
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

BSc THESIS

Dempster-Shafer Τheory Application in Recommender
Systems and Comparison of Constraint Programming’s

and Möbius Transform’s Implementations

Tatiana P. Boura

Supervisor: Isambo Karali, Assistant Professor

ATHENS

JULY 2022

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Εφαρμογή της Θεωρίας Dempster-Shafer σε Συστήματα
Συστάσεων και Σύγκριση Χρήσης Προγραμματισμού με
Περιορισμούς και του Αλγόριθμου Möbius Transform για

τον Υπολογισμό της

Τατιάνα Π. Μπούρα

Επιβλέπουσα: Ιζαμπώ Καράλη, Επίκουρη Καθηγήτρια

ΑΘΗΝΑ

ΙΟΥΛΙΟΣ 2022

BSc THESIS

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of
Constraint Programming’s and Möbius Transform’s Implementations

Tatiana P. Boura
S.N.: 1115201700100

SUPERVISOR: Izambo Karali, Assistant Professor

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Εφαρμογή της Θεωρίας Dempster-Shafer σε Συστήματα Συστάσεων και Σύγκριση
Χρήσης Προγραμματισμού με Περιορισμούς και του Αλγόριθμου Möbius Transform για

τον Υπολογισμό της

Τατιάνα Π. Μπούρα
Α.Μ.: 1115201700100

ΕΠΙΒΛΕΠΟΥΣΑ: Ιζαμπώ Καράλη, Επίκουρη Καθηγήτρια

ABSTRACT

In this thesis, we deal with the subject of Handling Uncertainty in the field of Knowl-
edge Representation using Dempster-Shafer theory. Our goal is to study an application
of Dempster-Shafer theory to Recommended Systems and measure the performance of
Dempster’s rule and belief computation when using an implementation that utilizes Con-
straint Logic Programming (CLP). Also, we aim to compare the performance of the CLP im-
plementation on random test cases to the performance of an implementation of Dempster-
Shafer theory using Möbius Transforms. In general, the computational time for the appli-
cation was rational. Regarding the comparison, each implementations has its pros and
cons.

SUBJECT AREA: Artificial Intelligence

KEYWORDS: Dempster-Shafer theory, Uncertainty, Möbius Transform, Recommender
Systems, ECLiPSe Prolog, ibelief, Comparison

ΠΕΡΙΛΗΨΗ

Στην πτυχιακή εργασία αυτή μας απασχολεί το θέμα του Χειρισμού Αβεβαιότητας στον
τομέα της Αναπαράστασης Γνώσης χρησιμοποιώντας τη θεωρία των Dempster-Shafer.
Σκοπός μας είναι να μελετήσουμε μια εφαρμογή της θεωρίας σε Συστήματα Συστάσεων και
να μετρήσουμε την απόδοση του κανόνα τουDempster και του υπολογισμού εμπιστοσύνης
χρησιμοποιώντας μια υλοποίηση της θεωρίας βασισμένη στον Λογικό Προγραμματισμό
με Περιορισμούς. Ακόμη, επιθυμούμε να συγκρίνουμε την απόδοση της υλοποίησης
βασισμένη στον Λογικό Προγραμματισμό με Περιορισμούς σε τυχαίες περιπτώσεις δοκιμής
με μια υλοποίηση που χρησιμοποιεί μετασχηματισμούς Möbius. Σε γενικά πλαίσια ο υπο-
λογιστικός χρόνος για την εφαρμογή υπήρξε λογικός. Όσον αφορά τη σύγκριση, και οι
δύο περιπτώσεις είχαν θετικά και αρνητικά.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Τεχνητή Νοημοσύνη

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Θεωρία των Dempster-Shafer, Χειρισμός Αβεβαιότητας, Möbius Trans-
form, Συστήματα Συστάσεων, ECLiPSe Prolog, ibelief, Σύγκριση

ACKNOWLEDGEMENTS

I would like to thank my supervisor Dr.Izambo Karali, first of all, for introducing me to the
subject of Uncertainty and for letting me work with different programming languages and
environments as I requested from the start. Also, I am grateful to her for the constant
communication and guidance and for answering even the tiniest questions. With her as a
mentor I learned to study and understand foreign bibliography and scientific articles and
though this process I discovered the majestic world of research. For all the above reasons
I never had any seconds though about my thesis, even when things got rough, and I have
only her to thank for that.

Also, I am thankful to Mr. Alexandros Kaltsounidis, as without his work in his BSc the-
sis, I would not have been able to conduct mine.

CONTENTS

1 INTRODUCTION 15

2 DEMPSTER-SHAFER THEORY 18
2.1 Definition of the theory . 18

2.1.1 Belief Function . 19

2.1.2 Plausibility Function . 19

2.1.2.1 Belief Intervals . 21

2.1.3 Dempster’s rule of combination . 21

2.2 Properties of DST . 23

2.2.1 Combining information of different evidentiary spaces 23

2.2.2 Conducting more general conclusions . 25

2.2.3 Dealing with various types of evidence and conflict 26

2.2.3.1 Discount and Combine rule . 27

2.2.3.2 Disjunctive rule . 28

3 MÖBIUS TRANSFORM 30
3.1 Lattices, distributive lattices and lattice functions 30

3.2 Boolean lattices . 31

3.3 Möbius Transform . 31

3.3.1 Sequence of graphs and computation of the zeta transform 32

3.3.1.1 Graph Theory Formalization . 32

3.3.2 Sequence of graphs and computation of the Möbius transform 35

3.3.2.1 Fast Möbius Transform - Application to the powerset lattice 2Ω 35

3.4 Möbius Transform in Dempster-Shafer theory . 36

4 IMPLEMENTATIONS OF DEMPSTER-SHAFER THEORY TO COMPARE IN
THE THESIS 38

4.1 Constraint Logic Programming Implementation . 38

4.1.1 Constraint Logic Programming and Prolog . 38

4.1.2 Predicates . 39

4.2 Fast Möbius Transforms Implementation . 39

4.2.1 Package ibelief . 39

4.2.1.1 ibelief modules . 40

5 AN APPLICATION OF DEMPSTER-SHAFER THEORY IN RECOMMENDER
SYSTEMS 43

5.1 Recommender Systems . 43

5.2 Recommender System based on Dempster-Shafer theory 43

5.2.1 Some definitions . 44

5.2.2 Basic probability assignment for a feature set . 44

5.3 The Thesis System . 45

5.3.1 Dataset of application . 46

5.3.2 Description . 46

5.3.3 Processing . 47

5.3.3.1 Altering size of the dataset . 47

5.3.3.2 Altering the structure of the dataset . 50

5.3.4 Computation of the basic probability assignment for each feature set 52

5.3.5 Projection of the basic probability assignment of each feature set to items 53

6 USING THE IMPLEMENTATION OF DEMPSTER-SHAFER THEORY IN CON-
STRAINT LOGIC PROGRAMMING FOR THE APPLICATION 57

6.1 Package PyCLP . 57

6.1.1 PyCLP modules . 57

6.1.2 PyCLP particularities . 58

6.2 Computation of the mass joint and belief from dataset 62

6.2.1 Alteration of the initial implementation of Kaltsounidis 62

6.2.2 Code’s structure . 63

6.3 Results . 65

6.3.1 Computing the mass joint . 65

6.3.2 Computing belief . 69

7 COMPARING ECLIPSE’S AND IBELIEF’S IMPLEMENTATIONS 72

7.1 Test cases . 72

7.2 Code’s structure . 72

7.3 Results . 73

7.3.1 Computing the mass joint . 74

7.3.2 Computing belief . 79

8 CONCLUSIONS AND FUTURE WORK 98

ABBREVIATIONS - ACRONYMS 100

ANNEX I 100

A PyCLP Package Installation 101

REFERENCES 104

LIST OF FIGURES

3.1 Illustration of example 3.3.1. 34

3.2 Illustration of example 3.3.1, without identity arrows. 34

3.3 Illustration similar to Figure 3.2, but altered to showcase the Möbius Trans-
form. 36

5.1 Data Flow Diagram of DST Application . 46

5.2 Image of dataset after loading it to a pandas DataFrame 48

6.1 Data Flow Diagram of DST Application using CLP 64

6.2 Dempster’s rule : Plot - time(ns) and number of focal points per mass function 66

6.3 Dempster’s rule : Plot - time(ns) and number of combinations 67

6.4 Dempster’s rule : Plot - time(ns) and Θ size 67

6.5 Plot - time(ns) and number of combinations 69

6.6 Belief of {1} : Plot - time(ns) and Θ size . 70

6.7 Belief of S ∈ 2Θ, |S| = |Θ|/2 : Plot - time(ns) and Θ size 71

6.8 Belief of Θ : Plot - time(ns) and Θ size . 71

7.1 Data Flow Diagram of comparison of the two implementations 73

7.2 Dempster’s rule : Plot - |Θ| = 10, time(ns) and number of combinations . . 74

7.3 Dempster’s rule : Plot - |Θ| = 15, time(ns) and number of combinations . . 75

7.4 Dempster’s rule : Plot - |Θ| = 20, time(ns) and number of combinations . . 76

7.5 Dempster’s rule : Plot - |Θ| = 25, time(ns) and number of combinations . . 77

7.6 Belief : Plot - |Θ| = 10 and number of mass functions=5, time(ns) and set-
length, CSP Implementation . 83

7.7 Belief : Plot - |Θ| = 10 and number of mass functions=5, time(ns) and set-
length, ibelief Implementation . 84

7.8 Belief : Results for |Θ| = 10, number of mass functions=10 and number of
focal points per mass function=10 and different set-lengths 85

7.9 Belief : Plot - |Θ| = 15 and number of mass functions=5, time(ns) and set-
length, CSP Implementation . 88

7.10 Belief : Plot - |Θ| = 15 and number of mass functions=5, time(ns) and set-
length, ibelief Implementation . 89

7.11 Belief : Plot - |Θ| = 20 and number of mass functions=6, time(ns) and set-
length, CSP Implementation . 92

7.12 Belief : Plot - |Θ| = 20 and number of mass functions=6, time(ns) and set-
length, ibelief Implementation . 93

7.13 Belief : Plot - |Θ| = 25 and number of mass functions=6, time(ns) and set-
length . 95

LIST OF TABLES

2.1 Unions of focal points in Example 2.2.2 and the product of their mass values 29

5.1 Dataset example . 54

7.1 Dempster’s rule : Results for |Θ| = 10, number of mass functions∈ {2, 3, · · · , 10}
and number of focal points per mass function ∈ {4, 6, · · · , 14} 75

7.2 Dempster’s rule : Results for |Θ| = 15, number of mass functions∈ {2, 3, · · · , 10}
and number of focal points per mass function ∈ {4, 6, · · · , 14} 76

7.3 Dempster’s rule : Results for |Θ| = 20, number of mass functions∈ {2, 3, · · · , 10}
and number of focal points per mass function ∈ {4, 6, · · · , 14} 77

7.4 Dempster’s rule : Results for |Θ| = 25, number of mass functions∈ {2, 3, · · · , 10}
and number of focal points per mass function ∈ {4, 6, · · · , 14} 78

7.5 Belief : Results for |Θ| = 10, number of mass functions ∈ {2, 6, 10} and
number of focal points per mass function ∈ {6, 10, 14} and different set-
lengths, CSP Implementation . 81

7.6 Belief : Results for |Θ| = 10, number of mass functions ∈ {2, 6, 10} and
number of focal points per mass function ∈ {6, 10, 14} and different set-
lengths, ibelief Implementation . 82

7.7 Belief : Results for |Θ| = 15, number of mass functions ∈ {2, 6, 10} and
number of focal points per mass function ∈ {6, 10, 14} and different set-
lengths, CSP Implementation . 86

7.8 Belief : Results for |Θ| = 15, number of mass functions ∈ {2, 6, 10} and
number of focal points per mass function ∈ {6, 10, 14} and different set-
lengths, ibelief Implementation . 87

7.9 Belief : Results for |Θ| = 20, number of mass functions ∈ {2, 6, 10} and
number of focal points per mass function ∈ {6, 10, 14} and different set-
lengths, CSP Implementation . 90

7.10 Belief : Results for |Θ| = 20, number of mass functions ∈ {2, 6, 10} and
number of focal points per mass function ∈ {6, 10, 14} and different set-
lengths, ibelief Implementation . 91

7.11 Belief : Results for |Θ| = 25, number of mass functions ∈ {2, 6, 10} and
number of focal points per mass function ∈ {6, 10, 14} and different set-
lengths, CSP Implementation . 94

7.12 Belief : Results for |Θ| = 25, number of mass functions ∈ {2, 6, 10} and
number of focal points per mass function ∈ {6, 10, 14} and different set-
lengths, ibelief Implementation . 95

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

1. INTRODUCTION

In the recent years, we’ve noticed a thrive in fields of Computer Science such as Artifi-
cial Intelligence (AI), Machine Learning (ML) and Data Science. The intriguing part is that
most of the algorithms used in those fields where implemented a few decades ago. The
reason why there is this burst of attention regarding them is because nowadays we have
the data and the computational power. Essentially, this means that now we can collect
many data and information and process it in order to come to certain conclusions.

This newly obtained amount of information has lead to the growth of the fields ”Knowl-
edge Handling” and ”Knowledge Representation”, where experts care to receive knowl-
edge, understand it and use it. However, knowledge is not always absolute and easily
obtainable. So, in many cases there is Uncertainty involved, which can occur from the
random behavior of a system, the lack of knowledge about a system or the unreliable
sources of information. Understandably, this has been a trouble to scientists for many
years and since uncertainty cannot be overtaken, many theories for handling it have been
developed. These theories suggest different approaches to reasoning under uncertainty.
A pretty interesting one was framed theoretically by Glenn Shafer and mathematically
defined by Arthur P. Dempster and is called Dempster-Shafer [30, 31, 10]. Dempster-
Shafer theory(DST), evidence theory or theory of belief functions is a generalization of
the Bayesian theory of subjective probability. With this method, if there is a substantial
amount of questions related to an initial question, we can find a satisfying Bayesian anal-
ogy.

Although Dempster-Shafer theory has some similarities with Probability Theory it should
not be confused with it. The belief functions used in Dempster-Shafer use probabilities
in order to achieve a degree of belief. Sometimes these degrees of belief have similar
properties to probabilities, but that does not always happen. The most significant differ-
ence is that Dempster-Shafer theory allows a source to assign credit to a group of states,
whereas Bayesian theory can be used to represent the belief in only one state. The mass
function, that will be explained later on, is the means to do the above assignment of belief
and thus cannot be equated with a classical probability in general.

Dempster-Shafer theory deals well with uncertainty which we can either describe as in-
sufficient, incomplete or controversial knowledge of some fact or as lack of information on
which to evaluate a probability. As we mentioned already, uncertainty and randomness
can be modeled by assigning degrees of belief to groups of states, but classic Probability
Theory would be a poor choice in some type of problems. For example, given a fact (ev-
idence) A = ”Covid19 will be a non − existent disease in the year 2030” and P (A) = 0.7,
in Probability Theory someone would say (without any doubt) that the complement fact
of A, A = ”Covid19 will be an existent disease in the year 2030” has the probability of
P (A) = 0.3 happening, as it is well known that P (A) = 1− P (A). But, in some situations
knowing about A does not give us straightforward knowledge about the exact opposite

T. Boura 15

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

fact and vice versa and, thus, these problems cannot be correctly modeled using proba-
bilities. For this reason, classic Probability Theory is not always chosen for representing
knowledge when there is uncertainty involved.

At this point, it must be noted that probabilities described in the classical way are suitable
for problems where there is Aleatory Uncertainty involved, which is the type of uncertainty
that results from the fact that a system can behave in random ways. It has been observed
that when probabilities are used to characterized Subjective Uncertainty, which is the type
of uncertainty that results from the lack of knowledge about a system and is a property
of the analysts performing the analysis, a great amount of times the characterization is
poor. Subjective Uncertainty is involved in many problems related to Artificial Intelligence
and Machine Learning, so Dempster-Shafer theory seems to be ideal for those kind of
problems. Of course, before applying the DS method to any AI problem, one should take
into consideration if that AI application is based on the frequency of the data’s appearance
or on some subjective belief.

Dempster-Shafer theory utilizes a mathematical entity calledmass function in order to as-
sign confidence about a question. From these mass functions one can obtain the amount
of certainty, or as called belief for a question related to the events in our system. Also we
are able to combine these assignments, through Dempster’s rule of combination in order
to produce a unique confidence assignment for the system. However, the computation of
Dempster’s rule is a #P-complete problem and cannot be performed in an acceptable time
for a large amount of data. These definitions and more characteristics of DST are studied
in Chapter 2.

Because Dempster’s rule has exponential computational complexity, a lot of research has
been done in order to reduce this complexity. Some algorithms that prove to do so, are
algorithms based on Möbius Transforms. In Chapter 3 we discuss these algorithms and
the theory behind them.

In Chapter 4 we introduce two implementations of the DST, one based on Möbius Trans-
forms, as we studied their relation to the theory, and a second one based on CLP. The
first one was implemented by CRAN and the second one by Alexandros Kaltsounidis in
his BSc Thesis [16]. In later chapters we will be comparing them in terms of computational
time and other characteristics of the data.

Dempster-Shafer theory seems ideal for modeling real-life situations and problems. For
that reason, many applications of DST can be found in bibliography. In Chapter 5 we study
an application to Recommender Systems [33]. In Chapter 6 we use a dataset to measure
its performance using the CLP implementation when computing the combined mass func-
tions and the belief of some sets. The results are promising and the computations where
completed in a logical time frame.

Continuing to Chapter 7 of this dissertation, we compare the two implementations pre-

T. Boura 16

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

sented in Chapter 4 on randomly generated test cases. In retrospect, the implementation
using constraints completes the computation of Dempster rule in acceptable time when the
total number of combinations is small, whereas the implementation using Möbius Trans-
forms is better when the possible number of events in our system is relatively small. For
the computation of the belief function such comparison could not be made, for reasons
that will be explained.

Finally, in Chapter 8 we provide a general conclusion of our work in this thesis and mention
ideas to expand our research.

T. Boura 17

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

2. DEMPSTER-SHAFER THEORY

Dempster-Shafer theory (DST) [30, 31, 10] is a framework designed for reasoning un-
der uncertainty, that allows us to combine evidence from different independent sources.
Through the mass function or basic probability assignment (bpa), degrees of confidence
are assigned to an event. These mass functions can also be combined with Dempster’s
rule of combination in order to produce a combined bpa. All the above will be studied in
this chapter.

