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Euxaplotieg

H mepapatiky autr peAétn Sle€nxOn oto mAaiclo amoktnong
Aldaktopikou  Autdwpoatog¢  otnv  OpBodovtiky  otnv
Obovtiatpikr) ZxoAn tou Mavemotnuiov ABnvwv. H €umpaktn
umooTnpPLEn, N OUUMETOXIKN Opdcn kot n Bonbsia kamowwv
avBpwnwyv, ATOV TA AMAPALTNTO CUCTATIKA YL TNV UAOTtoinon
Kal Tepdtwon tng didaktoplkng pou SwatpPnc. M’ auvto, Ba
NOeAa €k TwWV TPOTEPWVY, VO TOUG EKPPACW €EKTOG ATO TLG
EUXAPLOTIEC oL Kal TN Babeld pou euyvwuoaouvn.

EmuPAEnwy kot umelBuvog ywo TNV TapakoAouBnon NG
npoodou, Atav o AvamAnpwtng Kabnyntr¢ tou Epyaotnpiou
OpBodovtikn¢ ko¢ ToOAAKNG ANGOTOAOG, TOV OO0 TIPWTIOTWG
KOL EUXOPLOTW LOLATEPWG, Yl TNV OUEPLOTN, aVvISLOTEAN Kol
moAuTun PonBeld ToOu, Yyl TNV TVEUMOTIKA, nNOWKN Kol
ETOTNUOVIKA UTtooTNPLEN Tou pou mapeixe kab OAn tnv
ekrmovnon ¢ Obaktopkng StatpBrig. OL EMOKOSOUNTIKEG
oU{NTAOELG, OL ETLOTNUOVIKEG KOL TIAVTO XPNOLUEG CUUPBOUAEG
ToUu, amdoTayUa TNG MOAUETOUG TOU eUMELplag Kol yvwong, Ba
He akoAouBouUv yLa avra.

Mpoowrikd, euxaplotw Bepud tov Kabnyntr tou Epyaotnpiou
OpBobdovtikng K. XaAalwvitn AnUATELO YLa TNV OUCLAOTIKN Kl
QTMOTEAECUATLKA CUUPBOAN TOU OTN GUYKEKPLUEVN LEAETN, LE TNV
eUnEeLpla IOV TOV SLAKATEXEL OTNV EPEUVAL.

Eniong, euxaplotw Bepud tnv Kabnyntpia tou Epyaoctnpiou
MelpapatiknG XelpoupylkAG Kol Xelwpoupylkng Epsuvag «N.Z
Xpnotéac» tng latpkAg ZxoAng tou Mavemiotnuiov ABnvwv Ka
A¢éomnowva Meppéa Tou CUVERAAE gvePyd KOL OUGCLOOTLKA OTNV
UAOTIOLNON TOU TELPOMOTIKOU HEPOUG TNC UEALTNG, XwpPIc TN
BonBewa tng omoiag, Ba ntav advvatn n oAokAnpwor Tnc.
Eniong, €va peydlo suxaplotw otov Kabnyntr AloyvwoTiKN Kat
AkTivoloyiog 2topatog K. TolyyAakn Kwvotavtivo yla tnv Kaiplo
oUMBOAR Ttou otn ANYN TWV UTIOAOYLOTIKWV TOHoypadLwV
KWVLKAG 8€oung kat otov KaBnynt KAwikng ItopatoAoylag Kot
Noocokopelakng Odovtiatpikn¢ K. Nikntakn NikoAao, o omolog



OlEBece amAOXEpPA TIG EYKATAOTAOEL KAL TO TEXVIKO Kal
ETUOTNUOVIKO TIPOCWTILKO TOU OUYXPOVOU KOl TPWTOMOPOU
gpyootnpiou  TOUu, ME OKOMO TNV  LOTOAOYLKA  Kal
lotopopdopeTpky  Slepelivnon Twv  6ebopévwyv NG
S1dakTopLkng Lou datpBng. Euxaplotw Beppud tov AvamAnpwtn
KaBnynti k. Téolo Kwvotavtivo kalL Tov €uyvwpovw, ylo TNV
TIOAUTIUN ouvelodOopAd TOU OTNV LOTOAOYLKN emefepyacio Kal
epunvela Ttwv amotedeopdtwv TG €peuvag.  Euxoplotw,
Slaitepa, tov Emikoupo KaBnynti k. Bapda EppavounA, yia
Vv auéplotn Ponbeld TOU OTA XELPOUPYIKA OTASLO TOU
TELPAUATOG, EVIOXUOVTAC TN Por Kal Tn Sour tng €peuvag.

Ma TNV KOTOOKEUN TNG OUCKEUNC €UXOPLOTW TO 0SOVTOTEXVIKO
epyaotiplo BETTOS OrtholLab kol ywa tnv &vSoOTOUATIKN
oapwan v etatpeia JPD AOOI KAAANTIAOL.

Q¢ pla mpaén avayvwplong tng KEYAAng Toug cuvelodopag, Ba
NBeka va guXapLOTAOW TA MEAN TNG OLKOYEVELAC HOU, TOUCG
yoveic pou ABavacio kot Avépopdxn, tov adepdpo Hou
Emapewvwvéa kal tnv ayannuévn pou culuyo EAévn Dopa, yia
TNV OVUTIOAOYLOTN HEYAAN NBLKA utooTHPLEN TOUG.
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PREFACE

The scope of orthodontics is to elucidate craniofacial growth,
treat predictably the skeletal discrepancies and align the
dentition. To achieve these goals, researchers get motivated to
understand the development and function of the bony tissue
and the temporomandibular joint (TMJ) alike. It is noteworthy
that facial appearance may affect self-esteem and quality of life,
hence the orthodontist seeks either to prevent or diagnose
early, and then to tackle the most prominent malformations.

Treatment in cases of extreme mandibular growth has been a
challenge (Hans et al., 2017; Zere et al., 2018) and research has
focused on the anatomy, histology and function of the TMJ
(Collins et al., 1946; Bag et al., 2014, Shaffer et al., 2014) seeking
the trigger of growth (Baume and Derichsweiler, 1961). In
experiments and in clinical practice, the mandible has been
pushed backwards, mainly during the period of growth, for
protrusion to alleviate (Farias-Neto et al., 2012; Mousoulea et
al., 2016; Martina et al., 2019). Clinical observations of animal
TMJs and the consequent suggestions after mandibular
displacement have been heterogeneous and contradictory.
Others claim potential for TMJ disorders and joint structural
alterations due to the generation of parafunctional stress,
deemed as traumatic (Ingervall et al., 1972; Cholasueksa et al.,
2004; Bryndahl et al., 2011).

Mechanical forces have a fundamental role in cellular processes
during tissue morphogenesis. In the practice of orthodontic and
dentofacial orthopedic, various treatment plans are used which
aim at controlling the growth of the lower jaw. Despite the fact
that the above-mentioned therapeutic methods have been used
at least since the beginning of the twentieth century, the level of
forces exerted, as well as their effects on the cellular structures
of the facial region are not yet documented.
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Many studies have examined the growth of the mandible,
especially the mandibular condyles (Kantomaa, 1986; Yonemitsu
et al., 2007; Sakurai et al., 2007; Takei et al., 2008). The growth
of the condyle is influenced by hereditary and environmental
factors, by hormones and metabolism (Copray et al., 1983) and
is important for the craniofacial complex. Dental occlusion
affects the growth of condyles as they undergo pressure from
the chewing forces applied to the teeth (Boyd et al., 1990). In
particular, dental malocclusions affect the size of the condyle
(Liu et al., 2007), cartilage thickness and cell proliferation. Dental
malocclusions also affect the position of the condyle, which
should normally be at the center of the glenoid fossa, resulting
in the irregular transfer of forces into the TMJ and the creation
of dysfunctions (Owen AH lll, 1984; Weinberg, 1983; Gerber and
Steinhardt, 1990).

Previous studies have examined condyle cartilage under various
conditions in experimental animals. In the studies of Desai et al.,
1996 and Teramoto et al., 2003, posterior movement of the
condyle reduced the number of chondrogenic cells and
prevented chondrocyte proliferation and reduced the amount of
extracellular matrix. Intermittent posterior displacement of the
condyle due to malocclusion precipitates irregular
reconstruction of the condyle cartilage and nerve injury
(Cholasueksa et al., 2004). Irregular loading of the TMJ can be
harmful to the condylar cartilage and the cancellous bone.

However, there are insufficient studies looking for longterm
condylar and mandibular alterations.
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1. REVIEW OF MANDIBULAR AND CONDYLAR GROWTH

There are two principal theories regarding mandibular growth.
Sicher (1947) suggested that the growth of the mandible is
regulated by signals that arise from the condylar center.
Mandibular growth is known to be a result of both extensive
remodeling that occurs in all parts of the mandible as it
undergoes displacement in space (Enlow, 1973).

Brash (1934), stated that bone growth is a surface phenomenon
carried out by surface deposition and surface resorption. While
studying the pig’s mandibular growth, Brash found superficial
three-dimensional osseous changes contributed equally to the
growth. The three-dimensional growth pattern involves major
growth areas (symphyseal, alveolar, ramal, condylar, coronoidal)
that collectively constitute the composite of mandibular growth.
These areas are ordinary growing sites that follow the general
principles of surface deposition and resorption. The mandible
thereby grows in length both anteriorly and posteriorly. The
oblique direction of the upward and backward growing condyle
contributes significantly to the mandibular elongation.

Rushton (1944), evaluated patients who sustained injury or
infection in the condylar area and observed resultant
mandibular hypoplasia. He stated that, in the early years it is the
function of the condylar growth center to promote continual
advancement of bone upon which subperiosteal additions and
remodeling may be realized. The hypoplasia was explained by
Rushton as a result of no advancement of bone within the
periosteum, and because the subperiosteal bone is abnormally
localized instead of proportionately distributed.

Sicher (1947), suggested that mandibular growth is the product
of cartilagenous condylar growth, subsequently undergoing
ossification. He distinguished condylar cartilage from epiphyseal
and articular cartilages and stated that the mandibular condyle
features an alternative type of cartilage, able to grow both
appositionally and interstitially. He believed that mandibular
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growth and, mainly, condylar cartilage growth determine the
development of the entire face. Individuals with a wide type of
facial appearance presumably have slow cartilaginous growth
that results in reduced facial height and a wider, shorter face.
People with a narrow, long face presumably have cartilage that
grows relatively fast, thereby determining this specific type of
face.

Robinson and Sarnat (1955) studied the growth pattern of the
swine mandible in nine, eight-week-old female Hampshire pigs
for twelve weeks. Amalgam implants and serial radiographs
were used to study the mandibular growth pattern. They
observed that the condyle appeared to be the most active
mandibular growth site, contributing about 80% to total ramus
height and, to a degree, to the mandibular body length. The
posterior border of the ramus was identified as the second most
active growth site and also contributed to the total length of the
mandible. The interior, anterior and alveolar borders and lateral
surfaces of the mandible were considered as less important sites
of appositional growth.

Scott (1959) stated that growth of the condylar cartilage thrusts
the mandible downward and forward from its contact in the
glenoid fossa. Bone resorption at the anterior border of the
mandibular ramus was considered a compensatory mechanism
whose role is to maintain the proper relationship between the
zygomatic arch and the anterior edge of the ramus.

Moss (1960) refined a theory of functional analysis and
functional cranial components. Each functional component was
described as consisting of two parts, the functional matrix and
its skeletal unit. The matrix consists of all muscles that are
attached to the mandible, all arteries, veins and the regional
nerves, the salivary glands, teeth, skin, adipose and connective
tissues, the tongue and the oral and pharyngeal cavities.

The mandible is not a unitary biological entity, but rather is
composed of several independent functional cranial
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components. The skeletal units of the mandible that correspond
to the above mentioned functional cranial components are the
alveolar processes, the coronoid process, the angular process,
the mandibular corpus, the condylar process and the chin. The
primary morphogenetic event in mandibular growth control is
the volumetric expansion of the oral functioning space and the
oral capsular matrix. Presumably, the above growth process also
results in the passive mandibular displacement.

Changes in the shape (remodeling) of the skeletal units are
described as secondary, compensatory and mechanically
compulsory. Moss and Salentijin (1969) rejected the proposition
that the condylar cartilage is a primary site of mandibular
growth control. The condyles are believed to be loci where
secondary, compensatory growth occurs.

Bjork (1963) presented preliminary data on the growth of the
mandible in a sample of 45 Danish male volunteers that were
kept under annual radiographic review utilizing tantalum
implant pins. He reported on a pronounced area of remodeling
localizing anteriorly to the mandibular angle. The direction of
condylar growth in the sagittal plane was found to vary widely,
but most frequently the direction was slightly forward in relation
to the posterior tangent to the ramus.

Enlow and Harris (1964) studied the human mandible during the
growth period. They showed that the essential principles of area
relocation, surface activity determined by regional directions of
growth, and the “V” growth principle occur throughout all parts
of the mandible. The authors also highlighted the patterns of
remodeling occuring consistently at the condylar neck, the
coronoid process, the ramus, the body, the chin and the alveolar
processes.

Enlow (1975) analyzed in specific detail the mandibular growth
process. He argued that remodeling and displacement are the
two principal types of movement involved in mandibular
growth. In displacement, the whole mandible is moved in a
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forward and downward direction. In remodeling, the constituent
parts in each region undergo histological alterations to move
into new locations, while providing for bone enlargement and
function. It is the entire ramus that continuously remodels and
adjusts, allowing the lower dental arch to function reasonably
along with the upper arch and the glenoid fossa. The condyle
and the ramus on the whole provide the exceedingly critical
function of progressive adaptation, a prerequisite for
mandibular fit to the maxilla and the cranial base (Enlow, 1980).

The mandibular condyle is not regarded by Enlow as a growth
center. It does not possess any special regulatory role on growth
of the mandible as a whole. Nor is there believed to exist any
genetic programming for condylar control upon of lower jaw
mandibular growth. According to Enlow, the condyle is only a
regional field of growth providing adaptation for its own
localized growth circumstances. The growth of the mandible is
the result of a composition of various regional factors and
functional agents that function to produce the complex shape of
the lower jaw.

There is a question regarding the existence of a special type of
cartilage in the condylar head. That cartilage is virtually a
functional adaptive response to applied compressive forces on
the condyle. An intramembranous type of growth could not
operate because the periosteal mode of osteogenesis is not
pressure-adapted.

The condylar cartilage is actually a secondary type of cartilage,
and its function is to provide regional adaptive growth. The
specialized cartilage contributes to the condylar multidirectional
capacity to grow and remodel according to the various
mandibular displacement and/or rotation. This can be explained
by the histological picture of four distinct layers (fibrous,
proliferative, mature, hypertrophic). The cells in the above zones
are not arranged into linear columns, but rather their alignment
reflects the capacity for multidirectional proliferation and
growth. The proliferation of these cartilage cells produces the
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upward and backward relocation of the condyle. The condylar
cartilage actually moves by prechondroblast cell division on the
articular side with equal amount of cartilage removing from the
opposite internal side (Enlow, 1975).

Koski (1968) stated that the condyle is not the leading center of
mandibular growth. This was based on the fact that the condylar
cartilage is an embryologic latecomer. That it is not an actual
articular cartilage, nor an epiphyseal plate. This secondary type
of cartilage does not possess any inherent intrinsic growth force,
nor does it grow in nonfunctional sites, as has been
demonstrated by transplantation experiments.

Also, Baume (1961) and Baume and Derischweiler (1961)
advocated that condylar cartilage is responsive to functional
stimuli, property that differentiates it from epiphyseal plate
cartilage. Baume (1969) categorized the condylar cartilage as a
skeletal growth center and regarded the structure as the
particular mandibular growth center, pointing to very distinct
differences from epiphyseal and synchondrosal centers. To
support this interpretation, he referred to the embryological
ability of condylar cartilage at about the twelfth foetal week to
assume all the functions of a growth center, namely
endochondral ossification in concerted with cartilage
proliferation.

Meikle (1973) transplanted a complete mandibular joint as
isograft into the brain of littermate rats and concluded that the
cells of the proliferative zone can form either bone or cartilage,
depending on environmental factors, that the proliferative
zone’s cells differentiate into chondroblasts only in a functional
environment executing articular movements and that
mandibular growth does not depend on condylar growth, while
remaining essential for normal mandibular growth.

McNamara (1973) carried out experiments using monkeys in

which an intraoral appliance was inserted to produce forward
mandibular position. At the end of the experiment, he observed
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changes in the growth pattern of the condylar head and
compensatory integration of the dentition. Nevertheless, he did
not find any significant increase in the rate of bone deposition
along the posterior border of the ramus, only alterations at the
angle of the ramus and the angle of the condyle in relation to
the occlusal plane. He concluded that there were adaptations
and functional changes in the mandibular skeletal units, the
dentition and the mandibular musculature, improving the
functional relationship of the mandible in a new posture.

Carlson et al. (1980) stated that the TMJ region of young
growing individuals has the ability to adapt to environmental
change. Prolonged function or displacement of the joint may
lead to an increase in the rate of mandibular growth, whereas
decreased function or immobilization may lead to a reduction in
the rate of mandibular growth. Thus, the TMJ component and
the condyle in particular, is believed to have the potential to
adapt and affect mandibular growth.

20



2. FACTORS REGULATING MANDIBULAR CONDYLAR
GROWTH

Mandibular condyle is covered by cartilage, consisting of cellular
components in extracellular matrix composed of fibrous (mainly
collageneous) elements and proteoglycan aggregate (Teramoto
et al., 2003). The unique structure of the condylar cartilage
comprises distinct layers (Von den Hoff and Delatte, 2008),
capable of adaptive remolding in response to masticatory
function and external loading (Kiliaridis et al., 1999; Kuroda et
al., 2009; Nickel et al., 2018). The condylar cartilage is mainly a
load-bearing structure for induced biomechanical stress and its
thickness has been suspected to undergo functional adaptation
(Utreja et al.,, 2016). The TMJ performs complex hinge and
sliding movement (Bag et al.,, 2014). During mastication,
compressive, shearing, and other complex forces are exerted on
the mandibular condyle (Kuroda et al., 2009).

Condylar growth is affected by heredity (He et al., 2012; Carlson,
2015; Coombs et al., 2019; Vieira, 2019), hormones (Baume,
1953; Milam et al., 1987; Baccetti et al., 2005; Robinson et al.,
2018; Yu et al., 2020), the environment (Du et al., 2020; Kahn et
al., 2020), systemic diseases (Sansare et al., 2011; Chetty et al.,
2017; Cedstromer et al., 2020) and stress (Wu et al., 2011; Wu
et al.,, 2012) and is significant in the development of the
orofacial complex (Mew, 1986). Customary mastication consists
a physiological stress to the TMJ, of great importance for its
development in adolescence and the remodeling in adulthood
(Bouvier and Hylander, 1984). The lateral condylar displacement
in the glenoid fossa as observed in the therapeutic approach of
skeletal discrepancies may culminate in abnormal loading of
adjacent structures, affecting the physiologic dynamics of
condylar cartilage and triggering the release of growth factors
(Von den Hoff and Delatte, 2008; Wang, 2019) and inflammatory
mediators (Figueroba et al., 2014), to unknown extent and of
unspecified clinical significance, a long-standing controversy.
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Articular dysfunction may have adverse consequences on the
potential for remodeling, resulting in histological alterations and
changes in condylar volume. As a result, mandibular retrusion
may lead to adverse outcomes in cartilage formation, as has
been reported in rats, suggesting dysfunction and
disarrangement (Desai et al., 1996; Cholasueksa et al., 2004,
Figueroba et al., 2014). However, others claim that TMJ disorder
should not be an issue (Zurfluh et al.,, 2015). Clinical
investigations of the effect of orthodontic mandibular
displacement in humans during treatment of malocclusion have
suggested that the results of treatment appear to be achieved
mainly by remodeling of the TMJ (Folke and Stallard, 1966;
Ingervall et al., 1972; Meikle, 2007).

According to Rabie and Hagg (2002), mesenchymal cells in the
proliferative layer express Sox 9 transcription factor to
differentiate into chondroblasts, and, subsequently, to
chondrocytes. Chondroblasts engage in condylar cartilage
formation by synthesizing type Il collagen, the main subtype
forming the framework of the growing matrix of the condylar
cartilage. Mature chondrocytes progress towards hypertrophy
and secrete type X collagen destined for endochondral
ossification.

