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ABSTRACT

Geospatial Interlinking constitutes a useful task that associates pairs of geometries with
topological relations. Its high computational cost, though, scales poorly to voluminous
datasets. Progressive methods were recently proposed in order to reduce this cost by
sacrificing recall to an affordable extent. However, these methods operate in a learning-
free manner that relies on mere heuristics, which can be conservative (i.e., retaining too
many unrelated pairs) or aggressive (i.e., discarding too many related pairs). In this work,
we introduce Supervised Scheduling as a quick and principled way of defining the pro-
cessing order of the candidate geometry pairs that are likely to be topologically related,
based on their classification probability. Our approach leverages generic features with low
extraction cost but high discriminatory power that can be automatically labelled. Thorough
experiments verify the high performance and robustness of our features as well as the lim-
ited size of the training set that suffices for learning an accurate classification model. We
integrate Supervised Scheduling into a progressive end-to-end algorithm, which has both
a serial and a parallel version. Each version is integrated into JedAI-Spatial and DS-JedAI
systems, respectively. Lastly, we compare the performance of our algorithm to the other
progressive ones over six real, large datasets.

SUBJECT AREA: Semantic Web, Database Systems, Machine Learning

KEYWORDS: Geospatial Interlinking, Supervised Learning, Binary Classification



ΠΕΡΙΛΗΨΗ

Η Διασύνδεση Γεωχωρικών Δεδομένων αποτελεί μια χρήσιμη διαδικασία, κατά την οποία
ζεύγη γεωμετριών συνδέονται σύμφωνα με τις τοπολογικές τους σχέσεις. H διαδικασία
αυτή, ωστόσο, έχει υψηλό υπολογιστικό κόστος, το οποίο κλιμακώνεται ελάχιστα σε με-
γάλο όγκο δεδομένων. Πρόσφατα προτάθηκαν αλγόριθμοι βαθμιαίας διασύνδεσης γεω-
χωρικών δεδομένων, οι οποίοι -για να ελαττώσουν το υπολογιστικό κόστος- θυσιάζουν έως
ένα επιτρεπτό όριο το βαθμό ανάκλησης. Παρ'ολα αυτά, οι αλγόριθμοι αυτοί βασίζονται είτε
σε απλές ευρετικές μεθόδους, οι οποίες μπορεί να χαρακτηριστούν είτε ως "συντηρητικές"
(διατηρόντας, δηλαδή, πολλά τοπολογικά μη-συσχετιζόμενα ζεύγη) είτε ως "επιθετικές"
(απορρίπτοντας, δηδαδή, πολλά τοπολογικά συσχετιζόμενα ζεύγη). Λαμβάνοντας υπόψην
τα παραπάνω, προτείνουμε την Εποπτευόμενη Δρομολόγηση, σύμφωνα με την οποία τα
ζεύγη γεωμετριών διαχωρίζονται σε δυο κατηγορίες: τα ζεύγη που είναι πιθανό να σχετί-
ζονται τοπολογικά και τα ζεύγη που είναι εξαιρετικά απίθανο να σχετίζονται τοπολογικά.
Κατά την Εποπτευόμενη Δρομολόγηση, η σειρά επεξεργασίας των υποψήφιων ζευγών,
ορίζεται σύμφωνα με την πιθανότητα ταξινόμησης τους σε μια από τις δυο κατηγορίες.
Η προσέγγισή αυτή, αξιοποιεί χαρακτηριστικά των γεωμετριών, που συμβάλουν συνο-
λικά στην διάκριση των ζευγών, και των οποίων η εξαγωγή έχει αρκετά χαμηλό κόστος.
Τα πειράματά που παρουσιάζουμε, αναδεικνύουν την υψηλή απόδοση και ευρωστία των
χαρακτηριστικών μας, έχοντας μάλιστα ένα μικρό σε μέγεθος σετ εκπαίδευσης, το οποίο
επαρκεί για την εκμάθηση ενός ακριβούς μοντέλου ταξινόμησης. Παρουσιάζουμε δύο εκ-
δοχές του αλγορίθμου, μια σειριακή και μια παράλληλη, τις οποίες ενσωματώνουμε στα
συστήματα JedAI-Spatial και DS-JedAI, αντίστοιχα. Τέλος, συγκρίνουμε την απόδοση της
προσέγγισής μας με τις υπόλοιπους βαθμιαίους αλγόριθμους σε έξι υπάρχοντα, μεγάλα
σύνολα δεδομένων.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Σημασιολογικός Ιστός, Συστήματα Βάσεων Δεδομένων,
Μηχανική Μάθηση

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Διασύνδεση Γεωχωρικών Δεδομένων, Εποπτευόμενη Μάθηση,
Δυαδική Ταξινόμηση
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Supervised Progressive Geospatial Interlinking

1. INTRODUCTION

Geospatial data constitutes the cornerstone in numerous applications, especially on the
Web. For example, OpenStreetMap alone contains data about the entire globe which
amounts to 1.5 terabyte1. Geonames describes more than 12 million locations2, while
WorldKG3 contains around 113.4 million geographic entities [6].

Despite the prominence of geospatial data, its sources are inadequately interlinked on the
Linked Open Data cloud. Even though the geospatial data corresponds to almost 20% of
the LOD cloud triples, only 7% of the links between the various data sources pertain to
geometries [12]. For example, only 0.52% of the OpenStreetMap geometries were linked
to Wikidata as of April, 2021 [6].

To address this shortage, Geospatial Interlinking aims to automatically connect the geo-
metric entities between the various data sources of the Semantic Web [16, 15]. In more
detail, Geospatial Interlinking takes as input a source and a target dataset, S and T , re-
spectively, and its objective is to interlink S and T by identifying all geometry pairs in S×T
that satisfy a topological relationship, except for the trivial disjoint one. As an example,
consider Figure 1.1, where LineString g4 intersects LineString g3, which touchesPolygon
g1, which contains Polygon g2.

Yet, Geospatial Interlinking is a demanding task that involves twomain challenges [16, 15]:

1. Its inherently quadratic time complexity.

2. The time-consuming processing for a single pair of geometries.

Both shortcomings are based on the fact that the brute-force approach has to examine
all pairs of geometries as well as that all topological relations of the DE-9IM model need
to be extracted from the intersection matrix (cf. Chapter 2). The time complexity of the
latter is O(N · logN), where N stands for the total number of boundary points in the two
geometries [3].

The first challenge is addressed through the Filtering-Verification framework that lies at the
core of all relevant techniques [2, 14, 15, 16]. The source and target datasets, S and T
respectively, are fed to the Filtering step, which produces a set C ⊆ S×T : |C| ≪ |S|×|T |
with pairs that are candidates, i.e., likely to have a non-trivial topological relation, because
their Minimum Bounding Rectangles (MBRs) are intersecting. C is then forwarded to the
Verification step, which examines every geometry pair.

The second challenge is addressed through progressive approaches [14], which turn Geo-
spatial Interlinking into an approximate procedure – they sacrifice recall to a small extent in
order to reduce the run-time by orders of magnitude for applications with limited resources
(e.g., cloud-based applications with a limited budget for AWS Lambda functions4, which
charge whenever they are called). In essence, progressive methods try to determine the
processing order of candidate pairs such that the topologically related ones take preced-
ence. After Filtering, they associate every candidate pair with a score that is proportional
to the likelihood that its geometries are topologically related. During Verification, only the

1https://wiki.openstreetmap.org/wiki/Planet.osm
2https://www.geonames.org/about.html
3https://www.worldkg.org
4https://aws.amazon.com/lambda

M.D. Siampou 12

https://wiki.openstreetmap.org/wiki/Planet.osm
https://www.geonames.org/about.html
https://www.worldkg.org
https://aws.amazon.com/lambda


Supervised Progressive Geospatial Interlinking

g1
g2

g3

g4

Figure 1.1: An example of topologically related geometries.

top-k weighted pairs are examined, with k configured according to the available temporal
or computational resources.

On the downside, the existing progressive methods weigh the candidate pairs according to
learning-free heuristics that are based on the tiles that intersect theMBR of each geometry:
the number of common tiles, their Jaccard similarity or their Pearson χ2 test [14]. As a
result, they prune the search space in a way that might be too aggressive, missing many
related pairs, or too conservative, verifying many non-related pairs.