2.1 Definition of the theory

Below, the DS theory will be presented using the Axiomatic Approach.

As U (Universe or Θ) is denoted the set containing all possible states of a system un-
der consideration or, more intuitively, all possible outcomes of an event. We are explicitly
interested in the powerset of U : 2U that includes all subsets of U thus, all combinations of
all possible outcomes, because we are looking for evidence to be associated with multiple
possible events in order to accomplish a higher level of abstraction.

The most fundamental function for assigning degrees of belief to a set of hypotheses
h such as h ∈ 2U is the mass function m (known as bpa).

Before the function m is formally defined, it should be noted that DS is suitable when
there is no objective way of assigning belief values to the powerset. Here is an example
to make this statement understandable:

Example 2.1.1. Imagine a witness to a robbery being called into the police station to
identify the robber. The officers ask the witness what was the colour of the robber’s hair,
but because it was dark the witness cannot give an answer with certainty. Consequently,
they grant the belief of A = {black | The robber has black hair} the value m(A) = 0.6,
B = {blonde | The robber has blonde hair} the value m(B) = 0.1 and C = {black ∨
blonde | The robber has either black or blonde hair} the value m(C) = 0.3. These values
are representative of the independent belief of this witness, which means that another
independent witness may have assigned different values to each hypotheses.

That is a problem that classical probability theory would model poorly. As G.Shafer quoted
in [31]: ”The theory of belief functions provides one way to use mathematical probability
in subjective judgement” and as mentioned before, alternatives to Probability Theory are
preferred when the system suffers from Subjective Uncertainty.

Also, assigning a belief value to a set A ∈ 2U does not provide any information about

T. Boura 18

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

the degree of belief of subsets of A. Going back to the Example 2.1.1 we notice that al-
though A ⊂ C and B ⊂ C, m(C) > m(B) but m(C) < m(A). So, the mass function of a
given set A, expresses the proportion of all relevant and available evidence that supports
the claim that a particular element of U belongs to A but to no particular subset of A.

Now, we formally define as mass function m a function m : 2U → [0, 1] with the following
properties:

1. m(∅) = 0

2.
∑

A∈2U m(A) = 1

Note that in Example 2.1.1: m(∅) = 0 and
∑

X∈2U m(X) = m(∅)+m(A)+m(B)+m(C) = 1.

The bpa is a useful means for computing the lower (belief) and the upper bound (plausi-
bility) of a probability interval for the set of interest, as defined later on.

It should be noted that every A ∈ 2U that has non-zero bpa is called a focal element.

2.1.1 Belief Function

The belief of a set A ∈ 2U , denoted as bel(A) is the total amount of certainty that the event
A has happened and is defined as follows:

bel(A) =
∑

B⊆A m(B)

From the properties of the mass function we can easily presume that:

bel(∅) = 0 and bel(U) = 1

Since belief function defines the lower bound of a probability of an event A:

bel(A) ≤ P (A) , where P (A) is the probability of the set A in the classical probabilistic
definition. (1)

2.1.2 Plausibility Function

The belief of a set A ∈ 2U , denoted as pl(A) is the total amount of certainty that not the
event A has happened and is defined as follows:

pl(A) = bel(U)− bel(A)
bel(U) = 1
=====⇒ pl(A) = 1− bel(A)

Also, since for A,B ∈ 2U , A ⊆ B iff A ∩B = ∅ ⇒ bel(A) = 1− pl(A), because

T. Boura 19

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

bel(A) =
∑

B⊆Am(B) =
∑

B∩A=∅m(B) = 1−
∑

B∩A ̸=∅m(B) = 1− pl(A).

From the properties of the mass function and belief function we can easily presume that:

pl(∅) = 1− bel(U) = 0 and pl(U) = 1− bel(∅) = 1

Theorem 2.1.1. The plausibility of a set A can be computed as pl(A) =∑
B∩A ̸=∅m(B), ∀A ⊆ U .

Proof. As defined, ∀A ⊆ U , pl(A) = bel(U) − bel(A) =
∑

X⊆U m(X) −
∑

Y⊆A m(Y) (2),
which means that from the masses of all subsets of U we subtract the masses of the
subsets of A, so now we have the masses of the subsets of U that intersect with A ⇒ (2)
=

∑
B∩A ̸=∅m(B).

Since plausibility function defines the upper bound of a probability of an event A:

pl(A) ≥ P (A) , where P (A) is the probability of the set A in the classical probabilistic
definition. (3)

Conclusively,

(1),(3)
===⇒ bel(A) ≤ P (A) ≤ pl(A), ∀A ⊆ U (4)

In (4) bel and pl are considered upper and lower probabilities as introduced by Dempster
in [10].

When bel(A) = pl(A) all probabilities P (A) are uniquely determined ∀A ⊆ U , which corre-
sponds to classical probability.

However, as noted in [31] the degrees of belief given by belief and plausibility functions
should not be interpreted as lower or higher bounds respectively on some unknown true
probability. If we wanted to define a probability-bound interpretation of belief and plausibil-
ity functions, then we would show interest only in groups of belief and plausibility functions
whose degrees of belief, when interpreted as probability bounds, can be satisfied simul-
taneously.

After seeing (4) we understand that the model of DST is designed to cope with varying
levels of precision based on the current information without any further assumptions.

T. Boura 20

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

Let’s compute the bel and pl function for Example 2.1.1 for A = {black}, A ∈ 2{black,blonde} :

bel(A) =
∑

B⊆Am(B) = m(∅) +m(black) = 0 + 0.6 = 0.6
pl(A) =

∑
B∩A ̸=∅m(B) = m(∅) +m(black) +m(black ∨ blonde)

= 0 + 0.6 + 0.3 = 0.9.

So, the probability of the robber’s hair being black is 0.6 ≤ P (black) ≤ 0.9.

2.1.2.1 Belief Intervals

As defined before P (A), that is the probability of a set A in the classical probabilistic
definition, belongs to the bounded interval [bel(A), pl(A)]. Since this interval is the indicator
of the probability’s value, it should be studied in order to determine the possibility of the
event A occurring. The width w of the interval is

w = |pl(A)− bel(A)| = |1− bel(A)− bel(A)| = 1− bel(A)− bel(A).

In the Bayesian situation we know that bel(A) + bel(A) = 1 ⇒ w = 0.
Since in DST bel(A) + bel(A) ≤

∑
X∈2U m(X) = 1 ⇒ w > 0.

The width of a belief interval (w) can also be interpreted as the amount of uncertainty
with respect to a hypothesis, given the evidence. More specifically, w is belief that is com-
mitted by the evidence to neither the hypothesis nor the negation of the hypothesis [13].

Even though w is a good indicator, the amount of uncertainty is not only defined by the
width of the belief interval, but also by the values of pl(A) and bel(A) respectively. If pl(A)
and bel(A) are evaluated low, we are quite certain A that the event will not happen.

That being said, only if w’s value is close to 0 and both values of belief and plausibility
are close to 1, we can be certain that the event A will happen. Consequently, if w’s value
is close to 0 and both values of belief and plausibility are close to 0, we can be certain that
the event A will happen.

2.1.3 Dempster’s rule of combination

Continuing with the Example 2.1.1, let’s suppose there is another witness to the rob-
bery and the police asks them the same question about the robber’s hair. They, then,
grant the belief of A = {black | The robber has black hair} the value m2(A) = 0.7 and
B = {blonde | The robber has blonde hair} the value m2(B) = 0.3. This means that over
the same Universe {black, blonde} a second mass functionm2 : 2

{black,blonde} → [0, 1] is de-
fined by the second witness. The second mass functionm2 is now needed to be combined
with the mass functionm defined by the first witness in order to come to a conclusion about

T. Boura 21

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

the robber’s hair colour. It is important to notice that the opinion of the second witness is
independent as the second witness has not heard the opinion of the first one and vice
versa. Dempster’s rule of combination is used for combining degrees of belief that are
based on independent items of evidence.

For the time being, we assume that all sources of information are reliable (Dempster’s
rule is symmetric).

The combination of these two mass functions is performed by Dempster’s rule of com-
bination and is denoted by the operator ⊕. The combination of two mass functionsm1,m2

from the same Universe U is declared as m1,2 ≡ m1 ⊕ m2 and is called joint mass. More
specifically:

1. m1,2(∅) = 0

2. m1,2(A) =
1

1−K

∑
B∩C=A m1(B) · m2(C), ∀A ⊆ U,A ̸= ∅ where K =

∑
B∩C=∅m1(B) ·

m2(C)

This rule strongly emphasizes the agreement between multiple sources and ignores all
the conflicting evidence through the normalization constant K.

Given m0, m1, m2 and m3 defined over the same Universe.

Dempster’s Rule of combination is relative to the following algebraic properties:

1. Commutativity : m1 ⊕ m2 = m2 ⊕ m1

2. Associativity : (m1 ⊕ m2) ⊕ m3 = m1 ⊕ (m2 ⊕ m3)

3. Neutral element: m0(U) = 1, m0 ⊕m1 = m1.

The third holds because m0(U) = 1 means that we don’t know exactly what is the degree
of belief of each subset of U , and thus no further information is provided.

Dempster’s Rule of combination is not relative to:

1. Idempotence : m1 ⊕ m1 ̸= m1

In order to completely understand Dempster’s rule let’s consider the following example:

Example 2.1.2. Ann and Bill are a couple and are considering buying a pet. They de-
cided that they will choose as pet one of the: cat(c), dog(d), fish(f), horse(h), iguana(i),
parrot(p), so U = {c, d, f, h, i, p}. Bill is more eager to buy a parrot and he tries to compute
the range of the probability of getting a parrot, P ({p}). He gathers some evidence:

The family lives in a farm: m1({c, d, h, p}) = 0.5 and m1(U) = 0.5.

T. Boura 22

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

Their child is allergic to pet hair: m2({f, i, p}) = 0.9 and m2(U) = 0.1.

They are often out of town for the weekend: m3({c, f}) = 0.8 and m3(U) = 0.2.

Firstly, we’ll be computing K1 for m1,2, K =
∑

B∩C=∅m1(B) ·m2(C) = 0. Then,

m1,2({p}) = 0.5× 0.9 = 0.45
m1,2({c, d, h, p}) = 0.5× 0.1 = 0.05
m1,2({f, i, p}) = 0.5× 0.9 = 0.45
m1,2(U) = 0.5× 0.1 = 0.05

Also, K2 for m1,2,3, K =
∑

B∩C=∅m1,2(B) ·m3(C) = m1,2({p}) ·m3({c, f}) = 0.36. Then,

m1,2,3(∅) = 0
m1,2,3({c}) = 0.0625
m1,2,3({f}) = 0.5625
m1,2,3({c, f}) = 0.0625
m1,2,3({p}) = 0.140625
m1,2,3({c, d, h, p}) = 0.015625
m1,2,3({f, i, p}) = 0.140625
m1,2,3(U) = 0.015625

Now, we compute bel and pl functions as follows,

bel({p}) =
∑

B⊆{p}m1,2,3(B) = 0.140625 and pl({p}) =
∑

B∩{p}≠∅m1,2,3(B) = 0.3125

and so, 0.140625 ≤ P ({p}) ≤ 0.3125.

2.2 Properties of DST

In this section will be showcased some not straightforward properties of the theory.

2.2.1 Combining information of different evidentiary spaces

In order to proceed we should define the term compatibility relationC between two spaces,
S and T , that characterizes possibilistic relationships between the elements of two spaces,
as stated in [35]: ”An element s ∈ S is compatible with an element t ∈ T if s is an answer
to S and t is an answer to T at the same time, or as we will from now on symbolize, sCt.
The granule of s is the set of all elements in T that are compatible with s is symbolized as
G(s) = {t | t ∈ T, sCt}. ”

So, knowing a probability distribution of space S and a compatibility relation C between S

T. Boura 23

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

and T , one can deduce the probability distribution of space T which is the a basic proba-
bility assignment of T denoted as:

m(A) =

∑
G(si)=A

p(si)

1−
∑

G(si)=∅
p(si)

where A ∈ 2T (5)

The above result is very useful because it gives us the opportunity to combine probabilities
as they are defined by the classical way (probability distribution of space S) with a bpa as
defined by the DS theory. It, also, comes in handy in real life applications as it is more likely
to have indirect knowledge about one space of evidence which means having information
about another space of evidence and how it is related to the one we are interested in.
Let’s provide an example in order for the reader to strengthen their understanding of this
paragraph:

Example 2.2.1. On a not so busy street of Athens a robbery of a jewelry store has oc-
curred and the only witness is the owner of the shop, who called the police immediately
after the incident. The police’s response was quick and four suspects were arrested: Ann,
Bill, Conor and Dolly, so the suspect’s Universe is U = {Ann,Bill, Conor,Dolly}. Out of
the four suspects Ann and Dolly identify as women and Bill and Conor identify as men.
Also, Ann and Bill are less than 180 cm tall and Conor and Dolly have height equal to or
more than 180 cm. The robber was wearing a mask so their only feature that could be
used for suspect elimination is their height. The owner’s answer when they were asked
about the thief’s height was: ”I am 80% sure that their height was equal to or more than
180 cm”.

Using this information and defining:

C1 := one person′s height, as compatibility relation

S1 := {height < 180 cm, height ≥ 180 cm} and T := U

p(height equal to or greater than 180 cm) = 0.8, from the owner’s interview,

the inducted bpa m1 is:

m1({Conor,Dolly}) = 0.8 and m1(U) = 0.2

because for s := height equal to or greater than 180 cm, s ∈ S1 the granule G1(s1) =
({Conor,Dolly}) and applying (5) we have :

m1({Conor,Dolly}) = 0.8
1−0

= 0.8

T. Boura 24

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

Due to the fact that there are no other witnesses and none of the security cameras has
recorded any useful information, the investigators decide to use some statistical facts in
their possession. It is true that in this area 60% of the robberies have been conducted by
men. Using the above logic and defining:

C2 := one person′s sex, as compatibility relation

S2 := {woman,man} and T := U

p(man) = 0.6, from the statistical fact,

the inducted bpa m2 is:

m2({Bill, Conor}) = 0.6 and m2(U) = 0.4

Using Dempster’s rule, the combined mass function m1,2 is:

m1,2({Conor}) = 0.48 , m1,2({Bill, Conor}) = 0.12 , m1,2({Conor,Dolly}) = 0.32 and
m1,2(U) = 0.08

By computing the belief and plausibility for each suspect, the person that is most likely
to have conducted the crime is Conor, with a probability of 0.48 ≤ P ({Conor}) ≤ 1.0.

So, in the above example, the number one suspect was found because of having a prob-
ability distribution about a suspect’s characteristic from an independent source combined
with statistical information about another characteristic of the suspect, which proves that
DS handles real life applications with ease and can lead to useful information.

2.2.2 Conducting more general conclusions

Let’s assume that, given the Example 2.2.1, the police has now been informed that Ann,
Bill and Dolly live in the same building. Having that new information the authorities are
considering putting an undercover officer in front of the building in order to observe the
moves of the three neighbours. Due to the fact that there are not many officers as-
signed to the case, the head-officer uses belief and plausibility definitions in order to see
how possible it is that the robbery was involving one of the three suspects somehow, as
they want to be sure that putting a guard will benefit the case. Therefore they compute:
bel({Ann,Bill,Dolly}) = 0 and pl({Ann,Bill,Dolly}) = 0.52, which indicates that the
probability of Ann, Bill or Dolly having conducted the crime ranges from 0 to 0.52, so, al-
though not probable, it is a possibility worth investigating.

T. Boura 25

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

In this case DS was able to give us a more general information that we needed involving
a group, a set, and not a single element. Thus, DS is optimal when different levels of
abstraction have to be examined in order to come to a conclusion.

2.2.3 Dealing with various types of evidence and conflict

When gathering information from various independent sources, the type of evidence can
be [29]:

1. Consonant: Every independent source gives us an additional information, so informa-
tion is obtained over time and the size of evidentiary set is altered.

2. Consistent: There is at least one piece of information that is believed to be true by all
independent sources.

3. Arbitrary: There is no piece of information supported by all sources, but some sources
believe in the same evidence.

4. Disjoint: All sources give different information. In this case we have conflicting evi-
dence.

The above types of evidence cannot be handled by traditional probability without pro-
ceeding to further assumptions. DS Theory, on the other hand, is able to combine many
kinds of evidence. There are only two problems:

The first one is that DST with Dempster’s rule as rule of combination cannot deal with
Disjoint evidence because, theoretically, the information the evidentiary set provides us
is undefined and, practically, because the value of K would be equal to 1 and, for that
reason, the value of the combined mass function would be undefined. The second prob-
lem is that DST with Dempster’s rule as rule of combination may produce some unwanted
results when one deals with high conflict data.

Let’s take a look at this example:

Example 2.2.2. Let’s suppose the two spouses Ann and Bill go to a wine tasting event.
They are put into different rooms so that they won’t be able to communicate with each
other at all, in order for them to form their own independent opinions. The budget is very
low and, thus, they are only given one glass of the same wine. After the tasting, a friend
of Ann and Bill’s named Conor asks them what was the kind of the wine they drank. They
have to chose between three grape types: U = {Merlot, Grenache, Cabernet Sauvignon}.
According to Ann mA({Merlot}) = 0.98 and mA({Cabernet Sauvignon}) = 0.02 and ac-
cording to Bill mB({Grenache}) = 0.99 and mB({Cabernet Sauvignon}) = 0.01. No doubt
the opinions of the two spouses are conflicting, so Conor decides to combine the informa-
tion using Dempster’s rule:

T. Boura 26

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

mA,B({Merlot}) = 1
1−0.9998

· 0 = 0

mA,B({Grenache}) = 1
1−0.9998

· 0 = 0

mA,B({Cabernet Sauvignon}) = 1
1−0.9998

· (0.01 · 0.02) = 1

The result of the combination is that the wine’s kind was {Cabernet Sauvignon}, even
though both Ann and Bill had serious doubts about that. This happens, because Demp-
ster’s rule treats every opinion as equal and assumes all sources are reliable. Conflicting
items of evidence erode each other.

However, through the years many have suggested alternative combination rules in or-
der to deal with conflicting evidence and unreliable sources of information. All of them
suggest a way of treating conflicting data such as giving different degrees of trust to a
belief function or treating conflicting evidence as uncertainty etc. Some of these combi-
nation rules are Discount and Combine rule, Disjunctive Polling Rule, Yager’s rule [34],
Inagaki’s rule [15] and a few more with equal importance. In [29] many of them are pre-
sented shortly. In this section we will review two of the above: Discount and Combine rule
and Disjunctive Polling Rule.