Cells in the outer, hypertrophic zone of the cartilage secrete
Vascular Endothelial Growth Factor (VEGF), which regulates
neovascularization preceeding carilage formation and modifies
the maturation of the cartilaginous matrix. Hypertrophic
cartilage continues to remodel along with vascular invasion and
the enlargement of bone marrow spaces to be occupied by
pluripotent tissue. The mesenchymal stem cells introduced to
the mineralization front later differentiate into osteoblasts,
engaging in osseous tissue formation. (Rabie and Hagg, 2002)
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3. RAT AS AN EXPERIMENTAL MODEL

The term “animal model” lucks a universal definition in the
literature. The animal model was defined asan animal with
sufficient similarities to humans regarding its physiology and
behavior. Its aim is to develop knowledge that may be applied to
the human target group. In addition, animal models may serve
as models for other animal subjects. However, they are most
commonly used to investigate human conditions indirectly
through animal studies. (Sjoberg, 2017)

The animal model has a crucial role to preclinical study and
constitutes the connection between basic research and clinical
practice. The simulation of disease symptoms and pathology is
vital part for investigating the mechanisms of disease and
developing new treatments. For example, multitudinous animal
models have appeared in TMD research, lately. (Xiang et al.,
2021)

The role of the TMJ in mandibular movement remains mostly
unknown. There is a strong correlation between the morphology
of the teeth, the diet, and habitat. The specialized dentitions of
the Mammalia associated with dietetic adaptations, are already
known. In spite of the fact that the above association extends to
the other parts of the masticatory system, the differences in the
mandible’s morphology, the TMJ and the corresponding muscles
have not been studied adequately. (Hiiemae, 1967)

Despite the unickness of the TMJ in mammals, it varies
significantly among different mammalian groups,
morphologically, as well as functionally. Currently, the most
preffered lab animals are rats, rabbits, pigs, and ruminant
ungulates. (Herring, 2003)

In the fields of pharmacology, genetics, immunology, physiology,
neuroscience, transplantation, aging and cancer research, the
rat appears being a popular animal model. The breeds that have
been used derive mainly from the Norwegian rat (Rattus
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norvegicus), allegedly originating from the area bordering the
Caspian Sea, up to the coastline of Lake Baikal, in Siberia. It
migrated to Europe and the United States following the 18th
century commercial routes. By the mid — 19’s, it had already got
established in anatomical, physiological and nutritional projects.
Moreover, H. H. Donaldson, W. E. Castle, along with colleagues
pioneered developing an initial inbred lineage at the turn of the
20th century, destined for studies in basic genetics and cancer
research. At the time, H. H. Donaldson argued on the
appropriateness of the rat as a lab animal alleging that the
animal of interest had proved compact, pleasing, easy to keep
and breed, it might have a litter both numerous and immature,
while remaining agile and easy to train. Further development
and genetic characterization of inbreds as well as introduction of
congenic and recombinant strains have materialized in the
United States, Japan and Czechoslovakia. (Castle, 1947; Owen,
1962; Heslop, 1968; Gill, 1985; Gill et al., 1987; Gill et al., 1989)

The resolute transformation of the rat to assume the role of
standardized laboratory model was carried out at the Wistar
Institute in Philadelphia, USA. The animal to be named Wistar
Rat started procreating and disseminating from 1906 through
the 1940s, promoted as being of premium quality, consistently
reliable, assuredly the original rodent gold standard in research.
(Clause, 1993)

The development of the Wistar Rat as a standardized animal
may be attributed to the breeding effort of Helen Dean King,
combined with the advanced, innovative husbandry of Milton
Greenman and Louise Duhring under the lasting guidance and
support of Henry Donaldson. Allegedly, the widespread use of
the Wistar Rats is a result culminating from Milton Greenman,
the highly socially and scientifically knowledgeble biologist and
Wistar Institute manager, who foresaw a way for a small
institution to provide exceptional service to the Science. He
recognized in the rat the potential to become a living substitute
to pure chemicals, widely implemented in research. He got
inspired while studying the notion of product uniformity, the
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required quality standards, and the concept of efficient
production, to apply them into scientific practice that resulted in
a rodent currently dominating laboratory throughout the world.
(Clause, 1993)

The long axis of the murine TMJ is positioned in anteroposterior
direction and its osseous wall is lined by fibrous tissue.
Transversely, the articular surface is concave, while sagittally is
rather straight. The anterior region of the floor of the fossa tilts
downwards. The condyle, covered with hyaline cartilage,
occupies about half the length and two-thirds the width of the
fossa. The articular disk consists of mainly longitudinally
stretching collagen fibers. It is thin centrally, but thickens in the
front and rear of the condylar head. The capsule connects to the
zygomatic bone with lateral ligaments. (Weijs, 1975)

In the adult rat, the condyle slides anteroposteriorly over a
distance of about 6 mm, residing mainly to the posterior two-
thirds of the fossa during food grinding and the anterior two-
thirds when gnawing. Besides, the lateral space between the
fossa and the condyle allows for considerable rotational
movement around the condylar vertical axis. Evidently, the
condyle assumes different positions in molar and incisal
occlusion, and the resting position is intermediate to the above.
(Weijs, 1975) When the animal starts to bite, complex condylar
movements (sliding and rotational) may be registered. (Hiiemae
and Ardran, 1968)

The maxillary incisors have a clinical crown length of about 4
mm, each being about 1.5 mm in width. The labial surface
appears convex and is covered with enamel. Palatally, they
feature dentin wear facets adjoining flat enamel cutting edges.
Both teeth have an anteroposterior inclination of about 160°.
The mandibular incisors are similarly curved, consisting of a
labial enamel band and a posterior body of dentin. Their clinical
length is about 7 mm, their width 1.2 mm and also has lingual,
elliptical wear facets. The angle between the lower incisor long
axis and the occlusal plane approximates 35°. The maxillary
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molar occusal surfaces are laterally angled at about 20° to the
horizontal plane. Lower molars appear medially inclined, to the
same degree. Overall, the maxillary molars show buccal, central
and palatal cusps, whereas the mandibular ones feature cusps
accommodated in buccal and lingual rows. (Weijs, 1975)

The rat is likely the most selected experimental animal to study
cranial growth despite the existing differences with human’s
anatomy. Therefore, clinical trials should be conducted, as
animal studies cannot totally reproduce the normal human
function.
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4. MANDIBULAR POSTERIOR DISPLACEMENT

Janzen and Bluher (1965) applied for 140 days a constant
retracting bilateral force of 150 grams against the mandible
through a retracting mechanism in four 9 to 23 month-old
growing rhesus monkeys. The force affected mandibular growth
and also the rest of the facial complex. A slight increase in ramus
height, a decrease in the mandibular angle, a reduced maxillary
alveolar development and hypertrophy of the external pterygoid
muscles were among the observed anatomic changes. However,
the condyle was not allowed to reach its fullest growth
potential.

Petrovic et al., (1973) and Petrovic et al., (1986) used chin caps
in growing rats and concluded that the rate of mandibular
growth was diminished, that the length between the posterior
border of the condyle and the mental foramen became smaller
and reported on decreased proliferation of condylar cartilage
and prechondroblasts. Also, the number of the successivelly
arranged sarcomeres of the lateral pterygoid muscle was
increased.

Rats wearing chin caps in which the whole lateral pterygoid
muscle had been resected demonstrated significantly
diminished mandibular growth rate compared to rodents in
which the lateral pterygoid was only partially removed. The
response to the retractive force was pronounced when the
condylar cartilage was in a rapid growth stage.

Tsolakis (1981) concluded that light traction forces are
preferable for inhibiting mandibular growth. They significantly
diminish the extent of mandibular growth without causing any
significant detrimental change in the joint and also avoid
muscular over-reaction. In contrast, heavy traction force inhibits
growth of the lower jaw and also creates serious functional and
structural imbalances in the adjacent tissues, including
destructive changes in the TMJ. Thus, there appears to exist a
threshold in the magnitude of retrusive force that might cause a
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pressure effect on the condyle, without triggering strong
contractile activity of the lateral pterygoid muscles, resulting in
condylar growth inhibition.

Ghafari and Degroote (1986) summarized that an inclined plane
bonded to the upper incisors of rats may be used to produce
continuous forward and downward mandibular displacement
and result in accelerated ossification of the hypertrophic zone of
the cartilage (meaning adaptation and functional adjustment).
The observed changes, potentially transient, may be attributed
to premature maturation or may be inconsistent depending to
alterations in the transmitted force levels according to the
mandibular functional position. It is noteworthy that the
observations differed from those in intermittent displacement
that increased the thickness of the prechondroblastic and
chondroblastic zones.
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5. RADIOGRAPHIC DATA

A recent systematic review aimed to appraise the quality of the
available evidence in animal studies regarding the effects
(macroscopic, measurable, dimensional changes) following
posterior displacement of the mandible (Lyros et al., 2021).

In growing Wistar rats, the mandible grew shorter
anteroposteriorly, the coronoid process became higher, the
condylar neck measured thicker and an enlarged retromolar
corpus was evident after application of an orthopedic collar
device exerting a backward force on the mandible (Asano,
1986). Moreover, the orthopedic effects were limited to the
period when the force was applied and the mandible returned
to the inherited growth pattern in both the experimental and
control groups after the activation of the appliance had ceased,
when the mandibles resumed growing at similar rates, in
anteroposterior direction, as regulated by genetics (Asano,
1986). Indeed, the mandibular area where growth was more
pronounced due to the intervention showed less subsequent
growth and remodeling comparing with controls (Asano, 1986).
Allegedly, the above-mentioned alterations in mandibular
development had not affected the overall growth pattern as
evaluated by skull dimensions and body weight (Asano, 1986).
Notwithstanding, mandibular retraction did not significantly
affect the condylar height and the thickness of the angular
process (Asano, 1986). In another similar experiment involving
rats, it was confirmed radiographically that the posterior
mandibular displacement prevented the mandibular condyle
from displacing anteriorly in the temporal fossa (Teramoto et al.,
2003).

In rats and rabbits subjected to mandibular/condylar backward
retraction with the aid of inclined planes cemented on maxillary
incisors or properly modified guiding appliances, lateral
radiography disclosed mandibular molars occluding more
distally in relation to the maxillary (Desai et al., 1996;
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Cholasueksa et al., 2004). Interestingly however, at a later age
the radiographic, distalized molar relationship became less
pronounced, supposedly an attempt on the part of the subject
to establish a new balance within the altered oral environment
(Desai et al., 1996).

Mandibular posterior displacement in growing rats by an
appropriate occlusal guiding appliance attached to the maxillary
incisors resulted in shorter mandibular length on both sides
(Farias-Neto et al., 2012). In the experimental group, statistically
significantly smaller mandibular lengths were measured
radiographically, without any noteworthy difference between
the left and right sides (Farias-Neto et al., 2012). Additionally,
statistically insignificant differences were observed between
experimental groups regarding the ramus height and the
intercondylar distance (Farias-Neto et al., 2012).

The cementation of modified inclined planes on the upper and
lower molars of rats effected a statistically significantly shorter
condylar process and significantly larger angulation of its axis to
the mandibular plane in the experimental groups, as evidenced
radiographically (Hua et al., 2012). Both the overall mandibular
length and the condylar height remained significantly smaller in
the experimental groups compared to the controls until the end
of the period of study (Hua et al., 2012). By the end of the
experiment, also the condylar width measured significantly less
in test subjects (Hua et al., 2012). By the midst and the end of
the observation period, the condylar posterior surface appeared
flattened compared to that of the control groups; additionally,
its most posterior point had shifted upward (Hua et al., 2012).
Eventually, the decrease in mandibular length in experimental
animals was attributed to the remodeling of the condyle (Hua et
al., 2012). Ultimately, Wang et al., 2019 found in the rat that a
twin inclined device resulting in posterior mandibular
displacement may lead to adaptive bone resorption at the
posterior region of the condyle. In their control group, the
posterior margins of the condylar bone remained round,
whereas in the experimental group the lower part of the
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posterior margin of the condyle appeared significantly flattened
by the end of the observation period as highlighted by 3D
reconstruction (Wang et al., 2019).

The predominant animal in the studies has been the rat,
although Desai et al. 1996 experimented on rabbits and earlier
studies have selected the monkey. The age of the animals is of
importance because mandibular growth is related to general
growth, and varies in relation to chronological age (Mito et al.,
2003; Hunter et al., 2007; Hans et al., 2017). The age of the
animals was clearly reported, but varied from 4 weeks (Asano,
1986), 5 weeks (Farias-Neto et al., 2012), 6 weeks in the papers
by Hua et al. (Hua et al., 2012) and Wang et al. (Wang et al.,
2019) up to 8 weeks (Teramoto et al., 2003; Cholasueksa et al.,
2004), and even 9 months in rabbits (Desai et al., 1996).
Moreover, bone turnover depends on sexual hormones;
additionally, TMJ pathology has been linked to the hormonal
profile (Robinson et al., 2018). In the same review, five studies
reported on male Wistar rats (Asano, 1986; Teramoto et al.,
2003; Cholasueksa et al., 2004; Hua et al., 2012; Wang et al.,
2019), while Farias-Neto et al. (Farias-Neto et al.,, 2012)
experimented on female Wistar rats and Desai et al. (Desai et al.
1996) on rabbits of unidentified sex. The method to produce the
mandibular displacement included inclined planes cemented on
maxillary incisors (Desai et al. 1996; Cholasueksa et al., 2004;
Farias-Neto et al., 2012) or the molars (Hua et al., 2012; Wang et
al., 2019), and collar extraoral appliances exercising orthopedic
traction by attachments on the lower incisors (Asano, 1986;
Teramoto et al., 2003). All the included studies had control and
experimental groups and the comparison was performed
between them to identify differences of statistical significance at
the level of 5%, at least. Statistical methodology was stated
without much detail, particularly addressing the aspect of
statistical normality. Inadequate or inappropriate statistics may
contribute to systematic errors and thus potentially undermine
the quality of conclusions of the systematic review.
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Lateral radiography was rather used to confirm the change in
the relationship between the maxillary and mandibular molars in
the studies by Cholasueksa et al. (2004) and by Desai et al.
(1996). Indeed, in both, the mandibular first molars in the
experimental group moved in a distal position relative to the
maxillary ones after posterior displacement of the mandible. In
addition, the customary posterior mandibular displacement was
considered dysfunctional and traumatic as evidenced by the
production of proteins indicating damaged nerve fibers in the
retrocondylar region (Cholasueksa et al., 2004). Similarly, Desai
et al. (Desai et al. 1996) found alterations, albeit statistically
insignificant, in  the  spatial orientation of the
temporomandibular disk that allegedly might predispose to
anterior disk displacement concomitant with TMJ disorder
(Desai et al. 1996). Anterior displacement of the articular disk
was proposed by Teramoto et al. (Teramoto et al., 2003), who
also found that the condyle in their experimental group
sustaining backward compressive force was positioned more
posteriorly within the articular fossa during mouth opening,
compared to the control group.

Cephalometric measurements by Asano (Asano, 1986) showed
that the mandibles that are pushed backward end-up smaller in
length, having less volume and weight. He calculated an increase
in the size of the anterior mandibular region, coronoid process,
the neck of the condyle and also found thickening of the
retromolar region in the experimental group in relation to
controls. However, the condylar height and the thickness of the
angular process remained statistically unaffected. The observed
differences occur due to localized differential bone apposition
and resorption leading to remodeling and adaptation to
accommodate the applied force in the altered environment.

An important finding was that the differences in growth
remained after the cessation of the external force and growth
direction returned to the inherited growth behaviour, meaning
that a lasting effect may be anticipated in similar cases (Asano,
1986). It is noteworthy that the use of various experimental
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devices was not found to have any significant influence to
general growth or the size of the skull as a whole (Asano, 1986;
Farias-Neto et al., 2012; Hua et al., 2012). In agreement with the
aforementioned research, Farias-Neto et al. (Farias-Neto et al.,
2012) also found decreased mandibular length in cases of
functional posterior mandibular displacement, but negligible
difference in the height of the ramus. Farronato et al. speculated
that differences in condylar heads could be attributed to
condylar growth center dysregulation, whereas the reduced
condylar neck volume could have been an outcome of growth
deficit and also the height of the ramus had not been
significantly affected (Farronato et al., 2020).

Similarly, Hua et al. (Hua et al.,, 2012) reported that when
inducing backward movement of the mandible, reductions in the
length of the condylar process and the mandible may be
expected. Their cephalometric analysis revealed a greater
increase of the angle of the condylar process to the mandibular
plane and a decrease of the condylar width in the experimental
animals. Moreover, they mentioned that the most posterior
condylar point had shifted upward and the posterior condylar
surface had a tendency to flatten, indicating bone resorption
(Hua et al., 2012). Flattening of the entire posterior margin of
the condyle became progressively evident and statistically
significant compared to controls in the study by Wang et al.
(Wang et al., 2019), who experimented in the rat with posterior
inclined planes that apply a functional retrusive force. This
pattern of change is compatible with progressive adaptation of
the condylar bone to mild, continuous and progressive pressure
(Wang et al., 2019).

The observed changes of the various mandibular regions may be
attributed to the remodeling that happens due to the
paranormal, dysfunctional external force and the potential
consequent loss of the optimal, customary mastication force by
restricted mandibular movement. The explanation of the
mechanism that leads to such an outcome should be sought out
within molecular pathways and in cellular interactions
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(Teramoto et al., 2003; Farias-Neto et al., 2012). In humans, the
differences may be expected more pronounced than in the
rodents; additionally, bone resorption may be anticipated in the
posterior condylar surface and the anterior region of the post
glenoid eminence, because of existing anatomical differences
(Cholasueksa et al., 2004; Farias-Neto et al., 2012; Hua et al.,
2012). Nevertheless, in growing individuals the ultrastructural
changes in the posterior area of the condyle due to mechanical
stress could be anticipated to reverse spontaneously at earlier
stages (Wang et al., 2019).
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6. RANKL - OPG - MCSF

Receptor Activator of Nuclear Factor — (KB) Ligand (RANKL) -
Osteoprotegerin (OPG) system

Orthodontic force effects areas of compression and tension
within the periodontal ligament and the adjacent alveolar bone,
manifesting respective bone resorption and formation to guide
the dental unit into new position (Rygh, 1976). Osteoprotegerin
(OPG) and the receptor activator of nuclear factor — (KB) ligand
(RANKL) compete to regulate osteoclastic cell maturation and
bone metabolism by shifting the balance between RANK-RANKL
and OPG-RANKL binding (Anderson et al., 1997, Wong et al.,
1997; Lacey et al., 1998).

RANKL is a member of the membrane-associated Tumor
Necrosis Factor superfamily. It promotes hemopoietic
precursors to differentiate into mature osteoclasts and
stimulates their resorptive function (Udagawa et al., 1999). OPG
a cytocine receptor acts as a decoy receptor for RANKL, as it
competes with RANK for RANKL binding to enhance osteoclast
apoptosis (Burgess et al., 1999; Lacey et al., 2000; Neumann et
al., 2005; Nishijima et al., 2006).

Thus, OPG contributes to the regulation of bone metabolism and

the balance between RANK-RANKL and OPG-RANKL binding has
a fundamental role (Figure 1).
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Figure 1. RANK/RANKL/OPG System
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Macrophage colony-stimulating factor (MCSF)

The macrophage colony-stimulating  factor (MCSF), is a
secreted cytokine which stimulates hematopoietic stem cells to
differentiate into macrophages or similar cellular types (Stanley
et al.,, 1997). Besides, the eukaryotic cells synthesize the
molecule to resist viral assault and tumor enlargement through
a chemotactic/phagocytic activity, and pronounced malignant
cell cytotoxicity (Nemunaitis, 1993). It belongs to the quartet of
experimentally described colony-stimulating factors. MCSF binds
to the colony stimulating factor 1 receptor. MCSF binds to
the colony stimulating factor 1 receptor (Figure 2) (Metcalf,
2013).