In this work, we argue that supervised learning provides a principled framework for dis-
tinguishing between related and non-related geometry pairs. We formalize Supervised
Scheduling as a probabilistic binary classification task that orders in decreasing classific-
ation probability the candidate pairs that are labelled as “likely related”. To solve this
task, we propose 31 features that represent every pair of geometries. They are generic
enough to apply to both LineStrings and Polygons, while their extraction cost is very low.
Our objective is to identify the smallest set of features that achieves high accuracy. We
experimentally verify its robustness, showing that its high performance is independent of
the classification algorithm, while requiring a very small training set. Finally, we propose
Supervised Progressive GIA.nt, an end-to-end algorithm that uses the Filtering and Veri-
fication steps as provided by Progressive GIAnt, but instead of using a simple Scheduling
step, it utilizes Supervised Scheduling. The latter, builds the training set on the fly, without
any human intervention, learns the classification model and uses it to feed Verification with
the best candidates. Extensive experiments show that it significantly outperforms the best
progressive method.

Overall, this work makes the following contributions:

• We define Supervised Scheduling, a probabilistic binary classification task that trades
slightly lower recall for significantly higher precision and lower run-time.

• We define four categories of classification features, with each one further divided
into two subcategories. Each (sub)category includes generic, efficient and effective
features.

• We propose Supervised Progressive GIA.nt, a learning-based algorithm that builds a
small training set tr on-the-fly, after the first pass over all input data, learns a binary
classifier M over tr and applies M during the second pass over the input data,
significantly reducing the number of candidate pairs and the overall run-time.

• We perform feature selection and use the resulting features in four established clas-
sifiers, demonstrating their robustness even when trained over very few labelled
instances.

M.D. Siampou 13
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• We experimentally compare our approach to the state-of-the-art progressivemethod,
demonstrating its superiority in terms of effectiveness, robustness and memory effi-
ciency.

• We present a parallelized version of our approach on top of Apache Spark5, and we
evaluate all approaches through a thorough experimental analysis that involves six
real, large scale datasets.

• We make our work publicly available.6

The rest of the thesis is structured as follows: Section 2 provides the necessary back-
ground knowledge, while 2.3 discusses related work in the field. In Section 3, we de-
scribe the features and the serial and parallel implementation of the algorithm of our ap-
proach. We experimentally fine-tune and compare them with the state-of-the-art progress-
ivemethod in Section 4. We conclude the thesis in Section 5 alongwith directions for future
work.

5https://spark.apache.org/
6https://github.com/msiampou/DS-JedAI

M.D. Siampou 14

https://spark.apache.org/
https://github.com/msiampou/DS-JedAI


Supervised Progressive Geospatial Interlinking

2. BACKGROUND AND RELATED WORK

A large part of the information we deal with on a daily basis has some kind of a geographic
dimension. An example of such information can be searching for the opening hours of a
restaurant close to our location. The goal of the geospatial Semantic Web research is to
make seeking such information easier by allowing exploration, editing and interlinking of
heterogeneous information sources with a spatial dimension.

Traditional Geographic Information Systems (GIS) offer rigid sets of geographic features.
However, integrating external data sets into these systems typically requires manual in-
tegration and programming efforts to ensure that the meaning of the provided information
will be processable. Yet, combining the strengths of Linked Data and GIS systems could
spur the transition of numerous isolated geographic information to a geospatially enriched
Linked Data Web where such information can easily be integrated and processed.

The large-scale adoption of Linked Data1 started in 2006 and a number of the largest
spatial datasets, like LinkedGeoData, already contain spatial information. A considerable
number of users and organizations contribute and work with structured geospatial data
on the Web. The idea of large-scale collaborative spatial data management is one of the
biggest challenges in the area of intelligent information management, aiming the exploit-
ation of the Web as a platform for geospatial data integration as well as for searching and
querying for geographic information.

Figure 2.1: The Geography Linked Open Data Cloud.

At the moment, though, the geospatial data is underrepresented in the LOD Cloud. Figure
1http://lod-cloud.net

M.D. Siampou 15
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2.1 presents the datasets that have been published in the Linked Data format. Geospatial
data corresponds to almost 20% of the LOD cloud triples, however 7% of the triples linking
different datasets pertain to geometries [12]. Geospatial Interlinking aims to overcome this
limitation.

In this work, we focus on two types of geometries:

• LineStrings or Polylines, which are sequences of connected line segments

• Polygons, which, in the simplest case, are two-dimensional geometries specified by
a loop sequence of points, where the first and the last one coincide.

In Figure 1.1, examples of LineStrings are the geometries g3 and g4, while Polygons are
represented by g1 and g2. Both types of geometries consist of three parts; the interior, the
boundary, and the exterior (i.e., the rest of the points).

For most types of geometries, the Dimensionally Extended Nine-Intersection Model (DE-
9IM) [4, 5, 7] defines the following topological relations between two geometries A and B:

1. Equals(A,B): A and B have identical interiors & boundaries.

2. Intersects(A,B): A and B are not disjoint, sharing at least one point of their
interiors or boundaries.

3. Touches(A,B): A and B have common points in their boundaries, but not in their
interiors.

4. Within(A,B): A resides in the interior of B.

5. Contains(A,B): within(B,A).

6. Covers(A,B): B resides in A’s interior or boundary.

7. Covered-by(A,B): covers(B,A).

8. Crosses(A,B): A and B share part of their interior points, and dim(A)<dim(B) or
dim(B)<dim(A).

9. Overlaps(A,B): A andB share part of their interior and boundary points, and dim(A) =
dim(B).

10. Disjoint(A,B): A and B share no point of their boundaries nor of their interiors.

Note that dim(g) is 0, 1 or 2 if g is a point, a line segment or an area, respectively. Note
also that all topological relations can be extracted from the intersection matrix of the given
geometry pair [2, 14].2 Following [14], though, we disregard the relation Disjoint, be-
cause it is not informative, as it typically applies to the vast majority of geometry pairs. We
denote the set of the nine non-trivial topological relations byR. If a geometry pair is found
to satisfy none of these relations, it is assumed to satisfy Disjoint.

M.D. Siampou 16
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Figure 2.2: Topological Relations between Spatial Objects in Two-Dimensional Space.

2.1 Problem Definition

In this context, Geospatial Interlinking is an exact task that misses no topological relations
between the given geometries [14]:

Problem 1 (Geospatial Interlinking). Given a source and a target dataset, S and T re-
spectively, compute all non-trivial topological relations between their geometries LR =
{(s, r, t) ⊆ S ×R× T : r(s, t)}.

In the context of Linked Data, the goal is to estimate all topological relations (excluding
Disjoint) between the source and the target datasets. These can be derived with simple
logical conditions from the Intersection Matrix (IM), which is defined as:

IM(s, t) =

dim(I(s)) ∩ I(t) dim(I(s)) ∩ B(t) dim(I(s)) ∩ E(t)
dim(B(s)) ∩ I(t) dim(B(s)) ∩ B(t) dim(B(s)) ∩ E(t)
dim(E(s)) ∩ I(t) dim(E(s)) ∩ B(t) dim(E(s)) ∩ E(t)


where dim denotes the dimension of the intersection of the interior I, boundary B, and
exterior E of the geometries s and t. For empty intersections, dim is −1 or F (False),
while for non-empty ones, dim is equal to 0 in the case of a point, 1 for a line segment
and 2 for an area. The values {0, 1, 2} are collectively represented by T (True). Figure 2.2
illustrates the aforementioned details.

2.2 Progressive Geospatial Interlinking

Progressive algorithms offer an approximate solution to Problem 1, while operating in a
pay-as-you-go manner [14]. In this way, they maximize the throughput of applications with
limited resources, e.g., due to the cost of AWS Lambda functions, which charge whenever
they are called [19].

2See examples in https://en.wikipedia.org/wiki/DE-9IM#Matrix_model.

M.D. Siampou 17
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Figure 2.3: PGR for batch and progressive algorithms.

Compared with the exact (batch) solutions to Problem 1, the goal of progressive algorithms
is twofold [14]:

1. They should yield the same outcome when processing all input data.

2. They should yield a substantially higher number of related geometry pairs, when
terminating prematurely.

These requirements are reflected in the diagram of Figure 2.3, which is formed by the
number of verifications on the horizontal axis and the number of related geometries on the
vertical one. The gist of progressive algorithms is that they place the related pairs before
the non-related ones in the processing order. This is in contrast to the batch algorithms,
which define an arbitrary processing order. More formally, the progressive algorithms aim
to maximize the area under their curve in Figure 2.3. This evaluation measure is called
Progressive Geometry Recall (PGR) and is defined in [0, 1], with higher values indicating
higher effectiveness.

In this context, progressive algorithms tackle the following task [14]:

Problem 2 (Progressive Geospatial Interlinking). Given a source and a target dataset, S
and T , along with a budgetBU on themaximum calculations (or running time), compute as
many non-trivial topological relations between S and T as possible so that the Progressive
Geometry Recall is maximized within BU .