2.2.3.1 Discount and Combine rule

This rule is mentioned as it is very intuitive and is an implementation of one’s first thought
when considering giving significance to an opinion. When the sources of evidence are
not completely reliable, this rule applies a discounting process based on source-reliability
and then combines the newly defined bpa’s. The goal of discounting is to reduce global
conflict before combination. The discounting operation may be defined as:

m(A) =

 α×m(A), ∀A ⊂ U

1− α + α×m(U), if A = U

where, α ∈ [0, 1] is the reliability degree of mass function m [37].

If α = 1, the sources and thus the evidence is completely reliable and the mass function
will not change, but if α = 0, the evidence is totally unreliable and we have no knowledge
about our evidentiary space, since m(U) = 1.

Prior to starting the discounting process one should evaluate the reliability of each source.
It can be assumed that the conflict is derived from the unreliability of the sources and,
therefore, the source reliability estimation is linked to some extent to the amount of con-
flict between different sources. So, one suggestion is to compute the relative reliability of
the source after the degree of conflict is computed. For more details the reader may refer
to [37].

T. Boura 27

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

2.2.3.2 Disjunctive rule

In order to introduce to the reader the Disjunctive rule of combination we are going to
review shortly the Transferable Belief Model (TBM). The TBM was introduced by Smets
and Kennes in [19] as a subjectivist interpretation of DST. The TBM is a framework ideal
for representing and manipulating aleatory and epistemic uncertainties. It is based on two
levels: the credal level, where available pieces of information are represented by belief
functions, and the pignistic or decision level, where belief functions are transformed into
probability measures. In contrast to the original evidence theory the TBM propagates the
open world assumption suggesting that all possible outcomes are not known. Under the
open world assumption Dempster’s rule of combination is adapted so there is no normal-
ization. Also, in TMB is introduced a new combination rule: the Disjunctive rule as one
can thoroughly read in [32].

This combination rule is more robust than Dempster’s rule when conflicting evidence is
involved, and its use is appropriate when the conflict is originated from poor reliability of
some of the sources. It is similar to Dempster’s rule, but instead of intersections it com-
bines unions of bpa’s as follows :

Disjunctive rule of combination: [11, 12, 32]

m1,2D(A) =
∑

B∪C=A m1(B) ·m2(C), ∀A ⊆ U , A ̸= ∅

The disjunctive rule can be used if only we assume that at least one of the sources is
reliable (consistent evidence), but we cannot know which. Note that by assuming at least
one source is reliable, we are weakening the assumption that was made by Dempster’s
rule. Also, just like in Dempster’s rule the assumption is that the sources are independent
and, thus, uncorrelated.

Because the union B ∪ C is empty only if both B and C are empty, there is no conflict
resulting from the disjunctive rule of combination and therefore no need for normaliza-
tion [25]. By definition, this rule is applied in order to combine information from different
(possibly unreliable) sources, so when we come across empty unions it means that the
information is contradictory and, thus, no attention is paid since we know that at least one
source is reliable. Actually, when applying this rule we consider having an Open World,
which means that our U is not exhaustive and for that matter the value of the uncertainty
regarding U is found in the empty unions.

Now, we will use the data from the Example 2.2.2 and applying the Disjunctive rule.

In order for the reader to understand, we will use the Table 2.1, where the first column
has the focal points of the mass function mA and the value assigned to them, the first row
has the focal points of the mass function mB and their value and in each of the remaining
cells the union of the focal points is presented as well as the product of their mass values.

T. Boura 28

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

Note that a similar table can be created when applying Dempster’s rule. This approach
was not preferred when Dempster’s rule was presented as the goal then was to focus on
the algebraic computation itself.

Table 2.1: Unions of focal points in Example 2.2.2 and the product of their mass values

mA

mB
{Grenache} / 0.99 {Cabernet S.} / 0.01

{Merlot} {Grenache,Merlot} {Cabernet S.,Merlot}

/ 0.98 / 0.9702 / 0.0098

{Cabernet S.} {Grenache, Cabernet S.} {Cabernet S.}

/ 0.02 / 0.0198 / 0.0002

One can easily observe that the event more likely happening after applying the Disjunctive
rule is the event {Grenache,Merlot}, since mA,BD

({Grenache,Merlot}) = 0.9702.

This means that based on the information given by Ann and Bill, the wine’s kind is most
likely to be either Grenache or Merlot. That outcome is reasonable as Ann was quite sure
that the wine is Merlot and Bill was almost certain that the wine was Grenache. Given the
fact that one of their opinion’s is reliable (but we cannot know who), it is only correct to
assume that the wine’s kind is the first choice of either Ann or Bill.

T. Boura 29

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

3. MÖBIUS TRANSFORM

Dempster-Shafer theory provides a very good modeling of the data, but the computational
cost of Dempster’s Combination Rule is significant as the possible intersection computa-
tions can reach the amount of 2|U|+1 . Because of this fact, a lot research has been done in
order to reduce the complexity of the transformations used in the Combination Rule. The
basic two approaches are (1) powerset-based, (2) evidence-based [8]. In this thesis, of
our concern will be the powerset-based approach that introduces algorithms whose imple-
mentation is based on the constitution of the powerset of U , 2U and especially the Möbius
Transform family. Of course, it is worth bearing in mind that most of the time approximation
methods are used, e.g. Monte Carlo in order to achieve a lower computational cost.

3.1 Lattices, distributive lattices and lattice functions

Let (P,≤) be a partially ordered set, where≤ is the satisfiable relation. Let S be a subset of
P . The greatest element of P , that is less than all the elements of S, is called the infimum
of S (noted

∧
S or ⊥), if it is unique. The least element of P , that is greater than all the

elements of S, is called the supremum of S(noted
∨
S or ⊤), if it is unique. If S = {x, y},

we may represent the supremum with the binary operator ∨ such that x ∨ y and the in-
fimum with the binary operator ∧ such that x ∧ y [21]. When (2Ω,⊆) is considered, the
infimum operator ∧ is the intersection operator ∩, while the supremum operator ∨ is the
union operator ∪. [7]

If any set S such that S ∈ P and S ̸= ∅ has a supremum, we say that P is an upper
semilattice. If any set S such that S ∈ P and S ̸= ∅ has a infimum, we say that P is a
lower semilattice. When P is both upper and lower semilattice, we say that P is a lattice.
From now on we will be noting the lattices as L. In (2Ω,⊆), any S ∈ 2Ω such that S ̸= ∅
has an intersection and a union in 2Ω. They respectively represent the common elements
of the sets in S and the cumulative elements of all the sets in S. For that reason, 2Ω is a
lattice.

Definition: We say that x covers y in a lattice (L,≤), if x ̸= y and y ≤ x and there ∄ z ∈
L \ {x, y}, such that y ≤ z ≤ x.

An element j ∈ L is join-irreducible if it cannot be expressed as a supremum of other
elements or, equally, if it covers only one element in L. The set of all join-irreducible ele-
ments of L are denoted by J(L). In (2Ω,⊆), the join-irreducible elements are the singletons
{ω}, where ω ∈ Ω.

If ∀x, y, z ∈ L, (z ∨ y) ∧ (z ∨ x) = z ∧ (y ∨ x), the L is distributive.
In the powerset lattice 2Ω, for any sets ω1, ω2, ω3 ∈ 2Ω it is true that (ω1 ∩ ω2) ∪ (ω1 ∩ ω3) =
ω1 ∩ (ω2 ∪ ω3). Thus, the lattice 2Ω is a distributive lattice.

T. Boura 30

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

It is suggested that N := {1, . . . , n} is a finite set which can be thought as the set of
players, also voters, criteria, states of nature etc. We consider finite distributive lattices
(L1,≤1), . . . , (Ln,≤n) and their product L := L1 × · · · × Ln endowed with the product
order ≤ as L is also a distributive lattice. Elements x ∈ L can be written in their vector
form (x1 , . . . , xn) . The elements in J(L) are of the form (⊥1 , . . . , ⊥i−1 , ji , ⊥i+1 , . . . ,
⊥n), for some i and some join-irreducible element ji ∈ J(L).

Lattice functions are real-valued mappings defined over product lattices as defined above.
Lattice functions which vanish at ⊥ are called lattice games (or games) on (L,≤). We
denote by RL the set of lattice functions over L, and by G(L) the subspace of games.
Each lattice (Li,≤i)may be different, and represents the (partially) ordered set of actions,
choices, levels of participation of player i in the game.

3.2 Boolean lattices

In a lattice (L,≤) with supremum ⊤L = sup(L) = s and infimum ⊥ L = inf(L) = i, an
element x ∈ L is said to have a complement x∗ ∈ L, if x ∨ x∗ = i and if x ∧ x∗ = s. For
example, if L is a powerset 2U, then x∗ = xc = E\x. L is called complemented, if ∀x ∈ L
exists a complement x∗ [23].

A Boolean lattice is defined as any lattice that is complemented and distributive. In a
Boolean lattice B, the complement of each element is unique and involutive x = (x∗)∗.
The mapping x → x∗ is a negation (i.e., an involutive dual automorphism) on B. Thus,
any Boolean lattice is self-dual. A Boolean lattice can be also called a Boolean algebra.

For each x, y ∈ B, the following additional properties hold:

x ∨ x∗ = i and x ∧ x∗ = s,

(x ∨ y)∗ = x∗ ∧ y∗ and (x ∧ y)∗ = x∗ ∨ y∗

The powerset (2U ,⊆) containing all subsets of a set U ordered by inclusion is a lattice, as
we showcased previously. This lattice is also complemented and distributive and, thus, is
a Boolean lattice. It can be proven that the cardinality of a finite Boolean lattice must be
of the form 2N , where N ≥ 1 is the number of elements.

3.3 Möbius Transform

For any partially ordered set (P,≤), the Möbius Transform of a mapping g : P → R is f ,
the unique solution to the equation (that is the Möbius inversion formula) [27]:

f(y) =
∑

x≤y g(x)µ(x, y) , ∀y ∈ P

T. Boura 31

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

where µ(x, y) is the Möbius function of (P,≤) and is defined in its recursive form as follows
[8] :

∀x, y ∈ P µ(x, y) =

 1, if x = y

−
∑

x<t≤y µ(t, y), otherwise

It should be noted that the mapping g : P → R of a function f : P → R is called zeta
transform and is defined:

∀y ∈ P, g(y) =
∑

y≤x f(y).

In other words the Möbius transform undoes the zeta transform it is referring to.

As mentioned in [17], if (P,⊆) is a Boolean lattice 2N , endowed with inclusion, µ(A,B) =
(−1)|B|−|A|, ∀A,B ∈ P such as A ⊆ B.

In the next two sections we will summarize the contents of [7] regarding the topic of the
sequence of graphs that compute the zeta and Möbius transform.

3.3.1 Sequence of graphs and computation of the zeta transform

The goal is to minimize the number of operations when computing the zeta transform g(y)
for some y ∈ P , where P is a partially ordered set. The main idea is the following: instead
of computing g(y) alone, one can compute g(y), ∀y ∈ P and reuse the partial sums that
appear. It is easy to notice that we can recursively built partial sums in order to get g(y)
by summing the values on some elements {x ∈ P | x ≤ y} as for each y ∈ P if ∃ z ∈ P
such that y ≤ z, then

g(z) = g(y) +
∑

x≤z
x≰y

f(x) [7]

Basically, what we would like to achieve is to define an ordered sequence of transforma-
tions computing g from f .

3.3.1.1 Graph Theory Formalization

We denote as G≤ = (P,E≤) a directed acyclic graph whose nodes match P and every
arrow is directed by ≤. The set of arrows is referred as E≤ = {(x, y) ∈ P 2 | x ≤ y}.

We, now, present the operation f(x) + ·, where the dot(·) represents the current state
of the sum associate with y. This operation in G≤, and more specifically the f(·) + ·, de-
scribes the transformation of 0 to g. More briefly, we will initialize our algorithm with values

T. Boura 32

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

through f instead of 0 and exploit the combination of G< and +. From now on, we will say
that the transformation (G<, f,+) computes the zeta transform of f in (P,≤). Redefining
our initial goal: we want to minimize the total number of arrows to follow in order to com-
pute every g(y) and specifically, we are aiming to find an ordered sequence of graphs that
can compute the zeta transform with less arrows in total than (G<, f,+).

In order to work towards achieving our goal, we define as IP = {(x, y) ∈ P 2 | x = y}
the set containing all identity arrows and (Hi)i∈{1,··· ,n} be a sequence of n directed acyclic
graphs Hi = (P,Ei). Let y ∈ P be initialized with f(y). What we want is to find a graph-
sequence (Hi)i∈{1,··· ,n} equal to the arrows of G<. The notation for transforming f to H1

through the arrows of E1, then H1 to H2 through the arrows of E2 etc. until Hn−1 to Hn

through the arrows of En is ((Hi)i∈{1,··· ,n}, f,+). In this computation, all identity arrows are
ignored and for that reason even though while computing this sequence we consider a
total of

∑n
i=1 | Ei | arrows, it transforms f to Hn using

∑n
i=1 | Ei \ IP | operations.

Proposition 1. Let Ω = {ω1, ω2, · · ·ωn} and (Hi)i∈{1,··· ,n} be a sequence of graphs such
as Hi = (L,Ei) where L is a Boolean lattice 2Ω with the relation ⊆ and the set of arrows
Ei = {(X,Y) ∈ 2Ω × 2Ω | Y = X ∪ {ωi}}. The sequence Hi computes the same zeta
transformation as G⊂ = (2Ω, E⊂), where E⊂ = {(X,Y) ∈ 2Ω × 2Ω | X ⊂ Y }.

This preposition can be proved using the Theorem 3 in [17]. It is proven in [7].

For the reader to understand the above more easily we will now provide an example from
[7]. The example is illustrated in Figures 3.1 and 3.2:

Example 3.3.1. Let Ω = {α, β, γ} we have:

• E1 = {(X,Y) ∈ 2Ω × 2Ω | Y = X ∪ {α}} =

{ (∅, {α}), ({α}, {α}), ({β}, {α, β}), ({α, β}, {α, β}), ({γ}, {α, γ}),
({α, γ}, {α, γ}), ({β, γ},Ω), (Ω,Ω) } ignoring all identity arrows

==============⇒

E1 = { (∅, {α}), ({β}, {α, β}), ({γ}, {α, γ}), ({β, γ},Ω) }

• E2 = {(X,Y) ∈ 2Ω × 2Ω | Y = X ∪ {β}} =

{ (∅, {β}), ({α}, {α, β}), ({β}, {β}), ({α, β}, {α, β}), ({γ}, {β, γ}),
({α, γ},Ω), ({β, γ}, {β, γ}), (Ω,Ω) } ignoring all identity arrows

==============⇒

E2 = { (∅, {β}), ({α}, {α, β}), ({γ}, {β, γ}), ({α, γ},Ω) }

• E3 = {(X,Y) ∈ 2Ω × 2Ω | Y = X ∪ {γ}} =

T. Boura 33

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

∅ {α} {β} {α, β} {γ } {α, γ} {β, γ} Ω
• • • • • • • •

1 : Y = X ∪ {α}
• • • • • • • •

2 : Y = X ∪ {β}
• • • • • • • •

3 : Y = X ∪ {γ}
• • • • • • • •

Figure 3.1: Illustration of example 3.3.1.

∅ {α} {β} {α, β} {γ } {α, γ} {β, γ} Ω
• • • • • • • •

1 : Y = X ∪ {α}
• • • • • • • •

2 : Y = X ∪ {β}
• • • • • • • •

3 : Y = X ∪ {γ}
• • • • • • • •

Figure 3.2: Illustration of example 3.3.1, without identity arrows.

{ (∅, {γ}), ({α}, {α, γ}), ({β}, {β, γ}), ({α, β},Ω), ({γ}, {γ}),
({α, γ}, {α, γ}), ({β, γ}, {β, γ}), (Ω,Ω) } ignoring all identity arrows

==============⇒

E3 = { (∅, {γ}), ({α}, {α, γ}), ({β}, {β, γ}), ({α, β},Ω) }

In Figure 3.1 are represented the paths generated by the arrows contained in the sequence
(Hi)i∈{1,··· ,3}, where Hi = (2Ω, Ei) and Ei = {(X,Y) ∈ 2Ω × 2Ω/ Y = X ∪ {ωi}} and
Ω = {ω1, ω2, ω3} = {α, β, γ}. This sequence computes the same zeta transformations as
G⊂ = (2Ω, E⊂), where E⊂ = {(X,Y) ∈ 2Ω × 2Ω / X ⊂ Y }. The dot represents the node of
its column and each row i is correlated with both the tail of a possible arrow in Hi and the
head of a possible arrow in Hi−1. All arrows can be viewed as the actual arrows in each
graph Hi. The bottom row corresponds to the heads of all potential arrows that could be
in H3.

The illustrations presented in Figures 3.1 and 3.2 were introduced in [18] and display the
sequence of graphs.

After executing ((Hi)i∈{1,··· ,n}, f,+) each element y ∈ 2Ω is linked with the sum
∑

x⊆y f(x).
In order to understand this statement we will look at Ω in Example 3.3.1, since it is the
perfect example to display the whole operation. The operation will be presented step by
step below. The reader is, also, advised to study the steps while looking at Figure 3.2.
Note that hi is the function resulting from the transformation ((Hi)i∈{1,··· ,n}, f,+) ignoring
identity arrows, at each step i.

1. Ω is associated with f(Ω).

T. Boura 34

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

2. The value on Ω is summed with f({β, γ}).

3. The result from the previous step is now summed with h1({α, γ}) that equals with
f({γ}) + f({α, γ}).

4. The result from the previous step is now summed with h2({α, β}) that equals with
h1({α}) + h1({α, β}) = f(∅) + f({α}) + f({β}) + f({α, β}).

After executing all the above steps we have H3(Ω) = f(∅) + f({α}) + f({β}) + f({α}) +
f({γ}) + f({α, γ}) + f({β, γ}) + f(Ω).

This graph sequence’s computation complexity is O(n · 2n) in time and O(2n) in space.
It is fundamental for the Fast Möbius Transform (FMT) algorithms.

3.3.2 Sequence of graphs and computation of the Möbius transform

At this point we would like to transform g into f , i.e. the Möbius transform of g in (P,≤).
This means that we would like to undo the previous computation. In order to achieve this,
check that for any step i in the transformation ((Hi)i∈{1,··· ,n}, f,+), we have ∀y ∈ P ,

hi(y) = hi−1(y) +
∑

(x,y)∈Ei\IP

hi−1(x) ⇔ hi−1(y) = hi(y)−
∑

(x,y)∈Ei\IP

hi−1(x).