MCSF is produced by a variety of cells, including endothelial
cells, fibroblasts, osteoblasts, smooth muscle, and macrophages,
and can be detected in plasma (Hamilton, 2008; Pollard, 2009;
Hume and MacDonald, 2012). Elevated circulating MCSF levels
have been reported in numerous diseases, including cancer,
inflammation, and autoimmune disorders (Firestein et al, 1988;
Scholl et al, 1996; Bischof et al, 2000; McDermott et al, 2002)
and during pregnancy, contributing to placental development)
(Bartocci et al, 1986; Pollard et al, 1987; Fixe and Praloran,
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1997). Endocrine stimulation by parathyroid hormone (Han et
al., 2018) ultimately results in increased plasma calcium levels
following bone breakdown.

Concerning its structure, MCSF is a small-sized protein involved
in cell signaling. When activated, may be traced in the
extracellular space as a disulfide-linked homodimer, believed to
have been a product of proteolytic slicing of membrane-bound
precursors (Felix et al., 1994).

Figure 2. MCSF System (Sinha et al., 2021)
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7. HISTOLOGICAL DATA

The mandibular condyle performs translatory and rotary
movements, cushioned by a fibrocartilaginous articular disc with
disparate thickness (Helland, 1980). In the TMJ, the articular
surfaces are load-bearing and are lined with dense, avascular,
fibrous connective tissue (Kuroda et al., 2009).

The fibrocartilage and the underlying trabecular bone form a
functional entity withstanding the mechanical tension generated
by mandibular movement (Kuroda et al.,, 2011). Bone
continuously remodels to provide structural support to the
overlying articular structures during jaw movement (Zhang et al.,
2013; Aube and Ramirez-Yanez, 2019). The localized architecture
and density supposedly accommodate the stress on the cartilage
and thus reflect, to some extent, the metabolic state of the
whole joint (Jiao et al., 2010).

The cartilage on the condylar head features four distinct layers,
namely the fibrous, proliferative, mature and the hypertrophic,
to be identified from the articular surface to the underlying bony
foundation. The fibrous zone contains fibroblast-like, flat cells,
the proliferative zone has heterogeneously distributed
mesenchymal precursor cells, while differentiated chondrocytes
may be traced in the mature and hypertrophic zones (Kuroda et
al., 2009; Jiao et al., 2010).

Bone resorption is an essential component of the development
and the remodeling of the skeletal substrate (Siddiqui and
Partridge, 2016). The predominant cell in this process appears to
be the osteoclast (lkeda and Takeshita, 2016). The
mononucleated precursors invade the mesenchyme surrounding
rudimentary bone to proliferate, differentiate into tartrate-
resistant acid phosphatase (TRAP) - positive cells, and migrate in
conjunction with endothelial cells (Yasuda et al., 1998; Yang et
al, 2008; Kim et al., 2015). Subsequently, they invade the
calcified cartilage to transform into mature multinucleated
osteoclasts (Vdandnen et al., 2000; Ikeda and Takeshita, 2016).
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These specialized resorptive cells evolve from hematopoietic
stem cells under the control of various systemic and local factors
(Hofbauer et al., 2000; Inoue et al., 2021). Osteoclast
differentiation factor (Yasuda et al., 1998; Rolph and Das, 2020),
RANKL, (Boyce and Xing, 2008) osteoprotegerin (Kang et al.,
2014), Macrophage Colony - Stimulating factor (MCSF) (Fujikawa
et al., 2001), Vascular Endothelial Growth Factor (VEGF) (Niida et
al., 1999; Kim et al., 2015), Interleukin - 1 (Lee et al., 2010), and
tumor necrosis factor (TNF-a) (Luo et al., 2018) are all implicated
in osteoclastic function and the metabolism of the osseous
tissue. Besides, proteinases of the matrix metalloproteinase
(MMP) family appear to exert direct chemotactic activity on
osteoclasts for their recruitment (Engsig et al., 2000).

Asano, (1986) concluded that the condylar cartilage adapted to
the mandibular retractive force, while its chondroblastic
constituent exhibited limited proliferation ending up
hypomaturated.

Teramoto et al. (2003) found expansion of the bone marrow
space in the initial stage of the experiment, indicating erosion of
the cartilage, starting from the lower hypertrophic zone. Also, a
reduction of the thickness of each zone and the number of
chondrocytes was observed later on. Nevertheless, in the 7-day
experimental group, the thickness of each zone appeared to
recover. Besides, the hypertrophic chondrocytes became smaller
as the duration of force application increased, only to recover in
the 7-day group. In the posterior region, the metachromatically
stained area remained unchanged initially. Subsequently, the
thickness of each zone and the number of chondrocytes reduced
significantly. However, there were no differences in the
respective zonal thickness in the 7-day experimental group.

Cholasueksa et al., (2004) calculated that the functional

mandibular retrusion in rats resulted in statistically significant
reduction of condylar cartilage width at the posterior region.
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Kuroda et al., (2009) used micro - computed tomography
analysis to suggest that in the experimental animal group, a
decrease in the amount of trabecular bone was effected in the
condylar anterior region. Moreover, they found statistically
significant reductions in the Bone Volume/Total Volume ratio
and the Degree of Anisotropy in the same abovementioned
area, following distal mandibular displacement.

Hua et al. (2012) did not initially find any statistically significant
difference in the early stages of their study regarding the
cartilage thickness in all mandibular condylar regions of interest
between the studied groups. Later however, on day 30, the
mandibular condylar cartilage in the most posterior region was
thinner in the experimental groups, comparing to controls, and
continued to attenuate until experimental day 60. Contrarily,
from day 30 until the end of the experiment on day 60, the
condylar cartilage was found thicker in a more anterior region.
However, the cartilage measured thinner even more anteriorly,
in the experimental groups. Thus, it was hypothesized that the
posterior mandibular displacement could culminate in region-
specific cartilage alterations and continuing adaptive condylar
remodeling.

Figueroba et al., (2014) observed histomorphometrical changes
and cellular disarrangement at the articular cartilage in the
experimental group. The four cartilage layers measured thicker
in the experimental groups undergoing functional posterior
mandibular displacement, compared to controls, after 14 days
of intervention.

Wang et al. (2019) concluded that the condylar tissue changes
meaned occurrence of osteoclastic activity in the posterior
region of the condyle and that these adaptive changes showed
bone resorption in the posterior condyle.
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1. AIM

The present original research aimed to identify changes
(radiographic, biochemical, histological) of the condyle and the
mandible in rats that have undergone restriction in mandibular
growth by means of an orthodontic / orthopedic device applying
mechanical loading, in comparison with control rats without the
device.
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2. MATERIAL AND METHODS

The study experimental protocol was approved by the
Veterinary Directorate and received protocol number
598742/04-10-2019, registered as EL 25 BIO 05, according to
Greek national legislation (P.D 56/2013), conforming to
European Directive 2010/63/EE and that of the European
Council (276/33/20.10.2010) related to the protection of
vertebrate animals used in experiments and for other scientific
purposes.

Experimental design

In the present experimental study, seventy-two (72) four-week-
old male Wistar rats were used. After their initial four-week
breeding in the Hellenic Pasteur Institute, all the animals were
transferred and housed at the Laboratory for Experimental
Surgery and Surgical Research “N. S. Christeas” at the University
School of Medicine in Athens. Standardization following National
and European legislation determined cage selection (Tecniplast
S.P.A., Italy) and stable centrally ventilated (15 air changes/h),
environmental conditions at 55% relative humidity, temperature
at 20°C £ 2°C, and artificial 12-h span of alternating light-dark
cycles. Access to food and water was ad libitum (Figure 3).

Figure 3. Access to food and water was ad libitum.
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The animals were randomly allocated to equal groups, namely
groups A (experimental) and B (control), each been divided into
three equally-sized subgroups featuring twelve rats (A1, A2, A3,
B1, B2, B3). The online Random Team Generator tool was used
for the grouping (Figure 4).

Figure 4. Random Team Generator Tool
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Modified orthodontic intraoral devices that have been
previously described (Desai et al.,, 1996) were placed in the
experimental animals and led to posterior mandibular
displacement. The full-cast metal orthodontic devices were
constructed in the laboratory, following a digital intraoral
scanning (TRIOS 3, 3Shape intraoral scanner) of an animal
selected at random (Figures 5-7).

Figure 5. Digital intraoral scanning

N
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Figure 6. Digital cast
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Figure 7. Full - cast metal orthodontic device
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The modified guiding appliances were cemented to the maxillary
incisors with zinc phosphate cement (Harvard Cement Normal
Setting; Harvard Dental International GmbH, 15366
Hoppegarten, Germany) (Figure 8). During the whole
experimental period, all animals (experimental and control)
were fed with mashed food, produced by blending pellets with
water in standardized proportions to achieve a porridge-like
consistency (Figure 9).
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Figure 8. The modified orthodontic intraoral device cemented
to the maxillary incisors

Figure 9. Standardized preparation of mashed food

a
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In total, the experimental period lasted for 90 days. Animals
were sacrificed at 30 days (subgroups Al, B1l), 60 days
(subgroups A2, B2) and 90 days (subgroups A3, B3). At the 60th
day of the experiment, orthodontic devices were removed from
the subjects still remaining in the experimental subgroup A3.
Throughout the entire experimental period, all animals were
kept closely monitored for normal growth and development
(Figure 10).

Figure 10. Body weight calculation
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Three-dimensional radiographic analysis

To determine the three-dimensional morphology of the
mandible, initial (day 1 of the experiment) and final (day of
sacrifice) CBCTs were performed in every rat (Figure 11). The
rats were injected intramuscularly for anaesthesia with
ketamine-xylazine combination at a dosage of 0.2 ml/kg. Once
the rats were adequately sedated, they were positioned in the
head-resting cushion. All rats were scanned with the same CBCT
unit (New Tom VGi, Cefla SC, Imola, Italy) using the same field of
view (8X8 cm, high-resolution, denture scan) with exposure
settings 110kV. Each scan was performed by an Oral and
Dentomaxillofacial Radiologist, who assessed the presence or
absence of obvious motion artefacts. In cases of obvious motion
artefacts the scans were performed again and the volumetric
data of all scans were exported as Dicom 3 datasets. Three-
dimensional reconstruction and analysis were conducted by
using Viewbox software (Viewbox® version 4.1.0.10, dHAL
Software, Kifissia, Greece). Table 1 and Figure 12 present the
detected mandibular anatomic landmarks while Figures 13a and
13b show the performed linear measurements.

Figure 11. Cone Beam CT scanning
a.
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Table 1. Description of anatomic landmarks detected in Cone
Beam CT reconstructed images

Anatomic Description
landmarks
Go’ the lowest point of the gonial process
Go the most posterior point of the gonial process
Menton the lowest point of the mental process
Coronoid the tip of the coronoid process
Condylion the most posterior and highest point of the
condylar process
the most anterior point of the alveolar process
! at the side of the concavity of the lower
incisor
the most anterior point of the alveolar process
Id at the side of the convexity of the lower
incisor
Incisal Incisal edge of the lower incisor
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Figure 12. Anatomic landmarks detected in Cone Beam CT
reconstructed images
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Figure 13a. Linear measurements: Go’ - Menton (mandibular
body length a); Go - Menton (mandibular body length b);
Coronoid - Menton; Condylion/Go’ - Menton (Condylion
height); Condylion - Go’ (Ramus height); Condylion - Menton;
Condylion - Id; Condylion - I’ (mandibular length); Incisal - Id;
Incisal - I.
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Figure 13b. Linear measurement: Condylion right - Condylion
left (Intercondylar distance)
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left
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Biochemical analysis

For the measurement of circulating levels of RANKL (Receptor
Activator of Nuclear Factor Kappa B Ligand), MCSF (Macrophage
Colony Stimulating Factor) and OPG (Osteoprotegerin) proteins,
rat serum was collected. In particular, initial (day 1 of the
experiment) and final (day of sacrifice), blood collection was
performed. The animals were transiently anaesthetized in an
ether chamber and blood samples were collected from the eye
with a thin sterile laboratory pipette, which was inserted in the
eye area, behind the eye ball (Figure 14). Blood was placed in
tubes containing heparin and centrifuged at 13,000 rpm for 5
minutes at room temperature. Serum was subsequently
collected and stored at -20°C to be further analyzed.

Figure 14. Blood collection

Protein levels were measured using Enzyme-linked
immunosorbent assay (ELISA) kits (Elabscience®, USA) according
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to manufacturer’s protocol. The ELISA kits used were the
following: Rat RANKkL (E-EL-R0841) Lot: VXI7TPKKPH, Rat MCSF
(E-EL-R0601) Lot: 34WBPZTWYT, Rat OPG (E-EL-R3005) Lot:
62SADISRJJ (Figure 15).

Figure 15. ELISA kits
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These ELISA kits use the Sandwich-ELISA principle. Briefly, 100l
of serum and the protein standards were added to pre-coated
micro-ELISA plates with the corresponding antibody specific to
each protein. Then, a biotinylated detection antibody specific for
each protein and Avidin-Horseradish Peroxidase (HRP) conjugate
were added successively to each micro plate well and incubated.
When substrate solution was added to the wells, the wells
containing each protein turned blue and the intensity of blue
color was proportional to the amount of protein in the sample.
Once the reaction was interrupted with a stop solution, the
color turned into yellow and the optical density (OD) of yellow
color was measured spectrophotometrically at a wavelength of
450nm. The respective protein concentration in each sample
was calculated by comparing the OD values of the samples to
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the standard curve, which was created using OD values of the
known concentration of the standards for each protein (Figure
16).

Figure 16. ELISA procedure
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The measurements were carried out in an ELISA photometer
(Thermo Scientific Multiskan GO Microplate
Spectrophotometer) (Figure 17). The ELISA tests were
performed according to the manufacturer’s instructions.

Figure 17. Thermo Scientific Multiskan GO Microplate
Spectrophotometer
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Histological preparation

Before recovery, the animals were sacrificed by decapitation.
Next, their heads were dissected and the soft tissues were
removed carefully. Each head was kept intact and separately to
be fixed in 10% formalin solution.

Initially, the heads were cut in the middle. Subsequently, the left
mandibles were separated from the heads and the condyles
were isolated (Figures 18, 19). The specimens were immersed
in ethylene diamine tetraacetic acid (MICRODEC EDTA - BASED,
DIAPATH S.p.A) solution for 10 days to be decalcified. Eventually,
the condyles were embedded in paraffin using conventional
methods. Serial 6 mm-—thick sections were cut using a fully
motorized rotary microtome (ARM3600, Histo - Line
Laboratories Co) parallel to the sagittal plane of the mandibular
condyle. The sections were stained with hematoxylin and eosin
(HE) to observe potential histomorphological changes (Figures
20-22).

The sections were scanned with a 20x fixed magnification lens.
The generated TIFF image files were then converted to JPEG for
the purposes of digital analysis by using the software Sedeen
Viewer Version 5.4.4. (Copyright © Pathcore Inc.2008-2019).
Transmitted light microscopy was used for histological
evaluation (OLYMPUS CX 23LEDRFS2, Olympus Corporation,
Tokyo, Japan).

Quantitative evaluation of condylar cartilage width

The thickness of the articular cartilage was considered at three
areas, at both ends (anterior and posterior), and the midline
across the sagittal plane passing through the condylar head. All
cartilaginous layers (fibrous, proliferating, mature, hypertrophic)
in the anterior, middle and posterior areas were measured with
a linear calculation tool (Image-Pro Plus v6.0.0.260 Media
Cybernetics, Inc., Rockville, MD, USA®) (Figure 23).
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Histomorphometry and Quantitative Analysis

Aiming to calculate the bone surface/total surface ratio, two
square condylar head regions of interest (anterior and
posterior), measuring 1.0 x 1.0 mm, were selected for
histological analysis (Figure 23).

Figure 18. Isolation of the mandibles
a.
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Figure 19. Isolation of the condyles
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Figure 20. Decalcification of the specimens
a.
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Figure 21. Embedding procedure
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Figure 23. Histological images of the sagittal sections of the
condyle, 20x magnification, stained with Hematoxylin and
Eosin (HE).

a. Condylar cartilage thickness (anterior, middle, posterior)

T e N pr—

b. Square condylar head regions of interest (anterior and
posterior), measuring 1.0 x 1.0 mm

Anterior o] ‘ Posterior
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c. Bone surface/Total surface calculation
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Statistics

The groups should be kept sufficiently small, for ethical reasons,
while reliably detecting potentially statistical results. The
number of animals was calculated using power analysis. In
addition, the size of the respective samples in the study was
finalized after allowing for the low probability that some
experimental animals might not cope with the stress of the
experimental process.

Subgroups consisting of 12 rats were calculated using standard
statistical criteria (a = 0.05, b = 0.10), yielding a power of 90% to
detect 0.5 mm difference (26.5 vs. 27.0 SD 0.37) for the primary
outcome of the study, namely mandibular length (Condylion - I).
Therefore, 72 rats were used, equally divided into experimental
and control group.

Three - dimensional analysis

To calculate the intra-observer and inter-observer errors, double
measurements, 4 weeks apart, were made independently by
two observers that were blinded to the groups undergoing
evaluation. Lin’s concordance correlation coefficient and Bland
and Altman analysis were used for the estimation of inter- and
intra-observer agreement (Bland and Altman, 1986; Lin, 1989).

First, seeking to detect any meaningful differences, the
dimensional means of the right and left mandibular sides were
calculated and were subsequently used for the statistics. Next,
differences in measurements related to “group” and “timing
(subgroups)” were assessed using linear regression models. Each
measurement was regressed on group, timing and their
interaction. When initial measurements were assessed, models
were adjusted for initial weight when appropriate. Models for
the final measurements were adjusted for the initial ones.
Estimated changes from the initial measurements (final minus
initial) were also investigated using regression models with
group, timing and their interaction as dependent variables,
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adjusting for initial weight when appropriate. When normality
assumption for the residuals was violated, quantile regression
was used. Estimates were adjusted for multiple comparisons,
using the Bonferroni method.

Biochemical analysis

One way ANOVA or Kruskal-Wallis test was used for
comparisons by timing. Differences in markers by group and
timing were investigated using regression models with each
marker’s change from initial measurement (final - initial) as
dependent variable and group, timing and their interaction as
independent ones. Estimates were adjusted for multiple
comparisons, using Bonferroni method.

Histological analysis

Differences in measurements related to group and timing were
assessed using linear regression models. Each measurement was
regressed on group, timing and their interaction, as well as final
weight. Estimates were adjusted for multiple comparisons, using
Bonferroni method.

Analysis was performed at the a = 5% level of statistical
significance (p — value < 0.05 indicates a statistically significant
result). Data were coded and analyzed using the statistical
software Stata ver.14 (Stata Statistical Software: Release 14.
College Station, TX: StataCorp LP.)
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4. RESULTS
Three-dimensional radiographic analysis

Only minor deviation was observed in Lin's concordance
correlation coefficient and values of 0.98 or greater were
predominant. These values indicate excellent agreement in
measurements. The level of agreement (LoA) of Bland and
Altman analysis is displayed in Supplementary Tables 1 to 12
(Tables S1 - 12). Descriptive statistics with estimated means and
standard deviations (SD) are presented in Tables 2 and 3.

Table 2. Descriptive statistics (mean and standard deviation)

for each measurement by subgroups and overall, for
experimental group A.