The progressive algorithms are also evaluated with respect to: (i) run-time, (ii) precision,
i.e., the ratio between the detected related pairs and the number of verifications, and (iii)
recall, i.e., the ratio between the detected and the existing related pairs.

2.3 Related Work

Geospatial Interlinking is a core task in the process of populating the Semantic Web with
links between its geospatial entities [2, 14, 16].

The first relevant technique is Silk-spatial [17]. Its Filtering divides the surface of the Earth
into a user-defined number of tiles, creating a fixed EquiGrid. As a result, its tiles are
usually coarse-grained, in the sense that they involve a large number of geometry pairs.
Therefore, too many pairs are verified, incurring a computational cost that is close to that
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of a brute-force approach. Its Verification examines the candidate pairs inside every tile in
parallel, leveraging Apache Hadoop3. The latter step also considers a single topological
relation, even though it uses the same Filtering for all relations, resulting in the repetition
of the algorithm when another relation needs to be examined over the same data.

To go beyond Silk-spatial, RADON [16] builds a dynamic EquiGrid, based on the input
data. The Filtering step also involves a swapping strategy, which goes through all source
and target geometries to identify the dataset with the smallest Estimated Total Hyper-
volume, in an effort to minimize the size of the Equigrid. Due to this strategy, however,
RADON needs to maintain both input datasets in memory, and thus demanding high space
requirements. Given that every geometry is assigned to all tiles intersecting its MBR, the
contents of the resulting tiles are overlapping. To avoid duplicate verifications, RADON
maintains a main memory a hash-table with all geometry pairs verified so far. Yet, this
renders its massive parallelization non-trivial: special care should be taken to partition the
input data among the available workers in a way that avoids all redundant verifications
(broadcasting all geometries to all workers is not an option for large datasets, due to the
high memory requirements). The Verification step operates at the level of individual topo-
logical relations, incorporating specialized filters for some of them. For instance, equals
is verified only after ensuring that the source and target geometries have identical MBRs.
Similar to Silk-spatial, though, the entire algorithm is repeated whenever another relation
is examined over the same data.

stLD [15] enhances RADON in four ways: (i) its Filtering supports a series of indices,
such as R-Tree, Equigrid and a hierarchical grid; (ii) only one of the two input datasets is
indexed, reducing the memory requirements and treating the second input dataset as a
stream of geometries; (iii) MaskLink estimates the overlap of every geometry with every
tile to check whether it is contained in the space left empty by the rest of the geometries
in the tile. If this is true, the entire tile is skipped, without generating any candidate pairs;
(iv) Apache Flink is used for massive parallelization.

These works operate at the level of a single topological relation, repeating the entire pro-
cessing for every relation of interest. This is addressed by RADON2 [2], which simultan-
eously extracts all topological relations from the intersection matrix of two geometries.

GIA.nt [14] combines the advantages of all the above works. During Filtering, it loads only
the smallest dataset in main memory and indexes it with an Equigrid, whose granularity
depends on the characteristics of the smallest input dataset. During Verification, it reads
the largest dataset from the disk, one geometry at a time. For each geometry, it retrieves
the candidate pairs from the Equigrid and verifies those with intersecting MBRs. Massive
parallelization on Apache Spark4 minimizes the run-time.

• GIA.nt: Geospatial Interlinking at lArge

• Progressive GIA.nt

Filtering Verification
C

S

T

L

Filtering Verification
C

Scheduling
C’

S

T

L

Figure 2.4: Learning-free Progressive Geospatial Interlinking.

The above approaches operate in a batch manner that produces results (in an arbitrary
order) only after processing the entire input. This is incompatible with geospatial applic-
ations of limited computational and/or temporal resources (e.g., cloud-based apps). To
accommodate them, progressive methods were proposed in [14], turning Geospatial In-
terlinking into an approximate process that promotes precision at the expense of recall. As

3http://hadoop.apache.org
4http://spark.apache.org
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shown in Figure 2.4, they extend the Filtering-Verification framework with an intermediate
step, called Scheduling, which orders the set of candidate pairs C such that the related
ones are processed before the non-related. This is achieved through a weighting scheme
that considers the tiles intersecting the MBR of every geometry, assigning higher scores
to pairs that are more likely to be related. Given a user- or application-defined budget
of k verifications, Progressive GIA.nt verifies the top-k weighted pairs, while Progressive
RADON orders the tiles according to their size and applies Progressive GIA.nt inside every
tile, until consuming the budget. None of them leverages machine learning to enhance
the time efficiency of Geospatial Interlinking.
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3. APPROACH

In this chapter we present Supervised Progressive GIAnt, a system that transforms the
scheduling step of the learning-free Progressive methods to a supervised one, leveraging
the power of probabilistic binary classification procedures. In Supervised Progressive
GIAnt, every pair of geometries that their Minimum Bounding Rectangles are intersecting,
is associated with a n-dimensional feature vector, where n = 31. In the following chapters
we refer to these pairs as candidate pairs. The total candidate pairs are order according
to their classification probability, in terms of their likelihood to be topologically related.

3.1 Features for Supervised Scheduling

The Scheduling step in Figure 2.4 applies a learning-free progressive method that associ-
ates every pair of geometries with a single score [14]. We argue that this is not sufficient
for addressing Problem 2. Instead, we introduce a Supervised Scheduling step that per-
forms probabilistic binary classification, associating every pair with a feature vector, where
every dimension is a separate numerical score.

The desiderata of the features used by our approach are:

• They should be generic, applying seamlessly to LineStrings and Polygons and ideally,
to any indexing scheme used by the Filtering step in Figure 2.4.

• They should be effective with high discriminatory power.

• They should be efficient, involving a low extraction cost so that the classification of
a geometry pair is much faster than its verification. As a result, they cannot rely on a
detailed examination of a geometry pair, e.g., by counting the boundary points they
share.

In this context, we propose 31 features for Supervised Filtering. To facilitate their descrip-
tion and understanding, we organize them into four complementary categories:

1. The area-based features that consider the space occupied by the MBR of each geo-
metry.

2. The boundary-based features that stem from the characteristics of each geometry’s
boundary.

3. The grid-based features that emanate from the indexing scheme of Filtering.

4. The candidate-based features that rely on the candidates associated with every geo-
metry after Filtering.

The first two categories depend exclusively on the characteristics of the geometries com-
prising every candidate pair, but the remaining two rely on the Filtering step. For Filter-
ing, we use the space tiling of the state-of-the-art algorithm GIA.nt [14], which builds an
Equigrid, where the dimensions of each cell correspond to the average width and height
of the source geometries.
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Every category includes two types of features: (i) the atomic, and (ii) the composite ones.
The former includes individual, core characteristics of a single geometry, while the latter
encompasses combinations of atomic features that typically normalize their values in [0, 1],
with higher values implying a stronger likelihood for topological relatedness. These two
types allow for exploring the impact of feature complexity on Supervised Filtering.

Next, we delve into the features of every category and type.

3.1.1 Area-based features

To be generic, this category considers the area occupied by the MBR of a geometry, rather
than the area occupied by the geometry itself (this is not true for LineStrings, which interior
coincides with their boundary).

In this context, the atomic features are the following:

• (F1) Source MBR Area

• (F2) Target MBR Area

• (F3) Intersection MBR Area

The first two features assume that the larger the MBR of a geometry is, the more likely
it is to be related with another geometry lying within the same index. The third feature
assumes that the larger the overlap of two MBRs is, the more likely are the respective
geometries to satisfy at least one non-trivial topological relation.

The composite features normalize the atomic ones in [0, 1]:

• (F4) Intersection MBR normalized by Source MBR = F3/F1

• (F5) Intersection MBR normalized by Target MBR = F3/F2

• (F6) Jaccard MBR Overlap = F3/(F1 + F2− F3)

3.1.2 Boundary-based features

This category includes the two features characterizing the border of LineStrings and Poly-
gons, i.e., their points, and their length. We defined four atomic features:

• (F7) Number of Source Boundary Points

• (F8) Number of Target Boundary Points

• (F9) Source Boundary Length

• (F10) Target Boundary Length

Note that (F7) and (F8) capture the complexity of a geometry, as higher values indicate
more complicated boundaries. Therefore, the rationale behind (F7)-(F10) is that the more
complex and longer the boundary of a geometry is, the more likely it is to satisfy at least
one topological relation.

The composite features form normalized measures of complexity, expressing the average
number of boundary points per length unit:
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• (F11) Normalized Source Boundary Complexity = F7/F9

• (F12) Normalized Target Boundary Complexity = F8/F10

For both features, higher values indicate higher complexity and possibly greater chances
for topological relations.