This means that, as long as we know all Hi−1(x), ∀(x, y) ∈ Ei\IP at every step i and
∀y ∈ P , or equally that for every arrow (x, y) ∈ Ei\IP , there is no arrow (w, x) in Ei\IP ,
we can simply reverse the order of the sequence (Hi)i∈{1,··· ,n} and change the operator +
to −. Then, we can state that ((Hn−i+1)i∈{1,··· ,n}, g,−) computes the Möbius transform of g
in (P,≤).

Theorem3.3.1. Let (Hi)i∈{1,··· ,n} be a sequence of directed acyclic graphsHi = (P,Ei) and
hn be the function resulting from the transformation ((Hi)i∈{1,··· ,n}, f,+), ignoring identity
arrows. If for every arrow (x, y) ∈ Ei\IP ∄(w, x) in Ei\IP , then ((Hn−i+1)i∈{1,··· ,n}, hn,−)
yields the initial function f .

So, if ((Hi)i∈{1,··· ,n}, f,+) computes the zeta transform g of f in (P,≤) and Theorem 3.3.1
is met, then ((Hn−i+1)i∈{1,··· ,n}, g,−) computes the Möbius transform f of g in (P,≤).

3.3.2.1 Fast Möbius Transform - Application to the powerset lattice 2Ω

Let’s remember the sequence (Hi)i∈{1,··· ,n}, from the application of section 3.3.1 that is
equivalent to the computation of the zeta transform of f in (2Ω,⊆). Since, if ∃(X,Y) ∈
Ei\I2Ω, then ωi ̸∈ X ⇒ ∄W in 2Ω such that W ∪ {ωi} = X and, for that reason, ∄(W,X) in
Ei\I2Ω. One can notice that the Theorem 3.3.1 is applicable and so ((Hn−i+1)i∈{1,··· ,n}, hn,−)

T. Boura 35

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

∅ {α} {β} {α, β} {γ } {α, γ} {β, γ} Ω
• • • • • • • •

y ∪ {α} → H1

• • • • • • • •

y ∪ {β} → H2

• • • • • • • •

y ∪ {γ} → H3

• • • • • • • •

-1 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1 -1

Figure 3.3: Illustration similar to Figure 3.2, but altered to showcase the Möbius Transform.

computes the Möbius transformation of ((Hi)i∈{1,··· ,n}, f,+), i.e. the function f . Also, any
order in ((Hn−i+1)i∈{1,··· ,n}, hn,−) computes theMöbius transformation of ((Hi)i∈{1,··· ,n}, f,+)
because Ω is a set and each graph Hi concerns an element ωi, independently from the
others, any order in the sequence (Hi)i∈{1,··· ,n} computes the zeta transformation.

Now, we can apply this knowledge to the Example 3.3.1 and compute the Möbius trans-
form f of g in (2Ω,⊆), given that Ω = {α, β, γ}. At this point, the reader is advised to look
at the Figure 3.3 in order to understand the following with ease. Note that, after executing
((Hi)i∈{1,··· ,n}, hn,−), every element y ∈ 2Ω is mapped with f(y). Again, we will be looking
at Ω, since it is the perfect example to display the whole operation in steps:

1. Ω is associated with g(Ω).

2. From the value on Ω we subtract g({β, γ}).

3. From the result of the previous step’s subtraction h1({α, γ}) is now subtracted and
that equals with g({α, γ})− g({γ}).

4. From the result of the previous step’s subtraction h2({α, β}) is now subtracted and
that equals with h1({α, β})− h1({α}) = g({α, β})− g({β})− (g({α})− g(∅)).

After executing all the above steps we have
h3(Ω) = g(Ω)− g({β, γ})− [g({α, γ})− g({γ})]− [g({α, β})− g({β})− [g({α})− g(∅)]]

= g(Ω)− g({β, γ})− g({α, γ}) + g({γ})− g({α, β}) + g({β}) + g({α})− g(∅)

=
∑
X⊆Ω

g(x).(−1)|Ω|−|X|.

We stated earlier that µ in (2Ω,⊆) = (−1)|Y |−|X| for every couple (X,Y) ∈ 2Ω × 2Ω Thus,
we have h3(Ω) = f(Ω).

3.4 Möbius Transform in Dempster-Shafer theory

The Möbius Transform defines a mapping between two categories. In our case we are
interested in a mapping between bel andm functions as well as pl andm [18, 17]. Taking

T. Boura 36

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

into consideration the definitions presented in section 3.3 and it’s subsections, one can
present these the Möbius transform formulas.

If g is equated to the belief function bel(A) =
∑

B⊆Am(B), ∀A ∈ 2U and, thus, in this
context g = bel and f = m, then the Möbius Transform of bel is:

m(A) =
∑

B⊆A bel(B) · (−1)|A|−|B|, ∀A ∈ 2U .

Due to the relation between bel and pl functions bel(A) = 1− pl(A), the Möbius Transform
of pl is:

m(A) =
∑

B⊆A pl(B) · (−1)|A|−|B|+1, ∀A ∈ 2U .

T. Boura 37

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

4. IMPLEMENTATIONS OF DEMPSTER-SHAFER THEORY TO
COMPARE IN THE THESIS

In this section we will study and comment on two different implementations of DST. Specif-
ically, we are going to present one implementation based on CLP and one based on Fast
Möbius Transforms. Bear in mind, that in later sections we are going to use these imple-
mentations, so that is why we will focus on explaining the code that frames them.

4.1 Constraint Logic Programming Implementation

This implementation was developed by Alexandros N. Kaltsounidis in his BSc Thesis [16].
Kaltsounidis focused on the optimization of Dempster’s rule of combination, by using CLP.
He implemented such a method in ECLiPSe Prolog and tested and compared it against a
method utilizing Logic Programming, but not CLP, computing the combined mass function
and the belief of random sets, of randomly generated test cases. Overall, his implemen-
tation offered reduced run-time in all computations.

4.1.1 Constraint Logic Programming and Prolog

Logic Programming is a formalism suitable for programming and representing knowledge
[22] and is based on first order logic. With the help of a logic programming language, one
can write logic programs. A logic program is a relation definition and is a sequence of
sentences in logical form, each of which expresses a fact or a rule for a given domain.
One example of such a programming language is Prolog [9, 28], a declarative language,
where rules and facts are defined in the form of Horn clauses.

A constraint satisfaction problem (CSP) [20] is described by set of variables, where every
variable has a finite and discrete domain, and a set of constraints. Every constraint is
defined over some subset of the original set of variables and limits the combinations of
values that the variables in this subset can take. The goal is to find one or more assign-
ments to the variables such that the assignment satisfies all the constraints. Constraint
programming (CP) is a general framework for modeling and solving CSP’s. [24]

Constraint Programming can be integrated into a logic programming language, where it is
referred to as Constraint Logic Programming (CLP) [14]. Dempster’s rule and the belief
function was implemented in ECLiPSe Prolog [2], a software system implementing Prolog
that also offers libraries for Constraint Programming. The implementation uses ECLiPSe’s
ic library that supports finite domain constraints and the ic_sets library which implements
constraints over the domain of finite sets of integers and cooperates with ic. These are
libraries that are used in Kaltsounidis’ implementation.

T. Boura 38

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

4.1.2 Predicates

Since, later on, we are going to be referring to and using predicates from [16], these pred-
icates should me mentioned and described.

The first predicate we will present is the one responsible for combining the mass functions
and is no other that Dempster’s rule, bpa/2. This predicate is defined as bpa(-Tars, -
NewVals) and produces the new focal points Tars and their corresponding combined values
NewVals.

The second one will, of course, be the belief/2 predicate, or more specifically belief(+
A, -V), that computes belief V for set A. Note that in order to find V, it is not required to call
bpa/2 prior to calling the belief predicate. This happens, because both predicates belief/2
and bpa/2 use the predicate findall(_, compute(_, _, _), _), where compute(-A,-Val,+Hyper
) finds a combination of sets whose intersection is A and computes its value.

Similarly to the belief predicate, is defined the plausibility one plau/2, which is plau(+A,
-FinalV) that finds the plausibility FinalV for set A, using the belief/2.

One last useful predicate is the predicate compute_K/1, compute_K(K), that computes the nor-
malization normalization factor K.

For more detailed descriptions of the above predicates as well as some examples, please
refer to [16].

4.2 Fast Möbius Transforms Implementation

In previous sections the computation of Möbius Transforms and FMT’s, as well as the
relation between DST and Möbius Transforms was thoroughly explained. Theoretically
this way of computing belief and plausibility is efficient and that is the reason why in next
sections we are going to use an implementation of belief provided by CRAN that utilizes
FMT’s.

4.2.1 Package ibelief

The package ibelief [1] from the Comprehensive R Archive Network (CRAN) provides
some basic implementations of belief functions. It includes transformation between be-
lief functions using the method introduced in [18]. It also includes evidence combination,
evidence discounting, decision-making, constructing and randomly generating mass func-
tions. In the current version, ibelief 1.3.1, are supported thirteen(13) combination rules and
six(6) decision rules. The package includes an implementation of Dempster’s rule as well
as FMT’s that compute belief from mass functions. We will use this package indirectly

T. Boura 39

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

through Python with the help of the package rpy2 [4] that creates an interface between
Python and R.

4.2.1.1 ibelief modules

Again, as later on we will utilize functions from this package, here we will present these
functions and some of their characteristics.

First of all, to measure the performance of the combination rule and the belief func-
tion, mass functions should be created. The library provides an implementation to ran-
domly create mass functions with some requirements. The function is called RandomMass(
nbFocalElement, ThetaSize, nbMass, Type, singleton, Include). It’s arguments represent the
following:

• nbFocalElement, number of focal elements per generated mass function.

• ThetaSize, length of the discernment frame Θ.

• nbMass, number of masses to generate.

• Type, which kind of mass to generate. For example, Type=1 for focal elements can be
everywhere. For more options refer to page 9 of ’ibelief’ package reference.

• singleton, the singleton element (with only one element) in the focal sets. It should
be given a number from 1 to ThetaSize if Type is from 5 to 11.

• Include, the natural id of the focal element (not Θ) of SSFs, if Type is 15.

The return value of the function is the generated mass matrix, where each column repre-
sents a piece of mass. Each column has 2|Theta| rows where the bpa for every subset of
the powerset is stored.

After creating the mass functions, the computation of the combined mass function is
next. The package provides different combination rules through the function DST(MassIn
, criterion, TypeSSF = 0) and the arguments are the following:

• MassIn, matrix containing the masses. Again, each column has 2|Theta| rows and
represents a piece of mass for every subset of the powerset.

• criterion, combination criterion. We are interested in criterion=2, that is the Dempster-
Shafer normalized criterion. For more options refer to page 5 of ’ibelief’ package
reference.

• TypeSSF, the parameter of LNS and LNSa rule.

T. Boura 40

https://cran.r-project.org/web/packages/ibelief/ibelief.pdf
https://cran.r-project.org/web/packages/ibelief/ibelief.pdf
https://cran.r-project.org/web/packages/ibelief/ibelief.pdf

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

The function returns the combined mass vector that has dimensions 2|Theta| × 1.

Since the combination process has been explained, the following step is to present the
FMT functions provided by ibelief. The package provides a handful of them (see page 6
of ’ibelief’ package reference), but the one we used was mtobel(InputVec) in order to com-
pute the belief from a combined mass. The argument InputVec is the measure to transform
(here: the combined mass) and should be of size 2|Theta| × 1. The function returns the as-
sociated converted new measure. Here that is a matrix 1× 2|Theta|, which holds the belief
for every subset s ∈ 2|Theta|. In this module exists also the FMT mtopl(InputVec) that com-
putes the plausibility from the combined mass. We did not use that, as we can compute
plausibility for a set by computing the belief of its complement.

Below is provided a code example of how the functions are used.
import for R - ibelief
import rpy2.robjects.packages as rpackages

import R package needed
ibelief = rpackages.importr('ibelief')

create masses
Mass=ibelief.RandomMass(nbFocalElement=5, ThetaSize=3, nbMass=4, Type=1)
print("Printing masses:")
print(Mass)

combine masses
MassCombined=ibelief.DST(Mass,2)
print("Printing combined mass:")
print(MassCombined)

compute belief
Bel = ibelief.mtobel(MassCombined)
print("Printing belief:")
print(Bel)

Output:
P r i n t i n g masses :

[, 1] [, 2] [, 3] [, 4]
[1 ,] 0.00000000 0.00000000 0.02336222 0.15781926
[2 ,] 0.10842573 0.44519333 0.00000000 0.00000000
[3 ,] 0.00000000 0.00000000 0.14233238 0.00000000
[4 ,] 0.09396573 0.11848799 0.41035060 0.25968586
[5 ,] 0.00000000 0.01033163 0.00000000 0.02614128
[6 ,] 0.13453683 0.00000000 0.09491176 0.20112460
[7 ,] 0.52519882 0.08784273 0.32904304 0.35522901
[8 ,] 0.13787288 0.33814432 0.00000000 0.00000000

P r i n t i n g combined mass :
[, 1]

[1 ,] 0.000000000
[2 ,] 0.238677809
[3 ,] 0.493537463
[4 ,] 0.031072186

T. Boura 41

https://cran.r-project.org/web/packages/ibelief/ibelief.pdf

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

[5 ,] 0.140933796
[6 ,] 0.004843127
[7 ,] 0.090935618
[8 ,] 0.000000000

P r i n t i n g b e l i e f :
[, 1] [, 2] [, 3] [, 4] [, 5] [, 6] [, 7] [, 8]

[1 ,] 0 0.2386778 0.4935375 0.7632875 0.1409338 0.3844547 0.7254069 1

T. Boura 42

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

5. AN APPLICATION OF DEMPSTER-SHAFER THEORY IN
RECOMMENDER SYSTEMS

After studying DST and its properties as well as seeing some rather limited examples of the
theory’s application to real-life situations it is only normal to want to see how practical and
applicable DST is in extended real-life situations. One particularly interesting application
is creating a model for discovering user preferences from item characteristics [33] that
can find usage when implementing a Recommender System.

5.1 Recommender Systems

Recommender Systems (RSs) are software tools and techniques providing suggestions
for items to be of use to a user [26]. A RS uses data provided to it that can be a direct
representation of the user’s liking, for example products that the user has ’liked’ or rated,
or an indirect representation of the user’s liking, for example a set of characteristics of
a product that the user has purchased. There are many ways a RS can make sugges-
tions based on the way it processes the data. As mentioned in [6], based on the filtering
approach, the RS algorithm can be marked as:

1. Content-based recommenders, that make recommendations to a user based on the
user’s preferences in the past.

2. Collaborative recommenders, that make recommendations to a user based on the
preferences of users with similar activity.

3. Demographic recommenders, that make recommendations to a user based on the
preferences of users that belong to the same group based on personal attributes
(age, sex, socioeconomic situation etc.).

4. Hybrid recommenders, that make recommendations to a user combining the above
recommenders in some way.

5.2 Recommender System based on Dempster-Shafer theory

In this section we will present the RS model of [33]. Note that this is a model that:

1. Assumes that all items are described by the same characteristics. These character-
istics can have single or multiple values.

2. Assumes that the number of the focal points is significantly larger that the number
of items.

T. Boura 43

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

3. Assumes that items can be grouped and user preferences can be expressed on
item groups. The values assigned to groups of items are obtained by the union of
characteristic values assigned to each item.

4. Does not consider rating or negative feedback.

5. Assumes that if the user prefers items with specific characteristic-values they will,
most likely, in the future prefer items with the same features.

6. Considers users to be homogeneous in terms of profiling characteristics.

5.2.1 Some definitions

In this approach, the preferences are deducted by ’like’ votes. Each item is described
by its characteristics, since they are our main focus. For that reason, we describe the
item set with the feature set C = {C1, C2, . . . , Cp} , where Ci with i ∈ {1, 2, . . . , p} is a
discrete variable with domain Φi = {ϕi,1, . . . , ϕi,ki}. The integer ki describes the number
of the different values the feature described can take. The feature domain is described as
Φ = {Φ1,Φ2, . . . ,Φp}. Now, I = {I1, I2, . . . , Im} we denote as the item set in our model.
Every item Ij is described by the tuple - vector (c1,j, c2,j, . . . , cp,j), where ci,j ∈ 2Φi. Last
but not least, the set of users is denoted as U = {U1, U2, . . . , Un}.

Since the preferences are deducted by ’like’ votes, a user liking an item Ij means that
they like all the characteristics that describe it : (c1,j, c2,j, . . . , cp,j). As we believe that a
user has a repeated behaviour and likes a certain and restrained amount of features in
our system, by taking into account the features and not the items we are indeed reducing
our search space.

5.2.2 Basic probability assignment for a feature set

As the model assumes that the users are homogeneous, the search can be limited to the
votes expressed be the users that as homogeneous to the querying user.

Definition. Feature basic probability assignment: Let Ci with i ∈ {1, 2, . . . , p} be a dis-
crete variable with domain Φi = {ϕi,1, . . . , ϕi,ki}. The basic probability assignment m(K),
∀K ∈ 2Φi is defined as follows,

mi(K) = #UK

#U

with UK ⊆ U being the users whose selected products with features ci,j are part of K, i.e.∪
j∈I(UK) ci,j = K and I(UK) being the collection of items chosen by Uk.

Usually, for a feature Φi, the ki is not big. Even with small numbers, though, the powerset
of the feature domain would be significantly large and it would be hazardous to compute.

T. Boura 44

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

But since the bpa depends on the users as defined above, the number of property sets
with a bpa larger that 0 is at most the n, where n is the number of users.

After computing the mass function for each feature, they cannot be combined using Demp-
ster’s combination rule as the sets probably won’t intersect, since they belong to different
features with different domains. The solution to that, is to project the bpa of each feature
to the item set i.e. compute a bpa for items with regard to a feature. We introduce the
item set as a shared domain on which to combine user-preferences expressed on each
feature. Specifically, in the article the below definitions explain the process:

Definition. Item projection: Let Ci with i ∈ {1, 2, . . . , p} be a feature with domain Φi.
Then ∀ Ψ = {I1, I2, . . . , Is} ∈ 2I : pCi

(Ψ) = Kj ⊆ 2Φi, with ϕi,q ∈ Kj iff ϕi,q ⊆ ci,m such that
Im = (c1,m, c2,m, . . . , cp,m), ∀m ∈ {1, 2, . . . , s} and q ∈ {1, 2, . . . , ki}.

