user blends the real world with virtual scenes
and 3d objects that are added to it. The physical environment has a leading role in the
whole experience because the virtual objects take an accurate position in the space and
coexist with the real ones. AR is used in education, communications, medicine, and
entertainment. Also, AR is very useful in difficult professions where they need
interaction with a computer while space and profession may not have this potential due
to the use of their hands or not being able to lose their attention from the environment.

3.1.3 Mixed Reality

Mixed reality is related to augmented reality and it is the merging of the real world and
virtual worlds to produce new environments and visualizations where physical and
digital objects co-exist and interact in real-time. A noticeable difference between
augmented and virtual reality is that the device has to be head-mounted so that its
Mixed Reality necessary sensors work properly.

3.2 HoloLens

Microsoft Hololens is a pair of augmented reality glasses or a helmet that has the
world's first fully independent holographic computer. HoloLens blends cutting-edge
optics and sensors to deliver 3D holograms pinned to the real world around you.
Microsoft has introduced two gens of Hololens until now, the Hololens 1 and
subsequently the Hololens 2.

3.2.1 HoloLens 2

The Hololens 2 was introduced in 2019 by Microsoft and they were the second
generation of the product’s line. The device has holographic lenses that the user can

C. Katimertzis 27

Robot Remote Control based on Augmented Reality Glasses

see through, and two IR cameras for eye tracking so can render based on the eye. Also,
it is equipped with four light cameras for head tracking and one time-of-flight depth
sensor for the environment. The device has a depth sensor, Al, semantic
understanding, and eye-tracking sensors that allow the user to manipulate holograms
more naturally, which also means less learning curve to use the device.

Figure 8 - Hololens 2 Side View

The holograms were created by reflecting images from a screen in the headset into
specially made lenses for red, blue, and green light waves. Those light waves were then
beamed into the back of your eyes, where your brain would create the final image.

C. Katimertzis 28

Robot Remote Control based on Augmented Reality Glasses

HololLens 2

Arms Outer

Brow Pad Speakers
® ® Interconnect

G O @®— Brow Pad Foam RossrEuton
Antenna Wi-Fi Vapor Chamber
s |

UsB-C ® — Rear Cover Outer

PV Cam i o ® i
5
|

®
]
Wheel
Arms Inner

[Eye Relief Mech

SOC Board

MOMAs g

thtuk Speak
Depth Module ahlub peakers

Battery Pack Antenna Bluetooth pop & Adjust Spring

Mics

s Outer
Front Enclosure LoSEHE

Figure 9 - Hololens 2 Parts

The device has a mirror known as a MEMS (microelectromechanical systems) that
moves fast enough to create the illusion of a screen in space. The MEMS creates 120
of these screens each second, filtered to the eye through lenses in the headset. The
result is smooth movements, more-believable animations, and quick response if you
move your head.

C. Katimertzis 29

Robot Remote Control based on Augmented Reality Glasses

Figure 10 - Hololens 2 Front Glass

The glasses except the CPU/GPU have a special process unit that Microsoft named
Hololens Processing Unit or HPU. The HPU conducts the processing that integrates the
real world and data for augmented reality. All of the integration of environmental data
and user input is handled by the HPU. The HPU receives information from the inertial
measurement unit (IMU) which includes an accelerometer, gyroscope, and
magnetometer, and combines this with head tracking cameras that follow the user and
their environment to augment the user's visual perspective with holographic 3D
projections on its transparent lenses. The processing of gestures and voice data is also
handled by the HPU. This processing unit is useful to not consume CPU’s and GPU'’s
resources, so apps can use them. The Hololens 2 have a Second-generation
custom-built holographic processing unit.

The glasses have a version of Windows 10 that is designed for HoloLens 2 with
commercial-ready management capabilities and software apps, especially for Hololens
like Microsoft edge on holographic version and 3D viewer.

C. Katimertzis 30

Robot Remote Control based on Augmented Reality Glasses

Figure 11 - Start Menu Hologram
3.3 Holograms

With the Hololens, you can create holograms, which are objects made of light and
sound that take shape in the environment around you like were real objects. Holograms
are made to respond to your input actions that we discuss later. They can even interact
with the real surfaces of space you are. Holograms are digital objects that are part of
the augmented reality around you.

C. Katimertzis 31

Robot Remote Control based on Augmented Reality Glasses

Bellows College

A -
Figure 12 - Holograms Medicine Case

The Hololens render the hologram in the holographic frame right in front of the user's
eyes. The holographic display is not blocking the light from the real world instead adds
light to render the holograms. Since Hololens use an additive display that adds light, the
black color will be rendered transparent.

Holograms are not only visual objects, but they can produce sounds to have a more
realistic experience. The sound comes from the speakers that are placed above the
user’s ears. Same as the holographic display, the speakers add sound without blocking
the sound from the surroundings.

A hologram can have a fixed location in the room, you can place it exactly at the point in
the world you want. As you move inside the space the hologram appears static in
relation to the rest virtual environment so it can have a real position in the physical
world. You can use a spatial anchor to pin the object in someplace and if you leave the
room the device can remember the position of the object to add when you come back.

The other option is that the holograms can follow you. They position themselves based
on the user’s location. You can choose to bring a hologram with you, and then place it
on the wall once you get to another room.

Holograms are not only objects that we can see but they have a very important active
part that users can interact with them and developers can create useful applications. A

C. Katimertzis 32

Robot Remote Control based on Augmented Reality Glasses

user can gaze at a hologram, gesture with his hand, follow him, or give it a voice
command, and the hologram reply.

Figure 13 - Holograms Browsing Case

Holograms enable personal interactions that aren't possible elsewhere. Because the
HoloLens knows where it is in the world, a holographic character can look at you directly
in the eyes and start a conversation with you.

C. Katimertzis 33

Robot Remote Control based on Augmented Reality Glasses

Figure 14 - Holograms 3D Model Simulation Case

A hologram can also interact with your surroundings. For example, you can place a
holographic bouncing ball above a table. Then, with an air tap, watch the ball bounce,
and make a sound as it hits the table.

Holograms can also be occluded by real-world objects. For example, a holographic
character might walk through a door and behind a wall, out of your sight.