Experimental Subgroups - Timing
Group A

Al-0d A2 -0d A3 -0d Overall

Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | p-value*
Weight Initial | 117.2 (17.2) | 117.6 (17.5) | 115.8 (13.4) | 116.9 (15.7) | 0.956
(grams)
Go’ - Menton Initial | 13.60 (0.52) | 14.80(0.51) | 13.70(0.53) | 14.03 (0.74) | <0.001
(mm)
Go - Menton Initial | 16.75 (0.52) | 17.14 (0.55) | 16.63 (0.46) | 16.84 (0.54) 0.018
(mm)
Coronoid - Menton | 16.17 (0.44) | 16.48 (0.48) | 16.00 (0.56) | 16.22 (0.52) 0.016
Initial (mm)
Condylion/Go’ -| 8.29(0.40) | 8.20(0.30) | 8.36(0.33) | 8.28(0.34) 0.137
Menton Initial (mm)
Condylion - Go’ 8.81(0.38) | 8.52(0.31) | 8.82(0.26) | 8.71(0.34) | 0.002
Initial (mm)
Condylion - Menton | 18.55 (0.42) | 18.91 (0.45) | 18.48 (0.42) | 18.64 (0.46) | 0.005
Initial (mm)
Condylion - Id Initial | 20.65 (0.36) | 20.95 (0.52) | 20.71 (0.49) | 20.77 (0.47) | 0.140
(mm)
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Condylion - I’ Initial | 20.85 (0.51) | 21.11 (0.48) | 20.75 (0.38) | 20.90 (0.48) 0.076
(mm)
Incisal - Id Initial | 7.87(0.45) | 7.94(0.29) | 7.82(0.28) | 7.88(0.34) 0.741
(mm)
Incisal - I’ Initial | 5.06(0.24) | 5.13(0.27) | 5.27(0.26) | 5.15(0.26) | 0.124
(mm)
Intercondylar Initial | 17.78 (0.40) | 17.43 (0.33) | 17.50(0.48) | 17.57 (0.42) 0.068
(mm)

Al -30d A2 - 60d A3 -90d Overall

Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | p-value*
Weight Final (grams) | 256.1 (24.5) | 320.7 (25.0) | 337.0 (58.6) | 304.6 (52.2) | <0.001
Go’ - Menton Final | 15.86 (0.79) | 16.58 (0.69) | 16.83 (0.69) | 16.43 (0.82) | 0.003
(mm)
Go - Menton Final | 19.48 (0.46) | 20.81 (0.51) | 21.38 (0.77) | 20.56 (0.99) | <0.001
(mm)
Coronoid - Menton | 18.74 (0.40) | 20.13 (0.49) | 20.50(0.98) | 19.79 (1.01) | <0.001
Final (mm)
Condylion/Go’ -| 9.72(0.38) | 10.58 (0.26) | 10.78 (0.51) | 10.36 (0.60) | <0.001
Menton Final (mm)
Condylion - Go’ Final | 10.12 (0.40) | 11.02 (0.31) | 11.32 (0.53) | 10.82 (0.66) | <0.001
(mm)
Condylion - Menton | 20.93 (0.48) | 22.24 (0.48) | 22.87 (0.81) | 22.01 (1.01) | <0.001
Final (mm)
Condylion - Id Final | 23.13 (0.54) | 24.48 (0.60) | 25.10 (0.95) | 24.23 (1.09) | <0.001
(mm)
Condylion - I’ Final | 23.06 (0.48) | 24.35 (0.49) | 25.13 (0.75) | 24.18 (1.04) | <0.001
(mm)
Incisal - Id Final | 7.40(0.93) | 9.22(1.62) | 12.59(1.00) | 9.73(2.48) <0.001
(mm)
Incisal - I’ Final (mm) | 4.25(0.97) | 5.63(1.52) | 8.90(1.00) | 6.26(2.29) <0.001
Intercondylar  Final | 18.02 (0.35) | 18.19 (0.33) | 18.08 (0.54) | 18.10 (0.41) 0.142

(mm)

* derived from linear regression models; pairwise comparisons
are provided in tables 4 & 5
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Table 3. Descriptive statistics (mean and standard deviation)
for each measurement by subgroups and overall, for control

group B.

Control Group B

Subgroups - Timing

B1-0d B2 - 0d B3 - 0d Overall

Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | p-value*
Weight Initial | 109.4 (12.2) | 105.4 (22.1) | 121.7 (14.7) | 112.2 (17.8) | 0.062
(grams)
Go’ - Menton Initial | 13.18 (0.43) | 13.40 (0.61) | 13.74 (0.38) | 13.44 (0.52) | 0.075
(mm)
Go - Menton Initial | 16.34 (0.44) | 16.28 (0.66) | 16.70 (0.55) | 16.44 (0.57) | 0.804
(mm)
Coronoid - Menton | 15.90 (0.39) | 15.74 (0.74) | 15.98 (0.59) | 15.87 (0.58) | 0.348
Initial (mm)
Condylion/Go’ -| 8.13(0.34) | 8.26(0.37) | 8.55(0.37) | 8.31(0.39) | 0.040
Menton Initial (mm)
Condylion - Go’ 8.67 (0.34) | 8.72(0.38) | 8.97(0.41) | 8.79(0.39) | 0.413
Initial (mm)
Condylion - Menton | 18.11 (0.50) | 18.18 (0.71) | 18.50(0.52) | 18.26 (0.59) | 0.400
Initial (mm)
Condylion - Id Initial | 20.36 (0.59) | 20.37 (0.81) | 20.61 (0.64) | 20.45 (0.68) | 0.345
(mm)
Condylion - I Initial | 20.42 (0.52) | 20.44 (0.78) | 20.72 (0.58) | 20.53 (0.63) | 0.546
(mm)
Incisal - Id Initial | 7.64(0.26) | 7.73(0.32) | 7.95(0.54) | 7.77(0.40) | 0.381
(mm)
Incisal - I Initial | 5.17(0.31) | 5.15(0.22) | 5.33(0.43) | 5.21(0.33) | 0.865
(mm)
Intercondylar Initial | 17.60 (0.47) | 17.43 (0.50) | 17.65 (0.55) | 17.56 (0.50) 0.604
(mm)

B1-30d B2 - 60d B3 -90d Overall

Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD)
Weight Final (grams) | 282.3 (18.1) | 365.3 (35.0) | 430.2 (30.1) | 359.2 (67.4) | <0.001
Go’ - Menton Final | 17.43 (0.43) | 18.74 (0.51) | 19.92 (0.80) | 18.69 (1.19) | <0.001
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(mm)

Go - Menton Final | 20.30 (0.60) | 21.63 (0.67) | 22.93 (0.56) | 21.62 (1.24) | <0.001
(mm)

Coronoid - Menton | 19.35 (0.51) | 20.63 (0.43) | 21.61 (0.47) | 20.53 (1.05) | <0.001
Final (mm)

Condylion/Go’ -| 9.66 (0.44) | 10.56(0.58) | 11.23 (0.23) | 10.48 (0.78) | <0.001
Menton Final (mm)

Condylion - Go’ Final | 9.86 (0.46) | 10.72 (0.58) | 11.32 (0.25) | 10.63 (0.75) | <0.001
(mm)

Condylion - Menton | 21.60 (0.67) | 23.06 (0.33) | 23.91 (0.37) | 22.86 (1.08) | <0.001
Final (mm)

Condylion - Id Final | 23.90 (0.72) | 25.79 (0.54) | 26.45 (0.41) | 25.38 (1.23) | <0.001
(mm)

Condylion - I’ Final | 23.93 (0.58) | 25.69 (0.39) | 26.44 (0.48) | 25.36 (1.17) | <0.001
(mm)

Incisal - Id Final | 10.05 (0.38) | 11.06 (0.37) | 11.81 (0.48) | 10.98 (0.83) | <0.001
(mm)

Incisal - I Final (mm) | 6.92(0.23) | 7.72(0.28) | 8.13(0.32) | 7.59(0.58) 0.001
Intercondylar  Final | 18.02 (0.41) | 18.07 (0.48) | 18.18 (0.49) | 18.09 (0.45) | 0.642

(mm)

* derived from linear regression models; pairwise comparisons
are provided in tables 4 & 5

At baseline, only a few differences were evidenced among the

subgroups, as

expected,

due

to the

sample’s

prior

randomization. Contrarily, the final measurements revealed
noteworthy changes (Tables 4-6).

Comparisons between the experimental and the respective
control subgroups (Al vs B1, A2 vs B2, A3 vs B3) revealed a
statistically significant restriction of mandibular body length a
(Go’ - Menton), mandibular body length b (Go - Menton) and
mandibular length (Condylion - I’), across all subgroups (p <
0.001). The Coronoid - Menton, Condylion - Menton, Condylion -
Id, measurements were also found significantly different. Incisal
- Id and Incisal - I’ measurements measured significantly
different between Al vs B1 and A2 vs B2 subgroups,
respectively, albeit differences did not persist after 90 days of
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experiment (A3 vs B3 subgroups). The condylion height
(Condylion/Go’ - Menton), the ramus height (Condylion — Go’)
dimensions and the Intercondylar distance did not show
significant difference.
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Table 4. Pairwise group per
comparisons’ p-values derived from linear regression models,
adjusted for multiple comparison (Bonferroni).

timing measurements

p-values*
Measurement Alvs B1 A2 vs B2 A3 vs B3
Weight Initial 0.764 0.222 >0.999
GO0’ - Menton Initial 0.262 <0.001 >0.999
Go - Menton Initial 0.436 0.003 >0.999
Coronoid - Menton Initial >0.999 0.016 0.810
Condylion/Go’ - Menton >0.999 0.027 0.953
Initial
Condylion - Go’ Initial >0.999 0.001 >0.999
Condylion - Menton 0.177 0.005 0.900
Initial
Condylion - Id Initial >0.999 0.363 0.206
Condylion - I’ Initial 0.345 0.059 0.605
Incisal - Id Initial 0.775 >0.999 >0.999
Incisal - I’ Initial 0.353 0.873 >0.999
Intercondylar Initial >0.999 0.590 >0.999
Weight Final 0.202 0.007 <0.001
Go’ - Menton Final <0.001 <0.001 <0.001
Go - Menton Final <0.001 <0.001 <0.001
Coronoid - Menton Final 0.002 0.001 <0.001
Condylion/Go’ - Menton >0.999 >0.999 0.104
Final
Condylion - Go’ Final 0.793 0.056 >0.999
Condylion - Menton Final <0.001 <0.001 <0.001
Condylion - Id Final 0.001 <0.001 <0.001
Condylion - I Final <0.001 <0.001 <0.001
Incisal - Id Final <0.001 <0.001 >0.999
Incisal - I’ Final <0.001 <0.001 0.245
Intercondylar Final >0.999 >0.999 >0.999

* p-values in bold indicate statistical significance at 5% level
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Table

5. Pairwise

timing per

group measurements

comparisons’ p-values derived from linear regression models,

adjusted for multiple comparison (Bonferroni).

p-values*
Measurement AlvsA2 | AlvsA3 A2 vs A3 BlvsB2 | BlvsB3 | B2vs B3
Weight Initial >0.999 >0.999 >0.999 >0.999 0.295 0.075
Go’ - Menton| <0.001 >0.999 <0.001 0.211 0.194 >0.999
Initial
Go - Menton 0.116 >0.999 0.031 >0.999 >0.999 >0.999
Initial
Coronoid - 0.192 >0.999 0.020 >0.999 0.627 >0.999
Menton Initial
Condylion/Go’ -| >0.999 >0.999 0.189 0.153 0.089 >0.999
Menton Initial
Condylion — Go’ 0.016 >0.999 0.007 >0.999 0.959 0.959
Initial
Condylion - 0.027 >0.999 0.014 0.711 >0.999 >0.999
Menton Initial
Condylion - Id 0.205 >0.999 0.831 >0.999 >0.999 0.595
Initial
Condylion - I’ 0.338 >0.999 0.128 >0.999 >0.999 >0.999
Initial
Incisal - Id Initial >0.999 >0.999 >0.999 >0.999 0.726 >0.999
Incisal - I Initial >0.999 0.192 0.618 >0.999 >0.999 >0.999
Intercondylar 0.099 0.415 >0.999 >0.999 >0.999 >0.999
Initial
Weight Final <0.001 <0.001 0.999 <0.001 <0.001 <0.001
Go’ - Menton| >0.999 0.003 0.212 0.266 0.001 0.152
Final
Go - Menton Final | <0.001 <0.001 0.009 <0.001 <0.001 <0.001
Coronoid - | <0.001 <0.001 0.023 <0.001 <0.001 0.001
Menton Final
Condylion/Go’” - | <0.001 <0.001 >0.999 <0.001 <0.001 0.009
Menton Final
Condylion — Go’ | <0.001 <0.001 >0.999 <0.001 <0.001 0.028
Final
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Condylion -| <0.001 <0.001 <0.001 <0.001 <0.001 0.005
Menton Final
Condylion - Id| <0.001 <0.001 0.012 <0.001 <0.001 0.117
Final
Condylion - 1’| <0.001 <0.001 <0.001 <0.001 <0.001 0.011
Final
Incisal - Id Final <0.001 <0.001 <0.001 0.007 <0.001 0.594
Incisal - I’ Final 0.003 <0.001 <0.001 0.032 0.002 >0.999
Intercondylar 0.198 0.990 >0.999 >0.999 >0.999 >0.999
Final

* p-values in bold indicate statistical significance at 5% level

Differences within the subgroups in the experimental group (A1,

A2, A3) and within the control subgroups (B1, B2, B3) are

presented in Table 5. Table 6 presents the mean difference

(Final minus |Initial) for each subgroup regarding each

measurement. It appears that the rate of mandibular growth

was smaller in the experimental group in comparison to the

control group. The comprehensive regression model regarding

major measurements is depicted graphically in Figures 24-58.

Table 6. Estimated mean differences (final — initial), 95%

Confidence Intervals and p-values (compared to O i.e. no

change) per group and timing.

Mean
Difference 95%

Final-Initial (mm) Conf. Interval p-value

Go’ - Menton

Al 2.29 1.74 2.84 <0.001

Bl 4.19 3.63 4.74 <0.001

A2 1.82 1.27 2.38 <0.001

B2 5.23 4.66 5.79 <0.001

A3 3.15 2.60 3.70 <0.001

B3 6.26 5.70 6.82 <0.001

Go - Menton

Al 2.73 2.22 3.24 <0.001
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B1 3.96 3.45 4.47 <0.001
A2 3.67 3.16 4.18 <0.001
B2 5.34 4.83 5.85 <0.001
A3 4.75 4.23 5.26 <0.001
B3 6.23 5.72 6.74 <0.001
Coronoid - Menton

Al 2.61 2.18 3.03 <0.001
B1 3.38 2.96 3.81 <0.001
A2 3.69 3.27 4.11 <0.001
B2 4.78 4.35 5.21 <0.001
A3 4.52 4.10 4.94 <0.001
B3 5.73 5.30 6.15 <0.001
Condylion/Go’ -

Menton

Al 1.45 1.14 1.76 <0.001
B1 1.51 1.20 1.82 <0.001
A2 2.39 2.08 2.70 <0.001
B2 2.26 1.94 2.57 <0.001
A3 2.43 2.12 2.74 <0.001
B3 2.71 2.39 3.02 <0.001
Condylion - Go’

Al 1.32 0.98 1.66 <0.001
B1 1.17 0.83 1.51 <0.001
A2 2.51 2.17 2.85 <0.001
B2 1.96 1.61 2.31 <0.001
A3 2.51 2.17 2.85 <0.001
B3 2.37 2.03 2.72 <0.001
Condylion - Menton

Al 2.42 2.02 2.82 <0.001
B1 3.42 3.02 3.82 <0.001
A2 3.37 2.97 3.77 <0.001
B2 4.77 4.36 5.18 <0.001
A3 4.40 4.00 4.80 <0.001
B3 5.50 5.10 5.91 <0.001
Condylion - Id

Al 2.51 2.04 2.99 <0.001
B1 3.47 2.99 3.95 <0.001
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A2 3.57 3.10 4.05 <0.001
B2 5.29 4.80 5.78 <0.001
A3 4.40 3.93 4.88 <0.001
B3 5.94 5.45 6.42 <0.001
Condylion - I

Al 2.25 1.82 2.67 <0.001
Bl 3.45 3.01 3.88 <0.001
A2 3.28 2.85 3.71 <0.001
B2 5.12 4.68 5.56 <0.001
A3 4.40 3.97 4.82 <0.001
B3 5.82 5.39 6.26 <0.001
Incisal - Id

Al -0.60 -1.37 0.17 0.235
B1 2.40 1.63 3.17 <0.001
A2 0.95 0.18 1.72 0.007
B2 3.25 2.48 4.02 <0.001
A3 4.40 3.63 5.17 <0.001
B3 3.85 3.08 4.62 <0.001
Incisal - I

Al -0.90 -1.57 -0.23 0.002
Bl 1.85 1.18 2.52 <0.001
A2 0.70 0.03 1.37 0.033
B2 2.60 1.93 3.27 <0.001
A3 3.60 2.93 4.27 <0.001
B3 2.70 2.03 3.37 <0.001
Intercondylar

Al 0.26 -0.09 0.62 0.261
B1 0.37 0.02 0.72 0.033
A2 0.79 0.44 1.14 <0.001
B2 0.55 0.19 0.91 0.001
A3 0.59 0.24 0.94 <0.001
B3 0.59 0.23 0.94 <0.001
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Figure 24. Estimated mean and 95% Confidence Interval per
group and timing in initial weight

Adjusted Predictions of Timing#RatGroup with 95% Cls
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Figure 25. Estimated mean and 95% Confidence Interval per
group and timing in final weight

Adjusted Predictions of Timing#RatGroup with 95% Cls
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Figure 26. Estimated mean and 95% Confidence Interval per
group and timing in GO’ - Menton Initial

Predictive Margins of Timing#RatGroup with 95% Cls
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Figure 27. Estimated mean and 95% Confidence Interval per
group and timing in GO’ - Menton Final

Predictive Margins of Timing#RatGroup with 95% Cls
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Figure 28. Estimated mean change (Final — Initial) and 95%
Confidence Interval per group and timing in GO’ - Menton

Predictive Margins of Timing#RatGroup with 95% Cls
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Figure 29. Estimated mean and 95% Confidence Interval per
group and timing in Go - Menton Initial

Predictive Margins of Timing#RatGroup with 95% Cls
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Figure 30. Estimated mean and 95% Confidence Interval per
group and timing in Go - Menton Final

Predictive Margins of Timing#RatGroup with 95% ClIs
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Figure 31. Estimated mean change (Final — Initial) and 95%
Confidence Interval per group and timing in Go - Menton

Adjusted Predictions of Timing#RatGroup with 95% Cls

4 5 6
] | 1

- -
N
w -

Timing

—e— A —e— B




Figure 32. Estimated mean and 95% Confidence Interval per
group and timing in Coronoid - Menton Initial

Predictive Margins of Timing#RatGroup with 95% Cls
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Figure 33. Estimated mean and 95% Confidence Interval per
group and timing in Coronoid - Menton Final

Predictive Margins of Timing#RatGroup with 95% Cls
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Figure 34. Estimated mean change (Final — Initial) and 95%
Confidence Interval per group and timing in Coronoid -
Menton

Predictive Margins of Timing#RatGroup with 95% Cls
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Figure 35. Estimated mean and 95% Confidence Interval per
group and timing in Condylion/Go’ - Menton Initial

Predictive Margins of Timing#RatGroup with 95% Cls
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Figure 36. Estimated median and 95% Confidence Interval
per group and timing in Condylion/Go’ - Menton Final

Predictive Margins of Timing#RatGroup with 95% ClIs
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Figure 37. Estimated mean change (Final — Initial) and 95%
Confidence Interval per group and timing in Condylion/Go’ -
Menton

Predictive Margins of Timing#RatGroup with 95% Cls
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Figure 38. Estimated mean and 95% Confidence Interval per
group and timing in Condylion - Go’ Initial

Predictive Margins of Timing#RatGroup with 95% Cls
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Figure 39. Estimated mean and 95% Confidence Interval per
group and timing in Condylion - Go’ Final

Predictive Margins of Timing#RatGroup with 95% Cls
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Figure 40. Estimated mean change (Final — Initial) and 95%
Confidence Interval per group and timing in Condylion - Go’

Predictive Margins of Timing#RatGroup with 95% ClIs
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Figure 41. Estimated mean and 95% Confidence Interval per
group and timing in Condylion - Menton Initial

Predictive Margins of Timing#RatGroup with 95% Cls
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Figure 42. Estimated mean and 95% Confidence Interval per
group and timing in Condylion - Menton Final

Predictive Margins of Timing#RatGroup with 95% ClIs
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Figure 43. Estimated mean change (Final — Initial) and 95%
Confidence Interval per group and timing in Condylion -
Menton

Predictive Margins of Timing#RatGroup with 95% Cls
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Figure 44. Estimated mean and 95% Confidence Interval per
group and timing in Condylion - Id Initial

Predictive Margins of Timing#RatGroup with 95% Cls
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Figure 45. Estimated mean and 95% Confidence Interval per
group and timing in Condylion - Id Final

Predictive Margins of Timing#RatGroup with 95% Cls
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Figure 46. Estimated mean change (Final — Initial) and 95%
Confidence Interval per group and timing in Condylion - Id

Predictive Margins of Timing#RatGroup with 95% Cls
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Figure 47. Estimated mean and 95% Confidence Interval per
group and timing in Condylion - I’ Initial
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Figure 48. Estimated mean and 95% Confidence Interval per
group and timing in Condylion - I’ Final

Predictive Margins of Timing#RatGroup with 95% ClIs
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Figure 49. Estimated mean change (Final — Initial) and 95%
Confidence Interval per group and timing in Condylion - I’

Predictive Margins of Timing#RatGroup with 95% Cls
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Figure 50. Estimated mean and 95% Confidence Interval per
group and timing in Incisal - Id Initial

Predictive Margins of Timing#RatGroup with 95% Cls
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Figure 51. Estimated mean and 95% Confidence Interval per
group and timing in Incisal - Id Final

Predictive Margins of Timing#RatGroup with 95% Cls
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Figure 52. Estimated median change (Final — Initial) and
95% Confidence Interval per group and timing in Incisal - Id

Adjusted Predictions of Timing#RatGroup with 95% Cls
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Figure 53. Estimated mean and 95% Confidence Interval per
group and timing in Incisal - I’ Initial

Predictive Margins of Timing#RatGroup with 95% Cls
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Figure 54. Estimated mean and 95% Confidence Interval per
group and timing in Incisal - I’ Final

Predictive Margins of Timing#RatGroup with 95% Cls
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Figure 55. Estimated median change (Final - Initial) and

95% Confidence Interval per group and timing in Incisal - I’

Adjusted Predictions of Timing#RatGroup with 95% Cls
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Figure 56. Estimated mean and 95% Confidence Interval per
group and timing in Intercondylar Initial

Predictive Margins of Timing#RatGroup with 95% Cls
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Figure 57. Estimated mean and 95% Confidence Interval per
group and timing in Intercondylar Final

Predictive Margins of Timing#RatGroup with 95% Cls
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Figure 58. Estimated mean change (Final — Initial) and 95%
Confidence Interval per group and timing in Intercondylar

Predictive Margins of Timing#RatGroup with 95% Cls
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Biochemical analysis

Tables with descriptive statistics for each marker and graphs
with estimated means changes (final — initial value) and 95%
confidence intervals are provided (Tables 7-11, Figures 59-62).