Definition. Item bpa: Let Ψ = {I1, I2, . . . , Is} ∈ 2I be an item set and pCi
(Ψ) = Kj

the item set’s projected feature set with regard to the feature Ci. The mass function of the
projected feature set is : m(Ψ) = mi(pCi

(Ψ)) = mi(Kj).

With the above definitions it is possible for us to match, for each characteristic, the basic
probability assignment for its domain to a bpa whose domain is the item powerset. After
that matching, the new mass functions can be combined using Dempster’s rule in order
to get a mass joint that represents the dataset.

In the following section we will apply the described model on a chosen dataset.

5.3 The Thesis System

Provided that we analyzed the theory behind the application, the next stage is to develop
a system based on the approach described in the section 5.2. The system is provided an
input-dataset. The system’s goal is firstly to process it appropriately and then do a series
of procedures in order to create the output, that is the projected mass functions.

The process that undergoes the dataset in the system in order to produce the output
can be seen in the Data Flow Diagram (DFD) 5.1. If you are not familiar with this type of
diagram, the DFD [36] maps out the flow of information for any process or system. The
types of nodes in this diagram are three:

1. an external entity that is an outside system that sends or receives data and is defined
with a simple rectangle

2. a process that is any process that changes the data, producing an output and is
illustrated with a rectangle with a horizontal line

T. Boura 45

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

3. a data store that are files or repositories that hold information for later use and are
presented by rectangles with a vertical line

The edges showcase data transferred from one entity to another.

Figure 5.1: Data Flow Diagram of DST Application

Let us explain the diagram 5.1. The User, who is an external entity, provides the pro-
cess Pre-processing with the data (here: the dataset). The process processes the dataset
(erases the information that is not needed and ”polishes” the rest) and the processed
dataset is supplied to the process Altering the structure of the dataset, where it changes
its form and becomes user-centered. Afterwards, the user-centered dataset is used by the
processes Computation of bpa's for each feature and Computation of projected bpa's which
produce the mass functions for each feature and, then, the projected mass functions re-
spectively. These projected mass functions are stored in a data store with the purpose to
be used later on. The processes and the data introduced in the diagram are going to be
thouroughly presented in the following sections.

5.3.1 Dataset of application

In order to apply DST as suggested in [33], a dataset was needed. The dataset had to
have items with characteristics and the users that preferred them, so the search was quite
explicit. After spending some time searching and researching a dataset was found in
Kaggle: netflix-audience-behaviour-uk-movies.

5.3.2 Description

The dataset found in the above link includes users in the UK who opted-in to have their
anonymous browsing activity tracked and the movies they watched on Netflix from their
desktop and/or laptop. The features of the movies that are:

T. Boura 46

https://www.kaggle.com/datasets/vodclickstream/netflix-audience-behaviour-uk-movies
https://www.netflix.com/

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

• row ID

• datetime, date and time of the click

• duration, seconds between this click and the user’s next tracked click on Netflix

• title, movie title

• genres, movie genre(s)

• release_date, movie’s original release date in movie theaters

• movie_id title ID

• user_id user ID

As one can see in the description of the dataset, the record number is 671736. Each
record is described by the above features. Also, there are 7925 unique values in the
title’s domain, 8472 in the movie_id’s domain and 161918 unique values in the user_id’s
domain. Some movies (movie_id’s) do not have genre(s) and/or release_date and when
that happens those feature are marked with the string ’NOT AVAILABLE’.

5.3.3 Processing

In order for us to use the dataset, a few adjustments are needed. For the procedure of
processing we will use Python and specifically the Pandas library [3] . This library provides
a visualisation (the DataFrame type) of the dataset, as well as a handful of operations on
the dataset.

5.3.3.1 Altering size of the dataset

Since the dataset is in .csv format, it can easily be loaded to a DataFrame structure that
is implemented in Pandas, as shown in Figure 5.2:

As mentioned before, in genres and release date if there is no value in those columns re-
garding a row, then that cell holds the value ’NOT AVAILABLE’. Those rows are dropped,
because (as quoted in [33]’s 7th page) ”In this model it is assumed that only items sharing
all the characteristics are provided”. Below is provided the code that allows us to take
such action.
data = data.drop(data[data.genres == 'NOT AVAILABLE'].index)
data = data.drop(data[data.release_date == 'NOT AVAILABLE'].index)

After that, the remaining dataset consists of 639842 records. This is a huge dataset,
therefore fractions of it will be studied. To be precise, we will use a script in order use the

T. Boura 47

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

Figure 5.2: Image of dataset after loading it to a pandas DataFrame

following fractions: 0.002%, 0.004%, 0.006%, 0.008%, 0.01%. Larger fractions crush the
program with ’global_trail_overflow’ error.
data = data.sample(frac = sys.argv[1])

Also, the features duration and row ID do not give us any indication about the user’s
preferences, so we will not be considering them.
data = data.drop(['duration'], axis=1)
data = data.drop(data.columns[0], axis=1)

The feature release_date seems quite specific, so at first we thought about using release
year as a preference. The problem with that is that |Φrelease_year| is large and, actually, it
is quite strange for one to watch movies released only in one specific year, but one can
prefer watching movies that were released a certain decade. So we will use as feature
the release decade (release_decade).
release_decade = []

for row in data['release_date']:
split release date and use only release year
date_split_list = row.split("-")
change last digit (ex. 1992 -> 1990)
list_of_char = list(date_split_list[0])
list_of_char[3] = '0'
date_split_list[0] = ''.join(list_of_char)
store release decade
release_decade.append(date_split_list[0])

data['release_decade'] = release_decade
dropping release date, because now we have release decade!
data = data.drop(['release_date'], axis=1)

T. Boura 48

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

The feature datetime seems quite specific as well, so we thought of using click hour
(click hour) as a preference. But, again, because one is more likely to watch a movie
within a range of hours, we will make 5 categories for the click hour: Morning (06-11),
Midday (12-16), Afternoon(17-20), Evening(21-00), Night(01-05):
click_hour = []

for row in data['datetime']:
split date and time
date_split_list = row.split(" ")
split time
date_split_list = date_split_list[1].split(":")

use only hour
h = date_split_list[0]
if (h=='06') or (h=='07') or (h=='08') or (h=='09') or (h=='10')
or (h=='11') :

click_hour.append('Morning')
elif (h=='12') or (h=='13') or (h=='14') or (h=='15')
or (h=='16'):

click_hour.append('Midday')
elif (h=='17') or (h=='18') or (h=='19') or (h=='20'):

click_hour.append('Afternoon')
elif (h=='21') or (h=='22') or (h=='23') or (h=='00'):

click_hour.append('Evening')
else:

click_hour.append('Night')

data['click hour'] = click_hour
dropping date_time , because now we have click hour!

data = data.drop(['datetime'], axis=1)

Continuing the processing of the dataset we thought of computing |ΦG| regarding cG where
cG is the feature genre.
genre_values = []

for row in data['genres']:
split_list = row.split(", ")
genre_values += split_list

genre_values= unique(list(set(genre_values)))
print(genre_values)
print(len(genre_values))

When the above code was executed, we noticed that |ΦG| ⋍ 25 (The number is not fixed
as it depends on the fraction of the dataset after taken). In order to see the approach of
[33] in action, such big domain was no use to us and, thus, we decided to remove from the
dataset all movies that correspond to at least one of the following genres: Documentary,

T. Boura 49

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

History, War, Talk-Show, Biography, Musical, Music, Sport.
movies_to_be_dropped = []

for index, row in data.iterrows():
split_list = row['genres'].split(", ")
if ('Documentary' in split_list) or ('History' in split_list) or

('War' in split_list) or ('Talk-Show' in split_list) or
('Biography' in split_list) or ('Musical' in split_list) or
('Music' in split_list) or ('Sport' in split_list) :

movies_to_be_dropped.append(row['movie_id'])

for movie in movies_to_be_dropped:
data = data.drop(data[data.movie_id == movie].index)

Lastly, we observed that there are some duplicate rows in the dataset, so we drop them,
as they are no use to our modeling.
data = data.drop_duplicates()
data = data.reset_index() # make sure indexes pair with num of rows
data = data.drop(['index'], axis=1)

5.3.3.2 Altering the structure of the dataset

In this paragraph, our goal is to bring the dataset into a form that will allow us to compute
the mass functions of each feature easily. Gladly, in [33] in Table 1: ”Structure of dataset
assumed by the model” one such form can be viewed by the reader. That structure is the
one we will use, with just a few mild alterations. Specifically, we are going to create a new
Pandas DataFramewith regards to the user’s preferences. The result will be aDataFrame
that for every user holds the films they have liked, the genres they have liked, the range
of hours they prefer to watch films and the decades their preferred movies were released.
create new dataframe
d = {'user_id': [] }
data_per_user_ = pd.DataFrame(data=d)

first column will be the users (1 user per row and no duplicates)
data_per_user_['user_id'] = (data['user_id'].unique()).tolist()
empty_sets = []

create different lists of empty sets
for i in range(5):

empty_sets.append([set() for x in range(len(data_per_user_))])

make those sets part of the dataframe column-wise
data_per_user_['title'] = empty_sets[0]
data_per_user_['genres'] = empty_sets[1]
data_per_user_['movie_id'] = empty_sets[2]
data_per_user_['release_decade'] = empty_sets[3]
data_per_user_['click hour'] = empty_sets[4]

T. Boura 50

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

for each user
for index, row in data_per_user_.iterrows():

make a dataframe with the preferences of this particular user
df_temp = data.loc[data['user_id'] == row['user_id']]

'''
now for every preference in the temporary dataframe (for every
film and its other characteristics) collect them together to
make only one row of the user preferences in the new user-
oriented dataset. Note that with sets being used duplicates
are avoided.
'''

for movie in df_temp['movie_id'].unique().tolist():
row['movie_id'].add(movie)

for title in df_temp['title'].unique().tolist():
row['title'].add(title)

for genres in df_temp['genres'].unique().tolist():
split_genres = genres.split(", ")
for genre in split_genres:

row['genres'].add(genre)

for release_decade in (df_temp['release_decade'].unique()).tolist():
row['release_decade'].add(release_decade)

for hour in df_temp['click hour'].unique().tolist():
row['click hour'].add(hour)

Now in this new DataFrame, what we want to do is drop the rows that have only one
preferable movie, because we would like to see how DS theory behaves with multiple
user preferences.
compute number of liked movies for each row(user) and store in new column
data_per_user_['length'] = data_per_user_.movie_id.str.len()
drop rows that have cell value equal to 1
data_per_user_ = data_per_user_.drop(data_per_user_[data_per_user_.length ==

1].index)
make sure indexes pair with number of rows
data_per_user_ = data_per_user_.reset_index()
data_per_user_ = data_per_user_.drop(['index'], axis=1)
drop length column, as we no longer need it
data_per_user_ = data_per_user_.drop(['length'], axis=1)

T. Boura 51

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

5.3.4 Computation of the basic probability assignment for each feature set

The first step in order to compute the mass function for an item (a movie) is to compute
the mass functions of each feature as showcased in section 5.2.2. There will not be any
computation of mtitle, mmovie_id as these are not characteristics but two different ways for
us to refer to the item-movie . So, we want to compute the bpa, which is: m(A), ∀A ∈ 2Φi

for every feature of the item-movie considered. The first approach one can think is to com-
pute all the subsets of the feature domain and then compute the mass function for every
subset. This process is computationally heavy as the complexity of computing the subsets
is exponential. But, because the bpa depends on the users and the maximum number of
focal points equals with the number of users, the computation of all subsets is not needed.
So, the computation of mass function becomes a task with polynomial complexity. The
process of the computation for each characteristic will be provided later on accompanied
by code.

Firstly, the computation of the total number of users (#U) is necessary.
number_of_users = len(data_per_user_['user_id'])

Also, we need to introduce a function that does bit-wise rounding of the numbers, as we
want to avoid an arithmetic malfunction and specifically an overflow, because then the val-
ues of each mass function will sum to >1, which is a problem for the Prolog implementation
we will use later.
function to round float to the nearest allowable value
def roundf(x,bitsToRound):

i = cast(pointer(c_float(x)), POINTER(c_int32)).contents.value
bits = bin(i)
bits = bits[:-bitsToRound] + "0"*bitsToRound
i = int(bits,2)
y = cast(pointer(c_int32(i)), POINTER(c_float)).contents.value
return y

For the feature genres compute #Uk from the user centered dataset:
create new dataframe to store bpa-related values

d = {'genres': [], 'count' : [], 'bpa' : [], 'movies_proj' : [], 'sets_indexed
' : [] }

df_bpa_genres_ = pd.DataFrame(data=d)

for each user
for index, row in data_per_user_.iterrows():

only focal points - from users only!
if (df_bpa_genres_['genres'] == set(row['genres'])).any() == False:

df_bpa_genres_.loc[df_bpa_genres_.shape[0]] =
[row['genres'], 1, 0, set(), set()]

else:
df_bpa_genres_.loc[df_bpa_genres_['genres'] ==
set(row['genres']), 'count'] +=1

T. Boura 52

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

use formula defined earlier (#Uk/#U)
for index, row in df_bpa_genres_.iterrows():

round bt by 10 digits binary
df_bpa_genres_.loc[index, 'bpa'] = roundf((row['count'])/number_of_users
,10)

sum bpa's - must be ~1 (may not be exactly due to python arithmetic)
sum_g = np.sum(df_bpa_release_decades_['bpa'].tolist())

Note that it is normal for the summation of bpa’s not to be exactly 1 as the process’ com-
putations might cause number underflow or overflow.

For the other two characteristics, the computation is similar.

5.3.5 Projection of the basic probability assignment of each feature set to items

We computed the mass function for each feature, but they cannot be combined using
Dempster’s combination rule as the sets correspond to different features with different do-
mains. The solution to that, provided by [33] and mentioned here in subsection 5.2.2, is to
project the bpa of each feature to the item set i.e. compute a bpa for items with regard to
a feature. So, we are going to compute the projected bpa’s for the features in our dataset.

Firstly, we need to get a hold of the movies that we are going consider after the process
of deleting entries (rows) in the dataset.
movies_considered = set()
get the unique movies from the user-centered dataset
for index, row in data_per_user_.iterrows():

movies_considered |= row['movie_id'] # A |= B -> A U B
turn set into list for future purposes
movies_considered = list(movies_considered)

After that, we can compute the projected mass function with regards to each feature.

For the feature crelease_decade:

loop through all the movies we are considering
for i in range(len(movies_considered)):

make a temp df of the entries that share the particular movie_id
df_temp = data.loc[movies_considered[i] == data['movie_id']]
for every release decade found in the temporary df (rd)
for rd in df_temp['release_decade'].unique().tolist():

for every focal point of the characteristic
for index_rd, row_rd in df_bpa_release_decades_.iterrows():

if the rd intersects with the focal point...

T. Boura 53

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

if rd in row_rd['release_decades']:
... then it belongs to the projected itemset
row_rd['movies_proj'].add(movies_considered[i])

For the feature cclick hour, the computation is similar.

For the feature cgenres:

for i in range(len(movies_considered)):
make a temp df of the entries that share the particular movie_id
df_temp = data.loc[movies_considered[i] == data['movie_id']]
for every genre(s) found in the temporary df (rd)
for rd_ in df_temp['genres'].unique().tolist():

genres is a multi-valued feature and
genre are strings like this : 'Drama, Romance'
split_list = rd_.split(", ")
for rd in split_list:

for every focal point of the characteristic
for index_rd, row_rd in df_bpa_genres_.iterrows():

if the rd intersects with the focal point...
if rd in row_rd['genres']:

... then it belongs to the projected itemset
row_rd['movies_proj'].add(movies_considered[i])

When the the multi-valued features click hour and genres are projected onto movies it is
possible that two or more identical sets may occur. Let’s take a look at an example to
understand why that event is possible.

Example 5.3.1. Let’s suppose we have a dataset where we only have three(3) movies,
two(2) users that looks like in Table 5.1.

Table 5.1: Dataset example

Movie title Click hour Liked by user

′Pulp F iction′ {′Morning′,′ Night′} 1

′Reservoir Dogs′ {′Morning′,′ Night′} 2

′TheHateful Eight′ {′Evening′,′ Morning′,′ Night′} 1

Then, we can compute for the characteristic click hour the respective bpa’s: {’Morning’,
’Night’} = 1

2
and {’Evening’, ’Morning’, ’Night’} = 1

2
. After proceeding to project the bpa’s to

movies the result is:

T. Boura 54

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

Click hour set Projected set bpa

{’Morning’, ’Night’} {’Pulp Fiction’, ’Reservoir
Dogs’, ’The Hateful Eight’}

0.5

{’Evening’, ’Morning’,
’Night’}

{’Pulp Fiction’, ’Reservoir
Dogs’, ’The Hateful Eight’}

0.5

As the computations take place with the projected set, when the above result occurs, the
two projected sets should be zipped into one and their bpa’s should be summed. In this
example, that processing would result to the following projected set:

Projected set bpa

{’Pulp Fiction’, ’Reservoir Dogs’, ’The Hateful Eight’} 1.0

So, we should consider that situation in our implementation, as we could end up with mul-
tiple belief assignments for the same set (for the multi-valued characteristics). This can
be handled by adding the belief assignment values of the same set and keeping only one
instance: the one that contains the summation. The below code showcases that proce-
dure for the feature cgenres. For cclick hour, the computation is similar.

For the feature cgenres:

drop columns that are not needed
df_bpa_genres_
= df_bpa_genres_.drop(['genres', 'count', 'movies_proj'], axis=1)
get the sets and store them into a list
list_of_sets_l =
[sorted(list(s)) for s in df_bpa_genres_["sets_indexed"].tolist()]
sort the list
list_of_sets_l.sort()
get only one istance of each set
list_of_sets_l =
list(list_of_sets_l for list_of_sets_l ,_ in itertools.groupby(list_of_sets_l))
create new dict and then new df
dictionary =
{'sets_indexed': list_of_sets_l , 'bpa' : [0.0 for i in range(len(

list_of_sets_l))] }
df_bpa_genres_n = pd.DataFrame(dictionary)

from old df sum bpa of same sets
for index_gn , row_gn in df_bpa_genres_n.iterrows():

for index_g, row_g in df_bpa_genres_.iterrows():
if sorted(list(row_g['sets_indexed']))
== sorted(list(row_gn['sets_indexed'])):

df_bpa_genres_n.at[index_gn ,'bpa']+= row_g['bpa']

T. Boura 55

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

Note: Because Dempster’s rule in the ECLiPSe Prolog implementation combines sets
of int’s where each int i : i ∈ {1, . . . , |Ω|} we did an extra operation and converted the
item-sets to int-sets with 1 − 1 correspondence. These sets are stored in the column
′sets_indexed′ in the DataFrame.