3.1.3 Grid-based features

Using GIA.nt’s Filtering, a uniform grid is built, based on the average dimensions of the
source geometries. Every geometry is then placed into all tiles that intersect its MBR,
defining the following atomic features:

• (F13) Number of Tiles Intersecting the Source MBR

• (F14) Number of Tiles Intersecting the Target MBR

• (F15) Number of Common Tiles

We implicitly assume that all features are proportional to the likelihood that a geometry
(pair) is topologically related.

The composite features normalize the atomic ones:

• (F16) Common Tiles Normalized by Source Tiles = F15/F13

• (F17) Common Tiles Normalized by Target Tiles = F15/F14

• (F18) Jaccard Common Tiles = F15/(F13 + F14− F15)

• (F19) Pearson’s χ2 test [14] receives as input the atomic features F13-F15 and re-
turns a value proportional to the dependency of the candidate pair. In other words,
it checks whether the distribution of tiles intersecting the source MBR remains the
same if we exclude the tiles intersecting the target MBR, and vice versa.

3.1.4 Candidate-based features

This category considers the contents of the tiles intersecting the MBR of a geometry g
through: (i) the total number of candidates, i.e., the total number of geometries of the
other input dataset that participate in the same tiles, (ii) the number of distinct candidates,
i.e., the cardinality of the set of candidates, which disregards multiple appearances of the
same geometry, and (iii) the number of distinct real candidates, which intersect MBR(g),
too.

Overall, the following atomic features are defined:

• (F20) Total Candidates for Source Geometry

• (F21) Distinct Candidates for Source Geometry

• (F22) Real Candidates for Source Geometry
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• (F23) Total Candidates for Target Geometry

• (F24) Distinct Candidates for Target Geometry

• (F25) Real Candidates for Target Geometry

For all these features, we assume that higher values correspond to a stronger likelihood
for topological relatedness.

The composite features normalize the atomic ones in [0, 1]:

• (F26) Source Distinct Candidates Normalized by Total = F21/F20

• (F27) Source Real Candidates Normalized by Total = F22/F20

• (F28) Source Real Candidates Normalized by Distinct = F22/F21

• (F29) Target Distinct Candidates Normalized by Total = F24/F23

• (F30) Target Real Candidates Normalized by Total = F25/F23

• (F31) Target Real Candidates Normalized by Distinct = F25/F24

3.2 Supervised Progressive GIA.nt

We now describe the algorithm that implements the pipeline in Figure 2.4, by replacing
Scheduling with Supervised Scheduling. Following GIA.nt [14], it first indexes the smallest
input dataset, i.e., the source dataset. The dimensions of the grid cells are specified in
Line 1 of Algorithm 1 as ∆x = means∈SMBR(s).width and ∆y = means∈SMBR(s).height.
Based on these dimensions, the lower left MBR point (x1(s), y1(s)) and the upper right
MBR point (x2(s), y2(s)) of every source geometry s are estimated in Lines 2-3. Together
with∆x and∆y, these points determine the tiles that intersectMBR(s) and should contain
s (Lines 4-10). The Equigrid index I is ready after Line 11.

As an example of this indexing, assume that ∆x = 4 and ∆y = 3. For a geometry
POLY GON(20 90, 20 93, 16 93, 16 90, 20 90), the lower left MBR point is (16, 90) and
the upper right one is (20, 93). Hence, this geometry participates in the tiles defined by
⌊16/∆x⌋ = 4 ≤ i ≤ 5 = ⌈20/∆x⌉ and ⌊90/∆y⌋ = 30 ≤ j ≤ 31 = ⌈93/∆y⌉.

The training of the binary probabilistic classification model is carried out in Lines 12-46.
For every target geometry t, the tiles that intersect its MBR are inferred from its lower
left and the upper right MBR points (Lines 15-17). The source geometries participating
in these tiles are aggregated into the set of candidates CS (Line 18). Even though every
source geometry appears in CS just once, a counter measures its actual frequency across
the tiles intersecting MBR(t) (we ommit the details for brevity). This counter is used for
updating the candidate-based features F20 and F21 for every candidate source geometry
s ∈ CS (Lines 23-24). If MBR(s) intersects MBR(t), feature F22 is updated, too (Lines
25-26). Then, the two geometries are added to the random sample of pairs to be verified
if their id is among the selected ones (Lines 27-29).

The random selection of pairs is carried out in Line 12, through the randomGenerator
function, which receives two arguments: the maximum number m of pairs to be verified
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and labelled during training, and the range D, within which it searches for these pairs.
Ideally, the former is set to 2 ·N , whereN is the input parameter that specifies the required
number of labelled instances per class, while the latter should be set to |C|, i.e., the number
of candidate pairs in the given datasets. In practice, though, |C| is a-priori unknown, while
m should be much larger than 2 ·N , due to the class imbalance, as most candidates entail
disjoint geometries (cf. Section 4).

Several approaches address the class imbalance problem [10, 11]: (i) oversampling ran-
domly resamples the minority class until both classes have the same size, (ii) under-
sampling randomly samples a subset of equal size from both classes, (iii) cost-sensitive
learning trains a classifier with a high misclassification cost for the minority class, and
(iv) ensemble learning trains several classifiers such that they collectively label every in-
stance. However, oversampling yields very large training sets that foster overfitting, due to
the repetition of the minority class instances, while cost-sensitive and ensemble learning
produce complex and, thus, time-consuming classification models. In contrast, under-
sampling allows for minimizing the training and the prediction time, as it works well with
small training sets that learn simple, fast, but effective classifiers. For these reasons,
Supervised Progressive GIA.nt relies on undersampling.

In this context, in Line 12, D is set to the maximum possible range of candidate pairs,
i.e., the Cartesian product |S| × |T | (or to the maximum integer value supported by Java)
and m to two orders of magnitude larger than N , i.e., m = 100 · N , to make up for class
imbalance and the sampled ids that exceed |C|.

Next, the sampled pairs are shuffled, to randomize their order (Line 34) and verified in
order to extract their labels (Lines 35-45). The topologically related ones are added to the
set of positive pairs and the rest to the negative pairs (Lines 37-41). In practice, only the
first N from each class are taken into account, but we omit this for brevity. As soon as the
necessary number of instances is gathered for both classes, the loop terminates (Lines
42-44).

Subsequently, the feature vectors of the selected candidate pairs are generated in Line
46. Most features rely on inherent characteristics of the geometries in each pair. However,
features F15-F19, F23-F25 and F29-F31 require that Lines 14-22 are repeated for every
sampled target geometry. The resulting training set L is then fed to the selected algorithm
to learn the classification model M (Line 46).

Then, the algorithm iterates once more over the target dataset and for each geometry t,
it gathers the source candidates from the tiles intersecting MBR(t), as in Lines 14-22.
During this process, the features F23-F25 are computed for t, if necessary (we omit the
details). Subsequently, for every source candidate s with MBR(s) intersecting MBR(t),
a feature vector v is generated (Lines 50-52). The vector is fed to M, which predicts the
classification probability for the pair {s, t}, ws,t (Line 53). If ws,t exceeds the probability
corresponding to minw, {s, t} is added to the priority queue TC , which maintains the most
likely related pairs that fit within the given budget BU (Lines 54-55). Note that minw is
initialized to 0.5 in Line 47 so as to exclude pairs classified as unlikely related. Note also
that minw is updated to the probability of the (BU + 1)th top-weighted pair, whenever the
size of TC exceeds the specified budget (Lines 56-59). Finally, the overall top-BU weighted
pairs are verified in decreasing classification probability (Lines 64-65); their intersection
matrix IM is computed and its topological relations are added to the output set of links LR
(Lines 66-67).

Note that the pairs verified in Line 36 are also included in the output LR. To avoid redund-
ant verifications, their ids are maintained in a hash map that is checked between Lines

M.D. Siampou 25



Supervised Progressive Geospatial Interlinking

50 and 51, but we omit these details for brevity. Note also that Lines 1-11 correspond to
the Filtering step, Lines 12-63 to the Supervised Scheduling step and Lines 64-68 to the
Verification step of Figure 2.4.

Overall, Supervised Progressive GIA.nt has the same space complexity as Progressive
GIA.nt, which is linear with respect to the input – the space occupied by the learned model
and the candidate pairs that are automatically labelled is constant, due to the parameter
configuration in Section 4. Its time complexity is also equivalent to Progressive GIA.nt,
amounting toO(|S|+ |T | · |C̄S| · log |BU |+ |BU |), where |C̄S| stands for the average number
of source candidates per target geometry and log |BU | for the maximum cost of inserting a
candidate pair in the priority queue. The first part corresponds to Filtering, the second one
to Supervised Scheduling and the last one to Verification. Note that the time required by
Lines 34-46, which label the sample of candidate pairs and train the classification model,
is negligible, as demonstrated in Section 4.