Tips for integrating holograms and the real world

e Aligning to gravitational rules makes holograms easier to relate to and more
believable. For example: Place a holographic dog on the ground & a vase on the
table rather than have them floating in space.

e Many designers have found that they can integrate more believable holograms
by creating a "negative shadow" on the surface that the hologram is sitting on.
They do this by creating a soft glow on the ground around the hologram and then
subtracting the "shadow" from the glow. The soft glow integrates with the light
from the real world. The shadow is used to ground the hologram in the
environment.

C. Katimertzis 34

Robot Remote Control based on Augmented Reality Glasses

3.4 Hololens Actions

The user experience differs a lot in MR applications from the devices that we typically
use. The user’s interaction is in a 3D environment and the user has to learn new input
methods that are only in this field. Here | represent some main ideas that Hololens use
for input, such as gaze, gestures, and voice commands.

The user interacts with the device with some actions:

Gaze tracking
Gesture input
Touch

Hand ray

Air Tap
Bloom

Start Gesture

e \oice support
3.4.1. Gaze tracking

Gaze is an action in which the user can interact with the world based on where is
looking. Gaze works in two different ways, head gaze and eye gaze. The second is the
head gaze, the device understands where the helmet is oriented in the space so can get
input, where the user is looking. The eye gaze is based on eye-tracking knowing where
the eye is looking. The applications can intersect this ray with virtual or real-world
objects, and draw a cursor at that location to let the user know what they're targeting.
The eye gaze was introduced with the Hololens 2 that support eye-tracking.In the first
generation, we had only head gaze.

Figure 15 - Hololens Head Gaze
Some ways the gaze can use for:

e Your app can intersect gaze with the holograms in your scene to determine
where the user's attention is (more precise with eye-gaze).

C. Katimertzis 35

Robot Remote Control based on Augmented Reality Glasses

e Your app can channel gestures and controller presses based on the user's gaze,
which lets the user seamlessly select, activate, grab, scroll, or otherwise interact
with their holograms.

e Your app can let the user place holograms on real-world surfaces by intersecting
their gaze ray with the spatial mapping mesh.

e Your app can know when the user isn't looking in the direction of an important
object, which can lead your app to give visual and audio cues to turn towards that
object.

3.4.2 Gesture input

The user navigates in the HoloLens Ul with some hand movements. Some gestures are
available only in Hololens’ one of two editions and others are on both. The glasses to be
able to understand the user’s gestures have a hand-tracking frame that the user needs
to keep his hands in it. As the user moves around, the frame moves with him. The basic
gestures are Touch, Hand Ray, Gaze, Air Tap, and Bloom, or for the Hololens 2 Start
Gesture.

3.4.2.1 Touch

In Hololens 2 the easiest way to interact with a hologram is by a simple touch. You can
touch and grab holograms by targeting objects with the help of a floating pointer that
appears near the tip of your index. The touch needs your index to reach the physical
position of an element.

3.4.2.2 Hand ray

This gesture needs to hold your hand open in front of you and face away. You can target
objects by moving your hand with the help of a laser pointer. The movement is that you
point the object with your open palm. After that, you can do several actions with it to
manipulate it.

3.4.2.3 Air Tap

To select an app or a hologram is not necessary to touch it, you can air tap it. To do this,
gaze at the hologram, hold your hand straight out in front of you in a loose fist, point
your index finger straight up toward the ceiling, tap your finger down, and then quickly
raise it back up again. Also, you can air tap and hold.

3.4.2.4 Bloom

In Hololens 1 to open the windows start menu, you gather all your fingers together and
then open your hand. This gesture is called Bloom.

3.4.2.5 Start Gesture

In Hololens 2 the bloom gesture is replaced by the Start gesture. To perform this action
hold out one of your hands with the palm facing up, and look at your wrist. You should

C. Katimertzis 36

Robot Remote Control based on Augmented Reality Glasses

see a holographic Microsoft Windows logo. Then with the other hand touch the icon on
your wrist. The Start menu will pop up in front of you. You can also open the menu with
one hand. After appears the logo, just touch your index finger to your thumb in a
pinching motion.

3.4.3 Voice support

The Hololens 2 support voice recognition for many quick tasks. Some voice commands
are built-in like taking a photo or opening apps, and others are available through
Cortana which is Microsoft’s virtual assistant. Some nice built-in commands to interact
with 3D objects are: “Face me” to turn the element to face you, “Move this” to follow
your gaze, and “Follow me” to follow your place in the room.

C. Katimertzis 37

Robot Remote Control based on Augmented Reality Glasses

4. ROBOT’S REMOTE CONTROL AND VIDEO STREAMING
APPLICATION

The problem was the lack of an open-source application in the Unity environment where
an operator can control efficiently ROS devices from the Hololens 2. The goal of this
application was to fill this gap.

4.1 Application’s Basic Tools
First they will be analyzed some of the tools that were used for the application.
4.1.1 Unity Engine

Unity is a powerful cross-platform game engine for Software Developers. Unity can
provide a lot of tools that an application with rich graphics needs, like physics, 3D object
rendering, and collision detection. These basic problems are solved by Unity such as
how light should bounce off of different surfaces or creating a new physics engine from
scratch—calculating every last movement of each material.

A feature that makes Unity even more powerful, is the Asset Store. It is a place where
all developers can upload and share their creations. This community was important for
the Unity platform. During development arise needs for project's components that are
accessible as assets from the store. For example, if you want to add tilt controls to your
game without going through the laborious process of fine-tuning the sensitivity, you can
find them as assets in the store. The result is that developers are free to focus on the
unique features of their applications.

For MR applications on Hololens, we have to use Microsoft's Mixed Reality Toolkit
library. This is designed only for Unity, so this platform is the only option for this type of
application. Unity is a platform that is updating frequently, these updates are useful to
solve known issues but many times create new bugs and incompatibilities so
developers are forced to make changes to the project in order to make it buildable
again. Therefore, the correct configuration is very important in order to make the
application work.