Statistically significant increases were observed in OPG and
OPG/RANKL ratio in both groups and all subgroups. Statistically
significant decrease was observed in MCSF in subgroups B2 and
B3. No statistically significant differences in changes by group or
timing were found.

Table 7. Descriptive statistics (mean and standard deviation)

for each measurement by subgroups and overall, for
experimental group A.
Experimental Group A Subgroups - Timing
Al-0d A2 -0d A3 -0d Overall
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | p-value
RANKL (pg/ml) 275.45 289.02 285.12 283.20 0.788
(49.00) (47.62) (51.62) (48.36)
OPG (pg/ml) 110.37 133.67 117.05 120.36 0.498
(46.96) (65.64) (27.81) (48.88)
MCSF (pg/ml) 314.45 229.19 226.27 256.64 0.200
(173.31) (111.97) (103.80) (135.97)
OPG/RANKL ratio 0.40(0.17) | 0.45(0.17) | 0.42 (0.13) | 0.42 (0.15) | 0.775
Al -30d A2 - 60d A3 -90d Overall
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | p-value
RANKL (pg/ml) 293.64 303.22 306.50 301.12 0.840
(64.05) (38.40) (60.05) (54.01)
OPG (pg/ml) 260.84 304.52 214.12 259.83 0.328
(183.64) | (121.77) | (123.69) | (146.52)
MCSF (pg/ml) 277.31 167.28 148.72 197.77 0.005*
(126.81) (69.35) (83.99) (109.98)
OPG/RANKL ratio 0.86 (0.57) | 1.02 (0.42) | 0.76 (0.51) | 0.88 (0.50) | 0.445

* AlvsA2 p=0.026, AlvsA3 p=0.008 (Bonferroni corrected)
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Table 8. Descriptive statistics (mean and standard deviation)
for each measurement by subgroups and overall, for control

group B.

Control Group B Subgroups - Timing

B1-0d B2 -0d B3 -0d Overall
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | p-value

RANKL (pg/ml) 298.60 279.33 284.08 287.34 0.415
(38.86) (25.34) (43.13) (36.47)

OPG (pg/ml) 121.94 97.29 112.28 110.50 0.561
(60.25) (50.91) (56.86) (55.48)

MCSF (pg/ml) 335.30 276.49 279.70 297.16 0.635
(188.65) | (169.91) | (145.37) | (166.28)

OPG/RANKL ratio 0.41(0.21) | 0.35 (0.17) | 0.39(0.18) | 0.38 (0.18) | 0.711
B1-30d B2 - 60d B3 -90d Overall

Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD)

RANKL (pg/ml) 305.90 285.00 304.79 298.56 0.597
(56.14) (47.53) (64.11) (55.56)

OPG (pg/ml) 260.60 196.22 281.85 246.22 0.175
(120.48) (69.83) (139.57) (116.53)

MCSF (pg/ml) 294.98 172.66 156.83 208.15 0.032*
(176.11) | (134.08) (69.58) (144.36)

OPG/RANKL ratio 0.83(0.28) | 0.72 (0.29) | 0.93 (0.43) | 0.83(0.34) | 0.327

* B1vsB3 p=0.050 (Bonferroni corrected)
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Table 9. Estimated mean changes (final — initial), 95%
confidence Intervals and p-values (comparing with 0 i.e. no

change) per group and timing.

Mean 95%

Final - Initial Change Confidence Interval p-value
RANKL (pg/ml)

Al 18.19 -15.47,51.86 0.285
B1 7.30 -26.36, 40.97 0.666
A2 14.20 -19.47,47.87 0.403
B2 5.67 -28.00, 39.34 0.738
A3 21.38 -12.29, 55.04 0.209
B3 20.71 -12.96, 54.38 0.224
OPG (pg/ml)

Al 150.48 77.45,223.51 <0.001
B1 138.66 65.63,211.69 <0.001
A2 170.86 97.83, 243.89 <0.001
B2 98.94 25.91, 171.97 0.009
A3 97.07 24.04,170.10 0.010
B3 169.57 96.54, 242.60 <0.001
MCSF (pg/ml)

Al -37.15 -119.23, 44.94 0.370
Bl -40.32 -122.41, 41.77 0.330
A2 -61.91 -144.00, 20.17 0.137
B2 -103.83 -185.92, -21.75 0.014
A3 -77.55 -159.64, 4.53 0.064
B3 -122.87 -204.95, -40.78 0.004
OPG/RANKL ratio

Al 0.46 0.20, 0.72 0.001
Bl 0.43 0.17,0.68 0.002
A2 0.57 0.31,0.83 <0.001
B2 0.37 0.11, 0.63 0.006
A3 0.34 0.08, 0.60 0.011
B3 0.54 0.28,0.79 <0.001
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Table 10. Pairwise group per timing mean changes (final —
initial) comparisons’ p-values derived from linear regression

models, adjusted for multiple comparison (Bonferroni).

p-values*
Mean Change Alvs Bl A2 vs B2 A3 vs B3
RANKL >0.999 >0.999 >0.999
OPG >0.999 0.507 0.497
MCSF >0.999 >0.999 >0.999
OPG/RANKL ratio >0.999 0.802 0.857

Table 11. Pairwise timing per group mean changes (final —
initial) comparisons’ p-values derived from linear regression

models, adjusted for multiple comparison (Bonferroni).

p-values*
Mean AlvsA2 | AlvsA3 | A2vsA3 | BlvsB2 | Bl1vsB3 | B2vsB3
Change
RANKL >0.999 >0.999 >0.999 >0.999 >0.999 >0.999
OPG >0.999 >0.999 0.634 >0.999 >0.999 0.707
MCSF >0.999 >0.999 >0.999 >0.999 0.642 >0.999
OPG/RANKL >0.999 >0.999 0.812 >0.999 >0.999 >0.999
ratio
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Figure 59. Estimated mean change (final-initial) and 95%
Confidence Interval per group and timing in RANKL

Adjusted Predictions of Timing#RatGroup with 95% Cls
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Figure 60. Estimated mean change (final-initial) and 95%
Confidence Interval per group and timing in OPG

Adjusted Predictions of Timing#RatGroup with 95% Cls
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Figure 61. Estimated mean change (final-initial) and 95%
Confidence Interval per group and timing in MCSF

Adjusted Predictions of Timing#RatGroup with 95% Cls
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Figure 62. Estimated mean change (final-initial) and 95%
Confidence Interval per group and timing in OPG/RANKL
ratio

Adjusted Predictions of Timing#RatGroup with 95% Cls
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Histological observations

Descriptive statistics and estimated means (with 95% confidence
intervals) are provided in Tables 12-14 and Figures 63-67.

The ratio Bone Surface/Total Surface (BS/TS) was found
statistically significanty lower at both the anterior and posterior
areas between Al and Bl subgroups. In these subgroups, the
Anterior Condylar Cartilage Thickness (Anterior CCT) measured
statistically significantly greater.

In addition, statistically significantly lower values were
evidenced between experimental and control groups, regarding
the Posterior Condylar Cartilage Thickness (Posterior CCT) at 30,
60 and 90 days.

Table 12. Descriptive statistics (mean and standard deviation)
for each measurement by Timing and overall, for group A and B

Experimental Group A Subgroups - Timing
Al1-30d | A2-60d | A3-90d | Overall
Mean Mean Mean Mean *
(D) | (b)) | (sb) | (sp) | Pvale
Anterior Ratio BS/TS 69.45 75.52 76.30 73.76 0.342
(12.37) (6.81) (11.35) (10.62) '
Posterior Ratio BS/TS 78.31 88.99 89.86 85.72 0.079
(13.21) (3.33) (5.22) (9.76) '
Anterior CCT (um) 252.52 202.96 202.27 219.25 0.186
(40.04) (74.65) (52.45) (60.74) '
Middle CCT (um) 163.12 154.40 153.61 157.05 0.950
(68.22) (58.46) (42.75) (55.95) '
Posterior CCT (um) 97.02 78.77 76.61 84.13 0.516
(24.66) (30.65) (17.56) (25.87) '
Weight final (grams) 256.08 320.67 337.00 304.58 <0.001
(24.46) (24.97) (58.63) (52.15) '
Control Group B Subgroups - Timing
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B1-30d | B2-60d | B3-90d | Overall
Mean Mean Mean Mean
(sD) (sD) (sb) (sD)

Anterior Ratio BS/TS 80.32 83.37 84.20 82.63 0.862

(6.81) (8.15) (7.48) (7.48) '
Posterior Ratio BS/TS 90.45 93.51 94.15 92.70 0.576

(6.20) (6.18) (4.60) (5.78) '
Anterior CCT (um) 196.78 166.33 165.78 176.30 0.708

(36.54) | (23.12) | (17.71) | (30.03) '
Middle CCT (um) 177.12 151.71 150.94 159.93 0.660

(54.72) | (29.35) | (29.06) | (40.37) '
Posterior CCT (um) 153.39 143.25 141.63 146.09 0.910

(35.55) | (14.65) | (14.34) | (23.60) '
Weight final (grams) 282.25 365.25 430.17 359.22 <0.001

(18.14) | (34.98) | (30.11) | (67.40) '

* derived from linear regression models; pairwise comparisons
are provided in tables 13&14
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Table 13.

Pairwise group per

timing measurements

comparisons’ p-values derived from linear regression models,
adjusted for multiple comparison (Bonferroni)

p-values*®
Measurements AlvsBl | A2vsB2 | A3vsB3
Anterior Ratio BS/TS 0.021 0.196 0.416
Posterior Ratio BS/TS 0.002 >0.999 >0.999
Anterior CCT 0.026 0.468 >0.999
Middle CCT >0.999 >0.999 >0.999
Posterior CCT <0.001 <0.001 <0.001
Weight final 0.202 0.007 <0.001

* bold p-values indicate statistical significance at 5% level

Table 14.

Pairwise

timing per

group measurements

comparisons’ p-values derived from linear regression models,
adjusted for multiple comparison (Bonferroni)

p-values*

Measurements AlvsA2 | AlvsA3 | A2vsA3 | B1vsB2 | B1vsB3 | B2vs B3
Anterior Ratio 0.788 0.705 >0.999 >0.999 >0.999 >0.999
BS/TS

Posterior Ratio 0.141 0.198 >0.999 >0.999 >0.999 >0.999
BS/TS

Anterior CCT 0.321 0.496 >0.999 >0.999 >0.999 >0.999
Middle CCT >0.999 >0.999 >0.999 >0.999 >0.999 >0.999
Posterior CCT >0.999 >0.999 >0.999 >0.999 >0.999 >0.999
Weight final <0.001 <0.001 0.999 <0.001 <0.001 <0.001

* bold p-values indicate statistical significance at 5% level
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Figure 63. Estimated mean and 95% Confidence Interval per
group and timing in Anterior Ratio Bone Surface/Total Surface

Predictive Margins of Timing#RatGroup with 95% Cls
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Figure 64. Estimated mean and 95% Confidence Interval per
group and timing in Posterior Ratio Bone Surface/Total
Surface

Predictive Margins of Timing#RatGroup with 95% Cls
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Figure 65. Estimated mean and 95% Confidence Interval per
group and timing in Anterior Condylar Cartilage Thickness
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Figure 66. Estimated mean and 95% Confidence Interval per
group and timing in Middle Condylar Cartilage Thickness
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Figure 67. Estimated mean and 95% Confidence Interval per
group and timing in Posterior Condylar Cartilage Thickness

Predictive Margins of Timing#RatGroup with 95% Cls
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5. DISCUSSION

Orthodontics aims to study and guide the development of
maxillofacial elements that contribute to normal appearance
and basic function (de Oliveira Meira et al., 2020), namely
mastication, swallowing and breathing (Ngiam and Cistulli, 2015;
Nguee et al., 2020; Sommerlad, 1994). Thus, the ongoing
interest in the growth of the maxilla and the mandible may not
come as a surprise (Ghafari, 2015). Even conservative, non-
surgical interventions may affect the functioning of the TMJ and
facial appearance.

Knowledge on mandibular growth is acquired by longitudinal
clinical studies in normal individuals as well as by experiments
that use various animal models, mainly primates (Breitner, 1941;
Janzen and Bluher, 1965), rodents and other mammals (Herring,
2003). The rationale for selecting the rodents has been a matter
of debate. It is speculated that the existing anatomical
differences with humans may lead to erroneous conclusions. On
the other hand, higher financial costs seem to limit
experimentation with non-human primates; additionally, current
restrictions imposed by ethics prevent recruiting humans as
experimental subjects in interventions that may culminate in
irreversible or undesirable outcomes (Aersens et al., 1998).
There has not been a definitive agreement on the mechanism
(Mousoulea et al., 2016) and the possible side effects of the
most common treatments of developmental deviations (Folke
and Stallard, 1966; Figueroba et al., 2014; Zurfluh et al., 2015).

The present study investigates in rats an important feature of
human face, the mandibular shape, which is a potential
determinant of self-esteem (Lin et al., 2016; Alabdulrazaq,
2020), it affects the individual’s social interaction (Sofer et al.,
2015; Shen et al., 2016) and professional success (Frieze et al.,
1991), and is important in the function of the orofacial complex
(Rezaei et al., 2019; Lathrop-Marshall et al., 2021). Mandibular
development is multifactorial and is regulated by genetic and
environmental variables (Vieira, 2019; Kahn et al., 2020).

115



Currently, the rat is the most popular animal used in
experimental studies involving anatomy and physiology
(Sengupta, 2013; Logan, 2019; Sampaziotis, 2019; Rontogianni et
al., 2022), despite the existing differences with humans (Herring,
2003; Suzuki and lwata, 2016; Bolker, 2019). Thus, Wistar rats
were used in the study with provision to eliminate potential
confounding factors related to their characteristics. Therefore
the animals were all male and had no significant differences in
measurements that might be connected to the variables of
interest. Although the majority of similar studies have also
selected the rat, some past research has reported on rabbits
(Tsolakis, 1981; Desai et al., 1996) and even monkeys (Baume et
al., 1961; Janzen and Bluher, 1965).

Despite the randomization, some comparisons among
subgroups, regarding initial measurements, were found to be
statistically different. This might be attributed to the small size
of each subgroup. Twelve rats were sufficient to detect the
difference of interest, as was determined after power analysis,
but they might not have been adequate to eliminate differences
of initial characteristics. However, regression models concerning
final measurements were adjusted for initial ones, when
appropriate.

Every possible effort was made to breed the animals in a
healthy, safe environment, to provide necessary nutrition and to
treat them with dignity. Assessing the rat final weight, there was
no difference between A1-B1, contrary to the observations
between A2-B2 and A3-B3 (although the device in the A3
subgroup was removed on the 60™ experimental day). It could
be hypothesized that, initially, the appliance did not seem to
have caused any important difference, but subsequently the
animals might have faced trouble with feeding. Nevertheless,
the rats continued growing as there were differences among Al,
A2, A3 (Table 5).
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Rats live for 3 years, on average. They develop rapidly and their
adolescence ends by the end of the second month of
ontogenesis. Thus, a rat at 2 months of age (60 days) is
considered a young adult. The period of rapid growth allegedly
ends by 5 weeks, whereas at the period from 8 to 16 weeks,
growth slows down (Roach et al., 2003; Quinn, 2005; Andreollo
et al.,, 2012; Klein and Romeo, 2013; Sengupta, 2013). The
experimental period of the present study lasted for 90 days and
the rat age in the last subgroup was 120 days. The differences
between subgroups A3 and B3 remained statistically significant
30 days following the removal of the device (from A3 subgroup),
meaning that the mandible did not exhibit any post-treatment
catch-up growth.

Calculations were not performed separately for the left and right
mandibular sides. By contrast, the mean values of the
contralateral sides were used and are reported. The orthodontic
device that was used in the present study was full — cast,
intraoral, and was attached to the maxillary incisors. It was
introduced by Desai et al. (1996) although their research did not
report many details on osseous mandibular change, but focused
mainly on the TMJ. It was adopted by Cholasueksa et al. (2004)
and Farias-Neto et al. (2012), whereas Hua et al. (2012) and
Wang et al. (2019) used modified upper/lower devices, unlike
Asano (1986), Tsolakis (1981) and Teramoto et al. (2003) who
selected extra-oral appliances. Teramoto et al., (2003) mention
that the magnitude of the traction was excessive and, thus,
ended up traumatic.

The mandibular distal displacement effected by the intraoral
device that was cemented to the rat maxillary incisors caused a
restriction in mandibular length and in mandibular body length
(Lyros et al., 2022). Both Go and Go’ landmarks were identified
because the distal outline of the ramus in rodents appears to be
particularly more concave related to human anatomy (Figure
12). Asano (1986) appears to have faced the same challenge to
highlight similar landmarks. Such developmental restriction is in
agreement with the observations of Desai et al. (1996), and
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Cholasueksa et al. (2004), the conclusions of Asano (Asano,
1986), Farias-Neto et al. (2012), and Hua et al. (2012).

In addition, the obliqgue osseous and dento - osseous
measurements as depicted by Coronoid - Menton, Condylion -
Menton, Condylion - Id were also found significantly different.
Interestingly, Hua et al. (2012) found their respective oblique
measurement, namely the angle between the axis of the
condylar process to the mandibular plane, also changing spatial
orientation.

The present study also identified dental alterations, as
manifested by the statistically significant differences between
experimental and control animals regarding measurements
Incisal - Id and Incisal - I’ between Al vs B1 and A2 vs B2
subgroups, respectively, albeit differences did not persist after
90 days of experiment (A3 vs B3 subgroups). Dental attrition of
the lower incisors in subgroups A1, A2 during the first 60 days of
the experiment due to their contact with the device
discontinued after debonding the apparatus. Subsequently,
lower incisors resumed eruption and so no difference appeared
in the dental crown length between experimental and control
subgroups.