3.3 Massive Parallelization

Figure 3.1: Integration of Supervised Scheduling in DS-JedAI.

We have integrated our approach in the Distributed-Spatial JedAI System1 2 (DS-JedAI).
DS-JedAI is implemented on top of Apache Spark and can run in any distributed or stan-
dalone environment that supports the execution of Apache Spark jobs. Our approach is
outlined in Figure 3.1.

Following the system’s specifications, both datasets are loaded as RDDs3 and are spatially
partitioned based on GeoSpark’s Quad Tree, which is built from a sample of the source
geometries. Both source and target RDDs are partitioned using the same partitioner,
therefore geometries that are considered to be ”topologically close” end up to partitions
with the same ID. The RDDs with the same partition ID are then merged. This way, each
RDD contains the geometries that lie within the same partition, ensuring that the ones that
are likely to satisfy a topological relation coexist in the same partition.

Before joining the RDDs of source and target geometries in each partition, the granularity
of space tiling is estimated. We use the same tile dimensions as in serial GIA.nt, as well as
in our serial implementation. As previously mentioned, to calculate the granularity of space

1https://github.com/GiorgosMandi/DS-JedAI
2https://github.com/msiampou/DS-JedAI
3Spark revolves around the concept of a Resilient Distributed Dataset (RDD), which is a fault-tolerant

collection of elements that can be operated on in parallel.
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tiling, the computation of∆x = means∈SMBR(s).width and∆y = means∈SMBR(s).height
is required. This computation is performed by the Driver, who at first requires each Ex-
ecutor to sum the extends of its local source geometries. Then, the Driver aggregates
the results and computes the tile dimensions. In the end, ∆x and ∆y are broadcast to the
Executors. All in all, this is a single MapReduce job.

During the Map phase, every Executor receives as input a partition of both input data-
sets and applies Filtering to index the source geometries. Then, it applies Supervised
Scheduling, processing the target geometries one by one to estimate their weights with
the intersecting source geometries, based on their classification probability. Supervised
Scheduling consists of the Pre-processing, Training and Scheduling steps.

During the Pre-processing step, the relevant information regarding our feature extraction
is computed. Such information can be the total, distinct and real candidates for source
and target geometries. During this step we also create a balanced set of related and non-
related pairs and define it as our training set. Next, the Training step takes place, which
consists of the training of a Linear Regression classifier. Note that, here, each partition
creates a local set of sample instances and trains a local classifier, meaning that each
Executor performs computations independently, promoting concurrency and making the
most of massive parallelization. Regarding Scheduling, a feature vector for each geometry
pair with intersecting tiles is generated and passed through the classifier, which outputs
their classification probability. The pairs are then scheduled based on their probability to
be related. We set this probability to be the pair’s weight w. Each pair is added to a local
min-max priority queue according to w.

Each partition stores its top-k weighted pairs in the aforementionedmin-max priority queue,
where k is the local budget (local-BU ). Local budget is is derived by dividing the global
budget (BU ) among the data partitions in proportion to the source geometries they contain.
The target geometries are not taken into account, as they are not bulk loaded beforehand,
but are read on-the-fly, one by one, similar to the serial implementation of rest of GIA.nt
Progressive methods. After all target geometries have been processed, the Verification
phase computes the intersection matrix for the top-k weighted candidate pairs in the local
priority queue. The qualifying pairs of each Executor are aggregated by the Reduce phase.

Last but not least, the aforementioned spatial partitioning, results in uneven partitions
that are skewed with respect to the volume of data and the corresponding computational
cost. As a result, each partition ends up with a different workload, and therefore some of
them require significant time, while others complete their jobs instantaneously, leaving the
corresponding nodes idle. To tackle this issue, DS-JedAI distinguishes the partitions into
overloaded and well-balanced ones. The former are defined as those with a number of
source geometries significantly higher than the average one across all partitions. To detect
them, the Z-score4 is utilized. Z-score measures howmany standard deviations a value is
away from the mean value. In this context, a partition is considered to be overloaded if its
Z-score exceeds a predefined threshold tha, set to tha = 2.5. The rest of the partitions are
marked as well-balanced and are processed as described above. After completing their
processing, the entities of the overloaded partitions are indexed and re-partitioned using a
HashPartitioner that is based on tiles ID. In this way, geometries indexed in the same tiles
will be placed in same partitions, without missing any candidate pairs. Redundant pairs
are again discarded with the reference point technique. Overall, this is an effective and
efficient load balancing strategy as long as it applies to a small portion of the input data,
and not to the entire dataset, given that it requires the replication of each entity as many

4https://en.wikipedia.org/wiki/Standard_score
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times as the numbers its tiles.
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Algorithm 1: Supervised Progressive GIA.nt.
input : the source dataset S, the target dataset T , the feature set F , the maximum sample size m, the class size N , the

probabilisic classification algorithm A
output: the links LR = {(s, r, t) ⊆ S × T ×R : r(s, t)}

1 I ← {}; (∆x,∆y)← defineIndexGranularity(S);
2 foreach geometry s ∈ S do // filtering indexes the source geometries
3 (x1(s), y1(s), x2(s), y2(s))← getDiagCorners(s);
4 for i← ⌊x1(s) ·∆x⌋ to ⌈x2(s) ·∆x⌉ do
5 for j ← ⌊y1(s) ·∆y⌋ to ⌈y2(s) ·∆y⌉ do
6 I.addToIndex(i, j, s);
7 j ← j + 1;
8 end
9 i← i + 1;

10 end
11 end
12 sourceStats← {}; id← 0; sample← {}; sampleIds← randomGenerator(m,D);
13 foreach geometry t ∈ T do // first pass over the target geometries
14 CS ← {} ; // the set of source candidates
15 (x1(t), y1(t), x2(t), y2(t))← getDiagCorners(t);
16 for i← ⌊x1(t) ·∆x⌋ to ⌈x2(t) ·∆x⌉ do
17 for j ← ⌊y1(t) ·∆y⌋ to ⌈y2(t) ·∆y⌉ do
18 CS .add(I.getTileContents(i, j));
19 j ← j + 1;
20 end
21 i← i + 1;
22 end
23 foreach geometry s ∈ CS do
24 sourceStats← updateTotalDistinctPairs(s);
25 if intersectingMBRs(s, t) then
26 sourceStats← updateRealPairs(s);
27 if sampleIds.contains(id) then
28 sample.add({s, t});
29 end
30 id← id + 1;
31 end
32 end
33 end
34 negPairs← {}; posPairs← {}; shuffle(sample) ; // instance labelling
35 foreach pair {s, t} ∈ sample do
36 isRelated← verifyPair({s, t});
37 if isRelated then
38 posPairs.add({s, t});
39 else
40 negPairs.add({s, t});
41 end
42 if N ≤ |posPairs| & N ≤ |negPairs| then
43 break;
44 end
45 end
46 L← getFeatures(posPairs ∪ negPairs, F , sourceStats, I); M← trainModel(L);
47 LR ← {}; minw = 0.5; TC ← {} ; // priority queue
48 foreach geometry t ∈ T do // second pass over the target geometries
49 ... ; /* Same as Lines 14-22 */
50 foreach geometry s ∈ CS do
51 if intersectingMBRs(s, t) then
52 v← getFeatureVector(s, t, F );
53 ws,t ←M.getClassificationProbability(v);
54 if minw < ws,t then
55 TC .add({s, t}, ws,t);
56 if BU < TC .size() then
57 head = TC .pop();
58 minw = head.getWeight();
59 end
60 end
61 end
62 end
63 end
64 while TC ̸= {} do // verification
65 tail = TC .popLast();
66 IM ← verify(tail.s, tail.t);
67 LR ← LR ∪ IM .getRelations();
68 end
69 return LR;
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4. EXPERIMENTAL ANALYSIS

We now present the experiments that investigate the effectiveness and efficiency of our
approach in contrast to the other progressive approaches. More precisely, in Section
4.2 we present the experiments conducted on the serial implementation regarding the
size of the training set, the selection of the most suitable classification algorithm and the
performance of our approach. The massive parallelization of our approach is examined in
Section 4.3, where we illustrate the performance of the approach as well as discuss our
main findings.

4.1 Experimental Setup

The experiments related to the serial implementation were carried out on a server with
Intel Xeon Gold 6238R CPU @ 2.2 GHz with 28 cores and 256GB RAM. In all cases,
a single CPU was used. All experiments were implemented and performed in Java 15,
using Weka 3.8 [9] for the classifiers.