For this application MRTK 2.7 was used, which is the current latest version, so the
appropriate Unity version had to be used as well. We have Unity 2019.4.28f1 which is a
stable version of Unity for the MRTK version we use. In MRTKS’s official GitHub
repository can someone find which unity version is compatible with MRTK.

4.1.2 Mixed Reality Toolkit - MRTK

MRTK-Unity is an open-source Microsoft-driven project that provides components,
common building blocks for spatial interactions, and Ul features that are used to
accelerate the development of cross-platform Mixed Reality apps in Unity. MRTK
supports many platforms such as OpenXR, Oculus, OpenVR, and mobile. MRTK is
compatible with all Hololens Devices. For this application, we use the current latest
MRTK version which is 2.7.

C. Katimertzis 38

Robot Remote Control based on Augmented Reality Glasses

In the MRTK Github Repository, we can find features in areas such as eye and hand
tracking, spatial awareness, controls, input system, boundary system, and much more.
Also, there are a lot of examples and tools that make the Hololens development much
easier.

Figure 16 - Mixed Reality Toolkit Objects

A principal and useful feature of MRTK is the user’s capability to test the Application in
the Unity Editor. A Hololens Emulator executes the scene with an easy play button on
Unity. The emulator has virtual hands and eyes to simulate the Hololens experience.
This is important because the build and deployment of the program from Unity to the
glasses are time-consuming.

The emulator has a diagnostic tool on the bottom of the screen called Visual Profiler.
This tool has some information about the application, such as memory usage and
current FPS. It is important always to keep track of this information because It is
important to achieve the desired framerate, as outlined by the platform being targeted
(i.e., Windows Mixed Reality, Oculus, etc.). For example, on HoloLens, the target
framerate is 60 FPS. Low framerate applications can result in deteriorated user
experiences such as worsened hologram stabilization, world tracking, hand tracking,
and more.

4.1.3 Kafka

Kafka is a distributed streaming platform. The Kafka platform implements queues that
can handle events very fast and efficiently. The application uses the Confluent Platform,
which implements at its core Apache Kafka which is the only enterprise event streaming

C. Katimertzis 39

Robot Remote Control based on Augmented Reality Glasses

platform at that time. The Confluent Platform offers many different connectors that
provide more application-specific automation for handling events and has enough
documentation that specifies them. To publish or consume messages in real-time to any
other application, an application has first to subscribe to the right topic. Kafka platform
guarantees some essential assumptions, the most crucial is that the messages will be
consumed in the order they were published to the topic.

The application makes use of this assumption and visualizes incoming data from any
source that are real-time. The Topics are uniquely named buses that are used for data
communication between nodes. Every topic should have a unique name in order to
avoid problems and confusion between the same-named topics. Nodes can publish or
subscribe to a topic, but data production and consumption are decoupled meaning that
there is an indirect connection between the nodes. Finally, each topic is related to a
message type, meaning that it only accepts specific message types. In this application
is set the JSON data type.

The built-in Kafka REST Proxy connector appeared to be the most efficient way to
communicate with a web server that is running Kafka. This proxy allowed the application
to consume messages from Kafka topics with code that the frameworks and the Unity
Editor can support. The producers in python set automatically the correct configuration
properties for Kafka in order for the application to achieve the production of the
messages in JSON format. However, on the consumer’s side, some configuration is
necessary.

APACHE KAFKA

—{ CLUSTER

(__PRODUCER ———>
{ PRODUCER ——
(" PRODUCER)——— ————— (_ CONSUMER)

> (__CONSUMER)

> (__CONSUMER)

d3xodd
d3xodd
d3xodg

Figure 17 - Kafka Structure
4.1.4 Visual Studio

When you install Unity, by default it is also installing Microsoft’s Visual Studio. This
feature provides unity with a stable c# script Editor and the necessary compilers for the
application’s build. Unity supports also the VS code for the editor part as an alternative
choice.

The Create Visual Studio Solution build setting allows you to generate a Visual Studio
solution instead of a built app. This procedure enables you to change your build
process. For example, you can, modify your application’s manifest, add C++ code,

C. Katimertzis 40

Robot Remote Control based on Augmented Reality Glasses

modify embedded resources and launch your application with the debugger attached.
By default, Unity stores the Visual Studio solution you generate in the same directory as
your built project. Your generated solution includes three projects when you use the
Mono scripting backend, and four when you use the IL2CPP scripting backend. When
the code compilation is completed the program is ready for deployment on the glasses.

4.2 Application’s Basic Components

In this section will be analyzed how the application works. We split the controller into
three parts. The first part is the robot device with a raspberry pi computer for its
software, the second part is the Kafka Server as middleware and the third part is the
Hololens program that is deployed on the AR glasses.

(o)

\L";\\l‘ %Q’c’ @%"?’
? Kafka Server S5y @
e ()

3 S,

>
mijpeg video

Figure 18 - Application Structure

C. Katimertzis 41

Robot Remote Control based on Augmented Reality Glasses

4.2.1 Turtlebot

As described in Section 2.2.6 ROS operating system works with a channel system.
Thus, all functions of the robot are subscribing to topics and exchanging messages
there.

4.2.1.1 Controller Ros Package

This is a custom package for ROS that allows the robot’s application to control the robot
and exchange messages with the device through topics. We can see most of the
functionality and the package core that is located in the controller’s core python script.

Movement:

__init_ (self, mover):

if mover == "up" mover == "down":
print(mover)
self.roll(mover)

else:
self.turn(mover)

roll(self, mover):

velocity_publisher = rospy.Publisher('/cmd_vel_mux/input/teleop', Twist, queue_size=10)
vel_msg = Twist()

rate = rospy.Rate(10)

if mover == "up":

vel_msg.linear.x = speed
else:

vel_msg.linear.x = —speed
vel_msg.linear.y = 0.0
vel_msg.linear.z = 0.0
vel_msg.angular.x = 0.0
vel_msg.angular.y = 0.0
vel_msg.angular.z = 0.0

rate.sleep()

current_distance = 0

t0 = rospy.Time.now().to_sec()
while(current_distance < distance):

velocity_publisher.publish(vel_msg)
rate.sleep()

tl=rospy.Time.now().to_sec()
current_distance= abs(speed)*(t1-t0)

vel_msg.linear.x = @

velocity publisher.publish(vel_msg)
rate.sleep()

Figure 19 - Class Movement

C. Katimertzis 42

Robot Remote Control based on Augmented Reality Glasses

We have one topic the /cmd_vel mux/input/teleop, which is responsible for the
turtlebot2’s movement and the robot is subscribed to it. In this topic, depending on the
command and the move we want the robot to make, we publish the corresponding
messages for this topic. The two moves that the robot supports are roll and turn.