Interestingly, the vertical component of the mandibular
structure as expressed by the condylion height (Condylion/Go’ -
Menton) and ramus height (Condylion - Go’) did not show
significant difference across the experimental and control
subgroups at the final records. The observation agrees with that
of Farias-Neto et al., (2012) that did not observe any significant
difference considering the ramus height. Asano’s conclusions are
similar regarding the condylar height, although he noticed also a
thickening of the retromolar region and the condylar neck,
potentially due to spatial remodelling (Asano, 1986). This leads
to the conclusion that mandibular retrusion might not be
expected to cause unwanted side - outcomes affecting facial
appearance. Lastly, the Intercondylar distance remained

118



statistically unaffected, in agreement with the conclusions of
Farias-Neto et al., (2012).

To increase accuracy in identifying anatomical landmarks
(Nalgaci et al., 2010; Navarro et al., 2013; Sampaziotis, 2019)
and for increased consistency in measuring dimensions (Lin et
al., 2014), CBCT, a 3D reconstruction, was used in place of
ordinary 2D lateral cephalometric radiography (Ghafari et al.,
1998; Chadwick et al., 2009; Botticelli et al., 2011; American
Academy of Oral and Maxillofacial Radiology, 2013; Durao et al.,
2015). To our best knowledge this is the first study to use CBCT
for comprehensive cephalometric evaluation in rats, although
various digital radiographic techniques have been used (Farias-
Neto et al., 2012; Wang et al., 2019).

Dental professionals treating patients would like to know
whether a given treatment modality involving posterior
mandibular dislocation has a stable effect on the net growth and
consequently the facial dimensions, which affect the appearance
(Hans et al., 2017). Nevertheless, the studies being reviewed
here are heterogeneous regarding their outcomes and they
predominantly report on histology and biochemistry despite the
use of lateral radiography.

To our best knowledge, 3D radiography has not been previously
used in research involving growing male Wistar rats during
intermittent distal displacement of their mandibular condyle,
effected by a modified functional, fully cast appliance with
bands and inclined plane, permanently cemented on the upper
incisors over a long period.

Because individuals featuring visible developmental aberrations
pertaining to mandibular prognathism may have apparent need
for treatment, it is of importance to ascertain the mechanism of
action and to clarify the potential side effects of the intervention
studied.
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Concerning biochemical analysis, correlations among the
subgroups, regarding concentrations of OPG, RANKL and MCSF
in blood serum have not been found. The results indicate that
concentrations of OPG, RANKL and MCSF in blood serum have
no correlation between the subgroups. The data suggest that a
localized intervention displacing posteriorly the mandible does
not appear to affect the studied proteins in the systematic
circulation.

The histological observations are in agreement with the results
of previous studies. The statistically significant differences
between subgroups Al and B1 regarding the BS/TS Ratio
confirm the findings of Kuroda et al. (2009). Moreover,
reduction of condylar cartilage width at the posterior region has
been identified by Teramoto et al. (2003), Cholasueksa et al.
(2004) and Hua et al. (2012). Contrarily, Figueroba et al. (2014),
observed that the four cartilage layers thickened in the middle
region of the experimental condyles, undergoing functional
posterior displacement, in comparison to controls, after 14 days
of intervention. Hence, it might be concluded that the horizontal
component of the chewing force is transmitted to the posterior
condylar region.

The soft diet used in the present research may lead to a
decrease in the thickness of condylar cartilage and the density of
condylar subchondral bone (Tanaka et al, 2007; Chen et al, 2009)
Nevertheless, one could still track the difference between
experimental and control subgroups, as all the rats shared the
same soft diet.

The present study was conducted in rodents with respect and
complying with established legislature and regulations. Such
experimentation would be off — limits in humans because the
interventions might inflict irreversible changes. On the other
hand, the existing differences between rodents and humans call
for caution when interpreting the results. This study may be a
contribution to evidence - based decision making in
Orthodontics when treating skeletal Class Il malocclusion, and
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could intensify the call for further research on the long - lasting
effects of such interventions aiming to alleviate facial deviations.
A randomized controlled trial should be conducted to validate
the present research.
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6. CONCLUSIONS

1)

2)

3)

Posterior mandibular displacement in growing rats alters
the mandibular morphology and results in the
development of a smaller mandible at a grown age. In
the rat, it can be concluded that the effects of distal
mandibular displacement follow a consistent temporal
pattern and are statistically significant. The present study
emphasized the long-term stability of the outcomes,
revealing that the mandible does not show catch-up
growth following treatment.

Localized intervention of posterior mandibular
displacement is not found to affect the proteins of
interest in the systematic circulation.

Histologically, posterior mandibular displacement has the
potential to cause region-specific changes in the
microarchitecture of the condylar bone and the cartilage
thickness
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7. ABSTRACTS
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Greek abstract

Elcaywyn - Emiotnpoviko Ynopabpo

OL unxavikég doptioelg Stadpapatilouv BepeAlwdn polo oTig
KUTTAPLKEG Slepyaoieg katd tn Sldpkela tng popdoyéveong Twy
lotwv. Kata tnv  aoknon tng opBodoviikng  Kal
odovtonmpoowrikng opBomedikng edapuolovtal  Sladopa
BEPATEVTIKA OXAMATA TIOU WG OTOXO €XOUV TN CUYKPATNON TNG
avénong NG KAtw yvabou. Moapd TO yeyovog, OTL ol
npoavadepoueveg Bepameutikég pEBodolL ypnoiuomolouvtal
TOUAQLOTOV QTIO TIG ApXEG TOU €LKOOTOU alwva, eV ival akoun
TEKUNPLWUEVEG OL ETMIOPACELS TOUG OTLG KUTTAPLKEG SOMEC TNG
YVaBompoowrLKn G TEPLOXNAG.

KovéuAog katw yvadou

MoANEG UeEAETEG £xouv e€eTAoEL TNV avénon ¢ KATw yvadou,
Kat €l8lka toug kovdUAoUC TG KATw yvaBou. H auvuénon tou
KovOUAou ennpealetal ano KANPOVOLILKOUG Kol
TMEPLBOANOVTIKOUG  TOPAYOVIEG, OQNMO  OPUOVEG KOl  TO
pHeTaBOALONO, Kal e€lval onuavtiki ylwa tnv avénon Tou
KPOVIOTIPOOWTILKOU  CUMMAEYHOTOC. H odoviikry oUYKAELONn
ennpealel Vv avénon Twv KovOUAwv, kabBwg ot kovdulol
Séxovtal TILECELS amO HOONTIKEC SUVAUELS TIou edappolovral
ota O&0vtia. JUYKEKPLMEVA, OL OUYKAELOLOKEC OVWHAALEG
ennpealouv to péEyebog tou KovOUAOU, TO TIAXOG TOU XOVSpoU
KOl TOV TTOAAQTTAOCLOOUO TwV KUTTApwWV. Emiong, emnpealouv t
B£on tou kovbUAou, mou ¢puacloloyika Ba mpemel va Bploketal
OTO KEVTPO TNC KPoTadIKNG YANVNG, LE ATTOTEAECHU TN KN OUOAN
petadopa Twv duvapewv otnv Kpotagoyvabikn Aldpbpwon kot
™ Snuloupyla  SuoAewtoupylwv. OplOpEVOL  EPEUVNTEG
avadépovtal  otn  ouoxéton  petafy  SuoAettoupyiag
Kpotadoyvabikig AldpBpwong kat petafoAng tng B€ong tou
KOvOUAOU, WG aMOTEAECHA KOKNG CUYKAELONG.
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MponyoUUEVEG LEAETEG EXOUV EEETAOEL TO XOVOPO TOU KOVOUAOU
KAtw oo Oladopeg ouvOnkeg oe mepapatolwa. e
TIPONYOUUEVEG UEAETEG, N omicbla peTATONMION Tou KovOUAou
pelwoe Tov aplBpd TwV apXEyovwV KUTTAPWY KoL EUMOSLOE TOV
TIOAAQTTAQOLOONO  TWV  XOVOPOKUTTApWV Kal Uelwoe TNV
noootnta tng efwkuttaplag BepéAlag ouoiag. ALOKOTTOUEVN
omiocBla  petatomion Ttou  KovdUAou, Adyw avwpaliog
oUYKAELONG, ETULPEPEL aKavOVLoTN avadlapopdwaon Tou xovépou
ToU KOVOUAOU KOl TPOUUATIONO Twv VEUPWV. AKavOvLoTh
doption g Kpotadoyvabikig AwdpBpwong umopel va eival
emPAaPng yla To Xov6po Tou KovSUAOU KOl yla TO OTIOYYWOES
ootouv.

Qotoo0, 6ev UTTAPXOUV OPKETEG UEAETEG TOU va eEeTAlOUV TIG
oAAOYEC OTO 00TOUV HOKPOTIPOBETUAL.

ZKOTOG TNG LEAETNG

JKOTOG NG mopovoag €psuvag eivat n  Slepelvnon o€
LOTOAOYLKO, QTIELKOVIOTIKO KoL  Bloxnuikd emimedo  Twv
Slepyacuwv mou cupBaivouv otnv Kpotadoyvabikn AlapBpwon
KOl CUYKEKPLEVOL OTOV KOVOUAO Kal N HeEAETN TG avénong tng
KATw yvaBou, Katd tTn ouykpdtnon tng avénong tng KATw
yvabou, uMéow NG AOKNONG MNXOQVIKAG ¢optong UE
opBodovtikoug/opBomedikoUg LNXOVIOUOUC O ETILUUEG.

2toxol tnG ueA€tng

H Slepebivnon twv allaywv ou cuppaivouv otov KOVOUAO TG
KATw yvabou, LoTepa Ao omicOLa LETATOTILON TOU Kal N LEAETN
™¢ avénong ¢ KAtw yvadou.

Juykekplpéva Ba SlepeuvnBouv:

o) Z& LOTOAOYLKO €TimeSO, LECW TOPATPNONG OE OTTTLKO
ULKPOOKOTILO OL LOTOHOPGdOAOYLKOL XAPOKTAPES TWV
e€eTalOUEVWYV TIEPLOXWYV, KOOBWE KAl N 0OTEOKAQOTIKNA
Spaotnplotnra.
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B) Ze amelkovIoTIKO emimedo, n HeEAETN TG LopdoAoyiag
Kal t™¢ SouNg TNG KAtw yvabou, ot TPLOSLACTATO
eninedo, péow PeTposwv mou Ba mpokuPouv amod
aovikn topoypadia KwViKNG SEounc.

Y) Ze Boxnuiko eminedo, ol petaforég oto cuoTnua
Ooteomnpoteyepivng  (OPG) -  Zuvbétn  ToUu
EVEPYOTIOINTI) TOU  UTOSOXEQL TOU  TUPNVLKOU
napayovia KB (RANKL) kat otov Mapdyovta
S1Eyeponc amnotkiwv pakpodaywv (MCSF).

YAka kot M€0060og

To TMEPAUATIKO TIPWTOKOAAO TNG UEAETNG €YKPIONKE amod tnv
AlevBuvon Ktnviatpikng ¢ Meplpépelag ATTikAG Kot €Aafe
aplOud  mpwtokOMou  598742/04-10-2019, pe  KwoKO
katayxwpnong EL 25 BIO 05, oUudwva pe tnv EAAnvikn EBvikNA
vopoBeoia (MNA 56/2013), tnv Eupwnaiky Oényia 2010/63/EE
Kat out) tou Eupwmaikol YupBouliou (276/33/20.10.2010)
OXETIKA HME TNV Tpootacia Twv omovOuAwtwv Iwwv Tou
XPNOLLOTIOLOUVTAL OE TELPAMOTO KAl Ylat AAAOUC ETLOTNOVIKOUG
oKormoug.

Zxebdlaoudc NMepauarog

Itnv Tmopoloa  TEPAUATIKY  HEAETN  xpnoluomolnkav
eBbounvia OSvo (72) apoevikol emipueg Wistar nAwkiog
tecodpwyv efdopddwyv. Metd tnv apxlki Toug avatpodn
TeEcodpwVv eBSopadwyv oto EAANVIKS Ivotitouto MNaotép, OAa ta
{wa petadépbnkav koL oteydaotnkav oto  Epyaotrplo
MelpapaTtikng XelpoupyLlkng Kat Xelpoupylkng Epsuvag «N. X.
Xpnotéac» otnv latpikry ZxoAn tou Mavemiotnuiou ABnvwv. H
TuTtonoinon cUUpwWva Pe TNV €BVIKN Kal eupwraikn vopobeoia,
kaBoploe emhoyny KAwPouL (Tecniplast SPA, ItaAia) kal otaBepo
KEVIPIKO aeplopd (15 aMlayég agpa/wpa), TepBAANOVILKEC
ouvOnkecg oe 55% oxeTikn vypaoia, Beppokpacia 20°C + 2°C Ka
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TeEXVNTO 12wpo VP0G EVAANACOOUEVWY KUKAWY GWTOG-OKOTOUG.
H npocBaon o tpodn Kot vepo Atav Katd BouAnan.

Ta mepapotolwa Kataveundnkav tuxaia o€ (0e¢ oOpASEC,
OUYKEKPLUEVA TG opadeg A (melpapatikn) kat B (gAéyxou), n
KaBepuia Ywplotnke oe TPelG (oou HeEYEOOUG UTOOUASEC ME
dwdeka emipveg (A1, A2, A3, B1, B2, B3). lNa tnv opadonoinon
xpnowiomownke to Sladiktuakd epyoAeio Random Team
Generator.

Tpornomnotnuéveg 0pBOSOVTIKEG EVOOOTOUATIKEG CUOKEUEG, TIOU
€xouv meplypodel oe mponyoUUeVEC HEAETEG, TOTOOETHBNKAV
oTa MELPOUATOlWwa KoL odnyovoav o€ omicOla PeTATOMION TNG
Katw yvaBou. OL TANPWCG XUTEG METOAAKEC 0pOBOSOVTIKEG
OUOKEUEC KOTOOKEUAOTNKAV OTO EPYQOTAPLO, UETA OO
Pnolakn evbootopatiky ocdpwon (TRIOS 3, 3Shape intraoral
scanner) evog {wou o ETUAEXTNKE Tuxala.

OL TPOTOTIOLNUEVEC OUOKEVEG OUYKOAARONKOV O0TOUG TOUEIG TNG
avw yvabou pe otudpwodopikn kovia (Harvard Cement Normal
Setting; Harvard Dental International GmbH, 15366
Hoppegarten, lepuavia). Katd tn Swapkela oAOKANpnG NG
TELPAUATIKAG TIEPLOSOU, O Ta TIELPAUATOlWA (TELPOUATLKA KOl
eAéyxou) tpédovtav pe paAakn tpodn, n omoia mapnxdn ue
avapelEn opalpldiwv pe vEPO CE TUTIOTIOLNUEVEG aVAAOYIEC yLa
va erteuxBel padakn cvotaon.

JUVOALKA, n Telpapatiky mepiodog Suipkece 90 nuépeg. Ta
nepapatolwa Buotdotnkav ot 30 nuépeg (umoopadeg Al,
B1), 60 nuépeg (umoopadeg A2, B2) kat 90 nuéPeC (UTTOOUASEC
A3, B3). Tnv 60N nuépa TOU TELPAUATOC, OL 0pBOSOVTLKEG
OUOKEVEG adalpédnkav amod tnv MEPAPATIKA umoopdda A3.
KaB' oAn tn Oldpkela TNG MEPAUATIKAG TEPLOdou, OAa Ta
nepapatolwa  mapakohouBouvtav otevd ylo GucLoAoyLKA
avaruén.
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Tpioblaotatn aktivoypa@ikn avaAvon

Mo t MeAéTn oe tplobldotato eminedo tng popdoAoyiag tng
KAtw yvabou, mpayuatomowidnkav apxkég (nuépa 1n tou
TELPAMOTOG) Kal TeAKEG (nuéEpa Buoiag) UTMOAOYLOTIKEG
Topoypadieg kwvikng 6éoung (CBCT) os kabe mepapatolwo.
JToug emipueg €ywve avowobnola pe evdouuikr €veon e
ouvbuaouo ketapivng-EuAalivng oe docoloyia 0,2 ml/kg. OAot
oL emipueg capwbnkav pe tnv dla povada CBCT (New Tom VGi,
Cefla SC, Imola, ItaAia) xpnowonowvtag To i6lo ontiko medio
(8X8 cm, uynAigc avaluong, odapwon odovrootolxiag) He
puBuioelg €kBeong 110 kV. KaBe oapwon O6e€nxdn amo
F'vaBompoowrnikd AKTWVOAOYO. ITIC TIEPUTTWOELG TIOU KpiBnke
amapaitnto, oL ocopwoel enavoAnddnkav. Alevepynbnke
TPLOSLAoTATn AVAAUON UE YPOUMLKEG UETPOEL UE XPHON TOU
Aoylopikol  Viewbox (Viewbox© €kdoon 4.1.0.10, dHAL
Software, Kndlowd, EANada).

Bioxnuikn avaiuvon

MNa 1t MéTpnon Twv emumédwv Twv Tmpwieivwv OPG
(Ooteonpwrteyepivn), RANKL (ZuvSétn tou evepyomolnt TOU
urtodoxéa tou mupnvikoL mapayovta KB) kat MCSF (Mapdyovta
OlEyepong amokliwy pakpodaywv), cUAAEXBNKe 0pOC¢ aipatog
ano toug eTIMUEG. Mo OUYKEKPLUEVA, EYLVE apxkn (nuépa 1n
TOU TELPAMATOC) Kal TEAKN (Nuépa Buaoiag), atpoAnia. Ta {wa
avatoOntomow}Onkav moapodikd o€ Odlapo alBépa. Itn
OUVEXEL, OUAAEXBNKav Selypata aipatog, e tn xprion AEMTAG
QTOCTELPWUEVNG EPYOOTNPLAKNAG TILMETAG, N omola elonxOn otnv
TIEPLOXN TWV HATLWY, Tiiow amod 1o BoABo tou patiov. To aipa
TOomoBetONKe o€ SOKIUAOTIKOUG OWANVEG TIOU TIEPLELXQV
nrapivn kat dpuyokevtpnOnke otig 13.000 rpm ywa 5 Aemtd oe
Bepuokpacia dwuatiou. Itn cuvéxela oUANEXBNKE O 0POC Kall
arnoBnkelTNKE 0TOUG -20°C yla MEPALTEPW AVAAUOT).

Ta enineda nmpwteivwyv HeTpibnkav xpnotomnowwvtag ELISA kit

(Elabscience®, HMNA) oUpdwva HE TO TPWTOKOANO TOU
Kataokevaoty. Ol  HETPACEL  Tpaypatonmow)dnkav o€
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daopatopwtopetpo ELISA (Thermo Scientific Multiskan GO
Microplate Spectrophotometer).

lotoAoyikn npoctouacia

Mpw TNV QVAKTNON TWV aloBnoewv Toug, T MElpAPATOlwa
Buolaotnkav. Ta mapackevdaopata Statnpndnkav oe StaAupa
dopuaAivng 10%. Itn CUVEXELA, O OPLOTEPOG KOVOUAOG amo KAabe
KATw yvabo amopovwOnke Kol €eMeEEPyAOTNKE TEPALTEPW
LoToOAOYLKA. OL TOMPEC XpwHATIOTNKAV HE aLUatofuAivn Kot
nwoivn (HE) ywa va napatnpnBouv miboavég LoToHopPOAOYIKES
oAAayECG, TOOO O0TO 00TO Tou KovSUAou NG KATw yvabou, 6co
KOl 0Tn XOvOpLVN EMLPAVELA TOU.

Statiotikn eneéepyaocia

O aplOuog Twy nelpapatolwwy, EMPETME va (VAL LEV LLKPOC yLa
nBkouG AGyou, LKAVOG OUWG WOTE VO EVIOTILOTOUV aLOTILoTA
OTATLOTIKA amoteAéopata. O UOAOYLOUOC ToU SelylaTog £yLve
XPNOLLOTIOLWVTAC AVAAUGT LOXUOG.