Regarding the parallel experiments, they were performed in a standalone machine that
contains 32 virtual cores1 at 2.20GHz and 128GB of memory. Unless specified otherwise,
for the experiments we used 16 Executors with 2 cores each and 7GB of memory. The
implementation is in Scala 2.12 using Spark 2.4.

4.1.1 Datasets

To assess the performance of our approach, we used large-scale, real-world datasets
that are popular in the literature [8, 14, 18]. They are publicly available [1] and com-
prise data imported from the US Census Bureau TIGER files, namely USA’s Area Hy-
drography (AREAWATER), Linear Hydrography (LINEARWATER), roads (ROADS) and
edges (EDGES), as well as data extracted fromOpenStreeMap, representing lakes (Lakes),
parks (Parks) and roads (Roads) as well as of all buildings (Buildings) around the world.
The datasets are combined into six pairs, presented in Table 4.1, D1-D6. They cover all
possible combinations of geometry types: In D1, D2 and D4 the source geometries are
Polygons and the target ones LineStrings. Vice versa for D6. D3 and D5 are homogen-
eous, involving only Polygons and only LineStrings, respectively.

In the following, Section 4.2 elaborates on the serial experiments that were carried out
over the five smallest pairs of datasets, D1 toD5. The largest dataset pair, D6, does not fit
into the main memory of our stand-alone server. It is used only in the parallel experiments
that are presented in Section 4.3.

4.1.2 Evaluation measures

We assess effectiveness through precision, recall and PGR (cf. Section 2). Precision and
recall are computed using the following formulas:

Precision = PD,BU
Q /PBU

Q (4.1)
1The system uses hyperthreading hence it has 16 physical cores.
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Table 4.1: The dataset pairs used in our experiments.

D1 D2 D3 D4 D5 D6
Source Dataset AREAWATER AREAWATER Lakes Parks ROADS Roads
Target Dataset LNWATER ROADS Parks Roads EDGES Buildings
#Source Geom. 2,292,766 2,292,766 8,326,942 9,831,432 19,592,688 72,339,926
#Target Geom.s 5,838,339 19,592,688 9,831,432 72,339,926 70,380,191 114,796,567
Cartesian Product 1.34 · 1013 4.49 · 1013 8.19 · 1013 7.11 · 1014 1.38 · 1015 8.30 · 1015
Candidate Pairs 6,310,640 15,729,319 19,595,036 67,336,808 430,597,631 257,075,645
#Contains 806,158 3,792 267,457 5,147,704 53,758,453 274,953
#CoveredBy 0 0 1,944,207 47,253 12,218,868 82,828
#Covers 832,843 4,692 267,713 5,284,672 53,758,453 274,966
#Crosses 40,489 106,823 217,198 5,700,257 6,769 313,566
#Equals 0 0 61,712 2,047 12,218,868 18,909
#Intersects 2,401,396 199,122 3,841,922 12,145,630 163,982,138 1,037,153
#Overlaps 0 0 488,814 42,331 73 54,810
#Touches 1,554,749 88,507 986,522 1,210,230 110,216,843 331,166
#Within 0 0 1,943,643 47,155 12,218,868 81,567
Total Topological Relations 5,635,635 402,936 10,019,188 29,627,279 418,379,333 2,481,027

Recall = PD,BU
Q /BU (4.2)

PGR =

|P |∑
i=1

P i
Q/|PBU

Q | (4.3)

where PD,BU
Q stands for the number of detected qualifying pairs and PB

QU for the maximum
possible number of qualifying pairs within BU . The latter essentially denotes the number
of possible verifications. All measures are defined in [0, 1], with higher values indicating
higher effectiveness.

For the time efficiency, we consider the overall run-time RT , which is the time that inter-
venes between receiving the input data and producing the detected topological relations
as output. For Supervised Scheduling, RT includes the training time (tr), which captures
the time required to learn the classification model, and the prediction time (tp), which de-
notes the time required to apply the learned model to the set of candidates C.

4.2 Serial Processing

4.2.1 Feature Selection

The more features describe a labelled instance, the more complex and time-consuming is
the resulting classification model. To minimize the features used by Supervised Schedul-
ing, we perform analytical experiments about the performance of every category and type
of features with respect to effectiveness and time efficiency. In these experiments, we
assume that all candidate pairs have been labelled.

For each of the three smallest datasets, D1-D3, we formed a balanced training set that
comprises a random sample with 1% of the positive instances and an equal number of
randomly selected negative ones. The remaining candidate pairs formed the testing set.
All features were rescaled with min-max normalization. We considered four established
probabilistic classification algorithms [10]: Naive Bayes, Random Forest, Logistic Regres-
sion and Bayesian Networks. We repeated every experiment 5 times and took the average
for every evaluation measure. The resulting performance is reported in Figure 4.1.
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Figure 4.1: Average performance of area-based (ABF), boundary-based (BBF), grid-based (GBF),
candidate-based (CBF) and all (All) features over D1-D3. In each case, we consider atomic and

composite features as well as their combination.

Regarding the type of features, we observe the atomic consistently outperform the com-
posite ones in terms of recall and PGR by 9.6% and 10%, on average, across all datasets
and feature categories. This situation is reversed in half the cases for precision, but still
the composite features underperform by 2.3%, on average. Combining both feature types
yields an intermediate recall and PGR, but achieves the highest precision in practically all
cases. Regarding time efficiency, the atomic features are faster than the composite ones
by 19.3% and 25.3%, on average, with respect to training and prediction time, respectively.
This indicates that more complex patterns are learned from the composite features, prob-
ably due to their lower discriminativeness. The combination of both feature types is slower
than the atomic features by 36.2% and 8.4%, respectively. This is expected, given that the
higher number of features typically yields more complex and time-consuming classification
models.

These patterns advocate the superiority of atomic features. To select the best category
among them, we observe that there are minor differences in terms of recall: the minimum
is lower than the maximum one by just 5.1% (D1), 6.7% (D2) and 2.8% (D3). For precision
and PGR, we observe that the use of all atomic features consistently achieves the best
performance. The boundary-, grid- and candidate-based features underperform by more
than 5% in practically all cases. The area-based is the second best feature category, re-
ducing the maximum precision and PGR by just 2.2% and 3.1%, on average, respectively.
Regarding the time efficiency, using all atomic features almost doubles the training time
of the area-based ones. However, this situation is reversed in the case of the prediction
time, the bottleneck of the training phase, which is at least an order of magnitude higher
than the training time: all atomic features are faster than the area-based ones by 7.3%,
on average.

For these reasons, we exclusively couple Supervised Scheduling with all atomic features
in the following.

4.2.2 Class Size Selection

We now examine how sensitive is our feature set with respect to the size of the training set.
Even though the labelled instances are generated automatically, restricting their number
lowers the cost of Supervised Scheduling for three reasons: (i) the training time gets lower,
(ii) the resulting classifier is simpler and, thus, the prediction time is lower, and (iii) the time
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Figure 4.2: Evolution of average precision, recall, PGR, training and prediction time over D1-D3

when combining all atomic features with Naive Bayes, Random Forest, Logistic Regression and
Bayesian Networks w.r.t. class size (on the horizontal axis).

required for building the training set is reduced.

To assess the impact of these two parameters, we performed a series of experiments over
D1-D3, assuming that the labels of all candidates pairs are available. For the training set
size, we consider six values: 50, 100 and 500-2, 500 instances per class with a step of 500.
In every case, the training set is balanced, due to undersampling. We use the same four
classification algorithms and report the average performance of five repetitions in Figure
4.2.

We observe that for each dataset, the effectiveness improves substantially for up to 500
labelled instances per class, but remains practically stable for larger training sets. In par-
ticular, precision, recall and PGR raise by 9.3%, 4.0% and 7.7%, respectively, on average,
across all datasets, when increasing the training set from 50 to 500 instances per class.
From 500 to 2, 500 labelled instances, these measures raise by at most 1.1%, 0.8% and
1.9%, respectively. Given that the training and the prediction time increase linearly with
the size of the training set (due to the higher complexity of the learned models), we can
conclude that 500 labelled instances per class offer the best trade-off between effective-
ness and time efficiency, minimizing the run-time for high and robust performance.

4.2.3 Algorithm Selection

Table 4.2 reports the performance of the individual classification algorithms over the entire
datasets D1-D3, when combined with all atomic features and 500 labelled instances per
class. For every evaluation measure, we consider the average and the standard deviation
per algorithm after 5 iterations.

Table 4.2: Performance per classification algorithm.