The messages that this topic waiting for are called Twist messages. This message is
represented by two vector3. These two vectors are the linear and angular velocities in
the free space. So the message Twist has a Twist.linear (x, y, z) part and a
Twist.angular (x, y, z), each one has 3 axes which are mutually perpendicular to each
other and their point of intersection is called the origin (x =0,y =0, z = 0). This can be a
frame of reference i.e. you can define various points and directions w.r.t. them.

In the case of Turtlebot which is a ground Robot, the z i.e. in angular velocity
(Twist.angular.z) will be the robot’s turning speed. And the x i.e in linear velocity vector
(Twist.linear.x) will be the robot’s moving straight speed.

The class Movement [20] is responsible for the robot’s moves. In method roll, we create
a publisher where we publish periodically messages that move the robot at a given
distance and speed back or front. This is accomplished by publishing in a loop, twist
linear messages, with a value on the x-axis until the given step distance will be covered.
The distance definition formula is “distance = absolute(speed) * time”.

C. Katimertzis 43

Robot Remote Control based on Augmented Reality Glasses

turn(self, mover):

velocity_publisher = rospy.Publisher('/cmd_vel_mux/input/teleop', Twist, queue_size=10)
vel_msg = Twist()

rate = rospy.Rate(10)

angular_speed = 15%2%PI/360
relative_angle = anglex2xPI1/360
vel_msg.linear.x = 0.0
vel_msg.linear.y = 0.0
vel_msg.linear.z 0.0
vel_msg.angular.x = 0.0
vel_msg.angular.y = 0.0
if mover == "right":
vel_msg.angular.z = angular_speed
else:
vel_msg.angular.z = —-angular_speed

rate.sleep()

current_angle = @

t0 = rospy.Time.now().to_sec()
while(current_angle < relative_angle):

velocity_publisher.publish(vel_msg)
rate.sleep()

tl=rospy.Time.now().to_sec()

current_angle = angular_speedk(t1-t0)

vel_msg.angular.z = @

velocity_publisher.publish(vel_msg)
rate.sleep()

Figure 20 - Method Turn

In method turn as shown in the figure 22, we create a publisher where we publish on the
same topic as before periodically messages that turn the robot in a given turn angle
measured in degrees. The angular velocity value is defined in the twist angular’s z-axis.
The loop breaks when the current angle reaches the relative one. The formula for the
radian conversion that is needed is 1 rad = 1 degree * 11 /180 degrees.

C. Katimertzis 44

Robot Remote Control based on Augmented Reality Glasses
def turtlebot_navigation():
rospy.init_node(' robot_cleaner', anonymous=True)

consumer = KafkaConsumer(bootstrap_servers='195.134.71.250:9092', consumer_timeout_ms = 60000)
consumer.subscribe(['thesis_test'])

rspeed = raw_input('Set speed: ')
global speed

speed = float(rspeed)

counter =0

for message in consumer:

X = json.loads(message.value)
for key, value in x.items():
if key == "distance":
global distance
distance = float(value)
print(distance)
elif key == "angle":
global angle
angle = int(value)
print(angle)
elif key == "action" and value == "photo":
camera = TakePhoto()

img_title = "photo" + str(counter) + ".jpg"

if camera.take_picture(img_title):
rospy.loginfo("Saved image " + img_title)
else:
rospy.loginfo("No images received")
counter = counter + 1

rospy.sleep(1)

elif key == "movement":
mover = value
print(mover)

else:
print('")

Figure 21 - Method turtle_navigation

The turtle_navigation method as shown in the figure 21 above is the core of the
controller. A Kafka consumer is created and is subscribed to the Kafka server, ready to
listen to all the commands in form of Kafka messages that will be published on the
server. In the loop, the program checks the type of the message and depending on the
command, makes an action. Here also is implemented the input of the parameters of
speed, angle, and distance.

C. Katimertzis 45

Robot Remote Control based on Augmented Reality Glasses

The command “rosrun position myMovingScriptGzbKfk.py” is necessary to enable the
ROS controller.

4.2.1.2 Kinect Camera Stream

The turtlebot has a Kinect camera. To successfully take the stream from the Kinect
camera and publish it to a ROS topic, we use the freenect_camera ROS package,
which is a libfreenect-based ROS driver for the Microsoft Kinect. This package is
publishing messages on a topic for a consumer video server that we will mention later.

We execute a launch file with the command

‘roslaunch freenect_launch freenect.launch”.

4.2.1.3 Turtlebot activation

The turtlebot_bringup package provides all the software that turtlebot needs to start up.
Specifically, we run the minimal.launch file for starting the TurtleBot base functionality.

We execute a launch file with the command

“‘roslaunch turtlebot_bringupminimal.launch”.

4.2.1.4 ROS web video server

web_video_server is a ROS package that helps us to transfer the video feed to
hololens. This package provides a video stream of a ROS image transport topic that can
be accessed via HTTP.

The web_video_server frees a local port and waits for incoming HTTP requests.
Following that a video stream of a ROS image topic is requested via HTTP, it subscribes
to the corresponding topic and creates an instance of the video encoder. The encoded
raw video packets are served to the client. Parameters can be specified by adding
additional them to the query string.

The web_video_server tries to minimize internal coding latency by avoiding a B-frame
encoding scheme and by forcing the codec to keep its internal network buffer as small
as possible. On the browser side, however, HTML5 does not allow any control of the
video playback buffer. Depending on the Internet connection, the browser might cache a

C. Katimertzis 46

Robot Remote Control based on Augmented Reality Glasses

few seconds of video data first before starting the video playback. Best performance
concerning latency and stability has been achieved with recent versions of the Chrome
browser.