O apBudc twv 12 emipuwv ava umoopdda UTMoAoyloTnke
XPNOLLOTIOLWVTAC TUTILKA OTATIOTIKA Kputipla (@ = 0,05, b =
0,10), anodidovtag oxv 90% ywa tnv avixveuvon Siadopag 0,5
mm (26,5 évavtl 27,0 SD 0,37) yla T0 PWTAPXLIKO ATIOTEAECUA
™G MEAETNG, SnAadn To unKog tnG Katw yvado (Condylion - I').
Q¢ &€k TOUTOU, XPNOLUOTIOLRONKOAV OUVOAIKA 72 EMiUUEG,
KOTOVEUNUEVOL LOOPPOTIAL OE TIELPAUATIKY KoL Opdda eAEyXOU.

Alevepynbnkav ypoppikd povtéda maAwvdpounong, ANOVA R
Kruskal-Wallis otatiotikég Sokipaoieg. Opiotnke a = 5% eninedo
OTOTLOTIKAG onpavtikotntag (p — value < 0.05). Ta &edopéva
enefepydotnkav Kol  avaAuBnkav  XpnOLLOTOLWVIAG TO
AOYLOUIKO OTOTLOTIKNG Stata ver.14 (Stata Statistical Software:
Release 14. College Station, TX: StataCorp LP.)
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AnoteAéopata

Ao TNV TPLOSLACTATN OKTWOYpadLKl) avAaAucon, Ol UETPHOELS
amokdAuav onuaviikég OSladopeg ot TMpooBOLomiodieg
Sl00TACELC METAEY TWV TEPAUATIKWY UTIOOMASWY Kol Twv
umtoopadwv gAéyxou. QOTO00, OL TAPATNPOUUEVEG AANAYES OTLG
katakopudeg Hetpnoelg, Condylion/Go’ - Menton kot otn
SlakovBUAKn amdotaon, 6 PBpEBNKOV OTATIOTIKA ONUAVTLIKEG.
Eniong, 6ev evtomiotnkav OTATIOTIKA ONUAVTIKEG SLodopEC ot
Boxnuikn avaluon, avadopikd ota enimeda OPG, RANKL kat
MCSF. EmutAéov, amd tnv LOTOAOYLK avaluon, mpogkuav
ONUOVTIKEG LOTOUOPPOUETPLKEG SladopéC otov KOVOUAO TNG
KATw yvabou. Juykekplpéva, n avaloyia Bone Surface/Total
Surface (Emupavelia ootoU/3uvoliky emudpavela) PpeOnke
HUELWHEVN TOCOO OTNV TPocbla, 600 Kal otnv omioBla meploxn
TOU KOVOUAOU. InUOVTIKA HElWON, aviXVEUTNKE KOL OTO TIAXOG
¢ omioBiag xovdpivng emidavelag tou KovduAou.

Iuunepacporta

1. H omicBa petratémon ¢ KATw yvaBou o€
QVATITUOOOEVOUG eMipueg aAAdlel tn popdoloyia Tng
KATW yvaBou kol €XEL WG QAMOTEAECHUA TNV avamtuén
MLKPOTEPNG KATW YvaBou otnv evnAkiwon.

2. H ouykekpluévn opBodovtikr/opBomnedikn mapéupaon
6ev amobelxtnke va emnnpedlel ta emnineda  Twv
MEAETNUEVWY TPWTEIVWY OTN CUCTNUATLIKA KUKAOdopia.

3. lotoAoyikd, BpEONKE va TPOTIOMOLELTAL N OPXLTEKTOVLKA
TOU 00TOU TOU KOVOUAOU KoL TNG XOvdpLvng emidpAaveLdg
TOU.

H mapovoa melpapatiky HeAETn €6woe  €udacn otn
HOKPOTIPOBEDHN otaBepotnta WV QIMOTEAECUATWY,
armokaAuTTovtag OTL N KAtw yvabog dev eudavilel umotpomn
avénong peta tn Bepamneia.
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Négerwg — kAeldLa: AvEnon katw yvabou, omicBa petatomnion
KATw yvabou, HAKOG KAtw yvaBou, auénon kovduAou,
Tplodlactatn  avaluon, enipueg, llin  IkeAetkn TA€n,
opBodovtiky Bepameia, Ooteonmpwrteyepivn, ZuvEETNG TOU
gvepyomolnt tou umodoxéa Tou TupnvikoU mapdyovia KB,
Mapadyovta SLEyEPONG ATOLKLWY HaKPOdAYywY, TIAX0C XovEpLvng
erudavelag kovduAou
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English abstract

Objective

To investigate changes (radiographic, biochemical, histological)
of the condyle and the mandible in rats that have undergone
restriction in the mandibular growth through mechanical loading
with an orthodontic / orthopedic device compared to rats
without using the device.

Materials and Methods

Seventy-two Wistar rats were used in this study. They were
divided into two equal groups of thirty-six rats each. Each group
consisted of 3 subgroups. For each experimental subgroup there
was a corresponding control subgroup, with no devices. The first
day of the experiment was the 30th day of life of the
experimental animals and the total duration of the experiment
was 90 days. The animals were sacrificed after 30 (subgroups A1,
B1), 60 (subgroups A2, B2) and 90 (subgroups A3, B3) days from
the start of the experiment. On the 60th day of the experiment
the orthodontic devices were removed from the remaining
animals. During the whole experimental period, rats were fed
mashed food. Cone beam computed tomographies were used
for three-dimensional analysis. Blood samples were collected
from the eye. Enzyme-linked immunosorbent assay (ELISA) kits
were used to determine OPG, RANKL and MCSF levels in the
blood serum. After sacrifice, the mandibular condyles were
isolated and examined histologically.

Results

From the three-dimensional radiographic analysis,
measurements revealed significant differences in the
anteroposterior dimensions between experimental and control
subgroups. However, the observed changes in the vertical
dimensions, Condylion/Go’ - Menton and the Intercondylar
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distance proved insignificant. No statistically significant changes
by group or timing were found in the levels of OPG, RANKL and
MCSF. Histological analysis revealed significant
histomorphometric differences in the mandibular condyle. In
particular, the Bone Surface / Total Surface ratio was found
diminished in both the anterior and posterior condylar regions.
Lastly, a significant reduction was found in the Posterior
Condylar Cartilage Thickness.

Conclusions

1. Posterior mandibular displacement of the mandible in
growing rats affects the morphology of the mandible and
culminates in the development of a smaller mandible at
a grown age.

2. The orthodontic / orthopedic intervention was not
shown to affecting the levels of the studied proteins in
the systemic circulation.

3. Posterior mandibular displacement can cause histological
region-specific changes in the microarchitecture of the
condylar bone and cartilage thickness.

The present study emphasized the long-term stability of the
outcomes, revealing that the mandible does not show catch-up
growth following treatment.

Key - words:, mandibular growth; mandibular posterior
displacement; mandibular length; condylar growth; rat; class llI
malocclusion; orthodontic treatment, Osteoprotegerin, RANKL,
MCSF, condylar cartilage thickness
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Supplementary Table 1. Lin’s concordance correlation
coefficient (rc), Mean difference and 95% LOA (Limits of
Agreement) Bland—Altman between 15t kat 2" measurement of
15t observer regarding the initial measurements of the
experimental group.

rc p-value Mean diff. 95% LOA
Go’ - Menton Initial R A 0.994 <0.001 -0.014 (-0.177, 0.149)
Go - Menton Initial R A 0.992 <0.001 -0.022 (-0.156, 0.111)
Go’ - Menton Initial L A 0.996 <0.001 -0.008 (-0.136, 0.119)
Go - Menton Initial LA 0.988 <0.001 0.019 (-0.142, 0.181)
Coronoid - Menton Initial R A 0.991 <0.001 0.017 (-0.120, 0.153)
Coronoid - Menton Initial L A 0.994 <0.001 0.019 (-0.094, 0.132)
Condylion/Go’ - Menton Initial R A 0.944 <0.001 -0.006 (-0.249, 0.238)
Condylion/Go’ - Menton Initial L A 0.948 <0.001 0.031 (-0.188, 0.249)
Condylion - Go’ Initial R A 0.963 <0.001 -0.008 (-0.204, 0.187)
Condylion - Go’ Initial L A 0.970 <0.001 0.017 (-0.162, 0.195)
Condylion - Menton Initial R A 0.934 <0.001 -0.050 (-0.383, 0.283)
Condylion - Menton Initial L A 0.979 <0.001 -0.008 (-0.192, 0.175)
Condylion - Id Initial R A 0.873 <0.001 -0.061 (-0.521, 0.399)
Condylion - Id Initial L A 0.987 <0.001 -0.003 (-0.147, 0.142)
Condylion - I’ Initial R A 0.909 <0.001 -0.042 (-0.456, 0.373)
Condylion - I’ Initial L A 0.989 <0.001 0.000 (-0.133,0.133)
Incisal - Id Initial R A 0.989 <0.001 0.008 (-0.090, 0.106)
Incisal - Id Initial L A 0.988 <0.001 -0.017 (-0.127, 0.093)
Incisal - I’ Initial R A 0.989 <0.001 0.011 (-0.067, 0.089)
Incisal - I’ Initial L A 0.997 <0.001 -0.006 (-0.051, 0.040)
Intercondylar Initial A 0.736 <0.001 -0.15 (-0.666, 0.366)

*R=Right, L=Left, A=Group A
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Supplementary Table 2. Lin’s concordance correlation
coefficient (rc), Mean difference and 95% LOA (Limits of
Agreement) Bland—Altman between 15t kat 2" measurement of
1t observer regarding the final measurements of the
experimental group.

rc p-value Mean diff. 95% LOA
Go’ - Menton Final R A 0.998 <0.001 -0.006 (-0.120, 0.109)
Go - Menton Final R A 0.997 <0.001 0.008 (-0.135, 0.152)
Go’ - Menton Final LA 0.995 <0.001 -0.006 (-0.167, 0.156)
Go - Menton Final LA 0.998 <0.001 0.011 (-0.111, 0.133)
Coronoid - Menton Final R A 0.997 <0.001 0.022 (-0.127,0.171)
Coronoid - Menton Final L A 0.996 <0.001 0.056 (-0.096, 0.207)
Condylion/Go’ - Menton Final R A 0.981 <0.001 0.036 (-0.158, 0.230)
Condylion/Go’ - Menton Final L A 0.973 <0.001 0.044 (-0.242, 0.331)
Condylion - Go’ Final R A 0.986 <0.001 0.050 (-0.116, 0.216)
Condylion - Go’ Final LA 0.982 <0.001 0.064 (-0.193, 0.321)
Condylion - Menton Final R A 0.997 <0.001 -0.003 (-0.162, 0.156)
Condylion - Menton Final L A 0.997 <0.001 0.017 (-0.135, 0.168)
Condylion - Id Final R A 0.998 <0.001 0.011 (-0.111, 0.133)
Condylion - Id Final LA 0.998 <0.001 0.006 (-0.142, 0.153)
Condylion - I’ Final R A 0.998 <0.001 0.019 (-0.094, 0.132)
Condylion - I’ Final L A 0.996 <0.001 0.039 (-0.118, 0.196)
Incisal - Id Final R A 1.000 <0.001 0.006 (-0.060, 0.071)
Incisal - Id Final L A 1.000 <0.001 -0.014 (-0.130, 0.102)
Incisal - I’ Final R A 1.000 <0.001 -0.003 (-0.060, 0.054)
Incisal - I Final L A 1.000 <0.001 0.000 (0.000, 0.000)
Intercondylar Final A 0.816 <0.001 -0.183 (-0.529, 0.163)

*R=Right, L=Left, A=Group A
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Supplementary Table 3. Lin’s concordance correlation
coefficient (rc), Mean difference and 95% LOA (Limits of
Agreement) Bland—Altman between 15t kat 2" measurement of
1%t observer regarding the initial measurements of the control

group.
rc p-value Mean diff. 95% LOA
Go’ - Menton Initial R B 0.970 <0.001 -0.011 (-0.299, 0.277)
Go - Menton Initial R B 0.980 <0.001 0.011 (-0.217, 0.240)
Go’ - Menton Initial L B 0.985 <0.001 -0.022 (-0.204, 0.160)
Go - Menton Initial L B 0.984 <0.001 -0.011 (-0.209, 0.186)
Coronoid - Menton Initial R B 0.991 <0.001 0.014 (-0.149, 0.177)
Coronoid - Menton Initial LB 0.989 <0.001 0.014 (-0.149, 0.177)
Condylion/Go’ - Menton Initial R B 0.985 <0.001 0.019 (-0.120, 0.159)
Condylion/Go’ - Menton Initial L B 0.981 <0.001 0.011 (-0.150, 0.172)
Condylion - Go’ Initial R B 0.982 <0.001 0.022 (-0.119, 0.164)
Condylion - Go’ Initial LB 0.992 <0.001 0.011 (-0.091, 0.114)
Condylion - Menton Initial R B 0.982 <0.001 -0.003 (-0.220, 0.214)
Condylion - Menton Initial L B 0.986 <0.001 -0.014 (-0.208, 0.180)
Condylion - Id Initial R B 0.996 <0.001 -0.003 (-0.122, 0.117)
Condylion - Id Initial LB 0.994 <0.001 -0.014 (-0.170, 0.143)
Condylion - I’ Initial R B 0.993 <0.001 0.006 (-0.142,0.153)
Condylion - I’ Initial L B 0.990 <0.001 0.017 (-0.162, 0.195)
Incisal - Id Initial R B 0.983 <0.001 -0.017 (-0.161, 0.128)
Incisal - Id Initial LB 0.990 <0.001 0.006 (-0.109, 0.120)
Incisal - I Initial R B 0.991 <0.001 -0.011 (-0.102, 0.080)
Incisal - I’ Initial L B 0.992 <0.001 -0.011 (-0.102, 0.080)
Intercondylar Initial B 0.931 <0.001 -0.014 (-0.401, 0.373)

*R=Right, L=Left, B=Group B
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Supplementary Table 4.
coefficient (rc), Mean difference and 95% LOA (Limits of
Agreement) Bland—Altman between 15t kat 2" measurement of
1%t observer regarding the final measurements of the control

Lin’s

concordance

correlation

group.
rc p-value Mean diff. 95% LOA
Go’ - Menton Final R B 0.996 <0.001 0.039 (-0.156, 0.234)
Go - Menton Final R B 0.998 <0.001 0.003 (-0.125, 0.131)
Go’ - Menton Final LB 0.997 <0.001 0.011 (-0.181, 0.203)
Go - Menton Final LB 0.997 <0.001 -0.011 (-0.225, 0.202)
Coronoid - Menton Final R B 0.998 <0.001 0.022 (-0.084, 0.128)
Coronoid - Menton Final L B 0.998 <0.001 0.028 (-0.101, 0.157)
Condylion/Go’ - Menton Final R B 0.974 <0.001 -0.053 (-0.351, 0.245)
Condylion/Go’ - Menton Final L B 0.976 <0.001 0.011 (-0.375, 0.397)
Condylion - Go’ Final R B 0.965 <0.001 -0.061 (-0.393, 0.271)
Condylion - Go’ Final L B 0.977 <0.001 0.017 (-0.345, 0.378)
Condylion - Menton Final R B 0.999 <0.001 -0.008 (-0.106, 0.090)
Condylion - Menton Final LB 0.995 <0.001 -0.006 (-0.204, 0.193)
Condylion - Id Final R B 0.999 <0.001 -0.003 (-0.113, 0.107)
Condylion - Id Final LB 0.998 <0.001 -0.017 (-0.153, 0.120)
Condylion - I’ Final R B 0.999 <0.001 0.003 (-0.117, 0.122)
Condylion - I’ Final L B 0.995 <0.001 -0.044 (-0.261, 0.173)
Incisal - Id Final R B 0.995 <0.001 -0.017 (-0.168, 0.135)
Incisal - Id Final L B 0.997 <0.001 0.006 (-0.118, 0.129)
Incisal - I’ Final R B 0.996 <0.001 -0.014 (-0.109, 0.082)
Incisal - I Final L B 0.995 <0.001 0.008 (-0.100, 0.117)
Intercondylar Final B 0.913 <0.001 -0.111 (-0.421, 0.199)

*R=Right, L=Left, B=Group B
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Supplementary Table 5. Lin’s concordance correlation
coefficient (rc), Mean difference and 95% LOA (Limits of
Agreement) Bland—Altman between 15t kat 2" measurement of
2" observer regarding the initial measurements of the
experimental group.

rc p-value Mean diff. 95% LOA
Go’ - Menton Initial R A 0.965 <0.001 -0.017 (-0.399, 0.365)
Go - Menton Initial R A 0.979 <0.001 0.028 (-0.190, 0.246)
Go’ - Menton Initial LA 0.986 <0.001 0.008 (-0.241, 0.258)
Go - Menton Initial L A 0.979 <0.001 0.006 (-0.209, 0.220)
Coronoid - Menton Initial R A 0.985 <0.001 0.017 (-0.162, 0.195)
Coronoid - Menton Initial L A 0.982 <0.001 0.006 (-0.193, 0.204)
Condylion/Go’ - Menton Initial R A 0.962 <0.001 0.000 (-0.193, 0.193)
Condylion/Go’ - Menton Initial L A 0.907 <0.001 -0.078 (-0.331, 0.175)
Condylion - Go’ Initial R A 0.966 <0.001 0.031 (-0.137, 0.198)
Condylion - Go’ Initial L A 0.952 <0.001 -0.058 (-0.254, 0.137)
Condylion - Menton Initial R A 0.961 <0.001 0.025 (-0.237, 0.287)
Condylion - Menton Initial L A 0.973 <0.001 0.019 (-0.184, 0.223)
Condylion - Id Initial R A 0.984 <0.001 0.006 (-0.156, 0.167)
Condylion - Id Initial L A 0.979 <0.001 0.033 (-0.148, 0.215)
Condylion - I’ Initial R A 0.977 <0.001 -0.031 (-0.228,0.167)
Condylion - I Initial L A 0.972 <0.001 0.031 (-0.183, 0.244)
Incisal - Id Initial R A 0.974 <0.001 -0.003 (-0.162, 0.156)
Incisal - Id Initial L A 0.989 <0.001 0.014 (-0.092, 0.120)
Incisal - I’ Initial R A 0.991 <0.001 0.003 (-0.071, 0.077)
Incisal - I’ Initial L A 0.980 <0.001 -0.003 (-0.113, 0.107)
Intercondylar Initial A 0.843 <0.001 -0.006 (-0.432,0.421)

*R=Right, L=Left, A=Group A
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Supplementary Table 6. Lin’s concordance correlation
coefficient (rc), Mean difference and 95% LOA (Limits of
Agreement) Bland—Altman between 15t kat 2" measurement of
2" observer regarding the final measurements of the
experimental group.

rc p-value Mean diff. 95% LOA
Go’ - Menton Final R A 0.992 <0.001 0.022 (-0.198, 0.243)
Go - Menton Final R A 0.994 <0.001 0.028 (-0.185, 0.240)
Go’ - Menton Final LA 0.989 <0.001 0.044 (-0.173, 0.261)
Go - Menton Final LA 0.993 <0.001 0.031 (-0.193, 0.254)
Coronoid - Menton Final R A 0.993 <0.001 0.039 (-0.177, 0.255)
Coronoid - Menton Final LA 0.994 <0.001 0.044 (-0.151, 0.240)
Condylion/Go’ - Menton Final R A 0.985 <0.001 -0.050 (-0.202, 0.102)
Condylion/Go’ - Menton Final L A 0.981 <0.001 -0.064 (-0.274, 0.146)
Condylion - Go’ Final R A 0.987 <0.001 -0.056 (-0.207, 0.096)
Condylion - Go’ Final LA 0.985 <0.001 -0.078 (-0.272, 0.116)
Condylion - Menton Final R A 0.993 <0.001 0.008 (-0.228, 0.244)
Condylion - Menton Final L A 0.994 <0.001 0.006 (-0.204, 0.215)
Condylion - Id Final R A 0.996 <0.001 -0.033 (-0.221, 0.154)
Condylion - Id Final L A 0.996 <0.001 -0.014 (-0.214, 0.186)
Condylion - I Final R A 0.997 <0.001 -0.022 (-0.185, 0.141)
Condylion - I’ Final L A 0.997 <0.001 -0.014 (-0.163, 0.135)
Incisal - Id Final R A 0.999 <0.001 0.019 (-0.173,0.212)
Incisal - Id Final LA 1.000 <0.001 0.025 (-0.093, 0.143)
Incisal - I Final R A 1.000 <0.001 0.014 (-0.111, 0.139)
Incisal - I Final L A 1.000 <0.001 0.000 (-0.081, 0.081)
Intercondylar Final A 0.907 <0.001 0.050 (-0.293, 0.393)