Precision Recall PGR tr (ms) tp (sec)

D1

NB 0.744±0.014 0.840±0.008 0.488±0.010 5±3 24±0.2
RF 0.818±0.009 0.841±0.006 0.476±0.006 181±3 67±1.1
LR 0.668±0.007 0.863±0.005 0.520±0.003 59±4 3±0.1
BN 0.745±0.014 0.840±0.009 0.489±0.009 4±1 16±0.2

D2

NB 0.034±0.003 0.740±0.020 0.507±0.023 4±0 59±1.5
RF 0.047±0.001 0.783±0.009 0.548±0.006 221±5 188±4.3
LR 0.035±0.001 0.808±0.010 0.573±0.010 39±7 6±0.1
BN 0.034±0.003 0.742±0.020 0.509±0.025 4±0 40±0.5

D3

NB 0.474±0.003 0.851±0.011 0.462±0.007 3±0 76±1.7
RF 0.474±0.007 0.875±0.013 0.520±0.008 201±9 217±4.0
LR 0.413±0.005 0.950±0.015 0.553±0.015 74±5 8±0.3
BN 0.474±0.003 0.851±0.011 0.462±0.007 3±0 51±1.7

Regarding effectiveness, we observe that Logistic Regression (LR) consistently exhibits
very low precision, but achieves the highest recall and PGR in all cases. The opposite
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is true for Naive Bayes (NB), Random Forest (RF) and Bayesian Networks (BN), i.e.,
they emphasize precision at the cost of significantly lower recall and PGR – their relative
performance depends on the dataset, except that NB and BN exhibit an almost identical
effectiveness in all cases.

Regarding time efficiency, RF is by far the slowest algorithm with respect to training time
(tr); NB and BN are the fastest approach, with LR lying in themiddle of these two extremes.
For the prediction time (tp), RF remains the most time-consuming approach, with LR being
the most efficient one ∼ 27 times faster, on average, than RF.

Overall, LR underperforms with respect to precision and training time, but excels in all
other performance measures. Given that Problem 2 emphasizes PGR, Logistic Regres-
sion constitutes the best choice among the four probabilistic classification algorithms.

4.2.4 Comparison to state-of-the-art

Figure 4.3: Performance of Supervised Progressive GIA.nt (SPGI), Progressive GIA.nt with JS
(PGJS) and the optimal approach (OPTI) over all datasets in Table 4.1 using as budgets all portions

of candidate pairs in [0.05, 0.50] with a step of 0.05.

Using all atomic features, 500 labelled instances per class and Logistic Regression for
learning the probabilistic classification model, we compare Supervised Progressive GIA.nt
(SPGI) with the best learning-free progressive algorithm from [14]: Progressive GIA.nt
in combination with the Jaccard similarity weighting scheme (PGJS). In essence, this al-
gorithm considers exclusively feature F18, verifying the top-BU weighted pairs in decreas-
ing order. We additionally report the performance of the optimal progressive algorithm
(OPTI), which verifies all topologically related pairs before the non-related ones.

For every dataset in Table 4.1, we report the performance with respect to all evaluation
measures (see the homonymous paragraph above) for all budgets in the interval [0.05 ·
|C|, 0.50 · |C|] with a step of 0.05 (recall that |C| denotes the set of candidate pairs). The
results appear in Figure 4.3.

Looking into effectiveness, we observe the following patterns:

• For D1 and D5, our supervised approach achieves practically equivalent perform-
ance with the learning-free baseline method – their average difference is less than
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2% for all three measures. Both methods are very close to the optimal approach,
with their average difference being ∼ 15% for all measures. Despite the heterogen-
eous types of geometries inD1 (Polygons and LineStrings) andD5 (LineStrings), this
should be attributed to the relatively large portion of qualifying pairs: in both cases,
38.1% of all candidate pairs are topologically related.

• For D3 and D4, SPGI outperforms PGJS to a significant extent. Its precision and
recall is higher by ∼ 20% (∼ 48%), on average, across all budgets in D3 (D4). For
these measures, our approach actually lies in the middle of PGJS and OPTI, as
its average distance from the optimal precision and recall is ∼ 28% and ∼ 50%,
resp. The same applies to PGR over D4, where the average difference is ∼ 50%
between SPGI and PGJS and∼ 57% between SPGI andOPTI. InD3, the PGR of our
approach is higher than PGJS by 14.5%, on average, due to their minor differences
in the smaller budgets.
This is true in all datasets: the first verifications of Supervised Progressive GIA.nt
target both positive and negative instances in order to build the training set for its
probabilistic classifier. This results in lower PGR for small budgets, which is com-
pensated by the high performance of the learned model in subsequent verifications.
Note that despite the heterogeneity ofD3 andD4 (Polygons and LineStrings-Polygons,
respectively), their similar patterns should be attributed to the similar portions of
qualifying pairs: 19.6% and 18.4% of all candidate pairs are topologically related,
respectively.

• InD2, SPGI achieves higher precision, recall and PGR than PGJS by 8.7%, 8.1% and
14.7%, respectively. However, it does not apply to the last three budgets, because it
classifies ∼ 62% of the geometry pairs as unlikely related. This should be expected,
due to the heavy class imbalance [10], given that just 1.3% of the candidate pairs
is qualifying. As a result, the random sampling (Lines 12 and 27-29 in Algorithm
1) cannot label a sufficient number of positive instances: for D = 15, 000, only 180
topologically related pairs were detected – in all other datasets, ∼ 1, 500 verifications
suffice for yielding a balanced training set. This means that in cases with imbalanced
training sets, Supervised Progressive GIA.nt should be combined only with small
budgets.

Finally, regarding time efficiency, we report the relative run-time of SPGI and PGJS with
respect to GIA.nt [14], i.e., a batch algorithm that uses the same indexing and verifies
all candidate pairs. Given the varying sizes of the datsets and the increasing size of
the budgets we consider, the corresponding diagrams in Figure 4.3 are equivalent to a
scalability analysis. The optimal baseline method corresponds to a linear increase in the
run-time as the budget increases.

We observe that both SPGI and PGJS outperform this baseline, as their run-time scales
sublinearly with the increase of the verified pairs. The reason is that both algorithms
favor pairs with small and simple geometries, whose verification is rather efficient. This is
especially true for PGJS, which is consistently the fastest approach. The more effective
is SPGI in comparison to PGJS, the higher is their difference in run-time, which indicates
that the simple geometries selected by PGJS are not sufficient for achieving high PGR.
Note that the overhead of Supervised Scheduling (i.e., random sampling, the creation of
features per candidate and their classification) accounts for less than 10% of the SPGI’s
overall run-time in all cases.
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Figure 4.4: Performance of Parallel SPGI utilizing dynamic class size selection for the training set
over D1-D4 datasets, using BU = 5M .

Figure 4.5: Performance of Parallel SPGI utilizing static class size selection for the training set
over D1-D4 datasets, using BU = 5M .

4.3 Parallel Processing

4.3.1 Class Size Selection

As per section 4.2.2, we examine the sensitivity of our feature set in the parallel imple-
mentation of our approach as well. Here, we consider two cases of class size selection:
(i) dynamic and (ii) static.

In dynamic class size selection, the size of the training set is given by a subset of the
total source and target geometries lying in each partition. We refer to the total source and
target geometries of each partition as local geometries. For our experiments we define the
proportion of local geometries p ∈ {0.1, 0.3, 0.5}. Note that setting a dynamic class size
selection means that each partition ends up with a different size of a training set, resulting
in different workloads for each partition during preprocessing.

In static class size selection, the training set size is the same for each partition, regardless
of the amount of local geometries. For this case we consider three values: 100, 250 and
500 instances per class.

We perform our experiments over D1 - D4. Figures 4.4 and 4.5 illustrate the performance
of parallel SPGI in respect to recall, precision and PGR, while Figure 4.6 presents the
growth of scheduling time (ts) as the test size increases, following the aforementioned two
approaches. In every case the training set is balanced, since undersampling is applied.

From our experiments we can deduct the following:

• In dynamic class size selection, as p increases, so does the performance of parallel
SPGI. More precisely, recall, precision and PGR are increased by 12%, 2.6% and
1, 3% respectively, as the train set size increases from 10% of local geometries to
50%. It is worth mentioning, that the highest increase in performance occurred when
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Figure 4.6: Evolution of ts in Parallel SPGI utilizing dynamic class size selection (left) and static
class size selection (right) for the training set over D1-D4 datasets, using BU = 5M .

D2 was utilized. Since D2 is a highly imbalanced dataset, it is expected that a larger
amount of data assigned to the train set, will have such an impact in performance.
Moreover, alongside with performance, the scheduling time also increases. This is
dues to the fact that, the Scheduling phase includes the construction of a balanced
train set as well as the training procedure itself.