From this package we use the mjpeg stream

/stream?topic=/camera/rgb/image_rect_color

This package starts with the command

‘rosrun web_video_server web_video_server”

4.2.2 Kafka

We have set up the Kafka Server as a Broker. With the Kafka platform, the ROS
application on turtlebot is able to communicate with the Hololens in order to receive
movement commands and input parameters.

As described in Section 4.1.3 in The Unity application as we will see above uses Kafka
Rest to publish messages on a topic that the ROS Application is subscribed on. The
Kafka choice provides us with a reliable live-time data streaming solution without the
two devices needing to be in the same network due to the Kafka server being
accessible from everywhere. Also, Kafka guarantees us that the messages will be
consumed in the order that will be published. This is important because the commands
are translated to the physical robot’s moves.

4.2.3 Hololens
The parts that are related to AR and and more specifically to the Hololens Device.
4.2.3.1 Ul

The application has two scenes. The first scene is the variables’ input panel as shown in
Figure 23 that accepts three parameters.

C. Katimertzis 47

Robot Remote Control based on Augmented Reality Glasses

Set the variables of the robot

Video Stream Url

Stream Url

Distance

- R

Angle

s

v/

Figure 22 - Variables Panel

These are the distance of the step that the robot will move in each command, the angle
that the robot will turn in each command, and a dropdown with possible the URLs from
which it will consume the video stream.

The second scene is the main scene [24] where the user sees the feed from the
turtlebot’s camera and the control buttons for the turtlebot navigation. More specifically
the main scene has a virtual screen that floats in the user’s physical environment and a
cross of arrow buttons that could give the navigation commands. Also below at the left
exists a button for a quick photo capture of the user’s surroundings.

C. Katimertzis 48

Robot Remote Control based on Augmented Reality Glasses

Figure 23 - Main Scene

MJPEG! 103,9 ms (10 fps)

al

C. Katimertzis

49

Robot Remote Control based on Augmented Reality Glasses

Figure 24 - Main Scene on Play Mode
4.2.3.2 Scene Manager Script

The components as shown in the figure 26 below is the basic structure of the Hololens
application. The Main Scene has the Camera which is the way the user sees the
objects, the SceneManager which is the application’s main script, the ControllerPanel
which has all the interaction objects for the user and the last one is the Variables’ Panel
that we saw above.

< Main Scene*
() Directi Light

itentBackPlate(Please adjust for content si

antent

Figure 25 - Application Files

The basic functionalities of the AR application are described well from the main C#
script that we have made and the Unity application executes.

C. Katimertzis 50

Robot Remote Control based on Augmented Reality Glasses

Q Inspector

* Layer Default

X

v Scene Manager Script (Script)

ntroller Panel

Add Component

Figure 26 - Scene Manager Components

“‘Start” is the first function that will be run with the application’s execution. In this
function, we create a new consumer and a topic that is subscribed to. Here we receive
from a python script the stream URLs so it isn’t needed to change the links in code and

redeploy the application in the glasses.

C. Katimertzis 51

Robot Remote Control based on Augmented Reality Glasses

httplWebCreateCo
httplebCreateConsumer.
httplebCreateConsumer.
httplebCreateConsumer.
streamWriter =
jsen = "{\
streambriter.Write(

(streamReader =

eamReader .ReadToEnd() ;

A S
Console.Writeline

}

jsonResult;

httpWebSubscribe = (H

C. Katimertzis

(httpSubCreateConsumerResponse.GetResponseStream()))

(httpwWebsub:

httpWebCreateConsumer.GetResponse();

ibe.GetRequestStream()))

Figure 27 - Scene Manager Script Part 1

52

Robot Remote Control based on Augmented Reality Glasses

httpRecordsResponse2 tple t2.GetResponse
using (streamReader = tre (1 se2.GetResponseStream(})))
¢
result = streamReader.ReadToEnd();

Debug.Log(result);

result sult.Remove(0,1);

result sult.Remove(result.Length-1,1);
jsonResult = result;

httplWebDelete = (Ht
httpWebDelete.ContentType
httpWebDelete.Method = "DELETE

httplebDeleteResponse =

if(jsonResult.Length<l)

jsonResult
jsonResult
jsonResult

)5
jsonResult = jsonResult.Insert(jsonResult.Length,

alizeDbject<Di 3 onResult});

streamOptions.Add(entry.Key, entry.Value);

Figure 28 - Scene Manager Script Part 2

In the figure 29 below we see the parameter’s panel. We make two Kafka post requests
in the /turtle_control topic with the variables that we get from the input fields. At the end
of this scene, we disable the first scene and we enable all the other necessary
components for the second screen.

C. Katimertzis 53

Robot Remote Control based on Augmented Reality Glasses

ApplyVariables()

httpWebRequest = (Htt
httphlebRequest.ContentType
httphlebRequest.Method =

streamWriter iter (httpWebRequest.GetRequestStream()))

json { I dis " + distanceArray[distanceArrayOffset].ToString() + ~

streamWriter.Write(json);

httpResponse = (Httple)httplebRequest.GetResponse();

*(httpResponse.GetResponseStream()))

-ReadToEnd();
Debug. Log(result)

httphebRequest = (HttpWebRequ

httphebRequest.ContentType
httphlebRequest.Method =

streamWriter =
json = "{

reamiriter.Write(json);

esponse)httphebRequest.GetResponse();

*(httpResponse.GetResponseStream()))

-ReadToEnd();
Debug. Log(result)

ablesPanel.SetActive(
PhotoBut SetActive(
ControllerPanel.SetActive(
slider.SetActive(B

et].ToString() + "\

Figure 29 - Scene Manager Script Part 3

In the figure 30 below we see a sample of how a navigation button is implemented,

which makes a post request with a Kafka message on the turtle_control topic.