T. Boura 56

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

6. USING THE IMPLEMENTATION OF DEMPSTER-SHAFER THEORY
IN CONSTRAINT LOGIC PROGRAMMING FOR THE APPLICATION

In the previous section an application of DS Theory in Recommender Systems was studied
and a dataset was provided in order to explain the process computationally by code in a
real-life example. In this section we are going to use the implementation of Dempster’s
rule in CLP in order to combine the projected mass functions we computed earlier and
compute the belief of some item-sets. After that we will measure how well did the ECLiPSe
implementation of DST perform when we compute the mass joint and belief regarding the
dataset of application.

6.1 Package PyCLP

We will present Dempster’s rule Prolog implementation in order to combine preferences
for movies and the belief implementation for computing the belief of different events. As
mentioned in Chapter 4, the implementation of DST in CLP was developed in the ECLiPSe
Prolog environment. The dataset pre-processing was done in Python, so the library Py-
CLP [5] was installed in order for Python to communicate with ECLiPSe Prolog. The
PyCLP can interface with ECLiPSe’s version 6.1 and that is the version we will use. Here
we are going to describe the modules of the package and explain the differences between
the interface and the ECLiPSe engine. Only after that we are going to introduce the code
and it’s components.

6.1.1 PyCLP modules

In this paragraph we will present the modules we used in our code in order to start our
ECLiPSe environment, load the needed predicates and initialize and use terms.

To begin with, to initialize the ECLiPSe engine and prior to any other function the pyclp
.init() method is called.

After the initialization, in order to resume the ECLiPSe engine, pyclp.resume(in_term=None)
is used, with an optional argument for the Prolog predicate yield/2. This function returns
a tuple :

• (pyclp.SUCCEED,None), if execution succeed (equivalent to True)

• (pyclp.FAIL,None), if the goal fails

• (pyclp.FLUSHIO, stream_number), if some data is present in stream
< stream_number >

T. Boura 57

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

• (pyclp.WAITIO, stream_number), if ECLiPSe engine try to read data from stream
< stream_number >

• (pyclp.YIELD, yield_returned_value), in case of predicate call yield/2

• (pyclp.THROW, Term TagExit), an event have been thrown and no one have caught
it

To create an Atom, pyclp.Atom(atom_id) is called, where atom_id is a string parameter with
the atom’s name.

Two classes that are often used in our code are pyclp.Var, that creates a Prolog variable as
well as the class pyclp.PList that creates and reads Prolog lists. A list is constructed from
an instance of Python list or tuple and Python strings, floats and integers are automati-
cally transformed into terms. PList’s are the only terms in PyCLP whose value can change.

Another useful class of pyclp is pyclp.Compound(functor_string, *args), that creates com-
pound terms. In this Thesis by the term ’compound’ we shall refer to these compound
terms .Here, also, Python strings, floats and integers are automatically transformed in
terms. It’s arguments are: functor_string, a string with functor name and args, any num-
ber of arguments of type integer, float, string and PList, Atom, Compound.

When aiming to post a goal, the method post_goal() from the class pyclp.PList is used.

In closing, to shutdown the ECLiPSe engine, we call the function pyclp.cleanup(). After
this function is called any operation on pyclp object or class produces undefined behaviour.

For more references one can visit PyCLP Module Reference.

6.1.2 PyCLP particularities

In this case, PyCLP was used in order to load Kaltsounidis’ code as amodule in the Python
environment and utilize the exported Dempster’s rule and belief in order to combine the
mass functions and compute belief. The mass functions, as well as other compounds that
were needed, were written in another file that was used by the program where Dempster’s
rule is located as a module. These compounds where not created in the ECLiPSe engine
generated by PyCLP, but were stored in a new file, as the first option does not work.
That would work only if all Kaltsounidis’ code was transferred in PyCLP using the classes
and functions presented earlier. For this to happen external predicates are needed which
is a functionality provided by PyCLP. Specifically, the function pyclp.addPythonFunction()
registers a Python function to be called from ECLiPSe using the predicate call_python. An
example from the module reference manual is seen below:
from pyclp import *

T. Boura 58

https://pythonhosted.org//PyCLP/pyclp.html

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

def external_predicate(arguments):
arguments store all arguments passed with call_python_function
implements unify as described in ec_unify
return unify(arguments[0],arguments[1])

init ECLiPSe engine
init()
register function with 'my_name' atom
add_python_function('my_name',external_predicate)
my_var=Var()
call_python_function ,'my_name',[1,My_var])
Compound('call_python_function',Atom('my_name'),[1,my_var]).post_goal()
resume()
if my_var.value() != 1:

print("Failed resume ")

Even though that seems like a manageable option, there is a feature of this functionality
that make the process of 1− 1 transferring all the Prolog code to Python quite difficult. In
the registered Python function it is possible to use all classes to represent an ECLiPSe
object (Atom(), Compound() etc.) but not pyclp.resume(), pyclp.init(), pyclp.cut() or pyclp.
cleanup(). This means that if pyclp.resume() or pyclp.cut() cannot be called, the debugging
process becomes difficult to perform and handle, especially when nested user-defined
predicates are used.

But, external predicates are not the only obstacle to translate Prolog code to Python.
Another problem is that compounds are created, but not universally stored and for that
reason predicates like findall/3 and bagof/3 do not work as expected. Let’s take a look at
an example:
init() # init ECLiPSe engine

print("Compounds are locally created")

my_compound1=Compound("b",1) # b(1).
my_compound2=Compound("b",5) # b(5).
create a prolog variable L
L = Var()
findall(X, b(X), L)
Compound("findall", X, Compound("b", X), L).post_goal()
res, st = resume() # resume execution of ECLiPSe engine
print("findall(X,b(X),L) is:", res, "and value of L is: ", L.value())

if res == FLUSHIO:
open output stream
outStream = Stream(st)
return data in a bytes object
data = outStream.readall()
print(data)
not required but implemented to support RawIO protocol

T. Boura 59

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

outStream.close()

cleanup() # shutdown ECLiPSe engine

Listing 6.1: findall/3 example, creating compounds through PyCLP

The expected output of the code snippet in Listing 6.1 is:
Compounds are locally created
findall(X,b(X),L) is: True and value of L is: [1,5]

But the actual output is:
Compounds are locally created
findall(X,b(X),L) is: 7 and value of L is: None
b'calling an undefined procedure b(_1663) in module ECLiPSe\n'

From the output it is clear that some other way of defining procedure b() must be found.
Let’s take a look at another example, which is the same as Listing 6.1 with the difference
that the compounds b(1) and b(5) are stored as a module in the file b.pl.
init() # init ECLiPSe engine
print("\nCompounds are loaded from file")
L = Var() # create a prolog variable L
use_module b.pl
Compound("use_module",Atom("/home/tatiana/b.pl")).post_goal()
findall(X, b(X), L)
Compound("findall", X, Compound("b", X), L).post_goal()
res, _ = resume() # resume execution of ECLiPSe engine
print("findall(X,b(X),L) is:", res, "and value of L is: ",

L.value())
cleanup() # shutdown ECLiPSe engine

Listing 6.2: findall/3 example, loading compounds from module

Listing 6.2 produces the correct-expected output:
Compounds are loaded from file
findall(X,b(X),L) is: True and value of L is: [1,5]

The conclusion is that for our ECLiPSe engine to access and use compounds they need
to be stored in an external file, which is inconvenient, but, unfortunately, it is something
that cannot be avoided.

There is another characteristic of the PyCLP library that should be taken into considera-
tion when using it. When there are more than one evaluations of a variable that make a
predicate true, pyclp.resume() returns (True, None), but the variable is not instantiated. If

T. Boura 60

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

findall/3 is performed in order to collect all the values, the value of the list returned is not
the one expected. Again, we present an example.
init() # init ECLiPSe engine

Compound("lib", "ic_sets").post_goal() # lib(ic_sets)

X = Var() # create a prolog variable X
L = Var() # create a prolog variable L

Compound("subsetof",PList([1]), PList([1,2,3])).post_goal()
res, _ = resume() # resume execution of ECLiPSe engine
print("[1] subsetof [1,2,3] is:", res)

Compound("subsetof", X, PList([1,2,3])).post_goal()
res, _ = resume() # resume execution of ECLiPSe engine
print("X subsetof [1,2,3] is:", res)
print("Value of X is: ", X.value())

findall(X,subsetof(X,[1,2,3]),L)
Compound("findall", X, Compound("subsetof", X, PList([1,2,3])), L).post_goal()
res, _ = resume() # resume execution of ECLiPSe engine
print("findall(X,subsetof(X,[1,2,3]),L) is:", res)
print("Value of L is: ", L.value())

cleanup() # shutdown ECLiPSe engine

Listing 6.3: ic_sets:subsetof/2 example

The expected output of the code snippet in Listing 6.3 is:
[1] subsetof [1,2,3] is: True
X subsetof [1,2,3] is: True
Value of X is: X{([] .. [1, 2, 3]) : _240{0 .. 3}}
findall(X,subsetof(X,[1,2,3]),L) is: True
Value of L is: [X{([] .. [1, 2, 3]) : _215{0 .. 3}}]

The actual output is:
[1] subsetof [1,2,3] is: True
X subsetof [1,2,3] is: True
Value of X is: None
findall(X,subsetof(X,[1,2,3]),L) is: True
Value of L is: [_]

To sum up, PyCLP has some limitations compared to ECLiPSe Prolog environment and
for that reason code written inPrologmay not be able to be written in Python. For our code,
these limitations caused some difficulties but were not deterrent and everything works as
expected.

T. Boura 61

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

6.2 Computation of the mass joint and belief from dataset

6.2.1 Alteration of the initial implementation of Kaltsounidis

As the PyCLP module was explained previously, we are going to use it in order to com-
bine user-preferences and compute belief of item-sets from the dataset of application. As
mentioned earlier, Dempster’s rule was implemented in [16] and that is the code we use
with few minor alterations. These alterations will be explained shortly, in order for the code
to be understandable.

The first alteration is that the file dst_master.pl, where the combination rule is written, is
used as a module and the needed predicates are exported to our Python script.
:- use_module(dst_master.pl)
Compound("use_module",Atom("/home/tatiana/dst_master.pl")).post_goal()

The second one is that the mass functions (m/3), Theta (theta/1) and number of mass
functions (num_of_m/1) are stored by Python in a Prolog module that is used by dst_master.
pl.
create module that will contain the information about
the Universe: theta, num_of_m , mass functions
file_object = open('/home/tatiana/mass_func.pl', 'w+')

write the information for module exporting
file_object.write(":-module(mass_func).\n")
file_object.write(":-export(m/3).\n")
file_object.write(":-export(theta/1).\n")
file_object.write(":-export(num_of_m/1).\n")

write about theta and num_of_func
file_object.write("\ntheta("+str(Theta)+").\n")
file_object.write("num_of_m(3).\n")

file_object.write("\n")
for m_num, focal_set , bpa in m1_rd:

file_object.write("m("+str(m_num)+","+str(focal_set)+","+str(bpa)+").\n")

file_object.write("\n")
for m_num, focal_set , bpa in m2_ch:

file_object.write("m("+str(m_num)+","+str(focal_set)+","+str(bpa)+").\n")

file_object.write("\n")
for m_num, focal_set , bpa in m3_g:

file_object.write("m("+str(m_num)+","+str(focal_set)+","+str(bpa)+").\n")

file_object.close()

Also, the predicate’s bpa/2 arity was altered to bpa/3 as for the plots that will be presented

T. Boura 62

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

in the next section we needed an argument that represents the number of intersecting
combinations. It’s functionality remains the same.
%Tars are the subsets and NewVals their corresponding values
%bpa(-Tars, -NewVals, -TarsAndVals) produces the new focal points
%Tars, their combined values NewVals and returns combinations list
bpa(Tars, NewVals, TarsAndVals):-

theta(Theta),
findall((A,Val), compute(A, Val, Theta), TarsAndVals),
sort(TarsAndVals , SortedTarsAndVals),
sum_same_sets(SortedTarsAndVals , NewTarsAndVals),
split_to_Tars_Vals(NewTarsAndVals , Tars, Vals),
sum(Vals,Div),
list_div(Div, Vals, NewVals).

Last but not least, we created a new predicate belief_comb/3 that has the same functionality
as the predicate belief/2, with the difference that it returns the Vals list fromwhich we obtain
the number of combinations. We did not change the existing predicate but created a new,
as not in all test cases in this article we care about the number of combinations and for
those we don’t there is no need of adding an extra functionality.
%belief_comb(+A, -V, -Vals) finds bel, V, for set A
% and returns Vals list
belief_comb(A, V, Vals):-

findall(Val, compute(_,Val,A), Vals),
norm_compute(Vals, V).

6.2.2 Code’s structure

Until now, we have mentioned some alterations that we did to the code of [16], not only
regarding the predicates, but also regarding the structure of the code as we use ECLiPSe
through Python. Also, we noted that we will use test cases in order to measure the per-
formance of the implementation when applied on the dataset. All this information may be
confusing to the reader when thinking about the architecture of the system, but mostly
when thinking about the data’s flow.

For this reason, the Data Flow Diagram (DFD) 6.1 is presented. In 6.1, the external entity
User provides the dataset to the script dst_application_mult_exec.sh which runs multiple
executions of the process dst_applycation.py providing each time a different fraction of the
dataset to be used. The process dst_applycation.py creates the process mass_func.pl that is
imported as a module from the process dst_master.pl. The latter provides dst_applycation
.py with the predicates needed to compute belief and the mass joint. The results of the
computations accompanied with some information are stored in five(5) data stores (.csv
files), that accord the input to the processes plot_results_DR.py and plot_results_Bel.py.
Those two processes illustrate the plots that we will use as a measure of the implementa-
tion’s performance.

T. Boura 63

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

Figure 6.1: Data Flow Diagram of DST Application using CLP

So, the main process in our program is the dst_applycation.py, that does all the prepro-
cessing in the dataset, computes the mass functions as explained in Chapter 5 and then
the mass joint and belief. Taking into consideration the altered predicates and PyCLP’s
functionality, an example of the code in dst_applycation.py used to call Dempster’s rule
and belief’s predicates is listed below.
:- use_module(dst_master.pl)
Compound("use_module",Atom("/home/tatiana/dst_master.pl")).post_goal()

resume execution of ECLiPSe engine
result, dummy = resume()
if result != SUCCEED:

print(result,dummy)

create variables for Dempster's rule
V=Var()
CombinedMass=Var()
TarsAndVals=Var()

create compound for Dempster's rule and post goal
Compound("bpa",CombinedMass ,V,TarsAndVals).post_goal()

compute Dempster's rule
result, dummy = resume()
if result != SUCCEED:

print(result,dummy)

create variables for belief
A = Var()
B = Var()
C = Var()

initialize A as [1]
Compound("=", A, PList([1])).post_goal()

T. Boura 64

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

resume()

create compound for belief and post goal
Compound("belief_comb",A,B,C).post_goal()

compute belief of {1}
result, dummy = resume()
if result != SUCCEED:

print(result,dummy)

Listing 6.4: Computing mass joint and belief of {1} for the application-dataset

As explained in the comments, the code’s purpose is to compute the mass joint from the
three mass functions of the dataset and the belief of set {1}. The actual code we used is
based on the one showed in Listing 6.4, but is more enhanced as we cared to produce
many test cases and store data for the plots presented next.

6.3 Results

After seeing the outline of the code, the next step is to evaluate the performance of it,
which, in our case, is the the performance of Kaltsounidis’ implementation when used on
the application of DST in Recommender Systems and specifically on our chosen dataset.
In this section we will do just that, by providing some plots to showcase the relation be-
tween the computational time and some other features of the data set. Before proceeding
to the plots, the reader should take into consideration that the code was executed in a
Dell, Inspiron 15, 5000 series laptop with Intel Core i5 5200U, 8 GB RAM and 1 TB HDD,
so in another machine the time results could be different, but we are more interested in
time growth and not the time value itself.

6.3.1 Computing the mass joint

In this section we demonstrate some figures that showcase the performance of the ECLiP-
Se Prolog implementation of Dempster’s rule when used to combine mass functions from
the chosen dataset. In particular, three(3) figures are presented. Figure 6.2 shows the
relation between the time taken by Dempster’s rule to compute the combined mass in
nanoseconds and the number of focal points in every mass mass function. The second
figure, 6.3, demonstrates the relation between the time it took Dempster’s rule to compute
the combined mass in nanoseconds and the number of intersecting / non-intersecting
combinations. The third one, 6.4, displays the relation between the time it took Dempster’s
rule to compute the combined mass in nanoseconds and the size of Θ.

In the first plot, 6.2, the number of focal points regarding the first mass function are col-
ored blue, the ones regarding the second mass function are colored orange and the ones

T. Boura 65

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

Figure 6.2: Dempster’s rule : Plot - time(ns) and number of focal points per mass function

regarding the third, green. Here, the growth of the focal points of mass functions 1 and 2
regarding the time is exponential. This happens because due to the small domain of those
two features (|release_date| ⋍ 5 and |click_hour| ⋍ 5) even when we consider a large
fraction of the dataset, the number of possible focal points does not change drastically.
This does not apply to the third mass function, as the feature genres has a large domain
and the number of its focal points increases as the considered fraction is increased. We
may conclude that the summation of the focal points of the three mass functions shares a
similar behaviour to the plot of the focal points of the third mass function regarding time,
which is that as the number of focal points increases the computational time increases as
well.

From the plot 6.3 we notice that as the computational time increases, the number of com-
binations either intersecting or not becomes larger and vice versa. Again, as the num-
ber of combination grows larger, the growth of time is exponential. This behavior is ex-
pected, as CLP implementation produces results in reduced time when the number of
non-intersecting combinations is large.

Continuing to the observation of the plot 6.4, as one can see, increased computational
times correspond to larger Θ sizes and for |Θ| ≤ 200 the computational time is low.

Decisively, the computation of the combined mass functions of the dataset is efficient,
for the amount of mass functions and their focal points that were provided. Even for big
Θ’s the computational time is acceptable as the maximum is 1.75 × 1e10 ns = 17.5 sec-
onds. For a larger amount of mass functions, focal points and movies the performance

T. Boura 66

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

Figure 6.3: Dempster’s rule : Plot - time(ns) and number of combinations

Figure 6.4: Dempster’s rule : Plot - time(ns) and Θ size

T. Boura 67

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

could not be measured, due to lack of processing power which prevents us from coming
to general conclusions.