• The same applies to static class size selection approach. In more detail, we detect
6%, 2% and 0, 7% increase in recall, precision and PGR as the number of instances
formulating the train set grows from 100 to 500. Similarly, again, the scheduling time
increases as the size of train set increases gradually.

• Comparing the two approacheswe observed that dynamic class size selection hands
in the best results in respect to our metrics for all datasets, however it appears to
result in a higher scheduling time. This behavior is expected since each Executor
processes a different amount of training data, as the number of geometries varies in
each partition. The differences in scheduling time become more significant when a
large dataset as D3 or D4 is processed. Nevertheless, for all of the datasets, even
though dynamic class size selection has better performance, the difference between
the two approaches is not significant.

Therefore, we conclude that the size of the training set should be the same in each parti-
tion. In the following experiments we set the size of each local train set to 500.

4.3.2 Scalability Analysis

We perform scalability analysis of our approach in terms of monitoring the ability of our
system to handle the growth of (i) computing resources and (ii) workload.

Regarding the first one, we examine how the overall time of interlinking, using Supervised
Scheduling, scales as we increase the number of available processing units. Figure 4.7,
presents our findings over dataset D3 with a budget BU = 5M. We observe that SPGI
scales almost linearly and close to the ideal speedup. A small downshift only happens as
we increase the available cores from 8 to 16. As the experimental analysis of Progressive
methods reveals in [13, 14], this is mostly due to the redistribution of geometries and
the computation of the tiles’ granularity, as they both invoke data shuffling. On the other
hand, during Supervised Scheduling no data shuffling is needed all necessary information
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Figure 4.7: Scalability of Parallel SPGI in respect to the available preprocessing units (left figure)
and the workload (right figure) over D3 and D1 respectively.

is locally available to each Executor. Overall, the total interlinking time of SPGI from 261.95
minutes using 2 cores, to 43.80 minutes using 16 cores.

To inspect the scalabilitySPGI in respect to the workload, we kept a constant number of the
processing units set to 16 cores, while increasing the budgetBU ∈ {5M, 10M, 20M, 30M},
and therefore increasing the size of the job. This experiment is performed on D1 dataset.
Here, we report the total scheduling ts and verification time tv of the overall interlinking
process. We observe that ts slightly increases as the BU increases. This is due to the
fact that more pairs are inserted to the PQ as the BU grows. Regarding tv, it increases
more considerably. This is expected as the size of the BU is decisive for the duration of
the Verification step.

4.3.3 Comparison with the state-of-the-art

We now compare the performance of Parallel SPGI with the different weighting schemes
utilized by learning-free progressive approaches. More precisely, we compare Supervised
Scheduling (SS) with:

• Co-occurrence Frequency (CF), which counts the tiles shared by source s and target
t geometries, i.eCF = |Bs∩Bt|, whereBk stands for the set of tiles/blocks containing
geometry k.

• Jaccard Similarity (JS) that normalizes the overlap similarity defined by CF, i.e.
JS(s, t) = |Bs∩Bt|

Bs+Bt−|Bs∩Bt| , capturing the idea that the portion of tiles shared by two
geometries is proportional to the likelihood that they satisfy a positive topological
relation.

• Pearson’s χ2 test (χ2), extends CF by assessing whether two geometries s and t ap-
pear independently in the set of tiles. To infer their dependency, it estimates whether
the distribution of tiles intersecting s in B is the same as the distribution if we exclude
the tiles that intersect t.

For every dataset in Table 4.1, we report the performance with respect to all evaluation
measures presented in above experiments and a budget BU = 5M verifications. We also
report the total interlinking time in seconds for every approach. The results appear in Table
4.3.
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Table 4.3: Performance of Parallel Supervised Scheduling in comparison to other Parallel
Progressive methods, across all datasets with BU = 5M.

CF JS χ2 SS
Recall 0.776 0.950 0.968 0.790
Precision 0.373 0.456 0.455 0.619

D1 PGR 0.339 0.650 0.647 0.449
time (sec) 498 498 498 328
Recall 0.764 0.838 0.808 0.582
Precision 0.023 0.025 0.024 0.026

D2 PGR 0.578 0.545 0.505 0.008
time (sec) 408 408 408 495
Recall 0.244 0.458 0.460 0.367
Precision 0.186 0.349 0.350 0.282

D3 PGR 0.122 0.267 0.268 0.137
time (sec) 693 693 693 1,959
Recall 0.362 0.159 0.155 0.404
Precision 0.362 0.159 0.155 0.404

D4 PGR 0.192 0.083 0.082 0.082
time (sec) 1,517 1,517 1,517 3,648
Recall 0.195 0.904 0.918 0.632
Precision 0.195 0.904 0.918 0.632

D5 PGR 0.094 0.452 0.459 0.167
time (sec) - - - > 10,000
Recall 0.049 0.144 0.141 0.288
Precision 0.010 0.030 0.029 0.050

D6 PGR 0.025 0.065 0.064 0.030
time (sec) - - - > 10,000

From our experimental analysis we can conclude that SS achieves a close performance
in comparison to the learning-free baseline methods. More precisely, for D1, D3 and D5,
SS lies in the middle of CF and the other two weighting schemes, with the exception of
precision in the case of D1. In the latter, SS achieves higher precision, meaning that it
manages to detect most of the qualifying pairs within BU . For the cases of D4 and D6

datasets, SS outperforms the rest of the methods to a significant extent. The only case
that SS cannot manage to achieve as high results, is when utilizing D2 dataset. This
should be attributed to the relatively small amount of related pairs in dataset, given that
only 1.3% of the candidate pairs are qualifying. In more detail, SSmanages to detect only
89711 qualifying pairs out of the 199122 total.

Regarding execution time, SS achieves higher run-times compared to the the other pro-
gressive methods. That is mainly imputed to the Scheduling step, which (i) performs two
passes over the target geometries in order to successfully perform feature extraction, (ii)
constructs a balanced train set and (iii) performs the training procedure. This becomes
more evident as the size of the dataset grows. However, the reported run-times of paral-
lel SPGI are orders of magnitude lower compared to its serial implementation, though an
exact comparison cannot be made since the two versions were run on different machines.

Overall, we observe that SS is relatively robust to the variety of datasets in contrast to the
other progressive methods, which highly depend to the type of relations existing in each
dataset. The only case in which SS underperforms is when the dataset is unbalanced.
However, when combined with small budgets, it can still manage to detect a good amount
of related pairs.

Altogether, Supervised Scheduling offers a good trade-off between effectiveness and time
efficiency.
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5. CONCLUSIONS AND FUTURE WORK

Weproposed Supervised Scheduling as a newmeans ofmaximizing the throughput (PGR)
of Geospatial Interlinking within a specific budget of verifications. This algorithm is incor-
porated into Supervised Progressive GIA.nt, an end-to-end approach that automatically
learns a generic, effective and fast probabilistic classifier. Using five pairs of large, real-
world datasets, we experimentally demonstrated that combining Logistic Regression with
16 atomic features and 500 labelled instances per class, randomly selected across all
candidate pairs, suffice for achieving high performance under versatile settings.

We also integrated Supervised Progressive GIA.nt on tha system DS-JedAI that runs on
top of Apache Spark and is able to perform Geospatial Interlinking at scale. We show that
the parallel version of Supervised Progressive GIA.nt achieves much higher scalability
and lower run-times compared to the serial version. We compare this version to other
parallel progressive approaches and demonstrate its competitiveness.

In the future, we plan to extend our approach to proximity relations, that indicate that two
entities are close enough without having physical contact with each other. Such a relation
is the nearby relation. Finally, we intend to integrate our approaches with Entity Resolution
and Link Discovery techniques that rely exclusively on text.
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ABBREVIATIONS - ACRONYMS

GIS Geographic Information System

OSM OpenStreetMap

LOD Linked Open Data

AWS Amazon Web Services

DE9IM Dimensionally Extended Nine-Intersection Model

IM Intersection Matrix

RDD Resilient Distributed Dataset

HDFS Minimum Bounding Rectangle

MBR Hadoop Distributed File System

GIA.nt Geospatial Interlinking At large

DS-JedAI Distributed-Spatial Java gEneric DAta Integration

PQ Priority Queue

BU Budget

CF Co-occurrence Frequency

JS Jaccard Similarity

MBRO Minimum Bounding Rectangle Overlap

ISP Inverse Sum of Points

LR Logistic Regression

NB Naive Bayes

RF Random Forest

BM Bayesian Networks

SS Supervised Scheduling

SPGI Supervised Progressive Geospatial Interlinking

PGJS Progressive GIA.nt in combination with the JS weighting scheme

OPTI Optimal Progressive Algorithm

PGR Progressive Geometry Recall
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