C. Katimertzis

54

Robot Remote Control based on Augmented Reality Glasses
upClick()
Debug.Log("borot goiung up");
httpWebRequest = (HttpWebRequest)WebRequest.Create(server + "/topics/turtle_control");
httpwWebRequest.ContentType = "application/vnd.kafka.json.v2+json";
httpwWebRequest.Method = "POST";
using {(streamWriter = StreamWriter(httpWebRequest.GetRequestStream()))
{

json = "{\"records\": [{\"value\":{\"movement\" :\"up\"}}1}";

streamWriter.Write(json);

httpResponse = (HttpWebResponse)httpWebRequest.GetResponse();
using (streamReader = StreamReader (httpResponse.GetResponseStream()))

{

result = streamReader.ReadToEnd();
Debug.Log(result);

Figure 30 - Scene Manager Script Part 4

4.2.3.3 Mjpeg Video Stream

The ROS web_video_server serves the camera’s feed as a mjpeg video stream. It
wasn’t an available way to display the stream’s mjpeg content in a Ul mesh. So it used
a custom-made script that can receive mjpeg video from an HTTP source and render it
to this mesh as depicted in Figures 31 and 32.

C. Katimertzis 55

Robot Remote Control based on Augmented Reality Glasses

v Mjpeg Texture (Script)

Stream Addre

Unlit/Texture

Add Component

Figure 31 - Mjpeg Texture

mjpeg = LN] (chunkSize * 1824);
mjpeg.FrameReady += OnMjpegFrameReady;
mjpeg.Error += OnMjpegError;
Uri mjpegAddress = Uri{streamAddress);
mjpeg.ParseStream(mjpegAddress);
re2D{initWidth, initHeight, TextureFormat.PVRTC_RGBA4,
OnMjpegFrameReady (sender, FrameRe
updateFrame =

OnMjpegError(sender, Error

Debug.Log("Err while reading the P

Update()
deltaTime += Time.deltaTime;

if (updateFrame)
I
L

tex.LoadImage (mjpeg.CurrentFrame);

GetComponent<Renderer>() .material .mainTexture = tex;
updateFrame = H

mjpegDeltaTime += (deltaTime - mjpegDeltaTime) * @.2f;

deltaTime = 0.6f;

Figure 32 - Mjpeg Script Part 1

C. Katimertzis

Robot Remote Control based on Augmented Reality Glasses

size = buff.Length - imageStart;
Array.Copy(buff, imageStart, imageBuffer, 0, size);

while ()

1
L

buff = br.ReadBytes(_chunkSize);

imageEnd = FindBytes(buff, boundaryBytes);
if (imageEnd != -1)

1
L

Array.Copy(buff, @, imageBuffer, size, imageEnd);

size += imageknd;

[]1 frame = [size];
Array .Copy(imageBuffer, @, frame, @, size);
CurrentFrame = frame;

if (FrameReady !=
FrameReady(B

Array.Copy(buff, imageEnd, buff, @, buff.Length - imageEnd);

[1 temp = br.ReadBytes(imageEnd);

Array.Copy(temp, ©®, buff, buff._Length - imageEnd, temp.Length};
k;

Array.Copy(buff, @, imageBuffer, size, buff.lLength);
size += buff._Length;

Figure 33 - Mjpeg Script Part 2

To send the ROS server’s stream addresses in the unity program that runs on Holelens,
we publish the addresses with a python script in the /cam_sources topic on the Kafka
server. Next, when the Hololens application starts up, the Scene Manager Script that is
subscribed to the topic will receive the URLSs. In the figure 33 below we have a python
script example for URL publication.

C. Katimertzis 57

Robot Remote Control based on Augmented Reality Glasses

json_data

print(json_data)

producer.send(topic, json.dumps{(data).encode('utf-

time.sleep(1)

Figure 34 - Url Publisher Python Script

C. Katimertzis

58

Robot Remote Control based on Augmented Reality Glasses

5. EXPERIMENTAL EVALUATION

5.1 Experiment Scenario

The experiments tested the installation and the functionalities of our application. The
goal was the navigation of the turtlebot inside a room surrounded by obstacles without
the operator having visual contact with the robot.

The 3 main nodes of the experiment are a turtlebot 2 with a raspberry version 3 tied on
it, the Microsoft’'s hololens 2 for the navigation, and a Kafka Server for the pub/sub
command streaming.

To begin, all the necessary software components have to executed in the robot’s
raspberry. This includes the turtlebot launch file, the Kinect camera, the ROS package
controller, and the ros web video server. We check that the Kafka Server for the
navigation is ready and we deploy the Unity application on Hololens. The next step is
the publication of the video stream’s URL on the right topic and the opening of the
program on Hololens.

@ Applications Places System [3 _J en «)) wed 2 Mar, 1259 &)

ps

pi's Home.

INFO] [1646211 : Connected to mastel
B[1nFo] [164621 : Waiting For connectic
P ed with pid [2951]
_URI=http://localhost:11311

setting /run_ti 3dbec7f6-9216- 11ec-beaz-coffa561685a
process[roso started with pid [2965]
started

blisher-2]: started with pid [2983]
_aggregator-3]: started with ptid [2984;
e_nodelet manager-4]: s!ar:ed with pid [2986]
webrtc_ros- process[mobile_base-5]: start: d [2s:
el process [bunper2pointcloud-6]: ith D\d [3009]
process[cnd_vel nux-7]: started with pid [3014]
process[turtlebot_Laptop_battery-8]: started with pid [3627]

[tur tlebiot. Leptop battery-2] process has finlshed clea
Bllog file: Jhome/pl/.ros/log/3db8c7F6-3a16-11ec-beds cqffassmssa,twnebot laptoly
® [optfros/kinetic/share/freenect_launch/launch/freenect.launch http://localhost:11311
File Edit View Search Terminal Help
process[camera/dispart: stered_sw-19]: started with pid [3572]
process[canera/dispari :
process[camera_base L

[INFO] [164621

i INFO] [1646218124.11 : Stopping device RGB and Depth stream flush.

] pi@pi-desktop: - i op: ~ 1 pi@pides sk. [Wicd Network Manager]

Figure 35 - Application’s Running Commands

During the execution of the application, the user was pressing the navigation arrows so
that the robot follows the right path. As mentioned above, the movement of the turtlebot
is not continuous and with each command, it travels a specific distance that we have set
at the beginning of the application. This way any slight delay that the video streaming

C. Katimertzis 59

Robot Remote Control based on Augmented Reality Glasses

may have was prevented. This has resulted that the first version of this application could
be completely functional. So the test was completed successfully and the application
ended normally.