*R=Right, L=Left, A=Group A
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Supplementary Table 7. Lin’s concordance correlation
coefficient (rc), Mean difference and 95% LOA (Limits of
Agreement) Bland—Altman between 15t kat 2" measurement of
2" observer regarding the initial measurements of the control

group.
rc p-value Mean diff. 95% LOA
Go’ - Menton Initial R B 0.992 <0.001 0.003 (-0.142,0.147)
Go - Menton Initial R B 0.987 <0.001 0.000 (-0.193, 0.193)
Go’ - Menton Initial L B 0.981 <0.001 -0.006 (-0.215, 0.204)
Go - Menton Initial L B 0.973 <0.001 0.014 (-0.243, 0.271)
Coronoid - Menton Initial R B 0.989 <0.001 0.006 (-0.176, 0.187)
Coronoid - Menton Initial L B 0.986 <0.001 -0.003 (-0.193, 0.187)
Condylion/Go’ - Menton Initial R B 0.966 <0.001 -0.019 (-0.238, 0.199)
Condylion/Go’ - Menton Initial L B 0.957 <0.001 -0.028 (-0.269, 0.214)
Condylion - Go’ Initial R B 0.979 <0.001 0.000 (-0.169, 0.169)
Condylion - Go’ Initial LB 0.976 <0.001 -0.031 (-0.205, 0.144)
Condylion - Menton Initial R B 0.988 <0.001 0.019 (-0.161, 0.200)
Condylion - Menton Initial L B 0.976 <0.001 0.008 (-0.250, 0.267)
Condylion - Id Initial R B 0.988 <0.001 0.011 (-0.192, 0.214)
Condylion - Id Initial LB 0.989 <0.001 0.011 (-0.186, 0.209)
Condylion - I’ Initial R B 0.980 <0.001 0.033 (-0.201, 0.268)
Condylion - I’ Initial L B 0.978 <0.001 0.050 (-0.196, 0.296)
Incisal - Id Initial R B 0.965 <0.001 0.036 (-0.164, 0.236)
Incisal - Id Initial LB 0.975 <0.001 0.019 (-0.161, 0.200)
Incisal - I Initial R B 0.989 <0.001 0.014 (-0.082, 0.109)
Incisal - I’ Initial L B 0.993 <0.001 -0.003 (-0.090, 0.085)
Intercondylar Initial B 0.839 <0.001 0.050 (-0.493, 0.593)

*R=Right, L=Left, B=Group B
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Supplementary Table 8.
coefficient (rc), Mean difference and 95% LOA (Limits of
Agreement) Bland—Altman between 15t kat 2" measurement of
2" observer regarding the final measurements of the control

Lin’s

concordance

correlation

group.
rc p-value Mean diff. 95% LOA
Go’ - Menton Final R B 0.995 <0.001 0.003 (-0.214, 0.220)
Go - Menton Final R B 0.994 <0.001 0.003 (-0.243,0.248)
Go’ - Menton Final L B 0.998 <0.001 -0.036 (-0.193, 0.120)
Go - Menton Final LB 0.998 <0.001 -0.022 (-0.192, 0.147)
Coronoid - Menton Final R B 0.996 <0.001 0.011 (-0.181, 0.203)
Coronoid - Menton Final L B 0.997 <0.001 -0.031 (-0.185, 0.124)
Condylion/Go’ - Menton Final R B 0.986 <0.001 -0.036 (-0.266, 0.194)
Condylion/Go’ - Menton Final L B 0.986 <0.001 -0.039 (-0.329, 0.251)
Condylion - Go’ Final R B 0.985 <0.001 -0.033 (-0.272, 0.206)
Condylion - Go’ Final L B 0.987 <0.001 -0.031 (-0.299, 0.238)
Condylion - Menton Final R B 0.996 <0.001 0.003 (-0.187, 0.193)
Condylion - Menton Final L B 0.991 <0.001 -0.050 (-0.313,0.213)
Condylion - Id Final R B 0.998 <0.001 -0.008 (-0.173, 0.156)
Condylion - Id Final L B 0.995 <0.001 -0.011 (-0.235, 0.212)
Condylion - I’ Final RB 0.997 <0.001 0.031 (-0.131, 0.192)
Condylion - I’ Final L B 0.995 <0.001 -0.014 (-0.244, 0.216)
Incisal - Id Final R B 0.995 <0.001 -0.003 (-0.175, 0.169)
Incisal - Id Final L B 0.999 <0.001 -0.011 (-0.089, 0.067)
Incisal - I’ Final R B 0.990 <0.001 -0.017 (-0.176, 0.142)
Incisal - I’ Final L B 0.997 <0.001 0.000 (-0.094, 0.094)
Intercondylar Final B 0.775 <0.001 -0.083 (-0.711, 0.544)

*R=Right, L=Left, B=Group B
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Supplementary Table

9.

Lin’s

concordance

correlation

coefficient (rc), Mean difference and 95% LOA (Limits of

Agreement)

Bland—Altman between 1%t kair 2"

observer

regarding the initial measurements of the experimental group.

rc p-value Mean diff. 95% LOA
Go’ - Menton Initial R A 0.991 <0.001 -0.042 (-0.225,0.142)
Go - Menton Initial R A 0.981 <0.001 -0.061 (-0.238,0.116)
Go’ - Menton Initial L A 0.991 <0.001 -0.022 (-0.227,0.183)
Go - Menton Initial LA 0.988 <0.001 -0.011 (-0.172, 0.150)
Coronoid - Menton Initial R A 0.988 <0.001 -0.039 (-0.182, 0.104)
Coronoid - Menton Initial L A 0.992 <0.001 0.006 (-0.127, 0.138)
Condylion/Go’ - Menton Initial R A 0.954 <0.001 -0.044 (-0.246, 0.157)
Condylion/Go’ - Menton Initial L A 0.936 <0.001 0.006 (-0.238, 0.249)
Condylion - Go’ Initial R A 0.959 <0.001 -0.039 (-0.228, 0.150)
Condylion - Go’ Initial L A 0.971 <0.001 0.003 (-0.176, 0.181)
Condylion - Menton Initial R A 0.967 <0.001 -0.047 (-0.279, 0.185)
Condylion - Menton Initial L A 0.984 <0.001 -0.014 (-0.170, 0.143)
Condylion - Id Initial R A 0.980 <0.001 -0.011 (-0.197, 0.175)
Condylion - Id Initial L A 0.986 <0.001 -0.011 (-0.165, 0.143)
Condylion - I’ Initial R A 0.976 <0.001 0.031 (-0.178, 0.239)
Condylion - I Initial L A 0.987 <0.001 -0.006 (-0.153, 0.142)
Incisal - Id Initial R A 0.979 <0.001 0.022 (-0.111, 0.156)
Incisal - Id Initial L A 0.989 <0.001 -0.014 (-0.120, 0.092)
Incisal - I’ Initial R A 0.993 <0.001 0.000 (-0.066, 0.066)
Incisal - I’ Initial L A 0.997 <0.001 -0.006 (-0.051, 0.040)
Intercondylar Initial A 0.786 <0.001 -0.025 (-0.539, 0.489)

*R=Right, L=Left, A=Group A
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Supplementary Table 10.

Lin’s concordance

correlation

coefficient (rc), Mean difference and 95% LOA (Limits of

Agreement) Bland—Altman between 1%

kot 2nd

observer

regarding the final measurements of the experimental group.

rc p-value Mean diff. 95% LOA
Go’ - Menton FinalR A 0.994 <0.001 -0.011 (-0.214, 0.192)
Go - Menton Final R A 0.995 <0.001 -0.006 (-0.198, 0.187)
Go’ - Menton Final L A 0.998 <0.001 0.003 (-0.096, 0.102)
Go - Menton Final LA 0.996 <0.001 0.011 (-0.163, 0.185)
Coronoid - Menton Final R A 0.995 <0.001 -0.011 (-0.209, 0.186)
Coronoid - Menton Final LA 0.997 <0.001 0.028 (-0.125, 0.180)
Condylion/Go’ - Menton Final R A 0.980 0 0.053 (-0.132,0.237)
Condylion/Go’ - Menton Final L A 0.986 0 0.039 (-0.161, 0.239)
Condylion - Go’ Final R A 0.986 0 0.053 (-0.113, 0.218)
Condylion - Go’ Final LA 0.992 0 0.047 (-0.118, 0.213)
Condylion - Menton Final R A 0.995 <0.001 -0.017 (-0.218, 0.185)
Condylion - Menton Final LA 0.996 <0.001 0.014 (-0.162, 0.190)
Condylion - Id Final R A 0.997 <0.001 0.022 (-0.141, 0.185)
Condylion - Id Final LA 0.998 <0.001 0.017 (-0.128, 0.161)
Condylion - I’ Final R A 0.998 <0.001 0.031 (-0.100, 0.162)
Condylion - I’ Final L A 0.996 <0.001 0.053 (-0.106, 0.212)
Incisal - Id Final R A 0.999 <0.001 -0.011 (-0.165, 0.143)
Incisal - Id Final L A 1.000 <0.001 -0.019 (-0.132, 0.094)
Incisal - I’ Final R A 1.000 <0.001 -0.008 (-0.094, 0.078)
Incisal - I’ Final LA 1.000 <0.001 -0.008 (-0.081, 0.064)
Intercondylar Final A 0.821 <0.001 -0.189 (-0.529, 0.151)

*R=Right, L=Left, A=Group A
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Supplementary Table 11.
coefficient (rc), Mean difference and 95% LOA (Limits of

Agreement)

Lin’s

concordance

Bland—Altman between 1%t kou 2"
regarding the initial measurements of the control group.

correlation

observer

rc p-value Mean diff. 95% LOA
Go’ - Menton Initial R B 0.997 <0.001 -0.006 (-0.099, 0.087)
Go - Menton Initial R B 0.991 <0.001 0.008 (-0.150, 0.166)
Go’ - Menton Initial L B 0.991 <0.001 0.000 (-0.148, 0.148)
Go - Menton Initial L B 0.988 <0.001 0.014 (-0.149, 0.177)
Coronoid - Menton Initial R B 0.993 <0.001 0.011 (-0.128, 0.150)
Coronoid - Menton Initial LB 0.992 <0.001 0.042 (-0.077, 0.160)
Condylion/Go’ - Menton Initial R B 0.979 <0.001 -0.011 (-0.185, 0.163)
Condylion/Go’ - Menton Initial L B 0.984 <0.001 0.044 (-0.083, 0.172)
Condylion - Go’ Initial R B 0.984 <0.001 -0.014 (-0.156, 0.128)
Condylion - Go’ Initial LB 0.987 <0.001 0.033 (-0.091, 0.157)
Condylion - Menton Initial R B 0.990 <0.001 0.000 (-0.162, 0.162)
Condylion - Menton Initial L B 0.990 <0.001 0.017 (-0.149, 0.182)
Condylion - Id Initial R B 0.991 <0.001 0.006 (-0.169, 0.181)
Condylion - Id Initial LB 0.993 <0.001 0.003 (-0.156, 0.162)
Condylion - I’ Initial R B 0.991 <0.001 0.014 (-0.143,0.170)
Condylion - I Initial L B 0.991 <0.001 0.000 (-0.169, 0.169)
Incisal - Id Initial R B 0.980 <0.001 -0.022 (-0.178,0.134)
Incisal - Id Initial LB 0.969 <0.001 -0.031 (-0.223,0.162)
Incisal - I’ Initial R B 0.998 <0.001 -0.006 (-0.051, 0.040)
Incisal - I’ Initial L B 0.999 <0.001 -0.003 (-0.035, 0.030)
Intercondylar Initial B 0.925 <0.001 -0.075 (-0.420, 0.270)

*R=Right, L=Left, B=Group B
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Supplementary Table 12.

Lin’s concordance

correlation

coefficient (rc), Mean difference and 95% LOA (Limits of

Agreement)

Bland—Altman between 1%t
regarding the final measurements of the control group.

kot 2nd

observer

rc p-value Mean diff. 95% LOA
Go’ - Menton Final R B 0.996 <0.001 -0.058 (-0.223, 0.106)
Go - Menton Final R B 0.997 <0.001 -0.044 (-0.196, 0.107)
Go’ - Menton Final L B 0.999 <0.001 -0.006 (-0.110, 0.099)
Go - Menton Final LB 0.999 <0.001 0.006 (-0.135, 0.146)
Coronoid - Menton Final R B 0.998 <0.001 -0.014 (-0.156, 0.128)
Coronoid - Menton Final L B 0.997 <0.001 0.014 (-0.143, 0.170)
Condylion/Go’ - Menton Final R B 0.992 <0.001 -0.033 (-0.209, 0.142)
Condylion/Go’ - Menton Final L B 0.989 <0.001 0.025 (-0.233, 0.283)
Condylion - Go’ FinalR B 0.992 <0.001 -0.022 (-0.192, 0.147)
Condylion - Go’ Final L B 0.992 <0.001 0.022 (-0.198, 0.243)
Condylion - Menton Final R B 0.996 <0.001 -0.039 (-0.203, 0.125)
Condylion - Menton Final L B 0.992 <0.001 0.017 (-0.242, 0.275)
Condylion - Id Final R B 0.997 <0.001 -0.019 (-0.200, 0.161)
Condylion - Id Final L B 0.996 <0.001 0.008 (-0.203, 0.220)
Condylion - I’ Final R B 0.998 <0.001 -0.008 (-0.136, 0.119)
Condylion - I’ Final L B 0.996 <0.001 0.017 (-0.190, 0.224)
Incisal - Id Final R B 0.996 <0.001 0.000 (-0.155, 0.155)
Incisal - Id Final L B 0.999 <0.001 0.006 (-0.075, 0.086)
Incisal - I’ FinalR B 0.995 <0.001 0.011 (-0.102, 0.124)
Incisal - I’ Final L B 1.000 <0.001 -0.003 (-0.035, 0.030)
Intercondylar Final B 0.825 <0.001 -0.078 (-0.634, 0.479)

*R=Right, L=Left, B=Group B
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a.
NEPIOEPEIA ATTIKHE
\ @ A:598742
s 04/10/19
EAAHNIKH AHMOKPATIA
NEPIOEPEIA ATTIKHE AGijva, 4/10/2019

TENIKH AIEY®OYNIH AI'POTIKHE

OIKONOMIAE, KTHNIATPIKHE &

AAIEIAX

A/NIH ATPOTIKHE &

KTHNIATPIKHE MOAITIKHE

TMHMA: KA®E

LYITPOY 80-88, 117 41 Abijva

NMAHPO®OPIEX: X. ®lLdTorog

Tniépovo: 213 2065 751

Fax: 213 2065 020 A
e-mail: pandriopoulos@patt.gov.gr <

OEMA: «Xopriynon aderag mpotokdilop Srgdugacidy oz LHa»

- AO®ATH
‘Exovtag va’ oym:

A) Tig Satagerg:

Tov N.3852/2010 «Néa Apyurextovikiy g Avtodioiknong kar g Anokevipopévng Atoikmneng-
Mpoypappa Karrikpame» (PEK 87/1.A/7-6-2010)

2. Tng va’ apifu: 37419/13479/08-05-2018 Anbgacng tov ZuviovioTi] TG AROKEVIPOUEVNG
Awixnong Atnikig, pe v onoia eykpifnke n va' apibp: 121/2018 Andpacn tov Iepipeperaxod
SvpPovhiov IMeppéperag Atuxiis (PEK 1661 / B’ / 11.05.2018), nepi tpomomoinomg —
emxaponoinamng tov Opyavicpod Ecwotepkig Yanpeoiag mg IMepoéperag Attixig.

Tou N. 1197/81 «Ilepi apootaciag {bhwv» Kat quym:xplpévn 10 Gpbpo 4.

4. Tou N. 2015/92 «ITepi Kupd ¢ mg E K11g Zop ng ya ™V ﬂpocmciu TWV OTOVOLAOTAV
Lhwv mov xp OVTAL Y10 TEPAp mum,qﬁM.our; EMOTNHOVIKODG TKOTOVGH.

5. Tov ILA. 56/2013 [pooappoyn ™g EMnvikig vopobesiag omy Odnyia 2010/63/EE tov
Evponaikot KowoPoviiov xat tov Zvpfoviiov mg 22ag Zentepfpiov 2010(276/33/20.10.2010)
«OYETIKG pE TV TPOTTAGia TV {OOV TOV YPNGIHOTOI0VVTAL YIa ETTTIHOVIKODG OKOTOVG)

B) Tnv pe ap. npot. 590801/2-10-2019 aimon tov kov Améatorov Tooldky (xepovpyov

odovriatpov) yia mpaypatonoinon Ilpotoxérlov Swdikacidv oe (ba (emipveg) pe tov titho:

«lotoloyikés, anakovioTikés kar Proympukis peraforis mg Kpotagoyvabuis AwapBpoong oc

emipveg peta ané ovpmeotiky @opTion oy Kate yvabo.n, wov Ba Swefaybei oto Epyastipro

Mapaparikis Xepovpyikis kar Xepovpyikiig ‘Epevvag «N.E Xpnotiagy, eni mg 0d0) Ayiov Owpd

15B, T.K.11527, AOfva, Attikn, pe kodikd kataydpnong EL 25 BIO 05.

') Ty Betikiy yvopatevon mg Emtpomic A&oidymong Ipotokériioy.

.

ANNODAXIZOYME

Xopnyovpe @dewa yia mmy mpayy inon 10V CLYKEKPINE [Mpwtokdriov diadikacidy oe
Lha and tov ko Ardatoro Teokdaxn (xepodpyo odovtiatpo) wg Yasvbuvo tov MpoTokérrov kat Tov Ko
Todvvy Adpo (xeipodpyo odovtiatpo) og Yaedbuve Extédeonc/Yioroineng tov Mpotokéliov kat og
Yreo0uvo Toppépeoons mpog Ty adewdémen tov IMpotokdliov, kabdcov minpodvrar ot
apodmobicelg g oxetikng, yia my Ipootacia tov Lbov, vopobeoiag. Aowmoi cuppetiyovres Kat
Yaei0uvol yia Ty cuvokiki vieroeinen tov Mporokériov fa sivai: o kog Anpitprog Xaralovitg
(OpBodovrikdg) kat 1 ka Aéerowve Meppéa (Broynpuikoc)

Awvopn péow 'TPIAA" pe UID: 5d96{752425¢bb5a50d61fee otig 04/10/19 11:36
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H adgia avti woybet 1 tpia ypévia and my nuepopnvia ekdocemg me. v

Onowdnmote petaPori, mov agopd tovg vaevbHVOLE TOV TPWTOKOALOV, OTWS avtoi
avagépovia Tapandve, Oa Tpénet va dnAdvovial oty vINpPEsia pag.

O vrevBuvog tov Tpwtokdirov vmoypeodtar o avedpopkn efrodéynen petd to
TEL0G TOV TEPARATIGHOD.

Ot xpNOIHOMOOVHEVEG QUPHAKEVTIKEG 1 Kai Aowtég ovoieg yia v dielayoy) Tov
TPWOTOKOALOV VIOKEWVTAL, GOOV BPOPE TNV ELCAYDYY KAl £V YEVEL KUKAOQOPIX TOVG, OTIG OYETIKEG
Keipeveg datagec.

O Mpoistapevos Tne A/veng
N

Zrvhavig Mapyapng

KOINOIMOIHEH:
1. Yrovpysio Aypotikng Avantuéng & Tpogipwv
Fev. A/von Bidoiung Zowig Mapayoyig & Kmviatpikig
Alven Ilpootaciag tov Zowv, Pappdkev kat Kmviatpikav Eeappoydv
Bepaviépov 46, T.K.10438 Abnva
2. Alven Ayp. Owovopiag & Kmviatpikng IMeprpeperaxnig Evotnrag Kevepikod Topéa Abnvav
Zuyypov 80-88 , Abnva, T.K.: 117 41
3. Emuapomfi A&wokéynong IMpwroxéliov tov Epyactipiov IMepapatikis Xewpovpykis kat
Xetpovpyikiig Epevvag «N.Z Xpnotéagy
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