T. Boura 68

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

6.3.2 Computing belief

As we demonstrated the performance of Dempster’s rule, it is anticipated that we study
the performance of belief computation of item-sets in the dataset of application. For that
reason, we introduce four(4) plots. Plot 6.5 shows the relation between the number of
combinations performed by belief_comb/3 predicate and belief’s computational time. The
next three Figures 6.6, 6.7 and 6.8 present the relation between the size of the Universe
and the time it took Prolog to compute the belief of the set {1}, a set S in the powerset of
Θ with the size of S being halt of Θ’s and the belief of Θ respectively. Note that we won’t
be studying the performance of plausibility, as the plausibility of a set A can be computed
through the belief of A.

Figure 6.5: Plot - time(ns) and number of combinations

Figure 6.5 shows a linear growth of the time needed to compute the belief (regardless
the set) as the number of combinations ascends. This time is high for a large number of
combinations as, for example, for number of computations ⋍ 40000 the time needed is
⋍ 1.5 · 1e10ns = 15000000000ns = 15seconds, but still acceptable, as most likely these
combinations correspond to the computation of Θ’s belief.

T. Boura 69

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

Figure 6.6: Belief of {1} : Plot - time(ns) and Θ size

Each of the Figures 6.6, 6.7 and 6.8 shows the computational time of set’s belief regard-
ing the |Θ|. In general, in all plots one can see that as |Θ| grows, time grows higher as
well. Computing belief of sets with bigger cardinality, though, is more time consuming as
one may notice in the ’time’ axis of the three Figures, since it ranges (0− 1.5) · 1e7 in 6.6,
(0− 5) · 1e8 in 6.7 and (0− 1.5) · 1e10 in 6.8.

What is interesting is commenting on the growth of each Figure. Starting backwards,
in Figure 6.8 we notice a more ”strict” ascend. By that we mean that, if we were to draw a
line to follow these points, an exponential one would fit. From this we could assume that
as |Θ| rises, the time to compute the belief of it rises with an exponential growth. As for
the other two Figures, 6.6 and 6.7, we do notice that for small Θ’s the computational time
of {1} and S such that ∈ 2Θ, |S| = |Θ|/2 is low, but as the Universe grows larger, it is not
necessary that the time grows with a fixed rate, or follows a specific function as before.
From that we conclude that the computational time of belief for a set A ⊂ Θ depends, to a
degree, on the size of Θ, but also on other parameters such as the number of focal points
and the intersecting sets, which is essentially the number of combinations. For sure for
computing Θ’s belief the number of combinations is relevant, but in this case this number
is fixed in the system, as the number of combinations equals to the number of possible
combinations of Dempster’s rule (|focal points per mass function||mass functions|), whereas
for two sets A,B such that A,B ⊂ Θ and |A| = |B|, the number of combinations when
computing their belief may differ.

Here as well we can conclude that the belief’s computations is efficient for the data pro-
vided. The maximum time of computation even for a large set and a large Θ is normal and
one would chose this implementation to compute belief for this dataset.

T. Boura 70

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

Figure 6.7: Belief of S ∈ 2Θ, |S| = |Θ|/2 : Plot - time(ns) and Θ size

Figure 6.8: Belief of Θ : Plot - time(ns) and Θ size

T. Boura 71

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

7. COMPARING ECLIPSE’S AND IBELIEF’S IMPLEMENTATIONS

Both ECLiPSe Prolog’s and ibelief ’s implementations provide functions to perform mass
combinations as well as compute belief. In ECLiPSe the code is developed with libraries
that use constraints, whereas in ibelief belief and plausibility functions use FMT’s. We are
going to explore what implementation performs better and under which circumstances.

7.1 Test cases

Our first thought was to compare the two implementations by their performance in the
application described in Chapter 5. Noticeably, we had no problem using ECLiPSe’s im-
plementation in order to compute the combined mass and belief. However, when using
ibelief ’s implementation we faced some obstacles. These obstacles were: creating the
mass functions in the correct format so that they could be used as an input in ibelief ’s
combination rules.

Let’s elaborate on that. The function DST needs an input matrix of dimensions 2|Θ| ×
|mass functions| that represents the mass to be combined. Each column represents a
mass function and every cell represents the belief assignment of a set that belongs to
the Universe’s powerset. These belief assignments are not random, but correspond to
sets sorted first by size and then by lexicographical order. So, after projecting the feature-
based mass functions to item sets in order to create mass functions that correspond to
the same Universe, we needed to map these item sets to the Universe’s powerset. This
operation not only has a high computational cost but is against the logic of DST’s applica-
tion presented in [33]. This application prevents us from computing the whole powerset
of Θ which exempts us from computations of exponential complexity. So, mapping our
item sets to their position in the powerset introduces again this high complexity that we
were able to avoid when computing the projected mass functions. For this reason, we
decided to measure only Prolog’s performance in the application of DST and compare the
two implementations using random test cases, that will be described implicitly later on.

7.2 Code’s structure

We did analyze the libraries used to produce the results, but in order for the reader to
understand the components of the program and their connection through data, the Data
Flow Diagram 7.1 is presented.

In our system, the external entity User provides to comparison_mult_exec.sh the |U |, the
number of mass functions and the number of focal points that will be used throughout the
multiple execution of the processes ibelief_results.py, prolog_results_Dempster.py, prolog_
results_bel.py and example_gen_ibelief_comparison.cpp. The process example_gen_ibelief_

T. Boura 72

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

Figure 7.1: Data Flow Diagram of comparison of the two implementations

comparison.cpp is the one creating the test cases for the ECLiPSe implementation and
is an alteration of a similar process implemented in [16]. The process ibelief_results.py
computes the mass joint and belief using the ibelief module, while prolog_results_Dempster
.py and prolog_results_bel.py compute the mass joint and the belief of a set, respec-
tively, using Prolog. Then, the results for the computation of belief for every specific
data combination (|U |, number of mass functions and number of focal points) are stored
in a unique .csv file and the same happens with Dempster’s rule computations. These
data stores are then used by the two Python scripts plot_ibelief_vs_prolog_Dempster.py
and plot_ibelief_vs_prolog_bel.py to produce the corresponding plots.

7.3 Results

In the section, at first, we will present the results regarding the computation of the com-
bined mass function and, then, the results regarding the computation of the belief function.

T. Boura 73

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

7.3.1 Computing the mass joint

In order to measure and discuss the performance of the two implementations several
test cases were created. These cases, we experimented with Θ size, number of mass
functions and number of focal points per mass function. Specifically, the test cases were
combinations of those three measures where |Θ| ∈ {10, 15, 20, 25}, number of mass func-
tions ∈ {2, 3, · · · 10} and number of focal points per mass function ∈ {4, 6, · · · , 14}.

Note that the test cases of these implementations are not the same for the both ap-
proaches. Since we are randomly generating them, the only thing we provide and assure
these cases have in common is the Θ, the number of mass functions and the number of
focal points, which means that the test cases may differ on the focal point’s placement
as well as their values. For these test cases, the comparison was made regarding the
amount of combinations, which is |focal points per mass function||mass functions|, but not
regarding the intersecting combinations, as they differed for each simultaneous input of
each implementation. Like we described earlier, it is computationally heavy in ibelief ’s
implementation to find the index of a subset in the combined mass’ matrix. Thus, the
comparison won’t be made regarding the intersecting combinations.

The Tables 7.1, 7.2, 7.3 and 7.4 show the results for a fixed Θ size and the Figures 7.2,
7.3, 7.4 and 7.5 the relation between time in nanoseconds and combinations. Note that
the term ’inf ’ in the columns of the tables that showcase time denotes that for the cor-
responding data the implementation of Dempster’s rule respectively did not compute the
mass joint due to the large amount of memory needed (in case of both Prolog and ibelief)
or it took a substantially large amount of time to compute the results (in case of Prolog).

Figure 7.2: Dempster’s rule : Plot - |Θ| = 10, time(ns) and number of combinations

Before elaborating on the results from the tables we should mention an observation we

T. Boura 74

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

Table 7.1: Dempster’s rule : Results for |Θ| = 10, number of mass functions ∈ {2, 3, · · · , 10} and
number of focal points per mass function ∈ {4, 6, · · · , 14}

Figure 7.3: Dempster’s rule : Plot - |Θ| = 15, time(ns) and number of combinations

made when running the test cases regarding the computation of the combined mass
through ibelief ’s implementation of Dempster’s rule. For some tests, if the number of
mass functions is small, e.g. 2,3 or 4 when |Θ| = 10, up to 6 when |Θ| = 20, then the
matrix of the mass joint contains some negative values. The amount of negative val-

T. Boura 75

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

Table 7.2: Dempster’s rule : Results for |Θ| = 15, number of mass functions ∈ {2, 3, · · · , 10} and
number of focal points per mass function ∈ {4, 6, · · · , 14}

Figure 7.4: Dempster’s rule : Plot - |Θ| = 20, time(ns) and number of combinations

ues seem to go up when the number of focal points is quite larger than the number of
mass functions. For example, this happens for nbFocalElement=50, ThetaSize=20, nbMass=5,
nbFocalElement=50, ThetaSize=10, nbMass=3 etc. Nonetheless, the summation of the matrix
values is correct (≃ 1). Since we don’t have access to the code that implements Demp-

T. Boura 76

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

Table 7.3: Dempster’s rule : Results for |Θ| = 20, number of mass functions ∈ {2, 3, · · · , 10} and
number of focal points per mass function ∈ {4, 6, · · · , 14}

Figure 7.5: Dempster’s rule : Plot - |Θ| = 25, time(ns) and number of combinations

ster’s rule in ibelief, we cannot spot the origin of this behavior, but only make assumptions.
One assumption is that for a small amount of mass functions and a large amount of focal
points the computations cause overflow. Another one is that the normalization constant
K becomes larger than one and thus the computation 1−K is < 0. But, again, these are

T. Boura 77

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

Table 7.4: Dempster’s rule : Results for |Θ| = 25, number of mass functions ∈ {2, 3, · · · , 10} and
number of focal points per mass function ∈ {4, 6, · · · , 14}

only assumptions. Also, bear in mind that we are not applying the rule directly from R, but
we do it through Python, which means that we cannot be sure if the cause of the negative
values lies within the implementation itself, the arithmetic of Python or any other reason.

While studying the Tables we observe that the ECLiPSe implementation of Dempster’s
Rule was unable to finish within an acceptable amount of time (or in general) when the
number of combinations became ≥ 100, 000, 000, or else when the number of mass func-
tions became larger than 7 and the focal points per mass function larger than 10. We
must point out that, these numbers are the same regardless of the size of Θ. It also
seems that the computational time rises with a higher rate when the number of focal points
grows. For example in Table 7.4 for number of mass functions equal to 6 the time it took
Prolog to compute the mass joint for 8 focal points was 4042473276 ns and for 10 fo-
cal points 26213449461 ns that is about 6,5 times more(!). This verifies us the fact that
this implementation is sensitive to the number of combinations, as #total combinations =
(#focal points)(#mass functions) and (#focal points)(#mass functions) ≪
(#focal points+ 1)(#mass functions).

On the other hand, ibelief ’s implementation seems to be consistent in the amount of time
it takes for it to compute Demster’s rule for a fixed |Θ|. For example, in Table 7.1 ibelief ’s
computational time ranges from 26350989 to 35934945 ns regardless of the mass func-
tions or the focal points. The big time difference is between different |Θ|’s. If you take a

T. Boura 78

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

look at the Tables 7.2 and 7.3 for |Θ|=15, 8 focal points and 5 mass functions the compu-
tational time was 178947500 ns, whereas for |Θ|=20, 8 focal points and 5 mass functions
it was 4014971199 ns, which is approximately 22 times more(!). The intuition that this im-
plementation is sensitive to the Θ size is confirmed by the fact that for |Θ|=25 ibelief could
not produce results due to the excessive amount of memory needed to allocate the mass
matrices. Remember that in this implementation each mass function is of size 2|Θ| × 1,
that makes it necessary to allocate memory for 2|Θ| × |mass functions| and as Θ grows
larger that becomes unrealistic.

To sum up, for a small amount of combinations, regardless the Universe size, ECLiP-
Se’s implementation is faster. For many possible combinations, though, ibelief ’s imple-
mentation is significantly better, but only for small |Θ|’s. For |Θ| ≥ 25 only Prolog is able
to produce the combined mass function.

7.3.2 Computing belief

It has been interesting to study the behavior of the two different implementations of Demp-
ster’s rule. However, a very important part of DST is measuring belief. Thus, in this section
we shall study the behavior of the two different implementations of calculating the belief
function.

Before continuing, some differences between the two implementations should be high-
lighted:

1. ibelief ’s implementation of belief function mtobel uses FMT’s, while Kaltsounidis’s
implementation constraints.

2. ibelief ’s mtobel needs an input argument that is the combined mass, which means
that prior to calling mtobel a combination rule should be performed, otherwise the
computation cannot take place. For ECLiPSe’s implementation that is not needed.

3. mtobel requires as an argument the combined mass and returns a vector where the
belief values are computed for every subset of the powerset of Θ. That means,
that the computational time of belief in ibelief ’s function is the same ∀s ∈ 2|Θ|. In
ECLiPSe’s implementation, on the other hand, the predicate belief(+A,-V) is used
to compute the belief of a specific set A and, thus, the computational time of belief
may vary between different A ∈ 2|Θ|.

Like before, in order to measure the performance of the two implementations several, sim-
ilar but not identical, test cases were created where we experimented with Θ size, number
of mass functions and number of focal points per mass function. Since the test cases are
not exactly the same, the results of each implementations cannot be compared to one
another. Specifically, the test cases were combinations of those three measures where

T. Boura 79

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

|Θ| ∈ {10, 15, 20, 25}, number of mass functions ∈ {2, 3, · · · 10} and number of focal points
per mass function ∈ {4, 6, · · · , 14}. Additionally, different sets with different sizes(lengths)
were used to measure the performance of the computation of their belief.

In the Tables 7.5, 7.7, 7.9 and 7.11 one can see for a fixed Θ size the time taken by
CSP implementation to compute belief for some of the test cases. Respectively, in the
Tables 7.6, 7.8, 7.10 and 7.12 can be seen for a fixed Θ size the time taken by ibelief
implementation to compute belief for the similar test cases. The difference between the
columns ’ibelief time(ns) bel’ and ’ibelief time(ns) bel and rule’ is that the first showcases
the time it took mtobel to compute the belief, whereas the second showcases the time it
took Dempster’s rule to compute the joint mass plus the time it took mtobel to compute
the belief, as -like we mentioned previously- in ibelief ’s implementation it is required to
perform a combination rule before computing the belief. Again, if any time column has the
symbol ’inf ’ in its cell, it means that for these data, the implementation could not produce
a result in an acceptable time frame, or could not produce a result at all due to failure of
allocating the required memory.

The Figures 7.6, 7.9, 7.11, 7.13 plot the relation between the length of the set of which we
computed the belief and the time required for the computation in the CSP implementation.
From these, 7.6, 7.9 and 7.11 include four(4) sub-figures each. These sub-figure’s have a
fixed |Θ| and |mass functions| but every one has different |focal points per mass function|
∈ {4, 6, 8, 10, 14}. Also, the scale in the time columns may vary between each sub-figure.

Similarly, the Figures 7.7, 7.8, 7.10, 7.12 plot the relation between the length of the set
of which we computed the belief and the time required for the computation in the ibelief
implementation. From these, 7.7, 7.10 and 7.12 include four(4) sub-figures each. These
sub-figure’s have a fixed |Θ| and |mass functio
ns| but every one has different |focal points per mass function| ∈ {4, 6, 8, 10, 14}. Again,
the scale in the time columns may vary between each sub-figure.

You may have noticed that we did not study the relation between the computational time
and the number of combinations, as in ibelief the number of combinations is difficult to
compute, for reasons described in the beginning of this chapter.

T. Boura 80

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

Table 7.5: Belief : Results for |Θ| = 10, number of mass functions ∈ {2, 6, 10} and number of focal
points per mass function ∈ {6, 10, 14} and different set-lengths, CSP Implementation

T. Boura 81

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

Table 7.6: Belief : Results for |Θ| = 10, number of mass functions ∈ {2, 6, 10} and number of focal
points per mass function ∈ {6, 10, 14} and different set-lengths, ibelief Implementation

T. Boura 82

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

(a) number of focal points=4 (b) number of focal points=6

(c) number of focal points=8 (d) number of focal points=10

Figure 7.6: Belief : Plot - |Θ| = 10 and number of mass functions=5, time(ns) and set-length, CSP
Implementation

T. Boura 83

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

(a) number of focal points=4 (b) number of focal points=6

(c) number of focal points=8 (d) number of focal points=10

Figure 7.7: Belief : Plot - |Θ| = 10 and number of mass functions=5, time(ns) and set-length, ibelief
Implementation

T. Boura 84

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

Figure 7.8: Belief : Results for |Θ| = 10, number of mass functions=10 and number of focal points
per mass function=10 and different set-lengths

T. Boura 85

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

Table 7.7: Belief : Results for |Θ| = 15, number of mass functions ∈ {2, 6, 10} and number of focal
points per mass function ∈ {6, 10, 14} and different set-lengths, CSP Implementation

T. Boura 86

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

Table 7.8: Belief : Results for |Θ| = 15, number of mass functions ∈ {2, 6, 10} and number of focal
points per mass function ∈ {6, 10, 14} and different set-lengths, ibelief Implementation

T. Boura 87

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

(a) number of focal points=4 (b) number of focal points=6

(c) number of focal points=8 (d) number of focal points=10

Figure 7.9: Belief : Plot - |Θ| = 15 and number of mass functions=5, time(ns) and set-length, CSP
Implementation

T. Boura 88

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

(a) number of focal points=4 (b) number of focal points=6

(c) number of focal points=8 (d) number of focal points=10

Figure 7.10: Belief : Plot - |Θ| = 15 and number of mass functions=5, time(ns) and set-length, ibelief
Implementation

T. Boura 89

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

Table 7.9: Belief : Results for |Θ| = 20, number of mass functions ∈ {2, 6, 10} and number of focal
points per mass function ∈ {6, 10, 14} and different set-lengths, CSP Implementation

T. Boura 90

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

Table 7.10: Belief : Results for |Θ| = 20, number of mass functions ∈ {2, 6, 10} and number of focal
points per mass function ∈ {6, 10, 14} and different set-lengths, ibelief Implementation

T. Boura 91

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

(a) number of focal points=4 (b) number of focal points=6

(c) number of focal points=8 (d) number of focal points=10

Figure 7.11: Belief : Plot - |Θ| = 20 and number of mass functions=6, time(ns) and set-length, CSP
Implementation

T. Boura 92

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

(a) number of focal points=4 (b) number of focal points=6

(c) number of focal points=8 (d) number of focal points=10

Figure 7.12: Belief : Plot - |Θ| = 20 and number of mass functions=6, time(ns) and set-length, ibelief
Implementation

T. Boura 93

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

Table 7.11: Belief : Results for |Θ| = 25, number of mass functions ∈ {2, 6, 10} and number of focal
points per mass function ∈ {6, 10, 14} and different set-lengths, CSP Implementation

T. Boura 94

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

Table 7.12: Belief : Results for |Θ| = 25, number of mass functions ∈ {2, 6, 10} and number of focal
points per mass function ∈ {6, 10, 14} and different set-lengths, ibelief Implementation

Figure 7.13: Belief : Plot - |Θ| = 25 and number of mass functions=6, time(ns) and set-length

T. Boura 95

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

No differently than the Dempster’s rule performance, when computing belief, ECLiPSe’s
implementation does not perform well when the number of possible combinations be-
comes large. This is expected, as both predicates’ functionality belief/2 and bpa/3 are
based on the same predicates as stated when introducing the predicates of this imple-
mentation. What cannot be seen from Tables 7.5, 7.7, 7.9 and 7.11 is that belief(+A,-V)
may produce results for a number of mass functions larger than 6 and number of focal
points larger than 10 when A’s length is less than 6, but the computation is so slow, that it
is not worth mentioning. For that reason, Figure 7.8 showcases only the performance of
ibelief ’s implementation. Similar figures could be plotted for other Θ sizes, but they would
not have been different. The performance of ibelief in test cases that ECLiPSe cannot
handle can be seen through the previously mentioned tables.