Figure 36 - Experiment’s Screen

5.2 Precision Check

Eventually in the experiment, we want to have a way of checking if the turtlebot is
moving at the predetermined distance step after each navigation command. The
solution to this problem is called Odometry and it is the main tool that turtlebot has to
find its location in the environment. With odometry, the robot uses the data from its
motion sensors to estimate the change in its position over time. The TurtleBot estimates
its orientation and position relative to a starting location that is given in terms of an x
and y position and an orientation around the z (upward) axis. As mentioned earlier, all
the data from turtlebot are circulating through topics, so for the odometry, we have the
topic /odom. A python script as shown in figure 37 called position subscribes to the

C. Katimertzis 60

Robot Remote Control based on Augmented Reality Glasses

/odom topic and publishes periodically on a Kafka topic the change of the robot’s
location. Also, the output is saved locally in JSON format as shown in figure 38.

counter = @

oldX = 0.0

oldY = 0.9

producer = KafkaProducer(bootstrap_servers=['eagle5.di.uoa.gr:9092'])

Location(object):
__init_ (self,px,py):
self.posx = px
self.posy = py
toJSON(self):
return json.dumps(self, default= 0: o._ dict__, sort_keys=

PositionCB(data):

px = round(data.pose.pose.position.x, 2)
py = round(data.pose.pose.position.y, 2)
loc = Location(px,py)

1json = json.dumps(loc._ dict_)

counter
oldX
oldy
if (abs(px-oldX) > 0.01) (abs(py-oldY) > 9.01) :
oldX = px
oldY = py

producer.send('turtle_location',1json)

original_stdout = sys.stdout

with open('odometry.txt', 'a') as f:
sys.stdout = f
print(1ljson, datetime.datetime.now())
sys.stdout = original_stdout

main():
rospy.init_node("pos")
rospy.Subscriber("/odom",0dometry,PositionCB)

rospy.spin()

Figure 37 - Position Script

C. Katimertzis 61

Robot Remote Control based on Augmented Reality Glasses

C. Katimertzis

("{"posx":
(*{"posx":
("{"posx":
("{"posx":
('{"posx":
("{"posx":
(*{"posx":
("{"posx":
("{"posx":
(*{"posx":
("{"posx":
("{"posx":
('{"posx":

"posy":
"posy":
"posy":
"posy":
"posy"':
"posy":
"posy":
"posy":
"posy":
"posy"':
"posy":
"posy":
posy":

posy":

"posy":
"posy":
"posy":
"posy"':
"posy":
"posy":
"posy":
"posy"':
"posy"':
"posy":
"posy":
"posy"':
"posy":
"posy":
"posy":

P PR R RPRPE PR R PR PP

S 00 0 060 0 B -
= = = = = =2 = &

0.
0.
0.
0.
0.
0.
0.
0.
9.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

(I~ T~ B~ I~ I~ I~]
= = = = = = m

Figure 38 - Position JSON Output

62

Robot Remote Control based on Augmented Reality Glasses

6. RELATED WORK

6.1 Concept and architecture for programming industrial robots using augmented
reality with mobile devices like Microsoft HoloLens

This work analyses techniques about the human-robot interaction, based on mobile
devices, such as smartphones that are using augmented reality, or the Hololens which
are using Mixed Reality. The combination of the device's sensors' data with the
perception and abilities of a human operator gives to developers the opportunity for
creating new applications with impressive capabilities. The visualization of the current
robot state and the robot environment that is captured by different sensors and
processed with both machine and human vision can increase the assisted workplaces
or robot installations. Due to the robots' remote connection, it is possible for a remote
maintenance procedure or a faster startup of the industrial robots.

6.2 Interactive Robots Control Using Mixed Reality

This work is one more mixed reality-based approach for interactive control of robotic
manipulators and mobile platforms. In particular, they designed an interactive and
understandable interface for human-robot interaction. The interface visualizes and also
provides the tools for the robot path programming. The path visualization assists
workers understand the robot behavior, it is important for the safety of human-robot
interaction. The paper presents an architecture of that system and the implementation
for an industrial robot KUKA iiwa and mobile robot platform Plato. The main issue of a
multi-platform system is related to the synchronization of coordinate frames for all
elements. The three setting options that ended up for dealing with this problem are
manual, a camera with markers, and point clouds processing. The interface is
implemented on Microsoft HoloLens and evaluated on a sample of users.

6.3 Remote Supervision of an Autonomous Surface Vehicle using Virtual Reality

This approach is more GUI-focused, they compared three different Graphical User
Interfaces (GUI) that they have designed and implemented to enable human
supervision of an Autonomous Surface Vehicle (ASV). Special attention has been paid
to providing tools for safe navigation and giving the user a good overall understanding
of the surrounding world while keeping the cognitive load at a low level. Their findings
indicate that a GUI in 3D, presented either on a screen or in a Virtual Reality (VR)
setting provides several benefits compared to a Baseline GUI representing traditional
tools.

6.4 Improving Collocated Robot Teleoperation with Augmented Reality

As we discuss before robot teleoperation can be a challenging task, often requiring a
great deal of user training and expertise, especially for platforms with high degrees of
freedom e.g. industrial manipulators and aerial robots. Users regularly battle to
synthesize the information robots collect (e.g., a camera stream) with relevant
knowledge of how the robot moves in the environment. So this work investigates how
the progress in augmented reality technologies is creating an unused design space for

C. Katimertzis 63

Robot Remote Control based on Augmented Reality Glasses

mediating robot teleoperation by enabling novel forms of intuitive, visual feedback. They
prototype several aerial robot teleoperation interfaces using AR, which are evaluated in
a forty-eight-hour participant user study where participants completed an environmental
inspection task. Their new interface designs provided several objective and subjective
performance benefits over existing systems, which often force users into an undesirable
paradigm that divides user attention between monitoring the robot and monitoring the
robot’s camera feed.

C. Katimertzis 64

Robot Remote Control based on Augmented Reality Glasses

7. FUTURE WORK

The application has a lot of potential for usage in a wide range of applications. For
Future work, the priority has been the improvement of delays on the video level. In this
implementation the video’s stream protocol is mjpeg. The improvements can be
achieved with other types of streaming like webRTC (RFC 7478).

This standard is supported by Microsoft and at this moment has implemented Unity
components and examples. It is called MixedReality-WebRTC Unity integration and
implements the WebRTC project.

WebRTC is a free open-source project that provides real-time communication. Initially, it
was developed for web browsers but later it was expanded to other applications too,
such as VolIP and peer-to-peer file sharing. An important feature of WebRTC that
benefits our application is the reliable session establishment.

This is true for Network Address Translators (NAT), something that hinders and may
block other communications and collaboration protocols. The reliable operation avoids
server-relayed media and thereby reduces latency and increases quality. It also reduces
the server load.

The main components of this implementation are a PeerConnection, a Signaler, and the
local and remote video. The PeerConnection component is provided by the Unity
integration of MixedReality-WebRTC and has various settings to configure the
Connection’s behavior. The Signaler is an essential part because is a way to discover
and select a remote peer and to send to and receive from it the SDP messages that are
necessary to establish that connection. The WebRTC standard specifies how a
peer-to-peer connection can be established using the Session Description Protocol
(SDP) but does not enforce a particular signaling solution. So MixedReality-WebRTC
offers a built-in solution in the form of the NodeDssSignaler component, but also allows
any other custom implementation to be used.

To conclude, WebRTC could be the main feature and improvement for future work so
the application will have smaller video streaming delays and consequently to be
achieved faster navigation at all levels.

C. Katimertzis 65

Robot Remote Control based on Augmented Reality Glasses

8. CONCLUSION

In summary, the MR application that was developed is capable of remote controlling an
unmanned ground vehicle with ROS operating system through the Hololens devices 1
and 2. The application is made for a more specific case where the existing software
wasn't enough sufficient for the scenario’s needs. It is a basic controller with the
functionalities of the robot’s navigation and Kinect camera’s video streaming. These
functionalities are enough for the application to be usable. On this basis, they can add a
lot of add-ons on both platforms Ros and Unity.

The Kafka server gives the MR application a nice abstraction and adaptiveness for
other types of vehicles different from ROS. So it is a generic MR controller for Hololens
that provides them the capability to control different devices that can listen to Kafka
messages. Also, the video streaming can be from different sources that are on the
Mijpeg protocol. The source of the video can also change through Kafka without making
any configuration on the application’s code

To conclude, the results of the experiments showed that the application can be used in
a real-life scenario even with some small delay in the video feed. This latency and some
precision deviation in the robot’s position are dependent on the case of use and the type
of unmanned vehicle that the user wants to navigate.

This thesis’s goal is to provide even a minor contribution to the ongoing research on
having more practical applications of these technologies.

C. Katimertzis 66

Robot Remote Control based on Augmented Reality Glasses

ABBREVIATIONS - ACRONYMS

loT Internet of Things

UxV Unmanned Vehicle, x stands for aerial, ground, or sea
UAV Unmanned Aerial Vehicle

uGv Unmanned Ground Vehicle

usv Unmanned Surface Vehicle

ROS Robot Operating System

C. Katimertzis

67

Robot Remote Control based on Augmented Reality Glasses

REFERENCES

1. J. Guhl, S. Tung and J. Kruger, "Concept and architecture for programming industrial robots using
augmented reality with mobile devices like microsoft HoloLens," 2017 22nd 8. IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA), 2017, pp. 1-4, doi:
10.1109/ETFA.2017.8247749.

2. Hooman Hedayati, Michael Walker, and Daniel Szafir. 2018. Improving Collocated Robot Teleoperation
with Augmented Reality. In Proceedings of the 2018 ACM/IEEE International Conference on
Human-Robot Interaction (HRI '18). Association for Computing Machinery, New York, NY, USA, 78-86.

3. Marten Lager, Elin A. Topp, Remote Supervision of an Autonomous Surface Vehicle using Virtual
Reality, IFAC-PapersOnLine, Volume 52, Issue 8, 2019, Pages 387-392, ISSN 2405-8963

4. M. Ostanin, R. Yagfarov, A. Klimchik, Interactive Robots Control Using Mixed Reality ««The work
presented in this paper was supported by the grant of Russian Science Foundation 17-19-01740.,
IFAC-PapersOnLine, Volume 52, Issue 13, 2019, Pages 695-700, ISSN 2405-8963

5. https://medium.com/swlh/apache-kafka-what-is-and-how-it-works-e176ab31fcd5

6. https://docs.microsoft.com/en-us/windows/mixed-reality/

7. hitps://qithub.com/microsoft/MixedRealityToolkit-Unity
8. https://webrtc.org/

9. Figure 14 - https://docs.microsoft.com/en-us/windows/mixed-reality/design/gaze-and-commit-head

10. Figure 15 - https://qgithub.com/microsoft/MixedReality Toolkit-Unity

11. Maximilian Speicher, Brian D. Hall, and Michael Nebeling. 2019. What is Mixed Reality? In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI '19).
Association for Computing Machinery, New York, NY, USA, Paper 537, 1-15.
https://doi.org/10.1145/3290605.3300767

12. Figure 1 - https://www.uavos.com/uavos-fixed-wing-uav-sitaria-completed-flight-tests/

13. Figure 2 -
https://www.business-standard.com/article/technology/drone-taxis-and-deliveries-science-fiction-gets-clos
er-to-reality-in-seoul-120111100920_1.html

14. Figure 3 - https://www.wired.com/story/hurricane-florence-underwater-drone-slocum-glider/

15. Figure 4 -
https://www.naval-technology.com/projects/fleet-class-common-unmanned-surface-vessel-cusv/

C. Katimertzis 68

https://github.com/microsoft/MixedRealityToolkit-Unity
https://webrtc.org/
https://docs.microsoft.com/en-us/windows/mixed-reality/design/gaze-and-commit-head
https://github.com/microsoft/MixedRealityToolkit-Unity
https://doi.org/10.1145/3290605.3300767