In the other cases, where Prolog does produce results, we notice that for fixed |Θ| sizes,
number of mass functions and focal points the computational time of belief does not nec-
essary grow when asking for the belief of a set that contains more elements. The Figures
7.6, 7.9, 7.11, 7.13 are a proof of that, as we can see that the line is not strictly ascending.
Despite this fact, the line is still ascending, which means that, generally, for larger sets
the computation of their belief with this method is more time consuming. Also, as the |Θ|
size enlarges, the computation of the belief of a specific set takes more time, but not sig-
nificantly. For example, in Table 7.5 for the set {2, 3} and 2 mass functions with 10 focal
points each, Prolog computed the belief in 315721 ns. For the same data, in Table 7.7 the
belief is computed in 435965 ns, that is just 1.3 times more.

We already explained that ibelief ’s implementation computes the belief for every subset
of the Universe’s powerset and for that reason, the computational time depends solely
on the dataset and not on the set whose belief we want to compute. Here as well, the
factor that affects the performance of mtobel is the size of the Universe and neither the
number of mass functions, nor the focal points per mass function. This fact can be ob-
served in both columns that refer to ibelief ’s time in Tables 7.6, 7.8, 7.10 and 7.12. Since
computing the mass joint is essential to compute the belief in this implementation, it is
self-explanatory why this implementation does not produce results due to the inability of
allocating the needed memory for large |Θ|, as seen in Table 7.12 and Figure 7.13.

As we mentioned, there cannot be a comparison between the performance of the two
implementations, as the test cases may differ, but some general remarks can be made.
For example, for a smaller amount of focal points, and thus combinations, ECLiPSe pro-
duces results quick, but when the number of focal points is large, the computational time
ascends. Also, for smaller sets Prolog computes their belief quite fast. On the other hand,
ibelief computes quickly the belief for small Universes, but does not perform well at all
for larger ones and the main problem for that is that it is not able to allocate the needed
memory for the mass matrix.

Previously, we wrote that mtobel produces a vector of size 1 × 2|Θ| where the belief is
stored ∀s ∈ 2|Θ|. In that vector, the belief value for each s is stored regarding the sets

T. Boura 96

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

size and elements, which means that the sets are sorted first by size and then lexico-
graphically. So what happens if we want to compute the belief for a set s = {1, 2} through
ibelief? Let’s suppose that we have Θ = {1, 2, 3}. First of all, we compute the mass joint,
then call the function mtobel that returns the vector v and then we have to find the index
of s in v. We compute the index of s (which is 5) and go to v[5] in order to find the belief.
So, after computing the belief, there is an overhead of finding the index of the set we are
interested in, in order to retrieve it’s belief. For large Θ’s this overhead is not minor and
for sure makes ibelief ’s implementation not user friendly.

T. Boura 97

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

8. CONCLUSIONS AND FUTURE WORK

Dempster’s rule of combination and the computation of belief are the two backbones of
Dempster-Shafer theory but are very costly in terms of computational time. Kaltsounidis
in his thesis developed an implementation based on CLP in order to try and reduce this
computational cost. Through several randomly generated test cases he observed a re-
duced run time. Continuing his work we observed the behavior of his implementation in an
application of DST and specifically using a real-life dataset. The problem we faced was
that the pre-processing of the dataset used in order to compute the mass functions as
defined by the application took long time as the fraction of the dataset we used increased.
Thus, we could not measure the performance of the implementation for Θ sizes larger
that 400 and number of focal points larger that 160. For the fraction of the dataset we
used, though, the ECLiPSe Prolog implementation computed the mass joint and the be-
lief within an acceptable time range, with the most costly computation taking 17.5 seconds.

Our next step was to compare Kaltsounidis’ implementation to the ibelief ’s one. Unfor-
tunately, that could not be done in the dataset of application because of the way FMT’s
implementation takes its input. So, the comparison was made with artificial test cases.
It should be noted, also, that we could not compare the two implementations regarding
the computation of belief, as we did not ensure identical test cases. The resolution is that
ibelief ’s implementation generally produces correct results faster for Θ sizes smaller than
25, when computing Dempster’s rule. For larger Θ’s it cannot produce results at all. Also,
the CLP implementation may produce the results in less time if the total number of com-
binations is small, when talking about the combination rule. For a high amount of focal
points and mass functions this implementation is unable to compute the mass joint.

For the belief function computation, CLP could not produce results for a high number
of combinations, but had a steady computational time within different Θ sizes for fixed
number of mass functions and number of focal points. As for ibelief ’s implementation, it
was unable to produce results for large Θ sizes but had quite similar computational times
for different number of mass functions and number of focal points within the same Θ. So,
both implementations have their pros and cons and one should take into consideration the
structure of the dataset before choosing one of the two implementations.

Decisively, ibelief ’s implementation is not very user-friendly. First of all, the input of the
combination rule requires the mass for each subset of Universe’s powerset for every mass
function, which is computationally heavy for real-life applications. Another problem that
can be observed when using this implementation, is that to combine the mass functions
and produce the mass joint, a matrix of size 2|Θ| × |mass functions| has to be allocated.
When the Θ becomes large, that matrix cannot be allocated and the implementation can-
not produce results. If that matrix was not to be allocated and another data structure was
to be used, probably such problem was not to be faced and ibelief could produce results.
In that case, we could measure the performance of FMT’s in test cases with large Uni-

T. Boura 98

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

verses and not deal with the limitations of the data structure itself.

Generally, it would be interesting to observe the behavior of Kaltsounidis’ implementation
on different datasets, with more mass functions and reduced pre-processing time. Also,
a comparison of this implementation with another on a real-life application would help us
come to the conclusion if the implementation is applicable and if Dempster’s rule can be
used as a combination of degrees of belief. Additionally, a compelling continuation of this
Thesis would be to ensure identical test cases in both CSP’s and ibelief ’s implementations
in order to compute the belief and compare their performance. Lastly, we mentioned that,
usually, time approximation methods are used in order to combine mass functions and
compute belief. An interesting work would be to compare these methods against each
other and against CLP’s implementation and FMT’s implementation.

T. Boura 99

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

ABBREVIATIONS - ACRONYMS

DST Dempster-Shafer theory

BPA Basic Probability Assignment

TBM Transferable Belief Model

FMT Fast Möbius Transform

CSP Constraint Satisfaction Problem

CP Constraint Programming

CLP Constraint Logic Programming

CRAN The Comprehensive R Archive Network

RS Recommender Systems

DFD Data Flow Diagram

AI Artificial Intelligence

ML Machine Learning

T. Boura 100

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

ANNEX I

PyCLP Package Installation

Installation source: https://sourceforge.net/p/pyclp/

In this appendix the installation process of the PyCLP package will be discussed as it
had some complexities. This discussion will hopefully be useful for anyone who will be
trying to install this package in the future.

The PyCLP package is an interface to ECLiPSe Constraint Programming System. This
package was installed in an Ubuntu 18.04.5 LTS machine. Personally, I found it easier to
try and install the package via command line, but that could be done as well in a PyCharm
project.

Let’s run through the pre-installation requirements: A Python 2.x or 3.x version should
be installed, as well as the Cython package and, of course, the ECLiPSe Constraint Pro-
gramming System, but the 6.1 version. Although the requirements mention that the library
is supported through a Python 3.x version, I was able to install it only when Python 2.7
was used as with other version’s the Cython’s module could not be found.

Because Python 2.7 was used, rpy2 2.8.6 was installed.

If one has multiple Python versions installed in their machine, they can choose with sudo
update-alternatives --config python which one will be used.

Another problem that appeared was that with Python 3.6 and 3.7 the compilation process
with Cython (both on gcc and msvc) had given the error:
src\pyclp\pyclp.pyx:753:40: Cannot convert Python object to 'pword'

This error was fixed by manually replacing the following block of code in the file pyclp.pyx,
if len(tail) == 0:

tail_pword=pyclp.ec_nil()
else:

tail_pword=PList(tail)

with the block,
if len(tail) == 0:

tail_pword=pyclp.ec_nil()
else:

tail_pword=PList(tail).get_pword()

However, even though the installation was only possible when Python 2.7 was used, but
when the program was run, then it worked perfectly well with Python 3.10.

T. Boura 101

https://sourceforge.net/p/pyclp/

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

We must highlight again that the needed ECLiPSe version is 6.1 and not the latest, 7,
otherwise a hand-full of errors will occur.

It should be noted, also that in setup.py I had to replace all relative paths with absolute
ones.

The last obstacle before being able to run the project was that the import from pyclp import
* failed and the following error was produced
ImportError: libeclipse.so: cannot open shared object file: No such file or

directory

From the error it was easy to understand that the linker was not able to find the location of
the file libecliplse.so. In order to solve this the environment variable LD_LIBRARY_PATH
was added in the /etc/environment file since,
LD_LIBRARY_PATH is the search path environment variable for the
linux shared library

In Linux, the environment variable LD_LIBRARY_PATH is a colon-
separated (:) set of directories where libraries are
searched for first before the standard set of directories.

T. Boura 102

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

REFERENCES

[1] Belief function implementation. https://cran.r-project.org/web/packages/ibelief/index.html.
Accessed: 2022-01-01.

[2] The eclipse constraint programming system. https://eclipseclp.org/. Accessed: 2022-01-01.

[3] Pandas open source data analysis and manipulation tool. https://pandas.pydata.org/. Accessed:
2022-02-10.

[4] Python interface to the r language (embedded r). https://pypi.org/project/rpy2/. Accessed: 2022-
01-01.

[5] Python library to interface eclipse constraint system. https://sourceforge.net/projects/pyclp/.
Accessed: 2022-01-01.

[6] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez. Recommender systems survey. Knowledge-
Based Systems, 46:109–132, 2013.

[7] Maxime Chaveroche, Franck Davoine, and Véronique Cherfaoui. Efficient möbius transformations and
their applications to dempster-shafer theory: Clarification and implementation, 2021.

[8] Maxime Chaveroche, Franck Davoine, and Véronique Cherfaoui. Focal points and their implications for
möbius transforms and dempster-shafer theory. Information Sciences, 555:215–235, May 2021.

[9] Alain Colmerauer, Henri Kanoui, Robert Pasero, and Philippe Roussel. Un systeme de communica-
tion homme-machine en francais. Technical Report, Groupe Intelligence Artificielle, Universite d’ Aix-
Marseille II, 1973.

[10] A. P. Dempster. Upper and Lower Probabilities Induced by a Multivalued Mapping. The Annals of
Mathematical Statistics, 38(2):325 – 339, 1967.

[11] Thierry Denœux. Conjunctive and disjunctive combination of belief functions induced by nondistinct
bodies of evidence. Artificial Intelligence, 172(2–3):234–264, 2008.

[12] Didier Dubois and Henri Prade. A set-theoretic view of belief functions logical operations and approxi-
mations by fuzzy sets. International Journal of General Systems, 12(3):193–226, 1986.

[13] Jean Gordon and Edward H. Shortliffe. The Dempster-Shafer Theory of Evidence, page 272–292.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1990.

[14] P.Van Hentenryck. Constraint satisfaction in logic programming. MIT Press 1989.

[15] T. Inagaki. Interdependence between safety-control policy and multiple-sensor schemes via dempster-
shafer theory. IEEE Transactions on Reliability, 40(2):182–188, 1991.

[16] Alexandros N. Kaltsounidis. Dempster-shafer theory computation using constraint programming. 2019.

[17] Robert Kennes. Computational aspects of the mobius transformation of graphs. IEEE Transactions on
Systems, Man, and Cybernetics, 22(2):201–223, 1992.

[18] Robert Kennes and Philippe Smets. Computational aspects of the mobius transform. 1990.

[19] Robert Kennes and Philippe Smets. The transferable belief model. Artificial Intelligence, 66(2):191–
234, 1994.

[20] Vipin Kumar. Algorithms for constraint-satisfaction problems: A survey. AI magazine, 13(1):32–32,
1992.

[21] Fabien Lange and Michel Grabisch. The interaction transform for functions on lattices. Discrete Math-
ematics, 309(12):4037–4048, June 2009.

T. Boura 103

https://cran.r-project.org/web/packages/ibelief/index.html
https://eclipseclp.org/
https://pandas.pydata.org/
https://pypi.org/project/rpy2/
https://sourceforge.net/projects/pyclp/

Dempster-Shafer Τheory Application in Recommender Systems and Comparison of Constraint Programming’s and Möbius

Transform’s Implementations

[22] J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag Berlin Heidelberg, 1984.

[23] Petros Maragos. Representations for morphological image operators and analogies with linear opera-
tors. Advances in Imaging and Electron Physics, 177:45–187, 2013.

[24] Brian Mayoh. Constraint programming and artificial intelligence. In Brian Mayoh, Enn Tyugu, and
Jaan Penjam, editors, Constraint Programming, pages 17–50, Berlin, Heidelberg, 1994. Springer Berlin
Heidelberg.

[25] Thomas Reineking. Belief functions: Theory and algorithms, 2014.

[26] Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to Recommender Systems Handbook,
pages 1–35. Springer US, Boston, MA, 2011.

[27] Gian-Carlo Rota. On the foundations of combinatorial theory i. theory of möbius functions. Zeitschrift
für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 2:340–368, 1964.

[28] P. Roussel. Manuel de reference et d’ utilisation. Technical Report, Universite d’ Aix- Marseille II, 1975.

[29] Kari Sentz and Scott Ferson. Combination of evidence in dempster-shafer theory. 4 2002.

[30] Glenn Shafer. A mathematical theory of evidence. Princeton, Princeton University Press, 1976.

[31] Glenn Shafer. Perspectives on the theory and practice of belief functions. International Journal of
Approximate Reasoning, 4(5):323–362, 1990.

[32] Philippe Smets. Belief functions: The disjunctive rule of combination and the generalized bayesian
theorem. International Journal of Approximate Reasoning, 9(1):1–35, 1993.

[33] Luigi Troiano, Luis J. Rodríguez-Muñiz, and Irene Díaz. Discovering user preferences using dempster–
shafer theory. Fuzzy Sets and Systems, 278:98–117, 2015.

[34] Ronald R. Yager. On the dempster-shafer framework and new combination rules. Information Sciences,
41(2):93–137, 1987.

[35] John Yen. Generalizing the dempster-shafer theory to fuzzy sets. 1990.

[36] Edward Yourdon and Larry L. Constantine. Structured Design: Fundamentals of a Discipline of Com-
puter Program and Systems Design. Prentice Hall, 1978.

[37] Kuang Zhou, Arnaud Martin, and Quan Pan. Evidence combination for a large number of sources.
2017 20th International Conference on Information Fusion (Fusion), pages 1–8, 2017.

T. Boura 104

	CONTENTS
	INTRODUCTION
	DEMPSTER-SHAFER THEORY
	Definition of the theory
	Belief Function
	Plausibility Function
	Belief Intervals

	Dempster's rule of combination

	Properties of DST
	Combining information of different evidentiary spaces
	Conducting more general conclusions
	Dealing with various types of evidence and conflict
	Discount and Combine rule
	Disjunctive rule

	MÖBIUS TRANSFORM
	Lattices, distributive lattices and lattice functions
	Boolean lattices
	Möbius Transform
	Sequence of graphs and computation of the zeta transform
	Graph Theory Formalization

	Sequence of graphs and computation of the Möbius transform
	Fast Möbius Transform - Application to the powerset lattice 2

	Möbius Transform in Dempster-Shafer theory

	IMPLEMENTATIONS OF DEMPSTER-SHAFER THEORY TO COMPARE IN THE THESIS
	Constraint Logic Programming Implementation
	Constraint Logic Programming and Prolog
	Predicates

	Fast Möbius Transforms Implementation
	Package ibelief
	ibelief modules

	AN APPLICATION OF DEMPSTER-SHAFER THEORY IN RECOMMENDER SYSTEMS
	Recommender Systems
	Recommender System based on Dempster-Shafer theory
	Some definitions
	Basic probability assignment for a feature set

	The Thesis System
	Dataset of application
	Description
	Processing
	Altering size of the dataset
	Altering the structure of the dataset

	Computation of the basic probability assignment for each feature set
	Projection of the basic probability assignment of each feature set to items

	USING THE IMPLEMENTATION OF DEMPSTER-SHAFER THEORY IN CONSTRAINT LOGIC PROGRAMMING FOR THE APPLICATION
	Package PyCLP
	PyCLP modules
	PyCLP particularities

	Computation of the mass joint and belief from dataset
	Alteration of the initial implementation of Kaltsounidis
	Code's structure

	Results
	Computing the mass joint
	Computing belief

	COMPARING ECLIPSE'S AND IBELIEF'S IMPLEMENTATIONS
	Test cases
	Code's structure
	Results
	Computing the mass joint
	Computing belief

	CONCLUSIONS AND FUTURE WORK
	ABBREVIATIONS - ACRONYMS
	ANNEX I
	PyCLP Package Installation
	REFERENCES

